X-ray powder diffraction study of the semiconducting alloy $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$

G. E. Delgado*¹, E. Quintero², R. Tovar², and M. Quintero²

- ¹ Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
- ² Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Received 22 December 2003, accepted 5 February 2004 Published online 1 August 2004

Key words semiconductor, crystal structure, X-ray powder diffraction, Rietveld refinement. **PACS** 61.10.Nz, 61.50.Nw, 61.66.Fn

The structure of the semiconducting alloy $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ was refined from an X-ray powder diffraction pattern using the Rietveld method. The present alloy crystallizes in the wurtz-stannite structure, space group Pmn2₁ (N° 31), and unit cell parameters values of a = 8.0253(2) Å, b = 6.8591(2) Å, c = 6.5734(2) Å and V = 361.84(2) Å³. The structure exhibits a three-dimensional arrangement of slightly distorted CuSe₄, Cd(Mn)Se₄ and GeSe₄ tetrahedras connected by corners.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Diluted magnetic semiconductors and alloys containing manganese are of interest because of the large magneto-optical effects, which can occur in these materials. Some materials where it occurs are the I₂-II-IV-VI₄ compounds, which belong to one of the two possible families of the four-fold normal derivatives of the II VI binary semiconductors [1]. Structural studies carried out on some members of this family indicate that they crystallize in a sphalerite derivative structure with tetragonal space group I-42m (N° 121) [2], or a wurtzite derivative structure with orthorhombic space group Pmn2₁ (N° 31) [3]. In particular, for the Cu₂Cd_(1-X)Mn_(X)GeSe₄ system, the substitution of Cd by Mn had been magnetically studied and the reciprocal of the susceptibility data showed that the samples have antiferromagnetic behaviour [4]. On the other hand, in this system, the phase with x = 0 (Cu₂CdGeSe₄) crystallizes in the tetragonal system [5] while for the phase with x = 1 (Cu₂MnGeSe₄) an orthorhombic cell was proposed [6]. Therefore, a crystallographic phase transition in the range x = 0 to 1 is be expected.

In this work, the crystal structure analysis for the semiconducting $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ alloy by using the Rietveld method from X-ray powder diffraction data is reported.

2 **Experiment**

The sample of $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ was prepared by the melt and anneal technique as described elsewhere [4]. A small quantity of the sample was ground mechanically in an agate mortar and pestle and then sieved to 106 μ m to get a homogeneous grain size. The specimen was mounted on a zero-background holder. X-ray powder diffraction data was collected at room temperature on a Siemens D5005 diffractometer, using Bragg-Brentano

^{*} Corresponding author: e-mail: gerzon@ula.ve

geometry, in θ/θ reflection mode. This instrument is equipped with an X-ray tube (CuK α radiation: λ = 1.5418 Å; 30kV, 15mA), a diffracted beam graphite monochromator and a scintillation detector. A fixed aperture and divergence slit of 1 mm, a 1 mm monochromator slit, and 0.6 mm detector slit were used. The diffraction pattern was collected by steps of 0.02° (2 θ) over the angular range 10-100°, with a counting time of 25 s per step. Quartz was used as an external standard. The Bruker analytical software was used to establish the precise positions of the peaks.

3 Results and discussion

The powder pattern was examined using the PDF-ICDD Database [7] and no secondary phases were found. The indexing of the X-ray powder diffraction was performed by means of the DICVOL91 program [8] and the unit cell refinement by using the NBS*AIDS program [9]. These analyses showed that the present alloy crystallize in the orthorhombic system with unit cell parameters a = 8.021(1) Å, b = 6.856(1) Å, c = 6.566(1) Å and figures of merit M₂₀ = 38.4 [10] and F₂₀ = 20.0 [11]. Systematic absences indicate a P-type lattice. Pattern revision taking into account the sample composition, unit cell parameters and the lattice-type, suggested that this material is isostructural with the Cu₂CdGeS₄ compound [3], which crystallize in the Pmn2₁ (N° 31) space group.

The structure of $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ was refined by the Rietveld method [12] using the FULLPROF program [13]. The atomic coordinates of Cu_2CdGeS_4 [3] were used as starting parameters. A parameterized pseudo-Voigt profile function was used to fit the peak shapes and a polynomial wit six coefficients was used to model the background. The results of the Rietveld refinement are summarized in Table 1. Figure 1 shows the final Rietveld adjust. Figure 2 show the unit cell diagram of $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$. Atomic coordinates, occupation and isotropic temperature factor are given in Table 2. Distances and angles are given in Table 3.

