PRACTICAL NUMERICAL ALGORITHMS

RUNGE-KUTTA METHODS IN MODERN
COMPUTATION, PART I: FUNDAMENTAL

CONCEPTS
J. C. Butcher

Part I of this two-part article diseusses fundamental con-
cepts such as the order of Runge—Kutta methaods, arbores-
cences, the use of tableaux, stiffness, and stability. The ex-
plicit Runge—Kutta method is illustrated by means of the
Jorced-damped-oscillator problem. Part 11, to appear in the
next issue, will consider implicit Runge-Kutta methods, er-
ror estimation, implementation issues, and the solution of
related  problems:  partial=differential and  differential-
algebraic equations.

V irtually every branch of physics is concerned with the
rate at which something changes. Hence, the study of
differential equations and the behavior of their solutions
have always been of central interest to physical scientists.
The rich mathematical field of special functions has grown
from the need to solve particular differential equations aris-
ing from physical problems. However, most differential
equations arising in scientific modeling do not have closed-
form solutions. For this reason, numerical methods for dif-
ferential equations have a central role in computational
physics. Of particular interest is the special class of Runge—
Kutta methods. These have enjoyed a popularity for physi-
cal computations because of their case of use, their natural
and intuitive structure, and the excellence of their stability
and other computational properties.

In this survey of Runge—Kutta methods we will review
their traditional role in practical computation and also dis-
cuss some recent developments. Throughout, we will con-
centrate on initial-value problems of the form
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It will usually be convenient to write Eqs. (1) and (2) in
vector form as
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and
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Although systems of this type are necessarily of first
order and autonomous in the sense that the time variable x
dncs not oecur explicitly as an argument of any of
LS SN, they can be adapted 1o cover a wider class of
pruhh.'ms sm.h as equations of second or higher order and
problems in which x occurs on the right-hand sides.

This will be illustrated by the equation of forced
damped oscillations

d*z dz ;

— 35 +ta — thz=¢ sin(wx), (4)

dx~ dx
wnh initial amplitude z(.x;,) = p and slope 2" (x,)) = ¢, where

z'(x) denotes dz/dx. To write down an u|uw.llull system

nl lhg form of Eq. (1), set N =3 and identify y tEe), yo(x),
and y- [1) with *(\]. z'(x), and v, rnpq.l.uul) The initial-
value problem is then replaced by the sysiem
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Table I. A sample Runge-Kutta calculation.

n Y=t f(y,) Y, f(Y,) Y, f(Ys) Y, Y, Yu
0.30000 4.00000 0.70000 2.09000 0.50900 4.21308 1.14262 4.990)34 101988

| 4.00000 = 19.10000 2.09000 2.13088 4213009 4.95171 4.99034 —2.9K8505 3.73600)
0.00000 1.00000 0.10000 1.00000 0.10000 1.00000 ().20000 1.00000 0.20000)
1.01988 3.73600 1.39348 4.14248 1.43413 206766 1.43342 ().92846 1.58938

2 3.73600 4.06477 4.14248 —16.68342 2.06766 —14.03774 0.92846 —38.14391 (L.55196
0.20000 1.00000 0.30000 1.00000 0.30000 1.00000 0.40000) 1.00000 (.40000)

Most numerical methods for Eq. (1) extend the solution
forward in time using a step-by-step process. Suppose that,
in additional to a given initial value Yu, further vectors
Yi¥2,.-0¥, - have already been computed as approxima-
tions to y(x,+h), Y(xy+2h),..¥[xy+ (n— 1)h]; then the
aim of such a method would be to compute a further ap-
proximation y, to y(x,+nh). Note that h, the so-called
“'stepsize,” measures how much the time variable increases
per step.

Linear multistep and Runge—Kutta methods

Traditional numerical methods for performing this cal-
culation come in two main classes, known as linear multi-
step methods and Runge—Kutta methods. In linear multi-
step methods, the vector y, is approximated as a linear
combination of a number of previously found step values
Yu—1. ¥n-20-¥u & » together with scaled derivatives at the
same points, hf(y, ),hfly, ~2)seshifly, ;). In Runge-
Kutta methods, on the other hand, Y., is found using a for-
mula involving y, , but none of the earlier Ni—3s Y= aseene
The formula in question may be complicated and involve
many evaluations of the f function. These evaluations are
known as “‘stages,” and, because evaluating f is typically an
expensive computation, the number of stages is a measure
of the complexity of a Runge—Kutta method,

In the best known example of a Runge—Kutta method,
there are four stages. Denote by Y., Yy, Y3, Y, the four
points at which f is evaluated. For this method, these quan-
tities are defined as

Yl:yu e 4t
h
Y3=y” =3 +T)' r(Y|L

h (6)
Y,\ZY;i 5 fy,),

Yi=y, Hhl(Y,),
and y, is given by
h
Yo=Yu—1F o [V ) +200Y2) +200Y;) +1(Y,)].  (7)

To see how this method works in practice, consider the
example of the forced damped oscillator Eq. (4), witha =2,
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b=37, ¢=50, w=7, and initial values x,=0, p=0.3,
q=4. We will carry out two steps with 4 =0.2, as shown in
Table 1.

