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Abstract

We introduce a partial order on the collection of chemical trees based on tree transformations. This
partial order is tightly related to the Randić connectivity index χ. Its analysis provides new structural
information about the behavior of χ. As an illustration of the approach presented, we give a different
and more structural view of some known results about the first values of χ on the collection of chemical
trees.

1 Introduction

Let G be a simple graph (i.e. G does not have loops or multiple edges) with n vertices. The connectivity
index of G, denoted by χ, is defined as follows

χ(G) =
∑

1≤i≤j≤n−1

mij(G)√
ij

(1)

where mij(G) is the number of edges in G between vertices of degrees i and j.
Randić ([13]) introduced this index (known today as the Randić index) in the study of branching prop-

erties of alkanes, and it became one of the most useful graph-based molecular descriptors in applications to
physical and chemical properties ([9, 10]).

Let T and S be two chemical trees with n vertices. Are there structural properties of T and S guaranteeing
that χ(S) < χ(T )? More specifically, we are interested in the following problem. Suppose S can be obtained
from T by some elementary transformation (performed on T ), under which condition χ(S) < χ(T )? There
are a number of transformations that can be naturally considered as elementary. First of all, the operation
that consists on moving a pendent edge at a vertex x (i.e. an edge with one of its extreme being a pendent
vertex) to a vertex y. This naturally leads to more general operations like moving an exterior path (i.e.
a path starting from a pendent) or a maximal subtree (which will be defined later). Based only on these
operations we will show that there are many χ-monotone chains of trees. More precisely, we will show
how to construct chemical trees T0, T1, T2, · · · , Tm such that Ti+1 can be obtained from Ti by one of these
transformations and χ(Ti) < χ(Ti+1). We will write S ≺mso T when such sequence exists with T0 = S and
Tm = T and, as usual, we will write S ¹mso T when S = T or S ≺mso T . The relation ¹mso is a partial
order on the collection of all chemical trees with n vertices.

The main purpose of this paper is to study ¹mso and show how to obtain, from the properties of ¹mso,
structural information about the behavior of χ. As an illustration, we will deduce various known results
about extremal trees. For instance, T ¹mso Ln for every chemical tree T with n vertices. Notice that this
claim is stronger than just saying that χ(T ) ≤ χ(Ln), where Ln is the path tree with n vertices (see [1, 2]).
We will also characterize the ¹mso-minimal chemical trees and, as a corollary of this, we will get some of
the results from [1, 2, 5, 7, 8] about the first values of χ on the collection of chemical trees. On the other
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Figure 1:

hand, our analysis gives new structural information about χ. For example, we will show that there are
chemical trees T such that χ(T ) is second χ-minimal but they are ¹mso-minimal, that is to say, they cannot
be transformed into a tree with minimal χ using one of the transformation considered in this paper (see
Example 5.5). Something analogous happens with third χ-minimal trees. For example, for n ≡ 1 mod(3), if
T and S are chemical trees with χ(T ) second minimal and χ(S) third minimal, then S 6¹mso T (see Theorem
5.10). In particular, it is not possible to transform T using a maximal subtree operation into a tree with χ
second minimal.

Our results reflect the non-linear nature of ¹mso and therefore might also reflect more accurately the
already recognized belief that “... branching is a subtle concept and it probably cannot (and should not) be
quantified by a single number”[5].

The idea of considering graph transformations as a criteria for defining neighborhood structure has
been successfully used for finding graphs with extremal properties. For instance, the Autographic System
developed by Caporossi and Hansen [3] is based on the so called Variable Neighborhood Search (VNS).
Roughly speaking, these neighborhoods are defined as follows. Let T be a collection of transformations on
graphs. Define the neighborhood NT (G), for a graph G, as the set of those graphs obtained as the result of
applying to G a transformation belonging to T . The use of different choices of T is a key ingredient of the
VNS. Our approach fits very well in this context and, in fact, many of the results about χ obtained by the
VNS heuristics served us for testing the scope of our approach. We have shown that for a particular choice
of T (namely, what we call maximal subtree operations), the search algorithm based on it provides enough
detailed information about the behavior of χ on the class of chemical trees. Moreover, the results presented
suggest that this approach (of focusing on a particular family of transformations) can be used to unravel
some structural properties of the connectivity index. In the last section we will comment more on this topic.

2 Maximal subtree operation on a tree

Let T be a tree (i.e. an acyclic connected graph) with set of vertices V (T ) and set of edges E (T ). If
v ∈ V (T ) we denote by δv the degree of the vertex v and Nv denotes the set of vertices in T which are
adjacent to v.

Assume that T is a tree and v ∈ V (T ) . As in [11], consider the set Pv (T ) consisting of all subtrees of T
which have v as a pendent vertex. If P,Q ∈ Pv (T ), then the relation P ⊆ Q, (i.e. P is a subtree of Q), is
a partial order relation over Pv (T ). Moreover, for each w ∈ Nv, we denote by T (v)w the unique maximal
subtree of Pv (T ) which contains the vertex w. The set {T (v)w}w∈Nv

is called the set of maximal subtrees
of T at v.

