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Abstract

A key ingredient in h-adaptivity pertains to the transformation of output data from a given error estimator into input data, usually in
the form of an element-size distribution, that needs to be supplied to a mesh generator.

This paper analyzes the different possibilities of defining remeshing criteria in the framework of goal oriented adaptivity. In standard
energy norm driven adaptivity, the optimal mesh is clearly obtained if the local error distribution is uniform. The goal-oriented paradigm
introduces new difficulties associated with the different possibilities for the spatial error representation and the signs of the local error
contributions.

A nodal error representation is introduced in order to improve the communication with the automatic mesh generation tool, preclud-
ing the transfer of information from elements to nodes.

Numerical experiments demonstrate the ability of the introduced remeshing strategies to drive efficient adaptive procedures and to
control the error in quantities of interest. The results of the numerical tests fit the expected properties of the different remeshing strategies.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The paradigm of adaptivity in computational mechanics
is to design the less costly mesh producing a numerical
solution fulfilling the accuracy prescriptions. The main
ingredients in any adaptive procedure are an error estima-
tor and a mesh generator. The error estimate is required to
decide if the adaptive loop must be stopped and to locate
the zones in the domain where the elements must be con-
centrated (where the contributions to the error are large).
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The mesh generator produces the mesh with the required
element size in every part of the domain, as determined
after the error assessment. The remeshing criterion is the
expression that translates the output of the error estimator
into a spatial distribution of the optimal element size for the
new mesh, which is the input of the mesh generator.

In the context of adaptivity based in the energy norm,
attention has been devoted to remeshing criteria yielding
the element size as a function of the local error, see [1–4].
In the framework of goal oriented adaptivity, where the
aim is to control the error in some quantity of interest
instead of in the energy norm, each author follows his or
her own recipe, based often on heuristic considerations
and without any claim on the optimality of the designed
mesh [5–7]. Following a different approach, the theoretical
analysis of the convergence rates of some adaptive proce-
dures has been addressed in the recent literature, see [8–
11]. In these works, adaptivity is performed by recursively
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refining the initial mesh, keeping the nodes of the starting
mesh all along the adaptive process.

The particularities associated with remeshing criteria in
goal oriented adaptivity are related with two factors: (1)
the local contributions to the error have in general different
sign and (2) the spatial error distribution is not unique.

The different sign of the local contributions to the error
means that, in some parts of the domain, refining the dis-
cretization decreases the error in the output of interest
while in other zones mesh refinement has the opposite
effect. In that sense, one could expect balancing the errors
coming from different zones to control the final error. Nev-
ertheless, a remeshing strategy based on balancing the error
contributions would be unstable, requiring a high accuracy
in both the error estimate and the automatic mesh genera-
tor. In practice, it is much more sensible to use the absolute
values of the error and to refine all the zones where the
error contributions are large (in absolute value), indepen-
dently of their sign and not trying to balance the large error
contributions with opposite sign. Obviously, this kind of
strategy leads to very conservative meshes, with a large
number of elements, especially if the spatial error distribu-
tion has local contributions with different sign that com-
pensate each other.

The lack of uniqueness of the error distribution arises
from the different possible error representations. The error
in the quantity of interest is described by different equiva-
lent expressions resulting in different local error distribu-
tions. Obviously, if the remeshing criterion is based on
the absolute values of the local contribution to the error,
the spatial error distributions preferred should have all the
local contributions with the same sign. If this is not possi-
ble, this condition can be relaxed to obtain most of the local
contributions with the same sign, in order to minimize the
effect in the resulting mesh of using absolute values.

This paper discusses the general form of a remeshing
strategy for goal oriented adaptivity based on any error
representation. Then, the effect of selecting different spatial
error distributions is also analyzed. As already pointed out,
the error has to be estimated to obtain the input of the
remeshing strategy. Thus, the errors in the error assessment

introduced by the error estimation procedure perturb the
adaptive scheme. In order to suppress the effect of the error
estimate, in this work the error is not estimated but com-

puted with an overkill mesh (when the exact solution is
not available). Obviously, this strategy cannot be used in
practical applications because of its computational cost
but it simplifies the analysis of the adaptive procedure, iso-
lating its effect in the resulting adapted solution.

The remainder of the paper is structured as follows. In
Section 2 the problem is stated in a general framework,
introducing the notation. Section 3 develops the remeshing
criteria for goal oriented h-adaptivity starting from the
basic assumptions on the local convergence rate and the
expected error distribution (somehow uniform). In fact,
the uniform error distribution is optimal in the sense that
it produces meshes with the least number of elements, as
stated in Section 4. Section 5 explores the different choices
for the spatial error distribution and their consequences in
the remeshing process.

2. Problem statement

2.1. Model problem

The unknown function u is the solution of a boundary-
value problem defined in X � Rd , a bounded d-dimensional
open domain, where d is equal to 1, 2 or 3. The weak form
of the problem reads: find u 2V such that

aðu; vÞ ¼ ‘ðvÞ for all v 2V0; ð1Þ
where the functional spaces V and V0 differ by the values
that the functions take on the Dirichlet part of the bound-
ary: functions in V fulfil the Dirichlet boundary conditions
and functions in V0 their homogeneous counterpart.