The exact answer at x=04 is g,_ivcn by the column
vector [1.59481, 0.56374, 0.40000), where ! denotes
transpose. Not surprisingly, the ¢rror in the third component
is zero, but is 0.3% and 2% approximately in the first and
second components. To understand how the error depends
on the number of steps taken to reach a given oulput point,
see Fig. I. Here the error in cach of y'(0.4) and yi0.4) is
plotted for h=0.4/n, with n=1,2,3....100 on a log—log
scale. At least for large values of n, it seems clear that the
error is close 1o being proportional to n *

Order of Runge-Kutta methods
If a different Runge-Kutta method had been used, we
might have found that the error was proportional to n " for

m-

whps

Figure 1. Error dependence on h Jor the Runge-Kutta method (6), (7)
applied to the problem (4),




Figure 2. Trees representing elementary differentials of orders 1 through 4.

some different integer p. This number, known as the “or-
der,” is a characteristic of the particular Runge—Kutta
method chosen. : ;

Because y"'=f', we find by differentiating that y"'
=fiy"=[}f', where we have written fi=0af"'layl, used
the summation convention [7=Z02,fif, and substi-
tuted y"/= f/. Following on from this formula for y", we
also find
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Formulas for higher derivatives can be found in a similar
manner, even though the details become exceedingly com-
plicated as the order of differentiation increases. Evaluating
the sequence of derivatives at x=x, leads in turn to the
Taylor series for the (exact) solution at x=x,+h. To assess
the order of a Runge—Kutta method, a similar series expan-
sion is needed, but for the result at X=x,+h as computed
in a single step of the method.

If these two series agree up to terms in 4", then the
method has order p. This will mean that for a smooth prob-
lem, the error in a single step will be O(h”*"). The accu-
mulated error at a fixed value of x also has a behavior
related to p. This is because the number of steps required to
move from x, to x is proportional to # ', Because an error
O(h"*') is generated in each of these steps, the total error
will be O(h”). We will refer to the various terms occurring
iny'!, y" y"i i ape, (omitting the factor 3 that occurs
in y™ and any similar factors that might occur for higher
derivatives) as “elementary differentials.”

Runge~Kutta trees

Before we explain the conditions for the agreement of
the formal power series for the exact and computed result,
we note an interesting fact about the structure of the el-
ementary differentials. This observation is that they re-
semble family trees, where only descent from a single par-
ent is recorded. For example, a factor [ can be read as **j
is the only offspring of i,” whereas a factor f/ reads *j has
no descendants.” Similarly [ jx denotes i has two offspring
named j and k. Using this idea, the eight terms occurring up
to " are shown in diagrammatic form in Fig. 2, where we
have attached letters i,j,... to the vertices to clarify the
structure.

ULA-BIEcT |
PUBUEA(IGNES PERIEDIG‘J

Table II. Some functions defined from Runge-Kutta trees,
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Although these diagrams are technically known us
“rooted trees” or “arborescences.” we will use the simple
word “trees.”” The lowest vertex in the trees as they are
drawn here (in the family tree analogy, the oldest member
of the family) is known as the “root,”

Just as we can write down a tree corresponding to each
elementary differential, we can also write down an elemen-
tary differential from each tree. It also happens that the
series for the result computed by a Runge—Kutta method
can be found in a similar way. If y denotes the computed
result, the two series are

-

rir)

Y[Xuﬂx}:)’u'*f% WFUJ”J- (9)
h”“
Yxg+h)=y,+ > o) D()F(1,y,). (10)

1eT

Various notations used here require some explanation,
T'is the set of all trees, 1 is a typical tree, r(1) denotes how
many vertices it has (the “order” of 1), F(1,y,) denotes the
elementary differential corresponding to ¢ and evaluated at
Y=Yu, o(t) denotes the “symmetry” of 1, and (1) will be
known as the “density” of 1. Finally, the factor @(r) de-
notes a certain polynomial in the coefficients of the given
Runge-Kutta method. Its occurrence in Eq. (10) indicates
the manner in which the coefficients in a method influence
its ability to approximate the exact solution (9) to a required
order of accuracy.

