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Abst rac t  

We present some results on the Borel complexity of topologies defined over countable sets 
and its ideal of nowhere dense sets. 

In this note we will be interested in topologies over the natural numbers N (or any countable set 
X).  We can identify every subset of N with its characteristic function, so its power set P ( N )  is 
identified with the Cantor space 2N. Since every topology over N is a subset of P ( N ) ,  it is clear 
then what we mean by saying that T is closed, open, Ga, Borel, analytic, etc. There are many results 
concerning the descriptive set theoretic properties of families of subsets of N ,  like ideals and filters 
(see [2, 4, 6, 7, 8, 101). Every filter (and dually every ideal) has naturally associated a topology, 
hence those results about the existence of Borel or analytic filters (or ideals) over N immediately 
provide examples of topologies over N of the same (Borel, projective) complexity. These topologies 
are not Hausdorff, however, given a filter 3 over N by an elementary construction it is easy to 
define a Hausdorff topology of the same complexity as the filter 3. It is known that every Ga filter 
is necessarily closed, but there are filters (and hence Hausdorff topologies) in all levels of the Borel 
hierarchy above the third level. 

In section $1 we will present some results on Borel topologies. In particular, we will show that 
there are not Gg TI topologies over N ,  but we will see that there are Ga-complete To topologies. We 
will show also that any regular topology is either II!-hard or it has only finitely many limits points. 
In section $2 we present some results about the ideal of nowhere dense sets. In particular, we will 
show that the ideal of nowhere dense sets of any Z! Hausdorff topology is necessarily principal. 

We will use the standard notions and terminology of descriptive set theory (see [3]). X will 
always denote a countable set. Let A, B be subsets of topological spaces Y and Z respectively, as 
usual A Sw B denotes the fact that A is Wadge reducible to B, that is to say, there is a continuous 
function f : Y + Z such that x E A iff f (x)  E B. FIN denotes the ideal of finite subsets of N ,  
0 x FIN denotes the ideal over N x N given by A E 0 x FIN iff for all n ,  {i : (n, i) E A) is finite 
and FIN x 0 denotes the ideal given by A E FIN x 0 iff there is n such that A 5 {n) x N ,  where as 
usual we identify a natural number n with the set { O , . .  a ,  n - 1). 0 x FIN is a II!-complete subset 
of 2NxN (see [3]). A topology T over X is said to be Alexandroff if it is closed under arbitrary 
intersection, equivalently, if for every x E X the set N,  = n{V : x E V and V is open) is an open 
set. N, is called the irreducible neighborhood of x. The following well know result characterize 
Alexandroff topologies in terms of partial orders. 
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T h e o r e m  1.1 A topology r over X is  Alexandmff iff there is  a binary relation 5,  over X which 
, is transitive and rejlezive and such that A E r iff for every z E A we have { y  E X : x 5, y )  & A. 

Moreover, the irreducible neighborhood of z is  { y  E X : x 5, y) .  Furthermore, r is  To iff 5, is 
antisymmetric. Also, cl,(A) = U z E A  cl , ({z) )  = UzEA{y  E X : y 2 ) .  Thus 5 ,  is given by 
Y Ir x i f f  Y E c l r ( { z ) ) .  

The following fact is easy t o  verify. 

P r o p o s i t i o n  1.2 Let f ,  g : 2 X  ~ 2 ~  + 2X h : 2X + 2 X  be the functions defined by f ( A ,  B )  = A n B ,  
g ( A ,  B )  = A U B and h(A) = X - A .  Then f ,  g and h are continuous and open. Moreover, h is 
an homeomorfism. 

In particular, the  descriptive set theoretic complexity of r is the  same as t h a t  of the  collection 
of T-closed sets. . 

2 On the complexity of topologies over countable sets 

In this section we will show some results about  the  structure of Borel topologies. We will s ta r t  
recalling some results from [9]. 