For elliptic self-adjoint problems, the bilinear form a(Æ, Æ)
is symmetric and positive definite. It is worth noting that in
the following developments we do not restrict ourselves to
this case. However, the numerical tests shown in Section 6
concern such particular problems.

2.2. Discrete solution and error equation

The finite element solution uH lies in the discrete func-
tional space VH �V, associated with a mesh of character-
istic element size H, and fulfils

aðuH ; vÞ ¼ ‘ðvÞ for all v 2VH
0 �V0: ð2Þ

The error of the numerical solution, e :¼ u � uH, lies in V0

and fulfils the following residual equation:

aðe; vÞ ¼ ‘ðvÞ � aðuH ; vÞ ¼: RP ðvÞ for all v 2V0; ð3Þ
where the residual in Eq. (1), RP(Æ), is introduced.

2.3. Output of interest, dual problem and error

representation

In the context of goal-oriented adaptivity, the aim is to
assess the error of some output of interest. In the following,
we restrict ourselves to the case of a linear output. Thus,
the quantity of interest is represented by a linear functional
J(Æ) and the goal is to assess and control the output error,
J(e). In order to express the error in the output of interest
in terms of energy products, an auxiliary dual (or adjoint)
problem is introduced. The dual problem consists on find-
ing u in V0 such that

aðv;uÞ ¼ JðvÞ for all v 2V0: ð4Þ
Then, setting v = e in (4), the following error representa-
tion is readily found:

JðeÞ ¼ aðe;uÞ ¼ RP ðuÞ: ð5Þ

Note that the Galerkin orthogonality property holds and
therefore for all vH in VH

0 ,
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aðe; vH Þ ¼ 0: ð6Þ
Consequently, the error representation (5) may be modified
introducing an arbitrary function vH

JðeÞ ¼ aðe;u� vH Þ ¼ RP ðu� vH Þ: ð7Þ
In particular, letting vH be the solution of the dual problem
(4) in VH

0 , that is vH = uH, the error in the output is ex-
pressed in terms of a combination of the error in the primal

and the dual problems:

JðeÞ ¼ aðe; eÞ ¼ RP ðeÞ; ð8Þ
where e :¼ u � uH. Spatial error distributions are associ-
ated with every error representation. These allow assessing
the contribution of every zone of the domain to the error.

2.4. Spatial error distribution

The local error contributions are usually associated with
the elements of the mesh inducing VH

0 . The natural restric-
tion to every element Xk, k = 1, . . . ,nel, nel being the
number of elements in the mesh of characteristic size H,
of the integral forms in the error representation (7) (or
the particular case (8)) yields the element by element error
distribution:

JðeÞ ¼
Xnel
k¼1

akðe;u� vH Þ ¼
Xnel
k¼1

RP
k ðu� vHÞ; ð9Þ

where ak(Æ, Æ), ‘k(Æ) and thus RP
k ð�Þ :¼ ‘kð�Þ � akðuH ; �Þ are the

contributions, computed in Xk to the global quantities
a(Æ, Æ), ‘(Æ) and RP

k ð�Þ, respectively. Note that the local quan-
tities ak(e,u � vH) and RP

k ðu� vH Þ represent different ele-
mentary contributions to the error and that they are not
necessarily positive.

Moreover, the function vH is arbitrarily taken in VH
0

and every choice for vH induces a different error distribu-
tion. As it is discussed in the following, the natural choice
vH = uH is often a good option.

3. A general framework for remeshing criteria

3.1. Goals and notation

Once the error is assessed, a key ingredient in the adap-
tive procedure is the remeshing criterion. The remeshing
criterion takes as input the error distribution and produces
the information required to build up a new mesh. If the
remeshing criterion is properly derived, the new mesh
should provide an approximate solution satisfying the
accuracy requirements at a minimum computational cost.
From a practical viewpoint, the remeshing criterion is pro-
duced by a function that maps local contributions to the
error into desired element sizes everywhere in the domain.

Let E be the error functional that needs to be controlled.
In standard adaptivity, E is the (squared) energy norm of
the error, a(e,e), in goal-oriented adaptivity E is precisely
J(e).
The quantity E is decomposed into elementary contribu-
tions Ek, for k = 1, . . . ,nel:

E ¼
Xnel
k¼1

Ek: ð10Þ

Each element in the mesh is denoted by Xk and the size of
this element is denoted by Hk. If the elements in the mesh
are sufficiently regular (not too distorted), the size of each
element is taken as

Hk ¼ ½meas Xk�1=d
: ð11Þ

From now on, quantities that are defined in the new mesh
are denoted with the hat symbol ð̂�Þ. For example, the num-
ber of elements and characteristic element size are denoted
by n̂el and bH . The local element size in the new mesh
should be denoted by bH k̂ for k̂ ¼ 1; . . . ; n̂el. Nevertheless,
the remeshing criterion furnishes the element size in the
new mesh for the elements located in the position of the for-
mer element Xk. Thus, it is more convenient to use the
notation bH k to denote the size of the elements in the new
mesh associated with Xk. Note that each value of bH k cor-
responds to different elements in the new mesh, that is to
several values of bH k̂.

