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1 Introduction

In this article we attempt to a systematic study of analytic topologies over the natural numbers
N (or any countable set X). We can identify every subset of N with its characteristic function,
so its power set P(N) is identified with the Cantor space 2N. Since every topology over N is a
subset of P(N), it is clear then what we mean by saying that τ is closed, open, Gδ, Borel, analytic,
etc. That this kind of restriction on a topology shows up in purely topological results is perhaps
not as widely known as it should. For example, it shows up in Godefroy’s characterization of
separable compacta K that can be embedded in the first Baire class equipped with the topology of
pointwise convergence (see [10] and 6.3 below). Namely, this happens exactly when the uniformity
K induces on any of its countable dense subsets is analytic. It is perhaps not surprising that many
of the examples of countable topological spaces found in the literature are analytic. For example,
Arens space ([1]) or its more general version, the Arhangel’skii-Franklin space ([2]), have analytic
topologies (see also §5 below). Questions involving convergence in topology are frequently questions
about countable spaces with analytic topologies. This is particularly true about spaces appearing
as subspaces of some function space. The realization that they are analytic can sometimes be a
powerful tool when dealing with these kind of questions (see, for example, theorem 6.6). One of
the goals of this article is to make this connections between descriptive set theoretic properties and
purely topological properties of a given space more explicit.

On the other hand, there are many results concerning the descriptive set theoretic properties
of families of subsets of N, like ideals and filters (see [7, 12, 16, 20, 24, 26]). Every filter has
naturally associated a topology, hence those results about the existence of Borel or analytic filters
(or ideals) over N immediately provide examples of topologies over N of the same (Borel, projective)
complexity. These topologies are not Hausdorff, however, given a filter F over N by an elementary
construction it is easy to define a Hausdorff topology of the same complexity as the filter F . It is
known that every Gδ filter is necessarily closed, but there are filters (and hence Hausdorff topologies)
in all levels of the Borel hierarchy above the third level.

The paper is organized as follows. In §2 we analyze closed and Gδ topologies. We will also
look at topologies that have the Baire property and show that if a T1 topology on X is a Baire
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measurable subset of 2X then it must be in fact meager unless it has only finitely many limits
points. This is an analog of the well known fact that every analytic ideal (containing all finite
sets) is meager. In §3 we present some results concerning the complexity of bases and subbases. In
§4 we analyze the complexity of Hausdorff topologies. In §5 we present some critical examples of
analytic topologies of various complexities. In §6 we show that every analytic regular topology is
homeomorphic to a countable subspace of the function space Cp(NN). This result naturally leads
to the notion of a Rosenthal compactification of an countable analytic space.

The last three sections are devoted to the study of the ideal of nowhere dense sets NWD(τ),
where τ is a given topology over X. One of the questions we address is the following: given a Borel
(analytic) ideal I over X, what are the possible topologies τ such that I = NWD(τ)? We classify
under equivalence the family NWD(τ) when τ is an Alexandroff topology over N. We show that
NWD(τ) is not a p-ideal for τ analytic. Many of the structural properties of ideals over N have
been established by using two important notions for comparing ideals: Tukey reducibility [8] and
Rudin-Blass reducibility. We analyze the ideal of nowhere dense sets from these points of view.

Some preliminary results concerning the problems studied in this paper appeared in [25].
We will use the standard notions and terminology of descriptive set theory (see for instance

[11]). X will always denote a countable set. ω<ω denotes the collection of finite sequences of
natural numbers. If s ∈ ω<ω and n ∈ N then ŝ(n) is the concatenation of s with n. Let A,B be
subsets of topological spaces Y and Z respectively: As usual A ≤W B denotes the fact that A is
Wadge reducible to B, that is to say, there is a continuous function f : Y → Z such that x ∈ A iff
f(x) ∈ B. The ideal of finite subsets of N is denoted by FIN, ∅×FIN denotes the ideal over N×N
given by A ∈ ∅ × FIN iff for all n, {i : (n, i) ∈ A} is finite and FIN× ∅ denotes the ideal given by
A ∈ FIN × ∅ iff there is n such that A ⊆ n ×N, where as usual we identify a natural number n
with the set {0, · · · , n− 1}.

2 Closed and Gδ topologies

In this section we will analyze over a countable set X topologies that are closed or Gδ as subset of
2X .

We first recall some notions. A topology τ over X is said to be Alexandroff if it is closed
under arbitrary intersection, equivalently, if Nx =

⋂{V : x ∈ V and V τ -open} is τ -open for every
x ∈ X. Nx is called the minimal neighbourhood of x. It is well known that Alexandroff topologies
are represented by quasi-orders as given by the following theorem:

Theorem 2.1. A topology τ over X is Alexandroff iff there is a binary relation ≤τ over X which
is transitive and reflexive and such that A ∈ τ iff for every x ∈ A we have {y ∈ X : x ≤τ y} ⊆ A.
Moreover, the minimal neighbourhood of x is {y ∈ X : x ≤τ y}. Furthermore, τ is T0 iff ≤τ is
antisymmetric (i.e. ≤τ is a partial order). Also, clτ (A) =

⋃
x∈A clτ ({x}) =

⋃
x∈A{y ∈ X : y ≤τ x}.

Thus ≤τ is given by y ≤τ x iff y ∈ clτ ({x}). ¤

We start by considering the question of when a given topology τ over a countable set X is an
open, closed or dense subset of 2X .

Theorem 2.2. Let τ be a topology over X.

(i) τ ⊆ 2X is closed if, and only if τ is Alexandroff.
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(ii) τ ⊆ 2X is open if, and only if there is a τ -clopen, discrete and co-finite subset of X. In
particular, every open topology is clopen.

(iii) The closure of τ in 2X , denoted by τ , is a topology. Therefore τ is the smallest Alexandroff
topology containing τ .

(iv) τ is dense in 2X if, and only if τ is T1.

Proof: First, it is not difficult to show that if S ⊆ 2X is a closed set which is closed under finite
intersections (resp. unions), then S is closed under arbitrary intersections (resp. unions). From
this (iii) follows, since τ is a closed set closed under finite intersection and unions. Also from this
observation half of (i) easily follows. For the other half of (i), let τ be an Alexandroff topology
and An a sequence of τ -open sets converging (pointwise) to A. If x ∈ A, then Nx, the minimal
neighbourhood of x, is a subset of eventually every An and therefore a subset of A. Hence A is
open. For (ii), let τ be an open topology, then ∅ and X are interior points of τ . Then, it is not
hard to see that there is a finite set F such that F is τ -clopen and X − F is discrete. From this it
follows that τ is clopen. Finally, for (iv) let us suppose that τ is dense in 2X . Let An be a sequence
of open sets converging pointwise to {x}. Let y 6= x, then there is n such that x ∈ An and y 6∈ An.
Hence {y} is closed. Conversely, suppose τ is T1. Then the collection of τ -closed sets contains all
finite sets and hence it is dense in 2X . Since the map A 7→ X −A is a homeomorphism then τ has
to be also dense. ¤

The simplest example of an Fσ topology is the co-finite topology. Given a filter F over ω, we
will identify F with the topology F ∪ {∅}. Since filters and ideals are dual objects, we will also
identify an ideal with the topology associated with its dual filter. Nice examples of Fσ ideals can
be found in [16]. Next we give an elementary method to construct a Hausdorff topology based on
a filter, it will be used to give examples in the sequel.

Example 2.3. Let F be a filter over ω. We define a topology τ(F) over ω +1 by τ(F) = {{ω}∪A :
A ∈ F} ∪ P(ω). It is clear that if F is non principal then τ(F) is a Hausdorff topology. Since the
function f : 2ω → 2ω+1 given by f(A) = A ∪ {ω} is continuous and A ∈ F iff f(A) ∈ τ(F), then
F is Wadge reducible to τ(F). Also notice that if F is a non trivial filter, then ω is the only limit
point of (ω + 1, τ(F)). In fact, it is clear that this is a characterization of such spaces. We state
this observations in the next proposition for later reference.

Proposition 2.4. (i) For every filter F , τ(F) is a Hausdorff topology and F ≤W τ(F).
(ii) Let (X, τ) be a Hausdorff space such that X(1) = {x1, · · · , xn}. Then there is a partition

of X in finitely many clopen pieces X1, · · · , Xn with xi ∈ Xi and there are non principal filters Fi

over Xi−{xi} for 1 ≤ i ≤ n such that (X, τ) is homeomorphic to ⊕n
1 (Xi, τ(Fi)). In fact, the filters

are given by Fi = {A ⊆ (Xi − {xi}) : A ∪ {xi} ∈ τ}, thus Fi ≤W τ . ¤

Since every Gδ filter is necessarily principal (and hence closed), then 2.4 does not provide
examples of Gδ topologies. In fact the situation is quite different. We show below that there are
no non-discrete T1 topologies over N that are Gδ as subsets of 2N, and later we give an example of
a Gδ-complete T0 topology. But first we will address the question of when a given topology τ over
X is a meager subset of 2X . The next result is interesting by itself.

Theorem 2.5. Let G be a comeager subset of 2N. If G is closed under finite unions and intersection
then G = 2N.
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Proof: First we recall that 2N is a Polish group (i.e. a topological group such that its topology is
separable and completely metrizable) with symmetric difference as the group operation (it is the
countable product of the group {0, 1} with addition modulo 2).

Let G be a comeager subset of 2N which is closed under finite unions and intersections. Let
CL(G) = {A ∈ 2N : A,Ac ∈ G}, then CL(G) is a subgroup of the Cantor group 2N. On the other
hand, since G is comeager then CL(G) = G∩{N−A : A ∈ G} is also comeager (since A 7→ N−A
is a homeomorphism). Now note that a comeager subgroup of 2N must in fact be equal to 2N (see
for instance, I.9.11 of [11]). ¤

Corollary 2.6. If a T1 topology τ is a Baire-measurable subset of 2X then it must be in fact meager
subset of 2X unless it has only finitely many nonisolated points.

