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Abstract

We present a generalization of the following result of Y. Benyamini: There is a continuous
function f : R→ R such that for each (xn)n∈Z ∈ [0, 1]Z, there is t ∈ R such that xn = f(t + n)
for all n ∈ Z.
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1 Introduction

As an example of an universal property of the Cantor set, Y. Benyamini has shown [1] that there
is a continuous function f : R→ R such that for any sequence (xn)n∈Z ∈ [0, 1]Z, there is t ∈ R such
that xn = f(t + n) for all n ∈ Z. Such function f is said to interpolate all sequences in [0, 1]Z. He
also showed that it is not possible to interpolate all bounded Z-sequences with a single continuous
function (in fact, it is not possible to interpolate all constant Z-sequences). In contrast with the
last result, he showed that it is possible to interpolate all bounded sequences in RN. In this note
we will continue this line of investigation and present some extensions of those results.

In order to state our results we need to introduce some notations and recall some notions. An
ideal over a set X is a collection I of subsets of X such that: (i) If A ∈ I and B ⊆ A, then B ∈ I;
(ii) If A,B ∈ I, then A ∪ B ∈ I. An ideal is said to be a σ-ideal, if it is closed under countable
unions. Given a function f : R→ R and a subset M ⊆ Z, we define a set of M -sequences as follows:

SM (f) = {(f(t + n))n∈M : t ∈ R}.

When M = Z we will just write S(f) instead of SZ(f). We say that a set S ⊆ RM is interpolated
by f if S ⊆ SM (f). Consider the following family

C(M) = {S ⊆ RM : S ⊆ SM (f) for some continuous f : R→ R}.

For each M ⊆ Z, we define

h(M) = sup{b− a : a, b ∈ Z and M ∩ [a, b] = ∅}.
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Notice that h(M) measures the size of the “largest hole” of M inside Z.
Our main result is the following:

Theorem 1.1. Let M ⊆ Z.

(i) C(M) is an ideal of subsets of RM containing every compact subset of RM .

(ii) C(M) is the σ-ideal generated by the compact subsets of RM iff h(M) = +∞.

That every compact set belongs to C(M) was essentially proved in [1] and it is a consequence of
the Alexandroff-Hausdorff’s theorem which says that every compact metric space is the continuous
image of the Cantor set. As we said before, in [1] was also shown that the collection of bounded
sequences in RN (i.e. the set

⋃
n∈N[−n, n]N) belongs to C(N). This follows from 1.1(ii) as h(N) =

+∞.
The next theorem shows another extension of Benyamini’s result.

Theorem 1.2. (i) There is a continuous function f : R \Q→ R such that S(f) = RZ.
(ii) There is a Baire class-1 function f : R→ R such that S(f) = RZ.

2 Proofs of the main results

For a given K ⊆ RZ and m ∈ Z, we define

K + m = {(xn+m)n∈Z : (xn)n∈Z ∈ K}.

Part of the following result is a convenient restatement of a result from [1].

Lemma 2.1. For every f : R → R continuous there is a compact K ⊆ RZ such that S(f) =⋃
n∈ZK +n. Conversely, for every compact K ⊆ RZ there is a continuous function f : R→ R such

that
⋃

n∈ZK + n ⊆ S(f).

Proof. Let K be the set of all sequences (f(t + n))n∈Z with t ∈ [0, 1]. Then K is clearly a compact
subset of RZ. We claim that S(f) =

⋃
n∈ZK + n. In fact, given t ∈ R, let xn = f(t + n) for n ∈ Z.

Note that f(t + n) = f(t−btc+ n + btc). Hence (xn)n∈Z ∈ K + btc. On the other hand, K ⊆ S(f)
and clearly S(f) + n ⊆ S(f) for all n ∈ Z.

Conversely, let K ⊆ RZ be a compact set. By the Alexandroff-Hausdorff theorem (see [2, 4.5.9]
or [3, 4.18]), K is the continuous image of the Cantor set. Thus there is a Cantor set ∆ ⊆ [0, 1/2]
and a continuous surjection φ : ∆ → K. Let f̃ :

⋃
n∈Z∆ + n → R given by f̃(t + n) = φ(t)(n) for

t ∈ ∆ and n ∈ Z. Since
⋃

n∈Z∆ + n is clearly closed, then by the Tietze’s extension theorem f̃ can
be extended to a continuous function f : R→ R. We claim that f works. In fact, given (xn)n ∈ K
there is t ∈ ∆ such that φ(t) = (xn)n. Thus xn = f(t+n) for all n ∈ Z and hence K ⊆ S(f). Since
S(f) + n = S(f) for all n ∈ Z, then K + n ⊆ S(f) for all n ∈ Z.

Our next result shows part (i) of theorem 1.1.