Consider the situation described in Figure 1
The operation mentioned in the introduction is defined as follows.
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Definition 2.1 A maximal subtree operation (mso, for short) on U consists in “moving” the maximal
subtree T (x)a of U at a vertex x ∈ V (U) (δx ≥ 2) which contains the vertex a ∈ Nx to another vertex
y ∈ V (U) (see Figure 1). The new tree obtained in this way is denoted by M(U, x, a, y). We will say that
U is obtained from U by a mso if there are x, a and y such that U = M(U, x, a, y) and in this case we will
write U = M(U).

We will constantly refer to the trees U,U and the vertices x, y and a above.
This informal description of a maximal subtree operation suffices for understanding the results presented

in this paper. However, for the sake of precision, we can make it more formal as follows. Let us recall the
definition of coalescence of two trees [4, p. 158]: given two trees T1 and T2 with v1 ∈ V (T1) and v2 ∈ (T2),
the coalescence of T1 and T2 with respect to v1 and v2, is formed by identifying v1 and v2 and is denoted by
T1 (v1) • T2 (v2). In other words, V (T1 (v1) • T2 (v2)) = V (T1) ∪ V (T2) ∪ {v∗} − {v1, v2}, with two vertices
in T1 (v1) • T2 (v2) adjacent if they are adjacent in T1 or T2, or if one is v∗ and the other one is adjacent to
v1 or v2 in T1 or T2.

Now a mso can be defined as follows. Let S be a maximal subtree of U at x, with pendent vertex x and
Nx = {a}. Then U = B (x) • S (x), where B := U − (S − {x}) is the tree obtained from U by deleting the
set of vertices V (S) − {x}. For every y ∈ V (U) such that y /∈ S, we have that M(U, x, a, y) is the tree
B (y) • S (x).

We can estimate the variation of the Randić index when a mso is applied to a tree. In [11, Theorem 2.3]
it was shown that if T is a tree and v ∈ V (T ) then

χ (T ) =
∑

w∈Nv

χ (Tw) +
(

1√
δv

− 1
)

RT (v) , (2)

where RT (v) is the Randić constant of T at v, defined as RT (v) =
∑

w∈Nv

1√
δw

.

As a consequence of (2) we get the following crucial result.

Lemma 2.2 Let U and U = M(U, x, a, y). Then

χ (U)− χ
(
U

)
=

(
1√
δU
x

− 1√
δU
x − 1

)
RB (x) +


 1√

δU
y

− 1√
δU
y + 1


RB (y)

+


 1√

δU
x

− 1√
δU
y + 1


 1√

δU
a

where B is the tree obtained from U by deleting the set of vertices V (Ta)−{x} and Ta is the maximal subtree
of U at x that contains a.

Although Definition 2.1 and Lemma 2.2 hold for general trees, we are particularly interested in chemical
trees, that is, trees for which every vertex has degree ≤ 4. Let Cn denote the set of chemical trees with n
vertices. We next introduce a partial order on Cn which is the main object of study of this paper.

Definition 2.3 Let S and T be trees in Cn. We define a partial order relation on Cn as follows:

S ¹mso T

if S = T or there exists a sequence of trees {Uj}k
j=0 ⊆ Cn, where U0 = S, Uk = T , Uj = M (Uj−1) and

χ(Uj−1) < χ(Uj) for each 1 ≤ j ≤ k.

We will strongly rely on the variation formula given in Lemma 2.2 to study the order ¹mso defined over
Cn. In spite of the numerous parameters appearing in this formula, we will find rather general structure
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results that assures the increase or decrease of χ when a mso is applied to a tree. These results are based on
the following ideas: if U ∈ Cn then we can classify a mso on U according to the degrees of the vertices x and
y : if δU

x = k and δU
y = l then U is obtained from U by a (k, l)-mso. On the other hand, we can associate to

U ∈ Cn the degree sequence
(n1, n2, n3, n4)

where ni denotes the number of vertices of U with degree i (1 ≤ i ≤ 4). In Table 1 we show all possible
(k, l)-mso on U ∈ Cn such that U ∈ Cn, together with the transformations of the degree sequences:

(k, l) -mso U −→ U
(4, 3) - (n1, n2, n3, n4) (n1, n2, n3, n4)
(4, 2) - (n1, n2, n3, n4) (n1, n2 − 1, n3 + 2, n4 − 1)
(4, 1) - (n1, n2, n3, n4) (n1 − 1, n2 + 1, n3 + 1, n4 − 1)
(3, 3) - (n1, n2, n3, n4) (n1, n2 + 1, n3 − 2, n4 + 1)
(3, 2) - (n1, n2, n3, n4) (n1, n2, n3, n4)
(3, 1) - (n1, n2, n3, n4) (n1 − 1, n2 + 2, n3 − 1, n4)
(2, 3) - (n1, n2, n3, n4) (n1 + 1, n2 − 1, n3 − 1, n4 + 1)
(2, 2) - (n1, n2, n3, n4) (n1 + 1, n2 − 2, n3 + 1, n4)
(2, 1) - (n1, n2, n3, n4) (n1, n2, n3, n4)

Table 1

Notice that some of these transformations are inverse of others. For instance, if U is obtained from U by
a (4, 2)-mso, then U can be obtained from U by a (3, 3)-mso. However, as we shall see, this fact is rarely
used due to the constrains on the degree of the vertices which guarantees the χ-monotony.