. T h e o r e m  2.1 ([9]) Let T be a topology over X 

(i)  r & 2X is closed i f  and only i f  r is  Alexandrog. 

(ii) Everjl open topology is  clopen and therefore Alexandroff. 

(iii) The closure of T i n  2 X ,  denoted by T ,  is  a topology. Therefore T is  the smallest Alexandmff 
topology containing T. 

(iv) r is T I  if and only i f  r is dense in 2X 

Proof:(Sketch) First,  it is not difficult t o  show t h a t  if S & 2 X  is a closed set which is closed under 
finite intersections (resp. unions), then S is closed under arbitrary intersections (resp. unions). 
From this (iii) follows, since T is a closed set closed under finite intersection and unions. Also from 
this observation half of (i) easily follows. For the  other half of (i), let A, be a sequence of open 
sets in afi Alexandorff topology T converging (pointwise) t o  A.  If z E A ,  then N,, the  minimal 
neighborhood of z ,  is a subset of eventually every A,  and therefore a subset of A.  Hence A is 
open. For (ii), let T be a n  open topology, then 8 and X are  interior points of r. From this, i t  can 
be shown tha t  there is a finite set F such tha t  F is r-clopen and X - F is discrete. From this i t  
follows tha t  T is clopen. Finally, for (iv) let us suppose t h a t  r is dense in 2 X .  Let A,  be a sequence 
of open sets converging pointwise t o  { z ) .  Let y # x ,  then there is n such t h a t  x E A, and y @ A,. 
Hence { y )  is closed. Conversely, suppose r is TI .  Then the  collection of T-closed sets contains all 
finite sets and hence i t  is dense in 2 X .  Since the  map  A I+ X - A is an  homeomorphism then r 
has t o  be also dense. 



Examples of F, topologies are very easy to construct, for instance, the co-finite topology having 
countable many open sets is obviously F, (and in fact, it is F,-complete). Given a filter 3 over 
w, then 3 U (0) is a topology, we will identify 3 with this topology. Since filters and ideals are 
dual objects, we will also identify an ideal with the topology associated with its dual filter. Nice 
examples of F, ideals can be found in [6]. Next we give an elementary method to construct a 
Hausdorff topology based on a filter, it will be used to give examples in the sequel. 

Definition 2.2 Let 3 be a filter over w.  Let r, = {{w) u A : A E 3) u P(w) 

It is clear that if 3 is non principal then r, is a Hausdorff topology over w + 1. Since the 
function f : 2W + 2W+1 given by f (A) = A U {w) is continuous and A E 3 iff f (A) E r,, then 
3 is Wadge reducible to r,. Also notice that if 3 is a non trivial filter, then w is the.only limit 
point of (w + 1, r,). In fact, it is clear that this is a characterization of such spaces. We state this 
observations i~! the next proposition for later reference. 

Proposition 2.3 (i) For every filter 3, TF is a Hausdorfl topology over w + 1 and 3 5,  7,. 

(ii) Let (X, r) be a Hausdorfl space such that x(') = {s l ,  . . . , s,). Then there is a partition of 
X in finite many clopen pieces X1, . . . , X, with x; E X; and there are non principal filters 3, 
over X; - {s;) for 1 5 i 5 n such that (X, r) is homeomorphic to $y(X;, rFi(s;)). In fact, 
the filters are given by 3, = { A  (Xi - {xi)) : A U {xi) E r ) ,  thus 3, 5 ,  7. 

Since,every G6 filter is necessarily closed, then 2.3 does not provide examples of G6 topologies. 
In fact the situation is quite different. We show next that there are no non discrete TI topologies 
over N that are Gg as subsets of 2N and later we give an example of a G6-complete To topology. 
First we recall that 2N has a group structure: If A, B E 2N then put A + B = AAB. Then 
(2N, +) is a Polish group (i.e, it is a topological group such that its topology is separable and 
completely metrizable). 2N it is the countable product of the group { O , 1 )  with addition module 
2. The following fact is known (for instance, see 1.9.6 of [3]), its proof is based on a Baire category 
argument. 

