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Abstract

Let G be a collection of graphs with n vertices. We present a simple description
of [G]χ = {H ∈ G : χ(H) = χ(G)} where χ denotes the Randić index. We associate
to G a Q-linear map ρ : Qm → Qk (for some integers k, m depending on G) such that
the kernel of ρ contains the necessary information to describe [G]χ in terms of linear
equations. These results provide precise tools for analyzing the behavior of χ on a
collection of graphs.

1 Introduction

Let G be a simple graph (i.e. G does not have loops or multiple edges) with n vertices. The
connectivity index of G, denoted by χ, is defined as follows

χ(G) =
∑

1≤i≤j≤n−1

mij(G)√
ij

(1)

where mij(G) is the number of edges in G between vertices with degrees i and j.
Randić ([14]) introduced this index (known today as the Randić index) in the study of

branching properties of alkanes, and it became one of the most useful graph-based molecular
descriptors in applications to physical and chemical properties ([10, 11]). In spite of this
great number of practical applications, the study of the general mathematical properties of
χ started recently (see for instance [1, 2, 3, 4, 5, 6, 7, 9, 12, 13]).

It is well known that χ does not separate non-isomorphic graphs and, of course, it does
not distinguish between graphs with equal mij’s. So, given a (significant) collection of graphs
G with n vertices and G ∈ G, it would be interesting to describe the set

[G]χ = {H ∈ G : χ(H) = χ(G)}
To compute all graphs in this set seems a quite demanding task, since [G]χ is quite complex
from a combinatoric view point. In spite of all this, we will show that [G]χ can be described
very simply in terms of a system of linear equations.
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In order to state our results we need the following identity for the Randić index ([8])

χ(G) =
n(G)

2
− 1

2

∑
1≤i<j≤n−1

(
1√
j
− 1√

i

)2

·mij(G) (2)

Notice that the mii’s are not included. We denote by R(G) the set {mij(G)}1≤i<j≤n−1

and called it the Randić structure of G. It is clear from (2) that if R(G) = R(G′), then
χ(G) = χ(G′). Our description of [G]χ will be in terms of the Randić structure of a graph.

The basic idea is the following. Let G be a collection of graphs and G ∈ G. First
we express χ(G) as a linearly independent combination of certain

√
qi’s, where the qi’s are

positive integers which derive from the set of vertex degrees of graphs from G. The coefficients
in this linear combination, which will depend on R(G), induces in a natural way a Q-linear
map ρ : Qm → Qk (for some integers k, m depending on G). As we shall see, the kernel of
ρ contains precise information that will lead us to characterize the set [G]χ, in terms of a
system of linear equations on the mij’s. More precisely, we will show that for all G,H ∈ G

χ(G) = χ(H) ⇐⇒ R (G)−R (H) ∈ ker ρ

Perhaps the simplest situation, regarding the problem of describing [G]χ, is when [G]χ
consists merely of those H ∈ G such that R(H) = R(G). In this case, we will say G has Randić
structure property (RSP). We will show a fairly general method to generate collections with
the RSP. Furthermore, it will be shown that any collection of graphs G can be decomposed
into pairwise disjoint subcollections with the RSP. Moreover (and this is the non trivial part
of such decompositions) the subcollections are defined by linear equations on the mij’s. As
an example of how these ideas can be used to get information about the behavior of χ on a
collection of graphs, we will make in the last section an analysis of the collection of branch
regular trees of degree 4 (i.e. trees such that every vertex has degree 1, 2 or 4).

2 The Randić matrix

Let G be a collection of graphs with n vertices. We would like, for a given graph G ∈ G, to
describe the set

[G]χ = {H ∈ G : χ(H) = χ(G)}
As we mentioned in the introduction, the idea is to associate to G a Q-linear map ρ : Qm →
Qk (for some integers k, m depending on G). The kernel of ρ contains the information needed
to characterize [G]χ in terms of a system of linear equations. Heading in this direction we
introduce some notation.

Let D(G) be the set of vertex degrees of graphs in G and

X(G) = {i · j : i, j ∈ D(G) and i < j} .