3 χ-increasing sequences of trees in Cn

In this section we show that for every tree U ∈ Cn, we can construct by means of maximal subtree operations,
a χ-increasing sequence of trees in Cn which ends in Ln, the path tree with n vertices. That is to say,
U ¹mso Ln for every U ∈ Cn.

Lemma 3.1 Let U ∈ Cn. If U is obtained from U by a (4, 1)-mso then χ (U) < χ
(
U

)
.

Proof. Assume that δU
x = 4 and δU

y = 1. It is easy to see that RB (x) ≥ 3
2 and 1√

δU
a

≥ 1
2 . On the other

hand, RB (y) ≤ 1√
2
. It follows from Lemma 2.2 that

χ (U)− χ
(
U

)
=

(
1
2
− 1√

3

)
RB (x) +

(
1− 1√

2

)
RB (y)

+
(

1
2
− 1√

2

)
1√
δU
a

≤
(

1
2
− 1√

3

)
3
2

+
(

1− 1√
2

)
1√
2

+
(

1
2
− 1√

2

)
1
2

< 0

Now we consider (3, 1)-mso on a chemical tree. In general, these operations are not χ-increasing. However,
under certain degree conditions we can assure that χ (U) < χ

(
U

)
when U is obtained from a (3, 1)-mso on

U .

Lemma 3.2 Let U ∈ Cn and assume that U is a tree obtained from U by a (3, 1)-mso. If nU
2 = 0 or nU

4 = 0
then χ (U) < χ

(
U

)
.
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Proof. Assume that δU
x = 3 and δU

y = 1. By Lemma 2.2,

χ (U)− χ
(
U

)
=

(
1√
3
− 1√

2

) (
RB (x) +

1√
δU
a

)
+

(
1− 1√

2

)
RB (y)

(i) If nU
4 = 0 then it is easy to see that RB (x) + 1√

δU
a

≥ 3√
3
. Also, RB (y) ≤ 1√

2
. Consequently,

χ (U)− χ
(
U

) ≤
(

1√
3
− 1√

2

)(
3√
3

)
+

(
1− 1√

2

) (
1√
2

)
< 0

(ii) If nU
2 = 0 then RB (x) + 1√

δU
a

≥ 3
2 and RB (y) ≤ 1√

3
. Hence

χ (U)− χ
(
U

) ≤
(

1√
3
− 1√

2

)
3
2

+
(

1− 1√
2

)(
1√
3

)
< 0

Lemmas 3.1 and 3.2 gives an algorithm to construct by means of maximal subtree operations, a χ-
increasing sequence of trees ending in Ln, the path tree with n vertices.

Theorem 3.3 For every U ∈ Cn with degree sequence (n1, n2, n3, n4) we can construct a χ-increasing se-
quence of trees {Uj}n1−2

j=0 ⊆ Cn, where U0 = U,Un1−2 = Ln and Uj = M (Uj−1) for each 1 ≤ j ≤ n1 − 2. In
particular, U ¹mso Ln.

Proof. By a repeated use of Lemma 3.1, we can construct a χ-increasing sequence of trees {Uj}n4
j=0 ⊆ Cn

such that U0 = U and the degree sequence of Un4 is (n1 − n4, n2 + n4, n3 + n4, 0). Since Un4 has no vertices
of degree 4 and a (3, 1)-mso does not modify the number of vertices of degree 4 (see Table 1), we can apply
Lemma 3.2 to obtain a χ-increasing sequence of trees {Uj}n3+2n4

j=n4
⊆ Cn, where Un3+2n4 = Ln. The result

follows from the fact that n1 = n3 + 2n4 + 2 .

Example 3.4 Table 2 illustrates the algorithm given in Theorem 3.3 to construct a χ-increasing sequence
{Uj}7j=0 ⊆ C19 such that Ui = M(Ui−1, x, a, y), for each 1 ≤ i ≤ 7.

Table 2

4 χ-decreasing sequence of trees in Cn

Now we turn our attention to the problem of constructing χ-decreasing sequences of chemical trees using
maximal subtree operations.

Lemma 4.1 Let U ∈ Cn with degree sequence (n1, n2, n3, n4) and assume that n2 ≥ 2. Then there exists
U ∈ Cn, obtained by a (2, 2)-mso on U , such that χ (U) > χ

(
U

)
.