Theorem 2.4 Let G be a Polish group and N a subgroup of G. If N is a G6 subset of G then N 
is closed. 

Theorem-2.5 Let G be a dense G6 subset of 2N, if G is closed under finite unions and intersection 
then G = 2N. In particular, if r is a Tl topology over N and T 2N is Gal  then r is the discrete 
to~olog~.  

Proof: Let G be closed under finite unions and intersections. Let clopen(G) = {A E 2N : A, AC E 
G), then clopen(G) is a subgroup of the cantor group 2N. Since G is G6 then clopen(G) = 
G n {N - A : A E G)  is also Ga (since A I+ N - A is an homeomorphism). Thus by 2.4 clopen(G) 
is closed. But G is dense, hence by the Baire category theorem, clopen(G) is also dense, therefore 
G = 2N. The last claim follows from 2.l(iv). . 
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There are some simple A: topologies over N (i.e., they are both Gs and F,). For instance, let 
X = w+ 1 with the usual order and T be the corresponding Alexandroff topology. Let T' = T - {{w)). 
Then it is easy to  check that 7 = T and also that T' is A:, i.e., it is both F, and Gs. Next example 
shows that there are true Gs topologies. But first a general result. 

Proposition 2.6 Let T be an Alezandrofl topology over a countable set X and let D(T) = {A E 
T : A is T-dense). Then D(T) is Gs in 2X and therefore every Alezandroff topology contains the 
Gs topology given by D(T) U (0). 

Proof: It is straightforward to  check that A E D(T) iff for all x E X there is y E A such that 
x 5, y, where 5, is the order given by 1.1. 

In general, the topology given by the previous proposition is not a true Gs set. For instance, 
let <, be defined in Z by i <, j if j = 2n + 1 & (i = 2n or i = 2n + 2). Let T be the Alexandroff 
topology given by <,. Notice that {2n+ 1) is T-open and therefore an open set V is T-dense iff for 
all n, 2n + 1 E A. Hence D(T) is closed. 

Example 2.7 A Ga-complete To topology on a countable set. 
Let X = 2<W, so X consists of all binary sequences. Let 5 be the usual extension order on sequences. 
Let T be the Alexandroff topology over X given by 5 .  For each s E 2<W the irreducible neighborhood 
of s is N, = {t E 2<w : s 5 t). We claim that D(T) is Gs-complete. Let T' = D(T) u (01, then T' 

is clearly a topology. Since T is To and T' is dense in T, then T' is also To and it is a Gs-complete 
subset of 22<w. SO it remains to  prove the claim, for that end, we will show some simple facts that 
will simplify the arguments. 

Claim 1: Let T 2 2<W, then T is T-closed iff T is a tree. 
Proof: Since T is an Alexandroff topology, then by 1.1 cl,({s)) = {t E 2<W : t 3 s) and T is T-closed 
iff cl,({s)) 2 T for all s E T .  

Claim 2: Let T be a binary tree, as usual [TI denotes the set of (infinite) branches of T.  Then T 
is T-closed-nowhere-dense iff [TI is nowhere dense in 2N. 
Proof: It is easy to check that for every T-closed set T and every s E 2<W, U, = { a  E 2N : s 4 a) 
[TI iff N, = {t E 2<w : s t) 2 T.  

The following is a well known fact (see [3], pag 27): Let cp : K(2N) I+ 22<w given by cp(K) = 
{s E 2 < ~ * :  U,nK # 01, that is to say cp(K) = {s E 2<W : 3a E K s 4 a). Then cp is 1-1, continuous 
and K = [cp(K)]. In fact, cp is an homeomorphism of K(2N) onto the set of binary pruned trees. 

