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Abstract

Abduction is usually defined as the process of inferring the best explanation of an
observation. There are many information processing operations that can be viewed as a
search for an explanation. For instance, diagnosis, natural language interpretation and
plan recognition. This paper is concerned about the following aspects of abduction: (i)
what are the logical properties of abduction when it is regarded as a form of inference?
and (ii) how close is abduction to reversed deduction?

In the logic-based approach to abduction, the background theory is given by a consistent
set of formulas Σ. The notion of an explanation is defined by saying that a formula γ
(consistent with Σ) is an explanation of α if Σ ∪ {γ} ` α. An explanatory relation is a
binary relation ¤ among formulas where the intended meaning of α¤γ is “γ is a preferred
explanation of α”. To each explanatory relation is associated a consequence relation |∼ab

defined as follows: α |∼ab β if Σ ∪ {γ} ` β for each γ such that α ¤ γ.
The study of the logical properties of explanatory reasoning is approached by a sys-

tematic analysis of |∼ab. We show that there are rationality postulates for abduction (i.e.
constrains on the explanatory relation ¤ ) that are, in a very precise sense, equivalent
to rationality postulates (in the Krauss-Lehmann-Magidor tradition) for non-monotonic
reasoning (i.e. for the relation |∼ab). This tight correspondence between postulates for
explanatory reasoning and non-monotonic reasoning will make apparent a strong duality
between these two forms of inference. Isolating the postulates and showing this duality are
one of the main contributions of the paper. We introduce the notion of a causal explanatory
relation and show its close connection with reversed non-monotonic reasoning.
Keywords: Abduction; explanatory and non-monotonic reasoning, nonmonotonic conse-
quence relations.

1 Introduction

Abduction is usually defined as the process of inferring the best explanation of an observation.
There are many information processing operations that can be viewed as a search for an
explanation, and thus, as operations that perform some form of abduction. (a) Diagnosis is
the typical example of abduction. When a system (an electrical circuit, a trade market or
something as complex as a living being) is ill-functioning or not functioning as expected, we
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seek for explanations that will help to return the system to its normal state. If there is more
than one explanation, usually some relevance or simplicity criterion is invoked to guide the
selection of the best explanation. (b) We might need to explain an observation (input) α in
order to give a meaning to it, because α itself is just a string of symbols. For instance, when
reading a text we come across a word α that we do not know, we look up in a dictionary to
give a meaning to it. If α has several senses, we select one of them according to the context.
(c) We can also use abduction when trying to make a plan to achieve a goal or to decide how to
continue an activity. For example, in order to decide what to do after an experiment is made
(maybe to confirm or disprove a conjecture), the output data has to be analyzed and then, in
the best case, it will be explained by the background theory.

A traditional model of abductive reasoning assumes a deductive relationship between the
explanandum (or fact to be explained) and its explanations. The basic idea is to model
abduction as reversed deduction plus some additional conditions. In this logic based approach
to abduction, the background theory is given by a consistent set of formulas (which will be
denoted by Σ) and a formula γ is said to be an explanation of α (w.r.t. Σ) if Σ ∪ {γ}
entails α. To avoid trivial explanations it is also required that an explanation has to be a
formula consistent with Σ. Since abduction is the process of inferring the “best” explanation,
this notion of explanation captures only possible or candidate explanations of α. Thus some
additional conditions are needed to define the key notion of “preferred explanations”. We are
concerned about the following three aspects of abduction: (i) What are the logical properties
of abduction when it is regarded as a form of inference?, (ii) How close is abduction to reversed
deduction? and (iii) Since preference criteria for selecting explanations are so fundamental to
abduction, how is (i) and (ii) related to the selection mechanism? Let us see these three aspects
separately.

(i) Several people have studied the logical properties of abductive reasoning: Zadrozny [20],
Flach [5], Cialdea-Pirri [4] and Aliseda [2]. They have approached the problem by isolating
rationality postulates or rules that abductive reasoning should conform to. As Zadronzny
put it, abduction is an inference process that preserves sets of explanations. The structural
properties we are looking for should provide a clear picture of the peculiar features that truly
makes abduction a form of logical inference. The following are two basic questions related to
this aspect:

a) How much a change of an observation affects its explanations? For instance, suppose that
γ is a preferred explanation of α∧β. Should γ be considered also a preferred explanation
of α? Another example, if γ is a preferred explanation of α and also of β, is γ a preferred
explanation of α ∨ β? A related question: if γ is a preferred explanation of α and γ′

entails γ, should γ′ be considered a preferred explanation of α?

b) Should changes on the background theory be allowed in other to explain an observation?
and how much a change of the background theory affects explanations? For instance,
suppose that γ is a preferred explanation of α w.r.t. Σ. Should γ be also a preferred
explanation of α but now w.r.t. Σ ∪ {β}?

There are many sources of motivating ideas for isolating the structural properties that will
account for these basic questions. First of all, there is a vast literature on different areas
of application of abduction: philosophy of science, linguistic, artificial intelligence, computer
science, etc. All of them provide a large variety of examples where to look at for regularity
patterns (see [20, 5]). A second source of ideas is, of course, given by the structural properties
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of logical deduction (both classical and non-classical). These structural properties has been
studied (see [4, 2]) in order to determine which of them could be considered valid for explanatory
reasoning and how to modify those which are not valid in the context of abduction. For a
comprehensive overview of abduction we refer the reader to [2, 17]. The main idea used in this
paper for isolating rules for explanatory reasoning will be explained in the following.

The examples given at the beginning of the introduction suggest that an important aspect
of abduction is the set of conclusions to which the best explanation leads to. In other words,
the consequences implied by the best explanation might be, in some cases, as relevant as
the explanation itself. These considerations suggest that a measure of the “rationality ” of an
abductive method is given by the “rationality” of its “abductive consequences”. More precisely,
we view abduction as a binary relation between an observation and its preferred explanations.
Following Flach’s approach we work with a binary relation α¤γ between formulas which is read
as saying γ is a preferred explanation of α. A rationality postulate for explanatory reasoning
is a property of ¤ saying that this relation is “well-behaved”.

To each explanatory relation ¤ we associate a consequence relation: given an observation
α, we infer from α the common consequences of all preferred explanations of α. More formally,
we define a consequence relation |∼ab by

α |∼ab β if Σ ∪ {γ} ` β for every γ such that α ¤ γ. (1)

We read α |∼ab β as “normally, if α is observed then β also should be present”. In other words,
β is a concomitant feature of every situation where α usually occurs.

The definition of |∼ab is quite natural and, in fact, Levesque already suggested the idea of
defining such consequence relation as a new deductive operation that would be useful when
doing counterfactual experiments (see the concluding remarks of [13]). But the motivation to
introduce this definition came from [15] where a consequence relation quite similar to |∼ab was
used to model abductive reasoning. Moreover, the results of [15] shows that |∼ab has very nice
formal properties. The key idea to isolate the postulates for explanatory reasoning is based in
the interplay between ¤ and |∼ab. We would like |∼ab to be a bona fide consequence relation
and for this end we have searched for postulates for ¤ mainly guided by the well known
rationality postulates for consequence relations studied by Kraus, Lehmann and Magidor [10],
Makinson [16], Gärdenfors and Makinson [9] and many others.

We think that the use of the KLM methodology for isolating the postulates is not only an
heuristic device but it also provides a fair enough justification for the postulates. The results
of our analysis will give a formal justification for most of the postulates introduced by previous
approaches and, in addition, it will shed new light on some aspects of abduction that we think
have not been studied (this will be clarified in the following paragraphs).

In relation to b) it is clear that these questions implicitly have the assumption that the
background theory is also a parameter and thus that abduction is a ternary relation. This issue
was addressed by Cialdea-Pirri and Aliseda who presented rules that allows some changes on
Σ. However, they considered only changes that consists of adding new formulas to Σ. This
restriction is quite natural, since more substantial changes (like contracting or revising Σ) are
not a trivial matter as it is by now well known from the theory of belief revision developed by
Gärdenfors and others [1, 7]. In this paper the background theory will be fixed and therefore
only formulas consistent with Σ can be explained. This can be considered a weakness since
it has been argued that the more interesting observation are those which are not consistent
with the theory (“surprising observations”). Boutilier and Becher [3] have presented a view
of abduction based on the AGM theory for belief revision [1] by exploiting the idea that
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observations inconsistent with the background theory can be explained by revising the theory
in order to make the observation either true or at least possible. At a first glance our approach
seems to be incompatible with the belief revision approach because from this point of view Σ
is considered a belief set and therefore as something defeasible. On the other hand, we will
give Σ the role of a system description which is independent of the beliefs of the agent. The
agent’s believes are about which parts of the system are responsible for the observation but
not about how the system is built. In other words, Σ represents the known laws of the world
and base on them we explain an observation 1. In spite of all this apparent differences, we will
show in §4 that our approach also has an “epistemic” reading in the sense of belief revision.

(ii) Zadronzny, Cialdea-Pirri and Aliseda argued that abduction is a different form of
reasoning and should not be reduced to reversed deduction. Flach’s postulates reduces ex-
planatory reasoning to reversed deduction (essentially because he did not include preference
in his formalism. Nevertheless, his result goes in a direction similar to ours). The exact rela-
tionship between abduction and reversed deduction is however vague and, to our knowledge,
has not being clarified in a formal way. We will say that an explanatory relation is causal if
the following condition holds

α ¤ γ iff Cab(α) ⊆ Cn(Σ ∪ γ) (2)

Where Cab(α) = {β : α |∼ab β} and |∼ab is defined as in (1) and Cn(X) is the set of classical
consequences of X (for X a set of formulas or a formula). We will argue in §3 that (2) can
formally be regarded as saying that ¤ and |∼ab are dual objects and therefore that causal
explanatory reasoning is non-monotonic reasoning-in-reverse. We will see several examples
of explanatory relations based on belief revision which are not causal (in our sense). These
examples will show that the main feature of causal explanatory relations is that they are based
on a non defeasible notion of explanation (as opposite to those notions based on belief).

(iii) As we have said one of the most distinct features of abduction is the emphasis it
makes on preferred explanations rather than possible explanations. Most formalism we have
mentioned include the notion of preference as an external requirement. Preference criteria
for selecting the best explanation are regarded as qualitative properties (a sort of a simplicity
criteria 2) which are not reducible to logical ones. Moreover, in those formalism, the preference
relation (for instance an order over formulas) is explicitly mentioned in the postulates that
intend to capture the notion of “best” explanation. Cialdea and Pirri’s approach tries to
use preference criteria for selecting explanations based on logic but their results does not
fully accomplish this goal since the preference relation has to be represented in a separated
theory. In [19] we have shown that preference criteria are implicit in the logical properties of
abduction and therefore they do not need to be explicitly included as part of the postulates.
In other words, the structural properties of explanatory reasoning implicitly include an order
encoding which are the preferred explanations. More formally, we have shown that (under
some conditions) for every explanatory relation ¤ there is an order relation ≺ such that α¤γ
iff γ is a ≺-minimal explanation of α.

The paper is organized as follows. In §2 we will introduce and study the postulates for
explanatory relations. In §3 we will show the tight relationship between our postulates and
the rationality postulates for consequence relations in the KLM style. We will study causal

1A different but related problem is to repair Σ after some unexplainable fact is observed (or when the
explanation are shown to be incorrect by other means). We think this problem is very close related with
inductive reasoning and deserve a separated study.

2Occam’s razor:“Entia praeter necessitatem non sunt multiplicanda.”
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explanatory relations and show that they are the formal counterpart of non-monotonic con-
sequence relations. In §4 we will see how our approach is viewed from the belief revision
perspective. In §5 we will make precise comments about the work of Flach, Cialdea-Pirri,
Aliseda and others. In §6 we will make some final remarks. Lists of the main postulates for
consequence relations and explanatory relations used in the paper will be found in appendixes
A and B respectively. A summary of the main results from sections §2 and §3 will be given in
appendix C. The proofs will be given in appendix D.

A preliminary version of this paper appeared as a technical report of LIFL 1997 (Lille,
France) and part of it was presented at WOLLIC97 (Brazil) and at NMR’98 (Italy).

2 Reasoning with explanations

The background theory denoted by Σ, will be a consistent set of formulas in a classical propo-
sitional language. We will use the following notation: α `Σ β when Σ ∪ {α} ` β.3 We could
have avoided the use of `Σ and instead use a semantic entailment relation |= satisfying the
standard requirements (like compactness and the usual properties about ∨ and ∧). This way
the background theory would be taken for granted and the notion of explanation would be
somewhat elliptical. But we have chosen to keep Σ for several reasons. First of all, because
it is customary in most presentation of abduction to have a background theory. Secondly,
because many examples are naturally presented with a background theory that constrains the
notion of explanation. And third, because by keeping Σ we leave open the question regarding
the properties of abduction when the background theory is also considered a parameter.

We now introduce the notion of an explanation of a formula with respect to Σ.

Definition 2.1 For every formula α, the collection of explanations of α w.r.t. Σ is denoted
by Expla(α) and is defined as follows:

Expla(α) = {γ : γ 6`Σ⊥ & γ `Σ α}

Notice that we have ruled out trivial explanations by asking that γ has to be consistent
with Σ. We are interested in studying the relation “γ is a preferred explanation of α” which
will be in most cases a proper subset of the relation “γ ∈ Expla(α)”. Our next definition
capture some of the ideas mentioned in the introduction.

