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Abstract

A collection of topologies Φα (for α an ordinal) is introduced in the space of
bounded continuous functions Cb(X) (where X is a discrete space). It is proved
that |X| ≤ ℵα if and only if the unit ball B1(X) in Cb(X) is Φα-compact. We
compute the dual of (Cb(X), Φα) and present a characterization of the cofinality
of |X| in terms of Φ0-equicontinuity.

1 Introduction

The compactness (with respect to various topologies) of the unit ball in the space
of bounded continuous real functions over a completely regular Hausdorff space X
has been used very successfully to characterize some topological properties of X (see
[9], [8] [6] and [7]). We introduce a collection of topologies in Cb(X) Φα (for α an
ordinal) and use them to characterize the cardinality of X and the cofinality of |X|.
The κ-product topology on 2κ (which coincides with Φ0 in 2κ as a subspace of Cb(κ))
has been used to study some large cardinal properties of κ (see [2]). In [5] it is shown
that the compactness of the unit ball with respect to the strict topologies βσ and βp

characterize the real measurability and Ulam measurability of |X|, respectively. The
idea behind the results of this paper is that some set theoretic notions, like cardinality
and cofinality, can be characterized using concepts from functional analysis.

The main results are the following:

Theorem A: Let X be a discrete space. |X| ≤ ℵα if and only if the unit ball in
Cb(X) is Φα-compact.

The proof is a transfinite version of the well known fact that (for X discrete) the
unit ball in Cb(X) is ‖ · ‖-compact if and only if X is finite.
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In order to characterize the cofinality of |X| we will look at the dual of (Cb(X), Φα)
and then use the notion of Φ0-equicontinuity. Let E be a locally convex space and κ a
cardinal. We say that E is κ-barrelled if for every pointwise bounded family {Λi}i∈I

in the topological dual of E, with |I| < κ we have that {Λi}i∈I is equicontinuous. Put

bar(E) = sup{κ : E is κ-barrelled}

Theorem B: Let X be an infinite discrete space. Then cof(|X|) = bar((Cb(X), Φ0)).

Now we fix the notation. Let X be a completely regular Hausdorff space, Cb(X)
will denote the space of bounded continuous real functions over X and the unit ball
{f ∈ Cb(X) : ‖ f ‖≤ 1} will be denoted by B1(X). If τ and τ ′ are topologies on some
space, τ ≤ τ ′ means that τ ′ is finer than τ . The pointwise topology will be denoted
by tp. All topologies on Cb(X) that we use in this paper are finer than tp. If Cb(X)
is given the supremum norm ‖ · ‖, its dual is given by Alexandroff representation
theorem and it consists of all finite, finitely additive Baire measures on X (see e.g.
[9]). Our set theoretic notation is standard, as in [3]. |X| will denote the cardinality
of X. Lower case Greek letters will denote ordinals. Let κ be an infinite cardinal, κ+

denotes the cardinal succesor of κ, the cofinality of κ (denoted by cof(κ)) is the least
cardinal λ such that there exists a family {Aξ}ξ<λ of subsets of κ such that |Aξ| < κ
and κ =

⋃
Aξ. An infinite cardinal κ is called regular if cof(κ) = κ.

2 Cardinality and compactness

Let X be discrete space, we introduce the cardinal topologies on Cb(X).

Definition 2.1 Let α be an ordinal and X a set.

Sα(X) = {Y ⊂ X : either Y is finite or if |Y | = ℵλ, then ℵλ+α < |X| }

Definition 2.2 For every Y ⊆ X let pY (f) = sup{|f(x)| : x ∈ Y } for f ∈ Cb(X).
pY is a seminorm over Cb(X). For every ordinal α, let ΦX

α be the locally convex
topology defined by the family of seminorms {pY : Y ∈ Sα(X)}.

If there is no confusion about X, we will write Φα and Sα instead of ΦX
α and

Sα(X). We show next some basic facts about the cardinal topologies Φα. (In [5],
another collection of topologies was introduced (also called cardinal topologies) which
are finer than the Φα’s and also satisfy the conclusion of theorem 2.5 below).