Proof: Suppose τ is not meager. Let Let K,F finite disjoint subsets of N such that τ is comeager
in the basic nbhd V given by {A ⊆ N : K ⊆ A & A ∩ F = ∅}. Let B = N − (K ∪ F ). Let ρ be
the restriction of τ to B. Then ρ is comeager in 2B. Hence by 2.5 ρ is the discrete topology. Hence
the limit points of τ belongs to K ∪ F and therefore there are only finitely many of them. ¤

Corollary 2.7. If a T1 topology on a countable set X is a Gδ subset of 2X , then it must be discrete.

Proof: Just notice that since τ is T1 then by 2.2(iv) τ must be a dense subset of 2X . ¤

Remark 2.8. There are topologies with infinitely many limit points which are not meager. For
instance, consider τ = {A ⊆ N : 0 ∈ A} ∪ {∅}. Then τ is an Alexandroff T0 topology, 0 is the only
isolated point and τ contains a basic open set.

There are some simple ∆0
2 topologies over N (i.e., they are both Gδ and Fσ). For instance, let

X = ω+1 with the usual order and τ be the corresponding Alexandroff topology. Let τ ′ = τ−{{ω}}.
Then it is easy to check that τ ′ = τ and also that τ ′ is ∆0

2, i.e., it is both Fσ and Gδ. The next
example shows that there are true Gδ topologies.

Example 2.9. A T0 topology on a countable set X which is a Gδ-complete subset of 2X .
We first show a general result that points to a natural place where to look for Gδ topologies.

Claim 1: Let τ be an Alexandroff topology over a countable set X and let D(τ) = {A ∈ τ :
A is τ -dense} and ρ = D(τ)∪ {∅}. Then ρ is a Gδ topology. Moreover, if τ has no isolated points
then τ = ρ.
Proof: It is straightforward to check that A ∈ D(τ) iff for all x ∈ X there is y ∈ A such that x ≤τ y,
where ≤τ is the order given by 2.1. So D(τ) is Gδ and so is ρ. For the second claim observe that τ
has no isolated points if, and only if every finite set is τ -nowhere dense. We will show that τ = ρ.
Let O ∈ τ and F,K disjoint finite sets such that F ⊆ O and K ∩O = ∅. Let V = X −K, then by
hypothesis V is τ -open dense, F ⊆ V and V ∩K = ∅. ¤

In general, the topology given by the previous result is not a true Gδ set. For instance, let <
be the usual order on ω + 1 and consider the Alexandroff topology. An open set V is τ -dense iff
ω ∈ V . Hence D(τ) is closed.
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Let X = 2<ω (the collection of all binary sequences) and let ¹ be the usual extension order. Let
τ be the Alexandroff topology over X given by ¹. For each s ∈ 2<ω the minimal neighbourhood
of s is Ns = {t ∈ 2<ω : s ¹ t}. Let ρ = D(τ)∪ {∅}, since τ is a T0 topology without isolated points
then τ = ρ and therefore ρ is also T0. We will show that ρ is a Gδ-complete subset of 22<ω

. To
that end, we will show some simple facts that will simplify the arguments.

Claim 2: Let T ⊆ 2<ω, then T is τ -closed if, and only if T is a tree.
Proof: Since τ is an Alexandroff topology, then by 2.1 clτ ({s}) = {t ∈ 2<ω : t ¹ s} and T is τ -closed
if, and only if clτ ({s}) ⊆ T for all s ∈ T . ¤

Claim 3: Let T be a binary tree, as usual [T ] denotes the set of (infinite) branches of T . Then T
is τ -closed-nowhere-dense if, and only if [T ] is nowhere dense in 2N.
Proof: It is easy to check that for every τ -closed set T and every s ∈ 2<ω, Us = {α ∈ 2N : s ≺ α} ⊆
[T ] iff Ns = {t ∈ 2<ω : s ¹ t} ⊆ T . ¤

The following is a well known fact (see [11], page 27): Let ϕ : K(2N) 7→ 22<ω
given by ϕ(K) =

{s ∈ 2<ω : ∃α ∈ K s ≺ α}. Then ϕ is 1-1 and continuous and ϕ(K) is a tree such that K = [ϕ(K)].
In fact, ϕ is a homeomorphism of K(2N) onto the set of binary pruned trees. Since the collection
of nowhere dense closed subsets of 2N is Gδ-complete (see [13]), then from the claims above we
conclude that {F ⊆ 2<ω : F is τ -closed-nowhere-dense set} is also Gδ-complete. Finally, since the
complementation function on 2X is an homeomorphism then it is clear that D(τ) is Gδ-complete.

¤

3 Complexity of bases and subbases

We now consider the problem of the complexity of a given topology generated by a closed, Fσ, or
analytic base.

The following fact is easy to verify and will be used in the sequel.

Proposition 3.1. Let f, g : 2X×2X → 2X h : 2X → 2X be the functions defined by f(A,B) = A∩B,
g(A, B) = A ∪B and h(A) = X −A. Then f , g and h are continuous and open. Moreover, h is a
homeomorphism. ¤

In particular, the previous results says that for a given topology τ the collection of τ -open sets
and τ -closed sets have the same descriptive set theoretic complexity.

Proposition 3.2. Let (X, τ) be a countable topological space.

(i) X admits an Fσ base iff it admits an Fσ subbase.

(ii) If X admits an Fσ base (or subbase) then τ is Π0
3. In particular, if τ is second countable

topology, then τ is Π0
3.

(iii) If X admits a Σ1
1 base (or subbase) then τ is Σ1

1.

(iv) Suppose X is Hausdorff and has an Fσ base. If X(1) (the set of limit points) is finite, then τ
is Fσ.

(v) If X is T1 and non discrete, then τ does not have a closed base.
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Proof: Let B be a base for τ , then we have

A ∈ τ ⇐⇒ ∀x [ x ∈ A → ∃ B ∈ B ( x ∈ B & B ⊆ A ) ] (1)

If B is Fσ (resp. Σ1
1), then from (1) it follows that τ is Π0

3 (resp. Σ1
1). If S is an Fσ subbase for τ

then it is easy to check using 3.1 that the base generated by S is also Fσ. This shows (i), (ii) and
(iii). (iv) follows from 2.4(ii), since the filters Fi given there are clearly generated by an Fσ set and
therefore they must be Fσ. Hence τ is Fσ. To see (v) suppose that F is a closed base for τ and fix
x ∈ X. For each finite set A ⊆ X with x 6∈ A, there is VA ∈ F such that x ∈ VA ⊆ X − A. Since
{VA} converges to {x} and F is closed, then τ is the discrete topology. ¤

Remark 3.3. (1) There are Hausdorff topologies such that X(1) is finite but τ is not Fσ (and of
course τ does not have an Fσ base). For instance, let F be a filter over ω which is not Fσ (for
example, the dual filter of ∅ × FIN). Then τ(F) (defined in 2.3) is Π0

3-complete, but X(1) = {ω}.
(2) There are Π0

3 topology without an Fσ base (or even subbase). In fact, let τ be the topology
associated with the ideal ∅ × FIN. First, notice that if B is Fσ then Bmon = {A : ∃B ∈ B A ⊆ B}
is also Fσ. Now, if B is a base for τ (w.l.o.g we assume ∅ 6∈ B), then it is easy to check that
τ = Bmon ∪ {∅} (the fact that τ is not Hausdorff is irrelevant, since by a similar argument if F is
the dual filter of ∅×FIN (identifying ω×ω with ω), then τ(F) does not admit an Fσ base). A more
interesting example will be given later. A natural question is to determine which Π0

3 topologies
admit an Fσ base. ¤

Theorem 3.4. Every Hausdorff topology on a countable set generated by a Fσ subbase has in fact
a closed subbase.

Proof: Let {xi}∞i=1 be an enumeration of X. For each n we fix an open neighbourhood Vn of xn

such that xi 6∈ Vn for all i < n. Let K =
⋃∞

n=1 Kn be a fixed base for X such that each Kn is closed
and Kn ⊆ Kn+1 for all n. For n ≥ 1 set

K̂n = {A ∪ (X \ Vi) ∪
n⋃

l=i+1

Vl : 1 ≤ i ≤ n, A ∈ Kn, xi ∈ A}

Clearly each K̂n is a closed set of open subsets of X. Let K̂ =
⋃

n K̂n. We claim that K̂ ∪ {X}
is closed in 2X . It suffices to show that every sequence Bk ∈ K̂nk

(k ∈ N) such that {nk} is
strictly increasing accumulates to X. So let F be a finite subset of X and let k0 be such that
F ⊆ {xi : 1 ≤ i ≤ nk0}. Consider Bk for k ≥ k0. Then Bk is of the form

Ak ∪ (X \ Vik) ∪
nk⋃

l=ik+1

Vl

for some ik ∈ {1, · · · , nk}. Consider x ∈ F . If x = xik , then x ∈ Ak ⊆ Bk. If x = xi for i < ik, then
x ∈ (X \ Vik) ⊆ Bk. If x = xi for i ∈ {ik+1, · · · , nk}, then x ∈ Vi ⊆ Bk. This shows that F ⊆ Bk.
Let

Bn = {A ∩ Vi ∩
n⋂

l=i+1

(X \ Vl) : 1 ≤ i ≤ n, A ∈ Kn, xi ∈ A}
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It is clear that
⋃∞

n=1 Bn forms a basis of X. Note that a given element A ∩ Vi ∩
⋂n

l=i+1(X \ Vl)
of Bn is equal to the intersection of the element A ∪ (X \ Vi) ∪

⋃n
l=i+1 Vl of K̂n with Vi and each

X \ Vl (l = i + 1, · · · , n). Note that the sequence {Vn} converges to ∅ while the sequence {X \ Vn}
converges to X. It follows that

{X, ∅} ∪
⋃
n

K̂n ∪ {Vn}∞n=1 ∪ {X \ Vn}∞n=1

is a closed subset of 2X and it forms a subbasis of X. ¤
Remark 3.5. Note that the above proof shows that every Hausdorff second countable space has
a subbasis which is closed and countable. Thus, in particular, the topology of the rationals is
generated by a countable closed subbase. In fact the above proof shows that the topology of
the rationals is generated by a closed set with only two non-isolated points (i.e. the union of
two converging sequences). A natural question that remains unanswered asks whether a regular
topology with an Fσ base has an Fσ base consisting of clopen sets. Note that the proof of Theorem
3.4 can turn any Fσ base consisting of clopen sets into a closed subbase consisting of clopen sets.
¤

Improving an earlier result of Zafrany [26], Solecki and the first author have recently (see [22])
shown that every analytic filter is generated by a Gδ subset. This suggests that similar facts might
be true for analytic topologies on a countable set. The following result of Solecki [21], included
here with his permission, goes along these lines.