From Table II, where these functions are displayed for
the first eight trees, the meaning of the symmetry of 1 will
be obvious. To calculate the density of ¢, use the family-tree
analog again. With each vertex, associate an integer indi-
cating the number of vertices in a subtree representing this
person and his or her descendants alone. The product of
these integers for all the r(r) vertices in ¢ is the density.

We now come to the function ®, This is found in terms
of coefficients a;; indicating the coefficient of 4 f(Y;) in the
expression for Y, and b indicating the coefficient of Af Y,)
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in the expression for y, . It is customary o write the coef-
ficients of 4 Runge—Kutta method in a tableau as follows
(o T M T S T B SRS
€3 iyt gy o0,
NS N o (1)
O |7 TSR v MBI -

hl bs A h‘

where the ¢ vector indicates the totals in the rows of A. For
the classical method introduced in the previous section, the
entries in the tableau (11) are

Dl & 0 0
ils 0.0 0
g DG aEe et (12)
1 16, Bl o
o e
" 1 3 i

To caleulate d(1), attach labels i,/ k... to the vertices
of 1, except the vertices above the root (the so-called
“leaves™) from which no further vertices branch upwards.
Having labeled the tree in this way, write down a fuctor b,
where i is the label attached to the root of 1, and a factor a j;
for all pairs of vertices j and k such that k branches up-
wards from j. Finally, insert a factor ¢, for each leaf joined
to a vertex j. Having written down all these factors, multi-
ply them together and sum for each index i,j,... from 1 1o
s, the number of stages.

By comparing the series for y and y, given by Egs. (9)
and (10), we can write down the conditions for agreement
up to terms in h”. This is

¢ l 13

(r) A0 (13)
and is to hold for all trees up to the required order.

It is a simple matter to check that these conditions are
satisfied up to order four for the classical method (12). This
method has the sensible property that the matrix A IS Zero
on and above the diagonal. If this were not the case, then
the stages could not be evaluated in numerical order in a
simple way. Methods like Eq. (12) are known as “explicit”
Runge—Kutta methods, in contrast 1o those in which A has
a more general structure which are said to be “implicit.”
We will discuss applications of implicit methods in the next
section. In the meantime, we consider the question as o
what order can be achieved with a given number of stages.
For implicit methods this is easy: it is always possible to

Table IV. Error behavior for a stiff problem.

Table 111, Stage requirements for various orders.

[ =)

Ordcrp' | e (e e L

Minimal number of stagess 1 2 3 4 6 7 9 I

obtain an order p=2s when there are s stages. However,
for the classical type of explicit method, the guestion is
mach more complicated.

For p=1, 2, 3, and 4, it is possiblc to obtain this order
with s = p stages, and this is the best that can be achieved.
However, for p=>4, al least s =p+ 1 SGEES dre necessary.
This order can actually be achieved with this number ol
stages only for p=5 and p=0. Alter that the required numi-
bers of stages increases even more quickly. We summarize
the situation as far as order eight, after which the exacl
value of s to achieve order p in unknown.

For a more detailed study of order conditions and other
theoretical questions  concerning explicit Runge—Kutla
methods, see, for example, Refs. 1-3. Some of the mechan-
ics of using the order conditions can be handled by the
MATHEMATICA package NumericalMath' Butcher,” which is
available in Version 2.0 and later versions.

Stiff problems

Many practical problems possess the disconcerting
property that their solutions are extremely stable but nu-
merical approximations are extremely unstable. An example
of this can be found in the forced damped oscillator Eq. (4),
where the period of the forcing term 2r/w is large com-
pared with the time constant 2/d associated with the damp-
ing term. In this case, it is possible 10 obtain useful numeri-
cal results using an explicit Runge—Kulta method only
when the value of A is small compared with the time con-
stant. However, this restriction on i may well be an inap-
propriate restriction when viewed in terms of the physical
significance of the result being computed. This will be il-
lustrated in the case @ = 2000, b= 1000100, and w=24n,
where the initial values and the value of ¢ are consistent
with an exact result of the form z=sin(2 7y + a) al.v,. The
numerical results found in integrating from x=0 10 x= |
are shown in Table 1V. The value of “error”™ for cach i is
{:’f+ ci}“l. where ¢, and ¢, are the errors in the compu-
tations of y' and y2, respectively.

