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Abstract

The cardinal topologies ΨX
α are introduced in the space of bounded

continuous functions on a completely regular Hausdorff space X. If X
is a discrete space it is shown that | X |≤ ℵα if and only if the unit ball
B1(X) in Cb(X) is ΨX

α -compact, and also, if and only if ΨX
α coincides

with the topology of pointwise convergence. Also we prove that if X
is discrete then β0 and the ΨX

α ’s can be compared always. We present
a characterization of real and Ulam measurable cardinals in terms of
the compactness of the unit ball with respect to some known strict
topologies.

1 Introduction

Wheeler in [11] characterized a discrete space X as the one for which the unit
ball B1(X) in Cb(X) is β0-compact, where β0 is the strict topology introduced
by Buck in [1]. Since on a discrete space the only significant property is its
cardinality, then it seems natural to ask whether there are topologies on
Cb(X) which characterizes the cardinality of X via the compactness of the
unit ball. We introduce a family of topologies ΨX

α on Cb(X) (that we call
cardinal topologies) and give a definite answer to that question. We will show
that the cardinal topologies we define are always comparable with the strict
topology β0.

There are some characterization of Real and Ulam measurable cardinals
in terms of properties of measure spaces (see [3], [5], [6] and [7]). We will

∗Supported by a CDCHT-ULA (Venezuela) grant # C-502-91. AMS SUBJECT CLAS-
SIFICATION INDEX (1985). Primary: 03E10, 54A25, 46E27. Secondary: 54D60. Key
words: strict topologies, cardinality

1



show that similar results can be proved looking at the compactness of the
unit ball in Cb(X) with respect to the strict topologies βp and βσ.

2 Preliminaries and notation

Let X be a completely regular Hausdorff space. B1(X) will denote the closed
unit ball, i.e. the set {f ∈ Cb(X) : ‖f‖ ≤ 1}, | X | will denote the cardinality
of X. For each Y ⊆ X with | Y |<| X |, let TY be the linear map TY :
Cb(X) → Cb(Y ) defined by TT (f) = f | Y , i.e. the restriction of f to Y .

If (E, τ) is a Hausdorff locally convex topological vector space and E ′ is
its topological dual then σ(E, E ′) and τ(E, E ′) denotes the weak and Mackey
topologies of the duality < E,E ′ >, respectively (see [8]). As it is customary,
any locally convex topology β on E such that σ(E, E ′) ≤ β ≤ τ(E, E ′) is
said to be consistent with the duality and in this case the dual of (E, β) is
E ′.

If X is a completely regular Hausdorff space then the topology β0 is the
finest locally convex topology on Cb(X) which coincides on the norm-bounded
sets with the compact open topology. The dual of (Cb(X), β0) is the space
Mt(X) of tight measures on X (see [12]). If X is locally compact, β0 coincide
with the strict topology of Buck [1], that is to say, β0 is determined by the
seminorms ‖ . ‖h

‖ f ‖h = Sup{| f(x)h(x) |: x ∈ X}
where h is a bounded real valued function defined on X, such that {x :|
h(x) |≥ ε} is relatively compact for every ε > 0, i.e. h is a bounded contin-
uous function vanishing at infinity.

When Cb(X) is given the supremum norm ‖ . ‖, we know (by the Alexan-
droff representation theorem) that its dual is given by the space M(X) of
all finite, finitely additive Baire measures on X (see e.g. [12]). βX denotes
the Stone-Cech compactification of X. For every set K ⊆ βX − X the
spaces Cb(X) and Cb(βX − K) are isomorphic. Then the topology β0 on
Cb(βX −K) induces a topology βK on Cb(X) which makes this two spaces
homeomorphic. If we consider on Cb(X) the inductive topology induced by
(Cb(X), βK) and the identity maps when K runs on a family of subsets of
βX −X, the topology obtained is often called a strict topology.

The strict topologies we are going to use in this paper are the following:
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(1) If K = {K ⊆ βX−X : K is compact } the strict topology obtained is
denoted by βτ and the dual of (Cb(X), βτ ) is known to be the space Mτ (X)
of all Baire τ -additive measure over X (see [5]).