Definition 2.2 Let Σ be a background theory. An explanatory relation for Σ will be any
binary relation ¤ such that for every α and γ,

α ¤ γ ⇒ γ 6`Σ⊥ and γ `Σ α

We read α ¤ γ as saying that γ is a preferred explanation (with respect to Σ) of α. The
associated consequence relation is defined as follows

α |∼ab β
def⇔ γ `Σ β for all γ such that α ¤ γ.

We read α |∼ab β as “normally, when α is observed then β should also be present”. The
collection of all abductive consequence of an observation Cab(α) is defined as follows

Cab(α) = {β : α |∼ab β}
3Readers familiar with [15] should note that in that paper `Σ denotes a different relation.
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In explanatory reasoning the input is an observation and the output is an explanation, that
is the reason to write α ¤ γ with α as input and γ as output.

As we said in the introduction our initial and motivating idea was that |∼ab can be used
heuristically to isolate the logical properties of explanatory relations. These properties will be
called postulates for explanatory reasoning. We would like |∼ab to be a bona fide consequence
relation and for this end we have searched for the postulates mainly guided by the well known
KLM rationality postulates for consequence relations [10] (a list of the main postulates for
consequence relations is given in appendix A). The first thing we need is, of course, that |∼ab

has to be reflexive, i.e. α |∼ab α for all α. This is obvious from the fact that when α ¤ γ then
γ `Σ α. Notice also that if α `Σ β, then α |∼ab β. In particular, if α `Σ⊥, then α |∼ab⊥.

A very natural assumption is to consider that explanatory relations are independent of the
syntax. In our context this is expressed by the rules Left Logical Equivalence (LLE) and Right
Logical Equivalence (RLE). Notice that these rules are somewhat stronger than the usual rules
for consequence relations, since our notion of logical equivalence uses `Σ instead of `.

LLE `Σ α ↔ α′ and α ¤ γ, then α′ ¤ γ
RLE If `Σ γ ↔ γ′ and α ¤ γ, then α ¤ γ′

Next we introduce a postulate called Explanatory Cautious Monotony (E-CM), since it
has the form of a monotonicity rule on the left.

E-CM If α ¤ γ and γ `Σ β, then (α ∧ β) ¤ γ

This rule says that a preferred explanation γ of a simple observation α will be a preferred
explanation of any observation more complex than α (like α ∧ β) which is also entailed by γ.
This seems quite natural because if we have decided that γ is a preferred explanation of α and
we know further that γ implies β, then based on a larger set of observations (like α ∧ β) it is
reasonable to think that γ is a preferred explanation of α ∧ β.

Now we will introduce the Explanatory Cut rules. These rules play an important role in
our setting and, as we will see, there is a duality between monotony rules for consequence
relations and cut rules for explanatory reasoning. Explanatory Cut rules relate the preferred
explanations of an observation α∧β and the preferred explanations of α. If we have a complex
observation (like α ∧ β), then we might have an explanation for it which is not a preferred
explanation for a simpler observation (like α). The observation of two facts (symptoms) to-
gether or simultaneously “forces” to select an explanation which might not be considered a
preferred explanation when only one of the facts is observed. A Cut rule will say that, in
some cases, a preferred explanation of the more complex observation (α ∧ β) might also be a
preferred explanation of the simpler or incomplete observation (α). In other words, Cut rules
allow to keep a preferred explanation even when the set of observations is not longer complete.
One could get an idea of the usefulness of an Explanatory Cut rule by looking at a diagnosis
process: if we know a fairly complete list of a patient’s symptoms, then we might be able to
decide which is the most likely illness that caused them. However, what if we know only few of
the symptoms? An Explanatory Cut rule says that in some cases this incomplete information
suffices.

The first Cut rule we consider is the following

E-Cut If (α ∧ β) ¤ γ, then β ¤ γ

This rule is quite strong as the following proposition shows.
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Proposition 2.3 Suppose ¤ satisfies E-Cut, then |∼ab is monotonic.

Remarks: (i) It is easy to see that E-Cut is equivalent, under the presence of E-CM, to the
following rule: If α ¤ γ and α `Σ β, then β ¤ γ.

(ii) We consider E-Cut to be too strong to model the relation “γ is a preferred explanation
of α”. When γ is a preferred explanation of α, and α is an observation logically stronger than
β (i.e. α ` β), then the preferred explanations of β might not include γ, because we might need
“less” to explain β than to explain α (an extreme case is when β is a consequence of Σ). We
will present examples of natural explanatory relations which does not satisfy E-Cut. Among
our cut rules, E-Cut is essentially the only Cut rule we have seen in the literature.

We will consider in this paper two others Cut rules: Explanatory Cautious Cut (E-C-Cut)
and Explanatory Rational Cut (E-R-Cut).

E-C-Cut If (α ∧ β) ¤ γ and [α ¤ δ ⇒ δ `Σ β ] for all δ, then α ¤ γ
E-R-Cut If (α ∧ β) ¤ γ and there is δ such that δ `Σ β and α ¤ δ, then α ¤ γ

Remarks: (i) Cut rules are the key fact for encoding preference criteria. Suppose (α ∧ β) ¤ γ
and α 6¤γ. This can be interpreted as saying that some part (β) of the observation α ∧ β is
more important than the other part (α) and therefore it can not be ignored when selecting the
preferred explanations of the complete observation α∧β. This will be clarified in the examples
(see §2.1).

(ii) The meaning E-C-Cut is more easily grasp by analyzing its contrapositive: suppose
(α ∧ β) ¤ γ and α 6¤γ, then there exists δ such that α ¤ δ and δ 6`Σ β. It says, in particular,
that if we are able to find a good explanation for α ∧ β, then we should also be able to find a
good explanation for α (but maybe a different one). E-R-Cut can be stated in an equivalent
form as follows: if γ is a good explanation of α ∧ β but it is not a good explanation of α then
any good explanation of α is consistent with ¬β.

(iii) In [19] we show that E-R-Cut implies that preferred explanations (i.e. those formulas
γ such that α ¤ γ for some α) are linearly pre-order. Moreover, when the underlying language
is finite, E-R-Cut turns out to be equivalent to assigning a natural number to each formula
and thus the preferred explanation of α are those explanations of α with minimal value.

In general ¤ is not reflexive, because a formula might not be a preferred explanation of
itself (this was already noticed in [4, 5]), however there is a version of reflexivity that holds in
most cases.

E-Reflexivity If α ¤ γ, then γ ¤ γ

Suppose that E-CM and E-C-Cut hold. Let α ¤ γ, then by E-CM we have (γ ∧ α) ¤ γ.
It is easy to check that the hypothesis of E-C-Cut are satisfied and hence γ ¤ γ. So we have
shown the following

Proposition 2.4 Let ¤ an explanatory relation satisfying E-CM and E-C-Cut. Then E-
Reflexivity holds.

The following result shows that the postulates for explanatory relations considered so far
are the counterpart of cumulative consequence relations, i.e. relations satisfying the following
rules:
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REF (reflexivity) α |∼ α
LLE (left logical equivalence) α |∼ β & ` α ↔ γ ⇒ γ |∼ β
RW (right weakening) α |∼ β & ` β → γ ⇒ α |∼ γ
CUT α ∧ β |∼ γ & α |∼ β ⇒ α |∼ γ
CM (cautious monotony) α |∼ β & α |∼ γ ⇒ α ∧ γ |∼ β

Theorem 2.5 Suppose ¤ satisfies LLE, E-CM and E-C-Cut, then |∼ab is cumulative.

Now will address the problem of how explanatory relations treat disjunctions. We will start
by analyzing the right side. Consider the following postulates:

E-RW If α ¤ γ and α ¤ δ, then α ¤ (γ ∨ δ)
ROR If α ¤ (γ ∨ ρ), then α ¤ γ or α ¤ ρ.
E-Disj If α ¤ (γ ∨ ρ) and γ 6`Σ ⊥, then α ¤ γ
RA If α ¤ γ, γ′ `Σ γ and γ′ 6`Σ ⊥, then α ¤ γ′

Remarks: (i) In [13] it was argued that if α has more than one preferred explanation, then
the disjunction of all of them is the explanation that fully and non-trivially accounts for α.
The consequence relation |∼ab is capturing this intuition, since to compute the abductive con-
sequences of α is irrelevant whether the collection of preferred explanations of α is closed under
disjunctions. These considerations suggest E-RW. This postulate will be called Explanatory
Right Weakening. It is the only rule that allows to weakening a preferred explanation. In §3
we will present a natural family of explanatory relations satisfying E-RW.

(ii) Postulate ROR and E-Disj are called Right Or and Explanatory Disjunction respec-
tively. Notice that ROR is weaker than E-Disj. We will show below that RA is equivalent
to E-Disj plus RLE. Postulate RA will be called Right And since it gives some amount of
monotony on the right. A similar postulate has been considered by Flach [5]. RA says that
any explanation more “complete”(i.e. logically stronger) than a preferred explanation of α is
also a preferred explanation of α. In §4 we will show that explanatory relations satisfying RA
are based on a non defeasible notion of explanation.

Proposition 2.6 Let ¤ be an explanatory relation.

(i) If ¤ satisfies RA, then it satisfies RLE and ROR.

(ii) Suppose ¤ satisfies RA. If α¤γ and γ ¤ δ, then α¤ δ. In other words, ¤ is transitive.

(iii) Suppose ¤ satisfies E-CM and RA. If α ¤ γ and γ 6`Σ ¬β, then there is γ′ `Σ γ such
that α ¤ γ′, γ′ `Σ β and (α ∧ β) ¤ γ′.

(iv) E-Disj together with RLE is equivalent to RA.

(v) Suppose ¤ satisfies E-CM, LLE and RA. Then

{γ : (α ∨ β) ¤ γ} ⊆ {γ : α ¤ γ} ∪ {γ : β ¤ γ} ∪ {γ : `Σ γ ↔ (γ1 ∨ γ2), α ¤ γ1, β ¤ γ2}

Definition 2.7 An explanatory relation is said to be E-preferential if satisfies LLE, E-CM,
E-C-Cut and RA.
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The next result says that E-preferential explanatory relations captures our initial motiva-
tion for introducing the postulates. Recall that a consequence relation |∼ is preferential if in
addition to cumulative rules |∼ab satisfies the rule Or: for any formulas α, β and γ if α |∼ab γ
and β |∼ab γ then α ∨ β |∼ab γ.

Theorem 2.8 If ¤ is an E-preferential explanatory relation, then |∼ab is preferential.

Remark: It is interesting to observe the analogy between 2.6(v) and the fact that for a
preferential consequence relation |∼, C(α) ∩ C(β) ⊆ C(α ∨ β) (where C(α) denotes the set
{β : α |∼ β}). In other words, the sets {γ : α ¤ γ} and C(α) seem to play dual roles.

We will continue using the properties of |∼ab as a guideline for isolating rationality postu-
lates for abduction. We will consider next the following postulates:

WDR Weak Disjunctive Rationality C(α ∨ β) ⊆ Cn(C(α) ∪ C(β)).
DR Disjunctive Rationality if α ∨ β |∼ ρ then either α |∼ ρ or β |∼ ρ.
RM Rational Monotony if α |∼ ρ and α 6|∼ ¬β, then α ∧ β |∼ ρ.

These rules has been studied both from a semantics point of view [6, 12] and a syntactical
point of view [16]. The new postulates for ¤ will be related to properties satisfied by the
preferred explanations of a disjunctive formula. Which is not surprising, since WDR, DR
and RM impose constrains to the set of consequences of a disjunctive formula.

We will use two postulates for the left side:

LOR If α ¤ γ and β ¤ γ, then (α ∨ β) ¤ γ
E-DR If α ¤ γ and β ¤ δ, then (α ∨ β) ¤ γ or (α ∨ β) ¤ δ

Remarks: (i) LOR is called Left Or. The intuition behind LOR is the following. Suppose
that when we observe either α or β (no matter which one) we are willing to accept that γ
is a very likely explanation for both of them. Now we are told that one of them is observed
(but maybe it is not known which one). Is it rational to conclude that γ is still a very likely
explanation of that observation (i.e. a very likely explanation of α ∨ β)? LOR implies that
the answer is yes. It is interesting to notice that LOR was considered by Flach and Aliseda
as a principle for confirmatory induction rather than for explanatory inference.

(ii) We will show below that LOR corresponds to WDR. Freund [6] proved that, in the
case of finite languages, a preferential relation satisfies WDR iff it can be represented by an
injective preferential model.

(iii) It is easy to check that DR is equivalent to saying that C(α ∨ β) ⊆ C(α) ∪ C(β)
for every α and β. Hence, DR is stronger than WDR. We will show that the corresponding
postulate for explanatory relations is E-DR and thus we have called it Explanatory Disjunctive
Rationality.

Theorem 2.9 Suppose the language is finite and let ¤ be an E-preferential explanatory rela-
tion that satisfies LOR. Then |∼ab is preferential and satisfies WDR.

Remark: We don’t know if theorem 2.9 holds when the language is infinite.

