ALGORITHMS AND SOFTWARE
FOR ORDINARY DIFFERENTIAL
EQUATIONS AND DIFFERENTIAL-
ALGEBRAIC EQUATIONS, PART II:
HIGHER-ORDER METHODS AND
SOFTWARE PACKAGES

Alan C. Hindmarsh
and Linda R. Petzold

This two-part article describes methods for solving systems
of differential equations. Part I, which appeared in the pre-
vious issue, reviews the explicit Euler method, discusses
“stiffness,” and describes how and why the implicit Euler
method can provide useful solutions of stiff systems. Part I
concludes with a consideration of errors and error esti-
mates. Part Il extends the discussion to higher-order meth-
ods of both the multistep and one-step varieties. Part II
gives special attention to large stiff systems and differential-
algebraic systems. The article concludes with a description
of relevant software packages that are freely available from
Netlib on the Internet.

B ecause of their simplicity, we have been using the ex-
plicit and implicit Euler methods to illustrate some
basic concepts. Both have first-order accuracy: the global
errors are O(h) for a maximum step size of h. In most
problems, however, computational efficiency can be consid-
erably increased by using higher-order methods that are
generalizations of these simple methods. The importance of
higher-order methods is that they are often able to achieve
the same level of accuracy as lower-order methods but with
many fewer steps and, hence, with much more efficiency.
The higher-order methods fall primarily into two classes,
multistep methods and one-step methods.
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Multistep methods

Multistep methods make use of several past values of y
and/or f to achieve a higher order of accuracy for the ODE
of Eq. (1) in Part 1. The general form of a k-step multistep
method is

k
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where @ and 3, are constants that depend on the order, and
possibly on previous step sizes, and «,#0. The quantities
Y,-j and f, _; represent values of y and y', respectively, at
the points 7, _ ;. The method is explicit if 8,=0 and implicit
otherwise. Here, h=h,=1,—1,_.

Several important classes of multistep methods have
proven very efficient and robust for solving various types of
ODE systems. Adams methods make use of past values of £,
and are written
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Equation (2) %ivcs a method of order k+1; ie., global
errors are O(h*™").

The Adams methods are the best known multistep
methods for solving general nonstiff systems. Several popu-
lar codes are based on these methods, which are stable up to
order 12 for nonstiff problems. Each step requires the so-
lution of a nonlinear system,
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(a,=past history terms). But rather than use the modified
Newton procedure described earlier, this system is nearly
always solved by simple functional iteration. Here, from a




predicted value y, ,, one simply iterates on the function in
Eq. (2) whose fixed point is sought:

Yoim+1)=8,+h Bof(1, ¥, (m+1 )

This converges reasonably well for nonstiff systems and has
the advantage that no linear system has to be solved. For
this reason, most people refer to the Adams/functional-
iteration combination as an explicit method, even though
the underlying formula is implicit.

The most effective multistep methods for solving stiff
systems are the backward differentiation Jormulas (BDFs).
BDF methods make use of past values of y to advance the
solution, according to the formula
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The reason for the name is that, on identifying f, with y/ ,
Eq. (3) is a formula for approximating y'(1,) (differentia-
tion) in terms of current and past (backward) values of Y-

The BDF method based on Eq. (3) has order k: il
global errors are O(4*), and it is stable up to order six. The
nonlinear system at each time step is almost always solved
by some form of Newton iteration, which usually accounts
for much, if not most of the total cost of obtaining the
solution. Each Newton iteration involves the solving of an
NXN linear system

AAy=residual vector
for a correction 1oy, , in which the coefficient matrix is
A=I=hByl, J=ifldy, (4)

and J is evaluated at some nearby value of ¢ and y. (/
denotes the NXN identity matrix.) Functional iteration is
ruled out in the stiff case, because stiffness produces a large
value for the Lipschitz constant L of f with respect to y (the
maximum of the norm of d/dy), and convergence of func-
tional iteration requires hL < 1; thus step sizes h are se-
verely restricted, just as they are for a nonstiff method such
as explicit Euler.

Many widely used codes for solving ODE systems are
based on this class of methods. A representative code is the
solver LSODE." In addition, BDF methods are very well
suited for solving DAE systems. For the general form
F(r,y,y")=0, this means requiring y, to satisfy
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F t, yYur T— =0. {5)

Several popular DAE codes are based on these methods, the
most well-known being the solver DASSL.? (More will be
said about software in a later section.)