Molecular Formula	$Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$	D_{calc} (g/cm ³)	5.51
Molecular weight (g/mol)	599.22	N° step intensities	4501
Crystal system	Orthorhombic	N° independent reflections	227
Space group	Pmn2 ₁ (N° 31)	Peak-shape profile	Pseudo-Voigt
Z	2	R _p (%)	6.5
<i>a</i> (Å)	8.0253(2)	R _{wp} (%)	8.1
<i>b</i> (Å)	6.8591(2)	R_{exp} (%)	6.1
<i>c</i> (Å)	6.5734(2)	$R_B(\%)$	8.3
V (Å ³)	361.84(2)	S	1.3

 Table 1
 Results of Rietveld refinement for Cu₂Cd_{0.5}Mn_{0.5}GeSe₄.

Table 2 Atomic coordinates, occupancy factors and isotropic temperature factor for Cu₂Cd_{0.5}Mn_{0.5}GeSe₄.

Atom	Ox.	Site	x	Y	Ζ	foc	B_{iso} (Å ²)
Cu	+1	4 <i>b</i>	0.253(2)	0.820(2)	0.196(3)	1	2.04(5)
Cd	+2					0.52(2)	
		2 <i>a</i>	0	0.658(2)	-0.301(2)		2.04(5)
Mn	+2					0.48(2)	
Ge	+4	2a	0	0.321(2)	0.191(2)	1	2.04(5)
Se1	-2	4b	0.236(1)	0.159(1)	0.065(3)	1	2.04(5)
Se2	-2	2a	0	0.655(2)	0.089(3)	1	2.04(5)
Se3	-2	2a	0	0.310(2)	0.559(3)	1	2.04(5)

The structure of $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ is characterized by a three-dimensional arrangement of slightly distorted $CuSe_4$, $Cd(Mn)Se_4$ and $GeSe_4$ tetrahedras connected by corners. In this structure two Cu, one Cd or Mn and

one Ge ion coordinate each anion, and each cation is coordinated by 4 anions. This array is expected for adamantane compounds [14]. It is observed from Table 2 that the occupancy factors for Cd^{+2} and Mn^{+2} cations are in good agreement with the expected value for x = 0.5 for the chemical composition. It is also found that the tetrahedra containing the Cd(Mn) cations [mean Se-Se distance 4.23(2) Å] are slightly larger than those containing the Cu cations [mean Se-Se distance 3.95(2) Å] and Ge [mean Se-Se distance 3.88(2) Å] cations, respectively. The mean bond distance values for Cu-Se [2.42(2) Å] and Ge-Se [2.38(2) Å] agree very well with the average distances Cu-Se (2.42 Å) and Ge-Se (2.38 Å) observed in the adamantane structures: Cu₂GeSe₃ [15], CuInSe₂ [16], Cu₂FeSnSe₄ [17], Fe₂GeSe₄ [18], Cu₂ZnGeSe₄ [19], Cu₂ZnSnSe₄ [20], Cu₂CdSnSe₄ [20], Cu₂CdGeSe₄ [5], and Cu₂SnSe₃ [21]. The distance Cd(Mn)-Se [mean value 2.59(2) Å] is smaller than the average Cd-Se distance of 2.64 found in the CdGa₂Se₄ [22], CdAl₂Se₄ [23] and Cu₂CdGeSe₄ [5] adamantane compounds, which is expected to be due to the Mn⁺² (0.66 Å) ionic radii which is smaller than the one for Cd⁺² (0.78 Å) [24].

4 Conclusions

The $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$ alloy crystallizes in the wurtz-stannite structure, space group $Pmn2_1$ (N° 31) characterized by a three-dimensional arrangement of slightly distorted $CuSe_4$, $Cd(Mn)Se_4$ and $GeSe_4$ tetrahedras connected by corners.

Intensity (counts)

Fig. 2 Unit cell diagram for $Cu_2Cd_{0.5}Mn_{0.5}GeSe_4$.

