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Abstract

We study some properties of smooth Borel set with respect to a
Borel equivalence relation, showing some analogies with the collection
of countable sets from a descriptive set theoretic point of view. We
found what can be seen as an analog of the hyperaritmectic reals in
the context of smooth sets. We also present some results about the
σ-ideal of closed smooth sets.

1 Introduction

The study of Borel equivalence relation has received recently a lot of attention
( see [3] and the references given there). Our basic reference for equivalence
relations is [9] and concerning the descriptive set theory we follow the nota-
tion of [11]. Let X be a Polish space . A Borel equivalence relation E (Borel
as a subset of X×X) on a Borel set B of X is said to be smooth if it admits a
countable Borel separating family, i.e., a collection (An) of E-invariant Borel
subsets of B such that for all x, y ∈ B

xEy if and only if (∀n)(x ∈ An ↔ y ∈ An).

Given an arbitrary Borel equivalence relation E on X, a set A ⊆ X is
called E-smooth if there is a Borel set B ⊇ A such that the restriction of E
to B is a smooth equivalence relation. The collection of E-smooth sets forms
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a σ-ideal. Thus we consider smoothness a notion of smallness. Smooth sets
are a generalization of the notion of wandering sets in ergodic theory (see
[12]).

A basic result about smooth equivalence relations is the Glimm-Effros
type Dichotomy Theorem proved by Harrington, Kechris and Louveau in
[6], which characterizes the smooth Borel equivalence relations and thus the
Borel smooth sets. This theorem can be extended to Σ1

1 sets (see theorem
2.4), this result can be considered as an analog of the Perfect Set Theorem
in the context of smoothness. Also we present what could be thought as an
analog of the hyperarithmetic reals (see 2.6(iii) and 3.7).

Theorem 2.4 will also provide the basic representation of Σ1
1 smooth sets

as the common null sets for the family of E-ergodic non-atomic measures.
In particular, it says that smoothness for Σ1

1 sets is a notion concentrated
on closed sets, i.e., a Σ1

1 set A is smooth if and only if every closed subset
of A is smooth. We called the sets with this property sparse sets and they
are the analog of thin sets (i.e., sets without perfect subset). Smoothness
and Sparseness are not equivalent for Π1

1 sets in general in ZFC (see [13]), a
similar result as for thin sets. Becker (see [1]) has proved recently that these
notions are not equivalent even assuming the axiom of Determinacy (contrary
to what happens with thin sets). In §3 we will look at the particular case
of a countable equivalence relation (i.e., one all of whose equivalence class
are countable), presenting a characterization of Borel smooth sets in terms
of a notion that generalizes the concept of recurrent point (see [12]). Since
smoothness for analytic sets is concentrated on closed sets we will look in
§4 at the σ-ideal of closed smooth sets . Following ideas from [10] and [14]
we will show that it is a strongly calibrated, locally non-Borel, Π1

1 σ-ideal.
The results presented are part of my Ph.D thesis, I would like to thank my
adviser Dr. Alexander Kechris for his guidance and patience.

2 Smooth sets

First we will define the basic concepts and state some basic facts. Let X be a
Polish space (i.e., a complete separable metric space). E will always denote
an Borel equivalence relation on X. [x]E or sometimes Ex will denote the
E-equivalence class of x. [A]E is the saturation of A, i.e., [A]E = {y ∈ X :
∃x ∈ A(xEy)}. A set A is called E-invariant (or just invariant, if there is no
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confusion about E), if A = [A]E. Given a ∆1
1 equivalence relation E, (i.e., E

as a subset of X ×X is a ∆1
1 set) and A ⊆ B, with B a Π1

1 invariant set and
A a Σ1

1 set, then there is a ∆1
1 invariant set C with A ⊆ C ⊆ B. In other

words, the separation theorem holds in an invariant form for ∆1
1 equivalence

relations (actually it holds for Σ1
1 equivalence relations), a proof of this can be

found in [6] (lemma 5.1). We will use the following notation: Script capital
letters will denote a countable family of subsets of X, i.e., A = (An), with
An ⊆ X for n ∈ N. For each of these collections we define the following
equivalence relation:

xEA y if and only if (∀n)(x ∈ An ←→ y ∈ An).