Theorem 3.6. Let τ be an analytic topology on a countable set X. Suppose there is a sequence
{Un} of open sets such that

⋂
n Un = ∅ and τ |Un is uncountable for all n. Then τ has a Σ0

3 subbase.
If additionally τ is T1, then τ has a Gδ subbase.

Proof: By the perfect set property of analytic sets, for each n, we can fix Zn ⊆ τ |Un that is
homeomorphic to NN. Then for each n we fix a continuous surjection fn : Zn → τ |(X \Un). Define

Z = {X − Un : n ∈ ω} ∪ {V ∪ fn(V ) : n ∈ ω, V ∈ Zn}
Note that, for each n, the set Z∗n = {V ∪ fn(V ) : V ∈ Zn} is homeomorphic to Zn, so it is Gδ in
2X . Hence Z is Σ0

3. To see that Z is a subbase of τ , note that for all x ∈ X there is n such that
x ∈ X \ Un. Let U ⊆ X \ Un be an open set with x ∈ U . Find V ∈ Zn with fn(V ) = U . Then
V ∪ U ∈ Z. Since V ⊆ Un, then U = (X \ Un) ∩ (V ∪ U).

If τ is T1, enumerating X as {xn} and reenumerating {Un} we may assume that xn 6∈ Un and
xi 6∈ Un for i < n. Also we will assume that fn has range equal to the collection of open subsets
of X \ (Un ∪ {xi : i < n}). The definition of Z remains the same except that we put the sets
X \ (Un ∪ {xi : i < n}) in place of X \ Un. Note that this sequence of sets converges to ∅. So it
remains only to show that the union Z∗ of the corresponding collection of sets Z∗n is Gδ. To see
this, note that W 6∈ Z∗ iff W 6∈ Z∗n for n = min{i : xi ∈ W}. ¤
Corollary 3.7. Every analytic T2 topology has a Gδ subbase.

Proof: If every point x ∈ X has a neighbourhood Vx such that Ux = X \Vx is infinite, the sequence
{Ux} satisfies the hypothesis of 3.6. Otherwise, X would be either finite or it would contain only
one nonisolated point x∞ such that every neighbourhood of x∞ is cofinite in X. In the later case,
X would homeomorphic to ω +1 with the order topology and hence by 3.4 it has a closed subbase.
¤
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Remark 3.8. Note that these results still leave it unclear whether every analytic topology on a
countable set has a Borel base or subbase. Of course, if the answer is positive one would then like
to determine the minimal Borel complexity of such base or subbase. ¤

4 Complexity of Hausdorff topologies

In this section we consider the complexity of analytic T2 topologies having infinitely many limit
points. The following general fact shows that they all are at least Π0

3. Notice that the topology of
a convergent sequence in a metric space is an example of an Fσ Hausdorff topology with finitely
many limit points (see also 3.2).

Theorem 4.1. Let τ be an analytic T2 topology over a countable X such that X(1) is infinite. Then
∅ × FIN ≤W τ .

Corollary 4.2. Every T2 topology over a countable set with an Fσ base and infinitely many non-
isolated points is Π0

3-complete. ¤

Corollary 4.3. The topology of the rationals is Π0
3-complete. ¤

The proof of 4.1 will need the following general fact.

Proposition 4.4. Let τ be a T1 analytic topology with an infinite cellular family (a family of
pairwise disjoint sets) of non-discrete open sets. Then ∅ × FIN ≤W τ ; in particular, τ is Π0

3-hard.

Proof: Let {Vi} be a fixed cellular family of non-discrete of τ -open sets. For each i fix a non isolated
point xi ∈ Vi. Let Fi be the restriction of the neighbourhood filter of xi to Vi − {xi}. Then Fi is
a proper analytic filter on an infinite set, so by a well known result of Mathias (see [15]), we can
find a sequence {F i

n}∞n=0 of pairwise disjoint finite subsets of Vi − {xi} such that for every infinite
M ⊆ N,

⋃
n∈M F i

n accumulates to xi. Define f : 2N×N → 2X by

f(A) =
∞⋃

i=0

⋂

(i,n)∈A

(Vi − F i
n)

Clearly f is continuous. It is also not hard to check that a subset A ⊆ N×N belongs to ∅ × FIN
if, and only if, f(A) is τ -open. ¤

The following lemma gives some sufficient conditions for having the hypothesis of 4.4.

Lemma 4.5. Let (X, τ) be a Hausdorff space such that X(1) is infinite. Then any of the following
conditions implies that there is an infinite cellular family of non-discrete τ -open sets.

(i) X(2) 6= ∅.
(ii) (X, τ) is regular.
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Proof: (i) Suppose X(2) 6= ∅. Let x ∈ X(2) and y1 6= x with y1 ∈ X(1). Let W and V1 be disjoint
open sets containing x and y1 respectively. Then W ∩X(1) 6= ∅. Let y2 ∈ W be a limit point. We
can repeat the construction inside W and find V2 with y2 ∈ V2. In this way we construct a sequence
of limit points {yn} and pairwise disjoint open sets {Vn} with yn ∈ Vn.

(ii) If τ is zero-dimensional (i.e., it admits a base of clopen sets), X(1) is infinite and X(2) = ∅,
then such family of open sets exists. In fact, we can define by induction a collection {Wx : x ∈ X(1)}
of pairwise τ -clopen sets with x ∈ Wx. If τ is regular, X(1) is infinite and X(2) = ∅, then τ is zero-
dimensional. In fact, let x ∈ X(1) and V be an open set such that x ∈ V and X(1)∩V = {x}. Then
by regularity, there is W ⊆ V open such that x ∈ W and clτ (W ) ⊆ V . Then clτ (W )∩X(1) = {x},
thus W is clopen. ¤

The following example shows that some assumptions in 4.5 are needed.

Example 4.6. There is a second countable Hausdorff topology τ on a countable set X such that
X(1) is infinite but (X, τ) has no infinite cellular families of non discrete open sets.
To see this, fix an independent family As (s ∈ N×N) of infinite subsets of N, i.e., a family with
the property that

(
⋂

s∈E

As) ∩ (
⋂

t∈F

(N−At)

is infinite for every pair E and F of disjoint finite subsets of N ×N. Let X = N × 2 with points
of N× {0} all isolated while neighbourhoods of some (n, 1) are of the form

UF
(n,1) = {(n, 1)} ∪ [(

⋂

i<n

A(i,n)) ∩ (
⋂

j∈F

(N−A(n,j)))]× {0},

where F is a finite subset of N−{0, · · · , n}. Note that for n < m, U
{m}
(n,1) and U∅

(m,1) are two disjoint
neighbourhoods of (n, 1) and (m, 1) respectively, so τ is T2. Note also that by the independence of
the family A(n,m) ((n,m) ∈ N×N), the closure of every UF

(n,1) contains (m, 1) for all m > max(F ),
so there are no infinite cellular families of non-discrete open sets. ¤
Proof of 4.1: From 4.5 we can assume that X(2) = ∅, X(1) is infinite and there are no cellular
families of non-discrete open subsets of X. Given a closed subspace Y of X it is easy to check that
τ |Y ≤W τ and since we are working towards proving that ∅ × FIN ≤W τ , we can assume also that
every such Y has no an infinite cellular family of non-discrete (relatively) open sets, as far as Y (1)

is infinite. In this context we make the following

Claim: Let Y be a closed subspace of X such that Y (1) is infinite. Then for every y ∈ Y (1) there
is an open neighbourhood U of y such that the closed subspace Z = Y − U has the property that
Z(1) is infinite.
Proof of the claim: Otherwise, for every finite sequence y1, · · · , yk−1 of elements of Y (1) − {y}
and every sequence of open sets U0, · · · , Uk−1 such that yi ∈ Ui and y 6∈ Ui, for all i < k, the set
Ck−1 =

⋃
i<k Ui being a complement of a neighbourhood of y, can contain only finitely many points

from Y (1). So, we can choose another point yk ∈ Y (1) − {y} not in Ck−1 and a neighbourhood Uk

of yk disjoint from Ck−1 such that y 6∈ Uk. Proceeding this way, we can construct a cellular family
of non-discrete open subsets of Y , contradicting our assumption. ¤

Let {zn} enumerate X(1). We will define by induction an increasing sequence nk of integers, a
sequence {Ok} of open sets and a sequence of finite sets {F k

n} such that
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(1) znk
∈ Ok for all k.

(2) {F k
n} is a sequence of pairwise disjoint finite sets of isolated points in Ok and znk

∈ ⋃
n∈A F k

n

for all infinite A ⊆ N.

(3) Ok ∩ F l
n = ∅ for all l > k and all n.

(4) Zk = X − (
⋃k

i=0 Oi) is a closed subspace such that Z
(1)
k is infinite and nk+1 is the minimal

integer n such that zn ∈ Z
(1)
k .

By the claim there is an open neighbourhood O0 of z0 such that Z0 = X − O0 is a closed
subspace with the property that Z

(1)
0 is infinite. Let F be the neighbourhood filter of z0 restricted

to X(0) ∩ O0. By the theorem of Mathias, already used above, there is a sequence of {F 0
n} of

pairwise disjoint finite subsets of X(0) ∩O0 such that (2) holds. Let n0 = 0 and n1 be the minimal
n such that zn ∈ Z

(1)
0 . It is clear that (1), · · · , (4) hold for k = 0.