Lemma 2.3 Let X be a discrete space

1. tp ≤ Φα ≤ ‖ · ‖
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2. If α < β then Φβ ≤ Φα

3. Φα is the projective topology induced by the maps:

πY : Cb(X) → (Cb(Y ), ‖ · ‖)
where Y ∈ Sα and

πY (f) = f | Y,

i.e. Φα is the smallest topology for which the maps πY ’s are continuous. Hence,
a net fη in Cb(X) converges to zero with respect to Φα if and only if fη converges
uniformly to zero over every set in Sα

Proof: It follows easily from the definitions. 2

The following is a well known fact.

Lemma 2.4 Let X be a discrete space. X is finite if and only if B1(X) is ‖ · ‖-
compact. 2

Theorem 2.5 Let X be discrete space. The following statements are equivalent:

1. |X| ≤ ℵα

2. Φα = tp

3. B1(X) is Φα-compact

Proof: (1 ⇒ 2) If |X| ≤ ℵα then Sα = {Y ⊂ X : Y is finite }. Hence Φα is the
pointwise topology.

(2 ⇒ 3) If Φα = tp then B1(X) is Φα- compact by the Tychonoff theorem (since
X is discrete we have that B1(X) = [−1, 1]X).

(3 ⇒ 1) If ℵα < |X|, then X contains an infinite countable subset Y and Y ∈ Sα.
Since πY : (Cb(X), Φα) → (Cb(Y ), ‖ · ‖) is continuous and πY (B1(X)) = B1(Y ) we
have that B1(Y ) is ‖ · ‖Y -compact and from lemma 2.4 we get that Y is finite, which
is a contradiction. 2

It is natural to ask if the restriction to discrete spaces is necessary. On this respect
we notice the following: Let X be a completely regular Hausdorff space. β0 is the
finest locally convex topology on Cb(X) which coincides on the norm-bounded sets
with the compact open topology. Wheeler [8] has proved that X is discrete if and only
if B1(X) is β0-compact. In fact, a bit stronger result can be shown analogously: if τ
is a topology on Cb(X) with tp ≤ τ and B1(X) is τ -compact then X is discrete. Thus
it is interesting to determine the relationship between β0 and the cardinal topologies
we have defined. This was done in [5] and for the sake of completeness we repeat it
here.
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Lemma 2.6 Let X be a discrete space and (fα) be a net on Cb(X). Then fα → 0
in β0 if and only if for every sequence (xn) ∈ X and every sequence (rn) ∈ R which
converges to zero we have that Sup{|rnfα(xn)| : n ≥ 0} → 0

Proof: β0 is also characterized as the topology determinded by the seminorms
ph(f) =‖ hf ‖ where h is a bounded real function on X vanishing at infinity (i.e.
{x ∈ X : |h(x)| ≥ ε} is compact for all ε > 0) (see e.g. theorem 2.4 in [4]). Using
this characterization for X discrete, it is easy to obtain the result. 2

As a corollary we get

Lemma 2.7 Let X be a discrete space and τ a topology on Cb(X) such that for every

net (fα) ∈ Cb(X) with (fα)
τ→ 0, we have that for every countable Z ⊆ X fα | Z ‖·‖→ 0.

Then β0 ≤ τ 2

We have the following comparison theorem

Theorem 2.8 Let X be a discrete space. For every ordinal α one and only one of
the following holds:

(a) tp = Φα

(b) β0 < Φα

In particular β0 and Φα are always comparable.

Proof: If |X| ≤ ℵα then by theorem 2.5 we have Φα = tp and (a) holds. On the other
hand, suppose |X| = ℵβ > ℵα. By the definition of Φα the hypothesis of the previous
lemma are satisfied, hence β0 ≤ Φα. By the result of Wheeler mentioned before we
get β0 < Φα, otherwise B1(X) would be Φα-compact and therefore by theorem 2.5
|X| ≤ ℵα, which is a contradiction. 2

We will see next that the relation |X| = |Y | can be topologically characterized.