The BDF methods were originally proposed and used
in fixed-step form, where the coefficients a; and B, in Eq.
(3) depend only on the order . In the implementations
(e.g., LSODE), the step sizes h are actually allowed to
change periodically in accordance with a test on the esti-
mated local error, and the steps following a step size change
use interpolated values for the y,_; at the new step size,

However, many pioblems demand frequent changes of step
size, and for them the fixed-step BDF methods can lose
efficiency or even reliability. In fact, diurnal chemical ki-
netics problems, such as in the ozone model given in Part I,
first demonstrated the need for variable-step forms for BDF
methods. Two different variable-coefficient forms of BDF
methods have been developed. In both, the method coeffi-
cients are recomputed at every step as a function of the
actual step sizes h, ,h, ... used over the last k steps. But
in one version, the so-called Jixed-leading-coefficient ver-
sion of BDFs, the value of 8, does not vary; it depends only
on k. This has important consequences for the Newton it-
eration used, which will be discussed later. The ODE solver
VODE® and the DAE solver DASSL are representative of
codes that use this form of the BDF methods.

Multistep methods are more complex than one-step
methods, both 1o analyze and 1o implement. Their stability
depends on the behavior of the solutions to the difference
equation (1). This equation has several fundamental solu-
tions. Coefficients in this method must be chosen so that the
extrancous solutions to the difference equation (that is, so-
lutions that do not approximate the solution of the ODE or
DAE) do not grow. A robust and efficient implementation of
a code based on multistep methods is far from straightfor-
ward. Issues that must be dealt with include deriving stable
variants of the formulas that are applicable for variable step
sizes, estimating errors and changing the step size and order
of the method as the problem changes, obtaining suitable
starting values, deciding when to terminate the nonlinear
iteration, and determining appropriate starting step sizes.
These issues are even more complicated for DAE systems,
for which much of the ODE methodology is inapplicable.

One-stzp methods

The second class of higher-order methods is that of
one-step methods. Unlike the multistep methods, these
methods do not make use of past values of y or f [for the
ODE system of Eq. (1) in Part 1] to achieve a higher order.
Instead, they depend on evaluations of the differential cqua-
tion at judiciously chosen locations within the current time
step. Such methods are known as Runge—Kutta methods, or
extrapolation methods, which are actually a special case of
general Runge—Kutta methods. Runge-Kutta  methods
were discussed in considerable detail by John Butcher in a
previous PNA column,* but we will give a short description
here for the sake of completeness. A single step with a
Runge—Kutta method for the ODE y'=f is defined by a set
of equations of the form

yu=3u—l+h 2 br'ki'
i=1
(6)
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This defines an s-stage Runge—Kutta method. Such a
method can be either explicit (a;;=0 for j=1i) or implicit,
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and some implicit choices are useful for stiff problems.
One-step methods offer advantages over multistep methods
for some problems. For problems with frequent discontinui-
ties, one-step methods are easier to restart at a high order.
For stiff systems with highly oscillatory modes, one-step
methods are stable with a higher order of accuracy than
multistep methods.

A difficulty in implementing one-step methods is find-
ing an efficient solution of the nonlinear system, which is in
general larger than for multistep methods. Another is ob-
taining the solution at points between time steps. This latter
task is easily accomplished with multistep methods via a
polynomial that passes through past values of y or f. For
most problems, it is quite difficult to write a one-step code
that is competitive with the best multistep codes. Implicit
Runge—Kutta methods are potentially useful for some DAE
systems also, but there is in general an additional set of
order conditions which the method coefficients must satisfy
to achieve a given order.”

Large stiff systems

ODE systems that are both stiff and large (in number of
ODEs) are especially challenging, even if given in the ex-
plicit form of Eq. (1) in Part L. As indicated above, an
implicit method then leads to a nonlinear algebraic system
that must be solved at every time step. The size and com-
plexity of such systems may make conventional treatments
prohibitive in computational cost or memory storage, or
both. Considerable research is currently devoted to this
class of problems.