Given x ∈ X(G), let x = pα1
1 · · · · pαr

r be the prime decomposition and define E(x) =
{i ∈ {1, . . . , r} : αi is even} and O(x) = {i ∈ {1, . . . , r} : αi is odd}. So we can express ev-

ery x ∈ X(G) as x =
∏

i∈E(x)

pαi
i · ∏

i∈O(x)

pαi
i . If y =

∏
j∈E(y)

q
βj

j · ∏
j∈O(y)

q
βj

j ∈ X(G) we define an
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equivalence relation over X(G) as follows:

x ∼ y ⇐⇒ {pi : i ∈ O(x)} = {qj : j ∈ O(y)}
Denote by X(G) the quotient set of X(G) modulo this equivalence relation and by [x] the
equivalence class of x ∈ X(G).

Finally, we will define two functions Ψ : X(G) −→ R and Γ : X(G) −→ N such that√
x = Γ(x)Ψ([x]) for x ∈ X(G). Let Ψ be defined as follows:

Ψ ([x]) =





√ ∏
i∈O(x)

pi if O (x) 6= ∅

1 if O (x) = ∅
and let Γ be defined by

Γ (x) =
∏

i∈E(x)

p
αi
2

i ×
∏

i∈O(x)

p
βi−1

2
i

For instance, Γ (23 · 34 · 5) = 2 · 32. In other words, Γ(x) is the part of x that can be taken
out as an integer of the square root of x.

The following lemma is probably known, but we will sketch its proof for the sake of
completeness.

Lemma 2.1. {Ψ ([x])}[x]∈X(G) is a linearly independent set over Q.

Proof. Let p1, . . . , pr be the set of all different prime numbers appearing as odd powers in

the prime decomposition of each [x] ∈ X(G). Consider the following tower of field extensions

K0 ⊆ K1 ⊆ · · · ⊆ Kr

where for each 1 ≤ i ≤ r, Ki = Ki−1

(√
pi

)
(the field obtained from Ki−1 by adjoining

√
pi).

Since
{
1,
√

pi

}
is a basis of Ki over Ki−1 then the set

B = {z1 · z2 · · · · · zr : zi ∈ {1,√pi}}
forms a basis of Kr over K0 = Q. But clearly {Ψ ([x])}[x]∈X(G) ⊆ B which implies that

{Ψ ([x])}[x]∈X(G) is a linearly independent set over Q.

Now we have all we need to show a key lemma

Lemma 2.2. Let G be a collection of graphs with n vertices (n ≥ 5) and χ : G −→ R the
Randić function. Suppose there is u ∈ X (G) such that O(u) = ∅ (i.e. u is a perfect square)
and let k = l.c.m. {X (G)}. Then for every G ∈ G,

k (2χ(G)− n) =
∑

ij∈[u]

Aijmij(G)−
∑

[x]∈X(G)
[x]6=[u]

∑

ij∈[x]

Bijmij(G)

+
∑

[x]∈X(G)
[x]6=[u]


 ∑

ij∈[x]

Cijmij(G)


 Ψ ([x])

where Aij = k(2Γ(ij)−i−j)
ij

∈ Z, Bij = k(i+j)
ij

∈ N and Cij = 2kΓ(ij)
ij

∈ N.
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Proof. For G ∈ G we know from (2) that

χ(G) =
n (G)

2
− 1

2

∑
1≤i<j≤n−1

(
1

j
+

1

i

)
mij(G) +

∑
1≤i<j≤n−1

√
ij

ij
mij(G) (3)

and

∑
1≤i<j≤n−1

√
ij

ij
mij(G) =

∑

[x]∈X(G)


 ∑

ij∈[x]

Γ (ij)

ij
mij(G)


 Ψ ([x])

=
∑

ij∈[u]

Γ (ij)

ij
mij(G) +

∑

[x]∈X(G)
[x]6=[u]


 ∑

ij∈[x]

Γ (ij)

ij
mij(G)


 Ψ ([x])

By substituting this last equation in (3) and then multiplying by 2k we get the result.

The integer coefficients Aij, Bij and Cij that appeared in Lemma 2.2 gives a natural way

to associate a linear map ρG : Q|X(G)| −→ Q|X(G)| to every collection G of graphs with a fixed
number of vertices as follows:

ρG =




[Aij]ij∈[u] [−Bij]ij∈[x1] [−Bij]ij∈[x2] · · · [−Bij]ij∈[xr]

[0]ij∈[u] [Cij]ij∈[x1] [0]ij∈[x2] · · · [0]ij∈[xr]

[0]ij∈[u] [0]ij∈[x1] [Cij]ij∈[x2] · · · [0]ij∈[xr]
...