The goal is then to derive an expression for bH k as a func-
tion of Ek and Hk such that the new mesh meets the accu-
racy requirements at the minimum cost. This remeshing
criterion is expected to produce the mesh size distribution
for the optimal mesh.

3.2. Assumptions required: local convergence rate,
optimal error distribution

Deriving a remeshing criterion requires some further
assumptions, both in the local convergence of the solutions
and in the error distribution on the optimal mesh.

First, an a priori estimate is needed for the local contri-
butions to the error. The usual form for the local a priori
error estimates, both in energy norm or in other quantities
of interest, reads

Ek 6 CðH kÞa for k ¼ 1; . . . ;nel; ð12Þ
where C is a constant independent of the mesh size and a is
the local convergence rate for such error contribution. In
the derivation of the remeshing strategies, the estimates
are assumed to be optimal in the sense that the inequality
in (12) is replaced by an equality, see [1]. Thus the following
expression is assumed to hold:

Ek ¼ CðHkÞa for k ¼ 1; . . . ;nel: ð13Þ

The value of a is derived from the usual energy norm a pri-
ori error estimates because the error contributions Ek are
defined from an error representation involving energy
products of error quantities, as described in Eq. (8). This
convergence rate is assumed to hold also for the new mesh,
that isbEk̂ ¼ Cð bH k̂Þ

a for k̂ ¼ 1; . . . ; n̂el: ð14Þ
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Second, an assumption must be done on the error distribu-
tion in the optimal mesh. Usually this results on establish-
ing some desired uniformity on the error distribution.

For instance, the new mesh is sought such that all the
elementary contributions are equal, that is all bEk̂, for k̂ ¼
1; . . . ; n̂el, are equal and do not depend on k̂. In fact this
is the remeshing criterion proposed by Li and Bettess
[1,2] for adaptivity in the energy norm. This criterion is
optimal in the sense that it furnishes the meshes with fewer
elements and with the prescribed value of the energy norm
of the error. It is proved in the next section that this crite-
rion is also optimal for goal oriented adaptivity.

The error sought in the new mesh, bE is given by the user.
Thus, this remeshing criterion requiresbEk̂ ¼ bE=n̂el for k̂ ¼ 1; . . . ; n̂el: ð15Þ
Note that n̂el is not known a priori but it is going to be
predicted using one additional assumption.

3.3. Derivation of the remeshing criterion

With the ingredients listed in the previous section the
expression for the remeshing criterion is readily derived.
The constant C corresponding to element Xk is isolated
from Eq. (13) and it is found to be

C ¼ Ek=ðHkÞa:
Replacing C in (14), using (15) and considering that, for the
new elements located in Xk, bH k̂ is denoted bH k, one gets

bE
n̂el
¼ Ek

ð bH kÞa

ðHkÞa
and; consequently; bH k ¼

bE
Ekn̂el

" #1=a

H k;

ð16Þ
where n̂el is still unknown. A further assumption on the
regularity of the mesh is required in order to predict a value
for n̂el. The number of elements in the new mesh occupy-
ing the zone of the element Xk of the current mesh is as-

sumed to be HkbH k

h id
. Note that this is a particular case of

(11) and it is equivalent to assume that the aspect ratio
of the elements in both the current mesh and the new mesh
is similar in every part of the domain. This hypothesis is
found to be very accurate in practice. Thus, the following
expression for n̂el follows:

n̂el ¼
Xnel
k¼1

H kbH k

� �d

: ð17Þ

Introducing (16) in (17) yields

n̂el ¼
Xnel
k¼1

Ekn̂elbE
� �d=a

¼ n̂
d=a
elbEd=a

Xnel
k¼1

ðEkÞd=a

and n̂el is isolated from the previous equation

n̂el ¼
1bEd=a

Xnel
k¼1

ðEkÞd=a
" #a=ða�dÞ

: ð18Þ
It is worth noting that the expression (18) is computable
once the error in the current mesh is assessed (all Ek are
known) and the target error bE is prescribed.

In the developments of this section it has been implicitly
assumed that the local error contributions are all positive
or, more generally, have all the same sign, see for instance
(15). As mentioned above, this assumption is very conser-
vative, especially if the error distribution is such that the
local error contributions have different sign and compen-
sate each other. Nevertheless, from a practical viewpoint,
exploiting the different signs of the error contribution in
order to balance them is not realistic. It is much easier to
use a proper error representation.

4. Optimality of uniform error distribution

In the previous section it has been claimed that the uni-
form error distribution given by (15) is optimal in the sense
that it produces meshes with fewer elements. This claim is
proved for energy norm based adaptivity in [1,2] and the
same rationale is also valid in the context of goal oriented
adaptivity.

