Configuraciones electrónicas

Reglas básicas para átomos de muchos electrones:

- 1. Un sistema de partículas es estable cuando su energía total es mínima.
- 2. Sólo puede existir un electrón en cualquier estado particular del átomo (p. de exclusión).

Capas y subcapas

- Electrones en la misma capa tiene el mismo número <u>n</u>.
- Electrones en una determinada sub-capa tiene el mismo número cuántico L.

Designación de los estados atómicos

		L					
	n		0	1	2	3	4
K	1		1S				
L	2		2S	2p			
\mathbf{M}	3		3S	3p	3d		
N	4		2S 3S 4S 5S	4p	4d	4f	
	5		5S	5p	5d	5f	5g

El principio de exclusión limita el número de electrones que pueden ocupar una determinada subcapa.

Una subcapa está caracterizada por los números (n,l), l=0,1,2, ..., n-1.

$$m_L = 0 \pm 1, \pm 2, ..., \pm l$$

 $m_s = \frac{1}{2}, -\frac{1}{2}$

Luego el número total de electrones en una capa es igual al número de electrones en todas sus subcapas.

$$\sum_{L=0}^{L=n-1} 2(2l+1) = 2(1+3+5+...+2(n-1)+1)$$

$$= 2(1+3+5+2n-1)$$

$$= 2(\frac{1}{2}(1+(2n-1)))$$

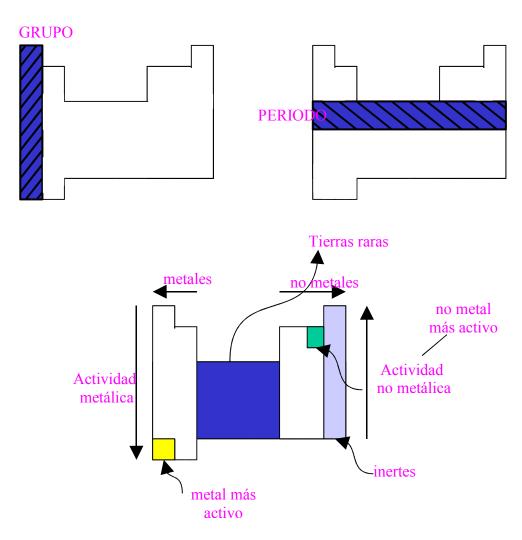
$$= 2n^{2}$$

De modo que el número máximo de electrones que contiene una capa es

	K	L	M	N	O
n	1	2	3	4	5
N _{máx}	2	8	18	32	50

Estructura de la tabla periódica

(Mendeleiev) (1871).



GRUPO: Elementos En una misma columna que comparten propiedades químicas similares.

PERIODO: Para un determinado grupo, los elementos pasan de alta actividad metálica hasta no metálica.

Configuración de átomos de muchos electrones.

Una capa (o subcapa) que contiene su cuota de electrones se dice que está cerrada

Capa s (l=0) ... 2 electrones p (l=1) ... 6 electrones d (l=2) ... 10 electrones

- \circ El momento total (orbital + espín) $(\overline{J} + \overline{L} = 0)$ de los electrones de una capa cerrada y su carga está distribuida simétricamente. Tampoco tiene momento dipolar y no atrae a otros electrones y tampoco cede ninguno... <u>los gases inertes</u>.
- Los <u>átomos alcalinos</u> (grupo 1) tiene un solo electrón <u>S</u> en su capa más externa. Mientras mayor sea el átomo menor será la energía de ligadura y menor la energía de ionización. Tienden a perder éstos electrones muy fácilmente.
- o Los halógenos (grupo VII) cuya carga nuclear esta imperfectamente (¿?) tienden a <u>capturar</u> un electrón adicional (iones negativos de valencia −5.

Algunas propiedades periódicas.

Los átomos alcalinos suelen tener los mayores radios y los gases inertes mayores e. de ionización.

Probabilidades de transición.

