ALGORITHMS AND SOFTWARE

FOR ORDINARY DIFFERENTIAL
EQUATIONS AND DIFFERENTIAL-
ALGEBRAIC EQUATIONS, PART I: EULER
METHODS AND ERROR ESTIMATION

Alan C. Hindmarsh
and Linda R. Petzold

This two-part article describes methods for solving systems
of differential equations. Part | reviews the explicit Euler
method, discusses “stiffness,” and describes how and why
the implicit Euler method can provide useful solutions of
stiff systems. Part | concludes with a consideration of errors
and error estimates. Part Il, which will appear in the next
issue, extends the discussion to higher-order methods of
both the multistep and one-step varieties. Part 11 gives spe-
cial attention 1o large stiff systems and differential-
algebraic systems. The article concludes with a description
of relevant software packages that are freely available from
Nedib on the Internet.

G aining insight into a physical process is frequently ac-
complished by constructing a mathematical model and
computing solutions to it. Very often such a model takes the
form of a system of differential equations that govern the
behavior of the relevant physical variables as a function of
time. If these variables are also functions of space, then in
the computation the continuous spatial coordinates must
also be discretized in some way. Problems of this sort arise
in a wide variety of disciplines. Among the scientific areas
that generate time-dependent differential-equation problems
are chemical kinetics, laser kinetics, mechanical systems,
molecular dynamics, power systems, neuronal modeling,
electronic networks, computational fluid dynamics, and
VArious reaction-transport processes.

It is rare that a realistic mathematical model is ame-
nable to a purely analytic solution. We must usually gener-
ate a computational model from the mathematical one.
While avoiding issues of analytic solvability, this introduces
Alan C. Hindmarsh is a mathematician in the Center for Computational
Sciences and Engineering ar Lawrence Livermore National Laboratory,
Livermore, CA 94550. Lindu R. Perzold is a professor in the Department of
Computer Science, University of Minnesota, Minneapolis, MN 55455,
Hindmarsh and Pezold have been responsible for developing numerous
software packages for the solution of ordinary differential equations and
differentinl-algebraic equations,

M COMPUTERS IN PHYSICS, VOL. 9, NO. |, JAN/FEB 1995

Department Editor: William J. Thompson

a variety of other difficult issues that couple the features of
the original model and the computing environment. On rec-
ognizing that problems arising in various disciplines share
many formal mathematical properties, the field of numerical
mathematics seeks to devise powerful and general tech-
niques for the transformation of a mathematical 1o a com-
putational model, and for the efficient numerical solution of
the latter. As a result, many of the differential equation
problems that arise in applications are now routinely solved
by the use of general-purpose mathematical software pack-
ages. The availability of such software has the additional
advantage of leaving the scientist free to focus on the con-
tent of the model itself instead of the details of its numerical
solution,

The effort represented by modern numerical algorithms
and software goes far beyond what could be justified within
any one discipline or application that benefits from it. A
typical ordinary-differential-equation (ODE) solver avail-
able today might well represent several man-years of work
just in the development and testing of the computer code,
excluding many previous man-years of theoretical investi-
gations into error estimation, numerical stability, and effi-
ciency. The effort leading to a production code is highly
cost-effective because it benefits a broad spectrum of users.

In what follows, we identify some of the more impor-
tant issues in solving problems involving differential equa-
tions, show how these ideas lead 10 various kinds of solu-
tion methods, and outline the current state of rescarch work
in these areas.

Systems of differential equations

Mathematical models frequently take the form of a Sys-
tem of ODEs, and for the moment we will suppose thal
these can be written in the concise and explicit general form

dy

J}'=f“.y). (1)

Here, ¢ is time and y is a vector of dependent variables of
interest (the ““state variables™). To save writing, we will
often denote dy/dt by y'. The initial value problem for Eq.
(1) is to find the solution y(r) that satisfies a given initial
condition y(1,) =Yy

In many instances, the model also involves state vari-
ables whose time derivatives do not appear in the equations.
Then the set of equations is known as a differential-
algebraic equation (DAE) system. The most general DAE
system is written as

F(r.y,y")=0, (2)

where F is some function. An important special case is the
“semiexplicit” system

dy_
d"‘ﬂhy‘an (3)

0=gl(t,y,z),

where z is another vector of dependent variables. Here, z is
coupled to the ODE for y, but dz/dt does not appear.