Definition 2.1 Let Γ be a pointclass
(i) E is Γ-separated if and only if there is a countable collection A = (An)
with each An ∈ Γ, such that: ∀x∀y(xEy ←→ x EA y), i.e., E = EA .
(ii) A subset A of X is Γ-separated, if and only if there is a collection A =
(An) of E-invariant sets, with each An ∈ Γ, and ∀x ∈ A,∀y ∈ A(xEy ←→
xEA y). In this case we say that A separates A.
(iii) A is called strongly Γ-separated if ∀x ∈ A∀y(xEy ←→ xEA y); and we
say that A strongly separates A.

Remarks: (1) Notice that in (i), each An has to be E-invariant (because if
x ∈ An and yEx, then xEA y. Hence y ∈ An).

(2) Denote by [x]A the EA -equivalence class of x. Then A separates A
if and only if for all x ∈ A, [x]E ∩A = [x]A ∩A; and A strongly separates A
if and only if for all x ∈ A, [x]E = [x]A.

(3) If A = (An) and each An is invariant then E ⊆ EA, thus only one
direction in (ii) is not trivial.

A finite, positive Borel measure µ on X is called E-ergodic if for every
µ-measurable invariant set A, µ(A) = 0 or µ(X − A) = 0. It is called
E-non atomic, or just non atomic, if for every x ∈ X µ([x]E) = 0. A basic
fact about E-ergodic non-atomic measure is that if µ is such a measure,
then there is no µ-measurable separating family for E. A typical example of
an equivalence relation with a non atomic ergodic measure is E0, which is
defined on 2ω by

xE0 y if and only if ∃m ∀n > m (x(n) = y(n)).
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The usual product measure on 2ω is non atomic and E0-ergodic (the so called
0-1 law).

One way of defining ergodic measures is through embeddings. Let E and
E
′

be two equivalence relations on X and Y respectively. An embedding
from E into E

′
is a 1-1 map f : X → Y such that for all x, y ∈ X, xEy ←→

f(x)E
′
f(y). For Borel equivalence relations we define E v E

′
if there is a

Borel embedding of E into E
′
.

A fundamental result about these notions is the following theorem of
Harrington, Kechris and Louveau (see [6]). We will refer to it as the HKL
theorem.

Theorem 2.2 (Harrington,Kechris,Louveau [6]) Let X be a recursively pre-
sented perfect Polish space, E a ∆1

1 equivalence relation on X. Then exactly
one of the following holds:

(1) E has a ∆1
1 separating family A = (An), such that the relation “x ∈ An”,

is ∆1
1.

(2) E0 v E (via a continuous embedding).

2

We are interested on the restriction of the Borel equivalence relation to a
subset of X

Definition 2.3 Let Γ be a pointclass
(i) Let A ⊆ X and define EdA to be the restriction of E to A, i.e., EdA =
E ∩ (A× A). EdA is an equivalence relation on A. And, naturally, we say
EdA is Γ-separated if there is a countable collection A = (An) of Γ-subsets
of A such that for all x, y ∈ A ( xEA y ←→ xEy).
(ii) A measure µ on X is called EdA − ergodic if µ(X − A) = 0 and for
every B ⊆ A which is EdA-invariant and µ-measurable, we have µ(B) = 0
or µ(X −B) = 0. Notice that µ(X −B) = 0 if and only if µ(A−B) = 0.

If A ∈ Γ (for Γ a pointclass closed under intersections) is invariant, then
it is clear that A is Γ-separated if and only if EdA is Γ-separated. The next
theorem says, among other things, that for a Borel equivalence relation all
the natural variations for a notion of countable separation for Σ1

1 sets are
equivalent.
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Theorem 2.4 Let X be a recursively presented Polish space, E a ∆1
1 equiv-

alence relation on X, and A a Σ1
1 subset of X. The following are equivalent:

(1) There is a ∆1
1 invariant set B such that A ⊆ B and B is (strongly)

∆1
1-separated. Moreover, the separating family for B is uniformly ∆1

1,
i.e., the relation (in x and n) “x ∈ An” is ∆1

1 .

(2) A is strongly ∆1
1-separated.

(3) [A]E is Σ1
1-separated.

(4) A is Σ1
1-separated.