Proof. We can choose x, y ∈ V (U) such that δU
x = δU

y = 2 and there are no vertices of degree 2 between
them. By Lemma 2.2,

χ (U)− χ
(
U

)
=

(
1√
2
− 1

)
RB (x) +

(
1√
2
− 1√

3

) (
RB (y) +

1√
δU
a

)

We distinguish two cases: (i) If xy ∈ E (U) then RB (x) = 1√
2
, RB (y) ≥ 1 + 1

2 and 1√
δU

a

≥ 1
2 . Therefore,

χ (U)− χ
(
U

) ≥
(

1√
2
− 1

)
1√
2

+
(

1√
2
− 1√

3

)
2 > 0
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Figure 2:

(ii) Otherwise, we may choose x, y as in the Figure 2

Figure 2

where δU
x1

≥ 3 since by our choice x1 cannot be of degree 2. Notice that x1 = y1 is possible. Then
RB (x) ≤ 1√

3
, RB (y) ≥ 1 and 1√

δU
a

≥ 1
2 and therefore

χ (U)− χ
(
U

) ≥
(

1√
2
− 1

)(
1√
3

)
+

(
1√
2
− 1√

3

) (
3
2

)
> 0

Lemma 4.2 Let U ∈ Cn with degree sequence (n1, 1, n3, n4). If n3 ≥ 1 then every U ∈ Cn obtained by a
(2, 3)-mso on U satisfies χ (U) > χ

(
U

)
.

Proof. Let x, y ∈ V (U) such that δU
x = 2 and δU

y = 3. By Lemma 2.2,

χ (U)− χ
(
U

)
=

(
1√
2
− 1

)
RB (x) +

(
1√
3
− 1

2

)
RB (y) +

(
1√
2
− 1

2

)
1√
δU
a

Since RB (x) ≤ 1√
3
, RB (y) ≥ 3

2 and 1√
δU

a

≥ 1
2 we deduce

χ (U)− χ
(
U

) ≥
(

1√
2
− 1

)
1√
3

+
(

1√
3
− 1

2

)
3
2

+
(

1√
2
− 1

2

)
1
2

> 0

By Lemma 4.1 and an inductive argument we can show that if U ∈ Cn has degree sequence (n1, n2, n3, n4)
and n2 = 2l or n2 = 2l+1, where l is a positive integer, we can construct a χ-decreasing sequence {Uj}l

j=0 ⊆
Cn, where U0 = U and Uj = M (Uj−1) for each 1 ≤ j ≤ l. The degree sequence of Ul is

(n1 + l, 0, n3 + l, n4) if n2 = 2l
(n1 + l, 1, n3 + l, n4) if n2 = 2l + 1

Now, by Lemma 4.2, if Uk has degree sequence (n1 + l, 1, n3 + l, n4) then we can construct a tree Ul+1 ∈ Cn

using a (2, 3)-mso on Ul, such that χ (Ul) > χ (Ul+1), and Ul+1 has degree sequence (n1 + l + 1, 0, n3 + l − 1, n4 + 1)
(see Table 1). In this way we have shown the following result:
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Theorem 4.3 Let U ∈ Cn with degree sequence (n1, n2, n3, n4). Then there exists a χ-decreasing sequence
{Uj}l

j=0 ⊆ Cn, where U = U0, Uj = M (Uj−1) for each 1 ≤ j ≤ l, and the following conditions hold:

1. If n2 ≡ 0 mod (2) then l = n2
2 and Ul has degree sequence

(
n1 +

n2

2
, 0, n3 +

n2

2
, n4

)

2. If n2 ≡ 1 mod (2) then l = n2+1
2 and Ul has degree sequence

(
n1 +

n2 + 1
2

, 0, n3 +
n2 − 3

2
, n4 + 1

)

We have reduced the problem to chemical trees with no vertices of degree 2.

Lemma 4.4 Let U ∈ Cn with degree sequence (n1, 0, n3, n4). If n3 ≥ 2 then there exists a tree U ∈ Cn

obtained by a (3, 3)-mso on U , such that χ (U) > χ
(
U

)
.

Proof. Let x, y ∈ V (U) such that δU
x = δU

y = 3. By Lemma 2.2

χ (U)− χ
(
U

)
=

(
1√
3
− 1√

2

)
RB (x) +

(
1√
3
− 1

2

) (
RB (y) +

1√
δU
a

)

Assume first that xy ∈ E (U) (see Figure 3).
Figure 3

If δU
c = δU

d = 1 then RB (x) ≤ 1√
3

+ 1, RB (y) = 2 + 1√
2

and 1√
δU

a

≥ 1
2 . Hence

χ (U)− χ
(
U

) ≥
(

1√
3
− 1√

2

)(
1√
3

+ 1
)

+
(

1√
3
− 1

2

) (
5
2

+
1√
2

)
> 0

Without loosing generality, we can assume that δU
a = min

{
δU
a , δU

b , δU
c , δU

d

}
and by our previous argument,

δU
a and δU

b are not simultaneously equal to 1. In particular, δU
b ≥ 2. We consider two cases:

(i) Suppose δU
a = 1. Since RB (x) ≤ 1√

3
+ 1√

2
and RB (y) ≥ 1√

2
+ 1, then

χ (U)− χ
(
U

) ≥
(

1√
3
− 1√

2

)(
1√
3

+
1√
2

)
+

(
1√
3
− 1

2

) (
1√
2

+ 2
)

> 0

(ii) Suppose 2 ≤ δU
a ≤ 4. Then RB (x) ≤ 1√

3
+ 1√

δU
a

since 1√
δU

a

≥ 1√
δU

b

. Also, RB (y) ≥ 1√
2

+ 1 and
1√
δU

a

≤ 1√
2
. Consequently,

χ (U)− χ
(
U

) ≥
(

1√
3
− 1√

2

) (
1√
3

+
1√
δU
a

)
+

(
1√
3
− 1

2

) (
1√
2

+
3
2

)