• Transiciones permitidas y prohibidas

La condición general para que un átomo emita un fotón en un estado excitado es

$$\int_{-\infty}^{\infty} x \Psi_n^* \Psi_m \, dx \neq 0$$

Transiciones permitidas: $\int = finita$

Transición prohibida: $\int = 0$

• Para un átomo de hidrógeno

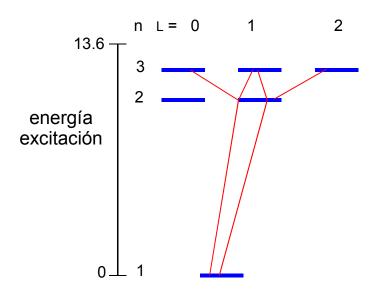
$$\int_{-\infty}^{\infty} u \Psi_{n,Lm_L}^* \Psi_{n',L',m'_L} du \neq 0$$

donde u representa x, y, z

La condiciones para que estas transiciones ocurran son (entre dos números cuánticos principales).

$$\Delta L = \pm 1$$

$$\Delta m_L = 0, \pm 1$$

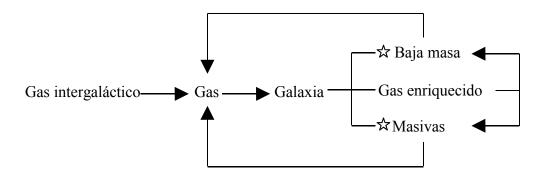


ORIGEN DE LOS ELEMENTOS QUÍMICOS

Los elementos químicos primordiales (H, He) se originaron de los 3 min de edad del universo.

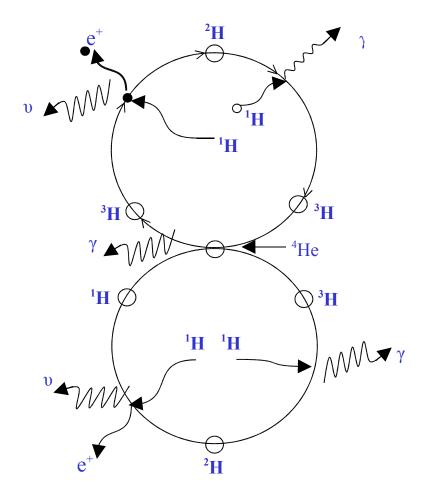
Después del 'Bing Bang' el universo se expandió y comenzó a enfriarse en la siguiente manera:

Tiempo		Temperatura
0	'Bing Bang'	
10 ⁻⁶ s	Sopa de quaks, electrones,	$> 10^{12} \text{ K}$
10 8	gluones, neutrinos	
10^{-4} s	Protones, neutrones	$10^{12} \mathrm{K}$
3 min	H, He (núcleos)	$10^9 \mathrm{K}$
10^5 años	Átomos neutros	$10^3 \mathrm{K}$
10º años	Formación de estrellas	10 K
> 10 ⁹ años	Metalicidad actual	3 K



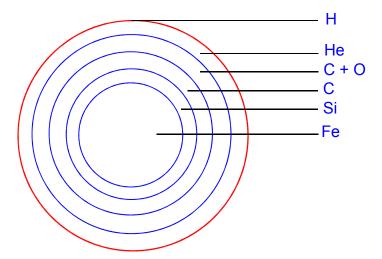
Reciclamiento de la materia en la galaxia

Fusión del hidrógeno: cadena p-p

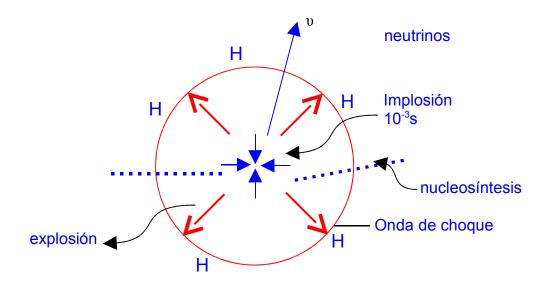


Fuente de energía en el interior de estrellas de baja masa (sol, por ejemplo). El resultado es producir un átomo de helio y energía.

Nucleosíntesis en supernovas



Modelo del núcleo de una estrella de gran masa al final de su vida.