Theorem 2.9 Let X and Y be infinite discrete spaces. |X| ≤ |Y | if and only if for
every α there is a continuous onto map T : (Cb(Y ), ΦY

α ) → (Cb(X), ΦX
α ). 1

Proof: (⇒) Let h : X → Y be a 1-1 map. Let T : Cb(X) → Cb(Y ) be defined by
T (f) = f ◦ h. Since h is injective it is clear that T is onto. Let Z ∈ Sα(X) and
W = h[Z] then pZ(T (f)) = pW (f), from which follows that T is continuous.

(⇐) Let α be such that |Y | ≤ ℵα. We will see that |X| ≤ ℵα. Hence |X| ≤ |Y |.
1As the referee pointed out, this result is false for X and Y finite.
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Let T as in the hypothesis. By 2.5 B1(Y ) is ΦY
α -compact, hence Cb(Y ) is the union

of a countable collection of ΦY
α -compact sets, then (as T is onto and continuous) Cb(X)

is the union of a countable collection of ΦX
α -compact sets. Since ΦX

α ≤ ‖ · ‖, then
those compact sets are norm closed. Hence by the Baire category theorem one of them
has non empty interior (in the norm topology) and therefore there is a ΦX

α -compact
ball, which implies that B1(X) is also ΦX

α -compact. Hence by 2.5 |X| ≤ ℵα. 2

Let us observe that if h : X → Y is a bijection then the map T defined in the
previous proof is a homeomorphism. Hence we have

Corollary 2.10 Let X and Y be discrete spaces. |X| = |Y | if and only if for every
α (Cb(Y ), ΦY

α ) is homeomorphic to (Cb(X), ΦX
α ). 2 2

3 Cofinality and equicontinuity

As mentioned in the introduction, in order to characterize the cofinality of |X| we will
look at the dual space of (Cb(X), Φ0). Following the classical Alexandroff’s theorem,
dual spaces are identified with a collection of Baire measures over X.

Theorem 3.1 (Alexandroff’s Theorem)( See e.g. [9]) Let X be a completely
regular Hausdorff space. Then the map T : M(X) → Cb(X)′ defined by T (µ)(f) =∫
X f dµ in an isometric isomorphism from M(X) (the finite, finitely additive Baire

measures with the total variation norm) onto Cb(X) (with the norm topology).

We identify first the Φα-equicontinuous sets.

Lemma 3.2 Let X be discrete. A subset A of Cb(X)? (the algebraic dual of Cb(X))
is Φα-equicontinuous if and only if there exists r > 0 and Y ∈ Sα such that:

|Λ(f)| ≤ rpY (f) for all Λ ∈ A and all f ∈ Cb(X).

Proof: The condition is clearly sufficient. For the other direction suppose that A
is a Φα-equicontinuous subset of linear functionals on Cb(X). There exists Y ∈ Sα

and δ > 0 such that for all Λ ∈ A, if pY (f) ≤ δ then |Λ(f)| ≤ 1. It is easy to see
that r = 1/δ and Y work. (Observe that if f ∈ Cb(X), Λ ∈ A and pY (f) = 0 then
Λ(f) = 0. Otherwise |Λ(δf/pY (f))| ≤ 1 ). 2

Now we will identify the measures representing the dual of (Cb(X), Φα).

Lemma 3.3 Λ ∈ (Cb(X), Φα)′ if and only if there exists a unique µ ∈ M(X) such
that for some Y ∈ Sα with |µ|(Y ) = |µ|(X)

Λ(f) =
∫

fdµ for all f ∈ Cb(X).

2ver comentario del referee
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Proof: (⇒) Let µ ∈ M(X) be the measure given by the Alexandroff’s theorem and
let Y ∈ Sα and r > 0 given by 3.2 be such that

|Λ(f)| ≤ rpY (f) for all f ∈ Cb(X).

We will show that |µ|(X \ Y ) = 0. Let χB ∈ Cb(X) be the characteristic function
of B ⊂ X \ Y then

|
∫

χBdµ| = |Λ(χB)| = 0

for all B ⊂ X \ Y . Hence |µ|(X \ Y ) = 0.

(⇐) Let Y ∈ Sα such that |µ|(X) = |µ|(Y ), then

|Λ(f)| =
∣∣∣∣
∫

fdµ

∣∣∣∣ ≤
∣∣∣∣
∫

Y
fdµ

∣∣∣∣ +

∣∣∣∣∣
∫

X\Y
fdµ

∣∣∣∣∣ =
∣∣∣∣
∫

Y
fdµ

∣∣∣∣ .