(2) If K = {Z ⊆ βX−X : Z is a zero set } we get the topology βσ which
gives as dual the space Mσ(X) of all Baire σ-additive measure over X (see
[5]).

(3) If K = {D ⊆ βX −X : D is a distinguished set } the strict topology
we obtain is βp and the corresponding dual space is Mp(X) of all Baire perfect
measure on X (see [5]).

(4) Finally, if K = {C ⊆ βX −X : There is partition of unity (fα)α∈A for
X such that fα | C = 0 for all α ∈ A} we obtain the topology βµ which deals
as dual the space Mµ(X) of all µ-additive Baire measure over X (see [5]).

We will be using βz as a generic symbol for the various strict topologies
used in this paper and Mz(X) will denote its corresponding dual space. Let us
recall that on a discrete space X we have that Mt(X) = Mτ (X) = Mµ(X). If
τ and τ ∗ are topologies on some space, τ ≤ τ ∗ will denote that τ ∗ is finer than
τ . All topologies on Cb(X) use in this paper will be finer than the pointwise
topology, which will be denoted by tp. In fact we have that tp ≤ β0 ≤ βz.
Our set theoretic notation is standard as in [4].

3 Cardinal topologies and main result

Now we introduce the cardinal topologies on the space Cb(X).

Definition 3.1 The topology ΨX
0 on Cb(X) is defined as the projective topol-

ogy induced by the spaces (Cb(Y ), ‖ . ‖) and the restriction maps TY where
Y ⊆ X and | Y |<| X |, i.e. the smallest topology for which the maps TY ’s
are continuous.

By transfinite induction we define the topologies ΨX
α on Cb(X) for every

ordinal α. If α = β + 1, then ΨX
α is the projective topology induced by the

spaces (Cb(Y ), ΨY
β ) and the restriction maps TY , where Y ⊆ X and | Y |<|

X |. Finally, if α is a limit ordinal, then ΨX
α is the projective topology

induced by (Cb(Y ),
⋂

β<α ΨY
β ) and the restriction maps TY , where Y ⊆ X

and | Y |<| X |.

The main theorem is the following:
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Theorem 3.2 The following statements are equivalent:
(i) | X |≤ ℵα

(ii) ΨX
α = tp

(iii) B1(X) is ΨX
α -compact.

Before we give the proof we will show some lemmas. The following result
is well known and it is the prototype of our result.

Lemma 3.3 X is finite if and only if B1(X) is ‖ . ‖-compact. 2

Now we will show some basic facts about the topologies ΨX
α .

Lemma 3.4 (i) For every α, ΨX
α+1 ≤ ΨX

α . Moreover, if α and β are ordinals
with α < β then ΨX

β ≤ ΨX
α .

(ii) For every ordinal α, tp ≤ ΨX
α , where tp denotes the topology of point-

wise convergence.
(iii) (Cb(X), ΨX

α ) is a locally convex topological vector space.

Proof: (i) We want to show that id : (Cb(X), ΨX
α ) → (Cb(X), ΨX

α+1) is
continuous. So, let Y ⊆ X with | Y |<| X | and let us show that TY o id is
continuous. It sufficies to show that for every set Z ⊆ Y with | Z |<| Y | the
map

TZ o TY o id : (Cb(X), ΨX
α ) → (Cb(Z),

⋂

β<α

ΨZ
β )

is continuous. There are two cases to be considered: either α is a successor
ordinal or a limit ordinal. In both cases TZ o TY o id is continuous by the
definition of ΨX

α .
(ii) and (iii) follow easily by induction on α. 2

In what follows X is taken to be a discrete space.

Lemma 3.5 ΨX
α = tp if and only if

⋂
β<α ΨY

β = tp, for every Y ⊆ X with
| Y |<| X |.