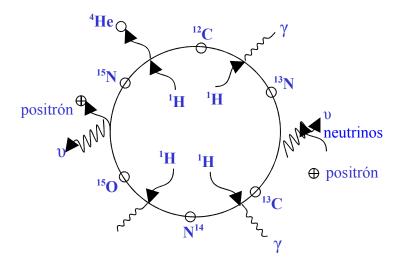
Explosión del núcleo de la estrella masiva. El Fe es desintegrado y se inician procesos de reacción \rightarrow más pesados que Fe.

Estado final \rightarrow pulsar (neutrón)

 \rightarrow agujero negro.

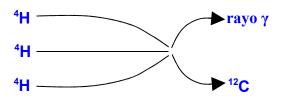
Elementos primordiales

- H, He: Formación de núcleos ligeros por fusión en la nube primordial.
- Fusión H: cadena p-p.
- <u>Ciclo CNO</u>: es estrellas de baja masa



Resultado neto: cuatro núcleos de H se convierten en un átomo de He.

Triple alfa



Teoría de Hartree (1928)

1. - El problema consiste en resolver la ecuación de Schrödinger (independiente del tiempo) para un sistema de Z electrones que se muevan independientemente en el átomo bajo un potencial V(r) simétrico

$$-\frac{Ze^2}{4\pi\epsilon_0 r} \qquad r\to 0 \qquad atracción\ de+Ze$$

$$-V(r)=$$

$$-\frac{e^2}{4\pi\epsilon_0 r} \qquad r\to \infty \qquad Z-1\ electrones\ son\ apantallad\ os$$

- Se resuelve la ecuación de Schrödinger utilizando V(r) y se obtiene

$$\Psi(r,\theta,\phi)\Psi_{\beta}\Psi_{\gamma}...$$

los autovalores

 $E_{\alpha}E_{\beta}E_{\gamma}$ α : conjunto de nos. Cuánticos (¿?) número de espín.

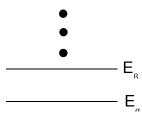
- 2. Luego se calculan las distribuciones de los electrones teniendo en cuenta que
 - La energía total sea mínima.
 - Principio de exclusión.

Las soluciones para $\Theta(\theta)\Theta(\varphi)$ son similares a las autofunciones de un electrón...

Las soluciones R(r) <u>no</u> son similares debido a que V(r) es muy diferente.

- <u>cerca del centro</u>, el potencial que actúa sobre el electrón $\alpha + Ze$; la interacción con los otros electrones es no significativa.
- <u>Lejos del centro</u>, el potencial es $\alpha + l$, que representa a la carga nuclear +Ze apantallada por los (Z-1) electrones más cercanos al núcleo.

3. - El estado base (o fundamental) del átomo se van asignando números cuánticos de tal modo que, la energía sea mínima y se respete el principio de exclusión. Es decir, los estados se llenan en orden creciente de energía.



Densidad de probabilidad radial

Resultados de la teoría de Hartree para los estados cuánticos ocupados del Ar (Z=18)

Discusión

- Para cada n la densidad de probabilidad se concentra en un intervalo restringido del radio (r/a_0) , llamado <u>capa</u>. Es decir, que para cada n, los valores posibles de L compartan la misma capa.
- El potencial de Coulomb puede aproximarse mediante la expresión,

$$V_n(r) = -\frac{Z_n e^2}{4\pi\epsilon_0 r}$$

donde Z_n es constante e igual a Z(r) calculada para el valor promedio del radio de la capa \rightarrow Ej.(9-5)

4. Con las autofunciones obtenidas en el paso anterior para cada electrón en un estado...

$$\Psi_{\alpha}(r,\theta,\phi);\Psi_{\beta}(r_2,\theta_2,\phi_2)...$$

se calcula entonces la distribución de carga resultante, tomando como distribución de carga el producto $e\Psi^*\Psi$; esto tiene sentido ya que $\Psi^*\Psi$ es la densidad de probabilidad de localización de los electrones.

- **5.** La distribución de carga total, que se obtuvo en el paso anterior se utiliza para calcular el campo eléctrico y el potencial neto que experimenta un electrón típico. Este potencial debería ser 'consistente' con el potencial V(r) adoptado en el punto 1.
- **6.** Si $V_{final} \neq V_{adoptado}$, se repite todo el procedimiento con un numero V(r) y se repite $2 \rightarrow 3 \rightarrow 4 \rightarrow 5$. Método muy laborioso!