...
...

...
[0]ij∈[u] [0]ij∈[x1] [0]ij∈[x2] · · · [Cij]ij∈[xr]




where X(G) = {[u] , [x1] , . . . , [xr]} is ordered by the induced order of {Ψ ([x])}[x]∈X(G) and the

elements in each class of X(G) are lexicographically ordered (viewing them as a set of two
integers). We call the matrix above the Randić matrix of G. For the sake of simplicity, when
there is no danger of confusion about the collection G, we will write ρ instead of ρG.

Remark 2.3. If X(G) contains no perfect square numbers, then k (2χ− n) (G) can be ex-
pressed in a simpler way as

k (2χ− n) (G) = −
∑

[x]∈X(G)

∑

ij∈[x]

Bijmij(G) +
∑

[x]∈X(G)


 ∑

ij∈[x]

Cijmij(G)


 Ψ ([x])

In this case, the Randić matrix of G is

ρG =




[−Bij]ij∈[x1] [−Bij]ij∈[x2] · · · [−Bij]ij∈[xr]

[Cij]ij∈[x1] [0]ij∈[x2] · · · [0]ij∈[xr]

[0]ij∈[x1] [Cij]ij∈[x2] · · · [0]ij∈[xr]
...

...
...

[0]ij∈[x1] [0]ij∈[x2] · · · [Cij]ij∈[xr]




(4)
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which determines a Q-linear map ρG : Q|X(G)| −→ Q|X(G)|+1

It is convenient at this point to redefine the notion of the Randić structure of a graph
(see the introduction) so that it includes the order of the columns of the Randić matrix.

Definition 2.4. The Randić structure of a graph G with n vertices, denoted by R(G), is
defined as the ordered |X(G)|-tuple

R(G) = (mij)ij∈X(G) ∈ Q|X(G)|

where ij ∈ X(G) varies in the same order as the columns of ρG.

Notice that R (G) is empty when all components in G are regular graphs.

In this way we have the Randić structure function G R−→ Q|X(G)|, defined by R(G) =
(mij)ij∈X(G). The content of Lemma 2.2 is that, for a G ∈ G, χ(G) can be expressed in terms
of the Randić matrix of G as follows

k(2χ(G)− n) = ρ(R(G)) · (Ψ([u]), Ψ([x1]), . . . , Ψ([xr])) (5)

where · means the usual inner product.

Now we are ready to present a basic representation of [G]χ for a general collection G of
graphs.

Theorem 2.5. Let G be a collection of graphs with n vertices and let ρG be the linear map
associate with G. Then the following holds for every G,H ∈ G.

χ(G) = χ(H) ⇐⇒ R(G)−R(H) ∈ ker ρG

Proof. For every G ∈ G, we know from equation (5) that

k (2χ− n) (G) = ρ(R(G)) · (Ψ [u] , Ψ [x1] , . . . , Ψ [xr])

From this it follows that

χ(G) = χ(H) ⇐⇒ ρ(R(G)−R(H)) · (Ψ [u] , Ψ [x1] , . . . , Ψ [xr]) = 0.

To finish the proof we recall that by Lemma 2.1 the Ψ [x]’s are all independent over Q.

Example 2.6. Consider the collection of chemical graphs C = C(n) (i.e. graphs in which no
vertex has degree greater than 4) with n vertices. Then

X(C) = {1 · 2, 1 · 3, 1 · 4, 2 · 3, 2 · 4, 3 · 4}

and
X(C) = {[1 · 4] , [1 · 2] , [1 · 3] , [2 · 3]}
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Let us calculate the entries of ρC

A14 = 24(2·2−5)
4 = −6 B12 = 24(1+2)

2 = 36 B24 = 24(2+4)
8 = 18

B13 = 24(1+3)
3 = 32 B34 = 24(3+4)

12 = 14 B23 = 24(2+3)
6 = 20

C12 = 2·24·1
2 = 24 C24 = 2·24·2

8 = 12 C13 = 2·24·1
3 = 16

C34 = 2·24·2
12 = 8 C23 = 2·24·1

6 = 8

and the matrix is

ρC =




−6 −36 −18 −32 −14 −20
0 24 12 0 0 0
0 0 0 16 8 0
0 0 0 0 0 8




It can be easily checked that ker (ρC) = 〈(−2, 0, 0, 3,−6, 0) , (0, 1,−2, 0, 0, 0)〉, where 〈X〉 de-
notes the subspace generated by X.