Proof: Suppose ΨX
α = tp and let Y ⊆ X with | Y |<| X |. There are two

cases to consider: (a) If α = γ + 1, then we claim that ΨY
γ = tp. In fact,

by lemma 3.4 (ii) we know that tp ≤ ΨY
γ . So let (fη) be a net in Cb(Y )

that converges pointwise to zero (by lemma 3.4(iii) we need only to consider
such nets). Then let gη : X → < be defined as follows: if x ∈ X − Y put
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gη(x) = 0, otherwise put gη(x) = fη(x). Clearly gη → 0 pointwise, so gη → 0
in ΨX

α . Hence TY (gη) = fη → 0 in ΨY
γ . Thus ΨY

γ ≤ tp.
When α is a limit ordinal, a similar argument shows that, if (fη) is a

net in Cb(Y ) that converges pointwise to zero then fη → 0 in the topology⋂
β<α ΨY

β .
Conversely, if

⋂
β<α ΨY

β = tp for every Y ⊆ X with | Y |<| X |, then since
TY : (Cb(X), tp) → (Cb(Y ), tp) is continuous it follows that ΨX

α = tp. 2

Now we come to define a family of subsets of Cb(X) which will be of
particular importance when proving the main theorem and also when we try
to compare the cardinals topologies ΨX

α with the strict topology β0.

Definition 3.6 Let Y ⊆ X with | Y |<| X | and ε > 0 we define N(X, Y, ε)
as the set

N(X,Y, ε) = {f ∈ Cb(X) : Sup{| f(x) |: x ∈ Y } < ε}

The next lemma says that convergence in ΨX
α implies uniform convergence

over subsets of X of cardinality smaller than certain cardinal less than | X |.

Lemma 3.7 If | X |= ℵλ and Z ⊆ X with | Z |<| X | and | Z |= ℵβ and
β + α < λ, then for every ε > 0, N(X,Z, ε) ∈ ΨX

α .

Proof: The proof goes by induction on α.
(i) For α = 0. Let Y ⊆ X with | Y |<| X | and ε > 0, then

N(X, Y, ε) = T−1
Y (Baε(Y )), where Baε(Y )) is the open ball of radius ε. Since

TY : (Cb(X), ΨX
0 ) → (Cb(Y ), ‖ . ‖) is continuous, then we have N(X,Y, ε) ∈

ΨX
0 .

(ii) Suppose α = δ+1. Let Z ⊆ X such that | Z |= ℵβ and β +δ+1 < λ.
Take Y such that Z ⊆ Y ⊆ X and | Y |= ℵβ+δ+1. Then | Z |<| Y | and
N(X, Z, ε) = T−1

Y (N(Y, Z, ε)). So, it sufficies to show that N(Y, Z, ε) ∈ ΨY
δ .

But this follows from the inductive hypothesis, because | Y |= ℵβ+δ+1, | Z |=
ℵβ and β + δ < β + δ + 1.

(iii) A similar argument works for the case α a limit ordinal. 2

The following corollary will be used in the proof of the main theorem.

Corollary 3.8 Let | X |= ℵλ with λ > 0 and α < λ then for every countable
subset Z ⊆ X we have N(X, Z, ε) ∈ ΨX

α .
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Proof: Use the previous lemma for β = 0. 2

Now, we present the proof of the main theorem.
Proof of 3.2: (i) ⇒ (ii). By induction on α. (1) For α = 0, take Y ⊆ X
such that | Y |<| X |, then Y is finite and the norm and the pointwise
topology coincide on Cb(Y ). Hence ΨX

0 ≤ tp and from lemma 3.4(ii) we
obtain ΨX

0 = tp.
(2) Suppose α = δ + 1 and let Y ⊆ X with | Y |<| X |, then | Y |≤ ℵα.

By the inductive hypothesis we have that ΨY
δ = tp thus ΨX

α ≤ tp and by
lemma 3.4(ii) we get that ΨX

α = tp.
(3) Suppose α is a limit ordinal. If Y ⊆ X with | Y |<| X | then there

is η < α such that | Y |≤ ℵη. Then by the inductive hypothesis we have
ΨY

δ = tp for every δ > η. Therefore
⋂

η<α ΨY
η = tp and by lemma 3.5 we

obtain ΨX
α = tp.