The independent variable ¢ need not actually be time,
of course. ODE and DAE initial value problems arise in
applications in which the independent variable is a spatial
coordinate or some other variable, and everything we say
applies equally well to such problems. Yet in practice the
majority of these problems actually do involve time, and the
nomenclature in the literature on numerical ODE and DAE
methods reflects that fact, in terms such as “time step” and
“time integration.”

Example: An ozone model

In order to give an idea of the kinds of problems for
which ODE and DAE solvers can be effectively applied, we
give here an example problem derived from a time-
dependent system of PDEs. The problem comes from atmo-
spheric modeling, namely the production and transport of
ozone in the stratosphere. However, it has been consider-
ably simplified in order to make it presentable in full in a
limited space such as this.

The model is a system of two coupled PDEs in time
and two space dimensions. The dependent variables repre-
sent, respectively, the concentrations (¢', with i=1,2) of the
species O, (singlet oxygen) and O; (ozone) in mol/cm?,
Molecular oxygen O, is of course also present, but is as-
sumed 1o have a constant concentration of 3.7x10' here.
The Kkinetic interaction between the three species is gov-
emed by the so-called Chapman mechanism, which in-
cludes the destruction of ozone by sunlight:

0+0,—0,, ky
0+03;—20,, ki,
0,—20, k;l1),
03;—0+0,, kyl1).

Thus the chemistry is diurnal, having a reaction rate con-
stant that varies with the time of day. In addition, vertical
and horizontal diffusion is assumed. with the vertical diffu-

sivity increasing with altitude. Specifically, the PDE system
is

ac' 2 rﬁc'+ d (K ac! gy
vt e o s {2 :)?]‘FRH Jest)
(i=1,2),

K,=4%10"" km¥s and K, (z2)=10 "¢’5 km'/s.

The spatial domain is the rectangle 0=x<20, 30=z=<50 km
(x=latitude, z=altitude), and the time interval s
0=1=432000 s (5 days). The reaction terms are given by:

RY(c',ch0)=—kjc'=kae' P+ ky(0)7.4X 10" +k (07,
R*(c',c2.0)=k,c! _kg_flf.'z—k_‘[”(‘:,
k;=6.031, k>=4.66X10"""

expl —22.62/sin(wt)], for sin(w?)>0,

0, for sin(wt)=<0,

k:i(f)=l

exp[—7.601/sin(wt)], for sin(wt)>0,

0, for sin(wt)=0,

k-t{f):[

w=7/43,200 s .

As boundary conditions, we pose homogeneous Neumann
boundary conditions (zero gradients) on all boundaries. To
complete the problem description, we pose initial profiles
for ¢' at =0 which are consistent with the boundary con-
ditions.

The process of generating an ODE system for this PDE
problem is referred to as semidiscretization, and also as the
method of lines. We discretize the spatial region, with (in
this case) a uniform mesh of size M X M. Al cach mesh
point (x;, z;) we have approximate values ¢, for the two
concentrations. Central differencing gives discrete approxi-
mations to the spatial derivatives in the PDEs. The result is
an ODE system in the vector

A i e ok Ll
Y=(0, 157 1€2, 1€ 1aee s Cpp A Carm)

of length 2M?. The ordering is first by species index, then
by j, then by k. Initial conditions for the ODE system
would simply be the discrete values of the given initiul
profiles for the ¢'(x,z2).

The ODE initial value problem obtained in this ex-
ample has some interesting features. First, the size of the
problem can be arbitrarily large, depending on M. Sccond,
the rate constants k; span a considerable range of values,
and as a resull the ODE system has the property of “stifl-
ness,” which will be discussed in detail shortly. Third, the
diurnal variation of the last two rate constants causes
corresponding wide diurnal variation in one of the solution
components (oxygen singlet). The diurnal variation of the
rate constant k5 over a five-day period is shown in Fig. 1.
The combination of these properties makes the problem
particularly challenging for an ODE solver.