For the inductive step, suppose we have defined ni for i ≤ k+1 and {Oi} and {F i
n}∞n=0 for i ≤ k

such that (1), · · · , (4) hold. By the claim there is an open neighbourhood Ok+1 of znk+1
such that

Zk+1 = Zk − Ok+1 is a closed subspace such that Z
(1)
k+1 is infinite. Let nk+2 be the least integer n

such that zn ∈ Z
(1)
k+1, so (1) and (4) holds. By the theorem of Mathias applied to the neighbourhood

filter of znk+1
restricted to X(0) ∩ Zk ∩ Ok+1 there is a sequence {F k+1

n } of pairwise disjoint finite
subsets of X(0) ∩ Zk ∩Ok+1 such that (2) and (3) hold.

Define f : 2N×N → 2X as before:

f(A) =
⋃

(k,n)∈A

F k
n

Since the sets F k
n (k, n ∈ N) are finite and pairwise disjoint (from (2) and (3)) then f is continuous.

To see that f is a reduction of ∅×FIN to the collection of τ -closed sets, suppose that A 6∈ ∅×FIN,
then there is k such that the vertical section Ak is infinite, so by (2) znk

∈ f(A) and thus f(A)
is not closed. On the other hand, suppose A ∈ ∅ × FIN and zn 6∈ f(A). Let k be the least integer
such that nk ≤ n < nk+1. It is easy to verify using (1) and (4) that W = O0 ∪ · · ·Ok ∪ {zn} is an
open neighbourhood of zn. Since each F k

n is finite from (3) we have that W ∩ f(A) is finite. Thus
f(A) is closed (actually, it is clopen). ¤

5 Some examples

We will present examples of topologies of various complexities.

Example 5.1. Let F be a filter over N containing the filter of cofinite sets. Define a topology over
X = ω<ω as follows:

U ∈ τF ⇔ {n ∈ N : ŝ n ∈ U} ∈ F for all s ∈ U

It is clear that τF is T2, zero dimensional and has no isolated points. From the definition of τF
is easy to check that τF is Π0

α+1 if F is Π0
α+1 or Σ0

α. On the other hand, consider the function
φ : 2N → 2X given by φ(A) = {∅} ∪ {s ∈ ω<ω : s(0) ∈ A}. It is clear that φ is continuous and
A ∈ F if and only if φ(A) ∈ τF . This shows that F ≤W τF . In particular, if F is a true Π0

α set,
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then so is τF . These topologies contains a family of pairwise disjoint open sets Un such that each
Un is homeomorphic to the entire space X. This explains why the Borel complexity of τF is of the
type Π0

α. It is not difficult to check that there are no T2 topologies without isolated points such
that for a fixed α the relative topology of every nonempty open set is a true Σ0

α set.
Of special interest is the case of τF when F is the filter of cofinite sets which we are going to

denote simply by τFIN. We will show that τFIN does not admit a Fσ base (the same argument applies
to τF for any free filter F).

Proposition 5.2. τFIN does not admit a Fσ base.

Proof: We will show some simple claims that will simplify the argument.

Claim 1: Let An ⊆ ωn be finite and A =
⋃

n An. Then A is τFIN-closed and discrete.
Proof: Let f(n) = max{t(n− 1) : t ∈ An} for n ≥ 1. Let s ∈ ωk and define Uf = {s} ∪ {t ∈ ω<ω :
s ≺ t & t(m− 1) > f(m) for all m > k}. Notice that Uf is an open set and Uf ∩A ⊆ {s}. ¤

Claim 2: Let K ⊆ τFIN be a closed set and s ∈ ω<ω. Then there is n such that for all V ∈ K if
s ∈ V , then there is m < n such that ŝ m ∈ V . Moreover, for all m > lh(s) there is a finite set
Am ⊆ ωm such that s ≺ t for all t ∈ Am and if V ∈ K and s ∈ V , then V ∩Am 6= ∅.
Proof: Otherwise for all n there is Vn ∈ K such that s ∈ Vn and ŝ m 6∈ Vn for all m < n. We
can assume that Vn → V ∈ K. Then s ∈ V and ŝ m 6∈ V for all m, which contradicts that V is
τFIN-open. The second claim follows by a simple induction. ¤

Claim 3: Let Kn ⊆ τFIN be closed sets and s ∈ ω<ω. Then there is a τFIN-open neighbourhood O of
s such that for all n and all V ∈ Kn if s ∈ Vn then V 6⊆ O.
Proof: Fix s ∈ ω<ω. For every n such Kn contains an open set V with s ∈ V pick a finite set
An ⊆ ωlh(s)+n as given by claim 2. Let A =

⋃
n An then by claim 1 A is closed and discrete. Let

O be the complement of A. Notice that for all n and all V ∈ Kn, if s ∈ V , then V ∩ An 6= ∅, thus
V 6⊆ O. ¤

It follows from claim 3 that τFIN does not have a Fσ base. ¤

We have already mentioned that (ω<ω, τFIN) is an homogeneous space. A very interesting de-
scription of a space homeomorphic to (ω<ω, τFIN) where the homogeneity becomes quite transparent
is given by van Douwen [6]: Let A = {2n − 1 : n = 0, 1, 2, · · · }. Then A is an infinite subset of Z
which has the property that 0 ∈ A and that A ∩ (k + A) is finite for every z ∈ Z \ {0}. Let

τ = {U ⊆ Z : (k + A) \ U is finite for every k ∈ U }
Then τ is a translation invariant topology on Z homeomorphic to (ω<ω, τFIN). Another occurrence
of a countable space homeomorphic to (ω<ω, τFIN) is the space Sω of Arkhangel’skii and Franklin
[2]. So we know that (ω<ω, τFIN) contains subsets A whose closure require large number of steps of
taking sequential closure or in other words, τFIN is a sequential topology of sequential order equal
to ω1. Yet another occurrence of τFIN is in the following characterization of the so called Schur
property of normed spaces essentially established (though not explicitly stated) in Fremlin [9] (see
also [2]).

Theorem 5.3. The following are equivalent for a normed space E.
(i) (ω<ω, τFIN) is not embeddable into (E,weak)
(ii) Every weakly convergent sequence in E is norm-convergent.
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Proof: To see that (ii) implies (i) note that if the subspace ω≤2 of τFIN embeds into (E, weak) via
an embedding ψ, then we would have that ψ(∅) is a weak limit of ψ({n}) and also that ψ({n})’s
would be a weak limit of {ψ({n,m})}∞m=n+1. By (ii) all these weakly convergent sequences are
norm-convergent, thus we can select a diagonal sequence {ψ({n,mn})}∞n=1 which weakly converges
to ψ(∅) contradicting the fact that {({n,mn})}∞n=1 is not τFIN-convergent.

Suppose now that E contains a sequence {xn}∞n=1 of norm 1 vectors which weakly converges to
0. Let {ti} be some natural enumeration of ω<ω. For s ∈ [ω]<ω, put

φ(s) =
∑

{4ixj : i, j ∈ N, ti ≺ tj ¹ s}

where ≺ is the relation of “being an initial segment of ”, if s = ∅ we take φ(s) = 0. Going to a
subsequence of {xn} we could have assumed that the xn’s are linearly independent and moreover
that some vector e ∈ E of norm 1 is not in their linear span. Thus we can find a sequence λs

(s ∈ ω<ω) of scalars from [0, 1] (λ∅ = 0) such that ψ(s) = φ(s) + λs · e is one-to-one. This is
the mapping that appears in [9] (p. 381) where it is used for showing that (if (ii) fails) the space
(E, weak) has sequential order ω1. However, it is not hard to see that ψ is actually a homeomorphic
embedding of (ω<ω, τFIN) into (E,weak) (compare this with the embedding of Sω into (l2, weak)
as described in [2] (p. 318).) ¤

Remark 5.4. A typical normed space with the Schur property (ii) is the space l1 of absolutely
converging series and this is what is frequently called Schur’s theorem (see [14] §22). A typical
example of a normed space without Schur property is the Hilbert space l2. This apparently has
been first established by von Neumann who proved it by essentially embedding the subspace ω≤2

(“the Arens space”) of (ω<ω, τFIN) into l2. ¤

Finally we mention a property of τFIN that makes it clear how far this topology is from being
metrizable.

Proposition 5.5. (see [4], example 3.7) Every continuous map from (ω<ω, τFIN) into a metric
space maps a nonempty open set of τFIN into a point or a nowhere dense set of the metric space. ¤

Example 5.6. A Σ1
1-complete countable group topology.

We will define for every dense A ⊆ 2N a topology τA on the Boolean group G of all clopen subsets
of 2N with symmetric difference as a group operation. The subbase of τA are the sets of the form

x+ = {a ∈ G : x ∈ a}, x− = {a ∈ G : x 6∈ a}

where x ∈ A. It is easy to check that if A is analytic the subbase is analytic and therefore so is τA.
Consider the mapping f : 2N → 2G defined by

f(x) = {a ∈ G : x ∈ a}

It is not difficult to verify that f is continuous and one-to-one. Finally, observe that if x ∈ A, then
f(x) ∈ τA by definition. On the other hand, if x 6∈ A, then it is not hard to check that f(x) has
empty τA-interior. This shows that A ≤W τA. For A = 2N, let’s denote τA by τ1. The subbase for
τ1 is a compact subset of 2G so τ1 is Π0

3-topology in this case. On the other hand, for a carefully
chosen analytic non-Borel subset A of 2N, then τA is a complete Σ1

1-set. Thus a slight change in
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A ⊆ 2N changes the subbasis which can result in a considerable change of the complexity of τA.
Note that we have actually shown that if A is a true analytic set, then the collection of sets with
non empty τA-interior is also a true analytic set. This might be a general phenomenon: If τ is a true
analytic topology over a countable set X, then {C : intτ (C) 6= ∅} is also analytic and non-Borel.
Equivalently, if τ is a true analytic topology, then the collection of τ -dense sets is a true co-analytic
set.