Since the collection of nowhere dense closed subsets of 2N is Gs-complete (see [5 ] ) ,  then from 
the facts above we conclude that {F 2 2<" : F is T-closed-nowhere-dense set) is also Gs-complete. 
Finally let us observe that D(T) = {V 2 2<W : 2<W - V is T-closed-nowhere-.dense) and therefore 
(by 1.2) D(T) is Gs-complete. (end of example 2.7) 

Next we will show some simple facts about the complexity of a topology generated by closed, 
F, or analytic bases. 
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Proposition 2.8 (a) Every topology over a X with a F, base (or subbase) is II!. In particular, 
every second countable topology over X is II:. 

(ii) Every topology over X with a Ci bases is Ci. 
(iii) Let r be a Hausdorff topology over X with a F, base. If x(') is finite, then r is F,. 

Proof: Let B be a base for r ,  then we have 

( i )  I f  B is F,, then from (1 )  it follows that r is II!. I f  S is a F, sub-base for r then by 1.2 the base 
generated by S is also F,. ( i i )  clearly follows from (1) .  (iii) follows from 2.3(ii). Since the filters 
3; given there are clearly generated by a F, set and therefore they must be F,. Hence r is F,. 

Remark: There are topologies over X such that x(') is finite but r is not F, (and o f  course r has 
not a F, base). For instance, let 3 be a filter over w which is not F, (for example, the dual filter 
o f  0 x FIN). Then rF (2.2) is not F, (actually, it is II:-complete), but x(') = {w) .  

The next theorem says that under some conditions a Hausdorff topology is at least II!. 

Theorem 2.9 Let ( X ,  r )  be a regular space with r Borel, then one of the following holds: 

(i) x(*) is finite and therefore there are non principal filters 3;) 1 5 i < n, over w such that 
( X ,  r )  is homeomorphic to $7 (w + 1, rF, (w)  ) . Moreover, 3, 5 r .  

(ii) p sw r ,  where p denotes the topology of $? (w,  co-finite) . In particular, r is II!-hard. 

Coroilary 2.10 The topology of the rationals is ll:-complete. 

Proof: We will need the following easy facts: 

Lemma 2.11 Let Y be a countable set, { P , ) ;  a partition of Y and {K}; pairwise disjoint nonempty 
subsets of X .  Let f; : 2': -+ 2", be continuous function. Define f : 2Y + 2X by f ( A )  = U; f;(AnP,).  
Then f is continuous. 

Lemma 2.12 Let p be the topology of $? (w,  co-finite), the free sum of w copies of w with the 
co-finite topology. Then p is II:-complete. 

Proof: Consider the function f : 2WXW + 2WXW defined by f ( A )  = { (n ,  2m)  : (n, m) E A) .  Then f 
is continuous and A E 0 x FIN i f f  f ( A )  is pclosed. Since 0 x FIN is II:-complete then so is p 

The following result is the main ingredient for the proof of  2.9 

Lemma 2.13 Let r be a T l  Borel topology. Suppose there is an infinite collection of pairwise 
disjoint non-discrete r-open sets. Let p be topology over w x w defined in 2.12. Then p 5, r ,  that 
is to say, there is a continuous function f : 2WXW + 2X such that A is p-closed if and only i f f  ( A )  
is r-closed. In particular, r is lT!-hard. 
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Proof: Let VI. be a pairwise disjoint T-open sets such that for each i, VI.nx(') # 0. Since T ~ V I .  is Tl 
and non discrete then by 2.5 TJV, is not Ga. Since TIV, is clearly Borel then by a result of Wadge TIVI. 
is C;-hard (see, for instance, theorem 11.22.10 in [3]). Let f; : 2N + 2% be a continuous function 
such that A is closed in the co-finite topology iff f; (A) is closed in V;. Let K = cl, (U, V,)  - U, V,,  
then K is T-closed. We will identify w with {i) x w, so f; can be seen as a function from 2{i)xw. 
Let f : 2WXW + 2X be defined by 

f (A) = K u U fi(A n ({i) x w)) 
a 

then by 2.11 it is easy to check that f is continuous. 
We claim that A is pclosed iff f (A) is T-closed: (a) Suppose A is pclosed, then for every i ,  