The idea is to take bEk for k = 1, . . . ,nel as unknowns.
Using the a priori local estimates (13) and (14) one
gets

H kbH k

¼ EkbEk

� �1=a

: ð19Þ

Replacing (19) in (17) yields

n̂el ¼
Xnel
k¼1

EkbEk

� �d=a

: ð20Þ

The goal is then to find bEk for k = 1, . . . ,nel minimizing
n̂el subject to the constraint

bE ¼ X̂nel
k̂

bEk̂: ð21Þ

Note that using the mesh regularity assumption this is
equivalent to

bE ¼Xnel
k¼1

bEk
H kbH k

� �d

¼
Xnel
k¼1

bEk
EkbEk

� �d=a

¼
Xnel
k¼1

bE1�d=a
k Ed=a

k : ð22Þ

Using the Lagrange multipliers approach, minimizing (20)

subject to the restriction (22) is equivalent to find bEk for
k = 1, . . . ,nel and k such that

F ðbE1; . . . ; bEnel ; kÞ :¼
Xnel
k¼1

EkbEk

� �d=a

� k bE �Xnel
k¼1

bE1�d=a
k Ed=a

k

 !
ð23Þ

is stationary. Consequently, for every l from 1 to nel,

oF

obEl

¼ 0; that is Ed=a
l
bE�d=a

l ð�d=aÞbE�1
l þ kð1� d=aÞ

h i
¼ 0

ð24Þ
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or conversely,

bEl ¼
d

kða� dÞ : ð25Þ

Obviously, this requires all values of bEk for k = 1, . . . ,nel
to be equal and proofs that the optimality criterion (15)
used in the previous section is optimal in the sense that
the resulting mesh is expected to have the least number
of elements. This criterion and the corresponding reme-
shing strategy are denoted in the following by UED (Uni-
form Error Distribution).

Nevertheless, other optimality criteria may have other
desirable properties and may also be used to derive differ-
ent expressions for remeshing criteria. This is the case,
for instance, of the criterion denoted by USE (Uniform
Specific Error) inspired by [3] where the goal is to obtain
a mesh such that the local contribution to the error is pro-
portional to the element size, that is such that bEk=ð bH kÞd is
constant for k = 1, . . . ,nel. Using the same rationale, the
corresponding expression for the USE remeshing criterion
is

bH k ¼
bE

Ekmeas X

" #1=ða�dÞ

H a=ða�dÞ
k : ð26Þ

Note that the USE remeshing strategy is not optimal in the
sense that it is expected to produce meshes with more ele-
ments than UED. Nevertheless, the meshes produced by
the USE criterion may have other desirable features and
therefore the USE criterion is also used in the examples.
5. Proper local error representation and error distribution

In the previous sections remeshing criteria for goal ori-
ented adaptivity have been derived. The input data for such
expressions are: the local contributions to the error, Ek for
k = 1, . . . ,nel, the local convergence rate, a, and the target
error, bE, see for instance (16) and (18) and also (26). The
target error is prescribed by the user, while the error distri-
bution has to be assessed using some error estimator. It has
already been mentioned that the error distribution is not
unique and has to be chosen. In fact, a depends on this
choice. This section is devoted to analyze different possible
error distributions and the resulting remeshing criteria.

5.1. Elementary error product

The obvious choice for the spatial error distribution is
Ek = ak(e, e) that corresponds to setting vH = uH in (9),
see for instance [6,5]. The local convergence rate corre-
sponding to this distribution is assumed to be a = 2p + d,
p being the degree of the interpolation and d the space
dimensions, for regions free of singularities. This is due
to the fact that the energy product of the two errors e

and e converges with a rate double than the single energy
norm of each of them. This is a priori the best choice for
the error distribution because it yields the higher expectable
local convergence rate, the largest value for a.

In practice, the data entering the expressions for the
remeshing criteria ((16) or (26)) has to be positive and, con-
sequently, the actual choice is Ek = jak(e, e)j. If the original
distribution of ak(e, e) has alternate signs the resulting
remeshing criterion produces meshes with a number of ele-
ments much larger than needed. In fact, in these cases the
sum of all Ek is much larger than J(e).

Two different approaches are proposed in order to min-
imize the effect of the different signs of the local error con-
tributions. The first idea, developed in Section 5.2, is based
on selecting the optimal vH in (9). The second approach,
described in Section 5.3, consists on balancing the effect
of the signs by using a proper factor to correct the local
error contributions.

5.2. Optimal choice for vH

It has been noticed in (7) that the error representation
admits any function vH 2VH

0 . Using different values for
vH does not modify the global representation of J(e). Nev-
ertheless, the local contributions to the error, ak(e,u � vH),
are very different depending on the choice of vH. Thus, in
this section vH is selected such that the local error represen-
tation is optimal in the sense that it induces a remeshing
strategy leading to a mesh with the least number of
elements.

It is obvious from (18) that for the UED the optimal
error representation is such that

S :¼
Xnel
k¼1

ðEkÞd=a ð27Þ

is minimum. Note, however, that the value of the local rate
of convergence, a, depends also on the choice of vH. As al-
ready mentioned, a = 2p + d for vH = uH and a = p + d/2
if vH is selected arbitrarily (likely u � vH does not depend
on H).

Recall that, in order to preserve the stability of the reme-
shing process, the remeshing criterion is based on the abso-
lute values of the local error contribution, namely

Ek ¼ jakðe;u� vHÞj:

Thus, the goal is to select vH giving the least value for the
sum of some power (d/a) of the absolute values of the local
error contributions.