For h=1/400, we observe the familiar pattern of de-
creasing errors, more or less in the ratio 10 to 1, as o is
decreased in the ratio 2 10 1. However, there is a sudden
jump in the error once i becomes large. The reason for this
is that the linear part of the differential cquation containy an
auxiliary polynomial with zeros having large negative real

i 4 Lo 1l
h Tini N iRl

1 1 |

wi T (K IR

Error 16531102 1.4853x 10 59144x10°" 2

L1243x10 Y ST7178<10 " 32087210 i
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parts. In fact, the zeros are — 1000 10i. This means that,
although the exact solution contains rapidly decreasing
transient terms (which, with the initial values proposed for
this example, make exactly zero contribution), the numeri-
cal approximations to these essentially negligible terms can
be exceedingly significant. This phenomenon is known as
“stiffness™ and creates a difficulty of this sort whenever a
numerical approximation is attempted with an explicit
method. (In a subsequent issue, a column will be presented
discussing stiff differential equations in detail.)

It can be shown that we retain stable behavior for the
numerical approximations only if N lies in the “stability
region™ for the method, where A is any zero of the auxiliary
polynomial. The stability region is defined as the part of the
complex plane for which |R(z)|<1, where R(z), the so-
called “stability polynomial,” is defined 1o be

R(z)=1+zb"(1-2A) e, (14)
with e=[1,1,...,1]". This can be illustrated in the special
case of the differential equation

dy %)

< Ay, (15)

so that A is the only zero of the auxiliary polynomial.

If z=h\, the wvector of stage values,
Y=[Y,.Y,.....Y,]", and the result computed in the step,
V. are related to y, | by

Y=y et2AY, (16)

Yu=Yn-1+2b"Y. (17)

Solve for ¥ from Eq. (16) and substitute into Eq. (17) to
find

where R(z) is given by Eq. (14).

For the particular method we have used, the stability
region is that part of the complex planc containing cach :
for which

2 3=+ 4
+

4 -4

+—l=1

R =|1+z+ x
[R(z)] z % v32 .

(19

2

Since negative real parts of N are associated wilh
damped terms in the exact solution, we want all such terms
to be damped in the numerical approximation. This means
that the only really satisfactory methods for stiff problems
are those for which the stability region contains the entire
left half-plane; that is, |[R(z)|=1 whenever the complex
number z has non-negative real part.

For explicit methods, the function R(z) is a noncon-
stant polynomial and A stability is impossible. However, for
implicit Runge—Kutta methods, which we will discuss in
the next issue, R(z) is a rational function, and A stability is
not only possible but can be achieved for any order.

Further reading
1. J. C. Buicher, The Numerical Analysis of Ordinary Differ-
ential Equations: Runge-Kutta and General Linear Meth-
ods (Wiley, Chichester, 1987).
2. ). C. Butcher, J. Austral. Math. Soc. 3, 185 (1963).
3. E. Hairer, S. P. Nérsett, and G, Wanner, Solving Ordinary
Differential Equations 1, Nonstiff Problems, 2nd ed,
(Springer, Berlin, 1992).
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PRACTICAL NUMERICAL ALGORITHMS

RUNGE-KUTTA METHODS IN MODERN
COMPUTATION, PART 1L IMPLICIT
METHODS AND RELATED APPLICATIONS

J. C. Butcher

Part | of this two-part article, which appeared in the Jull
Aug 1994 issue, p. 411, discussed fundamental concepls
such as the order of Runge—Kutta methods, arborescences,
the use of tableaux, stiffness, and stability. The explicit
Runge—Kutta method was illustrated by means of the
Jorced-damped-oscillator problem. Part 11 considers im-
plicit Runge—Kutia methods, error estimation, implementa-
tion issues, and the solution of related problems: partial—
differential and differential—algebraic equations.

e will now discuss the consequences within the
Runge—Kutta approach of abandoning the restriction
that each stage depends explicitly on previous stages. That
is, we consider “implicit” Runge—Kutta methods. As we
have remarked, explicit methods can never be A stable. Our
hope will be that, within the wider implicit Runge—Kutta
class, there do exist methods that possess this property and
that they are thus suitable for the solution of stiff problems.
A well-known example of an implicit Runge—Kutta
method is given by the tableau

(1)

Note the nonzero elements on and above the main di-
agonal: these are what makes the method implicit, because
they indicate a dependence of a given stage value on de-
rivatives evaluated at this stage and possibly at later stages.