(ii) ⇒ (iii). If ΨX
α = tp then B1(X) is ΨX

α -compact by the Tychonoff theo-
rem.
(iii) ⇒ (i). The proof also goes by induction on α. (1) For α = 0. Take
Y ⊆ X with | Y |<| X |, then B1(Y ) = TY (B1(X)). Hence B1(Y ) is
‖ . ‖-compact, so by lemma 3.3 Y is finite. Therefore | X |≤ ℵ0.

(2) If α = δ + 1 , let Y ⊆ X with | Y |<| X |. As before B1(Y ) is ΨY
δ -

compact and by the inductive hypothesis we know that | Y |≤ ℵδ, therefore
| X |≤ ℵδ+1.

(3) Suppose α = λ is a limit ordinal and suppose towards a contradiction
that there is Y ⊆ X with | Y |<| X | and | Y |= ℵλ. As before we know that
B1(Y ) is

⋂
η<λ ΨY

η -compact. We will show that this is not possible.
By corollary 3.8 we know that

⋂
η<λ ΨY

η implies uniform convergence over
countable subsets of Y . We will define a sequence on B1(Y ) such that for
some countable set Z every subsequence does not converge uniformly on Z.

Let Z ⊆ Y be a countable set. Let {xn} be an enumeration of Z and
define for every natural number n a function fn ∈ B1(Y ) by

fn(x) =

{
1 , if x = xn.
0 , otherwise.

Clearly fn → 0 pointwise. Since Sup{| fn(x) |: x ∈ Z} = 1, it follows that
fn 6∈ N(Y, Z, 1/2) for every n. 2

6



Remark: If < is given the discrete topology, then the continuum Hypothesis
can be rephrased as follows: CH holds if and only if the unit ball in Cb(<) is
Ψ<

1 -compact.
As we said in the introduction Wheeler has characterized the discrete

spaces as follows:

Theorem 3.9 (Wheeler [11]) Let X be a completely regular space, then X
is discrete if and only if B1(X) is β0-compact. 2

It seems natural to determine the relationship between β0 and the cardi-
nal topologies we have defined. When X is discrete it is easy to prove the
following:

Lemma 3.10 Let X be a discrete space and (fα) be a net on Cb(X). Then
fα → 0 in β0 if and only if for every sequence (xn) ∈ X and every sequence
(rn) ∈ < which converges to zero it holds that Sup{| rnfα(x) |: n ≥ 0} → 0

2

As a corollary we get

Lemma 3.11 Let X be a discrete space and τ a topology on Cb(X) such that
for every net (fα) ∈ Cb(X) with (fα)

τ→ 0, it holds that for every countable

Z ⊆ X fα | Z ‖ . ‖→ 0. Then β0 ≤ τ 2

Now we have the following comparison theorem

Theorem 3.12 Let X be a discrete space. For every α one and only one of
the following holds:

(a) tp = ΨX
α

(b) β0 < ΨX
α

In particular β0 and ΨX
α are always comparable.

Proof: If | X |≤ ℵα then by theorem 3.2 we have ΨX
α = tp and (a) holds.

On the other hand, if | X |= ℵβ > ℵα, then by lemma 3.8 the hypothesis of
the previous lemma are satisfied, hence β0 ≤ ΨX

α . From 3.9 we get β0 < ΨX
α :

otherwise B1(X) would be ΨX
α -compact and therefore by theorem 3.2 | X |≤

ℵα which is a contradiction. 2
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4 Real and Ulam Measurable Cardinals

Following the general pattern of the main theorem, we present two results
which characterizes Real and Ulam measurable cardinals in terms of the
compactness of the unit ball in Cb(X). The next lemmas will be used toward
that purpose. Let us recall first that a cardinal κ is called Real measurable
if there is a non-trivial σ-additive positive measure defined on the power set
of κ assigning value zero to every singleton set, if the measure is two-valued
then κ is called Ulam measurable.