Now fix G ∈ C and let R(G) = (m14(G),m12(G),m24(G),m13(G),m34(G),m23(G)). By
Theorem 2.5

[G]χ = {H ∈ C : R(H)−R(G) ∈ 〈(−2, 0, 0, 3,−6, 0) , (0, 1,−2, 0, 0, 0)〉}

In other words, H ∈ [G]χ if and only if there exist integers a, b such that

m14 (H) = m14 (G)− 2a

m12 (H) = m12 (G) + b

m24 (H) = m24 (G)− 2b

m13 (H) = m13 (G) + 3a

m34 (H) = m34 (G)− 6a

m23 (H) = m23 (G)

We end this section with a couple of remarks in order to clarify the dependency of the
Randić matrix on the collection G and also the role played by the identity (2) in our definition
of ρ.

Remark 2.7. (i) The order we have been using for the columns of a Randić matrix and for
the Randić structure of a graphs does not really depend on the collection G. In fact, it only
depends on n.

(ii) Given two collections G ′ ⊂ G, it is not difficult to show that ρG′ can be easily computed
from ρG. In fact ρG′ is obtained by deleting the columns of ρG which do not correspond to
elements of X(G ′) and then multiplying by an appropriate integer (determined by the m.c.m
used to define ρG and ρG′).

(iii) There are other identities like (2) that could be used to associate a matrix to χ. The
advantage of using (2) is that the number of variables used is minimal.
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3 The Randić structure property

As we said in the introduction, perhaps the simplest situation, regarding the problem of
describing [G]χ, is when [G]χ consist merely of those H ∈ G such that R(H) = R(G). In this
section we will present examples of such collections. We recall a concept already mentioned
in the introduction.

Definition 3.1. A collection G of graphs with a fixed number of vertices has the Randić
structure property (RSP) if for all G, G′ ∈ G

χ(G) = χ(G′) ⇐⇒ R(G) = R(G′)

Notice that the implication from right to left always holds. In other words, if G has RSP
then for every G ∈ G

[G]χ = {H ∈ G : mij (H) = mij (G) for all i < j ∈ D (G)}

Let us define ∆G : G ×G −→ Q|X(G)| as ∆ (G, H) = R (G)−R (H) for every G, H ∈ G. From
Theorem 2.5 we immediately get the following

Proposition 3.2. Let G be a collection of graphs with n vertices and ρG its associated linear
map. The following conditions are equivalent:

1. G has the Randić structure property;

2. Im (∆G) ∩ ker ρG = (0).

In particular, if ρG is one to one then G has the RSP. Our next result characterizes
collections G such that ρG is one to one.

Proposition 3.3. Let G be a collection of graphs with n vertices and ρG its associated linear
map. The following conditions are equivalent:

1. ρG is one to one;

2. |X(G)| =
∣∣∣X(G)

∣∣∣ .

Proof. If there exists a perfect square number u ∈ X(G) then dim (ImρG) =
∣∣∣X(G)

∣∣∣ since ρG

has exactly
∣∣∣X(G)

∣∣∣ independent rows. Consequently, dim (ker ρG) = |X(G)| −
∣∣∣X(G)

∣∣∣ and the

result follows.
Let us assume then that X(G) has no perfect squares and so its Randić matrix has the

form (4). Note that
∣∣∣X(G)

∣∣∣ ≤ dim (ImρG) ≤
∣∣∣X(G)

∣∣∣ + 1 which implies

|X(G)| −
∣∣∣X(G)

∣∣∣− 1 ≤ dim (ker ρG) ≤ |X(G)| −
∣∣∣X(G)

∣∣∣ (6)
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1. ⇒ 2. Suppose that |X(G)| >
∣∣∣X(G)

∣∣∣. If |X(G)|−
∣∣∣X(G)

∣∣∣ ≥ 2 then, by (6), dim (ker ρG) ≥
1 and so ker ρG 6= (0).

Next we show that if X(G) has no perfect squares then |X(G)| −
∣∣∣X(G)

∣∣∣ 6= 1. If |X(G)| −∣∣∣X(G)
∣∣∣ = 1 then there exists i · j, r · s ∈ X(G) such that {i, j} 6= {r, s} and i · j ∼ r · s.