The method (1) can be verified to have order four.
Thus, it would seem to be more efficient than an explicit

John Butcher is a professor of mathematics at The University of Auckland
in Auckland, New Zealand. He has made numerous contributions to the
theory of Runge-Kutta methods and other aspects of the numerical solu-
tion of ordinary differential cquations, and is the author of a definitive
monograph (see part I, Ref. 1) on Runge-Kutta and general linear meth-
ods. His current interests include the extension of singly implicit Runge-
Kutta methods to the solution of differential-algebraic equations and the
solution of ordinary differential equations in a parallel environment. The
work in the present paper was supported by the New Zealand Foundation
for Research, Science and Technology.
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method would have been, because an explicit method would
require four stages 10 achieve this order. However, the im-
proved order is at an enormous cost. For an N-dimensional
problem, we would need to solve an algebraic equation
system in 2N unknowns (0 advance the numerical approxi-
mation through each individual time step. If the stage val-
ues are given by Y, and Y», these equations take the form

Y, Zh-1+h[“1lr(Y|}+ﬂizf(Y1)]=
. (2)
Y2=Yn-1 +hlayf(Y))+anf(Y)].
If 5, the number of stages, were any higher than two, s0
as fo obtain higher order, the algebraic system to be solved
would take the form

Yj=}'"_|+h[ﬂ]|ﬂY|)+ﬂ|2nY1)+ .”+“I.\'ﬂYs”!

Y=y, +Hhlan f(¥)) +af(Ya)t +a,,f(Y))
(3)

Y,=y,,_1+h[u“f{\’|}+a)3ﬂY3}+'--+u,,.f(Y.)],

and the complexity of this algebraic equation system would
rise rapidly. In many cases, such as the solution of the
initial-value problem formed by the space discretization of
a time-dependent partial—differential equation, N is ex-
tremely large, and the added cost of multiplying the size of
the system by s is prohibitive. Hence, we will look at al-
ternatives to the completely implicit type of method that we
have exemplified. However, before Jeaving this method we
note that its stability function is

14+2/2+2°/12
R@)= 1334912 (4)
It is casy to see by clementary complex analysis that
|R(z)|=1, whenever the complex number 2 has nonposi-
tive real part. In accordance with a definition introduced in
the previous section, this means that the method is A stable.
This desirable property is actually shared by all methods for
which the order is p=2s. There is a unique method with
this order for each value of s, but (as pointed oul above)
they are expensive 10 usc.

A S S ST T TR RN qm;r-;ﬂx-




T @RaLuye aneiauyve o iy impheit methods is
provided by methods for which the matrix A has the struc-
ture
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These are known as diagonally implicit Runge—Kultta
(or DIRK) methods and are useful for many problems. Note
that instead of having to solve a system of sN equations in
every time step, we need only solve s systems of N equa-
tions. However, for high orders, these methods become less
and less appropriate for the solution of stiff problems. In
particular, the accuracy with which individual stages can be
approximated and compared with the overall accuracy rap-
idly deteriorates with increasing s, and this is known to
have an adverse influence on the effectiveness of these
methods.

Much of the benefit associated with DIRK methods is
also available with what are known as singly implicit
Runge—Kutta (SIRK) methods. The fact that A given by Eq.
(5) is triangular and has each diagonal element equal 1o A
implies that its characteristic polynomial is

det(iwl—A)=(w—\)". (6)

SIRK methods are defined so that A has a characteristic
polynomial of the form (6), just as for DIRK methods, al-
though they need not necessarily have a simple triangular
structure.

Methods with this property always exist for which the
individual stages, and the overall results have orders s.
(That is, the stage order of the method, as well as the order
itself are each equal to ). Many of these methods are A
stable (or very close to being A stable) and also have other
desirable computational properties. Although each stage
value depends on the derivatives for all stages, a linear
transformation introduced within the iterative process for
solving the algebraic equations, enables the cost (at least for
large problems) to be lowered to a level similar to that for
DIRK methods. An example of an A-stable singly implicit
method with p=s=2 is given by the tableau

I P S )
3=-2.2] ¥ -%
< e

| G e @)
2 3 2
e -4

Properties of SIRK methods and their efficient implemen-
tation are discussed in Refs. 1-4. We will also discuss the
implementation of these methods below. Implicit Runge—
Kutta methods in general are discussed in Refs. 5 and 6.

Error estimation

Although we have discussed Runge—Kutta methods for
differential equations under the tacit assumption that the
slepsize h never changes throughout the integration, it is

often, indeed usual, that varying h is more efficient than
holding it constant. This can be illustrated with the example
of a comet moving in a very eccentric orbit. While the
comet is close to the sun, it is necessary 10 use i relatively
small value of & because the gravitational field is changing
rapidly, and great inaccuracies would result if accelerations
changed too much during any time step. On the other hand,
at great distances from the sun, velocity and aceeleration
components are small, and it would be wasteful of com-
puler resources o carry oul many steps with small h. A
reasonable aim of differential equation software develop-
ment is to leave such choices 10 automatic selection. Hence,
strategies must be found for controlling / according 1o the
value of computed quantitics. The most important of such
computed quantities would be estimates made during the
integration of the error contributed in cach step. The aim of
the automatic selection scheme would be to control /i so
that this local error estimate never gets 0o large or unnec-
essarily small.