Proposition 2.10 Let ¤ be an explanatory relation satisfying E-DR. Then ¤ satisfies LOR
and |∼ab satisfies DR.
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As a corollary of 2.8 and 2.10 we have

Theorem 2.11 Let ¤ be an E-preferential explanatory relation that satisfies E-DR. Then
|∼ab is preferential and satisfies DR. 2

A relation |∼ is called Rational if it is preferential and satisfies Rational Monotony (RM).
The corresponding postulate for abduction is the cut rule we have called E-R-Cut. We recall
it: If (α ∧ β) ¤ γ and there is δ such that δ `Σ β and α ¤ δ, then α ¤ γ.

Theorem 2.12 Let ¤ be an E-preferential explanatory relation that satisfies E-R-Cut. Then
|∼ab is rational.

We will see next that E-R-Cut gives a fine structure to the set {γ : (α ∨ β) ¤ γ}.

Proposition 2.13 Suppose ¤ is an E-preferential explanatory relation that satisfies E-R-
Cut. Then for every α and β one of the following holds:

(a) {γ : (α ∨ β) ¤ γ} = {γ : α ¤ γ}
(b) {γ : (α ∨ β) ¤ γ} = {γ : β ¤ γ}
(c) {γ : α ¤ γ} ∪ {γ : β ¤ γ} ⊆ {γ : (α ∨ β) ¤ γ} ⊆

{γ : α ¤ γ} ∪ {γ : β ¤ γ} ∪ {γ : `Σ γ ↔ (δ ∨ ρ) & α ¤ δ & β ¤ ρ}

Remark: The second ⊆ in (c) above could be an equality if ¤ satisfies E-RW. In this case,
2.13 is the analogous of the following well known fact about rational relations (which was found
first in the context of belief revision [7, 8]): If |∼ is rational then for every α and β one of the
following holds: (a) C(α∨ β) = C(α), (b) C(α∨ β) = C(β), (c) C(α∨ β) = C(α)∩C(β). The
proof of 2.13 follows closely the proof of this fact about |∼ab. 2

It is well known that any rational relation satisfies DR [16]. We will show next the corre-
sponding result for E-DR (it will be used later in the paper).

Proposition 2.14 Suppose ¤ is E-preferential and satisfies E-R-Cut. Then it also satisfies
E-DR.

On the light of the previous results we will complete the definition 2.7 as follows

Definition 2.15 Let Σ be a background theory and ¤ be an explanatory relation. We say
that ¤ is E-cumulative if it satisfies E-CM, E-C-Cut and LLE. ¤ is E-preferential if
it is E-cumulative and in addition satisfies RA. ¤ is E-rational if it is E-preferential and
in addition satisfies E-R-Cut.

We are about to finish the presentation of the postulates for explanatory reasoning. There
is however one natural question that we have not considered yet: When an observation has a
preferred explanation? The following postulate, that we call Explanatory Consistency Preser-
vation, says that α has a preferred explanation iff it is consistent with Σ. Our last results are
somewhat technical but they will be needed in the sequel.
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E-ConΣ : 6`Σ ¬α iff there is γ such that α ¤ γ

The corresponding postulate for consequence relations will be called Consistency Preser-
vation (with respect to Σ).

ConΣ : For every formula α, (i) α |∼⊥ iff `Σ ¬α and (ii) for every σ ∈ Σ, α |∼ σ.

Part (ii) in ConΣ was included since it necessarily holds for |∼ab. The following observation
is obvious.

Proposition 2.16 Let ¤ be an explanatory relation satisfying E-ConΣ , then |∼ab satisfies
ConΣ. 2

Under E-ConΣ, E-R-Cut is stronger than E-C-Cut. More precisely we have the following

Proposition 2.17 Any explanatory relation satisfying E-ConΣ and E-R-Cut satisfies E-C-
Cut.

As a corollary of 2.14 and 2.17 we have the following result:

Proposition 2.18 Suppose that ¤ satisfies LLE, E-CM, RA, E-R-Cut and E-ConΣ.
Then it also satisfies E-DR.

As a corollary of 2.12, 2.16 and 2.17 we have the following result:

Proposition 2.19 Let ¤ be an explanatory relation that satisfies LLE, E-CM, E-R-Cut
E-ConΣ, and RA. Then |∼ab is rational and satisfies ConΣ. 2

Proposition 2.20 Suppose ¤ satisfies E-Cut and E-ConΣ, then |∼ab=`Σ.

2.1 Two examples

We will present examples of E-preferential and E-rational explanatory relations. Both examples
are based on preferential models. Preferential models are the main tool for representing and
studying non-monotonic consequence relations (see [10] and references therein). Given an order
of the models of Σ we define a notion of preferred explanation. The intuition is that to explain
an observation we only look at the closest worlds where the observation holds. We will use
the following notation: mod(S) denotes the set of models of S, where S is a set of formulas (it
could be a single formula). The general idea is the following: Given a preference relation ≺ on
mod(Σ) and a formula α we define its minimal models as usual:

min(α) = {N : N |= Σ ∪ {α} & M 6|= α for all M ≺ N}

Now we define an explanatory relation ¤ as follows:

α ¤ γ
def⇔ mod(Σ ∪ {γ}) ⊆ min(α)
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for any pair of consistent (with Σ) formulas α and γ. 4

It is not an accident that we use preferential models. In fact explanatory relations defined
this way are quite universal in the sense that many explanatory relations are of that form (this
will be addressed in §3).

We could have presented the examples just as a formal manipulation of symbols, but instead
we choose to provide a context where to interpret the symbols. This kind of interpretations
(that makes the reading more enjoyable) have a drawback: important aspects of the context are
not included into the formalism used to model it; so one get the impression that the formalism
is an over simplification of the problems under consideration. Our examples mainly pretend
to illustrate some of the concepts we have introduced.

Example 1: Consider the following scenario. A message consisting of a finite sequence of 0
and 1 is sent by either one of two independent senders A or B. Messages sent by A always
start with 0 and messages sent by B always start with 1. Sometimes only a portion of the
message is received and thus it is necessary to recover the lost part. The person in charge
of recovering messages, after many years of persistent work, has developed a quite simple
preference criterion for guessing the correct message. He has observed that normally both A
and B send messages starting with a constant sequence and moreover the sequence has even
length. Since the senders are independent of each other he has not preference about who sends
the message. To make the example manageable we will assume that all messages have length
4. We will analyze later in the paper a similar example allowing messages of any length.

The preference criterion can then be represented as follows:

{0100, 0101, 0110, 0111, 0001} {1000, 1001, 1010, 1011, 1110}
| |
| |

{0000, 0010, 0011} {1111, 1100, 1101}
Where the messages at the bottom are more preferred than those at the top, but there is no
relation between a message starting with 0 and a message starting with 1.

Let the letters a, b, c and d represent, in that order, the four digits of a message. The
language L is the propositional language in the variables a, b, c and d and Σ is the empty set
(any message can be either sent or received and there is no logical connection between the digits
of a given message). Every message is a valuation of L and therefore the preference relation
described above is a partial order over the collection of all interpretations of the language.
This partial order will be denoted by ≺. Notice that all valuations at the bottom (or top) are
mutually incomparable. Given a formula α we define its minimal models min(α) as we said
at the beginning of this section. We interpret min(α) as containing those messages encoded
by α that have the most preferred features. Thus our definition says that γ is a preferred
explanation for α if every message encoded by γ is one of the preferred messages encoded by α.
This is not quite the same as saying that every preferred message encoded by γ is also one of the
preferred messages encoded by α. The last statement holds if we ask that min(γ) ⊆ min(α).
This alternative will be considered later.

It is easy to show that α |∼ab β iff N |= β for all N ∈ min(α). This can be stated
4When the language is infinite or ≺ is not transitive it is necessary to require the so called smoothness

condition: for all formula α and all N |= Σ ∪ {α} which is not in min(α), there is M |= Σ ∪ {α} such that
M ≺ N and M ∈ min(α). This condition obviously holds if ≺ is a well-founded pre-order, which will be the
type of relations used in this paper.
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equivalently as mod(Cab(α)) = min(α). Readers familiar with the theory of non-monotonic
consequence relations will realize the motivation for our definition. We will make this connec-
tion clear in the forthcoming sections.

It is not difficult to show that ¤ is a E-preferential explanatory relation. We will not
proved this now since it is a consequence of a general result that will be shown later (see §3.2).
We will compute some preferred explanations.

Suppose that the portion of the message we were able to get is expressed by the formula
d (i.e. we only know that the fourth digit is 1). Then it is easy to check that the most likely
sent messages are 0011, 1101 or 1111. Thus the preferred explanation of d are ¬a∧¬b∧ c∧ d,
a ∧ b ∧ ¬c ∧ d, a ∧ b ∧ c ∧ d and the disjunction of them. In particular, ¤ is not reflexive, for
instance d 6¤d. Notice that d |∼ab (¬a ∧ ¬b ∨ a ∧ b), which reflects the agent’s preferences.

Let us suppose that in addition we know that the second digit was 0. Now the observation
is encoded by ¬b ∧ d. In this case the most likely sent messages are 0011, 1001 and 1011.
The formulas encoding these messages together with their disjunction are all the preferred
explanation of ¬b ∧ d. Notice that E-R-Cut fails. In fact, 1001 is a preferred explanation
of d ∧ ¬b which is not a preferred explanation of d but there is a preferred explanation of d
(namely 0011) that implies ¬b.

We have already suggested that there are other natural alternatives to define ¤ based on a
preferential model. For example, requiring that min(γ) ⊆ min(α) instead of mod(γ) ⊆ min(α).
The main difference of this alternative definition with respect to the one given above is that
the former is reflexive and fails to satisfy RA but the later is not. This will be treated in
section §4. 2

Example 2: Leonidas, an old taxi driver, retired two month ago after 50 years of work. He
lent his car to Julio, a nephew of him. Every time Leonidas has an opportunity he enjoyed
himself by guessing which streets his nephew has driven his car by. Leonidas just needs to ask
a couple of questions and then he is able to tell very precisely the exact route Julio took. He
uses to say, making fun of Julio, “my car is more like a metro train that needs no driver and
you are in the car not really to drive it but only to collect the fare”. Once he got into a big
trouble by trying to impress his nephew with his divining skills. He could not help himself and
approached a young couple that just got off the car. Very politely he addressed them with his
usual questions: “Where did you get in?”, “Did you pass by Café Kawi?”, “Did you pass by
Cine Paráıso?” The young couple got into a awful argument. The outburst, Leonidas and Julio
thought, had nothing to do with the questions they asked. The young man said “we did pass
by Café Kawi but not by the movie theater” and she replied, “as usual, you were absent mind,
thinking about god knows what! We did not pass by the Café but we did pass by the theater”.
That day Julio made his uncle swear that he will never again bother his customers with such
nagging questions. The old taxi driver slowly walked away, then turned his head and smiling
said to Julio “You did pass by the movie theater, anyway”. The reason for Leonidas’ success in
guessing the routes was that he has given Julio very precise indications about which were the
best routes for avoiding traffic and finding good customers. He said to Julio: “Always try to
pass by either one of the two metro station Chacaito or La Hoyada. In case this is not possible,
then try to pass by either Café Kawi or Cine Paráıso. If neither of these two alternatives are
possible, do whatever you feel like”. Julio always follows Leonidas’ advice to the letter.

The street map of the area covered by Leonidas’ car is indicated below.
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P ← (2,4) ← (3,4) ← H 4th St.

↓ ↑ ↓ ↑
(1,3) → (2,3) → (3,3) → (4,3) 3rd St.

↓ ↑ ↓ ↑
(1,2) ← (2,2) ← K ← (4,2) 2nd St.

↓ ↑ ↓ ↑
C → (2,1) → (3,1) → (4,1) 1th St.

1th Ave. 2nd Av. 3rd Av. 4th Av.

Chacaito station is at C, La Hoyada station is at H, Café Kawi is at K and Cine Paráıso is
at P .

To model this example we introduce one propositional variable zi,j for each one of the 16
corners in the map. It is also convenient to add another 32 new variables to denote the starting
and ending points. Let si,j denote that the starting point was at (i, j) and similarly ei,j for the
ending point. The intended models (i.e. taxi rides) will be paths through this map. We will
only consider paths satisfying the following constrains: (i) a path has a unique starting and
ending point, (ii) a path should not intersect itself and (iii) a path can have only one connected
component. Then Σ is the theory of all these intended models.

Leonidas’s preferences are given by a three level preferential model.

L0 = mod(Σ ∪ {z1,1 ∨ z4,4})
L1 = mod(Σ ∪ {¬z1,1 ∧ ¬z4,4, z3,2 ∨ z1,4})
L2 = mod(Σ) \ (L0 ∪ L1)

This gives a total pre-order (i.e. a transitive and reflexive relation) of mod(Σ). The explanatory
relation ¤ is defined as explained at the beginning of this section. So min(α) consists of those
models of Σ∪{α} which are minimal w.r.t. the pre-order defined above. A general result, which
will be proved later, guarantees that ¤ is E-rational, satisfies E-RW and, since Σ = L0∪L1∪L2

then ¤ also satisfies E-ConΣ (see §3.2).