Thus |Λ(f)| ≤ |µ|(Y )pY (f) for all f ∈ Cb(X). 2

It is a well known fact that a locally convex space X is barrelled if and only if every
pointwise bounded family of continuous linear functionals over X is equicontinuous
(see e.g. [1]). We will introduce a “cardinal version” of this property which will be
used to characterize cofinality.

Definition 3.4 Let E be locally convex space and κ cardinal. We say that E is κ-
barrelled if for every pointwise bounded family {Λi}i∈I in the topological dual of E
such that |I| < κ we have that {Λi}i∈I is equicontinuous.

Definition 3.5 Let E be a locally convex space. Then

bar(E) = sup{κ : E is κ-barrelled}

Theorem 3.6 Let X be an infinite discrete space. Then

bar(Cb(X), Φ0) = cof(|X|).

Proof: Let |X| = κ and cof(κ) = λ. We will show first that if {Λi}i∈I is a pointwise
bounded family of linear Φ0-continuous functionals in Cb(X) and |I| < λ then {Λi}i∈I

is Φ0-equicontinuous, i.e. (Cb(X), Φ0) is λ-barrelled.

From 3.2 we know that for every i ∈ I there exists Yi ⊂ X with |Yi| < κ and
ri > 0 such that

|Λi(f)| ≤ ripYi
(f) for all f ∈ Cb(X).

Let Y =
⋃

i∈I Yi, then Y ∈ S0 and

Λi(f)| ≤ ripY (f) for all f ∈ Cb(X). (1)
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We define Λ̂i : Cb(Y ) → R by Λ̂i(f) = Λi(f̄) where

f̄(x) =

{
f(x) if x ∈ Y
0 otherwise.

It is clear that {Λ̂i : i ∈ I} is a subset of (Cb(Y ), ‖ ‖)′ and {Λ̂i : i ∈ I} is pointwise
bounded. By the Banach-Steinhaus’s Theorem there exists r > 0 such that |Λ̂i(f)| ≤
rpY (f) for all f ∈ Cb(Y ) and all i ∈ I. From (1) we have that if f ∈ Cb(X) and
f |Y = 0, then Λi(f) = 0. In particular we have that Λi(f) = Λ̂i(f | Y ) for every
f ∈ Cb(X) and every i ∈ I and now the result follows.

To finish the proof we will show that (Cb(X), Φ0) is not λ+-barrelled. Let {Yξ :
ξ < λ} be a family of pairwise disjoint infinite subsets of X such that X =

⋃
ξ<λ Yξ

and |Yξ| < |X|. Let {µξ : ξ < λ} be finitely additive measures on X with values in
{0, 1} such that µξ(Yξ) = 1 and µξ(Y ) = 0 for Y ⊂ Yξ with |Y | < |Yξ| (i.e., µξ is a
uniform ultrafilter over Yξ).

Let Λξ ∈ (Cb(X), Φ0)
′ such that

Λξ(f) =
∫

fdµξ

for f ∈ Cb(X) and ξ < λ.

It is clear that {Λξ : ξ < λ} is pointwise bounded. We will show that it is not
Φ0-equicontinuous. Suppose, towards a contradiction, that there is Y ⊂ X with
|Y | < |X| and r > 0 such that

|Λξ(f)| ≤ rpY (f)

for all f ∈ Cb(X) and ξ < λ.

In particular, if f is the characteristic function of Yξ \ Y then Λξ(f) = µξ(Yξ \ Y ).
Since pY (f) = 0 then µξ(Yξ \ Y ) = 0 and µξ(Yξ ∩ Y ) = µξ(Y ) = 1 for all ξ < λ. Then
|Yξ ∩ Y | = |Yξ| for all ξ < λ and

|Y | = ∑

ξ<λ

|Y ∩ Yξ| =
∑

ξ<λ

|Yξ| = |X|

which is a contradiction. 2

As a corollary we immediately get

Corollary 3.7 Let X be an infinity discrete space and |X| = κ, then κ is regular if
and only if (Cb(X), Φ0) is κ-barrelled. 2
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