For explicit Runge—Kutta methods, the most popular
means of estimating local truncation error has become the
embedding of two methods into the same overall scheme.
That is, schemes of the form

0] 0 () e 0 0
CaleiOnin oy o mar 0 0
% | L 7y B e 0 0 c| A
i d Sl i NPT I (8)
Gl b s AL 0 T
Py e it
o A e kS
are used in which
cl A
b (9)
is a method of some order p and
cl A
b’ (10)

is a method of order p+ 1. Thus, the tableau (8) contains
two methods in one; the first given by tableau (9) and the
second by tableau (10), in which the cocfficients b, b,
«wsby are replaced by b, ,b,,....b, .

The idea is to use the lower-order method (9) to propa-
gate the solution one further step and to use the difference
between the results found by methods (9) and (10) to esti-
mate the error in the step. Unfortunately, the cost of making
the error estimation is considerable, so other procedures for
carrying out the estimation have been suggested from time
to time. For implicit Runge—Kutta methods for which the
stage order is close to the order of the method, it is possible
to provide an error estimate with little or no additional com-
putation,

We conclude this discussion by presenting the tableau
of a Runge-Kutta method with error estimate due 1o
Fehlberg.” The order of the basic method is four and the
higher-order method, providing a more accurate approxima-
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tion for error-estimation purposces, is of order five;
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Further Runge-Kutta methods with error estimates are
given, for example, in Refs. 8 and 9.

Implementation of Runge-Kutta methods

For implicit Runge—Kutta methods, there is an enor-
mous cost associated with the nonlincar equation system
arising in every step. For an s-stage method applied to an
N-dimensional problem, the total number of unknowns to
solve for, from an equal number of simultancous equations,
is SN If a Newton-type method is used to solve these equi-
tions, the cost of a single iteration would be proportional 1o
s 'N* for the factorization of the linearized system satisfied
by the updates, together with a second cost of s°N° for the
substitutions required for the actual solution of this linear
system. Because the Jacobian matrix for the problem docs
not usually change rapidly, it is often satisfactory to carry
out the factorization only occasionally. It is then updated
only when the speed of convergence deteriorates. Henee, in
this discussion, we will take the Jacobian matrix for the
function f as a constant matrix, which we write as J.

Let Y,,Y,,....,Y, be approximations to the solutions of
the system of equations given by Eq. (3), and let W,
W, W, be the decrements in a single modified Newton
step. That is, Y, =W, is the improved approximation for
stage k to be formed in the Newton step. In the updated
step, assuming that we are entitled to approximate f by a
lincar function, the updated values of flY,) would be
(Y, —W,), or approximately #(Y,)~JW, .

Substituting into the equations to be satisfied, we find
that

W&-—hla“JW,+ak:JW3+ "'+ﬂ'th‘.}
=Yi= Y1 —hlag KY,) +af(Yy) +-
+ailY,)),. k=1,2,...s. (12)

Because this is an sN X sN linear equation system, the
remarks we have made concerning the computational cost
obviously apply. Among the attempts that have been made
to reduce this cost, we consider the transformation of this
system 1o a sequence of smaller problems, by choosing a
nonsingular matrix 7 such that A=7"'AT 'is in Jordan
canonical form. Suppose, for example, that all the eigenval-
ues of A are real and distinct. In this case, A would be a real
diagonal matrix, say A =diag(\; \s,...A,). Let Y,
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k=12,..5 denote a sequence of lincar combinations of
stage vectors Yy k=128 that are formed using the
matrix 7', The cost of forming Y, \Y,...Y, from
Y. Y5, Y, or transforming in the reverse direction, is
proportional 10 5N and is negligible for large N. Further-
more, the system of equations satisfied by similarly trans-
formed decrement vectors W, , k= 1,2,....5 is now of the
form

(I=INDW,=r,, k=1.2,....8 (13)

and can be solved as s independent systems of N cquations,
The saving is greatest if the cigenvalues of A are all equal,
Even though for methods defined in this wiy, A is a single
Jordan block rather than a diagonal matrix, the cost is
brought down to N* for the fuctorizations and sN° for the
iterations. These are the singly implicit methods, already
discussed, of which tableau (7) is an example.