Let us suppose that the couple got in the car at (3,4) and off the car at (2,2). Let α be
(z3,2 ∧ ¬z1,4 ∨ ¬z3,2 ∧ z1,4) ∧ s3,4 ∧ e2,2. Notice that Leonidas had the information encoded
by α. Since α has models in L0, then a preferred explanation of α must be a formula γ such
that mod(γ) ⊆ L0 and γ `Σ α. It is clear that any path starting at (3,4) and ending at (2,2)

can not pass by H. Hence any preferred explanation of α necessarily is a path passing by C.
¿From this it is easy to check that there is only one solution and it includes P . Notice that
there are several formulas describing this unique solution. For instance, s3,4 ∧ z1,3 ∧ z2,1 ∧ e2,2.
We do not need to mention all corners in this path. Some of them will be forced to be in the
path by the rules of Σ. Observe that the preferred explanations of α are exactly the preferred
explanations of ¬k ∧ p ∧ s3,4 ∧ e2,2 (here recall 2.13).

Let β be the following “observation” s2,1∧z2,2∧z2,3∧e2,4∧¬k∧¬z3,4. So β encodes partial
information about a ride that started at (2, 1) and ended at (2, 4), passed by (2, 2), (2, 3) and
did not pass neither by Café Kawi nor by (3, 4). Any path satisfying β starts at (2,1), then
it can not pass by C and since it does not pass by (3,4) then it can not pass by H. In fact,
we have that β `Σ ¬z1,4 ∧ ¬z3,2 ∧ ¬z1,1 ∧ ¬z4,4. This says that all models of β belong to L2.
Therefore the preferred explanations of β are formulas all whose models must be in L2. What
if we do not know the starting point? For instance, let α be z2,2 ∧ z2,3 ∧ e2,4 ∧¬k ∧¬z3,4. This
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observation is a weaker than β and moreover α has models in L0 (for instance a path starting
at C, then it goes to (2,1), then goes through 2nd Ave. and finally stops at (2,4)). Hence none
of the preferred explanations of β is a preferred explanation of α. This example shows that
some parts of an observation are more important (because they are more relevant) than others
and therefore cut rules must be constrained.

Let now β′ be the following formula: s2,1 ∧ z2,3 ∧ e2,4 ∧ ¬k ∧ ¬z3,4. We claim that the
preferred explanations of β′ are exactly the preferred explanations of β. In fact, it is easy to
check that there are preferred explanations of β′ that implies z2,2 . Then by E-R-Cut we
conclude that any preferred explanation of β is also a preferred explanation of β′. This says
that in this case z2,2 is irrelevant and therefore can be ignored.

To relate the meaning of E-R-Cut with the ranked model that defines the explanatory
relation, let us suppose that (α ∧ β)¤γ. The constrain in E-R-Cut says that there must exist
δ such that α ¤ δ and δ `Σ β. This implies that min(α) are at the same level as min(α ∧ β),
therefore γ remains a preferred explanation for α. 2

3 Explaining our reasoning

In the previous section we have shown that each explanatory relation has associated a con-
sequence relation which reflects many properties of the explanatory relation. The intuition
was: if you tell me how to explain an observation, then I will tell you which are its usual or
normal consequences. In this section we will address the converse of the previous statement:
If you know which are the normal consequences of an observation, can you explain it? In this
setting there are two obvious thing one has to remark. The first one is that we are viewing the
process of getting conclusions out of an observation and the process of explaining it as dual
processes. But then it is natural to ask: are these two processes one the inverse of the other?
To answer this question we will introduce a notion of causal explanatory relation and show
that it corresponds to explanatory mechanisms that can be formally regarded as performing
reversed non-monotonic deduction.

The normal consequences of an observation will be given by a consequence relation |∼. We
will assume that every such |∼ is reflexive, i.e. α |∼ α for all α. The first thing we must answer
is under which conditions |∼ is of the form |∼ab. It is obvious from the definition of |∼ab that
the question is then when the following holds:

C(α) =
⋂
{Cn (Σ ∪ {γ}) : C(α) ⊆ Cn(Σ ∪ {γ})} (3)

We formally introduce this condition in the following definition.

Definition 3.1 A consequence relation |∼ is said to be adequate with respect to Σ if (3) holds
for every formula α.

If ¤ is an explanatory relation then, from the definition of |∼ab, it is clear that |∼ab is
adequate with respect to Σ. The classical entailment relation ` is adequate with respect to
{>} and `Σ is adequate with respect to Σ. If there is no danger of confusion we will just say
adequate instead of adequate with respect to Σ.
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Given an adequate w.r.t. Σ consequence relation |∼ it is clear that α |∼ σ for all σ ∈ Σ.
Moreover, if α 6|∼⊥, then there must exist γ consistent with Σ such that γ `Σ α. In particular,
if α 6|∼⊥ then α is consistent with Σ. Hence |∼ almost satisfies ConΣ except that it might
happen that α |∼⊥ for some α consistent with Σ. Also observe that an adequate consequence
relation satisfies the following form of supraclassicality: if α `Σ β, then α |∼ β.

The notion of an adequate consequence relation is relevant only if the language is infinite.
In fact, for a finite language, it is not hard to show that every consequence relation satisfying
the following mild conditions is adequate: (i) C(α) = Cn(C(α)) and (ii) α |∼ σ for all α and
all σ ∈ Σ. However, for infinite languages there are even rational relations satisfying ConΣ

which are not adequate (see example 5 in §3.2).

It is clear from (3) what should be the definition of the explanatory relation associated
with a consequence relation.

Definition 3.2 Let |∼ be a consequence relation |∼. We associate with |∼ a binary relation ¤̃

as follows:

α¤̃γ
def⇔ γ 6`Σ⊥ & C(α) ⊆ Cn (Σ ∪ {γ}) (4)

Notice that ¤̃ is indeed an explanatory relation (using that |∼ is reflexive). We have put a
tilde above the symbol ¤ to remind the reader that this explanatory relation is defined using
a consequence relation |∼. Suppose that |∼ satisfies the following form of supraclassicality: if
α `Σ β, then α |∼ β. Then it is clear that if α¤̃γ then γ |∼ α. However, in general γ |∼ α does
not imply α¤̃γ as we will see in the examples. This suggests an alternative definition which
will be treated in §4.

The following result is easy to show.

Proposition 3.3 Every adequate consequence relation is of the form |∼ab.

The next theorem shows the correspondence between the postulates satisfied by |∼ and
those satisfied by ¤̃.

Theorem 3.4 Let |∼ be an adequate consequence relation, then

1. ¤̃ satisfies RA, E-RW and RLE.

2. If |∼ satisfies LLE, then ¤̃ satisfies LLE.

3. If |∼ satisfies ConΣ, then ¤̃ satisfies E-ConΣ.

4. If |∼ satisfies CM, then ¤̃ satisfies E-C-Cut.

5. If |∼ satisfies the S-rule (i.e. α ∧ β |∼ ρ implies α |∼ β → ρ), then ¤̃ satisfies E-CM.

6. If |∼ satisfies WDR, then ¤̃ satisfies LOR.

7. If |∼ is preferential and satisfies DR, then ¤̃ satisfies E-DR.

8. If |∼ satisfies RM, then ¤̃ satisfies E-R-Cut.
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9. If |∼ is monotone, then ¤̃ satisfies E-Cut.

Remarks: (i) The hypothesis that |∼ is adequate is only used to show E-ConΣ and E-C-Cut.

(ii) It is interesting to notice that we needed the S-rule, which is part of the preferential
system, to get that ¤̃ satisfies E-CM which is part of the cumulative system for explanatory
relations.

Notice that 3.4 does not cover the case |∼ cumulative. We will handle this case only for
finite languages.

Proposition 3.5 Suppose the language is finite. Let |∼ be a cumulative relation such that
α |∼ σ for all α and all σ ∈ Σ. Then there is an explanatory relation ¤ satisfying, LLE,
RLE, E-CM and E-C-Cut such that |∼=|∼ab.

3.1 Causal explanatory relations and reversed deduction

In the previous section we have shown that many consequence relations are of the form |∼ab.
In this section we will address the dual question for explanatory relations. Namely, which
explanatory relations are of the form ¤̃? Let ¤ be an explanatory relation and |∼ab its
associated consequence relation. Let ¤̃ be the explanatory relation associated to |∼ab. Then
the question is whether ¤̃ is equal to ¤ . Consider the following condition on ¤ :

α ¤ γ iff Cab(α) ⊆ Cn(Σ ∪ γ) (5)

Then our question can be equivalently stated as: Which explanatory relations satisfy (5)? First
let us notice that in (5) the direction from left to right always holds. Condition (5) says that
¤ can be recuperated from |∼ab and thus explanatory reasoning based on ¤ can be viewed
as performing a sort of reversed deduction with respect to |∼ab. We will give more evidence
about the last claim later in this section. The failure of (5) means that even if we know that
an agent is reasoning abductively, we might not be sure which explanatory relation the agent
is using. In other words, looking only at |∼ab we can not tell what are the agent’s preferred
explanations. We will isolate (5) in the following definition.

Definition 3.6 An explanatory relations is said to be causal if it satisfies (5).

In the following sections we will show some examples of explanatory relations which are
far from being causal relations. Notice that |∼ab=`Σ for any explanatory relation satisfying
full reflexivity (i.e. α ¤ α for every α consistent with Σ), thus such relations can not be causal
unless they are trivial.

So far we have not presented any semantic characterization of explanatory relations. It
is not difficult to see that most causal explanatory relations can be easily characterized in
terms of preferential models. Cumulative, preferential and rational relations are represented
by cumulative, preferential and ranked models respectively (see [10, 12, 6, 18]). Those models
can also be used to represent causal explanatory relations. In fact, from (5) it follows that
one can check whether α ¤ γ holds by looking at the model that represents |∼ab. To give an
example we state the theorem corresponding to E-rational causal relations.
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Theorem 3.7 Let ¤ be a causal E-rational explanatory relation satisfying E-ConΣ. Then
there is a ranked preferential model (mod(Σ),¹) such that for every γ consistent with Σ

α ¤ γ iff mod(Σ ∪ {γ}) ⊆ min(α)

2

Now we will address the question of when a relation is causal. The first observation is that
any relation of the form ¤̃ trivially satisfies E-RW and RA. We will need a bit more than
these two postulates to get a characterization of causal relations.

Consider the following postulate:

C Let α and γ be formulas consistent with Σ. If for all δ such that δ 6`Σ⊥ and δ `Σ γ there
is ρ such that α ¤ ρ and ρ `Σ δ, then α ¤ γ

This postulates says that if any consistent extension of γ can also be extended to a preferred
explanation of α, then γ itself is a preferred explanation of α. Postulate C is a strong version
of E-RW(in the presence of RA).

Proposition 3.8 Let ¤ be an explanatory relation. The following are equivalent.

(i) ¤ is causal.

(ii) ¤ satisfies RA and C.

Next result shows that reversed deduction is a very particular form of causal explanatory
reasoning. This result was essentially proved by Flach (he stated it differently, see §5).

Proposition 3.9 Let ¤ be an explanatory relation. The following are equivalent

(i) ¤ is causal and satisfies E-Cut and E-ConΣ.

(ii) α ¤ γ iff γ `Σ α and γ 6`Σ⊥.

If the language is finite, causal explanatory relations are characterized by RA and E-RW.
We will present a more general result that also applies to infinite languages. For that end we
will require that every observation has at most finitely many preferred explanations. First, we
introduce an auxiliary notion.

Definition 3.10 A set of formulas A is said to have an upper bound (in A w.r.t Σ) if there
are finitely many formulas α1, . . . , αn ∈ A such that for all α ∈ A, α `Σ (α1 ∨ · · · ∨ αn) (i.e,
α1 ∨ · · · ∨ αn is an upper bound of A in the lattice of formulas modulo Σ).

Definition 3.11 An explanatory relation ¤ is said to be logically finite on the right and
denoted by RLF, if for every formula α the set {γ : α ¤ γ} has an upper bound.

Notice that if the language is finite then every explanatory relation obviously satisfies RLF.
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Proposition 3.12 Let ¤ be an explanatory relation satisfying RA, E-RW and RLF. Then
¤ is causal.

We will show in §3.2 an example of a causal explanatory relations which does not satisfy
RLF.

Corollary 3.13 Suppose the language is finite and let ¤ be explanatory relation. Then ¤ is
causal iff it satisfies E-RW and RA. 2

What kind of relations are not causal? The examples that we will present in §4 use a notion
of explanation based on belief revision which is a typical notion that does not satisfy RA.

3.2 More examples

It is easy to verified that the explanatory relations given in §2.1 are both causal. In fact, as the
language is finite, both examples are of the form ¤̃ for an adequate consequence relations |∼.
In Example 1 we have that |∼ is preferential since we have used a partial order to define the
preferential model and thus, by 3.4, ¤̃ is E-preferential. In example 2 the preference relation is
a total pre-order and hence the consequence relations is rational and the associated explanatory
relation is E-rational.