The Euler method

To illustrate the variety of issues associated with ODE

0 20 40 60 80 100 120
t (hours)

Figure 1. The diurnal kinetic rate constant k(1) is shown over a five-day
period. It peaks at noon of each day and is zero during the night time. The
variation in time of the concentration of O, follows the same diwrnal
patiern very closely.

and DAE problems, we examine some typical numerical
methods. The oldest and simplest of all methods for solving
ODEs was devised by the mathematician Leonhard Euler in
the 18th century. It consists of computing discrete vectors
¥1.¥..-., that approximate y(¢) at the times £y,15,..., starling
from the initial condition y(1,)=y,. If' y, - has been com-
puted for some n=1, then y, is defined as

yu=}'u—I+hnﬂ"u—l‘hr-l]_v 4)

where h,=1,—1,_, is the size of the time step. In other
words, the next solution point is computed at time
1,=1,-+h, by moving from the point (1, _,,y,) on a
line at a constant slope of f(¢, - ,.¥,-1). the slope of the
solution through that point according to Eq. (1). The
method is completely explicit: The new value is defined
directly in terms of the known previous values. This leaves
unspecified the choice of the step sizes fiJi5,..., but we
defer this question until later. Figure 2 shows this Euler-
method solution (connected dots) for a single ODE, along
with the true solution (solid curve). In this case, the step
sizes /i, are all equal.

Although the Euler method is natural and easy 1o apply,
it is rarely the method of choice, for reasons that will be-
come clear later on. As suggested by Fig. 2 the numerical
solution can easily drift away from the true solution unless
the step sizes are kept quite small. Suppose we use the Euler
method to solve Eq. (1) from ¢ to a fixed final time T with
N steps of equal size h=(T—1t,)/N, and that we let N — o,
so that h—0. If we suppose also that we know the exact
final answer y(T), then we would find that the error in the
final computed value yy behaves as

yw—Y¥(T)=0(h). (5)

In fact, this general behavior of the error can be de-
duced by a careful analysis. We will see later that, even on
problems in which the Euler solution appears to be reason-

36 COMPUTERSIN PHYSICS, VOL. 9,NO. |, JAN/FEB 1995

| I I 5
L [L, [

Figure 2. The Euler method is the oldest and simplest iechnique for solving
ODEs. Shown here are the numerical solution computed by the Eule
method (connecied dots) and the true solution (solid curve). Since th
computed solution can quickly drift away from the true solution unless the
step sizes are quite small, it 15 no longer the method of choice,

ably accurate, much better error behavior can be achieves
with other methods [for example, crmr=(){h:]I al ven
little additional cost. For reference, the dominant cost in thi
Euler solution is N evaluations of f (one evaluation pe
step).

The Euler method is not directly applicable 1o DAI
systems, even in the special semiexplicit case of Eq. (3). |
we have values y, , and z, | approximating y and z ¢
time t=1, _;, we can apply the Euler method in Eq. (4) t
the ODE of Eq. (3) to advance y to y,, but there is no eas
way to advance z. We might pose the problem of solving th
algebraic equation

g(f".)"mZ"]:(} (€

for z, (given 1, and y,), but this may be cither difficul
because of the nonlinear way in which g depends on z,
even mathematically impossible, because the dependence ¢
g on z may be singular (unsolvable). In an extreme cas
(which occurs in equations describing incompressible hy
drodynamics), g=g(r,y) does not depend on z at all, an
there is no hope of solving Eq. (6), yet the DAE system [Eq
(3)], is well posed (it has a well-defined solution).

Stiff systems

Another important issue in matching solution methoc
to ODE problems is stiffness. In the simplest terms, th
ODE system of Eq. (1) is said to be stiff if it has a strongl
damped, or “superstable” mode. To get a feeling for th
concept, consider the solutions y(¢r) of an ODE syste
starting from various initial conditions. For a typical noi
stff system, if we plot a given component of the vector
versus ¢, we might get a family of curves such as tho
shown in Fig. 3(a). The curves show a stable tendency |
merge as ¢ increases, but not very rapidly. When such
family of curves is plotted for a typical stiff system, t
result might be as shown in Fig. 3(b). Here, the curvi
merge rapidly to a set of smoother curves, the deviatic
from the smooth curve being strongly damped as ¢ @
Creasces.