(5) EdA is Σ1
1-separated.

(6) A is universally measurable separated.

(7) EdA is universally measurable separated.

(8) For every E-ergodic non atomic measure µ, µ(A) = 0.

(9) For every EdA-ergodic, non atomic measure µ, µ(A) = 0.

(10) E0 6v EdA.

Similarly, the same equivalence holds by relativization for a Σ1
1 set A and a

∆1
1 equivalence relation.

Proof: All the equivalence are more or less straightforward, except for
(10) ⇒ (1) which uses two results coming from the proof of the HKL the-
orem 2.2. That proof uses the Gandy-Harrington topology (also called the
Σ1

1-topology). The basis for this topology is the collection of Σ1
1 sets. This

is a Baire topology (i.e., it satisfies the Baire category theorem), the basic
facts about it can be found in [6].
Lemma A: Let τ be the Gandy-Harrington topology on X and E the τ × τ -
clousure of E. Let A be a Σ1

1 subset of X. If {x : Ex 6= (E)x} ∩ A 6= ∅ then
E0 v EdA, via a continuous embedding.
Proof: In the proof of the HKL theorem was shown that if {x : Ex 6=
(E)x}∩A 6= ∅, then E is meager in (A×A)∩E (see lemma 5.3 of [6]). Hence
the construction of the embedding from E0 into EdA can be carried out in
A.
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(2 lemma A)
Lemma B: Let D = {x : Ex = (E)x}, D is a Π1

1 strongly ∆1
1-separated

invariant set. Actually, the separating family for D is {A ⊆ X : A is a ∆1
1

invariant set }.
Proof: First, E is a Σ1

1 equivalence relation (see lemma 5.2 of [6]). And
we have: x ∈ D if and only if ∀y (xEy → xEy). Thus D is Π1

1 . Also, as
E ⊆ E, then D is E-invariant (actually E-invariant). On the other hand, we
know E =∼ ⋃{A×∼ A : A is ∆1

1 invariant set }. So, if A = {A : A is a ∆1
1

invariant set }, then E = EA. And we get: ∀x ∈ D(Ex = (E)x = (EA)x).
Thus ∀x ∈ D ∀y(xEAy ←→ xEy), i.e., D is strongly separated by A.

(2 lemma B)
Now we finish the proof of (10) ⇒ (1). Suppose (10) holds. Then by

Lemma A A ⊆ D. By separation there is a ∆1
1 invariant set B with A ⊆

B ⊆ D. Hence, by lemma B B is strongly ∆1
1 separated by {A ⊆ X : A

is ∆1
1 invariant set }. Now, A is clearly a Π1

1 collection, so by a separation
argument (see [6]) we can easily show that there is a ∆1

1 subsequence of A
which also separates B, so (1) holds.

2

In view of this result we have

Definition 2.5 (i)Let E be a Borel equivalence relation on X. A Σ1
1 subset

A ⊆ X is called E-smooth if any of the equivalent conditions of theorem 2.4
holds.
(ii) A set A ⊆ X is called E-smooth if there is a Borel smooth set B such
that A ⊆ B

It is clear that a subset of a smooth set is also smooth and countable
unions of smooth sets are smooth. So, we regard smooth sets as small sets.
There is a strong similarity between the collection of countable sets and the
collection of Σ1

1 smooth sets, which is summarized in the following

Theorem 2.6 Let E be a ∆1
1 equivalence relation on a recursively presented

Polish space X.
(i) (Analog of the perfect set theorem for Σ1

1 sets) Let A ⊆ X be a Σ1
1

set. Then either A is smooth or E0 v EdA (via a continuous embedding).
Similarly the same result holds by relativization for a Σ1

1 set A and a ∆1
1

equivalence relation E.
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(ii) The collection of Σ1
1 smooth sets is Π1

1 on the codes of Σ1
1 sets.

(iii) (Analog of the hyperarithmetic reals) Let E be the τ × τ -closure of E,
where τ is the GH-topology on X. Put

D = {x : Ex = (E)x}
then D is a Π1

1 set and for every Σ1
1 set A, A is smooth if and only if A ⊆ D.

