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Abstract. Using mathematical morphology on formulas introduced re-
cently by Bloch and Lang (Proceedings of IPMU’2000) we define two
new explanatory relations. Their logical behavior is analyzed. The re-
sults show that these natural ways for defining preferred explanations
are robust because these relations satisfy almost all postulates of ex-
planatory reasoning introduced by Pino-Pérez and Uzcátegui (Artifi-
cial Intelligence, 111:131–169, 1999). Actually, the first explanatory re-
lation is Explanatory-Rational. The second one is not even Explanatory-
Cumulative but it satisfies new weak postulates.

1 Introduction

The process of inferring the best explanation of an observation is usually known
as abduction. In the logic-based approach to abduction, the background theory
is given by a consistent set of formulas Σ. The notion of a possible explanation
is defined by saying that a formula γ is an explanation of α if Σ ∪ {γ} � α. An
explanatory relation is a binary relation � where the intended meaning of α�γ
is “γ is a preferred explanation of α”.

In [4], a set of postulates that should be satisfied by preferred explanatory
relations is proposed and discussed.

The aim of this work is at least threefold. First, to propose very natural ex-
planatory relations that in some cases are computationally practicable. Second,
to examine the adequacy of logical postulates proposed in [4] and third, the
discovery of new logical properties for the explanatory reasoning.

In order to accomplish our goals we propose concrete definitions of preferred
explanations based on mathematical morphology. The starting point is a very
general setting: a relation between worlds that in most of the cases can be viewed
as a graph connecting worlds.

Mathematical morphology operators on logical formulas have been intro-
duced recently in [1]. These ideas allow us to define the most central part of a
formula, according to the fundamental principles of this theory (see e.g. [6, 7]).
Using this notion we define two explanatory relations. The first one, ��ne , has



the following intended meaning: γ is a preferred explanation of α if γ is a formula
entailing the most central part of the conjunction of Σ with α. For the second
one, ��c , we define a sequence which approximates the most central part of Σ;
then we say that γ is a preferred explanation of α if γ implies the conjunction
of α with the closest element of the sequence which is consistent with α.

2 Preliminaries

Let us recall here the basic principles of morpho-logics. Let PS be a finite set of
propositional symbols. The language is generated by PS and the usual connec-
tives. Well-formed formulas will be denoted by Greek letters ϕ, ψ... Worlds will
be denoted by ω, ω′... and the set of all worlds by Ω. Mod(ϕ) = {ω ∈ Ω | ω |= ϕ}
is the set of all worlds where ϕ is satisfied. Dilation and erosion (the two funda-
mental operations of mathematical morphology [6]) of a formula ϕ by a struc-
turing element B have been defined in [1] as follows:

Mod(DB(ϕ)) = {ω ∈ Ω | B(ω) ∩ Mod(ϕ) �= ∅}, (1)

Mod(EB(ϕ)) = {ω ∈ Ω | B(ω) |= ϕ}. (2)

In these equations, the structuring element B represents a relationship be-
tween worlds, i.e. ω′ ∈ B(ω) iff ω′ satisfies some relationship with ω. The con-
dition in Equation 1 expresses that the set of worlds in relation to ω should be
consistent with ϕ, i.e.: ∃ω′ ∈ B(ω), ω′ |= ϕ. The condition in Equation 2 is
stronger and expresses that ϕ should be satisfied in all worlds which stand in
relation to ω .

2.1 Properties

The properties of these basic operations and of other derived operations are de-
tailed in [1]. The fundamental properties of erosion, that will be used intensively
in the following, can be summarized as:

– Independence of the syntax (follows directly from the definition through the
models).

– Monotonicity: erosion is increasing with respect to ϕ, i.e.

ϕ � ψ ⇒ EB(ϕ) � EB(ψ), (3)

for any structuring element B. Erosion is decreasing with respect to the
structuring element, i.e.

∀ω ∈ Ω, Bω ⊂ B′
ω ⇒ EB′(ϕ) � EB(ϕ). (4)

– Anti-extensivity1: if B is derived from a reflexive relation, i.e. such that
∀ω ∈ Ω, ω ∈ Bω, the erosion is anti-extensive, i.e.