In this bricf discussion of the implementation of im-
plicit Runge-Kutta methods, we have concentrated on the
solution of the resulting system of algebraic equations. It
should be said that many other implementation questions
arise, and some of these questions relate also to explicil
Runge—Kutta methods, For muny applications, un ad hoc
program can easily be put together by the user, but the use
of libraries should not be overlooked. The IMSL and NAG
libraries cach contain significant sections on ordinary dif-
ferential - equations, and  Runge-Kutta  methods  figure
prominently. For an up-to-date review and comparison of
many codes for solving both stiff and non-stiff problems,
Refs. 6 and 10 are especially recommended.

Solution of related problems

Even though our discussion has been confined 1o
initial-value differential equation problems, there are many
closely related questions for which similar numerical tech-
niques are available. We consider just two of these more
general problem types: partial differcntial equations and
differential-algebraic equations.

As an example of partial-differential cquations, we
consider the diffusion problem in one space dimension. To
conform to standard notation, we will denote the time vari-
able by 1 and the space variable by x

du -

—=Vu, >0, 0<x<i, (14)

ot
with u specified for r=0 and 0<x<1 and for >0 and x =0
and x=1.

The solution for each r value can be regarded as a
function on the interval given by 0<x<1. The so-called
“mcethod of lines™ is a technique for transforming an cqui-
tion whose solution is such a function to one in which, for
each ¢, the value of u is specified only at a finite mesh of
points. For example, if equally spaced points are used, then
we represent the solution for each 1 by a vector

y')
(1)
y(t)= y: ; (15)
y¥r)
where



2 k
Y =u m.r : (16)

Note that y°(r) and y™*'(1) represent boundary informa-
tion at x=0 and x=1 and do not have ordinary differential
equations associated with them.

To carry this method through, we need a suitable ap-
proximation to V2« at the mesh points. This is achieved by
noting that, by Taylor’s theorem,

1 I
u(.r— N+lJ~2u(.rJ+u(x+N+l)

= u"(x) b
S INFI)? +H=O(NTY), (17)

for a smooth function u. Hence, we can approximate u” at
meshpoint number k by (N + 1)%(y, 1= 2y, +¥5 1) so that
the method-of-lines discretization of Eq. (14) becomes

y'(1)
ufro
dt y:
yN)
) )y wiais a P .
pidl i€ 0 o)

eSS il 18 s il y3(1)
=(N+1)2| 0 1 =2 v 0 yX1)

N
L0 0 0 o -2 |V
y[l{!}
0
+(N+1)? 0 . (18)
}’N”U}J

This is an example of a stiff problem, because the ma-
trix

[ 22 0 ey P e 1
o A T
(N+1)%] 0 1 —2 “wearns i) (19)
IS TR FEERT TR —2J

has eigenvalues given by —4(N+1)> sin’[km/2(N + 1)],
k=12,.,N, and the most negative of these is approxi-
mately =4(N+1)*+#° compared with the least negative of
approximately — 7. It is the least negative of the eigenval-
ues, together with the behavior of the functions yY(r) and
y¥ (1), that determine the physically observable compo-
nents of the solution. Although the stiff nature of this prob-
lem makes it unsuitable for solution by an explicit Runge—
Kutta method, A-stable methods such as those given by the
tableaux (1) and (7) have no difficulties.

mg

Figure 1. Variables for the simple pendulum.

“As an example of a differential-algebraic equation, we
consider an idealization of a standard type of dynamical
problem, in which the motion is determined by a combinu-
tion of the Newton equations of motion and of mechanical
constraints, The problem is in fact the simple pendulum, in
which a mass m is attached to an inflexible, inexiensible,
and weightless string of length / and can swing in a vertical
plane. We will write g for the acceleration due to gravity. To
model the equations of motion as a five-dimensional SYS-
tem, let X and ¥ denote position coordinates as shown in
Fig. 1. U and V denote corresponding velocity components,
and T denotes the tension in the string, which exactly bal-
ances the other forces so as to keep the length of the string
constant.

From Fig. 1, we see that the motion is determined by
the equations

dX_U dY__V
db: e sl Yo

dUu TX a'V_ i f s
m F_- Vi m I—mg 0 (20)
xX:+yi=/2

where the first four are of standard differential-equation
form. The fifth equation, corresponding to an algebraic con-
straint, is what makes this system differential=algebraic.
Although equations of this type, arising in clectrical net-
work analysis as well as in constrained dynamical systems,
can be converted to differential equations by repeated dif-

COMPUTERS IN PHYSICS, VOL. 8, NO. 5, SEP/OCT 1994 515




Table 1. Two attempts to solve the differential-algebraic system Eq. (21).