An  ({i) x w is co-finiteclosed, hence f; (An ({i) x w)) is closed in VI.. Let y E cl,( f (A)), we will show 
that y E f (A). If y E K then there is nothing to show. Suppose y E U; V, ,  and let i be such that 
y E VI.. Let W = VI. - f; (A n ({i) x w)), then W is T-open. Notice that f (A) n V; = f;(A n ({i) x w ) )  
, so if y @ f (A), then clearly y E W, but this is a contradiction since y E cl,( f (A)). (b) Suppose 
A is not pclosed, then there is i such that {n : (i, n) € A) is not co-finiteclosed, and hence 
f;(A n ({i) x w)) is not closed in V,. Since f (A) n V; = f;(A n ({i) x w)) then f (A) can not be 
T-closed. q 

We will show next, some conditions where the previous proposition can be applied. Notice that 
w with the co-finite topology has no isolated points but there are no disjoint open sets, so we will 
work with Hausdorff spaces. 

Lemma 2.14 Let (X,  T) be a Hausdorfl space such that x(') is infinite. Then any of the following 
conditions implies that there is an infinite collection of pairwise disjoint non-discrete T-open sets. 

(i) x(2) # 0. 

(ii) (X, T) is regular. 

Proof: (i) Suppose x ( ~ )  # 0. Let x E x ( ~ )  and y1 # x with yl E ~ ( ' 1 .  Let W and Vl be disjoint 
open sets containing x and yl respectively. Then W n x(') # 0. Let y2 E W be a limit point. We 
can repeat the construction inside W and find V2 with y2 E V2. In this way we construct a sequence 
of limit points {y,) and pairwise disjoint open sets {V,) with y, E V,. 

(ii) If T is zero-dimensional (i.e., it admits a base of clopen sets), x(') is infinite and x ( ~ )  = 0, 
then such family of open sets exists. In fact, we can define by induction a collection {W, : x E x(')) 
of pairwise T-clopen sets with x E W,. If T is regular, x(') is infinite and x ( ~ )  = 0, then T is zero- 
dimensional. In fact, let x € x(') and V open such that x E V and x(') n V = {x). Then by 
regularity, there is W C V open such that x E W and cl,(W) C V. Then cl,(W) n x(') = { s ) ,  

thus W is clopen. q 

Now 2.9 follows from 2.3(ii), 2.14 and 2.13. (0 2.9) 



Example 2.15 A Xi -complete. zero dimensional, perfect topology with a Borel subbase. 

Let X = ZCW and let 4 be the usual partial order over sequences given by extension. Let < I  be 
defined as follows: if s 4 t then s < I  t ,  and if s and t are not +-comparable then put s <I t 
if s is less than t in the lexicographic order over ZCW. Let TI be the order topology over Z<" 
given by <I. Since < I  is isomorphic to the order of the rationals, then (ZCw, T ~ )  is homeomorphic 
to the topology of the rationals, hence TI is I I g  and zero dimensional. For every o E Zw let 
S, = {s E ZCW : for all i < lh(s), o(i)  5 s(i)). Notice that each S,  is Q-closed-nowhere-dense. Let 
3 be the filter generated by the S, with o E ZW. Let T be the topology generated by 3 U q (i.e. 
T is the supremum of TI and the topology associated with 3 ) .  Since the collection {S ,  : cr E N ~ )  
is a Borel set, then T has a Borel subbase. Notice that for every s, t and o, if (s, t) n S,  is not 
empty then it is infinite. So T has no isolated points. Since each S, is now T-clopen and Q is zero 
dimensional then it is easy to check that Q is also zero dimensional. We claim that T is Xi-complete, 
it is clearly El. It was shown in [lo] that 3 is Xi-complete and a similar argument also works in 
our case. For every tree T on Z we define f (T) by 

f (T) = {s E zCW : there is t E T with lh(s) = lh(t) and such that for all i < lh(s),  t(i) < s(i))  

It is easy to verify that f is continuous function from the collection of trees over Z (which is a 
closed subset of 2Z<w) into 2z<w. 