TR o N

b) {

~

(a)

Figure 3. A system of ODEs is said 1o be “stiff " if its solutions show
strongly damped behavior as a function of the initial conditions. The Jamily
of curves shown in (a) represents the behavior of solutions o a nonstiff
system for various initial conditions. In conirasi, solutions to the stff
system shown in (b) tend 10 merge quickly.

Stiffness in a system of ODEs corresponds to a strongly
stable behavior of the physical system being modeled. At
any given time, the system is in a sorl of equilibrium
(though not necessarily a static one). Accordingly, if some
state variable is perturbed slightly, the system responds rap-
idly 1o restore itself to equilibrium. Typically, the true so-
lution y(r) of the corresponding ODE system shows no
such rapid variation, except possibly at the very beginning
of the time interval. However, the potential for rapid re-
sponse is present in the ODEs at all times, and becomes real
if one poses an initial value problem by perturbing y at
some point out of cquilibrium. The system is said to have at
least two time scales (or time constants); by a ““time scale,”
we mean the rough value of the spacing of 1 values needed
10 resolve a solution curve accurately. There is a long time
scale present in the solution of interest, and there is a short
time scale given by the damping time (or time constant) of
any of the perturbed solutions. The more different these two
time scales are, the stiffer the system is; the ratio of the
longest to the shortest time constant in a stff system is
called the “stiffness ratio” of the system.

Stiffness is perhaps the best understood by means of a
small example. The simple damped oscillator circuit in Fig.
4, with a capacitor, a resistor, and an inductor, has an elec-
tric current / that obeys the second-order ODE

PCALINS ik 7
“drr s)

. Ifwelety be a vector with two components, y' =/, and
y>=dlI/dt [we use superscripts 1o avoid confusion with the
notation in Eq. (4)], then Eq. (7) is equivalent to a system of
the same form as Eq. (1), namely
dy’

TR it |
P (R/L)y-—y /LC, (8)

d_‘f’l_ .
de Y
Consider parameter values such that (in suitable dimen-
sionless units) R/L =20 and LC =100, and initial conditions
at time 1=0 in which /=0 and dl/dt=10 (as if a voltage
were applied to the circuit and then switched off). In the
notation of Egs. (1) and (4), 1,=0 and y,=(j,). -
Figure 5 is a plot of the solution (solid line), where the

Inductor

Switch
B SR - R T T /

Capacitor

Current/

AA'AY

Figure 4. A simple electrical circuit illustrates the behavior of a typicul
stiff system. In this case, both the resistor and the capacitor damp pertur-
bations to the system caused by a change in current.

time axis is logarithmic for convenience. Notice that the
solution varies on a time scale of less than 0.1 at carly
times, then becomes smooth and varies on a time scale of
around 1000. The system has two different time scales and
a stiffness ratio of around 10 000. In fact, a precise analytic
solution is casily derived. It consists of u lincar combination
of simple exponential functions exp(—¢/7) and
exp(—t/72), where (very ncarly) 7,=0.05 and 7= 2000,
The short lime constant 7, is present in the system even
when the solution has a much longer time scale, as can be
seen by posing an initial value problem with a perturbed
initial y at (say) 1= 10. Such a perturbed solution is shown
as the dashed line in Fig. 5.

The smallest time scale in a stiff system manifests itsell
in another way when we try to carry out a numerical solu:

1;
0.6 -
0.4
0.2F
| | 1 ! | L | >
102 10" 1 10 10° 10° 10° ¢

Figure 5. The solid curve is a plot of the solution to the ODE describin
the circuit shown in Fig. 4. Note that the tme axis is logarithmic. Th
plateau of the curve separates two regions where the solution varies on th
different time scales. If the initial value of the'y variable is perturbed o
1 =10 (dashed curve), the shorter time scale predominates Jor a while, an
then the solution displays the same long time scale as the unperturbe
solution.