Consequently, we have expressions of the form

i · j =
u∏

k=1

pek
k ×

v∏
k=1

qok
k r · s =

u∏
k=1

p
e′k
k ×

v∏
k=1

q
o′k
k

where for all k, ek and e′k are even (possibly zero) natural numbers and ok and o′k are odd
natural numbers. Let

i =
u∏

k=1

pαk
k ×

v∏
k=1

qβk

k j =
u∏

k=1

pγk

k ×
v∏

k=1

qδk
k

r =
u∏

k=1

p
α′k
k ×

v∏
k=1

q
β′k
k s =

u∏
k=1

p
γ′k
k ×

v∏
k=1

q
δ′k
k

where for each k,
αk + γk = ek βk + δk = ok

α′k + γ′k = e′k β′k + δ′k = o′k

(7)

We claim that i · r ∼ j · s. In fact,

i · r =
u∏

k=1

p
αk+α′k
k ×

v∏
k=1

q
βk+β′k
k j · s =

u∏
k=1

p
γk+γ′k
k ×

v∏
k=1

q
δk+δ′k
k

where by (7)

(αk + α′k) + (γk + γ′k) = ek + e′k
(βk + β′k) + (δk + δ′k) = ok + o′k

Since ek + e′k and ok + o′k are even, we deduce that

(αk + α′k) is even ⇔ (γk + γ′k) is even

(βk + β′k) is even ⇔ (δk + δ′k) is even

Consequently, i · r ∼ j · s.
Now, since |X(G)| −

∣∣∣X(G)
∣∣∣ = 1 we must have r = j or i = s. Assume r = j. Then for

all k, α′k = γk and β′k = δk, which implies by (7)

αk + α′k = ek βk + β′k = ok

α′k + γ′k = e′k β′k + δ′k = o′k
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Hence,
αk is even ⇔ γ′k is even
βk is even ⇔ δ′k is even

This clearly implies that αk + γ′k and βk + δ′k are even for all k. Finally, since

i · s =
u∏

k=1

p
αk+γ′k
k ×

v∏

k=1

q
βk+δ′k
k

we conclude that i · s is a perfect square, but this is a contradiction. Similarly, i = s implies
r · j is a perfect square which also yields a contradiction.

2. ⇒ 1. This is an immediate consequence of (6).

An application of Propositions (3.2) and (3.3) gives the following examples

Example 3.4. Let Pn be the collection of all graphs with n vertices such that all vertex

degrees are prime numbers or 1. Then clearly the condition |X (Pn)| =
∣∣∣X (Pn)

∣∣∣ is satisfied

for all n. Hence Pn has the Randić structure property. In particular, the collection Bn of
benzenoid systems with n vertices has RSP since it is a subset of Pn.

Example 3.5. Let G = Rδ (n) be the set of all branch regular trees of degree δ and n vertices
(see [13]). We recall that G ∈ Rδ (n) if and only if all branching vertices of G have degree
δ. It can be easily checked that for all values of δ, except when δ is a perfect square or an

odd power of 2, |X (Rδ (n))| =
∣∣∣X (Rδ (n))

∣∣∣. It follows that for these values of δ, Rδ (n) has

RSP. In section §5 we will present examples showing that Rδ (n) has not the RSP for δ a
perfect square or an odd power of 2.

Up to now all examples of RSP collections G have ker (ρG) = (0). As we will see in our
next example this is not always the case.

Example 3.6. Let S4 = S4(n) be the collection of all starlike trees of degree 4 and n vertices.
Recall that T ∈ S4 if and only if T has a unique branching vertex of degree 4. We have
X (S4) = {1 · 2, 1 · 4, 2 · 4}. Since 1 · 2 and 2 · 4 are equivalent, then X(S4) = {[1 · 4] , [1 · 2]}
and k = 8. The associated matrix ρ = ρS4 is

ρ =

( −2 −12 −6
0 8 4

)
(8)

where the columns correspond to the pair 1 · 4 , 1 · 2 and 2 · 4 in that order. The kernel
of ρ can be easily shown to be generated by (0,−2, 1). Now, for every S ∈ S4 the following
relations hold

m12(S) = m24(S) = 4−m14(S)

Consequently,

∆S4 (S, S ′) = R (S)−R (S ′) = (m14 −m′
14,m12 −m′

12,m24 −m′
24) ⊆ 〈(1,−1,−1)〉

Since 〈(1,−1,−1)〉 ∩ ker (ρS4) = (0), we deduce that Im (∆S4) ∩ ker (ρS4) = (0). It follows
by Proposition 3.2, that S4 has RSP.
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4 Decomposition of a collection of graphs into disjoint

RSP subcollections

Even though collections with RSP might seem hard to find, we will show in this section a
fairly general method to generate them. Furthermore, we will show that every collection G
can be decomposed as a disjoint union of RSP subcollections.