Cu-Se3 ⁱ	2.35(2)	Ge-Se1	2.35(1)	Cd(Mn)-Se1 ⁱ	2.62(1)
Cu-Se2	2.43(2)	Ge-Se1 ^{iv}	2.35(1)	Cd(Mn)-Se3 ^v	2.56(2)
Cu-Se1 ⁱⁱ	2.43(3)	Ge-Se3	2.42(3)	Cd(Mn)-Se1 ^{vi}	2.62(1)
Cu-Se1 ⁱⁱⁱ	2.48(2)	Ge-Se2	2.39(2)	Cd(Mn)-Se2	2.56(2)
Se3 ⁱ -Cu-Se1 ⁱⁱ	111.9(8)	Se2-Cu-Se1 ⁱⁱⁱ	106.9(6)	Se3 ⁱ -Cu-Se1 ⁱⁱⁱ	105.6(6)
Se1 ⁱⁱ -Cu-Se1 ⁱⁱⁱ	107.0(8)	Se3 ⁱ -Cu-Se2	114.6(7)	Se1 ⁱⁱ -Cu-Se2	110.3(7)
Se1-Ge-Se3	109.8(4)	Se1-Ge-Se1 ^{iv}	107.6(3)	Se3-Ge-Se1 ^{iv}	109.8(4)
Se1-Ge-Se2	110.8(2)	Se3-Ge-Se2	108.1(9)	Se1 ^{iv} -Ge-Se2	110.8(2)
Se1 ⁱ -Cd(Mn)-Se3 ^v	109.1(2)	Se3 ^v -Cd(Mn)-Se2	110.6(7)	Se1 ^{vi} -Cd(Mn)-Se1 ⁱ	108.2(3)
Se1 ^{vi} -Cd(Mn)-Se3 ^v	109.1(2)	Sevi-Cd(Mn)-Se2	109.9(4)	Se2-Cd(Mn)-Se3 ^v	110.6(7)

Table 3 Distance lengths (Å) and bond angles (°) for Cu₂Cd_{0.5}Mn_{0.5}GeSe₄.

Symmetry codes: (i) 0.5-x, 1-y, -0.5+z (ii) 0.5-x, 1-y, 0.5+z (iii) x, 1+y, z (iv) -x, y, z (v) x, y, -1+z (vi) -0.5+x, 1-y, -0.5+z (vi) -

Acknowledgements This work was supported by CDCHT-ULA (C-1034-00-05-AA) and FONACIT (LAB-97000821).

References

- [1] J. M. Delgado, Inst. Phys. Conf. Series 152, 147 (1998).
- [2] S. R. Hall, J. T. Szymanski, and J. M. Stewart, Can. Mineral. 16, 131 (1978).
- [3] E. Parthé, K. Yvon, and R. H. Deitch, Acta Cryst. B25, 1164 (1969).
- [4] E. Quintero, R. Tovar, M. Quintero, M. Morocoima, J. Ruiz, G. E. Delgado, J. M. Broto, and H. Rakoto, Physica B 320, 384 (2002).
- [5] L. D. Gulay, Ya. E. Romanyuk, and O. V. Parasyuk, J. Alloys Comp. 347, 193 (2002).
- [6] W. Schäfer and R.Nitsche, Mat. Res. Bull. 9, 645 (1974).
- [7] PDF-ICDD-Powder Diffraction File (Set 1-51), International Centre for Diffraction Data, USA (2001).
- [8] A. Boultif and D. Louër, J. Appl. Cryst. 24, 987 (1991).
- [9] A. D. Mighell, C. R. Hubbard, and J. K. Stalick, NBS*AIDS, National Bureau of Standards, USA (1981).
- [10] P. M. de Wolff, J. Appl. Crystallogr. 1, 108 (1968).
- [11] G. S. Smith and R. L. Snyder, J. Appl. Crystallogr. 12, 60 (1979).
- [12] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- J. Rodríguez-Carvajal, FULLPROF (version 2.50, October 2003), Laboratoire Léon Brillouin (CEA-CNRS), France.
- [14] E. Parthé, in: J. H. Westbrook, R. L. Fleischer (Eds.), Intermetallic Compounds, Principles and Applications, Vol. 1, Wiley, Chichester, UK, (1995), Chapter 14, pp. 343–362.
- [15] E. Parthé and J. Garín, Monatsh. Chem. **102**, 1197 (1971).
- [16] K. S. Knight, Mater. Res. Bull. 27, 161 (1992).
- [17] E. Roque-Infante, J. M. Delgado, and S. A. López-Rivera, Mater. Letters 33, 67 (1997).
- [18] J. A. Henao, J. M. Delgado, and M. Quintero, Podwer Diffr. 13, 196 (1998).
- [19] O. V. Parasyuk, L. D. Gulay, Ya. E. Romanyuk, and L. V. Piskach, J. Alloys Comp. 329, 202 (2001).
- [20] I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Piskach, O. V. Parasyuk, and O. V. Marchuk, J. Alloys Comp. 340, 141 (2002).
- [21] G. E. Delgado, A. J. Mora, G. Marcano, and C. Rincón, Mater. Res. Bull. 38, 1949 (2003).
- [22] V. Krämer, D. Siebert, and S. Febbraro, Z. Kristallogr. 169, 283 (1984).
- [23] G. Krauss, V. Krämer, A. Eifler, V. Riede, and S. Wenger, Cryst. Res. Technol. 32, 223 (1997).
- [24] S. D. Shannon, Acta Cryst. A32, 751 (1976).