Example 3: This example is a minor modification of one given in [15]. Consider the following
scenario: Lisa lives in a high-rise and parks her car in the 16-floor parking garage of her
building. One morning, Lisa was looking for her car and did not find it where she thought
she left it the night before. She considered the possibility that she was in the wrong floor and
went to the next floor. There was also the possibility that the car was stolen and she must
had called the police, but Lisa looked for the elevator and went to the next floor instead before
taking the extreme decision of calling the police. We could model part of her background
theory as follows: Let the language consist of the propositional variables {c, r, s, f, p}, where
r stands for right floor, c for car, s for stolen car, f for go to next floor and p for call police.
The background theory Σ will be the following:

Σ =





¬r → ¬c
s → ¬c
¬r → f

s → p

Lisa’s preference are linearly pre-ordered. She prefers “worlds” where her car has not been
stolen. In case the car is not found, she would think that she is not at the right place. So she
has a three level preferential model:

L0 = {{r, c}}
L1 = {{f}, {f, p}}
L2 = {{r}, {r, p}, {r, f}, {r, c, f}, {r, c, p}, {r, s, p}, {r, f, p},

{r, s, p, f}, {r, c, p, f}, {s, p, f}}

Notice that mod(Σ) = L0 ∪ L1 ∪ L2. L0 contains the initial states, in this case {r, c}. This is
what Lisa expected before arriving to the parking place: the car will be there and she will not
need to do anything else.
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Let |∼ be the rational consequence relation associated to this ranked model. That is to say

α |∼ β iff min(α) ⊆ mod(β).

Let ¤̃ be the explanatory relation associated to |∼. Since the language is finite then |∼ is
adequate and by 3.4 we have that ¤̃ is E-rational. Notice that mod(Σ) = L0 ∪ L1 ∪ L2, hence
¤̃ satisfies E-ConΣ. It is easy to check that the following holds:

α¤̃γ iff mod(Σ ∪ {γ}) ⊆ min(α)

We have that mod(C(¬c)) = {{f}, {f, p}}. It is easy to check that mod(Σ ∪ {¬r}) =
{{f}, {f, p}, {s, p, f}}. Thus ¬c 6¤̃¬r, but it is clear that ¬c¤̃(¬r ∧ ¬s). So ¬r is not enough
to explain why the car was not found. Since ¬r ∧ ¬s |∼ f , then Lisa will go to the next floor.
Notice also that s ∈ Expla(¬c), however ¬c 6¤̃s because mod(Σ ∪ {s}) 6⊆ mod(C(¬c)) (Lisa
does not wish to think that the car was stolen as an explanation for not finding it). Observe
also that s |∼ ¬c, so it is not sufficient that γ |∼ α in order that α¤̃γ. Finally, to illustrate how
¤̃ treats a disjunction, let us observe that C(¬c∨s) = C(¬c) and thus (¬c ∨ s)¤̃(¬r ∧ ¬s) but
notice that s 6¤̃(¬r ∧ ¬s). 2

Example 4: This example is similar to example 1 given in §2.1. Now we will allow messages
of any length, but we will consider the situation of only one sender. Again the preference
criterion is simple: messages starting with an even number of 0 are the most preferred ones.
To make easier the presentation for each n ≥ 1 let γn be the formula encoding the message of
2n + 1 digits such that the first 2n digits are equal to 0 and the (2n + 1)-th digit is equal to
1. Our language will be propositional on the countable set of variables {p1, p2, p3, · · · ,} and Σ
will be the empty set5. Let

L0 =
⋃

n≥1

mod(γn)

and L1 consists of all valuations not in L0. We have then a two level ranked model. Let |∼
be the rational consequence relation defined by this model and let ¤̃ be explanatory relation
associated with |∼. It is not difficult to check that |∼ is adequate and therefore by 3.4 we have
that ¤̃ is E-rational.

We will show that ¤̃ is not logically finite on the right. In fact, suppose that the only
portion of the message we were able to get only consists of ceros. Let us say α = ¬p3 ∧ ¬p5.
Then it is easy to check that mod(γn) ⊆ min(α) for all n ≥ 3. Thus α¤̃γn for all n ≥ 3 and
therefore no preferred explanation of α is an upper bound for all preferred explanations of α.
This shows that ¤̃ is not logically finite on the right, but it is a causal explanatory relation by
definition.

On the other hand, if the portion of the message contains at least one 1, then there is an
upper bound for the set of preferred explanation for that message. For instance, let β (the
incomplete message received) be ¬p2 ∧ p5. Then γ1 ∧ p5 and γ2 are preferred explanations for
β. In other words, the first five digits of the most likely messages sent are 00101, 00111 and
00001. In this case the upper bound is (γ1 ∧ p5) ∨ γ2. 2

Example 5: We will present examples of an adequate and non adequate relation for an infinite
language.

5We could have put Σ = {¬p1} to make this example closer to example 1. But this is not important.
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(i) Let {pi : i ≥ 1} be the variables of the language and Σ = {p1}. Consider the following two-
level ranked preferential model: at the lowest level there will be only one model, M , defined
by M |= pi for all i ≥ 1 and at the second level we put all the other models of Σ (but not
M). Let |∼ be the relation associated with this ranked preferential model. Clearly |∼ satisfies
ConΣ. Let α = p1. It is clear that C(α) = Th(M), thus there is no γ (consistent with Σ) such
that C(α) ⊆ Cn(Σ∪{γ}). Therefore (3) does not hold because its right hand side contains all
formulas and its left hand side is equal to Th(M).

(ii) Let Σ be the empty background theory and as in (i) we define a two-level ranked model:
at the lowest level we put all models of p1 and at the second level we put the other valuations
of the language (i.e. those which do not satisfy p1). Let |∼ be the rational relation associated
with this ranked preferential model. We claim that |∼ is adequate. In fact, let α be any
consistent formula. We consider two cases: (a) Suppose α ` ¬p1, then it is easy to check that
C(α) = Cn(α). From this it follows that (3) holds. (b) Suppose α 6` ¬p1, then it is easy to
check that C(α) = Cn(α ∧ p1) and as before this implies that (3) holds. 2

4 Connection with belief revision

We will show in this section the connection of our approach with the theory of belief revision.
In particular, we will see the peculiar place that causal explanatory relations occupy when they
are viewed from the perspective of belief revision.

Belief revision is the process of changing the beliefs an agent has in order to incorporate
incoming information (which might contradict the old one). The best known formalism for
belief revision is the so called AGM postulates [1]. Let K be the belief set of an agent (which
we assume to be a propositional theory) and suppose that the new incoming information is
represented by a formula α. The revision of K with α is denoted by K ∗ α. It is natural to
assume that K ∗ α is also a belief set (i.e. closed under logical consequences) and obviously
that α ∈ K ∗ α. The AGM postulates impose other non trivial conditions on ∗ in order to
make minimal the changes it performs in K. For instance, if α is consistent with K then
K ∗ α = Cn(K ∪ {α}). Gärdenfors and Makinson [9] have shown a tight connection of belief
revision with the theory of non-monotonic consequence relations. Given an AGM revision
operator ∗ they define a consequence relation by letting α |∼K β if β ∈ K ∗ α. In words, its
says that the agent is willing to conclude β from α in the case that β belongs to the revised
belief set obtained after α is incorporated into K (using the revision operator ∗). In [8] it is
shown that |∼K is a rational consequence relation in the sense of Kraus-Lehmann and Magidor
[10]. On the other hand, they also have shown that every rational consequence relation |∼
can be represented as a consequence relation of the form |∼K . In fact, let |∼ be a rational
consequence relation and let K = {α : > |∼ α}. Define ∗ by K ∗α = C(α). Then ∗ is a revision
operator for K such that |∼ is equal to |∼K

6.

The connection between abduction and belief revision was already observed by Gärdenfors
[7]. Boutilier and Becher [3] proposed a model of abduction based on the revision of the
epistemic state of an agent. Aliseda [2] consider modeling belief revision with abduction (see
also [14]). The main idea in all these papers is the same. We will follow the terminology of [3].

6Formally ∗ can not be considered a revision operator because we have given only a description of how to
revise a single knowledge base, namely C(>), and ∗ must be applicable to any knowledge base. Also ∗ might
not satisfy one of the defining condition of an AGM operator. Namely, ∗ might not preserve consistency: It
can happen that α is consistent but K ∗ α is inconsistent. To avoid this problem one has to restrict to rational
consequence relations that preserve consistency: α 6`⊥ iff α 6|∼⊥.
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They consider various forms of explaining α relative to K and to an arbitrary (but fix) AGM
revision operator. These type of explanations were called epistemic explanations. Epistemic
explanations capture the intuition that if the explanation were believed, so too would be the
observation. More precisely, they introduced the following.

Definition 4.1 7 Let ∗ be a AGM revision operator and K be a consistent set of formulas.
An epistemic explanation for α relative to K and ∗ is any consistent formula γ such that
α ∈ K ∗ γ.

It is not difficult to see that the notion of epistemic explanations does not satisfy the
postulate RA. Because if γ is an epistemic explanation of α, then γ ∧ δ is not in general an
epistemic explanation of α. The reason is that K ∗ (γ ∧ δ) is in general very different from
K ∗ γ. These notions of epistemic explanations “cannot be given a truly causal interpretation
because they are simple beliefs that induce belief in the fact to be explained” [3]. The lack of
a causal relationship between an observation and its epistemic explanations is precisely where
our notion of explanation differs from theirs. There is also another very important difference.
The relation “γ is an epistemic explanation of α” is not an explanatory relation in our sense.
This is simply because an epistemic explanation might not have any deductive relationship
with the explanandum. However, as revision operator preserves consistency, it is easy to see
that an epistemic explanation has to be at least consistent with the explanandum 8. We will
make a little detour in order to introduce a new concept that covers the notion of epistemic
explanations.

Definition 4.2 A binary relation |< is called a weak explanatory relation if for all α and γ

α|<γ ⇒ γ ∧ α 6`Σ⊥

Remark: Observe that for a weak explanatory relation its associate consequence relation |∼ab

is not necessarily reflexive. Thus |∼ab might lose one of its more basic features and therefore it
is not clear the role that |∼ab could play for studying weak explanatory relations. All postulates
we have introduced in §2 also apply to weak explanatory relations. Some of the results proved
for explanatory relations are valid for weak explanatory relations. For instance 2.17 is valid.
The proof of 2.10 works for weak explanatory relation, so E-DR implies LOR in this case
too. It is easy to check that any weak explanatory relation satisfying RA is necessary an
explanatory relation. 2

Let’s go back to the main theme of this section. Recall the rational consequence relation
|∼K associated to an AGM revision operator. The notion of epistemic explanation can then
be restated as follows: γ is an epistemic explanation for α iff γ |∼K α. From this it is obvious
what are the logical properties satisfied by epistemic explanations. However, it is convenient to
see which of our postulates for explanatory reasoning are satisfied by epistemic explanations.

Proposition 4.3 Assume that Σ is the empty set. Let ∗ be an AGM revision operator and K
be a consistent set of formulas. Let |< be defined by α|<γ if γ is consistent and α ∈ K ∗ γ.
Then |< is a weak explanatory relation that satisfies LLE, RLE, E-CM, E-RW, ROR,
LOR, E-Cut and full reflexivity (i.e. α|<α for all consistent α).

7This definition corresponds to what Boutilier and Becher called predictive explanations. This notion is the
closer to our approach. We will not analyze other alternatives.

8We are assuming here that Σ is the empty set. This is not a crucial assumption. Our claims can easily
extended to cover the case where Σ is not empty
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Epistemic explanation are far from being causal in our sense, since RA does not hold. Also
let us remark that since transitivity of |∼ implies monotonicity, then the notion of epistemic
explanation is not transitive. 9

The notion of epistemic explanation is too permissive. We can restrict it by asking a bit
more from the explanations. Namely, we will say that γ is a strong epistemic explanation of α
if

K ∗ α ⊆ K ∗ γ (6)

In other words, after revising K with the explanation we obtain all beliefs corresponding to
the revision of K with the observation. If we state this new definition in terms of |∼K we
get the following condition: CK(α) ⊆ CK(γ). Where, as usual, CK(α) = {β : α |∼K β}. It
is convenient to see this condition as defining a notion of an explanation with respect to an
arbitrary consequence relation |∼. More precisely, consider the following condition for any γ
such that γ 6|∼⊥

C(α) ⊆ C(γ) (7)

This condition was suggested by Flach (Lehmman [11] has some preliminaries results about
it10). In our setting it is quite natural to require that |∼ satisfies ConΣ. The next theorem
shows which postulates are satisfied by this weak explanatory relation.

Proposition 4.4 Let |∼ be a preferential consequence relation satisfying ConΣ. Define α|<γ
if (7) holds for γ consistent with Σ. Then |< is a weak explanatory relation and moreover

(i) |< is transitive, full reflexive for Σ-consistent formulas and satisfies LLE, RLE E-CM,
E-RW and E-C-Cut.

(ii) If in addition |∼ satisfies DR, then |< satisfies LOR.

(iii) If in addition |∼ satisfies RM, then |< satisfies E-DR, ROR and E-R-Cut.

Note that the relation |< (given in 4.4) satisfies E-Cut iff |∼ is monotonic. This relation
is also far form being causal, since RA does not hold.

Since K∗γ is supposed to be closed under logical consequences and in our setting Σ ⊆ K∗γ,
then we have that Cn(Σ ∪ {γ}) ⊆ K ∗ γ. This suggests another way of strengthening (6).
Consider the following notion of explanation

K ∗ α ⊆ Cn(Σ ∪ {γ}) (8)

This is exactly the defining condition of a causal explanatory relation. Let us see this in detail.