It should be clear that all these facts remain true if we restrict ourselves to the subspace H of
G consisting of the empty set together with only basic clopen sets [s] = {x ∈ 2N : s ⊆ x}, where
s ∈ 2<ω. The point is that now H is topologically a considerably nicer space. For example, (H, τ1)
is a Fréchet space. In fact, first notice that ∅ is the only non isolated point of (H, τ1). Hence τ1 is
of the form τ(F) (as defined in 2.3) for some filter F over 2<ω \ {∅}. The dual ideal of F consists
of all subsets of 2<ω \ {∅} that can be covered by finitely many infinite branches (i.e. elements of
2N). To see that (H, τ1) is Frechet, let Y ⊆ H be such that ∅ ∈ Y . It is easy to check that Y must
contain an infinite antichain D. Let xn be an enumeration of D. Then xn converges to ∅.

Let now A be the irrational points of 2N and denote τA by τ2. The space (H, τ2) has the
property of not being embeddable into Cp(K) for any compact metric space K (if it was, then one
easily shows that the set of irrational points would be Fσ). A space with the same property was
given by R. Pol [18]. However, as we will see, (H, τ2) is embeddable into Cp(NN) and moreover its
pointwise closure is a subset of the collection of Baire class 1 functions on NN. ¤

6 Embedding a countable analytic space into Cp(N
N)

It is not an accident that many examples of countable analytic spaces are variations of the space
(G, τA) presented in §5. In fact this is a quite universal construction. To see this consider an
analytic T0 topology τ on a countable set Y . Let f : NN → 2Y be a continuous map whose range
is equal to τ . For y ∈ Y , let

y∗ = {x ∈ NN : y ∈ f(x)}
Then Y ∗ = {y∗ : y ∈ Y } is a countable family of clopen subsets of NN. Let τ∗ be the topology on
Y ∗ generated by subbasis

x+ = {y∗ ∈ Y ∗ : x ∈ y∗}, (x ∈ NN)

It is clear that (Y, τ) is homeomorphic to (Y ∗, τ∗) via the mapping y 7→ y∗.
Suppose now that (Y, τ) is a regular T2 topological space, then the family

τ ∩ τ c = {U ⊆ Y : U,U c ∈ τ}
of all τ -clopen subsets of Y is also analytic. So, let f : NN → 2Y be a continuous maps whose
range is equal to τ ∩ τ c. Let Y ∗ be as before but let τ∗ be now the topology on Y ∗ generated by
subbasic clopen sets of the form

x+ = {y∗ ∈ Y ∗ : x ∈ y∗} and x− = {y∗ ∈ Y ∗ : x 6∈ y∗}
where x ∈ NN. Thus, if we identify sets with their characteristic functions we get a copy (Y ∗, τ∗)
of our regular space (X, τ) inside the function space Cp(NN) where the p stands for the topology
of pointwise convergence. If we denote by Cp+(NN) the weaker topology of C(NN) with subbasic
open sets of the form

B(x, q) = {h ∈ C(NN) : h(x) > q} (2)
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where x ∈ NN and q ∈ R, we get the following representation result.

Proposition 6.1. Let (X, τ) be a countable T0 space.

(i) τ is analytic iff X is homeomorphic to a subspace of Cp+(NN). If moreover the space is
regular and T2, then it is actually homeomorphic to a subspace of Cp(NN).

(ii) X is homeomorphic to a subspace of Cp+(K, {0, 1}) for K compact metric iff X has a compact
subbase.

(iii) X is homeomorphic to a subspace of Cp(K, {0, 1}) for K compact metric iff X has a compact
subbase of clopen sets.

Proof: Let X ⊆ Cp(NN) be a countable subspace. Let B(x, q) as in (2) and observe that the map
(x, q) 7→ B(x, q)∩X from NN×R into 2X is Borel and its range is a subbase for X. Then apply 3.2.
This shows (⇐) in (i) and the other direction was proved before. To see (iii) let X ⊆ Cp(K, {0, 1})
be a countable subspace with K compact metric. For each a ∈ K, let f(a) = {x ∈ X : x(a) = 1}.
Then f is a continuous map from K into 2X . Let K∗ = {f(a) : a ∈ K}∪{X \ f(a) : a ∈ K}. The
K∗ is a compact subbase of clopen sets of X. Conversely suppose that X has a compact subbase
K of clopen sets. Then for each x ∈ X let x+ = {O ∈ K : x ∈ O}. Each x+ is a clopen subset
of K. Identifying x+ with its characteristic function we get an embedding x 7→ x+ from X into
Cp(K, {0, 1}). The proof of (ii) is similar. ¤

It is clear that in order to define an embedding from (Y, τ) into Cp+(NN) (resp. into Cp(NN))
one needs to start from a continuous f : NN → 2Y whose range is only a subbase of open sets
(resp. clopen sets). This gives an advantage of choosing good embeddings y 7→ y∗. For example, in
the case of embeddings into Cp(NN) one is tempted to take the closure of Y ∗ inside the Tychonov
cube {0, 1}NN

and obtain a natural compactification of (Y, τ). It is clear that different choices of
subbasis of (Y, τ) may result in a quite different compactifications. There is a beautiful result of
Rosenthal [19] about taking pointwise closure of a bounded set of continuous functions on NN:
The pointwise closure either embeds βN and therefore has size bigger than the continuum or it is
included in B1(NN), the space of all Baire class-1 functions on NN with the pointwise topology.
Today compact subspaces of B1(NN) are called Rosenthal compacta. So, in our situation, it is
appropriate to call the closure of Y ∗ a Rosenthal compactification of (Y, τ) in case it is included in
B1(NN). A famous result of Bourgain-Fremlin-Talagrand [3] can now be stated as follows.

Theorem 6.2. If a regular countable analytic space (Y, τ) has a Rosenthal compactification, then
(Y, τ) is a Fréchet space.

The role of analytic topologies on countable sets in analyzing the class of Rosenthal compacta
is crucial as the following reformulation of a result of Godefroy [10] shows.

Theorem 6.3. The following conditions are equivalent for every separable compact space K:
(1) K is embeddable into the first Baire class.
(2) The uniformity K induces on any of its countable dense subsets is analytic.

Rosenthal’s dichotomy can now be restated as a result about analytic topologies over countable
sets as follows (see also [10, p. 305])

Theorem 6.4. The following three conditions are equivalent for a regular countable space (Y, τ):
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(1) (Y, τ) has a Rosenthal compactification in B1(NN, {0, 1}).
(2) There is an analytic subbasis B ⊆ τ of clopen sets such that there is no infinite Z ⊆ Y such

that B|Z = P(Z).

(3) There is an analytic subbasis B ⊆ τ of clopen sets such that for every infinite Z ⊆ Y there is
an infinite Z∞ ⊆ Z such that for every B ∈ B either Z∞ \B or Z∞ ∩B is finite.

Proof: Suppose that Y has a Rosenthal compactification in B1(NN, {0, 1}). We may assume that
Y ⊆ Cp(NN, {0, 1}) (by increasing a bit the topology of NN if necessary) and that the pointwise
closure of Y is a subset of the first Baire class of NN. Let

B = {{y ∈ Y : y(a) = 0} : a ∈ NN}
It is clear that B is a subbasis of Y consisting of clopen sets. To see that B satisfies (2) assume by
way to a contradiction, that B|Z = P(Z) for some infinite Z ⊆ Y . Since K = Y is compact, for
every ultrafilter U on Z there is a unique point y(U) ∈ K such that {G∩Z : G open, y(U) ∈ G} is
included in U . Note that by our assumption B|Z = P(Z), y(U) 6= y(V) whenever U 6= V. It follows
that K has cardinality bigger than the continuum, a contradiction.

Assume now that (2) holds and fix a continuous map f : NN → P(Y ) such that B = range(f)
and consider the copy Y ∗ = {y∗ : y ∈ Y } defined in the proof of 6.1 (i), i.e. y∗ is the characteristic
function of the clopen set {a ∈ NN : y ∈ f(a)}. We claim that the pointwise closure K of
Y ∗ in {0, 1}NN

is included in the first Baire class of NN. Otherwise, using Rosenthal’s dychotomy
theorem (see [19]) there is a 1-1 mapping x 7→ ax from 2N into NN and a subsequence {y∗n : n ∈ N}
such that for every n,

y∗n(ax) = 1 iff x(n) = 1

Let Z = {yn : n ∈ N}. To get the desired contradiction we will show that for every A ⊆ N there
is B ∈ B such that B ∩ Z = {yn : n ∈ A}. To see this let x ∈ 2N be the characteristic function of
A and B = f(ax). It is easy to check that B works.

To show that (1) implies (3) it suffices to show that the subbasis B constructed in the course
of the proof of (1) ⇒ (2) also satisfies the stronger condition (3). This follow from Rosenthal’s
theorem according to which every infinite sequence Z = {zn}∞n=0 contains a converging subsequence
Z∞ = {znk

}∞k=0. The proof that (3) implies (1) follows from the fact that (3) is stronger than (2)
(just observe that if Z∞ is split into two disjoint infinite sets, then none of the pieces can be in
B|Z).

¤

Remark 6.5. Note that the space (H, τ2) considered in example 5.6 satisfies condition (3) of
theorem 6.4 and therefore admits a Rosenthal compactification and, in particular, it is Fréchet. In
fact, let B be the collection of all {s} with s ∈ 2<ω together with the subsets A of 2<ω such that
2<ω \A can be covered by finitely many irrational branches. Then B is a base for H. Let Z ⊆ H be
infinite. Then there are two cases: either Z contains an infinite chain Z∞ or it contains an infinite
antichain Z∞. For B ∈ B a neighbourhood of ∅, these two cases correspond to the two alternatives
given in (3).