≥
(

1√
3
− 1√

2

)(
1√
3

+
1√
2

)
+

(
1√
3
− 1

2

)(
1√
2

+
3
2

)
> 0

and we are done.
Now suppose that xy /∈ E (U). We may assume that U has the form

Figure 4

where δU
x1

= 4 and δU
y1

= 4 (x1 = y1 is possible). Then, an identical analysis as above proves the result.
Let U ∈ Cn with degree sequence (n1, 0, n3, n4). By Lemma 4.4 there exists U1 ∈ Cn with degree

sequence (n1, 1, n3 − 2, n4 + 1) and χ (U) > χ (U1). If n3 − 2 > 0 then we can apply Lemma 4.2 to obtain
a tree U2 ∈ Cn with degree sequence (n1 + 1, 0, n3 − 3, n4 + 2) and χ (U1) > χ (U2). If n3 − 3 > 0 then we
again apply Lemma 4.4 . . . Continuing this (finite) process we arrive by a counting argument to our next
result:
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Theorem 4.5 Let U ∈ Cn with degree sequence (n1, 0, n3, n4). Then there exists a χ-decreasing sequence
{Uj}l

j=0 ⊆ Cn, where U = U0, Uj = M (Uj−1) for each 1 ≤ j ≤ l, and the following holds:

1. If n3 ≡ 0 mod (3) then l = 2n3
3 and Ul has degree sequence

(
n1 +

n3

3
, 0, 0, n4 +

2n3

3

)

2. If n3 ≡ 1 mod (3) then l = 2n3−2
3 and Ul has degree sequence

(
n1 +

n3 − 1
3

, 0, 1, n4 +
2n3 − 2

3

)

3. If n3 ≡ 2 mod (3) then l = 2n3−1
3 and Ul has degree sequence

(
n1 +

n3 − 2
3

, 1, 0, n4 +
2n3 − 1

3

)

From Theorems 4.3 and 4.5 we obtain an algorithm to construct, using maximal subtree operations, a
χ-decreasing sequence of chemical trees ending in a tree which belongs to one of the sets C00, C01 or C10

defined as

C00 =
{
U ∈ Cn : nU

2 = 0 and nU
3 = 0

}
;

C01 =
{
U ∈ Cn : nU

2 = 0 and nU
3 = 1

}
and

C10 =
{
U ∈ Cn : nU

2 = 1 and nU
3 = 0

}
.

We recall the well-known relations verified by a tree U ∈ Cn with degree sequence (n1, n2, n3, n4)

n1 + n2 + n3 + n4 = n (3)
n3 + 2n4 + 2 = n1

which implies
n = 2 + n2 + 2n3 + 3n4. (4)

From this relations we get that, depending on the value of n mod(3), only one of these sets is not empty.
Thus we have shown the following result.

Theorem 4.6 Let U ∈ Cn.

1. If n ≡ 0mod (3) then there exists V ∈ C10 such that V ¹mso U .

2. If n ≡ 1mod (3) then there exists V ∈ C01 such that V ¹mso U .

3. If n ≡ 2mod (3) then there exists V ∈ C00 such that V ¹mso U .

Example 4.7 Table 3 illustrates the algorithm given by Theorems 4.3 and 4.5 to construct a χ-decreasing
sequence {Uj}5j=0 ⊆ C20 such that Ui = M(Ui−1, x, a, y), for each 1 ≤ i ≤ 5. Note that U5 ∈ C00 which is
consistent with Theorem 4.6 since 20 ≡ 2mod (3).

Table 3
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5 Extremal elements in Cn with respect to ¹mso

In this section we will determine the maximal and minimal elements of Cn with respect to ¹mso. It follows
from Theorem 3.3 that U ¹mso Ln, for every U ∈ Cn. In other words, Ln is the unique maximal element in
Cn with respect to the order ¹mso. By Theorem 4.6, the question about the minimal elements is reduced to
determine the minimal elements of C00, C01 and C10.

The following identity will be useful [6]: if G is a graph with n vertices (non-isolated vertices) then

χ (G) =
n

2
− 1

2

∑

1≤i<j≤n−1

(
1√
j
− 1√

i

)2

mij (5)

where mij denotes the number of edges connecting a vertex of degree i to a vertex of degree j.

Theorem 5.1 Suppose n ≡ 2mod (3). Then C00 is the set of minimal elements of Cn with respect to ¹mso.

Proof. By Theorem 4.6 it suffices to show that χ is constant on C00. If T ∈ C00 then

m12 = 0 m13 = 0 m14 = n1

m23 = 0 m24 = 0 m34 = 0

Hence by (5)

χ (T ) =
n

2
− 1

2

(
1
2
− 1

)2

n1

From relations (3) we deduce that n1 = 2(n+1)
3 which implies χ (T ) = 5n−1

12 . Since χ (T ) depends only on n
we conclude that χ is constant on C00.