For a given time step, we can write the nonlinear sys-
tem as F(y)=0, where F is related to the function f in
dy/dt=1(1,y) by the equation F(y)=y—a,—hpf(1,.y).
By the well-known process of Newton’s method, we gen-
erate successive approximations to the desired solution vec-
tor y by adding corrections that are defined by an approxi-
mate linear system. This reduces the problem to a sequence
of large linear systems, which we write simply as

Ax=b, (7)

Here b is a vector of residuals [the negative of F(y) for the
current approximation to y|, A is a matrix related to the
Jacobian J of £, namely A =/—h g/, and x is the unknown
vector of corrections 1o y.

Instead of relegating this problem to a standard linear-
system solution algorithm, an approach that can be much
more effective is the use of iterative methods. One starts
with a guess x;; (we use x,=0), and corrects it successively
1o gel iterates X, , X ... . Many iterative methods for linear
systems are known, but some are much more appealing than
others in the setting of large stiff systems. Such methods are
known as Krylov subspace iteration methods. Their crucial
property is that at each iteration they require only the value
of the matrix—vector product Av for a given vector v. That
is, if m iterations have been done, so that one has
X(sX| 5o X,y (OF SOMe equivalent set of vectors), a vector v is
generated as a linear combination of these vectors, and the
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next iterate X,,,; is a linear combination of Av and the
older veetors. Many methods of this type (such as conjugate
gradient iteration, for example) are known to work well
when A has certain special properties (such as symmetry),
but only a few are good candidates when no such assump-
tions about A are made. These are the most useful choices,
because no special properties can be assumed about the
function f from which A is obtained.

Given a suitable Krylov method, it can be exploited to
best advantage by finding an efficient way 1o calculate prod-
ucts Av that does not entail calculating the matrix A itscll.
To do this, we note that A is just the matrix of partial
derivatives of F(y), just as J is that of f. This implies that
for a suitably small constant € [F(y+ev)—F(y)J/e is a good
approximation to A v. The value of F(y) is already available,
and the value of F(y+ev) is easily expressed in terms of
f(s,y+ev). Thus the Krylov iteration proceeds by making
one evaluation of f and some simple vector operations al
each iteration until convergence of the iterates is achieved
to within a suitable tolerance. When Newton’s method and
Krylov iteration are combined with, for example, a BDF
method for the ODE system, the result is a matrix-free
method for stiff systems. In contrast to traditional stiff-
system methods, such a method involves no explicit con-
struction or storage of the matrices J or A.

Working from the solver LSODE, which uses BDF
methods for stiff ODE systems, we wrote another solver
that combines the Krylov methods described above with
BDF inlt‘.g.f,riniun."J When tested, it worked well on many of
the test problems but failed badly on many others. The
reason is that Krylov methods are just not powerful enough,
by themselves, to handle with acceptable efficiency the
wide variety of matrices A that can occur. However, they
can be assisted greatly by a technique known as precondi-
tioning.

Suppose we can find a matrix P (the preconditioner
matrix) that resembles A to some extent but is much easier
to construct and operate with. In particular, suppose that we
can solve linear systems Px=b reasonably efficiently. To
solve Ax=b, we wrile an equivalent sysiem, say
(AP ")(Px)=b, with a different matrix A’ =AP band a
different solution vector x'=Px, and apply the Krylov
method to the problem A'x"=b. Each iteration requires the
evaluation of a product A "v=AP v, but that is achieved
by solving Pw=v for w and then approximating Aw as
before. If the iteration converges o a veetor x', then the
vector we want is x=P""x', or the solution of Px=x",
Convergence is more likely to occur now, because A is
closer to the identity matrix, depending on how close P is to
A. This arrangement is called preconditioning on the right
(since P~ ' multiplies A on the right), but one can just as
easily precondition on the left, by writing (P 'A)x=P"'b.
In fact, one can precondition on both sides, with two pre-
conditioners P, and P, whose product approximates A.

To incorporate the idea of preconditioning, we wrole
another LSODE variant, called LSODPK, containing a se-
lection of preconditioned Krylov methods to solve the
linear-system problem.” The Krylov methods available are




preconditioned-conjugate-gradient  (PCG), the Arnoldi
method, and the generalized-minimal-residual method
(GMRES).” LSODPK works well on many test problems
that could not be handled without preconditioning. Because
the choice of preconditioner can best be made by exploiting
the structure of the problem, the user of LSODPK must
supply the preconditioner. That is, in terms of the ODE
system itself, the user must identify the most important
contributions to the Jacobian matrix J (that is, to the stiff-
ness of the ODE system), find a way to represent and op-
erate with these contributions in an economical manner, and
then use them to build one or two preconditioner matrices
P, and P,. For a complicated problem, the user’s job may
seem 10 require as much effort as constructing a complete
solution method for the problem from scratch. But it does
not, because it focuses on the linear system aspect of the
solution only, while the solver takes care of accounting for
the errors associated with the choice of preconditioners, for
the nonlinear iteration surrounding the linear system, and
for the accuracy of the time-stepping procedure.