2

Proof: (i) It follows from 2.4.
(ii) Let U be a Σ1

1 universal set, then from 2.4 we have that

Uαis smooth if and only if ∃A ∈ ∆1
1(α) ∀x, y ∈ Uα (xEy ←→ xEA y)(∗)

It is easy to see that (∗) is a Π1
1 relation by coding sequences of ∆1

1(α)
invariants sets.

(iii) It follows from lemmas A and B in the proof of 2.4
2

The set D is the largest strongly ∆1
1 separated set. In fact: Let A = {A :

A is ∆1
1 invariant set } and B a strongly ∆1

1-separated set, say by a family
B of ∆1

1 invariant sets. Let DB = {x : [x]E = [x]B}, i.e., x ∈ DB if and only
if for all y(xEB y ←→ xEy). Analogously we define DA. We saw in 2.4
lemma B that D = DA. By definition of strong separation B ⊆ DB. But as
B ⊆ A, then EA ⊆ EB and thus DB ⊆ DA. Therefore B ⊆ DA.

Let us recall here that the collection of hyperarithmetic reals, denoted
by ∆1

1(X), is a true Π1
1 set and is equal to

⋃{A : A is a countable ∆1
1 set

}. Continuing the analogy with the collection of countable sets we have the
following natural questions:

(i) Is D =
⋃{A : A is ∆1

1 smooth set}? Equivalently, is D the union of
Σ1

1 sets?
(ii) Is D a true Π1

1 set ?
We will show in §3 that for a countable ∆1

1 equivalence relation the answer
for (i) is yes. And as a consequence of a theorem of Kechris, this is also true
for a ∆1

1 equivalence relation generated by the action of a locally compact
group of ∆1

1 automorphisms of X. Regarding question (ii), we know that for
E0 D is a true Π1

1 set, which shows that in this case the analogy between D
and the hyperarithmetic reals is quite clear. The proof of this is as follows:
Every ∆1

1 point x ∈ 2ω belongs to D; since {x} is a ∆1
1 smooth set. Also,
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D has measure zero with respect to the standard product measure on 2ω

(because this measure is E0-ergodic). Then by a basis theorem it cannot be
∆1

1, otherwise its complement would contain a ∆1
1 point.

3 The case of a countable Borel equivalence

relation

In this section we will look at the particular case of a countable Borel equiv-
alence relation, i.e., one for which every equivalence class is countable. Typ-
ical examples are equivalence relations generated by a Borel automorphism
(i.e., hyperfinite equivalence relations), and more generally by the action of
a countable group of Borel automorphisms. In fact, a theorem of Feldman-
Moore (see [5]) says that for every countable Borel equivalence relation E on
a Polish X there is a countable group G of Borel automorphisms of X such
that E = EG, where

xEGy if and only if g(x) = y, for some g ∈ G.

It is a classical fact that for every Borel subset B of X there is a Polish
topology τ , extending the given topology of X, for which B is τ -clopen.
Moreover, τ admits a basis consisting of Borel sets with respect to the original
topology of X. Thus the Borel structure of X is not changed. As a corollary
we get that for every countable Borel equivalence relation E there is a Polish
topology τ and a countable group G of τ -homeomorphisms of X such that
E = EG, τ extends the original topology of X and the Borel structure of
X remains the same. These results have an effective version. The Feldman-
Moore result quoted above has an effective proof. That is to say: If E is
a ∆1

1 countable equivalence relation, then there is a countable group G of
∆1

1-automorphisms of X such that E = EG. Moreover, there is a ∆1
1 relation

R(x, y, n) on X × X × ω such that for all n, Rn is a graph of some g ∈ G.
And vice versa, for all g ∈ G there is n such that graph(g) = Rn. By an
abuse of the language we will say that the relation R(g, x, y) ⇔ g(x) = y is
∆1

1.
Notice that in this case if Q(x) is a ∆1

1 relation, then ∃g ∈ G Q(g(x)),
∀g ∈ G Q(g(x)) are also ∆1

1. In other words ∃y ∈ [x]E Q(y) and ∀y ∈
[x]E Q(y) are ∆1

1.
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Also if R(x, y, n) is a ∆1
1 enumeration of G as above, then there is a Polish

topology τ extending that on X such that every g ∈ G is a τ -homeomorphism
and τ admits a basis of ∆1

1 sets effectively enumerated. The classical proofs
of this facts can be found in [5] and [12], and for the effective counterpart
see [9] and [13]. As a corollary of this results we have

Proposition 3.1 The collection of ∆1
1 sets forms a basis for a Polish topol-

ogy τ such that every ∆1
1 set is τ -clopen.