Fock (1928) realizó los cálculos de Hartree con autofunciones antisimetricas para describir completamente un número reducido de átomos ...

El primer uso que se dio a las 'grandes computadoras' de la época fue realizar los cálculos Hartree – Fock... aún hoy día continúan calculando.

Resultados de la teoría de Hartree

Son similares al caso estudiado para un electrón

$$\Psi_{nlm_1m_s} = R_{nl}(r)\Theta(\theta)\Phi_{m_l}(\gamma)(m_s)$$

- Las soluciones acimutales y cenitales son casi idénticas.
- La solución radial son diferentes, debido a que V(r) ya no tiene la misma dependencia coulombiana.

El potencial neto se especifica...

$$V(r) = -\frac{Z(r)e^2}{4\pi\varepsilon_0 r}$$

donde

$$Z(r) \to Z$$
 $(r \to 0)$
 $Z(r) \to 1$ $(r \to \infty)$

Ejemplo 9-5 (Eisberg)

P(r) es la densidad de probabilidad radial total para el átomo Ar, que corresponde a la suma de $P_{nL}(r)$ (para cada estado) ... P(r) es la probabilidad de encontrar <u>algún</u> electrón en la coordenada radial en r.

Z(r) es el potecial
$$V(r) = -\frac{Z(r)e^2}{4\pi\epsilon_0 r}$$

$$\begin{pmatrix} Z(r) \to Z & ; & Z(r) \to 1 \\ r \to 0 & r \to \infty \end{pmatrix}$$

P(r) es grande para

$$r/a_o = 01,0.5,1.4$$

 $Z_n = 16,8,3$

Los autovalores En pueden calcularse utilizando la expresión para el átomo de un electrón poniendo $Z=Z_n$

$$E_n \cong -\left(\frac{Z_n}{n}\right)^2 x 13.6 eV$$

de aquí se obtiene

n	$Z_{\rm n}$	$E_n \pm 20\%$
5	16	-3500 Ev
2	8	-220
3	3	-14

Resumen de resultados de la teoría de Hartree

- 1. $n \rightarrow 1$
 - a) El radio atómico es pequeño comparado con el radio H

$$\stackrel{-}{r} \cong \frac{r_H}{z_1} - \frac{r_H}{z - 2}$$

b) La energía E_n es grande comparado con E_n (hidrógeno)

$$E \cong Z_1^2 E_H \cong (z-2)^2 E_{hidrógeno}$$

- 2. n grande
 - a) El radio atómico es grande

$$r = \frac{n^2 a_0}{Z_n} = \frac{n^2 a_0}{n} = na_0$$

En este caso, la predicación <u>no</u> es correcta porque los resultados experimentales muestran que r es pequeño para Z grande.

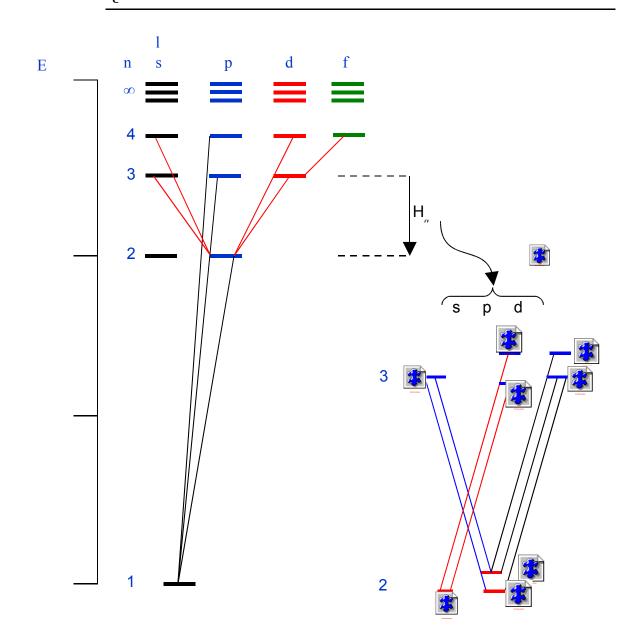
b) La energía de los electrones más externos es similar al estado base del átomo de hidrógeno

$$E_n \cong \frac{1}{n^2} \left(-\frac{\mu Z_n^2 e^4}{(4\pi \varepsilon_0)^2 2\hbar^2} \right)$$