Although the construction of good preconditioners de-
pends heavily on the nature of the problem, considerable
experience has been built up with respect to certain classes
of problems. For ODE systems that arise from the spatial
discretization of time-dependent systems of PDEs, two
natural choices are typically available. First, the terms in the
PDEs that reflect how the different PDE components are
coupled to each other at each spatial point give rise to one
type of preconditioner, which we call the interaction pre-
conditioner. Second, the terms that reflect how each PDE
component is transported in space can be used to construct
another type of preconditioner, which we call the transport
preconditioner. For example, in the ozone model given at
the beginning, the chemical Kinetics terms R, lead to an
interaction preconditioner and the diffusion terms lead to a
transport preconditioner. If both contributions are impor-
tant, then either they can be regarded as the two precondi-
tioners P and P, needed by LSODPK or their product can
be used as a single preconditioner on either side,

One particular problem solved by this approach is a
system of PDEs on a two-dimensional spatial grid with a
discretized frequency variable that represents a laser-
oscillator model. We developed a pair of preconditioners,
first by considering the interaction and transport contribu-
tions separately, but later with a modification motivated by
the Jacobian structure whereby some interaction coeffi-
cients were moved to the transport preconditioner. The size
of the ODE system varied up to 38 745, and LSODPK gen-
erated solutions with complete success.

After seeing how successful the combination of Krylov
and BDF methods was with the LSODPK solver, we gen-
erated a similar combination with the VODE solver, called
VODPK ." In this case, the Krylov method chosen is the
GMRES method. In using VODPK on a large stiff system,
the power and generality of variable-coefficient BDF meth-
ods, Newton iteration, and GMRES iteration is combined
with a user-supplied preconditioner (or preconditioner pair)
that incorporates problem-specific information where it is
most needed.

Differential-algebraic systems

Many physical phenomena are most naturally de-
scribed by a system of differential-algebraic equations of
the form

F(t,y,y')=0. (8)

This type of system occurs frequently as an initial-value
problem in modeling electrical networks, the flow of incom-
pressible fluids, mechanical systems subject to constraints,
robotics, distillation processes, power systems, trajectories,
control systems, and in  many other applications.
Differential-algebraic systems are different from ODE sys-
tems in that, while they include ODE systems as a special
case, they also include problems that are quite different
from ODEs. Some of these systems can cause severe diffi-
culties for numerical methods. Consequently, the numerical
solution of these systems is a very active area of research.
We outline some of the key ideas here; they are described in
greater detail in Ref. 11.

In a sense, the more singular a DAE system is, the
more difficult it is to solve numerically, The index of a DAE
system is a measure of its degree of singularity. Roughly
speaking, ODE systems y'=f(1,y) have index zero. Differ-
ential equations coupled with algebraic constraints [that is,
y'=M(y,z),0=g(y,z)] have index one if g=0 can be solved
for z given y (that is, if dg/dz is nonsingular) and otherwise
have an index higher than one. The index can also be de-
fined for systems that are not expressed in the semiexplicit
form of differential equations coupled with algebraic con-
straints. Additional difficulties can arise for these systems
because the singularity may be moving from one part of the
system to another.

A simple example of a higher-index system is given by
the equations describing the motion of a pendulum in Car-
tesian coordinates. Let L denote the length of the bar, A the
force on the bar (suitably normalized), and x and y the
coordinates of the infinitesimal ball of mass one located at
the free end of the bar. Then x, y, and A solve the DAE
system

= \x,
y =ay—g¢, 9)
0=x?+y*-L?,

where g is the gravitational constant.

The index of this system is three. While this simple
system can be easily rewritten as a standard ODE system by
converting to radial coordinates, this is often not practical
for the much larger systems that are automatically gener-
ated by simulation packages designed to model complicated
physical networks.