Let ¤ be a causal explanatory relation. This means that the following holds

α ¤ γ iff Cab(α) ⊆ Cn(Σ ∪ γ) (9)
9We should mention that the original definition of predictive explanation given by Boutilier and Becher

requieres an additional condition. When the observation α is entailed by K then they ask also that ¬γ ∈ K ∗¬α
which captures the intuition that if the observation had been absent, so too would be the explanation. With
this extra restriction we have that E-C-Cut holds but we do not have neither E-Cut nor E-R-Cut.

10We thank him for letting us have a copy of his manuscript.
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Suppose also that ¤ is E-rational and satisfies E-ConΣ. Then by 2.12 we know that |∼ab

is a rational consequence relation satisfying ConΣ. As before, let ∗ be the revision operator
associated with |∼ab

11. By definition Cab(α) is equal to K ∗ α and thus from (9) we have the
following

α ¤ γ iff K ∗ α ⊆ Cn(Σ ∪ γ)

which is exactly (8).

The initial knowledge base K is the collection {α : > |∼ab α}. That is to say

K =
⋂
{Cn(Σ ∪ {γ} : >¤ γ}

K represents the agent’s belief before any observation is made. It is clear that Σ ⊆ K and
moreover, by E-ConΣ, we have also that Σ ⊆ K ∗ α for all α. Thus, after an observation is
made, the belief set K is revised without modifying Σ. It is not hard to check (using RA)
that an observation α is consistent with K iff there is γ such that >¤ γ and α ¤ γ.

To give a precise interpretation of (8) we must consider the following condition

Cn(α) ⊆ Cn(Σ ∪ {γ}) (10)

This corresponds to the notion of explanation given by Flach’s postulates [5] and as we have
proven in 3.9 it also corresponds to causal explanatory relations satisfying E-ConΣ and E-
Cut. It is clear that (10) can be viewed as performing an expansion of the knowledge base
([1, 7]) instead of a revision.

Notice that (8) is stronger than (6). Thus any preferred explanation is a strong epistemic
explanation. However, rather than saying that γ normally implies α (as Boutilier and Becher
did) we say that γ implies everything that is normally implied by α. Condition (8) keeps some
of the “epistemic” flavor of the belief revision approach and at the same time retains a strong
causal relationship between an observation and its preferred explanations. Causal explanatory
relations treats differently observations and explanation. An observation has associated some
beliefs (the other “symptoms” that we believe usually are also present) so we could say loosely
that observations are treated as beliefs. However, explanations are not treated as beliefs. This
epistemological distinction seems to capture the following idea. We might be wrong about which
is the “real world” (i.e. the preference relation might be incorrect), but we would like to be right
about the causality relation used to explain the features of whichever world we happen to prefer.

Example: To illustrate the differences between epistemic, strong epistemic and causal expla-
nations let’s go back to Lisa’s example in §3.2. In this example K is the theory of {r, c} which
correspond to what Lisa expected before arriving to the parking place. An AGM revision
operator is defined in the usual way: K ∗ α corresponds to the theory of the minimal models
of α (w.r.t. the total pre-order of mod(Σ) given in §3.2).

It is easy to verify that f is a strong epistemic explanation of ¬c (but notice that f ∧ r is
not). However, for us f is not even an explanation of ¬c since Σ∪{f} 6` ¬c. Another instance,
¬r is a strong epistemic explanation of ¬c, it entails ¬c but it is not a preferred explanation in
our sense. On the other hand, ¬r ∧ ¬s is both a preferred explanation and a strong epistemic
explanation of ¬c. Finally, r ∧ p ∧ ¬c is an epistemic explanation of ¬c but it is not a strong
epistemic explanation of ¬c. 2

11As we said before, ∗ is not formally an AGM revision operator. However, it still captures the key idea of
belief revision, that is to say, to minimize the changes of K.
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5 Related works

We will comment in this section about the connection of our results and the work of Flach [5],
Cialdea-Pirri [4], Aliseda [2], Lobo-Uzcátegui [15] and Zadrozny [20].

P. Flach

His work is the closest to ours. He presented some postulates for explanatory and inductive
reasoning. Some of our postulates are similar to his. He studied the relations “γ is a possible
inductive hypothesis given evidence α” and “ γ is a possible explanation of α” which he denotes
by α|<γ. He did not assume that |< is an explanatory relation, however one of his postulates
implies that |< has to be weak explanatory. Flach uses a satisfaction relation |= instead of
`Σ and thus the background theory is not mentioned explicitly. Below we will compare his
postulates with ours.

I1: If α|<γ and |= α ∧ γ → β, then (α ∧ β)|<γ. When |< is assumed to be an explanatory
relation then it is not difficult to see that I1 is, in our context, equivalent to E-CM.

I2: If α|<γ and |= α ∧ γ → β, then (α ∧ ¬β)|6<γ. This says that |< is a weak explanatory
relation.

I3: If α|<γ and |= α∧γ → β, then α|<γ∧β. When |< is assumed to be an explanatory relation
I3 follows from RLE.

He considered two versions of Reflexivity,

I4: If α|<γ, then α|<α. This postulate will not be valid in general in our case, because α might
not be a preferred explanation of itself.

I5: If α|<γ, then γ|<γ. We already have mentioned that I5 holds for explanatory relations
satisfying E-CM and E-C-Cut.

The other two postulates for induction I6 and I7 correspond to RLE and LLE respectively.
Flach studied other postulates more specific of explanatory reasoning:

E1: If α|<δ, γ|<γ and |= γ → δ, then α|<γ. This postulate is essentially RA.

E2: If γ|<γ and ¬α|6<γ, then α|<α. This postulate does not necessarily hold in our case. In
our context, this rule is quite strange because it says that when a formula α is not a good
explanation for itself then any good explanation is a good explanation for the negation
of α. This rule will be valid in the monotonic case.

E3: If α|<(β ∧ γ), then (β → α)|<γ. This rule seems to be valid only in the monotonic case.

E4: If α|<γ and β|<γ, then (α ∧ β)|<γ. This postulate is a consequence of E-CM.

E5: If α|<γ and |= α → β, then β|<γ. This postulate implies E-Cut and in fact, it is equivalent
to E-Cut under the presence of E-CM.

He then presented five postulates for “confirmatory induction” which does not seem to be
applicable for explanatory reasoning, except for his postulate C4 which corresponds to our
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LOR. For Flach “intuition constitutes the primary source of justification for his rationality
postulates”. Our results confirm that his intuition also has a formal justification. The more
important difference with our approach is that he did not consider weaker cut rules than E-Cut
thus his postulates force |∼ab to be monotonic. Moreover, his main representation theorem for
explanatory relations says that explanatory reasoning is restricted to reversed deduction. More
formally, he showed the following

Theorem: A binary relation |< satisfies I1-7 and E1-5 iff the following holds:

α|<γ iff |= γ → α

We will sketch a proof of this result based on proposition 3.9. Flach’s formalism does not
explicitly include a postulate similar to E-ConΣ. However, it follows from his postulates that
for a carefully chosen Σ our E-ConΣ holds (showing this fact is in part what makes Flach’s
proof long). We will assume that E-ConΣ holds and use `Σ instead of |=. Notice, that by I4,
I5 and E-ConΣ we have that a formula is admissible iff it is consistent with Σ. First, one has
to show that |< is an explanatory relation. In fact, by E3 and E-Cut one gets that α|<γ iff
(γ → α)|<> and from this it is not difficult to show using E-ConΣ that |< is an explanatory
relation. In order to use proposition 3.9 it suffices to verify postulate C. Suppose that γ and
α are consistent with Σ and the hypothesis in postulate C hold. First, using the hypothesis
in C we have that γ ∧ α is consistent with Σ. Then, assuming towards a contradiction that
α|6<γ, we have that (γ → α)|6<>. From E5 and I4 it follows that >|<>. Now apply E2 and
get γ ∧¬α|<>, thus γ ∧ ¬α is consistent with Σ. Finally, using again the hypothesis in C one
gets ρ such that ρ `Σ γ ∧ ¬α and α|<ρ, from which one gets a contradiction.

Cialdea-Pirri

They defined a relation Σ ` γ ; α to capture the notion that “in the theory Σ, γ is a good
reason for α”. The definition of ; is based on a preference relation over formulas as follows.
Let ≺ be an irreflexive relation on formulas. The explanatory relation ¤ associated with ≺ is
defined by:

α ¤ γ ⇔ γ ∈ min(Expla(α),≺ ) (11)

In other words, α¤γ iff 6`Σ ¬γ, γ `Σ α and δ 6`Σ α for all δ such that δ ≺ γ. It is easy to check
that such explanatory relations always satisfy E-Reflexivity and E-CM.

They presented some basic postulates and some conditions where they hold. Our postulate
E-CM is stronger than their And-Right. Their Left Logical Equivalence is our RLE. Our
Cut rules (E-C-Cut, E-R-Cut and E-Cut) have nothing to do with their E-Cut. Here there
is an important difference between our approach and theirs. As we said in the introduction, we
consider the background theory Σ fixed, but they considered postulates concerning properties
of abduction when the background theory changes. For instance, their E-Cut rule says

If Σ ` α and Σ ∪ {α} ` γ ; β, then Σ ` γ ; β

and their E-Monotonicity rule says

If Σ ` α and Σ ` γ ; β, then Σ ∪ {α} ` γ ; β

These last two postulates are very weak, since they are valid for every explanatory relation ¤

defined as in (11) regardless of the preference relation ≺ used. They did not study the problem
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of whether their postulates will guarantee that ; is given by a preference relation (this will
be addressed in [19]).

Atocha Aliseda

Her Ph.D thesis is a comprehensive presentation of abduction from several points of view.
It is a very good source for the vast literature on abduction. We will make some comments
only about the part of her work which is close related to our paper. Similar to Cialcea and
Pirri’s approach, Aliseda regards abduction as a relation with three parameters: a background
theory, an observation and an explanation. Her notation is Σ | γ ⇒ α to express that γ is an
explanation for α w.r.t. Σ. She presented sets of rules for various versions of abduction: Plain,
Consistent, Explanatory, Minimal and Preferential abduction. Some of her postulates are not
valid in our context, for instance her Weak Explanatory Reflexivity says

If Σ | γ ⇒ α, then Σ | α ⇒ α

which is Flach’s I4 and, as we already said, it is not valid in our context because in most cases
an observation is not a preferred explanation of itself. She also consider cut and monotonicity
rules similar to those used by Cialcea and Pirri. However, no cut rule for observations (as ours)
was studied, except the rule of transitivity (which follows from RA). Among all versions of
abduction she considered, Preferential abduction is the closest to our approach. It naturally
requires that γ has to be minimal with respect to a preference relation among formula. The
crucial rule for axiomatizing Preferential abduction is the following:

If Σ | γ ⇒ α and γ ∧ δ < γ, then Σ | γ ∧ δ ⇒ α

where < is a preference order among formulas. Aliseda does not view this rule as structural
rule since it requieres a preference relation that she thought cannot be expressed in terms of
the inference relation itself. But we have shown in [19] that preference criteria can be coded
by the structural rules without explicitly mention them.

Lobo-Uzcátegui

In logic-based abduction usually together with the background theory Σ there is also a
distinguished set of atoms Ab called abducibles. Formulas using only atoms from Ab are also
called abducible. The pair (Σ, Ab) is referred to as the Abductive framework. Let |∼ be a
consequence relation satisfying ConΣ. An Ab-explanation of α is any abducible formula γ
consistent with Σ such that γ |∼ α. Thus this notion of explanation is similar to the notion of
epistemic explanation. Assuming the language is finite, the cautious explanation of α, denoted
by Fc(α), is defined as the disjunction of all Ab-explanations of α. Define |∼a by letting
α |∼a β if Fc(α) |∼ β. This type of consequence relations |∼a (especially when |∼ is rational)
were studied in [15]. Notice that if γ |∼ β for all Ab-explanation γ of α, then α |∼a β. However,
the converse is not true because in the definition of |∼a there is an implicit selection of some
Ab-explanation of α as the preferred ones. The relation |∼ab introduced in this paper was
motivated by |∼a. The role of abducibles formulas in [15] is quite closed to our admissible
formulas.

W. Zadrozny

He approached abduction from a quite abstract point of view based on the concept of
invariant of reasoning. Abduction is viewed as an inference process that preserves sets of
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explanations. It is not clear the relation with our results, but it seems an interesting topic
of research. He has some rules similar to ours but his presentation is quite complex. His
explanation systems are formulated using higher-order logic as a metalanguage.

6 Conclusions

We have analyzed two aspects of explanatory reasoning: Its logical properties and its relation
with reversed deduction. The logical properties have been isolated in a fairly complete list
of postulates. Some of our postulates are similar to some of those introduced by previous
approaches (Flach, Cialdea-Pirri and Aliseda). The key idea was to use |∼ab as an heuristic
device for isolating the logical properties of an explanatory relation ¤ . It is important to
point out the special role that explanatory cut rules play in our presentation. We have not
seen these rules in other formalism.