We now turn our attention to the set C01. Let us assume that n ≥ 13 (which implies n4 ≥ 3 by equation
(4)). Then we can decompose C01 as a disjoint union

C01 = P0 ∪ P1 ∪ P2

where Pi = {P ∈ C01 : m13 = i} for 0 ≤ i ≤ 2 (see Figure 5).

Figure 5

Lemma 5.2 If P0 ∈ P0, P1 ∈ P1 and P2 ∈ P2, then χ (P0) = 5n−11
12 + 3

2
√

3
, χ (P1) = 5n−14

12 + 2√
3

and
χ (P2) = 5n−17

12 + 5
2
√

3
. In particular, the Randić function χ is constant on each of the sets Pi, where

i = 0, 1, 2. Moreover, χ (P0) < χ (P1) < χ (P2).

Proof. If P1 ∈ P1 then
m12 = 0 m13 = 1 m14 = n1 − 1
m23 = 0 m24 = 0 m34 = 2

It follows from (5) that

χ (P1) =
n

2
− 1

2

[(
1√
3
− 1

)2

+ (n1 − 1)
(

1
2
− 1

)2

+ 2
(

1
2
− 1√

3

)2
]

=
n

2
− n1 + 9

8
+

2√
3

From relations (3)
n1 + 1 + n4 = n

n1 = 3 + 2n4

we obtain n1 = 1
3 (2n + 1) and so χ (P1) = 5n−14

12 + 2√
3
. Note that χ (P1) only depends on n, which implies

that χ is constant on the set P1. The rest of the proof is similar.
We will need the following notation for describing the minimal elements of C01.

9



Notation 5.3 If P ∈ Cn and x ∈ V (P ), then we denote by n1 (x) the cardinality of the set

{y ∈ Nx : δy = 1}

Theorem 5.4 Suppose n ≡ 1 mod(3) and n ≥ 13. Then the set of minimal elements of Cn with respect to
¹mso is

P0 ∪ {P ∈ P1 : n1 (x) ≥ 2 for every x ∈ V (P ) such that δx = 4.}

Proof. It is clear from Theorem 4.6 and Lemma 5.2 that every P ∈ P0 is minimal. On the other hand,
we note that in C01, the only possible maximal subtree operations are of the type (4, 3)-, (4, 1)- and (3, 1)-
(see Table 1). However, by Lemmas 3.2 and 3.1 every (4, 1)-mso and (3, 1)-mso in C01 is χ-increasing, so we
only need to consider (4, 3)-mso on C01. The rest of the proof is a consequence of the following facts.

(i) Let P ∈ P1. Then P is minimal if and only if n1 (x) ≥ 2 for every x ∈ V (P ) such that δx = 4. In fact,
assume that n1 (x) ≥ 2 for every x ∈ V (P ) such that δx = 4. If P is obtained from P by a (4, 3)-mso, then
it is easy to see that P ∈ P1∪P2 which implies by Lemma 5.2 that χ (P ) ≤ χ

(
P

)
. Hence, P is minimal. On

the other hand, if n1 (x) = 0 or 1, then there exists a P ∈ P0 obtained from P by a (4, 3)-mso. By Lemma
5.2, χ

(
P

)
< χ (P ) and so P is not minimal.

(ii) No P ∈ P2 is minimal. In fact, let P ∈ P2. If n ≥ 13 then there exist a x ∈ V (P ) such that δx = 4
and n1 (x) ≤ 2. It follows easily that there exists P ∈ P0 ∪ P1 which is obtained by a (4, 3)-mso on P .
Consequently, χ

(
P

)
< χ (P ) and so P is not minimal.

Example 5.5 Consider the tree P shown in Figure 6. Then P is minimal with respect to the relation ¹mso .

Figure 6

Finally consider the set C10. For i = 0, 1, let Qi = {P ∈ C10 : m12 = i} (see Figure 7).

Figure 7

Assume that n ≥ 9, which implies by equation (4) that n4 ≥ 2. Then C10 is the disjoint union

C10 = Q0 ∪Q1

Lemma 5.6 If Q0 ∈ Q0 and Q1 ∈ Q1 then χ (Q0) = 5n−9
12 + 1√

2
and χ (Q1) = 5n−12

12 + 3
2
√

2
. In particular,

the Randić function χ is constant on each of the sets Qi, where i = 0, 1. Moreover, χ (Q0) < χ (Q1).

Proof. Let Q1 ∈ Q1. Then

m12 = 1 m13 = 0 m14 = n1 − 1
m23 = 0 m24 = 1 m34 = 0

It follows from (5) that

χ (Q1) =
n

2
− 1

2

[(
1√
2
− 1

)2

+ (n1 − 1)
(

1
2
− 1

)2

+ 2
(

1
2
− 1√

2

)2
]

=
n

2
− 1

2

[
2− 3√

2
+

n1

4

]

From relations (3) we get that n1 +1+n4 = n and n1 = 2+2n4. Thus n1 = 2n
3 and so χ (Q1) = 5n−12

12 + 3
2
√

2
.