The function vH is represented by its coefficients ci, i =
1, . . . ,ndof in the basis of shape functions fN 1; . . . ; Nndofg
generating VH

0 , that is

vH ¼
Xndof
i¼1

ciN i: ð28Þ

Thus, finding vH is equivalent to finding the unknown vec-
tor c of the coefficients ci, i = 1, . . . ,ndof. Minimizing S

leads generally to a nonlinear system of equations for c.
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Fig. 1. Element-by-element errors for a(e,e) (top) and a(e,uh � vH)
(bottom) for the initial uniform mesh.
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The computational effort devoted to obtain c and hence
vH is worthwhile if the distribution of local energy prod-
ucts, ak(e, e), see Section 5.1, is balanced. That is, if the
local error contributions with opposite sign compensate
each other and the global value of J(e) is significantly lower
than some of the local errors. In these cases, introducing a
proper value for vH produces a local error distribution as
homogeneous as possible and reduces most of the undesir-
able effects of taking absolute values in the definition of Ek.

In order to obtain such homogeneousness in the error
distribution at the lowest computational cost, functional
S is replaced by

SH :¼
Xnel
k¼1

ðEkÞ2: ð29Þ

Then, the problem is formulated as a classical least squares
fitting and finding c is equivalent to solving the correspond-
ing normal equations. The local error contribution is
rewritten as

Ek ¼ akðe;uÞ �
Xndof
i¼1

ciakðe;NiÞ

and consequently

SH :¼
Xnel
k¼1

akðe;uÞ �
Xndof
i¼1

ciakðe;NiÞ
 !2

:

The normal equations read

ATAc ¼ ATf ; ð30Þ

where A and f are defined componentwise by

Aik ¼ akðe;NiÞ and f k ¼ akðe;uÞ
for i ¼ 1; . . . ;ndof and k ¼ 1; . . . ;nel:

Note that matrix ATA is usually ill-conditioned and not
sparse. Consequently, the system is rather solved directly
as the over-determined system

Ac � f ; ð31Þ
by using the singular value decomposition of matrix A.

Obviously, the obtained value for vH is not optimal but
it furnishes a good remedy for error distributions where the
phenomenon of alternate signs and error compensation is
dramatic.

It is shown in the following example how this strategy is
indeed reducing drastically the characteristic values of the
local error contributions. Unfortunately, the same example
demonstrates that the remeshing criterion associated with
this error distribution is not producing meshes with the
expected features.

Let us consider the Poisson equation in the square
domain X = ]�1,1[ · ]�1,1[ with a source term and
(homogeneous) Dirichlet boundary conditions such that
the exact solution is

uðx; yÞ :¼ expð�10ðx2 þ y2ÞÞ cosð0:5pxÞ cosð0:5pyÞ:
The quantity of interest is defined as the averaged value of
the solution in a circle of radius 0.05 centered in the center
P of the domain X, thus J(u) � u(P). The solution of the
adjoint problem, u, is replaced by a much more accurate
approximation, uh, computed with an overkill mesh of
characteristic size h = H/4.

The approximate solutions are computed in a first step
with a uniform mesh of 10 · 10 bilinear four-noded quad-
rilaterals. The error distributions corresponding to a(e, e)
and a(e,uh � vH) are shown in Fig. 1. Note that computing
vH with the methodology introduced in this section reduces
significantly the values of the local error components (the
scale in the bottom plot is one order of magnitude lower).
This is quantified by the sum of the absolute values of the
local componentsX

k

jakðe; eÞj ¼ 6:225� 10�2 andX
k

jakðe;uh � vH Þj ¼ 4:934� 10�3:

Thus, using vH has the desired effect in the error distribu-
tion: minimizes compensation and decreases the local error
contributions.

Nevertheless, in practice, using this distribution in the
remeshing process is not producing proper meshes. For
instance, Fig. 2 displays the meshes obtained in the first
steps of remeshing processes based on a(e, e) (top) and
a(e,uh � vH) (bottom). The error in the uniform starting
mesh is of 4.24% and the target error is 0.05%. Obviously,
the meshes generated in the process driven by a(e,uh � vH)
are not acceptable: they are almost uniform. This is prob-



Fig. 2. Meshes in the adaptive process driven by a(e, e) (top) and
a(e,uh � vH) (bottom). The number of elements and the error in the
quantity of interest are displayed below each mesh.
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ably due to the limitations of the mesh generation tools,
that require a distribution of the element size expressed
at the nodes, rather than at the elements. Transferring
information from elements to nodes smoothes out the
sharp variations in the element size required by the reme-
shing strategy associated with a(e,uh � vH). This limitation
cannot be precluded and therefore using the distribution
associated with a(e,uh � vH) is not realistic for practical
applications.

5.3. Correcting the alternate signs using a fetch factor

An alternative and straightforward strategy to obtain a
local error representation with the same sign in all the local
contributions is to use a proper fetch factor.