Lemma 2.2. Let f1, f2 : R → R be continuous functions and M ⊆ Z. Then there is g : R → R
continuous such that SM (f1) ∪ SM (f2) ⊆ SM (g). In particular, C(M) is an ideal of subsets of RM

containing every compact subset of RM .
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Proof. By lemma 2.1 there are compact sets Ki, for i = 1, 2, such that S(fi) =
⋃

n∈ZKi + n. Then
S(f1) ∪ S(f2) ⊆

⋃
n∈Z(K1 ∪K2) + n. Since K1 ∪K2 is also compact, then by lemma 2.1 there is a

continuous function g such that S(f1) ∪ S(f2) ⊆ S(g). Therefore SM (f1) ∪ SM (f2) ⊆ SM (g).

Now we show that if M has arbitrarily large “holes”, then C(M) is closed under countable
unions. To prove this we could repeat the argument as in the proof of lemma 2.1 (i.e. use the
Alexandroff-Hausdroff’s theorem), instead of this somewhat direct approach, for our proof we only
need to know that C(M) contains every compact subset of RM .

Lemma 2.3. Let M ⊆ Z be such that h(M) = +∞. Let fn : R → R be a continuous function for
each n ∈ N. Then there is g : R → R continuous such that

⋃
n SM (fn) ⊆ SM (g). In particular,

C(M) is the σ-ideal generated by the compact subsets of RM .

Proof. An argument similar to that used in the proof of lemma 2.1 easily shows that SM (f) is a
countable union of compact sets. Therefore it suffices to show that

⋃
i Ki ∈ C(M) if Ki ⊆ RM is

compact for each i ∈ N. Fix then a sequence (Ki)i of compact subsets of RM . Then we can define
for each i the following M -sequence

αi(n) = sup{|xn| : (xm)m∈M ∈ Ki},

for n ∈ M . To find a sort of an “uniform bound” for all Ki we use the fact that h(M) = +∞.
For each positive integer i, there is an integer ki such that (M − ki) ∩ [−i, i] = ∅. Therefore
{i ∈ N : n ∈ M − ki} is finite for all n ∈ Z. We fix such sequence (ki)i and define, for each n ∈ Z,

α(n) = max{αi(n + ki) : n + ki ∈ M}

and α(n) = 1 if there is no i such that n + ki ∈ M .
Now consider the compact set K ⊆ RZ given by (xn)n∈Z ∈ K iff |xn| ≤ α(n) for all n ∈ Z. By

lemma 2.1 there is a continuous function f such that K ⊆ S(f). We claim that Ki ⊆ SM (f) for
all i. In fact, fix i and let (xn)n∈M ∈ Ki. Define (x̃n)n∈Z by

x̃n =
{

xn+ki
, if n + ki ∈ M ;

0 , otherwise.

We claim that (x̃n)n∈Z ∈ K. In fact, let n ∈ Z be such that n + ki ∈ M , then |x̃n| = |xn+ki
| ≤

αi(n + ki) ≤ α(n) and we are done. On the other hand, since K ⊆ S(f), there is t ∈ R such that
x̃n = f(t + n) for all n ∈ Z. Finally, given m ∈ M , we have xm = x̃m−ki = f(t + m − ki). Thus
(xm)m∈M ∈ SM (f).

To complete the proof of Theorem 1.1, it remains only to show that the hypothesis about h(M)
is necessary in the previous result.

Lemma 2.4. Let M ⊆ Z such that h(M) < +∞. Then there is no continuous function g such that⋃∞
n=1[0, n]M ⊆ SM (g).

Proof. Suppose that h(M) = q. Towards a contradiction, suppose there is such a function g.
For each n ∈ N, consider the constant M -sequence equal to n. Then there is tn ∈ R such that
f(tn + m) = n for all m ∈ M . Since h(M) = q, then (M + tn) ∩ [0, q + 1] 6= ∅ for all n ∈ N. That
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is to say, for all n ∈ N, there is sn ∈ [0, q + 1] such that g(sn) = n. This is impossible, as g is
continuous and [0, q + 1] is compact.

Proof of Theorem 1.2: It is well known that the set of irrational numbers in homeomorphic to the
Baire space NN. It is a classical result that every Polish space (i.e. a separable and completely
metrizable space) is the continuous image of NN (see for instance [3, Theorem 7.9]).

(i) Since RZ is a Polish space, by the result mentioned above, there is a continuous surjection
φ : (0, 1) \Q→ RZ. Define f : R \Q→ R by f(t + n) = φ(t)(n) for t ∈ (0, 1) \Q and n ∈ Z. It is
routine to verify that such f works.

(ii) Another classical result says that there is a Baire class-1 surjection h : 2N → NN (see [4,
1G.10, pag. 58]). Hence there is a Baire class-1 surjection φ : ∆ → RM where ∆ ⊆ [0, 1/2] is a
Cantor set. From this point on the argument is analogous to that used in the proof of lemma 2.1
(it is easy to verify that if A ⊆ R is closed and f : A → R is a Baire class-1 function, then f can
be extended to a Baire class-1 function defined on R).
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