Another result worth mention is the following fact closely related to a result called ‘Szlenk’s
theorem’ (see [23]) by Pol [18]
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Theorem 6.6. The following are equivalent for an countable analytic space (Y, τ) and a point
o ∈ Y .

1. Y is Fréchet at o and whenever {ym,n} is a double sequence of elements of Y such that
limnym,n = o for each m ∈ N, then for each m we can choose n(m) ∈ N such that {ym,n(m)}
converges to o.

2. o has a countable neighbourhood base in Y .

Proof: To prove the non trivial implication (1) ⇒ (2), let {yn : n ∈ N} be a fixed enumeration of
Y \ {o}. Let

A = {a ⊆ N : {yn : n ∈ a} does not accumulate to o}
B = {b ⊆ N : {yn : n ∈ b} converges to o}

Then A and B are two orthogonal families of subsets of N and, since τ is analytic, it follows easily
that A is analytic as a subset of the Cantor set 2N. Note that (2) reduces to the fact that A, an
ideal of subsets of N, is countably generated. Note also that the assumption that Y is Frechet
space at o reduces to the fact that every a ⊆ N which has a finite intersection with every member
of B must belong to A, or in the terminology of [24], that B⊥ = A. So (2) is equivalent to the
statement that A is countably generated in B⊥. By theorem 3 of [24] if this fails there must be a
nonempty family T of finite subsets of N closed under taking initial segments such that

(a) bs = {n ∈ N : n > max(s) and s ∪ {n} ∈ T} belongs to B for every s ∈ T .

(b) Every a ⊆ N with the property that a ∩ {0, · · · , n− 1} ∈ T for all n ∈ N must belong to A.

Applying (1) to the family {bs : s ∈ T} of sequences converging to o we get for each s ∈ T a
point is ∈ bs such that b = {is : s ∈ T} converges to o, i.e. belongs to B. However, note that by
(b) the sequence σ : N → b defined recursively by σ(n) = iσ|n has the property that its range is an
infinite subset of b which belongs to A, a contradiction. ¤

7 Ideals of nowhere dense sets.

Given a topology τ over X, we will denote by NWD(τ) the collection of τ -nowhere dense sets, i.e.
those subsets A ⊆ X such that clτ (A) has empty interior. In this section we address the question
of representing a given ideal over X as the nowhere dense sets with respect to a topology over X.
This problem has been studied in [5]. Let I be an ideal over X containing all singletons. Then the
dual filter (together with ∅) is a T1 (but not Hausdorff) topology such that its nowhere dense sets
are exactly the sets in I. Here we are interested in the following question: given a Borel (analytic)
ideal I over X, what are the possible topologies τ such that I = NWD(τ)? For example, it is
known that there is no Hausdorff topology τ such that NWD(τ) = FIN (see [5]). We will see that
this result extends to Fσ ideals.

Let I and J be two ideal on N. We say that they are equivalent, denoted by I ≡ J , if there
is a bijection from N onto N such that A ∈ I if and only if f−1(A) ∈ J . There are two orders
to compare ideals of subsets of N (or any countable set) which has been very successfully used to
study the structural properties of definable ideals. The first one, denoted by ≤TK, is called the
relation of Tukey reducibility: I ≤TK J if there is a monotone (with respect to ⊆) map f : J → I
which maps J onto a cofinal subset of I, or equivalently, if there is a map g : I → J such that
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{A ∈ I : f(A) ⊆ B} is bounded in I for every B ∈ J . The map g is called a Tukey map from I into
J . It is not hard to see that this is equivalent to saying that there is a Moore-Smith convergent
map from J into I. We say that two ideals I and J are Tukey equivalent, denoted by I ≡TK J ,
if I ≤TK J and J ≤TK I. The second order, denoted by ≤RB, is defined as follows: I ≤RB J if
there is a finite-to-one map (called a Rudin-Blass reduction) h : N → N such that h−1(A) ∈ J iff
A ∈ I. Mathias [15] has shown that every analytic ideal I is Rudin-Blass reducible to FIN, and
this was later extended by Jalali-Naini and Talagrand who showed that the relation FIN ≤RB I is
a characterization of the class of Baire-measurable ideals on N.

We will start by looking at NWD(τ) for τ an Alexandroff topology (i.e. by 2.2 a topology
which is closed as a subset of the Cantor cube).

Theorem 7.1. Let I be an ideal over a countable set X. Then I = NWD(τ) for some Alexandroff
topology τ over X if, and only if I is equivalent to a free sum of ideals belonging to the following
family: principal ideals, FIN, FIN× ∅ and NWD(Q).

We start by showing that all ideals belonging to the family mentioned in theorem 7.1 are
representable by an Alexandroff topology.

Proposition 7.2. If I is either a principal ideal , FIN, FIN× ∅ or NWD(Q), then there is a T0

Alexandroff topology τ such that I = NWD(τ).

Proof: We will define for each case a partial order ≤τ and the topology will be given by 2.1.
For a principal ideal P(A), let ≤τ be defined by x <τ y for all x ∈ A and y 6∈ A. For FIN, let

≤τ be the usual order over ω.
For FIN×∅, let ≤τ be defined over ω×ω as follows: (n,m) <τ (n′, m′) if n < n′ and (n,m) <τ

(n,m′) if m′ < m, so the order of {n} × ω is the reversed order of ω. In other words, we have put
a copy of ω∗ for each element of ω. This is a total order without a maximal point, hence a set is
nowhere dense iff it is bounded. From this the result easily follows.

For NWD(Q), let τ be the smallest topology that makes clopen all cones w.r.t. the usual
extension order over X = ω<ω − {∅} (i.e. that makes clopen the sets {t : s ≺ t} for all s ∈
ω<ω − {∅}). Then (X, τ) is homeomorphic to Q. On the other hand, the identity map witnesses
that NWD(X, τ) ≡ NWD(ω<ω − {∅}) (where ω<ω − {∅} is given the Alexandroff topology of the
usual extension order). ¤

The next proposition takes care of some cases in the only if part of 7.1.

Proposition 7.3. Let ≤ be a quasi-order over X which is up-directed. One of the following holds:
(i) NWD(X) is principal.
(ii) NWD(X) is a trivial variation of FIN (i.e. there is B ⊆ X such that A ∈ NWD(X) if,

and only if A ∩B is finite. Thus NWD(X) is the free sum of a principal ideal and FIN).
(iii) NWD(X) ≡ FIN× ∅

Proof: Let M be the set of all maximal elements of X, then NWD(X) = P(X −M) and hence
(i) holds. So we assume that X has no maximal elements. Let (xn) be a cofinal sequence linearly
ordered. Let An = {x ∈ X : x ≤ xn}, note that A ∈ NWD(X) if, and only if there is n such that
A ⊆ An. It is known that this condition implies that either (ii) or (iii) hold (see [12]). In fact, we
consider two cases.
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Case 1: There is N such that for all n ≥ N , An+1 − An is finite. We will show that (ii) holds.
Let B = X −AN and A ∈ NWD(X). Let n be such that A ⊆ An. If n ≤ N then A ∩B is empty,
so we assume that n > N . We have that A ∩ B = A ∩ (

⋃n
i=N Ai+1 − Ai) and therefore A ∩ B is

finite. On the other hand, if A ∩B is finite, then it is clear that there is n such that A ⊆ An.
Case 2: For infinitely many n, An+1 − An is infinite. By passing to a subsequence we can

assume that for all n, An+1 − An is infinite. Let {xn+1
m }m be an enumeration of An+1 − An and

{x0
m}m be an enumeration of A0. Notice that X = {xn

m : n,m ≥ 0}. Let f : X → ω× ω be defined
by f(xn

m) = (n,m). Then A ∈ NWD(X) if, and only if f [A] ∈ FIN× ∅. ¤

Proposition 7.4. Let ≤ be an everywhere branching quasi-order over X (i.e. for every x there are
y, z such that x ≤ y, x ≤ z and y and z are incompatible). Then NWD(X) ≡ NWD(ω<ω − {∅}).
Proof: It is not difficult to find an isomorphic copy T of ω<ω − {∅} inside X which is cofinal in X
(by induction, using the fact that every element of X has infinitely many pairwise incompatible
successors). We can also assume w.l.o.g. that T is isomorphic to the collection of non-empty
sequences of even length. The idea to define the isomorphism between ω<ω − {∅} and X is to fill
the collection of sequences of odd length with X \T . For each n ≥ 1, let Bn be the collection of all
x ∈ X \ T such that x ≤ t for some t ∈ T with length 2n. Notice that Bn ⊆ Bn+1 and the union
of all Bn is X \ T as T is cofinal in X. We can also assume w.l.o.g. that B1 and Bn+1 \ Bn are
infinite (if not, then substitute T by its sequences of length 4n). Define f from X into ω<ω − {∅}
as the identity on T , elements of B1 are mapped onto the sequences of length 1 and elements of
Bn+1 \Bn are mapped onto the sequences of length 2n + 1. ¤

Proof of 7.1: Note that the ideal of nowhere dense sets of a free sum of topologies is equivalent to
the free sum of the corresponding ideals. Also, the free sum of Alexandroff topologies is represented
by the free sum of the corresponding partial orders. From this and 7.2 the if part of the theorem
follows.

Let ≤ be a quasi-order over X. Let O be an open dense subset of X. We first show that we can
restrict the question to NWD(O). We consider two cases: (a) Suppose that every set in NWD(O)
is finite, then we have that A ∈ NWD(X) iff A∩O is finite. Hence NWD(X) is a trivial variation
of FIN. (b) Suppose F ∈ NWD(O) is infinite and fix a bijection g between F ∪ (X \ O) and F .
Define a bijection from X onto O by letting f(x) = x for x 6∈ F ∪ (X \ O) and f(x) = g(x) for
x ∈ F ∪ (X \O). It is easy to check that f is an isomorphism between NWD(X) and NWD(O).