Let us introduce the factor

b :¼

Xnel

k¼1
akðe; eÞXnel

k¼1
jakðe; eÞj

¼ JðeÞXnel

k¼1
jakðe; eÞj

: ð32Þ
Table 1
Thermal problem: results provided by different strategies based on the UED c

Mesh a(e, e) b RP(e)

# el Error (%) # el Error (%) # el Error (%)

0 64 7.0
1 557 0.47 506 0.56 613 0.55
2 1535 0.09 1284 0.11 1553 0.13
3 2333 0.04 887 0.12 2464 0.04
4 2461 0.04 926 0.14 2398 0.04
5 2474 0.04 1030 0.11 2327 0.04
Obviously, the error representation

Ek ¼ bjakðe; eÞj
fulfils (10) and all the contributions have the same sign of
J(e).

Factor b is lower than one (in absolute value) and is
small if the error distribution ak(e, e) has opposite contribu-
tions from different parts of the domain, as described in
Section 5.2.

This correction is expected to work properly if the local
rate of convergence of the corrected local error remains
constant and can be predicted. That is, if (13) holds and
a is known. Numerical evidence demonstrates that the
value of b does not vary much in the adaptive process
and, consequently, the assumption (13) holds also for the
corrected error representation. Thus, the resulting reme-
shing criterion is obviously advantageous with respect to
the criterion described in Section 5.1 because taking abso-
lute values has no effect in the resulting mesh.

5.4. Nodal error distribution

As already mentioned, the output of the remeshing cri-
terion is the input for the mesh generator. Usually, auto-
matic mesh generators require information about the
desired mesh size expressed at nodes. Moreover, the ele-
ment size is described with the simpler interpolation and
therefore the information is only needed at the vertices of
the elements (nodes of the linear elements). Nevertheless,
according to the formulations used above, the output of
a remeshing criterion is an element by element mesh size
distribution, namely bHk. Bringing the information to the
nodes requires a postprocess involving smoothing of the
actual mesh size distribution. Nodal values of the desired
element size are computed either averaging the surrounding
elements or keeping the minimum element size. Both alter-
natives introduce deficiencies in the description of the ele-
ment size distribution, especially where the variations are
steep, resulting in a slow convergence and an undesirable
oscillating behavior of the adaptive process.

The partition of the unity concept is used to split the
error representation involving the weak residual RP(Æ), see
(8) into node by node contributions.

JðeÞ ¼ RP ðeÞ ¼
Xnpoin
i¼1

RP ðeNieÞ; ð33Þ
riterion

b RD(e) b

# el Error (%) # el Error (%) # el Error (%)

571 0.54 592 0.51 586 0.53
1403 0.11 1574 0.09 1473 0.09
1924 0.05 2469 0.04 1811 0.06
1688 0.07 2195 0.05 1721 0.05
1923 0.05 2595 0.04 1611 0.07



Table 2
Thermal problem: results provided by different strategies based on the USE criterion

Mesh a(e, e) b RP (e) b RD(e) b

# el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%)

0 64 7.0 64 7.0 64 7.0 64 7.0 64 7.0 64 7.0
1 381 0.55 369 0.55 423 0.55 429 0.55 379 0.62 380 0.62
2 2367 0.06 2076 0.07 2309 0.07 2157 0.07 2381 0.09 2160 0.11
3 7645 0.02 3124 0.09 8163 0.03 6549 0.04 7740 0.02 6613 0.03

Fig. 3. Thermal problem: meshes obtained with UED remeshing criterion.
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Fig. 4. Thermal problem: meshes obtained with USE remeshing criterion.
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where npoin is the number of vertices in the mesh and eN i,
i = 1, . . . ,npoin, are the linear scalar shape functions
associated with the vertex nodes. Note that eN i and Ni

coincide for scalar problems and linear elements but they
are formally different either if the numbers of unknowns
per node is larger than one (as, for instance, in the
mechanical 2D or 3D setting) or if the elements are of
higher degree.

Thus, taking Ek ¼ RP ðeN keÞ, k = 1, . . . ,npoin, yields a
nodal local error representation that is used to derive
new remeshing criteria. Note that with this definition of
Ek, (10) holds if nel is replaced by npoin. Two further
assumptions are required:
(1) A nodal element size is defined using some averaging.
For instance, the element size corresponding to node i

is taking as the measure of the support of eN i to the
power of 1/d, eventually divided by two.

(2) The nodal contribution to the error converges locally
at a given rate a, exactly as indicated in (13) but with
both Hk and Ek defined nodally.

Note that, for the sake of a simple presentation, the
notations for Ek and Hk are kept the same as for the ele-
ment by element approach.

If these assumptions are fulfilled, the remeshing criteria
are derived exactly in the same way as before, just replacing
nel by npoin all along the process. Obviously, when follow-
ing this approach the criterion analyzed in Section 4 is opti-
mal in the sense that it minimizes the resulting number of
nodes, not the number of elements.

An alternative approach is based on using the weak
residual of the adjoint problem. The error in the quantity
of interest is also represented by

JðeÞ ¼ RP ðeÞ ¼
Xnpoin
i¼1

RDðeN ieÞ; ð34Þ

where RD(Æ) :¼ J(Æ) � a(Æ,uH) is the weak residual of the ad-
joint problem. Taking Ek ¼ RDðeN keÞ, the same rationale is
used to find the corresponding remeshing criteria, with ex-
actly the same expressions as before.