We will state the result we will need without a proof, since it is a conse-
cuence of the effective results mentioned above.

Proposition 3.2 Let E be a ∆1
1 countable equivalence relation on X, B ⊆ X

a ∆1
1 set and G a countable group of ∆1

1 automorphisms of X such that
E = EG with “g(x) = y ” a ∆1

1 relation (as it was explained above). There
is a Polish topology τ extending that on X such that every g ∈ G is a τ -
homeomorphism and [B]E is τ -clopen. Moreover, τ admits a basis of ∆1

1 sets
effectively enumerated.

The following definitions will play a crucial role in the sequel.

Definition 3.3 Let τ be a Polish topology on X and put

P (τ) = {x ∈ X : [x]E has an isolated point with respect to τ }

Notice that in the case of E generated by a single homeomorphism of
(X, τ), X − P (τ) is a generalization of the notion of recurrent points (see
[12]). Recall that for each countable collection A = (An) of E-invariant sets
we define an equivalence relation xEA y by

xEA y if and only if ∀n (x ∈ An ←→ y ∈ An).

and denote the EA -equivalence classes by [x]A.

Definition 3.4 For each countable collection A = (An) of E-invariant sets
put

DA = {x ∈ X : [x]E = [x]A}
i.e., x ∈ DA if and only if ∀y (xEy ←→ xEA y).
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Notice that a set B is strongly separated by A if and only if B ⊆ DA.
The following result will be very important in the sequel.

Proposition 3.5 Let E be a countable equivalence relation on X, τ a Polish
topology on X with basis {Wn : n ∈ N} such that the E-saturation of every
τ -open set is τ -open. Put Bn = [Wn]E and B =(Bn). Then P (τ) = DB.

Proof: First we prove that if y 6∈ DB, then y 6∈ P (τ). It suffices to show
that if x 6∈ DB and x ∈ Wn, then | Wn

⋂
[x]E |> 1. This is because if y 6∈ DB

and Wn
⋂

[y]E 6= ∅, say x ∈ Wn
⋂

[y]E, then as DB is invariant x 6∈ DB, and
so | Wn

⋂
[y]E |=| Wn

⋂
[x]E |> 1.

So, suppose x 6∈ DB and let y be such that xEB y but x 6Ey. Let n be
such that x ∈ Wn. So, in particular Wn 6= {x}: Otherwise x ∈ DB ( let us
observe that (X, τ) can have isolated points). As y ∈ [Wn]E, there is w ∈ Wn

with yEw. Clearly x 6Ew and xEB w. Put V = [Wn]E − {x}; V is τ -open
and V ∩ Wn 6= ∅. Thus there is m such that w ∈ Wm ⊆ V ∩ Wn, but as
xEB w then x ∈ [Wm]E. Therefore for some z ∈ Wm zEx. Clearly x 6= z,
hence | Wn

⋂
[x]E |> 1, i.e., x 6∈ P (τ).

Second, we show that if x ∈ DB then x ∈ P (τ). Let x ∈ DB. Then
[x]E = [x]B and hence [x]E = {y : (∀n)(x ∈ Bn ↔ y ∈ Bn)}. As each Bn

is τ -open, [x]E is a τ -Gδ set. Since [x]E is countable, by the Baire category
theorem we conclude that [x]E has a τ -isolated point, i.e., x ∈ P (τ).

2

Notice that P (τ) ⊆ DB is always true, without assuming that E is count-
able.

Theorem 3.6 Let τ be a Polish topology on X with a basis consisting of
Borel sets with respect to the original topology on X. Let G be a countable
group of τ -homeomorphisms of X and E = EG. Then a τ -Gδ E-invariant
set H is E-smooth if and only if H ⊆ P (τ).

Proof: Let B be as in lemma 3.5, then P (τ) ⊆ DB. As each element of the
basis of τ is Borel, we get that P (τ) is strongly Borel separated.