COMPUTERS IN PHYSICS. VOL. 9, NO. | JAN/FEB 1995

4

41—

3

2

1- -.A‘A

0 1 1 1 1 I"l 1 1 >
10 11 12 13 14\|15 16 ;

-1}

Figure 6. An explicit Euler method solution to the system of ODEs de-
scribing the circuit shown in Fig. 4. Initial values are the same as those
Hustrated in Fig. 5 at t =10, and the time step is constant. The oscillatory
vehavior of the numerical solution (broken line) as contrasted with the true
olution (flat curve) indicates that the explicit Euler method introduces an
nstability in this application. An accurate and stable solution by Euler's
nethod would require a step size smaller than the shortest time scale of the
roblem.

ion of the system. Solution by an explicit method like the
‘uler method either will produce completely inaccurate an-
wers or will require very small time step sizes (comparable
vith the smallest time constant present in the system) to get
ccurate answers,

Figure 6 shows a partial solution by the Euler method
f the problem of Eq. (8), starting with values taken from
ie earlier one at 1= 10 and using a constant step size h=0.2
broken line), along with the true solution (flat curve), After

while, the successive values of y'=1 oscillate roughly
ke (—3)". We say the numerical method is unstable when
1is happens. To get a reasonably accurate and stable Euler
iethod solution of this problem, we must use values of &
ell below 0.05. Yet this part of the true solution is very
el resolved on a time scale of more than 10,

The circuit problem of Eq. (8) also provides an ex-
mple of a DAE system, albeit a very simple one. If we fix
“and € but make the inductance L smaller and smaller, the
DE system Eq. (8) becomes more and more stiff (the
iffness ratio is roughly RJC,’L). In the limit L =0, Eq. (8)
vith the second equation first multiplied by L) reduces to
e DAE system

gyt

— }I"‘

= — =y % (8
= 0=-Ry*-y'/C. 9)

Here, no time derivative of y? appears, and the system
as the general form Eq. (3) (with y=y" and z=y?). The
mit process has changed the mathematical properties of
e system in a fundamental way: although Eq. (7) or (8)
low us 1o freely specify two initial conditicns (/ and
I/d1) the system [Eq. (9)] allows only one, since y' and y*
e alguhraica[ly related. This example trivially enables us
v eliminate y=, leaving a single first-order ODE, which is
e limit of Eq. (7) as L approaches zero. But for a com-
licated DAE problem, this elimination may be cither im-
ossible or highly impractical. So if we continue 10 ap-

| COMPUTERS IN PHYSICS, VOL. 9, NO. 1L JANIFEB 1995

proach Eq. (9) as a system in two dependent variables, we
now find that the initial vector y(0) is not arbitrary, as it was
in the ODE case. Accordingly, we have to set y(0) in a
manner that is consistent with the equations. In this simple
example, that means that y*=—y'/RC. In a more compli-
cated problem, finding consistent initial conditions may be
quite a challenge.

The implicit Euler method

As we have seen, the explicit Euler method is unstable
when applied to a stiff system of ODEs unless the step size
is constrained to be smaller than the shortest time scale of
the system. This constraint on the step size can be a very
severe limitation in some applications, forcing the method
to take time steps that are intolerably small before uccepl-
able accuracy is obtained. For some problems, the explicit
Euler time steps must be so small (in inverse proportion 10
the stiffness) that roundoff errors degrade the numericul
solution significantly, and the computation cost is prohibi-
tive. It is natural to ask whether there are other methods that
can solve stiff systems using time steps that are not limited
by stability but only by the need 1o resolve the solution
curve. It is now widely recognized that in general the an-
swer requires the use of implicit methods, and in particular
methods that are designed to have good stability properties
for stiff systems. The simplest of these methods is the im-
plicit Euler method.