Consider the following subsets of X

P0 = {x ∈ X : Nx is up-directed} P1 = {x ∈ X : Nx ∩ P0 = ∅}

where Nx = {y ∈ X : x ≤ y} . It is easy to check that P0 and P1 are open sets and P0 ∪ P1 is
dense in X. From the remark above we can assume that X = P0 ∪ P1. Since P0 and P1 are open
and disjoint, then NWD(X) = NWD(P0)

⊕
NWD(P1). Now, let {Dn} be the collection of all

maximal up-directed subsets of P0. Then NWD(P0) =
⊕

n NWD(Dn). It is obvious that P1 is
everywhere branching. Now the conclusion follows from 7.3 and 7.4. ¤

Now we will address the question of when a given ideal is representable by a Hausdorff topology.
First of all, let us observe that if (X, τ) is scattered, then by a simple induction on the Cantor-
Bendixon rank of X it is easy to check that NWD(τ) = P(X(1)), so NWD(τ) is principal. Also
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observe that by 4.1 a given Gδσ Hausdorff topology τ can have only finitely many limit points, thus
in this case NWD(τ) is also principal. So in order to represent non principal ideals with Hausdorff
topologies we must look for topologies which are as least Π0

3 and not scattered.
We start by showing that if τ is a Hausdorff topology without isolated points then NWD(τ) is

at least as complex as ∅ × FIN in the Tukey sense.

Theorem 7.5. Let (X, τ) be a Hausdorff space without isolated points. There exists F : NWD(τ) →
NN monotone, continuous and with cofinal range. In other words, ∅ × FIN ≤TK NWD(τ) and
moreover the map witnessing this is continuous.

Proof: Let {Un} be a pairwise disjoint family of non empty open sets. Let Un = {xn(i)}∞i=1 and
n ∈ ω. Define F as follows: for S ∈ NWD(τ), put

F (S)(n) = max{k : {xn(i)}k
i=1 ⊆ S}

It is clear that F is continuous and also that F (S)(n) ≤ F (S′)(n), if S ⊆ S′, i.e. F is monotone. To
see that F is onto, let h ∈ NN and S = {xn(i) : n ∈ ω, i ≤ h(n)}. Assuming that S ∈ NWD(τ) it is
clear that F (S) = h. To show that S ∈ NWD(τ) we observe that for every n ∈ ω, S∩Un = S∩Un

is finite. So if V ⊆ S with V non empty and open then there must be an n such that V ∩Un is non
empty, therefore there is an open subset of Un contained in S which is a contradiction since every
non empty open set is infinite. ¤

We shall now show that in studying NWD(τ) for T2 topologies τ over countable sets we may
restrict ourselves to topologies that extend the topology of the rationals.

Definition 7.6. A π-base of a topological space (X, τ) is any family P ⊆ τ \ {∅} with the property
that for every nonempty U ∈ τ there is V ∈ P such that V ⊆ U .

The relevance of this notion here is that a π-base P of (X, τ) uniquely determine the family
NWD(τ) as N ∈ NWD(τ) iff for all U ∈ P there is V ∈ P such that V ⊆ U and V ∩N = ∅.
Lemma 7.7. Let G be a regular open subset of some space (X, τ) and let τ∗ be the topology on X
generated by τ ∪ {X \G}. Then τ \ {∅} is a π-base of τ∗.

Proof: A typical nonempty open set of τ∗ has the form V \ G for some V ∈ τ . Since G is regular
open, V \G 6= ∅ implies V \G 6= ∅, so V \G is a nonempty τ -open set which refines V \G. ¤

Theorem 7.8. For every T2 topology τ on some countable set X there is a topology τ∗ ⊇ τ on X
such that

(a) τ∗ is generated by τ together with some countable collection of subsets of X.

(b) τ \ {∅} is a π-base of τ∗, so in particular, NWD(τ∗) = NWD(τ).

(c) There is a continuous injection f : (X, τ∗) → Q.

Proof: Fix an enumeration {xn} of X and using 7.7 build sequences τ = τ0 ⊆ τ1 ⊆ · · · of topologies
on X and {Gn} of subsets of X such that

(i) Gn is regular-open in τn,
(ii) xn ∈ Gn and xi 6∈ clτn(Gn) for i < n,
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(iii) τn+1 is generated by τn ∪ {X \Gn}

Let τ∗ be the topology generated by
⋃∞

n=0 τn. Taking [ω]<ω with the subspace topology induced
from the Cantor set as our copy of Q, define f : X → [ω]<ω by f(x) = {n : x ∈ Gn}. Clearly f is
1-1 and τ∗-continuous as subbasic clopen sets of [ω]<ω are sets of the form {t : t end extends s}
whose preimage under f is equal to

⋂
n∈s Gn ∩

⋂
n 6∈s,n<max(s) Gc

n, a set which is clopen in τ∗. ¤

Remark 7.9. (i) Suppose that (X, τ) is Hausdorff and without isolated points. Is there F :
NWD(τ) → NWD(Q) monotone, continuous and with cofinal range?

(ii) Notice that (NWD(Q))ω ≡TK NWD(Q). So in general, let τ be a T2 topology without
isolated points, is it true that (NWD(X))ω ≡TK NWD(X)?

8 Complexities of ideals of nowhere dense sets

In this section we will address the question of the complexity of NWD(τ). Let us start by calcu-
lating the upper bound of the projective complexity of NWD(τ) when τ is analytic.

A ∈ NWD(τ) if, and only if ∀V ∈ τ \ {∅} ∃W ∈ τ \ {∅} (W ⊆ V & W ∩A = ∅ )

From this it follows that NWD(τ) is Π1
2. If τ is second countable then by a direct calculation it is

easy to see that NWD(τ) is Π0
3. We state this observation for later reference.

Proposition 8.1. Let τ be a second countable topology, then NWD(τ) is Π0
3. ¤

From 7.5 we know that if τ is Hausdorff without isolated points then NWD(τ) is not Fσ. We
will show next a stronger result.

Theorem 8.2. Let τ be a Hausdorff topology over a countable set X without isolated points and I
be a proper Fσ ideal over X. Then NWD(τ) 6⊆ I. In particular, NWD(τ) is not Fσ.

Proof: Let I be a proper Fσ ideal over X. We can assume w.l.o.g. that I =
⋃

n Fn with each Fn

closed hereditary and Fn ⊆ Fn+1. We consider two cases:

Case 1: τ ∩ I = {∅}. Since τ is Hausdorff, let {Vn} be an infinite family of nonempty pairwise
disjoint open sets. By assumption Vn 6∈ I. Since Fn is closed we have that for a given A ⊆ X if
every finite subset of A belongs to Fn, then A ∈ Fn. Then for each n, let Kn be a finite subset of
Vn such that Kn 6∈ Fn. Let A =

⋃
n Kn, since each Fn is hereditary then A 6∈ Fn, i.e. A 6∈ I. On

the other hand, A ∈ NWD(τ) because every finite set is τ -nowhere dense and A ∩ Vn is finite. ¤

Case 2: τ ∩ I 6= {∅}. Suppose, towards a contradiction, that NWD(τ) ⊆ I. Let V =
⋃{O : O ∈

τ ∩I}, then NWD(τ |V ) = NWD(τ)∩P(V ) and hence we can assume that X = V . (In fact, using
Case 1 it is easy to check that V is dense in X, but this will not be used). Our assumption is then
that for all x ∈ X there is an open set O such that x ∈ O ∈ I. Notice that if O is an open set in
I, then O ∈ I (since O \O is nowhere dense).

We will construct two sequences {Kn} of finite sets and {Un} of open sets such that (a) Kn ⊆ Un,
(b) Kn 6∈ Fn, (c) Un ∈ I and (d) Un ∩ Um = ∅ for n 6= m. Since X 6∈ I, pick a finite set K0 6∈ F0
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and let U0 ∈ I such that K0 ⊆ U0. Suppose that Uj and Kj have been constructed for j < n. Let
D =

⋃n−1
j=0 Uj , then D ∈ I. Therefore X \D 6∈ I and thus there is a finite set Kn ⊆ X \D such

that Kn 6∈ Fn. Let Un be an open set such that Kn ⊆ Un ∈ I and Un ∩D = ∅. Let A =
⋃

n Kn.
As we did in Case 1, it is easy to show that A is nowhere dense and A 6∈ I. ¤

If τ is a Hausdorff topology without isolated points and it is moreover analytic then we can
conclude more, namely, that NWD(τ) is at least Π0

3.

Theorem 8.3. Let τ be an analytic Hausdorff topology without isolated points, then ∅ × FIN ≤RB

NWD(τ). If τ is in addition second countable, then NWD(τ) is Π0
3-complete.

Proof: Let τ be an analytic T2 topology without isolated points. Fix a maximal cellular family {Un}
of open sets. First we argue that it suffices to show that FIN ≤RB NWD(τ |Un) for every n. In
fact, suppose hn : Un → N is a Rudin-Blass reduction of NWD(τ |Un) to FIN. Let F = X−⋃

n Un,
notice that F is closed nowhere dense. Define h : X → N×N by h(x) = (n, hn(x)) if x ∈ Un and
h(x) = (0, 0) if x ∈ F . Then h−1(A) ⊆ ⋃

n h−1
n ({i : (n, i) ∈ A}) ∪ F . Thus h−1(A) ∈ NWD(τ) if,

and only if A ∈ ∅ × FIN.
Fix a non empty open set U and let {xi} be an enumeration of U . By the theorem of Mathias,

already used before, for every i there is a collection {F i
n : i ≤ n, n ∈ N} of pairwise disjoint finite

subsets of U − {xi} such that
⋃

n∈A F i
n accumulates to xi for each infinite A ⊆ N. By a standard

diagonalization process we can find infinite sets Ai ⊆ N, for each i ∈ N, such that if i 6= j, then
F i

n∩F j
m = ∅ for all n ∈ Ai and all m ∈ Aj . In other words, we can assume that {F i

n : i ≤ n, i, n ∈ N}
is pairwise disjoint. Also, we can assume that U =

⋃
(i,n) F i

n (if a point xk does not belong to any
F i

n then we add xk to F k+1
k+1 ). Define h : U → N by

h(x) = m, if x ∈ F i
m

Then h−1(m) = F 1
m ∪ · · · ∪ Fm

m , thus h is finite-to-one. To see that h is a Rudin-Blass reduction,
let A ⊆ N be infinite, then {n : F i

n ⊆ h−1(A)} is infinite for each i. Therefore xi ∈ h−1(A) and
thus U ⊆ h−1(A). This shows that FIN ≤RB NWD(τ |U).