EB(ϕ) � ϕ. (5)
1 In set theoretical mathematical morphology an operation Ψ is said anti-extensive iff

for any set X, Ψ(X) ⊂ X.



We will only deal with such cases in what follows. We will also consider
symmetrical relations, i.e. ∀(ω, ω′) ∈ Ω2, ω ∈ Bω′ ⇔ ω′ ∈ Bω.

– Iteration: Erosion satisfies an iteration property, which is expressed for sym-
metrical structuring elements as:

EB[EB′(ϕ)] = EDB(B′)(ϕ). (6)

For instance if B = B′, and if we denote by En the erosion by B dilated
(n−1) times by itself (this is typically the case for distance based operations
where the structuring element is a ball of distance, as will be seen in Section
2.2), we have:

En+n′
(ϕ) = En′

[En(ϕ)] = En[En′
(ϕ)], (7)

where n, n′ denote the size of the erosion (i.e. the “radius” of the structuring
element).

– Commutativity with conjunction:

EB(∧m
i=1ϕi) = ∧m

i=1EB(ϕi). (8)

– Erosion of a disjunction: erosion and disjunction do not commute, but we
have a partial relation:

EB(ϕ) ∨ EB(ψ) � EB(ϕ ∨ ψ). (9)

2.2 Illustrative example

In all what follows, we will consider as an illustrative example the case where the
structuring element is defined as a ball of the Hamming distance between worlds
dH , where dH(ω, ω′) is the number of propositional symbols that are instantiated
differently in both worlds. Then dilation and erosion of size n are defined from
Equations 1 and 2 by using the distance balls of radius n as structuring elements:

Mod(Dn(ϕ)) = {ω ∈ Ω | ∃ω′ ∈ Ω, ω′ |= ϕ and dH(ω, ω′) ≤ n}, (10)

Mod(En(ϕ)) = {ω ∈ Ω | ∀ω′ ∈ Ω, dH(ω, ω′) ≤ n ⇒ ω′ |= ϕ}. (11)

We make use of a graph representation of worlds, where each node represents
a world and a link represents an elementary connection between two worlds, i.e.
being at distance 1 from each other. A ball of radius 1 centered at ω is constituted
by ω and the extremities of the arcs originating in ω. This allows for an easy
visualization of the effects of transformations.

Let us consider an example with three propositional symbols a, b, c. The
possible worlds are represented in Figure 1.

Let us consider ϕ = ¬a ∧ b ∧ c. Then we have:

D1(ϕ) = (¬a ∧ b) ∨ (¬a ∧ c) ∨ (b ∧ c),

D2(ϕ) = ¬a ∨ b ∨ c = ¬(a ∧ ¬b ∧ ¬c).
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Fig. 1. Graph representation of possible worlds with 3 symbols and an example of ϕ
and two successive dilations. An arc between two nodes means that the corresponding
nodes are at a distance to each other equal to 1.

These results are illustrated in Figure 1. Notice that in this kind of figures the
formula defined by a border is the disjunction of the formulas in the interior of
the border.

Erosion can be computed very easily from any conjunctive normal form.
Indeed, if ϕ is a disjunction of literals, i.e., ϕ = l1 ∨ l2 ∨ ... ∨ ln, then we have:

E1(ϕ) = ∧n
j=1(∨i�=j li). (12)

This property, along with the commutativity of erosion with conjunction, allows
to compute easily the erosion of any formula expressed as a CNF.

3 Explanatory relations based on erosion

In this section we define precisely the concept of most central part of a formula
with the help of the erosion operator. Then, based on this concept, we define
two explanatory relations.

3.1 Last non-empty erosion

We denote by E�(ϕ) the last erosion of ϕ, i.e. the erosion of ϕ of the largest
possible size such that the set of worlds where E�(ϕ) is satisfied is not empty:

E�(ϕ) = En(ϕ) ⇔
{

En(ϕ) �� ⊥,
and ∀m > n, Em(ϕ) � ⊥.