We will show first that if T is well-founded then f (T) is not T-open. Let T be a well-founded 
tree and towards a contradiction let us suppose that there are s , t  E Z<" and cr E Zw such that 
(s, t )  n S, # 0 and (s, t) n S, 5 f (T) ,  where (s, t) = {u E ZCW : s <I  u < I  t). Let u be such that 
s < ~  u < ~ t  and u E S,. Let n =  lh(u) and o, bedefined by o,(i) = u ( i )  i f i  < n a n d  o , ( i )=o ( i )  
otherwise. Then it is easy to  see that for all m ,  o J m  E (s, t) n S, and therefore o J m  E f (T) .  
Consider T' = {t E T : for all i < lh(t), t( i)  5 o,(i)). By definition of f (T) and the fact that 
olm E f (T) for all m we conclude that TI is a finitely branching infinite tree, therefore by Koning's 
lemma TI is not well-founded, which is a contradiction. 

On the other hand, if T is not well founded and o E [TI then it is easy to  check that S, C f (T) 
and therefore f (T) E 3 and thus f (T) is T-open. This finishes the proof that T is Xi-complete. 

3 Ideals of nowhere dense sets over countable sets. 

If T is a topology over X ,  we will denote by ND(T)  the collection of T-nowhere dense sets, i.e. 
those subsets A C_ X such that &(A) has empty interior. We will show some simple facts about 
the problem of representing ideals of subsets of X as the nowhere dense sets with respect to a 
topology over X .  This problem has been studied in [I]. Let Z be an ideal over w containing all 
singletons. Then the dual filter (together with 0) is a TI (but not Hausdorff) topology such that its 
nowhere dense sets are exactly the sets in Z. Here we are interested in the following question: given 
a Borel (Analytic) ideal Z over X ,  which are the possible complexities for a topology T such that 
Z = ND(T)? It is known that there is no Hausdorff topology T such that ND(T) = FIN (see [I]). 
We will show next that this result extends to  F, ideals. The following result generalizes Lemma 
3.2 of [I.]. 
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Proposition 3.1 Let Z be a F, ideal with FIN 5 Z and T a topology such that Z n T = ( 0 )  and 
FIN 5 N D ( T ) .  If there exists an infinite family {V,) of nonempty disjoint open sets, then there is 
A E N D ( T )  - Z.  

Proof: Let Z = Un Fn with each Fn closed. We can assume w.1.o.g. that each Fn is hereditary 
and Fn 5 Fn+l. First, we claim that for every nonempty V E T ,  { n  : there is a finite set K E Fn 
with K 5 V and K $ Fm, for m < n )  is infinite. In fact, otherwise there is n such that every 
finite subset of V belongs to Fn. But as Fn is closed, then V E F, and therefore V E Z, which is 
a contradiction. Let {V,) be a infinite collection of pairwise disjoint nonempty open sets and Kn 
be a finite subset of Vn such that Kn $ Fm for m < n .  Let A = Un Kn,  since each Fn is hereditary 
then A $ Fn, i.e. A $ Z. On the other hand, A E N D ( T )  because every finite set is T-nowhere 
dense and A n Vn is finite. 

I t  is well known that in every Hausdorff space there is an infinity family of nonempty disjoint 
open sets, therefore we have the following result which generalizes theorem 3.4 of [I]. 

Theorem 3.2 If T is a Hausdorff topology such that FIN 5 N D ( T ) ,  then N D ( T )  is not F,. 

The next observation is that if ( X ,  T )  is a scattered, then N D ( T )  is principal. 