The last claim follows from 8.1 and the fact that ∅ × FIN ≤W NWD(τ). ¤

Now we will show that NWD(τ) can not be p-ideal when τ is analytic. Moreover, we will also
show that NWD(τ) is not included in any proper analytic p-ideal. This result is related to [17,
Problem 256], which asks whether NWD(Q) can be extended to a p-ideal. Recall that an ideal I
over a countable set X is called a p-ideal if for every sequence An ∈ I, there is a set A ∈ I such
that An \A is finite for all n.

We will need the following general fact which is interesting by itself.

Lemma 8.4. Let τ be a Hausdorff topology over X without isolated points. If NWD(τ) is a p-ideal,
then there is a dense open set U ⊆ X such that

NWD(τ |U) = {A ⊆ U : A is closed discrete in U} (3)

Proof: Let us say that a point x ∈ X is near point if there is a nowhere dense set A such that x 6∈ A
and x ∈ A. Let Z be the collection of near points of X. Fix for every x ∈ Z a nowhere dense set
Ax such that x ∈ Ax \ {x}. Since NWD(τ) was assumed to be a p-ideal, there is a nowhere dense
set B such that Ax \B is finite for all x ∈ Z. Notice that Z ⊆ B. Let U = X \B. To show that U

21



works first observe that NWD(τ |U) = NWD(τ) ∩ P(U). Let A ⊆ U be a nowhere dense set and
x ∈ A. If x ∈ A \ {x} then x ∈ Z and thus x 6∈ U . Therefore A is closed discrete in U . On the
other hand, if A is a discrete subset of U then A is obviously nowhere dense. ¤

Theorem 8.5. Let τ be a Hausdorff topology over a countable set X without isolated points and
I be an analytic p-ideal over X. Then NWD(τ) 6⊆ I. If moreover τ is analytic, then NWD(τ) is
not a p-ideal.

Proof: We will use the representation of analytic p-ideals in terms of submeasures given by Solecki
[20]. A map ϕ : P(N) → [0,+∞] is a submeasure if ϕ(∅) = 0 and ϕ(A) ≤ ϕ(A∪B) ≤ ϕ(A)+ϕ(B)
for all A,B ⊆ N. It is lower semicontinuous if ϕ(A) = limn ϕ(A∩{0, · · · , n}) for all A ⊆ N. Finally,
define ϕ∗(A) = limn ϕ(A \ {0, · · · , n}). The map ϕ∗ satisfies that ϕ∗(A4B) ≤ ϕ∗(A) + ϕ∗(B), in
particular ϕ∗ is subadditive. The result of Solecki [20] is that every analytic p-ideal has the form

Exh(ϕ) = {A ⊆ N : ϕ∗(A) = 0} (4)

for some lower semicontinuous submeasure ϕ on N. To show that NWD(τ) 6⊆ I it suffices to
construct a nowhere dense set F such that ϕ∗(F ) > 0 where ϕ is a lower semicontinuous submeasure
on X representing I as Exh(ϕ). To that end, we will consider two cases:

Case 1: Suppose there is x ∈ X and ε > 0 such that ϕ∗(U) ≥ ε for all open set U with x ∈ U .
Let {xn} be an enumeration of X \ {x}. Fix an open set Vn such that xn ∈ Vn and x 6∈ Vn. Let
Un = X \ ⋃

l≤n Vl. The set Un is an open neighbourhood of x, thus ϕ∗(Un) ≥ ε. By the lower
semicontinuity of ϕ and (4) we can find finite sets Fn ⊆ Un such that ϕ(Fn) ≥ ε/2 and Fn∩Fm = ∅
for n 6= m. Let F =

⋃
n Fn. Note that ϕ∗(F ) ≥ ε/2 (this follows from the monotonicity of ϕ and

the fact that ϕ∗ is invariant under finite changes). Since F ∩ Vn ∩ V is finite for any open set V ,
then F is nowhere dense.

Case 2: Suppose for all x ∈ X and all ε > 0 there is an open set U such that ϕ∗(U) < ε and
x ∈ U . Let δ = ϕ∗(X) > 0 and fix an enumeration {xn}∞n=0 of X and an open neighborhood Un of
xn such that ϕ∗(Un) < δ · 2n+2. Let Dn = X \⋃

l<n Ul. Using the subaditivity of ϕ∗ we have that
ϕ∗(Dn) > δ

2 . Therefore there are finite sets Fn ⊆ Dn such that ϕ(Fn) > δ
2 and Fn ∩ Fm = ∅ for

n 6= m. Let F =
⋃

n Fn. Then F is nowhere dense and ϕ∗(F ) > δ
2 .

For the second claim let us assume, towards a contradiction, that NWD(τ) is a p-ideal. Then
by 8.4 there is a dense open set U such that (3) holds. Since τ is analytic, it is easy to check using
(3) that NWD(τ |U) is an analytic p-ideal. But we have shown above that this is not possible since
τ |U is a Hausdorff topology without isolated points ¤

9 Some ideals which are not representable by T2 topologies

We will present in this section some examples of ideals on a countable set X which are not of the
form NWD(τ) for any Hausdorff topology τ on X. For example, we will show that ∅ × FIN is not
representable in this way. In fact, we will show a more general result. For an ideal I on ω let ∅×I
be the ideal over ω × ω given by

∅ × I = {A ⊆ ω × ω : for all n, {i : (n, i) ∈ A} ∈ I}}
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Proposition 9.1. If I is a proper Fσ ideal over ω containing all singletons then ∅ × I is not of
the form NWD(τ) for any Hausdorff topology τ over ω × ω

Proof: Denote ∅ × I by J . To see this, suppose τ is a Hausdorff topology with J ⊆ NWD(τ),
since FIN ⊆ J then τ has no isolated points. Let C = {0} × ω, then C 6∈ J . If C ∈ NWD(τ)
then we are done. Suppose C 6∈ NWD(τ) and let D ⊆ C be such that V ∩D 6∈ NWD(τ) for all
open V with V ∩D 6= ∅. It is easy to check that NWD(τ) ∩ P(D) = NWD(τ |D), where τ |D is
the relative topology on D. By 8.2 we know that NWD(τ)∩P(D) is not Fσ, but J ∩P(D) is Fσ,
since it is clearly a copy of I ∩ P(D′) where D′ = {i : (0, i) ∈ D}. ¤

Our second example is the ideal Iω2 on ω2 consisting of all subsets of the ordinal ω2 of order
type < ω2.

Proposition 9.2. The ideal Iω2 is not representable as NWD(τ) by any Hausdorff topology τ on
ω2.

Proof: In fact, let τ be a Hausdorff topology such that I ⊆ NWD(τ). In particular, every nonempty
τ -open set has order type ω2. Let Un be a pairwise disjoint sequence of nonempty open sets. For
each n choose a subset An ⊆ Un of order type ω · n. Since each An is nowhere dense, then

⋃
n An

is clearly also nowhere dense but it is not in I. ¤

Our last example is the ideal of order-scattered subsets of Q, that is to say, the collection of
subsets of Q which contain no order-isomorphic copy of Q.

Proposition 9.3. The ideal of order-scattered subsets of Q is not representable as NWD(τ) for
any Hausdorff topology τ over Q.

Proof: Suppose toward a contradiction that there is a Hausdorff topology τ on Q such that

NWD(τ) = {A ⊆ Q : otp(Q) 6≤ otp(A)}.

We will construct two Cantor schemes

{Us : s ∈ 2<ω}

and
{Is : s ∈ 2<ω}

such that for all s ∈ 2<ω:

(i) Us is a τ -open set and Is is an open interval in Q,

(ii) Iŝ0 < Iŝ1,

(iii) Us ∩ Is is a nonempty non order-scattered set.

Assuming this has been accomplished we will finish the proof. Let A ⊆ 2<ω be an antichain
such that

TA = {s ∈ 2<ω : t 6≺ s for all t ∈ A}
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is a perfect subtree of 2<ω (take for instance a perfect binary tree T such that its set of branches
[T ] is nowhere dense in 2N and let A be the minimal elements of 2<ω \ T ). For each s ∈ A pick
xs ∈ Us ∩ Is and form the set

N = {xs : s ∈ A}
Then N is τ -discrete and therefore τ -nowhere dense. On the other hand, by the choice of intervals
Is and the perfectness of the subtree TA we infer that N contains an order-isomorphic copy of Q,
a contradiction.

The construction is by induction on the length of s ∈ 2<ω. Let I∅ = U∅ = Q. Suppose Us

and Is has been chosen. By inductive assumption Xs = Is ∩ Us is not order-scattered so there
must be q ∈ Xs such that Xs ∩ (−∞, q) and Xs ∩ (q, +∞) are both non order-scattered. Let
Iŝ0 = Is ∩ (−∞, q) and Iŝ1 = Is ∩ (q, +∞). Then Xs ∩ Iŝ0 and Xs ∩ Iŝ1 are two non order-
scattered subsets of Q and therefore two non τ -nowhere-dense sets. Since τ is Hausdorff we can
find two disjoint τ -open sets Uŝ0 and Uŝ1 such that Iŝ0 ∩ Uŝ0 and Iŝ1 ∩ Uŝ1 are both non
τ -nowhere dense and therefore both non order-scattered. This finishes the inductive step and the
proof of the proposition. ¤
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