(13)

By convention, we set E0(ϕ) = ϕ. Note that last erosion is different from the
classical notion of ultimate erosion in mathematical morphology2. We define the
most central part of a formula as its last erosion. This concept is similar to one
used in preference modeling in [3].
2 The ultimate eorsion is obtained by successive erosions, and is defined as the union

of the connected components that disappear from one step to the other.
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Fig. 2. An example of ϕ and its last erosion.

Let us consider the illustrative example of Section 2.2. Let us take (see Figure
2):

ϕ = (a ∨ ¬b ∨ ¬c) ∧ (a ∨ b ∨ c).

Using Equations 8 and 12, we derive:

E1(ϕ) = (a∨¬b)∧(a∨¬c)∧(¬b∨¬c)∧(a∨b)∧(a∨c)∧(b∨c) = (a∧¬b∧c)∨(a∧b∧¬c).

Since E2(ϕ) �Σ ⊥, we have E1(ϕ) = E�(ϕ).
A preferred explanation of α is then defined from this operator applied on

Σ ∧ α, more precisely:

α ��ne γ
def⇔ γ � E�(Σ ∧ α). (14)

The idea of taking the last erosion of Σ ∧ α can be interpreted in terms of
robustness. An erosion of size n of a formula is a formula that can be changed
while still proving the initial formula. If at most n symbols are changed in En(ϕ)
then ϕ is always satisfied. Here, considering E�(Σ∧α) means that we are looking
at the most reduced formula that satisfies Σ∧α, i.e. the one that can be changed
the most while satisfying Σ ∧ α.

Let us take Σ ∧α = ϕ where ϕ is defined as in the previous example (Figure
2). For Definition 14, if we denote PE��ne(α) = {γ : α ��ne γ} (the preferred
explanations of α), we have:

PE��ne(α) = {(a ∧ ¬b ∧ c), (a ∧ b ∧ ¬c), (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c)}.

One potential problem with last erosion is that it does not represent all
“parts” of a formula. Let us take for instance: Σ ∧ α = (a ∨ b) ∧ (a ∨ c) ∧ (b∨ c)
and Σ ∧ β = ((a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)) ∨ (¬a ∧ ¬b ∧ ¬c). Then we have:
E�(Σ ∧ α) = E�(Σ ∧ β) = a ∧ b ∧ c and PE��ne(α) = PE��ne(β). The set of
worlds satisfying Σ∧β is disconnected, and the connected component containing
only (¬a∧¬b∧¬c) is not represented in the explanations of β. If this is considered
to be a problem, it can be avoided by considering the ultimate erosion instead
of the last erosion.



3.2 Last consistent erosion

Another idea consists in eroding Σ as much as possible but still under the con-
straint that it remains consistent with α:

E�c(Σ, α) = En(Σ) where n = max{k : Ek(Σ) ∧ α �� ⊥}. (15)

¿From this operator, we define the following explanatory relation:

α ��c γ
def⇔ γ � E�c(Σ, α) ∧ α, (16)

This definition has a different interpretation. Here we consider erosion of Σ
alone, which means that we are looking at the formulas that satisfy α while
being the most in the theory, i.e. that can be changed while remaining in the
theory (but not necessary satisfying α after the changes).
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Fig. 3. An example of last consistent erosion.

Let us come back to the illustrative example, and take (see Figure 3): Σ =
a ∨ b ∨ c, and α = (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c). We have: E1(Σ) =
(a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c), E2(Σ) = a ∧ b ∧ c, and finally E3(Σ) � ⊥. Therefore:

E1(Σ) ∧ α = (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c)

and E2(Σ) ∧ α � ⊥. Therefore the value of n in Definition 16 is equal to 1. For
Definition 16, γ can be anything in the set

PE��c(α) = {(a ∧ ¬b ∧ c), (a ∧ b ∧ ¬c), (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c)}.

There is an alternative way of looking at ��c which will be particularly useful
in the next section. The iteration of the erosion operator provides a method of
linearly pre-ordering the models of Σ. Consider the following relation among
models.

ω ≤ ω′ def⇔ ∀k (ω′ ∈ Ek(Σ) → ω ∈ Ek(Σ)).