An even simpler example of a higher-index system,
which illustrates some of the ways in which these singular
systems are quite different from ODEs, is given by

y=gl1),

0 (10)
x=y’,
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The index of this system is two. While it looks superficially
similar to an ODE system, there are important differences.
The solution is less continuous than the input function g(1).
There is no family of solutions corresponding 1o an arbi-
trary choice of initial values. Rather, the initial values (in
fact, all values) are completely determined in terms of the
function g and its derivative. Finally, it is clear that there is
an implied differentiation to obtain x. Since numerical dif-
ferentiation is notoriously ill-conditioned (sensitive to small
errors), difficulties for numerical ODE methods can be ex-
pected when there is a higher-index subsystem present in
the system.

Over the past decade, a theoretical framework has been
developed for understanding the order, stability and conver-
gence of linear multistep and Runge—Kutta methods ap-
plied to general index-one and to index-two and index-three
systems that can be written in a semiexplicit triangular form
that commonly occurs in applications. Not all ODE meth-
ods are appropriate for DAEs; the theory shows which
methods are stable and accurate. Often for DAEs there is
also a choice of formulations of the equations. Different
formulations may have the same exact solution but differ
considerably in their properties for numerical solution. Re-
cent work has focused on finding appropriate formulations
for classes of problems in applications that are advanta-
geous for stability and accuracy of the numerical solution.'”

The development of codes for DAEs is not a straight-
forward task because of difficulties in the computation aris-
ing from the singular part of the system and the coupling to
the differential part, which do not occur for ODE systems.
In particular, starting, error estimation, and solving the non-
linear system all present potential difficulties even for
index-one systems, and especially for higher-index systems.
We have developed a Fortran package called DASSL,’
which uses fixed-leading-coefficient BDF methods for
index-one DAEs. Complete details of the algorithm are
available in the book by Brenan er al."' DASSL has been
used successfully for solving a wide range of problems at
various universities, laboratories, and in industry, both in
the U.S. and in several foreign countries. With some modi-
fication as described in Ref. 11, DASSL can also be used to
solve index-two systems. Codes for DAEs based on
Runge-Kutta methods have also been developed; see for
example Ref. 5. These methods are particularly effective for
problems with frequent discontinuities.

In contrast to the situation for ODEs, initial conditions
for DAEs must be consistent, in the sense that they must
satisfy the constraints of the system and possibly also some
of the derivatives of the constraints. For example, for the
pendulum problem (9), the constraint and its first and sec-
ond time derivatives must be satisfied at the initial time,
leading to

0=x>+y*—L>,
(1)
O=xx"+yy',

0=\L>—gy+(x")+(y")".
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Currently, the user computes these consistent initial condi-
tions, using his or her knowledge of the problem and a
nonlincar system solver. We are working on a soltware
package to be used in combination with DASSL or ils ex-
tensions, which would muke this task more routine for
many index-one systems. Methods for finding consistent
initial conditions for higher-index systems are described for
example in Ref. 13.

The success of Krylov iteration methods combined
with the ODE solvers LSODE und VODE has inspired the
same approach for DAE systems. Accordingly, we devel-
oped a variant of DASSL, called DASPK, that combines the
preconditioned GMRES Krylov iterative method with the
BDF methods of DASSL, us applied to DAE systems."

Software packages

Even the best numerical method is unlikely 1o find
wide acceptance until it is embodied in 4 computer code
that is made available for gencral use. In that spirit, much of
our work on methods for ODE and DAE systems has been
accompanied by the development of software packages. It is
important to understand that this process is not simply
direct translation of a set of formulas into a suitable pro-
gramming language. Initially, it entails a multitude of deci-
sions on representing and manipulating the relevant data
most efficiently and on carrying out all of the numerical
processes that together constitute a complete algorithm. The
resulting computer code is tested on a wide variety of prob-
lems to see that it performs as expected. Then, at some
point, it is given to users, along with suitable documenta-
tion, so that it can be tried out on realistic problems. All ol
these phases generate feedback that may result in revision
or rewriting of parts of the code. A code often goes through
several such feedback-revision cycles during its lifetime.