Similarly in the case Q0 ∈ Q0.
From Theorem 4.6 and the previous result we immediately deduce that every U ∈ Q0 is necessarily

¹mso-minimal in C10 (and thus in Cn). To fully describe all minimal elements of C10 we need to introduce
some notation. For each U ∈ Q1, we denote by yU

0 ∈ V (U) the unique vertex of degree 2 and xU
0 the

neighbor vertex of yU
0 of degree 4.

10



Theorem 5.7 Suppose n ≡ 0 mod (3) and n ≥ 9. Then the set of minimal elements of Cn with respect to
¹mso is

Q0 ∪ {U ∈ Q1 : n1(xU
0 ) ≥ 1 and n1(z) ≥ 2 for all z ∈ V (U) such that δU

z = 4, z 6= xU
0 }

Proof. We have already argued that every U ∈ Q0 is minimal. Notice that in C10 the only maximal
subtree operations possible (see Table 1) are of the form (4, 2)-, (4, 1)- and (2, 1)-. Again, by Lemma 3.1
every (4, 1)-mso is χ-increasing. On the other hand, if Q is obtained from Q ∈ Q1 by a (2, 1)-mso then
clearly Q ∈ Q1 which implies by Lemma 5.6 that χ(Q) = χ(Q). So we only need to consider (4, 2)-mso on
Q1.

Now let U ∈ Q1. We will write y0 and x0 in place of yU
0 and xU

0 . We consider first the case where there
exists z ∈ V (U) such that δU

z = 4, z 6= x0 and n1(z) ≤ 1. We return to the notation U and U in Figure 1.
By Lemma 2.2

χ (U)− χ
(
U

)
=

(
1
2
− 1√

3

) (
RB (x) +

1√
δU
a

)
+

(
1√
2
− 1√

3

)
RB (y0) (6)

If n1(z) = 1 then let x = z and a the unique neighbor of z of degree 1. Then RB(x) = 3
2 , δU

a = 1 and
RB(y0) = 3

2 . On the other hand, if n1(z) = 0 then again let x = z and a any neighbor of z. Then RB(x) = 3
2 ,

δU
a = 4 and RB(y0) = 3

2 . In any case, from (6) we get χ(U)−χ(U) > 0 which implies that U is not minimal.
Let us consider now the case where n1(x0) = 0. Let x = x0 and a any neighbor of x0 of degree 4. In this

case RB(x0) = 1 + 1√
2

and RB(y0) = 1 + 1√
3
. Thus from (6) we get χ(U)− χ(U) > 0 which implies that U

is not minimal.
Suppose now that U ∈ Q1, n1(xU

0 ) ≥ 1 and n1(z) ≥ 2 for all z ∈ V (U) such that δU
z = 4, z 6= xU

0 . To see
that U is minimal is suffices to show that χ(U)− χ(U) < 0 for any choice of x and any neighbor a of x. To
simplify the argument, notice that RB(x) + 1√

δU
a

= RU (x). We consider two cases:

(i) Suppose x 6= x0. Since n1(x) ≥ 2, RU (x) = 3 and RB(y0) = 3
2 .

(ii) Suppose x = x0. Then RB(y0) = 1+ 1√
3
. If n1(x0) = 2, then RU (x0) = 5/2+1/

√
2 and if n1 (x0) = 1,

then RU (x0) = 2 + 1/
√

2. Note that n1(x0) 6= 3 since n ≥ 9.
In every case, we have that RU (x) ≥ 2 + 1/

√
2 and RB(y0) ≤ 1 + 1/

√
3. Therefore from (6) we get that

χ(U)− χ(U) < 0. Consequently, U is minimal.

Example 5.8 Consider the tree U shown in Figure 8.

Figure 8

We end this section by illustrating a novel approach, based on the properties of ¹mso, for establishing
bounds for χ. We will give an alternative method to that found in [5] for determining the minimal, second
minimal and third minimal value of χ on Cn. We will work the particular case when n ≡ 1 mod(3). The idea
is roughly speaking as follows. Let T be a chemical tree. By Theorem 4.6 there is a descending ¹mso-chain
{Ti}k

i=0 , such that T0 = T , Ti+1 ≺mso Ti and Tk ∈ C01 (here is where we need that n ≡ 1 mod(3)) but
Tk−1 6∈ C01. The way this chain is constructed gives enough information to estimate χ(Tk−1) and from this
we will determine the first values of χ on Cn. More precisely, we have the following key fact.

Lemma 5.9 For n ≡ 1 mod(3), χ(U) ≥ 5n−11
12 +

√
2− 1/2 for every U ∈ Cn \ (P0 ∪ P1).

Proof. Let U ∈ Cn \ (P0 ∪ P1). From Lemma 5.2 we know that the result is valid if U ∈ P2, therefore
we assume that U 6∈ C01 = P0 ∪ P1 ∪ P2. By Theorem 4.6 there is a descending ¹mso-chain {Ti}k

i=0 such
that T0 = U , Ti+1 ≺mso Ti and Tk is in C01 but Tk−1 is not in C01. We will denote Tk by S and Tk−1 by T .
Since S ∈ C01, then by Lemma 5.2 χ(S) ≥ 5n−11

12 + 3
2
√

3
. On the other hand, as χ(U) ≥ χ(T ), it suffices to

show that χ(T )− χ(S) ≥ √
2− 1/2− 3

2
√

3
.
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Since the algorithm used in the course of the proof of Theorem 4.6 uses either a (2, 3)-mso, or a (3, 3)-
mso or a (2, 2)-mso, then we know that S was obtained from T by one of these operations. However, by
considering the degree sequence given by Table 1 we conclude that using a (3, 3)-mso it is impossible to get
to a tree in C01. So there are only two possible cases to consider.