It is clear that ≤ is a total pre-order and it is not difficult to verify that the
following holds:

α ��c γ ⇐⇒ mod(Σ ∪ {γ}) ⊆ min(mod(Σ ∪ {α}),≤). (17)



4 Rationality postulates

In this section we study the properties of the two proposed explanatory relations
according to the postulates introduced in [4]. The basic rationality postulates
for explanatory relations are the following (we use the notation α �Σ β instead
of Σ ∪ {α}):

LLEΣ:
�Σ α ↔ α′ , α � γ

α′ � γ

RLEΣ:
�Σ γ ↔ γ′ ; α � γ

α � γ′

E-CM:
α � γ ; γ �Σ β

(α ∧ β) � γ

E-C-Cut:
(α ∧ β) � γ , ∀δ [α � δ ⇒ δ �Σ β ]

α � γ

RA:
α � γ ; γ′ �Σ γ ; γ′ ��Σ ⊥

α � γ′

E-RW:
α � γ ; α � δ

α � (γ ∨ δ)

LOR:
α � γ ; β � γ

(α ∨ β) � γ

E-DR:
α � γ ; β � δ

(α ∨ β) � γ or (α ∨ β) � δ

E-R-Cut:
(α ∧ β) � γ ; ∃δ [α � δ & δ �Σ β]

α � γ

E-Reflexivity :
α � γ

γ � γ

E-ConΣ : ��Σ ¬α iff there is γ such that α � γ

The intended meaning and motivation for these postulates can be found in
[4].

It is immediate from the definition of ��c and ��ne that LLEΣ, RLEΣ, RA,
E-RW, and E-ConΣ are satisfied. Moreover, from the representation of ��c given
by equation 17 and some general results of [4] we get the following proposition.

Proposition 1. ��c is a causal E-rational explanatory relation. In particular,
it satisfies LLEΣ, RLEΣ, RA, E-RW, E-ConΣ, E-CM and E-R-Cut.



¿From the results in [4] we also know that by being E-rational, ��c also
satisfies E-C-Cut, E-Reflexivity, E-DR and LOR. However, the situation for ��ne

is quite different since, as we will see below, the basic postulates E-CM and
E-C-Cut do not hold.

We will provide now a counter-example of E-CM for ��ne . Let us consider
our illustrative example (see Section 2.2), and take the following formulas (see
Figure 4):

Σ ∧ α = ¬a ∨ b ∨ c,

Σ∧α∧β = ¬[(a∧b∧c)∨(a∧¬b∧c)∨(a∧¬b∧¬c)] = (¬a∨¬b∨¬c)∧(¬a∨b∨¬c)∧(¬a∨b∨c).
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Fig. 4. A counter-example for E-CM.

Using the computation formulas for erosion of a formula under CNF (Equa-
tions 8 and 12), we get:

E1(Σ ∧ α) = (¬a ∨ b) ∧ (¬a ∨ c) ∧ (b ∨ c),

E2(Σ ∧ α) = ¬a ∧ b ∧ c = E�(Σ ∧ α).

A unique world satisfies this formula, and therefore no further erosion can be
performed (E3(Σ ∧ α) �Σ ⊥). Similarly, we have:

E1(Σ ∧ α ∧ β) = ¬a ∧ b ∧ ¬c = E�(Σ ∧ α ∧ β)

which is the last non-empty erosion. It follows that α��ne(¬a ∧ b ∧ c) but clearly
¬a ∧ b ∧ c is not a preferred explanation of α ∧ β.

Now we will present a counterexample of E-C-Cut for ��ne . Consider

Σ ∧ α = a ∨ b ∨ c,



Σ ∧ β = a ∨ ¬b ∨ ¬c.

We have then:
E1(Σ ∧ α) = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c),

E2(Σ ∧ α) = a ∧ b ∧ c = E�(Σ ∧ α),

E1(Σ ∧ β) = (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬b ∨ ¬c),

E2(Σ ∧ β) = a ∧ ¬b ∧ ¬c = E�(Σ ∧ β),

Σ ∧ α ∧ β = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c),

E(Σ ∧ α ∧ β) = (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) = E�(Σ ∧ α ∧ β).