Lemma 4.1 (Koumoullis [6]) Let X be a metric space, then X is real com-
pact if and only if Mp(X) = Mt(X). 2

A subset Y of a topological space X is said to be d-discrete if there is a
continuous pseudometric on X and ε > 0 such that d(x, y) > ε for every x
and y in X. A topological space X is said to be a D-space if whenever Y is
a d-discrete subspace then Y has a non-real measurable cardinality. If X is
discrete then it is a D-space iff | X | is not real measurable.

Lemma 4.2 (Sentilles and Wheeler [7], Haydon [3]) Let X be a completely
regular Hausdorff space, then X is a D-space if and only if Mσ(X) = Mµ(X).

The next theorem is the general fact behind the results of this section.

Theorem 4.3 Let X be a discrete space and βz a locally convex topology on
Cb(X). Then B1(X) is σ(Cb(X), Mz(X))-compact if and only if B1(X) is
β-compact for any topology β consistent with the duality < Cb(X),Mz(X) >.

Proof: Since σ(Cb(X),Mz(X)) ≤ β, it follows that the β-compactness of
B1(X) implies the σ(Cb(X),Mz(X))-compactness of B1(X). Conversely,
if B1(X) is σ(Cb(X),Mz(X))-compact, since tp ≤ σ(Cb(X),Mz(X)) then
σ(Cb(X),Mz(X)) coincides with the pointwise topology on the uniformily
bounded sets. Therefore σ(Cb(X), Mz(X)) ≤ β0 since β0 is the finest locally
convex topology with that property.

This last inequality implies that τ(Cb(X),Mz(X)) ≤ β0, for β0 is the
Mackey topology of the duality < Cb(X), Mt(X) > (see [8]). Therefore, from
3.9 we get that B1(X) is τ(Cb(X), Mz(X))-compact and the result follows.

2
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Corollary 4.4 Let X be a discrete space. | X | is non-Ulam measurable if
and only if B1(X) is βp-compact.

Proof: Since X is discrete, then X is real compact if and only if | X | is non-
Ulam measurable (see [2]). Then by lemma 4.1, it is equivalent to saying that
Mt(X) = Mp(X). Therefore on Cb(X) we have that σ(Cb(X),Mp(X)) =
σ(Cb(X),Mt(X)) and since σ(Cb(X),Mp(X)) ≤ β0 then we obtain that
B1(X) is σ(Cb(X),Mp(X))-compact. Hence by 4.3 it is βp-compact. Con-
versely, if B1(X) is βp-compact then βp = β0 which implies that Mp(X) =
Mt(X). 2

Remark: The previous result was proved by the second author in a different
way (see [9], [10]) and was the original motivation for starting this research.

Corollary 4.5 Let X be a discrete space. Then | X | is non-real measurable
if and only if B1(X) is βσ-compact.

Proof: Since X is discrete, then | X | is non-real measurable if and only
if X is a D-space. Therefore by lemma 4.2 it is equivalent to say that
Mσ(X) = Mµ(X). But on discrete spaces, Mt(X) = Mτ (X) = Mµ(X),
then by a similar argument as in the proof of corollary 4.4 we get that it is
equivalent to say that B1(X) is βσ-compact. 2

Finally we present a corollary that includes a well known result of Ulam.

Corollary 4.6 The following are equivalent:
(1) Real measurable and Ulam measurable cardinals are the same.
(2) For every discrete space X with | X | non-Ulam measurable we have

that on Cb(X) βp = βσ.
(3) For every discrete space X with | X | non-Ulam measurable we have

that Mp(X) = Mσ(X).
(4) The continuum is not Real measurable.

Proof: That (1) is equivalent to (4) is a well known result of Ulam. That
(2) and (3) are equivalent follows from 4.1 and 4.2.

It is clear from corollary 4.4 and corollary 4.5 that if βp = βσ then Real
measurability and Ulam measurability are equivalent. Conversely, suppose
that Real measurability and Ulam measurability are equivalent. We will show
that βp = βσ = β0 on Cb(X) for every X with | X | non-Ulam measurable.
In this case B1(X) is both βp and βσ-compact. Since β0 is the finest locally
convex topology that makes B1(X) compact, we get that βp and βσ are ≤
than β0. But this implies that β0 = βp = βσ. 2
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