Proposition 3.3 Let ( X ,  T )  be topological space such that for some cr, x ( ~ )  = 0. Then N D ( T )  is 
a principal ideal and therefore closed in  2 X ,  in  fact, N D ( T )  = P(x( ' ) ) .  

Proof: It is clear that N D ( T )  5 P(x( ' ) ) .  On the other hand, it suffices to show that x(') is 
nowhere dense, equivalently, that the collection of isolated points is open dense. Let V a non 
empty open set and z E V with rank ( z )  # 0 (i.e. z is not isolated) we will show that there is y E V 
with rank(y)  < rank($) ,  therefore there must be y E V with y isolated. Let rank ( z )  = P, i.e. 
z E ~ ( 0 )  but z $ X(P+'). Hence there is an open set W with z E W such that W n ~ ( 0 )  = { z ) .  
Since z is a limit point, then there is y E W n V with y # z. Thus y $ X ( D ) ,  i.e. rank(y)  < P. 

Theorem 3.4 Let T be a X! Hausdorff topology over X ,  then N D ( T )  is principal (hence closed). 

Proof: We claim that x ( ~ )  = 0 ,  otherwise by 2.13 together with 2.14 T would be II:-hard, which 
is a contradiction. Hence by 3.3 N D ( T )  is principal. 0 

This result implies that in order to represent non principal ideals with Hausdorff topologies 
we must look for topologies as least as complicated as II!. We will focus next on Alexandroff 
topologies. 

Proposition 3.5 Let T be a second countable topology, then N D ( T )  is II:. 



Carlos Uzc6tegui 9 

Proof: Let {V,) be a countable base for T. Then 

A E ND(T) if and only if Vn 32 (z E Vn & z g clT(A) ) 

Now, 
x E cl,(A) if and only if Vn (x E Vn 3 Vn n A # 0) 

This is clearly a Ga relation, and therefore N D(T) is II:. 

Proposition 3.6 (i) Let A X,  then there is a To Alexandroff topology T over X such that 
ND(T) = P(A).  

(ii) There is a To Alexandmff topology T over w such that ND(r )  = FIN. 

(iii) There is a To Alezandmff topology T over w x w such that ND(T) = FIN x 0. 

(iv) There is a To Alexandmff topology T over w x w such that ND(r)  = 0 x FIN. 

Proof: We will define for each case a partial order 5, and the topology will be given by 1.1. 

(i) Let <, be defined by x <, y for all x E A and y $A. 

(ii) Let <, be the usual order over w. 

(iii) Let 5, be defined over w x w as follows: (n, m) <, (n', m') if n < n' and (n, m) <, (n, m3 if 
m' < m, so the order of {n) x w is the reversed order of w. In other words, we have put a 
copy of w* for each element of w. This is a total order without a maximal point, hence a set 
is nowhere dense iff it is bounded. From this the result easily follows. 

(iv) Let 5, be defined over w x w as follows: (n, m) 5, (n, m') if m 5 m'. Notice that we have w 
copies of the usual order of the natural numbers and hence for every n, {n) x w is T-clopen. 
Thus A is T-nowhere-dense iff for every n, A n ({n) x w) is nowhere dense in {n) x w iff for 
every n, A n  ({n) x w) is finite. o 

Remarks: Since every Alexandroff topology is second countable, then its nowhere dense sets form 
a II: ideal. The previous proposition suggests the following question: which II: ideals Z over N 
admit an-Alexandroff topology T such that N D(T) = Z ? I t  is easy to check using 1.1 and 2.1 that 
the collection of Alexandroff topologies is a closed subset of the hyperspace K(2N). Now, if we fix a 
II: ideal Z over N then Top(Z) = {T : r is Alexandroff and ND(T) = Z) is a II: subset of K(2N). 
Notice that the equivalence relation saying that two Alexandroff topologies have the same ideal of 
nowhere dense sets is a II; equivalence relation. Is Top(F1N) Borel? 
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