ESPECTROS ATÓMICOS

El espectro atómico se origina por las transiciones electrónicas. Permitidas por las reglas de selección_

$$\begin{cases} \Delta L = \pm 1 & j = L \pm 1/2 \\ \Delta n \neq 0 & \Delta m_{\ell} = 0, \pm 1 \\ \Delta S = 0 & \end{cases}$$



El espectro del He

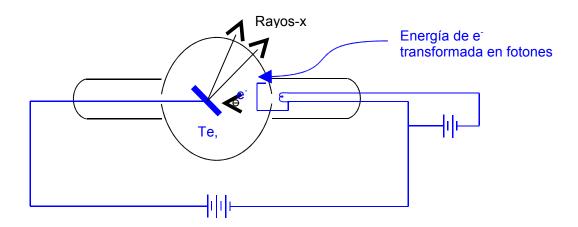
Para estudiar el átomo de dos electrones se debe aplicar las reglas de selección del efecto del acoplamiento LS.

$$\underline{LS} \begin{cases} \Delta L = 0, \pm 1 \\ \Delta n \neq 0, \pm 1 \\ \Delta S = 0 \end{cases}$$

El espectro de rayos-x

• Producción de rayos–x.

Descubierto por Roentgen (1895) al bombardear una superficie metálica con electrones 'rápidos' (de alta energía).



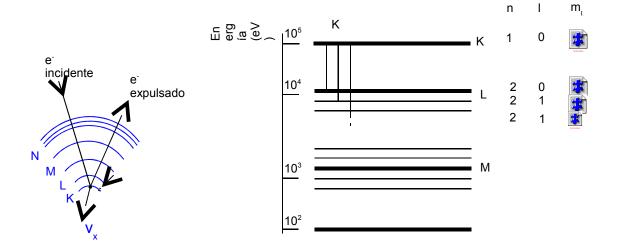
Tubo de rayos–x operando a alto voltaje. A <u>mayor</u> energía de los electrones <u>menor</u> la longitud de onda.

(dibujo)

Espectro de rayos – x

El espectro tiene dos componentes: uno continuo y uno discreto

Un fotón x se origina por la transición electrónica en niveles inferiores de átomos de alto número atómico. Los valores de la energía involucrados son también elevados.



Se originan rayos – x k cuando se extrae un electrón K, y así ucesivamente, y se origina transiciones de electrones de niveles superiores a los 'huecos' vacante

• Cálculo de la frecuencia

Un rayo-x K_{∞} K_1 se emite cuando un electrón L (n=2) hace una transición a un estado vacante K (n=1)

$$v = \frac{E_i - E_f}{h} = -\frac{E_{\infty}}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

donde
$$E_{\infty} = \frac{m(Z-1)^2 e^4}{8\epsilon_0 h^2}$$

donde (z-1)e es la carga nuclear efectiva

Poniendo
$$R = \frac{me^4}{8\epsilon_0 ch^3} = 1x10^7 m^{-1}$$

Tenemos,
$$v = \frac{3cR(z-1)^2}{4}$$

y
$$E(K\alpha) = (10.2eV)(z-1)^2$$

Moseley (1913) utilizó la difracción de rayos-x por cristales para medir la longitud de onda (λ) y la masa (número atómico, Z) de muchos elementos químicos.

(Alonso) p.146. Ej. 3.7

Cálculo de la separación de dos niveles debida a la interacción espín-órbita

Momento angular resultante (\bar{J}) :

$$\bar{J} = \bar{L} + \bar{S}$$

 \overline{L} : momento angular orbital.