6. Numerical examples

The remeshing criteria introduced in the previous sec-
tions are tested by solving adaptively both a thermal prob-
lem with a synthetic analytical solution and a classical
mechanical test in linear elasticity. The mechanical test uses
the geometry and the loading setup of the so-called Single
Edge Notched Beam (SENB) mostly used in fracture
mechanics [12]. The automatic mesh generator developed
in [13] is used to generate the meshes along the remeshing
procedure. It is worth noting that no error estimation is
used in the numerical experiments. Recall that the goal is
to test the remeshing criteria. Thus, in the cases where
the exact solution is not available, in order to avoid intro-
ducing a new source of uncertainty, the error is not esti-
mated but computed by using an overkill mesh of element
size h = H/4, i.e. by uniformly splitting each element of
the current mesh into 16 subelements.

6.1. Scalar problem (Poisson equation)

The Poisson equation is solved in the squared domain
X = ]0,1[ · ]0, 1[. The source term and Dirichlet boundary
conditions are taken such that the exact solution is

uðx; yÞ ¼ xð1� xÞyð1� y2Þð1þ 200x2 þ 7yÞ:
The quantity of interest is the averaged value of u in the
circle of center P = (0.9,0.9) and radius 0.05.



Fig. 5. Thermal problem: evolution of the values of b along the remeshing process for the strategies using the b factor and both the UED (left) and the
USE (right) criteria.

Fig. 6. Mechanical problem: problem statement.

Fig. 7. Mechanical problem: initial mesh (414 elements).

Table 3
Mechanical problem with CMOD quantity of interest: results provided by diff

Mesh a(e, e) b RP (e)

# el Error (%) # el Error (%) # el Error (%)

0 414 10.7 414 10.7 414 10.7
1 554 3.35 369 3.61 579 1.60
2 625 1.45 280 12.7 711 1.35
3 687 1.06 313 8.02 719 0.02
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The adaptive procedure starts with a uniform mesh of
8 · 8 elements. The relative error in the quantity of interest
in the first mesh is 7%. The target error in the adaptive pro-
cess is 0.05% which is equivalent to obtain three correct sig-
nificant digits in the approximation of the quantity of
interest [14].

The UED and USE remeshing criteria are used for the
error representations corresponding to Ek = jak(e, e)j,
Ek ¼ jRP ðeN keÞj, Ek ¼ jRDðeN keÞj and the corrected distribu-
erent strategies based on the UED criterion

b RD(e) b

# el Error (%) # el Error (%) # el Error (%)

414 10.7 414 10.7 414 10.7
363 7.17 530 5.52 338 6.41
291 5.68 692 0.58 406 11.5
273 6.85 689 1.14 240 8.33



Table 4
Mechanical problem with CMOD quantity of interest: results provided by different strategies based on the USE criterion

Mesh a(e, e) b RP (e) b RD(e) b

# el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%)

0 414 10.7 414 10.7 414 10.7 414 10.7 414 10.7 414 10.7
1 858 1.93 565 2.91 937 2.14 550 2.94 858 4.12 762 7.4
2 2375 0.85 710 1.52 2969 0.78 821 2.77 2349 1.03 1901 0.74
3 5794 0.64 922 0.47 6836 0.30 2104 1.48 5668 0.49 2690 0.06

Fig. 8. Mechanical problem with CMOD quantity of interest: convergence curves for the different strategies using the UED criterion (left) and the USE

criterion (right). The curve marked with w corresponds to a uniform remeshing.

Fig. 9. Mechanical problem with CMOD quantity of interest: meshes obtained with UED remeshing criterion.
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Fig. 10. Mechanical problem with CMOD quantity of interest: meshes obtained with USE remeshing criterion.

Table 5
Mechanical problem with CMSD quantity of interest: results provided by different strategies based on the UED criterion

Mesh a(e, e) b RP (e) b RD(e) b

# el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%)

0 414 9.45 414 9.45 414 9.45 414 9.45 414 9.45 414 9.45
1 860 2.89 839 2.84 923 2.44 802 2.57 887 2.48 780 2.35
2 1443 0.83 1112 0.91 1312 0.89 1159 0.99 1248 1.08 1106 1.0
3 1622 0.54 912 1.01 1473 0.58 1220 0.73 1477 0.59 1157 0.77
4 1577 0.48 868 1.02 1629 0.43 1196 0.66 1609 0.45 1237 0.6

Table 6
Mechanical problem with CMSD quantity of interest: results provided by different strategies based on the USE criterion

Mesh a(e, e) b RP (e) b RD(e) b

# el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%) # el Error (%)

0 414 9.45 414 9.45 414 9.45 414 9.45 414 9.45 414 9.45
1 1063 2.28 1030 2.25 1109 2.31 1039 2.17 1119 2.19 976 2.30
2 4248 0.52 3349 0.53 4275 0.49 3986 0.50 4418 0.47 4568 0.49
3 13242 0.16 7142 0.23 12838 0.15 11811 0.15 13131 0.16 12758 0.14
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tion using the proper fetch factors b. Thus, six sequences of
meshes are obtained for each one of the two remeshing cri-
teria. The number of remeshing steps in each process is set
to five for the UED criterion and three for the USE crite-
rion. The adaptive process is not stopped even if the target
accuracy is reached before. This is done in order to test the
consistency of the remeshing strategies.