Let G be a collection of graphs with a fixed number of vertices and ρG : Q|X(G)| −→ Q|X(G)|
its associated Q-linear map. It is clear from Proposition 3.2 that a subcollection G ′ ⊆ G has
the RSP if and only if ρG is one-to-one in {R(G) : G ∈ G ′}. The basic idea for getting the
above mentioned decomposition of G is first to decompose Q|X(G)| into disjoint pieces where
ρG is one-to-one and then pull back with R−1 such decomposition into G.

Lemma 4.1. Let ρ : Qm −→ Qk and σ : Qm −→ Qm−k be Q-linear maps and consider the
Q-linear map (ρ, σ) : Qm −→ Qm, defined by (ρ, σ) (Z) = (ρ (Z) , σ (Z)) for every Z ∈ Qm.
If (ρ, σ) is invertible then ker (σ) is a complementary direct summand of ker(ρ) in Qm.

Proof. It is clear that (0) = ker ((ρ, σ)) = ker(ρ)∩ ker(σ). Now choose Z ∈ Qm. Since (ρ, σ)
is onto there exists Y ∈ Qm such that (ρ, σ) (Y ) = (0, σ (Z)). Consequently, Y ∈ ker (ρ),
Z − Y ∈ ker (σ) and Z = Y + (Z − Y ).

Proposition 4.2. Let σ : Q|X(G)| −→ Q|X(G)|−|X(G)| be a Q-linear map such that (ρG, σ) is
invertible and G0 a subcollection of G. If σ ◦∆G0 = (0) then G0 has the RSP.

Proof. Let G,G′ ∈ G0 and suppose that χ (G) = χ (G′). Then by Theorem 2.5, R (G) −
R (G′) ∈ ker (ρG). On the other hand R (G)−R (G′) ∈ ker (σ) since σ ◦∆G0 = (0). It follows
from Lemma 4.1 that R (G) = R (G′) and so G0 has the RSP.

Theorem 4.3. Let G be a collection of graphs with a fixed number of vertices. Then G can
be decomposed into pairwise disjoint RSP subcollections.

Proof. Choose a complementary direct summand W of ker (ρG) in Q|X(G)|. Consider the

projection π : Q|X(G)| = W ⊕ ker (ρG) −→ ker (ρG) ∼= Q|X(G)|−|X(G)|. Clearly (ρG, π) :
Q|X(G)| −→ Q|X(G)| is an invertible Q-linear map. For each k ∈ Im (π ◦R) define Gk =
{G ∈ G : R (G) ∈ W + k}. Then for every G,G′ ∈ Gk we have R (G) − R (G′) ∈ W and
consequently, π (R (G)−R (G′)) = 0. Hence π ◦ ∆Gk

= (0) and so, by Proposition 4.2, Gk

has the RSP. Finally, it is clear that the Gk ’s are pairwise disjoint and G =
⋃

k∈Im(π◦R)

Gk.

Let us look at a concrete example. Consider the collection Rδ (n) of branch regular
graphs of degree δ and n vertices. We analyze the case where δ = q2 is a perfect square.
Then X (Rδ) = {1 · 2, 1 · δ, 2 · δ}, X(Rδ) = {[1 · δ] , [1 · 2]} and k = 2δ. The associated matrix
is

ρ =

( −2(q − 1)2 −3q2 −(q2 + 2)
0 2q2 2q

)

10



Recall that the columns correspond to the following pairs 1 · δ, 1 · 2, 2 · δ in this order.
Consider the following completion of ρ

(ρ, σ) =



−2(q − 1)2 −3q2 −(q2 + 2)

0 2q2 2q
1 1 0




where σ : Q3 −→ Q is defined by σ (x1δ, x12, x2δ) = x1δ +x12. Notice that (ρ, σ) is invertible.
For a given a graph G, we denote by ki = ki (G) the number of vertices of G of degree i. For
each positive integer r ≥ 1 consider the subcollection of Rδ