The implicit Euler method for the ODE [Eq. (1)] is
given by

yll=yu—!+huﬂ’my»)' “U)

In contrast to the explicit Euler formula (4), this method is
called implicit because y, is not defined directly in terms of
past values of the solution. Instead, it is defined implicity as
the solution of the nonlinear system of equations [Eq. (10)].
We can write this nonlinear system abstractly as

F(u)=0, (11)

where u=y, and Flu)=u—y, ,—hft,,u). The nonlincar
system of Eq. (11) is typically solved by Newton iteration,
(JF

[u“"*”—u["”j=—F[I.II"“J. (12)

u

Here, if N is the size of the ODE system, u and F are
vectors of length N, and the Jacobian matrix dF/ou is an
N XN matrix of partial derivatives of F evaluated at o',
Thus, there is a lincar system to be solved at cach iteration.
Newton’s method converges in one iteration for lincar Sys-
tems, and the convergence is quite rapid for general non-
lincar systems, given a good initial guess. For the initial
guess, we can use an explicit formula such as the explicit
Euler method or, more commonly, a polynomial that coin-
cides with recent past solution values, evaluated at i b
practice, the Jacobian matrix is not reevaluated at cach it-
eration, and furthermore is often approximated by numeri-
cal difference quotients rather than evaluated exactly. This
use of an approximate Jacobian that is fixed throughout the

iteration sequence in Eq. (12) is called modified Newton
iteration.

To gain a better understanding of why the implicit Eu-
ler method does not need to restrict the step size to maintain
stability for stiff systems, let us consider a very simple
example,

'=—a(y—-)+2t, y(0)=0, (13)

on the interval 0=t=1. Here, a is a positive parameler.
When a is very large, the system is stiff. The general solu-
tion to Eq. (13) is given by

y()=r+yge™ ™.

This equation shows clearly that if « is large and the initial
value is perturbed slightly away from y,=0, the solution
tends rapidly back to the curve y=1-. This behavior is
characteristic of stiff systems. A sketch of the solution by
the implicit Euler method for a slightly perturbed initial
value is given in Fig. 7(a), where it can be seen that the
numerical solution exhibits the correct behavior. In contrast,
the explicit Euler method solution is shown in Fig. 7(b),
where the instability is evident in the same way as in the
circuit example (see Fig. 6).

To see why the implicit Euler method gives such a
good result for this problem, we can examine the error
propagation properties of this method in more detail. When
the implicit Euler method is applied to Eq. (13), we obtain

}'u=)’n—1_"0’()2._‘.":]"‘23”"- (14)

(Here we are dropping the subscript on /i.) If we expand the
true solution y(¢) in a series about ¢, _,, we find that

y“n)=y(fu—I)_ha[}’“n)_ff}]"'2’”,,4‘0(’!:).
(15)

Subtracting Eq. (15) from Eq. (14) and defining the global
error e,=y,—y(t,), we obtain

e,,=e,,_]—hae,,+0(h:). (16)
Solving for e,, we see that

ed=ie=t L om) (17)
"“"=|1+hal '
Thus the global error remains small even for large values of
a. In contrast, the global error for the explicit Euler method
satisfies

le<[1=hal |e, | +Oh?). (18)

Here the error will grow exponentially unless |1 —ha|<1.
Thus the step size must be constrained to satisfy h=<2/a.
For general ODE systems y' =f(t,y), the negative of the
eigenvalues of the matrix J = df/dy play the role of a. For
stiff systems, the cigenvalues of J = af/dy include at least
one with a relatively large negative real part. In the circuit
example [Eq. (8)], the eigenvalues of J are approximately
—0.0005 and —20.0. The great disparity between these two
numbers is what makes the problem stiff. When A is viewed
as an eigenvalue of J, the set of complex numbers A\

Y4

Y2

Yo

= o
=
~v

i

JYs
(b)

Figure 7. The implicit Euler method overcomes a weakness of the explicit
Euler method in that it does not need to restrict the step size (o provide
stable solutions for stiff systems. The solution of the system of Eq. (13) Jor
a slightly perturbed initial value, shown in (a), was generated by the
implicit Euler method. It is well behaved in the sense that the y values
merge rapidly with the unperturbed solution curve, In contrast, the explicit
Euler method applied to the same system produces the erratic oscillatory
behavior shown in (b).