When we started this research we were focused on getting |∼ab to have good properties
in the KLM sense. Moreover, we thought that an explanatory relation ¤ and its associated
consequence relation |∼ab were somewhat interchangeable. But this turns out to be true only for
those explanatory relations that we have called causal. For a non causal explanatory relation
there is a lost of information when going from ¤ to |∼ab. Because in this case, even if we
know that an agent is reasoning abductively, we might not be sure which explanatory relation
the agent is using. In other words, looking only at |∼ab we can not tell what are the agent’s
preferred explanations.

We have shown that causal explanatory reasoning is non-monotonic reasoning in reverse.
This answers one of our initial questions. However, it is important to remark a difference
between the postulates for explanatory relations and non monotonic consequence relations.
The basic postulates (in the KLM style) for nonmonotonic consequence relations can be stated
as inference rules in a propositional language, but for explanatory relation some of the basic
postulates (like E-C-Cut and C) are expressed as first order properties of ¤ .

Causal explanatory relations have also a interpretation in terms of belief revision. The
key feature that distinguishes causal explanations from other notions of explanations is the
fact that causal explanatory relations treat observations and explanations in a different way.
An observation has associated some beliefs (the other “symptoms” that we believe usually
are also present) so we could say loosely that observations are treated as beliefs. However,
explanations are not treated as beliefs and the deductive relationship between an observation
and its preferred explanations is retained in a very strong form. The underlying idea of causal
explanatory relations is the following. After observing α, we first collect the concomitant
facts that are normally present (i.e. we compute Cab(α)) and then we select the preferred
explanations of α as those formulas that entails α and its usual consequences Cab(α). In other
words, rather than saying that γ normally implies α we say that γ implies everything normally
implied by α.

Finally, we will mention two possible lines of research related to our results. The first one is
to study more carefully the hierarchy we have presented for classifying the logical properties of
abduction. Specially relevant is to determine up to which extend this hierarchy classifies (non
causal) weak explanatory relations. The second one is related to the role of the background
theory. Usually it is said there are three kinds of reasoning processes: deductive, abductive
and inductive. We have shown that abduction is very tightly related to a “non-monotonic-
deduction”. On the other hand, inductive reasoning (when it is understood as the process
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of inferring general rules out of specific observations) did not play any role in our setting.
This is probably due to the fact that we have fixed the background theory. There are many
situations where Σ is the natural outcome of an inductive reasoning process. As we said in
the introduction, Cialdea-Pirri and Aliseda presented a view of abduction as a relation with
three parameters: an observation, an explanation and a background theory. We think that an
extension of our results, to the more general case where the background theory is allowed to
change, will provide some hints for a better understanding of inductive reasoning.
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A Rationality Postulates for Consequence Relations

To make easier the reading of the paper we will include a list of all rationality postulates for
consequence relations used in the paper.

REF (reflexivity) α |∼ α

LLE (left logical equivalence) α |∼ β & ` α ↔ γ ⇒ γ |∼ β

RW (right weakening) α |∼ β & ` β → γ ⇒ α |∼ γ

CUT α ∧ β |∼ γ & α |∼ β ⇒ α |∼ γ

CM (cautious monotony) α |∼ β & α |∼ γ ⇒ α ∧ γ |∼ β

OR α |∼ γ & β |∼ γ ⇒ α ∨ β |∼ γ

S α ∧ β |∼ γ ⇒ α |∼ β → γ

DR (disjunctive rationality) α ∨ β |∼ ρ ⇒ α |∼ ρ or β |∼ ρ

RM (rational monotony) α |∼ ρ & α 6|∼ ¬β ⇒ α ∧ β |∼ ρ

Mono (monotony) α |∼ γ ⇒ α ∧ β |∼ γ

An inference relation |∼ is said to be cumulative if it satisfies the rules REF, LLE, RW,
CUT and CM. A consequence relation is called preferential if it satisfies, in addition to
cumulative rules, the rule OR and it is called rational if it is preferential and satisfies RM.
|∼ is monotone if it satisfies Mono. A consequence relation satisfies WDR if C(α ∨ β) ⊆
Cn(C(α)∪C(β)), for every formulas α and β. We used also ConΣ (Σ-consistency preservation)
which is a variant of a postulate introduced in [9]: for all α, α |∼⊥ iff `Σ ¬α and if σ ∈ Σ,
then α |∼ σ.

B Rationality Postulates for Explanatory Relations

We list below all postulates for explanatory relations that we have introduced in this paper.
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LLE ( `Σ α ↔ α′) & α ¤ γ ⇒ α ¤ γ′

RLE ( `Σ γ ↔ γ′) & α ¤ γ ⇒ α ¤ γ′

E-CM α ¤ γ & γ `Σ β ⇒ (α ∧ β) ¤ γ

E-Cut (α ∧ β) ¤ γ ⇒ β ¤ γ

E-C-Cut (α ∧ β) ¤ γ & ∀δ (α ¤ δ ⇒ δ `Σ β) ⇒ α ¤ γ

E-R-Cut (α ∧ β) ¤ γ & ∃δ [ α ¤ δ & δ `Σ β ] ⇒ α ¤ γ

E-Reflexivity α ¤ γ ⇒ γ ¤ γ

E-RW α ¤ γ & α ¤ δ ⇒ α ¤ (γ ∨ δ)
ROR α ¤ γ ∨ ρ ⇒ α ¤ γ or α ¤ ρ

E-Disj γ 6`Σ⊥ & ρ 6`Σ⊥ & α ¤ (γ ∨ ρ) ⇒ α ¤ γ & α ¤ ρ

RA α ¤ γ & γ′ `Σ γ & γ′ 6`Σ⊥ ⇒ α ¤ γ′

LOR α ¤ γ & β ¤ γ ⇒ (α ∨ β) ¤ γ

E-DR α ¤ γ & β ¤ δ ⇒ (α ∨ β) ¤ γ or (α ∨ β) ¤ δ

E-ConΣ 6`Σ ¬α ⇔ ∃γ α ¤ γ

C Let α and γ be formulas consistent with Σ. If for all δ such that δ 6`Σ⊥ and δ `Σ γ there is
ρ such that α ¤ ρ and ρ `Σ δ, then α ¤ γ

C Summary of the main results in §2 and §3.

¤ |∼ab

⇒ Adequate + REF + RW
E-ConΣ ⇒ ConΣ

LLE+ E-CM+ E-C-Cut ⇒ Cumulative
LLE+ E-CM+ E-C-Cut+ RA ⇒ Preferential

LLE+ E-CM+ E-C-Cut+RA+ LOR+ finite language ⇒ Preferential + WDR
LLE+ E-CM+ E-C-Cut+RA+ E-DR ⇒ Preferential + DR

LLE+ E-CM+ E-C-Cut+RA+ E-R-Cut ⇒ Rational
E-Cut ⇒ Monotonic

¿From explanatory relations to consequence relations

¤̃ |∼ adequate
RA + RLE + E-RW ⇐

E-ConΣ ⇐ ConΣ

LLE+ E-CM+ E-C-Cut+ RA + RLE + E-RW ⇐ Preferential
LLE+ E-CM+ E-C-Cut+RA+ LOR + RLE + E-RW ⇐ Preferential + WDR
LLE+ E-CM+ E-C-Cut+RA+ E-DR + RLE + E-RW ⇐ Preferential + DR

LLE+ E-CM+ E-C-Cut+RA+ E-R-Cut + RLE + E-RW ⇐ Rational
E-Cut+ RA + RLE + E-RW ⇐ Monotonic

From consequence relations to explanatory relations
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D Proofs

Proof of proposition 2.3: Suppose α |∼ab ρ, i.e. for all γ if α ¤ γ then γ `Σ ρ. Let δ be any
formula such that (α ∧ β) ¤ δ. By E-Cut we have α ¤ δ so δ `Σ ρ. Thus (α ∧ β) |∼ab ρ. 2

Proof of theorem 2.5: Suppose ¤ is a relation as in the hypothesis. We will show that |∼ab

is cumulative. From LLE for ¤ we easily get that |∼ab satisfies Left Logical Equivalence and
from the definition of |∼ab (2.2) it is obvious that Reflexivity and RW holds. It remains to be
checked the rules Cut and Cautious Monotony.

Let’s suppose that α |∼ab β, then the second condition in the rule E-C-Cut is satisfied,
i.e. ∀δ [ α ¤ δ ⇒ `Σ δ → β ]. Therefore from E-C-Cut and E-CM we easily conclude
{γ : α ¤ γ} = {γ : (α ∧ β) ¤ γ} and hence C(α ∧ β) = C(α) (where as usual for a fixed
consequence relation |∼ and any formula δ, C(δ) is the set {θ : δ |∼ θ}). That is to say, |∼ab

satisfies Cut and Cautious Monotony. 2

Proof of proposition 2.6: (i) That RLE holds is straightforward. To see that ROR holds,
suppose that α ¤ (γ ∨ ρ). First note that (γ ∨ ρ) 6`Σ ¬γ or (γ ∨ ρ) 6`Σ ¬ρ. Otherwise,
(γ∨ρ) `Σ (¬γ∧¬ρ) and hence (γ∨ρ) `Σ ⊥, which is a contradiction since ¤ is an explanatory
relation. Therefore by RA α ¤ (γ ∨ ρ) ∧ γ or α ¤ (γ ∨ ρ) ∧ ρ. Hence by RLE α ¤ γ or α ¤ ρ.

(ii) and (iii) are straightforward.

(iv) The proof that RA implies E-Disj is as in (i) above. Conversely suppose that ¤

satisfies E-Disj and RLE, we want to show that RA holds. Let α, γ and γ′ be such that
α ¤ γ, γ′ `Σ γ and γ′ 6`Σ ⊥. Since γ′ `Σ γ, we have `Σ γ ↔ (γ′ ∨ γ) so by RLE α ¤ (γ′ ∨ γ).
Since by hypothesis γ′ 6`Σ ⊥ then by E-Disj we have α ¤ γ′.

(v) Suppose (α1 ∨ α2) ¤ γ and αi 6¤γ for i = 1, 2. We claim that γ 6`Σ αi for i = 1, 2.
Otherwise by E-CM we have for some i ∈ {1, 2}, (α1 ∨ α2) ∧ αi ¤ γ and therefore by LLE we
conclude αi ¤ γ which is a contradiction. Let γi = γ ∧αi. Since γ `Σ (α1 ∨α2), then it is clear
that γ is equivalent modulo Σ to γ1 ∨ γ2. On the other hand, γi `Σ αi and γi 6`Σ ⊥ for i = 1, 2
(otherwise γ `Σ αi for some i). Finally by RA we have that (α1 ∨ α2)¤ γi and by E-CM and
LLE we conclude αi ¤ γi for i = 1, 2.

2

Proof of theorem 2.8: We already know from 2.5 that |∼ab is cumulative, so it remains to
be shown that |∼ab satisfies the rule Or. Let’s suppose that α |∼ab ρ and β |∼ab ρ, we will
show that α ∨ β |∼ab ρ. Let γ be such that (α ∨ β) ¤ γ, we have to show that γ `Σ ρ. By
proposition 2.6(v) we have to consider three cases: (a) α ¤ γ. Since α |∼ab ρ then we have
γ `Σ ρ. (b) β ¤ γ. We conclude that γ `Σ ρ as in the first case. (c) There are γ1 and γ2 such
that `Σ γ ↔ (γ1 ∨ γ2) with α ¤ γ1 β ¤ γ2. Then, by hypotheses we have γi `Σ ρ for i = 1, 2.
Since `Σ γ ↔ (γ1 ∨ γ2) we conclude γ `Σ ρ. 2

Proof of theorem 2.9: By 2.8 we know that |∼ab is preferential. So it remains to be shown
that |∼ab satisfies WDR. We define an auxiliary function F that maps formulas into formulas
as follows: F (α) =

∨{γ : α ¤ γ} in case there is γ such that α ¤ γ, otherwise we let F (α) =⊥.
Notice that α |∼ab β iff F (α) `Σ β. To see that WDR holds it clearly suffices to show that
F (α)∧F (β) `Σ F (α∨β). Let α¤γ and β¤δ, it is enough to verify that when γ∧δ is consistent
with Σ, then (α ∨ β) ¤ (γ ∧ δ). Since 6`Σ γ → ¬δ, from RA we easily conclude α ¤ (γ ∧ δ) and
β ¤ (γ ∧ δ), therefore from LOR we obtain (α ∨ β) ¤ (γ ∧ δ). 2
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Proof of proposition 2.10: It is clear that E-DR implies LOR. To check that E-DR
implies that |∼ab satisfies DR, suppose that α ∨ β |∼ab ρ and α 6|∼ab ρ. We have to show that
β |∼ab ρ. Let δ be such that β ¤ δ, it suffices to check that δ `Σ ρ. Since α 6|∼ab ρ, then there
is γ such that α ¤ γ and γ 6`Σ ρ. By E-DR (α ∨ β) ¤ γ or (α ∨ β) ¤ δ. Since α ∨ β |∼ab ρ and
γ 6`Σ ρ, we conclude that (α ∨ β) ¤ δ. Therefore δ `Σ ρ. 2

Proof of theorem 2.12: By 2.8 |∼ab is preferential. Thus it suffices to show that |∼ab satisfies
Rational Monotony. Let α, β and ρ be formulas such that α |∼ab ρ and α 6|∼ab ¬β. Let γ be
such that (α ∧ β)¤γ, we want to show that γ `Σ ρ. Since α 6|∼ab ¬β, then by definition of |∼ab

there is δ such that α ¤ δ and δ 6`Σ ¬β. By RA (see 2.6.iii) there is δ′ `Σ δ such that α ¤ δ′

and δ′ `Σ β. Therefore by E-R-Cut we conclude that α ¤ γ. Since α |∼ab ρ, then γ `Σ ρ. 2

Proof of proposition 2.13: We will consider three cases.