Rr
δ = {G ∈ Rδ : kδ (G) = r} (9)

Since for every G ∈ Rδ, m12 (G) + m1δ (G) = k1 (G) = (δ − 2) kδ (G) + 2, we deduce that
m12 (G) + m1δ (G) = (δ − 2) r + 2 for every G ∈ Rr

δ. Consequently, if G,G′ ∈ Rr
δ

σ (R (G)−R (G′)) = σ ((m1δ −m′
1δ,m12 −m′

12,m2δ −m′
2δ))

= (m1δ −m′
1δ) + (m12 −m′

12) = 0

In other words, σ ◦∆Rr
δ

= (0). It follows from Proposition 4.2 that Rr
δ has the RSP for every

r. Moreover, an easy induction shows that kδ· (δ − 1) ≤ n− 2. Therefore

Rδ =

[n−2
δ−1 ]⋃
r=1

Rr
δ (10)

is a disjoint union of RSP subcollections of Rδ.
Note that R1

δ is the set of all starlike trees of degree δ. In particular, Example 3.6 can
be deduced from here since S4 = R1

4.
The case in which δ is an odd power of 2 is similar.
We will present one more example. It will show that such decompositions into RSP pieces

can be more complex than in the previous example. In particular, they could depend on
more than one parameter (due to the dimension of the kernel of the Randić matrix).

Consider the collection of all chemical graphs C with n vertices. We have already com-
puted in example 2.6 its Randić matrix ρ. Consider the following completion of ρ

(ρ, σ) =




−6 −36 −18 −32 −14 −20
0 24 12 0 0 0
0 0 0 16 8 0
0 0 0 0 0 8
1 1 0 1 0 0
0 0 1 0 0 0




where σ : Q6 −→ Q2 is defined by σ(x14, x12, x24, x13, x34, x23) = (x14 + x12 + x13, x24). For
each pair of integers 0 ≤ r ≤ n and 0 ≤ s ≤ n, let

Cr,s = {G ∈ C : m12(G) + m13(G) + m14(G) = r & m24(G) = s}
Proposition 4.2 says that each Cr,s has the RSP (notice that some of the Cr,s’s are empty).
Finally, it is clear that these subcollections form a partition of C.
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5 A finer analysis of R4

In this section we will see how the ideas presented in previous sections can be used to make
a finer analysis of the collection of branch regular trees. We will restrict our analysis to R4.
But before doing that, we will present some examples showing that R4 and R8 does not
have the RSP. The pairs of trees shown in figure 1 and 2 are easily seen to have equal χ and
different Randić structures.

figure 1

figure 2

The key fact for all our analysis is the following lemma. It tells, in terms of the number
of branching vertices, where we have to look to find two trees in R4 with equal χ. Notice
the crucial role played by the equations of the kernel of ρR4 .

Lemma 5.1. Let T, T ′ ∈ R4 with χ(T ) = χ(T ′). Then

(a)
3k4 + 1

4
≤ k′4 ≤

4k4 − 1

3

(b)
m44 −m′

44 = 4(k4 − k′4)

where k4 = k4 (T ) denotes the number of vertices of T of degree 4 (all variable with ′ corre-
spond to T ′ and the others to T ).

Proof. Let R4 = R4 (n). Since X (R4) = X (S4), then we have already computed the Randić
matrix ρ = ρR4 in example 3.6.

ρ =

( −2 −12 −6
0 8 4

)
(11)

where the columns correspond to the pair 1 · 4 , 1 · 2 and 2 · 4 in that order. The kernel of ρ
is generated by (0,−2, 1). Suppose χ(T ) = χ(T ′) then by theorem 2.5 we know that

m14 = m′
14

2m12 + m24 = 2m′
12 + m′

24 (12)

Now we start the proof of (a). For every branch regular tree we have m12 + m1δ =
(δ − 2)kδ + 2. Since m14 = m′

14, then

m′
12 = 2k′4 + 2−m14 (13)

Let r(T ) = 2m12 + m24. By substituting (13) in (12) we get

m′
24 = r(T )− 4k′4 − 4 + 2m14 (14)

12



For every tree in R4 we have that m′
12 ≤ m′

24. This inequality together with (12) gives the
following

3m′
24 ≥ r(T )

From this and (14) we get

k′4 ≤
r(T )

6
+

m14

2
− 1

Since m12 + m14 = 2k4 + 2, we immediately get

k′4 ≤
2

3
k4 +

m14 + m24

6
− 1

3
(15)

Since m14 +m24 +2m44 = 4k4, then m14 +m24 ≤ 4k4. This last inequality together with (15)
gives the right hand side of part (a) of our claim. The other inequality follows by symmetry.