Various general-purpose packages have been wrilten by
the authors of this article to solve systems of ODES and/or
DAEs. These packages are listed in Tuble I Details of the
algorithms are available in the various references. Nearly all
of the packages listed are available from the Energy Science
and Technology Software Center in Oak Ridge. A survey
paper on stiff ODE solvers discusses various software, ap-
plications, examples, and related issues.'” Reference 11 dis-
cusses DAE issues, applications, and software.

A great deal of useful software for solving ODEs and a
wide variety of other numerical and non-numerical prob-
lems are available freely on the Internet via Netlib.'" This
includes most of the codes listed here. One can obtain an
index of Netlib ODE software by
mail netlib@ornl.gov
Subject: send index from ode
The netlib system will then mail back an index of ODE
solvers and descriptions. To obtain one of these solvers (for
example 1o obtain DDASSL—double-precision DASSL).,
send the following message
mail netlib@ornl.gov
send ddassl from ode

On many X-window systems, an interactive version of



Table I. General-purpose multiste

and/or DAEs,

P packages available from the authors for solving systems of ODEs

Solver

Problem

Comments

LSODE

VODE

LSODES

LSODA

LSODAR

LSODI

LSOIBT

DASSL

DASRT

LSODPK

LSODKR

VODPK

DASPK

CVODE

y'=f(t,y)

y'=f(1,y)

y'=f(1,y)

y'=f(t,y)

y'=f(1,y)

M(t,y)y' =g(t,y)

M(t,y)y' =g(1,y)
F(1,y,y')=0

F(1,y,y')=0

y'=f(r,y)

y'=1(1,y)

y'=f(1,y)

F(t,y,y')=0

y'=f(1,y)

User specifies stiff or nonstiff
method; allows dense or banded
Jacobian matrix in stiff case

Like LSODE, but with
variable-coefficient methods
internally

LSODE variant for general sparse
Jacobian

Automatically, dynamically
determines where problem is stiff,
and chooses appropriate method;
allows dense or banded Jacobian
maltrix

Same as LSODA but includes
additional root-finding stopping
criteria

Solves linearly implicit ODE or
DAE system; allows dense or
banded coupling

Same as LSODI but allows
block-tridiagonal coupling

Solvel index-one DAE systems;
allows dense or banded coupling

Same as DASSL but with
additional root-finding stopping
criteria

LSODE variant; has
preconditioned Krylov iterative
methods for linear systems

Like LSODPK, but with
root-finding and automatic
Newton/functional iteration
switching

VODE variant; has preconditioned
Krylov iterative methods for linear
systems

DASSL variant; allows selection
of direct methods or
preconditioned Krylov iterative
methods for linear systems

Rewrite of VODE and VODPK in
C
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netlib called Xnetlib is available.

The Fortran solver called LSODE is the outcome of a
lengthy evolutionary process.'” (LSODE was written in
1979, but the comprehensive documentation' was only re-
cently completed.) LSODE solves ODE initial value prob-
lems that are given in the explicit form of Eq. (1) in Part L.
It allows a user to select between an Adams method (for
nonstiff systems) and a BDF method (for stiff systems),
using the fixed-step-interpolatory form for both of these
methods. When solving a stiff system, and therefore when
dealing with the Jacobian matrix J in Eq. (4), LSODE as-
sumes that the matrix is either full (dense) or banded (has
nonzero elements located near its main diagonal). Users can
either supply J with coding of their own or let LSODE
generate an approximation to J internally. Jacobians gener-
ated internally are computed as finite-difference quotient
approximations. In the dense case, this uses N extra fevalu-
ations, and in the banded case with bandwidth M it uses M
extra f evaluations.

The variable-coefficient solver called VODE was writ-
ten more recently.’ VODE looks nearly identical to LSODE
as far as its usage is concerned, but the internal algorithm is
considerably different. VODE uses the fixed-leading-
coefficient form of variable-step BDF methods and the fully
variable-coefficient form of the Adams methods. In addi-
tion, it includes a feature not in LSODE that can drastically
decrease the number of evaluations of the Jacobian J.
VODE normally saves a separate copy of J, and when the
modified Newton iteration fails to converge, and the appar-
ent reason is the change in the coefficient & B in the New-
ton matrix of Eq. (4), the matrix is updated without a re-
evaluation of J.