Guuss method [Eq. (11]

Singly implicit method |1y, (7)]

| 2 3 4 5 1 2 3 4 )
n y Y ¥ Y ¥ )4 Y y Y Y
5 0.862327 0.496171 0409217 ~0.234717 27.001580 OR61220 0508233 ~LO05404 01051 1. 703124
=0.003698 —0.003829  —0.409217 —0.234717 26.501580  —0.004806  0.008233 =0.005464 = 0001051 0.203124
10 0865118 0.499032 =0.402271 —0.231839 101.37053 (864485 ().502059 =(0.001015 0.000421] (L.564904
=0.000907 =0.000968 —0.402271 =0.231839 100.87053 —=0.001541 0.002659 =0.001015 0.000421 0069969
20 (L.B6SR00 0.499757 =0.400454 =0.231098 398.662580 0865595 0.500744 —(0L.000197 GOOOITY 0517898
=0.000226 =0.000243 =0.400454 —=0.231098 398.162580 =0.00430 0.000745 =0.000197 0000173 0017898
40 0.865969 0.499939 —1,3994995 =0.23091 1587.786124 0.865912 500196 =00 | TLOO00S0 LSS
—=0.000056 =0.000061 —0.399995 —0.23091 1587.286124 =0.000113  0.000196 —0.000041 0000050

0004511

ferentiation of the algebraic components, it is considered
desirable for physical modeling to preserve the integrity of
the constraints at all costs. The reduced pure differential-
equation form leads to numerical approximations in which
all components drift from the exact solution. This is to be
expected, of course, but it is not reasonable to allow drift in
the algebraic constraints, Hence, it is desirable to consider
applying numerical methods to the differential-algebraic
equation in its original form. We will investigate such a
numerical solution using Runge—Kutta methods. For sim-
plicity, we use a natural scaling of the problem so that m, /,
and g are replaced by 1. This is achieved by the substitu-
tions t=xy(llg), X=ly', Y=l U= Wig)y?,
V=y(lg)y*, T=mgy>, so that the differential —algebraic
system becomes

| 2
d—"’-—:}:“ iy—z}:“
dx boal i g
dy? dy!
L 2.8
e "y __=1— - .!
dx yy dx yy (21)
'+ =1=0.
We will take the initial-value vector to be

y(0)=10,1,1,0,2)7, corresponding to an angular ampli-
tude of /3. The solution with this amplitude can be shown,
by evaluating an elliptic integral,'' 1o have a period of
P=6.74300141925038. In using a two-stage Runge—Kutta
method to solve a problem of the form Fly',y)=0, we must
solve in each step the algebraic equations

Yi=y,-1thla,Z,+a,Z,),

Yo=y, -1 thlayZ,+asZ,),
Yu=Yu-1+h(b,Z,+b,Z,), (22)
F(Z,,Y))=0, F(Z,Y,)=0,

where Z, and Z, have the same roles for this differential-
algebraic equation system as f(Y,) and f(Y,) have for the
ordinary differential-equation system [see Part I, Eq. (3)).
Note that explicit Runge-Kutta methods have no hope, be-
cause Eq. (22) is then inconsistent. We consider two choices
of implicit method, those given by the tableaux (1) and (7).
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We will use a time interval equal to /4 and a stepsize equal
1o h=P/4n for n=5, 10, 20, 40. The exuct values at the
output point are [3/2,1/2,0,0,1/2]. The results of these ex-
periments are shown in Table 1. Below euch entry in the
caleulated results the error is shown in bold face.

A glance at this table shows the Gauss method 1o be a
failure. However, the singly implicit method seems to give
results quite acceptable for what is acknowledged 1o be o
very difficult problem. For a more detailed study of
differential-algebraic equations, see Refs. 6, 12, and 13.

Concluding remarks

Runge—Kutta methods have a long history, but they are
still of immense interest. In the last 5 years alone, more than
600 papers referring to Runge-Kutta methods by name
have appeared in print. They are used every day by physi-
cists and other scientists to solve a wide variety of prob-
lems. In some cases they are chosen because of their sim-
plicity, in other cases because of the need for the highly
stable and accurate results they provide. Theoretical studies
are frequently motivated by specific problem classes; for
example, new stability and other structural requirements
have been proposed and studied because of a perceived
need to conserve in the computed solution such physical
constraints as are known to be conserved by the exact so-
lution. Other research is concerned with obtaining oulput at
arbitrary points on the solution curve at little additional cost
over what is needed to produce the step-by-step results dis-
cussed in this paper. The growing availability of parallel
computing environments also provides new research chal-
lenges; Runge—Kutta methods undoubtedly have contribu-
tions to make to the numerical solution of problems so
complex that serial computation is not feasible.
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