(b) Since m14 + m24 + 2m44 = 4k4 and m14 = m′
14, then we have

4(k4 − k′4) = 2(m44 −m′
44) + m24 −m′

24 (16)

From (12) we get

2(k4 − k′4) = m44 −m′
44 + m′

12 −m12 (17)

Since m12 + m14 = 2k4 + 2 and m14 = m′
14, then we immediately get that m′

12 − m12 =
−2(k4 − k′4). From this and (17) we are done.

Recall from §4 the partition of R4 given by the Rr
4’s.

Proposition 5.2. The following collection has the RSP for every r ≥ 4

R1
4 ∪R2

4 ∪R3
4 ∪Rr

4

Proof. It is a straightforward application of lemma 5.1(a). We will show the claim in three
steps. First we show that R1

4 ∪ Rr
4 has the RSP for every r ≥ 2. Second we show that

R2
4 ∪Rr

4 has the RSP for every r ≥ 3 and then we show that R3
4 ∪Rr

4 has the RSP for every
r ≥ 4.

(i) Let T ∈ R1
4 and T ′ ∈ Rr

4 with χ(T ) = χ(T ′). Then k4 = 1 and k′4 = r. By Lemma
5.1 we know that r ≤ 4−1

3
= 1. Therefore T ′ ∈ R1

4 and we are done as R1
4 has the RSP.

(ii) Let T ∈ R2
4 and T ′ ∈ Rr

4 with χ(T ) = χ(T ′). Then from Lemma 5.1 we know that
r ≤ 8−1

3
< 3. Therefore T ′ ∈ R1

4 ∪ R2
4 and we are done as we just saw that this collection

has the RSP.
Notice that from (i) and (ii) we can conclude that R1

4 ∪R2
4 ∪R3

4 has the RSP.
(iii) Let T ∈ R3

4 and T ′ ∈ Rr
4 with χ(T ) = χ(T ′). Then from Lemma 5.1 we know that

r ≤ 12−1
3

< 4. Therefore T ′ ∈ R1
4 ∪ R2

4 ∪ R3
4 and we are done as we just saw that this

collection has the RSP.
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We have already seen that the previous result is best possible, since the pair of counterex-
amples given in figure 2 have k4 equal to 4 and 5 respectively. But we can get nevertheless
sharper results if we take into account the number of vertices. Recall that for branch regular
trees we have that kδ ≤ n−2

δ−1
. In particular, for δ = 4, we have that k4 ≤ n−2

3
. It is not

difficult to see from 5.1 that the smallest pair of trees in R4 with equal χ and different R
have size 19. Thus we have the following

Proposition 5.3. (i) For n < 19, R4 has the RSP.

(ii) For 19 ≤ n < 20, R4 does not have the RSP but it is the union of two subcollections
with the RSP, namely R1

4 ∪R2
4 ∪R3

4 ∪R4
4 and R5

4.

(iii) For 20 ≤ n < 23, R4 does not have the RSP but it is the union of two subcollections
with the RSP, namely R1

4 ∪R2
4 ∪R3

4 ∪R4
4 ∪R6

4 and R5
4 .

Remark: Let us define an equivalence relation =R by letting G =R G′ when R(G) = R(G′).
A way of understanding the previous result is by noticing that the number of RSP pieces
gives a bound to the number of =R equivalence classes that form [G]χ. In particular, for
G ∈ R4 (with n < 23), there is at most one more Randić structure different than R(G)
corresponding to a tree H ∈ R4 with χ(G) = χ(H).

Of course we can continue the previous analysis to get a quite sharp picture of R4 in
terms of the smallest number of RSP pieces which are necessary to cover it all. This analysis
would give further information about the behavior of χ over R4. For instance, given k, it is
now easy to construct (for large enough n) a set of k trees in R4 with equal χ and different
Randić structures.
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tress, to appear in Ars Combinatorica.

[5] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combinatorica 50 (1998)
225-233.

[6] L. H. Clark and J. W. Moon, On the general Randić index for certain families of tress,
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