Let us now put γ = (a∧ b∧¬c)∨ (a∧¬b∧ c), then (α ∧ β) ��ne γ. Then it is
clear that α ���neγ. On the other hand, we have that α ��ne δ iff δ ≡ a ∧ b ∧ c.
Thus if α ��ne δ, then δ �Σ β.

We introduce a weaker form of these postulates:

E-W-CM:
α � γ ; β � γ

(α ∧ β) � γ

E-W-C-Cut:
(α ∧ β) � γ , ∀δ [α � δ ⇒ β � δ ]

α � γ

These new postulates might look even more natural than the original version
E-CM and E-C-Cut. However, ��ne is the first natural non trivial example
known in the literature that satisfies E-W-CM and E-W-C-Cut but neither E-CM
nor E-C-Cut3. There is a natural weakening of E-R-Cut which can be considered
but we do not have any example for it in which the preferred explanations are
not unique.

The next proposition collects all the facts we know about ��ne .

Proposition 2. The explanatory relation ��ne satisfies LLEΣ, RLEΣ, RA, E-RW,
E-W-CM, E-W-C-Cut, E-Reflexivity and E-ConΣ.

Proof: (i) E-W-CM. Let us assume that γ �Σ E�(Σ ∧ α) with E�(Σ ∧ α) =
En(Σ ∧ α) and γ �Σ E�(Σ ∧ β) with E�(Σ ∧ β) = Em(Σ ∧ β). Let us assume
that the last non-empty erosion of Σ ∧ α ∧ β is obtained for k. We have, due to
Equation 8: E�(Σ ∧ α ∧ β) = Ek(Σ ∧ α ∧ β) = Ek(Σ ∧ α) ∧ Ek(Σ ∧ β).

We necessarily have k ≤ n and k ≤ m since otherwise either Ek(Σ ∧ α) or
Ek(Σ∧β) would be inconsistent. This implies, due to the monotonicity property
of erosion (Equation 4) that: �Σ En(Σ∧α) → Ek(Σ ∧α) and �Σ Em(Σ∧β) →
Ek(Σ ∧ β) from which we derive:

�Σ E�(Σ ∧ α) ∧ E�(Σ ∧ β) → E�(Σ ∧ α ∧ β).
3 E-W-CM in fact was already considered by Flach [2] but he did not provide any

example for it not satisfying already the stronger version E-CM



This interesting general result proves that γ �Σ E�(Σ ∧ α ∧ β).

(ii) E-W-C-Cut. Let γ �Σ E�(Σ ∧ α ∧ β) = En(Σ ∧ α ∧ β). For all δ such that
α � δ, δ �Σ E�(Σ ∧ α) = Em(Σ ∧ α). Since Σ ∧ α ∧ β �Σ Σ ∧ α we have:

En(Σ ∧ α ∧ β) ��Σ ⊥ ⇒ En(Σ ∧ α) ��Σ ⊥.

Therefore n ≤ m.
Let us first assume that n < m. For all δ such that α � δ, we have β � δ,

i.e. δ �Σ E�(Σ ∧ β) = Ek(Σ ∧ β). For the same reason as before, we necessarily
have n ≤ k. Since the set of preferred explanations of α is included in the one
of β, we have: Em(Σ ∧ α) �Σ Ek(Σ ∧ β). Since m > n, we have:

Em(Σ ∧ α ∧ β) = Em(Σ ∧ α) ∧ Em(Σ ∧ β) �Σ ⊥.

Let us now assume n < k. Then similarly, we have:

Ek(Σ ∧ α ∧ β) = Ek(Σ ∧ α) ∧ Ek(Σ ∧ β) �Σ ⊥.

If k > m, we have: Em(Σ ∧ β) ��Σ ⊥, and, due to Equation 4: Ek(Σ ∧ β) �Σ

Em(Σ ∧β). Therefore: Em(Σ ∧α) �Σ Ek(Σ ∧β) �Σ Em(Σ ∧β), which implies:
Em(Σ ∧ α ∧ β) ��Σ ⊥ which leads to a contradiction.