(Case 1) Suppose that (α ∨ β) |∼ab ¬α. In particular, we have that for all (α ∨ β) ¤ γ,
γ `Σ β. We will show that (b) holds. Let γ be such that (α ∨ β) ¤ γ. Then by our hypothesis
γ `Σ β. By E-CM (α ∨ β) ∧ β ¤ γ and by LLE β ¤ γ. On the other hand, let γ be such that
β ¤ γ, then by E-CM (α ∨ β) ∧ β ¤ γ. Since (α ∨ β) |∼ab ¬α, then it follows from E-C-Cut
that (α ∨ β) ¤ γ.

(Case 2) Suppose that (α ∨ β) |∼ab ¬β. Then as in case 1 it follows that (a) holds.

(Case 3) Suppose that (α ∨ β) 6|∼ab ¬α and (α ∨ β) 6|∼ab ¬β. We will show that (c) holds.
By 2.6(v) it suffices to show that {γ : α ¤ γ}∪ {γ : β ¤ γ} ⊆ {γ : (α ∨ β)¤ γ}. By hypothesis
there is γ′ such that (α ∨ β) ¤ γ′ and γ′ 6`Σ ¬α. By RA we can assume that γ′ `Σ α. Let γ
be such that α ¤ γ, then by E-CM (α ∨ β) ∧ α ¤ γ. Using γ′ and E-R-Cut we conclude that
(α ∨ β) ¤ γ. It can be shown analogously that if β ¤ γ, then (α ∨ β) ¤ γ. 2

Proof of proposition 2.14: Suppose α ¤ γ and β ¤ δ and (α ∨ β) 6¤δ, we want to show that
(α ∨ β) ¤ γ. Since ` β ↔ (α ∨ β) ∧ β and β ¤ δ then it follows from E-R-Cut that for all
γ′ if (α ∨ β) ¤ γ′, then γ′ 6`Σ β. Since α ¤ γ we have (α ∨ β) ∧ α ¤ γ. Suppose, towards a
contradiction, that (α ∨ β) 6¤γ. By E-C-Cut there is γ′ such that (α ∨ β) ¤ γ′ and γ′ 6`Σ α.
By RA (2.6) there is γ′′ such that (α ∨ β) ¤ γ′′ and γ′′ `Σ α. Finally, since ` α ↔ (α ∨ β)∧ α
and α ¤ γ, then by E-R-Cut we conclude that (α ∨ β) ¤ γ, a contradiction. 2

Proof of proposition 2.17: Suppose that (α ∧ β) ¤ γ and also that δ `Σ β for all δ such
that α ¤ δ. It suffices to show that there is δ such that α ¤ δ. Since (α ∧ β) ¤ γ then (by the
definition of an explanatory relation) α is consistent with Σ, therefore by E-ConΣ there is δ
such that α ¤ δ. 2

Proof of proposition 2.20: It is obvious that if α `Σ β then α |∼ab β. On the other hand, if
α 6`Σ β, then α ∧ ¬β 6`Σ⊥. Thus by E-ConΣ there is γ such that (α ∧ ¬β) ¤ γ. Therefore by
E-Cut α ¤ γ, hence α 6|∼ab β. 2

Proof of proposition 3.3: Let ¤̃ be the explanatory relation associated with |∼ and let |∼ab

be the consequence relation associated with ¤̃. We will show that |∼ is equal to |∼ab. By
definition of |∼ab and the hypothesis that |∼ is adequate we have

Cab(α) =
⋂{Cn(Σ ∪ {γ} : α¤̃γ}

=
⋂{Cn(Σ ∪ {γ} : C(α) ⊆ Cn(Σ ∪ {γ} & γ 6`Σ⊥}

= C(α)

Observe that these equalities are valid even in the case that there is no γ such that α¤̃γ
(equivalently, when C(α) contains all formulas). 2
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Proof of theorem 3.4:

1. It is obvious from the definition of ¤̃ that it satisfies RA, E-RW and RLE.

2. It is obvious that if |∼ satisfies LLE, then ¤̃ satisfies LLE.

3. Suppose that |∼ satisfies ConΣ. It follows easily from the hypothesis that |∼ is adequate
that ¤̃ satisfies E-ConΣ.

4. Suppose that |∼ satisfies CM. To see that ¤̃ satisfies E-C-Cut let us suppose that
(α ∧ β)¤̃γ and also that δ `Σ β for all δ such that α¤̃δ. We have to show that α¤̃γ.
Suppose α |∼ ρ, it suffices to show that γ `Σ ρ. Since |∼ is adequate, from the second
part of the hypothesis of E-C-Cut we conclude that α |∼ β. Therefore by CM we have
C(α) ⊆ C(α ∧ β), since C(α ∧ β) ⊆ Cn (Σ ∪ {γ}), then the result follows.

5. Suppose that |∼ satisfies the S-rule. To see that ¤̃ satisfies E-CM let α¤̃γ and γ `Σ β.
We want to show that (α ∧ β)¤̃γ. Since γ is consistent with Σ, it suffices to show that
C(α ∧ β) ⊆ Cn (Σ ∪ {γ}). Let α ∧ β |∼ ρ, then by the S-rule α |∼ β → ρ. Since α¤̃γ,
then γ `Σ β → ρ. Hence γ `Σ ρ.

6. Suppose |∼ satisfies WDR. We will show that ¤̃ satisfies LOR. Suppose α¤̃γ and β¤̃γ.
By WDR we have that C(α∨ β) ⊆ Cn (C(α)∪C(β)). Then it is clear that (α ∨ β)¤̃γ.

7. Suppose |∼ is preferential and satisfies DR. We will show that ¤̃ satisfies E-DR. Suppose
α¤̃γ, β¤̃ρ and (α ∨ β) 6¤̃γ. Then there is δ such that α ∨ β |∼ δ and γ 6`Σ δ. Since
α¤̃γ and C(α ∨ β) ⊆ C(α) ∪ C(β) we have δ ∈ C(β). Now consider any δ′ such that
δ′ ∈ C(α ∨ β). We want to show that ρ `Σ δ′. By preferentiality δ ∧ δ′ ∈ C(α ∨ β). But
δ ∧ δ′ 6∈ C(α), otherwise γ `Σ δ ∧ δ′ and therefore γ `Σ δ which is a contradiction. Then
by DR δ ∧ δ′ ∈ C(β). Hence ρ `Σ δ ∧ δ′ and thus ρ `Σ δ′.

8. Suppose |∼ satisfies RM. We will show that ¤̃ satisfies E-R-Cut. Suppose (α ∧ β)¤̃γ
and there is δ such that α¤̃δ with δ `Σ β. From the last assumption and the definition
of ¤̃ we conclude that α 6|∼ ¬β. Therefore by RM we have C(α) ⊆ C(α ∧ β), and the
result follows.

9. Suppose that |∼ is monotone. Since |∼ is monotone, then C(α) ⊆ C(α ∧ β). Therefore,
if (α ∧ β)¤̃γ then α¤̃γ. This says that ¤̃ satisfies E-Cut.

2

Proof of proposition 3.5: For every α, let F (α) be a formula such that C(α) = Cn(F (α)).
Let us define ¤ as follows: α ¤ γ if γ 6`Σ⊥ and γ ≡ F (α). It is obvious that ¤ is indeed an
explanatory relation satisfying RLE. Let |∼ab be the consequence relation associate with ¤ .
It is easy to see that |∼ is equal to |∼ab. Now we will check the other postulates. It follows that
LLE (for ¤ ) follows from LLE for |∼. To see that E-CM holds, suppose α ¤ γ and γ `Σ β.
We need to show that (α ∧ β) ¤ γ. By hypothesis F (α) `Σ β, then it follows that α |∼ β.
Since |∼ is cumulative, then C(α) = C(α ∧ β). From this it follows that F (α) ≡ F (α ∧ β) and
therefore (α ∧ β) ¤ γ. The proof that E-C-Cut holds is similar. 2

Proof of proposition 3.8: ((i) ⇒ (ii)). It is obvious that any causal relation satisfies RA.
To check that C holds let α and γ be two formulas consistent with Σ. Suppose that for all δ
consistent with Σ such that δ `Σ γ there is ρ such that ρ `Σ δ and α ¤ ρ. We want to show
that Cab(α) ⊆ Cn(Σ ∪ {γ}). Let α |∼ab β and suppose toward a contradiction that γ 6`Σ β.
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Since γ ∧ ¬β is consistent with Σ then by the hypothesis in C there is ρ such that α ¤ ρ
and ρ `Σ γ ∧ ¬β. On the other hand, since α |∼ab β, then ρ `Σ β. Thus ρ `Σ⊥ which is a
contradiction.

((ii) ⇒ (i)). Suppose that ¤ satisfies RA and C. It suffices to show that if γ 6`Σ⊥ and
Cab(α) ⊆ Cn(Σ ∪ {γ}), then α ¤ γ. Let δ be any formula consistent with Σ such that δ `Σ γ.
Then there must exist ρ such that α ¤ ρ and ρ 6`Σ ¬δ (otherwise ¬δ ∈ Cab(α) which is not
possible). Then ρ ∧ δ is consistent with Σ. By RA we conclude that α ¤ ρ ∧ δ. Therefore by
C we get that α ¤ γ. 2

Proof of proposition 3.9: (i) implies (ii) follows from the fact that when E-ConΣ and E-
Cut hold, then |∼ab=`Σ (see 2.20). Therefore, since ¤ is causal, then α¤γ iff Cn(Σ∪{α}) ⊆
Cn(Σ ∪ {γ}) iff γ `Σ α. On the other hand, to see that (ii) implies (i), just notice that an
explanatory relation defined as in (ii) satisfies E-Cut, E-ConΣ and it is causal. 2

Proof of proposition 3.12: It suffices to show that ¤ satisfies C. Let γ1, . . . , γk be an upper
bound for {γ : α ¤ γ}. Let θ = γ1 ∨ · · · ∨ γk. By E-RW we have that α ¤ θ. Let α and γ
be formulas consistent with Σ. Suppose that for all δ such that δ 6`Σ⊥ and δ `Σ γ there is
ρ such that α ¤ ρ and ρ `Σ δ. We want to show that α ¤ γ. Suppose that α 6¤γ towards a
contradiction. Then by RA we have that γ 6`Σ θ. Therefore γ ∧ ¬θ is consistent with Σ. By
hypothesis there is ρ such that α ¤ ρ and ρ `Σ γ ∧ ¬θ, which contradicts that θ is an upper
bound. 2

Proof of proposition 4.3: Since ∗ preserves consistency, then it is clear that |< is a weak
explanatory relation (as defined in 4.2). It is obvious that LLE, RLE, E-Cut and full reflex-
ivity holds. Notice that LOR follows from E-Cut and LLE. To check E-CM, assume that
α|<γ and also that γ ` β. Then γ, α ∈ K ∗ γ. Thus α ∧ β ∈ K ∗ γ. Finally, E-RW follows
from the Or rule for |∼K and ROR follows from DR for |∼K . 2

Proof of proposition 4.4: From ConΣ it follows that |< is a weak explanatory relation. (i)
It is clear that |< is transitive, reflexive for Σ-consistent formulas and satisfies LLE, RLE.
E-RW follows easily from the Or rule. To check E-CM, let us assume that α|<γ and γ `Σ β.
Let α∧ β |∼ ρ, then by the S-rule we have that α |∼ β → ρ. By hypothesis C(α) ⊆ C(γ), thus
γ |∼ β → ρ. By preferentiality and ConΣ from γ `Σ β is easy to obtain γ |∼ β. Hence by RW
γ |∼ ρ. Therefore C(α ∧ β) ⊆ C(γ). To check E-C-Cut, assume that α ∧ β|<γ and also that
δ `Σ β for all δ such that α|<δ. In particular, since |< is reflexive, we have that α `Σ β. Thus
α |∼ β and therefore C(α) = C(α ∧ β).

(ii) DR says that C(α ∨ β) ⊆ C(α) ∪ C(β) from which it is obvious that LOR holds.

(iii) Suppose that |∼ is rational. We will use the following well known fact about rational
relations. For every pair of formulas α and β one of the following holds: (i) C(α ∨ β) = C(α),
(ii) C(α∨β) = C(β) (iii) C(α∨β) = C(α)∩C(β). ¿From this is obvious that E-DR and ROR
hold. It remains to be checked that E-R-Cut holds. Suppose that α∧β|<γ and also that there
is δ such that α|<δ and δ `Σ β. By RM it suffices to show that α 6|∼ ¬β. Assume α |∼ ¬β
towards a contradiction. Since α|<δ, then δ |∼ ¬β. Since δ `Σ β, then by preferentiality and
ConΣ, δ |∼ β. Therefore δ |∼⊥ which contradicts the fact that δ is Σ-consistent. 2
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