A summary of the results obtained for the thermal prob-
lem are displayed in Tables 1 and 2. In this example, the
convergence behavior of all the adapted strategies is more



Fig. 11. Mechanical problem with CMSD quantity of interest: convergence curves for the different strategies using the UED criterion (left) and the USE

criterion (right). The curve marked with w corresponds to a uniform remeshing.

Fig. 12. Mechanical problem with CMSD quantity of interest: meshes obtained with UED remeshing criterion.
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efficient than the uniform refinement. The observed con-
verge rate almost equal for all the adaptive procedures
and, naturally, larger than for the uniform refinement.
The meshes obtained are plotted in Figs. 3 and 4.

It can be concluded that UED criterion yields meshes
with much fewer elements than the USE criterion, as
expected. Moreover, for the UED criterion the uncorrected
error representation corresponding to Ek = jak(e, e)j is too
conservative in the sense that it produces meshes with more
elements than needed. The use of the b factor reduces the
number of required elements. Nevertheless, in the case
where Ek = jak(e, e)j, the error remains larger than the pre-
scribed target. This is due to the smoothing in the element
size distribution introduced by the transfer from elements
to nodes required by the mesh generator. In fact, the strat-
egies based on the nodal descriptions of the error
Ek ¼ jRP ðeN keÞj and Ek ¼ jRDðeN keÞj and corrected with fac-
tor b are in general much sharper and reach an accuracy
very close to the prescribed target (0.05%) with meshes with
fewer elements.

The evolution of factor b along the remeshing processes
is shown in Fig. 5. It is worth noting that the values of b are
practically constant, once the configuration of the mesh is
close to the optimal one.



Fig. 13. Mechanical problem with CMSD quantity of interest: meshes obtained with USE remeshing criterion.
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6.2. Single edge notched beam (SENB)

The problem setup described in Fig. 6 corresponds to
the classical SENB test, introduced in [12] and extensively
used to assess the fractural behavior of concrete and other
brittle materials. Here, the same geometry and loads are
used with a linear elastic model (with Poisson coefficient
m = 0.33).

The quantities of interest in this test are both the hori-
zontal and vertical separations of the notch. These are
denoted by Crack Mouth Opening Displacement (CMOD)
and Crack Mouth Sliding Displacement (CMSD)
respectively.

All the adaptive procedures start from the same initial
mesh shown in Fig. 7. A uniform remeshing procedure is
also performed in order to highlight the advantages of the
adaptive strategies. The error in the first mesh is 10.7%
for the CMOD quantity and 9.45% for CMSD. The target
error is set to 5% for the CMOD quantity of interest and to
0.5% for the CMSD. Note that these error prescriptions are
equivalent to require one and two correct significant digits
respectively for CMOD and CMSD, see [14].

The results are described using the same structure as in
the previous example. A summary of the results obtained
for the mechanical problem with the CMOD quantity of
interest are displayed in Tables 3 and 4. Fig. 8 shows the
convergence curves obtained along the adaptive processes,
compared also with a uniform refinement. The meshes
obtained are plotted in Figs. 9 and 10. The results corre-
sponding to the CMSD quantity of interest are shown in
Tables 5 and 6 and Figs. 11–13.

The conclusions are for this case quite similar to the pre-
vious one. The USE criterion produces meshes with a num-
ber of elements much larger than the UED criterion.
Moreover, once the proper mesh configuration is attained,
the UED criterion keeps the number of elements almost
uniform. On the contrary, the USE criterion refines the
meshes further on, even if the prescribed accuracy is
already reached. Thus, the conclusion is that the UED cri-
terion is consistent and leads to stable adaptive procedures,
contrary to the USE criterion.

In the results presented in this section the b factor com-
bined with the different versions of the UED criterion pro-
vides meshes with an error slightly larger than the
prescribed tolerance. This is due to the sharpness of the
corresponding remeshing criteria. In other words, the crite-
rion produces the mesh size distribution strictly necessary
to obtain the tolerance and therefore any variation in the
element size distribution introduced by the mesh generator
precludes reaching the tolerance.
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7. Concluding remarks

A general approach to remeshing criteria for goal ori-
ented h-adaptivity has been presented. The UED (Uniform
Error Distribution) criterion has been proved to be optimal
in the sense that it produces meshes with the least number of
elements. The numerical tests confirm this theoretical result.

The desired element size in the new mesh is calculated
using the absolute value of the error because the local error
contributions have, in general, different signs. A fetch fac-
tor, b, is introduced in order to balance the conservative
effect of taking absolute values and reducing the number
of elements in the new mesh. The remeshing strategies
using factor b are very efficient and produce the meshes
with the least number of elements.

The transfer of information from the error estimate and
the mesh generator is improved by expressing directly in
the nodes the output of the remeshing strategy, instead of
giving values element by element.

The analysis of the numerical examples shows that the
optimal strategy is to use factor b combined with one of
the nodal error representations. Moreover, due to the sharp-
ness of the resulting criteria, this has to be used reducing the
target error to eliminate the effect of the discrepancy between
the desired and the obtained element size distribution.
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