Similarly, if k < m, we have: Ek(Σ∧α) ��Σ ⊥, and Em(Σ∧α) �Σ Ek(Σ∧α).
Therefore, since we had Em(Σ ∧ α) �Σ Ek(Σ ∧ β), we have:

Ek(Σ ∧ α ∧ β) = Ek(Σ ∧ α) ∧ Ek(Σ ∧ β) ��Σ ⊥

which also leads to a contradiction. From these two contradictions, we can
conclude that necessarily k = m. Then Em(Σ ∧ α) �Σ Ek(Σ ∧ β) becomes
Em(Σ ∧ α) �Σ Em(Σ ∧ β) and therefore we have:

Em(Σ ∧ α ∧ β) = Em(Σ ∧ α) ��Σ ⊥

which is in contradiction with n < m. Therefore we also have n = m.
Finally the only possibility is to have k = n = m. In this case, we have:

En(Σ ∧ α ∧ β) �Σ En(Σ ∧ α) = Em(Σ ∧ α) �Σ Ek(Σ ∧ β),

and therefore:
γ �Σ En(Σ ∧ α ∧ β) ⇒ γ �Σ En(Σ ∧ α),

i.e. α � γ.

(iii) E-Reflexivity. The definition of ��ne is based on the notion of largest possible
erosion, and therefore no further erosion can be performed. More precisely, let
α ��ne γ and suppose that the last non empty erosion of Σ ∧ α is En(Σ ∧ α).
Then we have:

E0(Σ ∧ γ) = Σ ∧ γ = γ



and
E1(Σ ∧ γ) = En+1(Σ ∧ α)

which is inconsistent. Therefore γ ��ne γ. ��

We end this section by considering the postulate LOR. We will give a counter-
example of it for ��ne . Consider

Σ ∧ α = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)

and
Σ ∧ β = (¬a ∨ ¬b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ c).

We have:

E1(Σ ∧ α) = (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) = E�(Σ ∧ α),

E1(Σ ∧ β) = a ∧ ¬b ∧ c = E�(Σ ∧ α),

Σ ∧ (α ∨ β) = a ∨ b ∨ c,

E1(Σ ∧ (α ∨ β)) = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c),

E2(Σ ∧ (α ∨ β)) = a ∧ b ∧ c = E�(Σ ∧ (α ∨ β)).

Let γ = a ∧ ¬b ∧ c. Then α ��ne γ and β ��ne γ, but (α ∨ β) ���neγ.
Since E-DR implies LOR [4], then we already know that E-DR fails for ��ne .

Table 1 summarizes the results we obtained so far.

Property ��ne ��c

(Equation 14) (Equation 16)

LLE
√ √

RLE
√ √

E-CM × √

E-W-CM
√ √

E-C-Cut × √

E-R-Cut × √

E-W-C-Cut
√ √

E-Reflexivity
√ √

E-RW
√ √

RA
√ √

LOR × √

E-DR × √

E-ConΣ

√ √

Table 1. Properties of the proposed relations.



5 Conclusion

We have proposed in this paper two definitions of explanatory relations based
on morphological erosion. Several other definitions could be developed based
on mathematical morphology. For instance if we replace � by = in Equations
14 and 16, we come up with definitions that have slightly different properties
(in particular RA is not satisfied). More importantly, it is natural to use other
morphological operators instead of erosion, for example the ultimate erosion.

It is important to observe that erosion provides a geometrical way to totally
pre-order the models of a formula and this is the underlying idea behind the
definition of ��c .

Another interesting feature of this work is that it reveals new properties as
E-W-C-Cut and new aspects of E-W-CM. These two postulates are very natural;
they are the weakening of the well known E-CM and E-C-Cut. But until now the
methods used to define explanatory relations always yield relations satisfying
the strongest ones. So the method presented here to construct ��ne is indeed
a new way of approaching the problem of selecting preferred explanations of an
observation.
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groupe. In RFIA 2000, volume III, pages 267–276, Paris, France, February 2000.
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