VODE and LSODE are “standard choices” for ODE
initial-value problems. Some applications, however, give
rise to other problem forms that VODE and LSODE cannot
handle. For example, a large stiff system may have a Jaco-
bian that is sparse (most elements are nonzero) but not
tightly banded. For that case, there is a sparse variant of
LSODE called LSODES. It uses parts of the Yale Sparse
Matrix Package to solve the linear systems, and it includes
an algorithm to generate difference-quotient Jacobian ap-
proximations with a reduced number of f evaluations,

Another common situation is one in which the problem
changes with time from stiff to nonstiff and back again. For
that case, there is another variant, called LSODA; this code
switches automatically between stiff and nonstiff methods
in a dynamic manner. Yet another variant, LSODAR, ad-
dresses the case where the ODE solution is to be stopped at
a root of some other function (or set of functions) of y, as
when a particle trajectory is stopped at the boundary of a
geometrical region. Another way of dealing with the change
between stiff and nonstiff is to switch dynamically between
Newton iteration and functional iteration while using the
BDF integration method. This kind of switch has been used
in another LSODE variant, LSODKR.

Two other variants of LSODE, called LSODI and
LSOIBT, are tailored for the case in which the ODE system
is not given in the explicit form of Eq. (1) in part I, but in
an implicit form with a matrix M multiplying the time de-
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rivative. This system is writlen

dy
M(ty) E;=g(f.y}. (12)

For example, if a PDE problem is treated by the finite-
element method for the spatial discretization, then M is the
mass matrix. Even if M is invertible, so that one could wrile
an equivalent system dy/dt=M ~'g(1,y), this is usually not
an efficient way to solve the problem. Instead, onc cun
efficiently treat Eq. (12) directly by the same methods used
in LSODE, slightly reformulated. LSODI does this under
the assumption that the matrices involved (M and the vari-
ous Jacobian matrices) are either full or banded. LSOIBT
treats the same problem form, but assumes that the matrices
involved are **block-tridiagonal,” meaning that the nonzero
elements occur in blocks lying on and beside the main di-
agonal, a common occurrence in semidiscrete forms of PDE
problems.

The LSODE solver, together with the variants of it just
described, form a “‘systematized collection” of solvers
called ODEPACK.'” Their outward appearance (the user
interface) is standardized by the use of identical names and
meanings for features that are common 1o two or more of
the codes. They are also standardized internally by, among
other things, the use of shared Fortran subroutines for vari-
ous subordinate tasks, Sec ODEPAK amd SPODEPACK in
Netlib.

Large stiff ODE systems are often beyond the reach of
the solvers in ODEPACK and require iterative methods for
the linear systems involved. For this case, there are two
variants of LSODE, called LSODPK" and LSODKR, and a
variant of VODE, called VODPK." All three use Krylov
subspace methods with user-supplied preconditioning. In
addition, LSODKR includes root-finding (as in LSODAR).

Several solvers have been written for DAE problems.
In the linearly implicit case Eq. (12), with M singular,
LSODI and LSOIBT have been used with some success,
But they were not designed for DAE systems and are less
reliable for them than the DASSL package.'" DASSL,
which also uses a BDF method, treats the linear systems s
full or banded, but in various details it addresses the issues
of DAE problems directly. A variant of DASSL with a rool-
finding ability added, called DASRT, is also available.

For large DAE systems, where iterative methods are
more suitable than direct methods for the linear systems, we
have written a variant of DASSL called DASPK,'* which
includes the GMRES Krylov method with uscr-supplicd
preconditioning as an option. DASPK actually includes the
direct methods of DASSL as well. For use on massively
parallel machines, two modified versions of DASPK have
been written—one using Fortran 90 (with data parallclism),
and one using message-passing.'” Codes for computing
consistent initial conditions for index-one DAEs and for
computing the sensitivity of solutions to DAEs and large-
scale DAEs with respect to given parameters, are currently
in progress.

In recent years, there has been a trend 1o away from




writing software in Fortran and toward writing in the C
language. In response, we have been working on a rewrite
in C of the VODE and VODPK solvers (combined), called
CVODE." CVODE is composed of a central integrator
module that has no knowledge of the nature of the linear
system solver (direct or iterative, full or banded, ete.) and a
set of lincar solver modules from which the user selects
prior to starting the integration. An additional motivation
for this C rewrite of VODE/VODPK is our plan to extend
this package to a parallel version of the solver for
distribution-memory MIMD machines.
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