 \overline{S} =momento angular de espín

• Cuantización del vector (\bar{J})

Si
$$\bar{J} = \bar{J}_1 + \bar{J}_2$$

$$J_1^2 = j_1(j_1 + 1)\hbar^2$$
 $J_{1Z} = m_1\hbar$

$$J_{17} = m_1 \hbar$$

$$J_2^2 = j_2(j_2 + 1)\hbar^2$$

$$J_{2Z} = m_2 \hbar$$

Si (\bar{J}) es el momento angular orbital

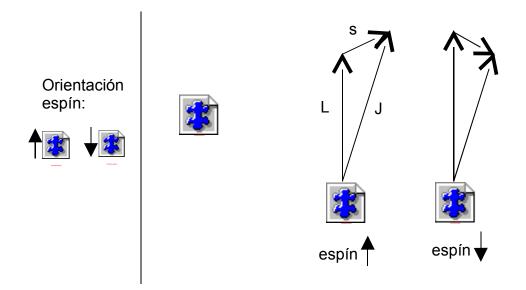
$$J_Z = J_{1Z} + J_{2Z}$$

$$J^2 = j (j + 1)\hbar^2$$
; $J_{1Z} = m_1\hbar$; $m = \pm j, \pm (j - 1),...$

Siendo $m = m_1 + m_2$

En el caso de un átomo: $\bar{J}_1 = \bar{L}$; $\bar{J}_2 = \bar{S}$

Tenemos,



• Reglas de selección

Debido a la interacción espín-órbita los números cuánticos necesarios para especificar el estado de un electrón son: \underline{n} \underline{L} \underline{j} \underline{m} , y las reglas de selección, impuestas por la conservación del momento angular son:

$$\Delta L = \pm 1$$
; $\Delta j = 0, \pm 1$; $\Delta m = 0, \pm 1$

• Energía debida a la interacción espín-orbita

$$E_{SL} = a\overline{S} \cdot \overline{L}$$

$$E = E_n + E_{SL} = E_n + a\overline{S} \cdot \overline{L}$$

• Cálculo de E_{SL}.

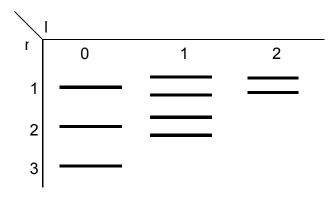
$$\begin{split} J^2 &= (L+S)^2 = L^2 + S^2 + 2\overline{S} \cdot \overline{L} \\ \overline{S} \cdot \overline{L} &= \frac{1}{2} \Big\{ J^2 - L^2 - S^2 \Big\} \\ &= \frac{1}{2} \Big\{ J(J+1) - l(l+1) - \frac{3}{4} \Big\} \\ &= \begin{cases} \frac{1}{2} l\hbar^2 & \uparrow j = L + \frac{1}{2} \\ -\frac{1}{2} l\hbar^2 & \downarrow j = L - \frac{1}{2} \end{cases} \end{split}$$

• Designación de los estados electrónicos

L	0	1	2	3
J	1/2	$\frac{1}{2}$ $\frac{3}{2}$	$\frac{3}{2}$ $\frac{5}{2}$	5/2 7/2
	$S_{\frac{1}{2}}$	$p_{\frac{1}{2}}$ $p_{\frac{3}{2}}$	$d_{\frac{3}{2}} d_{\frac{5}{2}}$	$f_{\frac{5}{2}}$ $f_{\frac{7}{2}}$

- La doble orientación del espín del electrón con respecto al momento angular orbital \overline{L} da lugar a la duplicación (desdoblamiento) de los niveles de energía (excepto para el nivel S) de los átomos hidrogenoides: dobletes (Ej. El doblete del Na en $\lambda\lambda$ 5890, 5896 Å, conocido como la línea D del sodio).
- Este desdoblamiento se origina por la interacción espín-orbita.

$$j = l \pm \frac{1}{2}$$



$$E(\uparrow) = E_n + E_{SL}(\uparrow) = E_n + \frac{1}{2}aL\hbar^2$$

$$E(\downarrow) = E_n + E_{SL}(\downarrow) = E_n + \frac{1}{2}a(l+1)\hbar^2$$

La diferencia entre los dos niveles de energía

$$\Delta E_{SL} \cong 5.32 \times 10^{-5} \frac{|E_n| Z^2}{nl(l+1)}$$