COMPUTERS IN PHYSICS, VOL. 9, NO. I, JAN/FEB 1995 9

SAUSTYING |1+ AA|<1 18 called the region of absolute sta-
bility for the explicit Euler method. The corresponding re-
gion for the implicit Euler method is given by 1/[1—h|
<1, and is much larger, indicating much greater stability
for the implicit method.

The implicit Euler method can also be used to solve the
DAE system [Eq. (2). By identifying f(1,,y,)
=(¥ =¥y)/l in Eq. 10 with y'(1,) in F(1,y,y')=0, we
arrive al

f Yo~ ¥u-1!
Flt,.y, ———]|=0, (19)
hfi
which implicity defines y, on cach time step. It is interest-
ing to note that when the implicit Euler method is applied to
the very simple DAE system

y()=r=0

which is the limit of Eq. (13) as a—>, the solution is
¥u=1;. Thus, the implicit Euler method is exact for this
problem! More generally, when applied to the semiexplicit
DAE system of Eq. (3), the implicit Euler method yields the
pair of equations

b T |

h :r("u1y"’zu]'

“=g“u~y;ulzu]-

for the new values y, and z,. That is, we replace the ODE
by the implicit Euler equation and force the algebraic equa-
tion g=0 to hold at the same time. It turns out that the
implicit Euler method, as well as some higher-order gener-
alizations of this method, have several properties that make
them quite attractive for the solution of DAE systems.

Errors and error estimates

In the previous section, we derived recurrence relations
for the global errors of the implicit and explicit Euler meth-
ods applied to a specific stiff ODE. We saw that although
the errors remain small for the implicit Euler method, errors
for the explicit Euler method can propagate in a disastrous
way. It is important in using these methods to have a basic
understanding of the various types of errors that are asso-
ciated with a computation. Modern computer codes attempt
to adjust the step size to control the size of some of these
errors but not others.

For simplicity, we return to the implicit Euler method
applied to the ODE system of Eq. (1)

Yo=Y I+hn"!myu}' {2(”

On each step, this method makes an error that results from
the upproximation of the differential equation by the differ-
ence equation. One measure of this error is the amount by
which the true solution 1o the ODE fails to satisfy the dif-
ference equation defined by the method. This is known as
the local truncation error or local discretization error. For
the implicit Euler method, the local truncation error is given
by

40 COMPUTERS IN PHYSICS, VOL. 9, NO. |, JAN/FEB 1995

i / Local error
yn-l

] >
>

tn- 1 ZLn 4

Figure 8. Local ervor is the difference between the value y, of the numeri
cal solution to an ODE at a time 1,, and the value of the true solution tha
passes through the numerical solution at the last time step y, .

dH':,{‘N‘ |’+hq’ﬂ‘ytfﬂ}J_"‘ fl!}‘

which, after expanding in a series about 1, |, we can sim-
plify to

a

DS
d"='-2" y (gui

for some ¢, int, <§&,<1,.

There is another measure of the error at cach time step
that lends itself to a more graphical interpretation. The local
error is the amount by which the numerical solution after
one step differs from the value of the true solution to the
ODE that passes through the previous numerical solution
¥, - Figure 8 illustrates this error.

As an example, we shall determine the local error of
the implicit Euler method. Let u(r) be the analytic solution
to the initial value problem

w'(n=Mnun)], i,)=y,
where y, — is the value of the numerical solution at 7, .
Applying one step ol the method, we obtain

“nzh- 1+hur“m“u]-
The local error is given by

L=u,~u(r,).

From d, =y, +hf{t,u(t,)]—u(t,), we find that
ar\ !
l,,=(!—h _—) d,+on").
d"

If the implicit Euler method is applicd to nonstiff systems,
the local error and local truncation error are nearly the
same, whereas for stff systems, where haf/dy is large, these
two measures of the error are quite different, However, both
are O(h*) in the limit of small .

There is yet another measure of the error that is, in a
sense, the most relevant for the user of ODE and DAE
codes. This is global error, which we touched on briefly.
The global error is the difference between the numerical

solution and the true solution to the initial value problem. In
the case of either of the two Euler methods, the fact that
d,=O(h%) can be used 1o prove that the global errors
Yo~ ¥(1,) are O(h).