(i) S was obtained from T by a (2, 3)-mso. As in the proof of Lemma 4.2 we know that χ(T )− χ(S) ≥
( 1√

2
− 1) 1√

3
+ ( 1√

3
− 1

2 ) 3
2 + ( 1√

2
− 1

2 ) 1
2 and the result follows.

(ii) S was obtained from T by a (2, 2)-mso. As in the proof of Lemma 4.1 there are two possibilities
which need to be considered separately since they provide different lower bounds for χ(T )− χ(S).

The first case considered in the proof of Lemma 4.1 gives that χ(T )− χ(S) ≥ ( 1√
2
− 1) 1√

2
+ ( 1√

2
− 1√

3
)2

and the result follows. The second case considered in the proof of Lemma 4.1 can be improved, since now
we know that nT

3 is necessarily equal to zero (see Table 1) as nS
3 = 1. Following the proof of Lemma 4.1 but

now using the fact that RB(x) = 1/
√

4, we get χ(T ) − χ(S) ≥ ( 1√
2
− 1)( 1√

4
) + ( 1√

2
− 1√

3
) 3
2 . From this it

follows that χ(T ) ≥ 5n−11
12 +

√
2− 1/2. Notice that this is the only case where we obtain exactly the same

bound as in the statement of the Lemma.

Theorem 5.10 Let n ≡ 1 mod(3).

1. The minimal value of χ in Cn is 5n−11
12 + 3

2
√

3
and it is attained exactly by the elements of P0.

2. The second minimal value of χ in Cn is 5n−14
12 + 2√

3
and it is attained exactly by the elements of P1.

3. The third minimal value of χ in Cn is 5n−11
12 +

√
2− 1/2 and it is attained exactly by those trees such

that n2 = 2, n3 = 0 and the two vertices of degree 2 are adjacent to two vertices of degree four.

Proof. 1 follows from Lemma 5.2 and Theorem 5.4.
To show 2, we know from Lemma 5.2 that χ is constant in P1 with value 5n−14

12 + 2√
3
. It is also clear

from Theorem 5.4 and Lemma 5.2 that every tree with χ equal to 5n−14
12 + 2√

3
is necessarily in P1. From

this and Lemma 5.9 the result follows.
Finally, notice that every tree as described in 3 has χ equal to 5n−11

12 +
√

2− 1/2 and from the proof of
Lemma 5.9 it follows that they are the only trees with exactly this value of χ. Now the result follows from
Lemma 5.2 and Lemma 5.9.

6 A general approach for ordering Cn

In this section we will give a more precise formulation of the general approach outlined in the introduction.
By a tree transformation we will understand a binary relation t(·, ·) on Cn. The motivating example is

the relation t(U,U) if U = M(U), as defined in 2.1. Let T be a collection of transformations on Cn. We
associate to T a partial order as follows: S ≺T T iff there is t ∈ T such that t(S, T ) and χ(S) < χ(T ). And
define ¹T as usual. For instance, if T consists of all mso, then ¹T =¹mso.

The order ¹T depends heavily on the choice of T . Consider, for example, the subfamily Tl of mso
consisting on all mso that moves a leave. That is to say, in definition 2.1 we restrict to those mso where δa = 1.
We will denote the corresponding order ¹Tl

by just ¹leave. Analogously, let ¹path be the corresponding
order for the subfamily of mso that moves a exterior path (i.e. in definition 2.1 we restrict to those mso
where the maximal subtree at x containing a is a path).

To see the difference between these partial orders, consider the tree U depicted in Figure 9

Figure 9

It is routine to verify that every tree obtained from U by moving a pendent vertex will have smaller connec-
tivity index. In other words, U is ¹leave-maximal. It is also routine to verify that by moving any path of U

12



to a pendent vertex we get a tree with larger χ. That is to say, U is not ¹path-maximal. Consider now the
tree W shown in Figure 10.

Figure 10

Let k be the length of longest ¹mso-chain from W to Ln and let l be the length of longest analogous
¹path-chain. It is routine (but a bit tedious) to verify that k > l. In other words, by using maximal subtrees
instead of just paths we get, as expected, a more detailed picture of the behavior of χ. More subtle properties
of ¹mso will be apparent when dealing with the problem of computing extremal elements of some special
subclasses of Cn. This problem will be treated in a forthcoming paper [12].

One gets a different family of transformations by considering the relation t(S, T ) if the symmetric dif-
ference between S and T has cardinality at most 2. It is not difficult to show that this is the case if S is
the result of applying a mso to T . These transformations were used in [3, 2] to define the heuristic routine
for finding extremal graphs. It is an interesting topic for future research to study the corresponding partial
order. And more generally, to study partial orders on Cn which are included in the total pre-order induced
by χ.
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