One might ask, why bother with the local error and the
local truncation errors? The reason is that most ODE codes
do not attempt to estimate or control the global error be-
cause it is very expensive to do so. Instead, they typically
estimate either the local error or the local truncation error,
and attempt to control the step size so that a norm of this
error is smaller than a user-selected error tolerance. The
global error is the result of the propagation of local errors
over many time steps. Its eventual size depends not only on
the size of the local errors, but on the stability of the method
and of the differential equation as well. Local error control
in a code can be viewed as a knob that can be turned to try
to adjust the step sizes and hence the global error. It is not
a guarantee of a small global error.

Finally, we have touched on the notion of an error
estimare. This is the difference approximation that a code
maukes to estimate the dominant term of the local truncation
error or the local error. For the implicit Euler method, the
local truncation error depends on the local value of y”. This
second derivative can be approximated by difference in y

over the past three points: 1, _», 1, ,, and r,. Equivalently,
it is approximately proportional to the difference between
the computed value y, and the explicit Euler prediction of
¥, This type of difference approximation of the leading
term of the local truncation error is often used in codes
based on multistep methods (described) because the predic-
tor and corrector values in Part Il are readily available.

Another type of error estimate is one obtained by com-
puting the solution by two different methods, one of which
is locally more accurate than the other. The difference be-
tween the locally computed solutions is an approximation o
the error of the less accurate method. This type of error
estimate is often used in codes based on Runge-Kutta
methods, which do not keep past solution values.

Finally, another way to obtain an error estimate is to
compute the solution with two different step sizes and 1o
compute the estimate on the basis of its known asymptotic
behavior as #— 0. This type of error estimate is often used
in codes based on extrapolation methods.

All of these error estimates are valid in various some-
what idealized situations. It is important to understand,
however, that nearly all codes estimate the local error or the
local truncation error, and not the global error,

PHYSICS OF CLIMATE

EVOLUTIONARY VIEW OF CLIMATE AS AN INTEGRATED PHYSICAL SYSTEM

.satellite dara . . .nonlinear mathematical models. . . .

Using the tools that have breathed new life into the study of climate, this ground

The global upper air network. .

breaking work demonstrates how environmental phenomena worldwide interact in

a single unified system.
With more than 220 drawings, charts, and graphs, PHYSICS OF CLIMATE offers
you the best current understanding of the Earth’s climate _'-’_f_%
“A superb reference.... Belongs on the shelf of anyone '/') N %
x : 3 . - i ‘" \M\
seriously interested in meteorology and climatology. w "’\
—Curt Covey and Karl Taylor, Physics Today { " : \. ‘71""' o u\
VDRSS, . 1o ok LS v_L} ¥
i For faster service call toll free 1-800-488-BOOK
: To order, mail to: American Institute of Physics ¢fo AIDC » P.O. Box 20 = Williston, VT 05495 f
PHYSICS OF CLIMATE 1 [0 Check enclosed (US. dollars only) [0 Mastercard [Visa 1 American Express :
J. P. Peixoto, University of Lisbon, and : Qty | Edition [1SBN Price* ol s
A. H. Oort, National Oceanic and : Cord o By Bone S ST e :
Atmospheric Administration H] e i
| Sipmstuse (Requared on ol credo card oedesy) : []
“A modern treatment of the nature | et her s !
and theory of climate.” J 3o Subtol |
From the foreword by Edward N. Lorenz, MIT : Tnciouon T spRTT Shipping: $2.75 for 1st book ($7.50 :
Cloth $95.00 Members $76.00 : foreign), §.75 for cach additional book _ :
Paper $45.00 Members $36.00 g T Ve
KIF Books of the American Institute of Physics : Gy Toan T ; :
500 Sunnyside Boulevard 1 *Member prices apply 1o members of AIP Member Societies. To qualify, please circle A
M Woodbury, NY 11797 t your affliation. APSIOSA/ASATSOR/AAFT/ACA/AAS/AAPM/AVS/AGLISPS L

COMPUTERS IN PHYSICS, VOL. 9, NO. |, JAN/FEB 1995 41