On the other hand, suppose H is E-smooth, by a result of Effros [4] we
get that for every x ∈ H, [x]E is τ -locally closed in H. But as H is τ -Gδ and
[x]E is countable, then [x]E has a τ -isolated point, i.e., x ∈ P (τ).

2

As a corollary we get the following characterization of Borel smooth sets.
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Corollary 3.7 Let E be a ∆1
1 countable equivalence relation on X and B a

∆1
1 subset of X. Let τB be the canonical Polish topology for [B]E given by

3.2. Then B is smooth if and only if B ⊆ P (τB).

Proof: Since [B]E is τB-clopen, by the previous theorem [B]E is smooth if
and only if [B]E ⊆ P (τB). And by 2.4 B is smooth if and only if [B]E is
smooth. Finally observe that P (τ) is an invariant set, thus B ⊆ P (τB) if and
only if [B]E ⊆ P (τB).

2

Remark: (i) This corollary can be seen as a Borel analog of 2.6(iii). That
is to say for Borel smooth sets P (τ) plays the same role as D does for Σ1

1

smooth sets. We will show below that in this case we have that D = P (τ)
for some topology.

(ii) On the other hand this is a generalization of a result of Weiss (see
[12]) which says that the equivalence relation induced by an aperiodic home-
omorphism is not smooth if and only if there is a recurrent point.

Our next theorem answers a question raised in §2.

Theorem 3.8 Let E be a countable ∆1
1 equivalence relation on a recursively

presented Polish space X. Let D be the set defined on 2.6(iii) and ρ be the
Polish topology generated by the ∆1

1 sets (see 3.1). Then
(i) D = P (ρ)
(ii) D =

⋃{A : A is a ∆1
1 smooth set}

Proof: Let us show first that (i) implies (ii). Let x ∈ D. We want to show
that there is a ∆1

1 smooth set A with x ∈ A. Since [x]E has a ρ-isolated point,
let B be a ∆1

1 set such that | B ∩ [x]E |= 1. Put A = {y :| B ∩ [y]E |= 1}.
It is easy to check that A is ∆1

1: just recall that ∃z ∈ [y]E and ∀z ∈ [y]E are
number quantifiers. Clearly A ⊆ P (ρ) = D, so A is smooth and x ∈ A.

Let A = (An) be the collection of ∆1
1 invariant sets. It follows from the

proof of 2.4 Lemma B that D = DA. For every ∆1
1 set A, [A]E is ∆1

1. Hence
from 3.5 we get that D = P (ρ).

2

As we have observed before, the previous theorem implies that strong
Borel separation and smoothness are equivalent

Theorem 3.9 Let E be a ∆1
1 countable equivalence relation on X and C be

an arbitrary subset of X. Then C is smooth if and only if C is strongly Borel
separated.
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Proof: (i)⇒ (ii) is a consequence of 2.4, as ∆1
1 smooth sets are clearly ∆1

1

strongly separated.
(ii)⇒ (i). Let C be a ∆1

1 strongly separated set. Since D is the largest
∆1

1 separated set, we have C ⊆ D, and from the previous result we have that
D is Borel.

2

This result is not valid if we replace strong separation by separation, see
[1].

4 The σ-ideal of closed smooth sets

As we have already pointed out, theorem 2.4 implies that the notion of
smoothness for Σ1

1 sets is concentrated on closed sets, i.e., a Σ1
1 set A is

smooth if and only if every closed subset of A is smooth. In this part we will
deal with the collection of closed smooth sets. To be more precise, let E be
a Borel equivalence relation on a compact Polish space X. The collection of
closed subsets of X, which is denoted by K(X), equipped with the Hausdorff
topology is a Polish space. Let

I(E) = {K ∈ K(X) : K is smooth with respect to E}.
It is clear that I(E) is a σ-ideal. We are interested in studying the complex-
ity of I(E) as well as some of its structural properties like calibration, the
covering property and Borel basis, we will follow the ideas from [10] and [14].
One of the results of this section is that E is smooth if and only if I(E) is
Borel. We will also look at the particular case of I(E0).

A Π1
1 σ-ideal I satisfies the so called dichotomy theorem (see [10]), namely

either I is a true Π1
1 set or a Gδ set.

Theorem 4.1 Let E be a non smooth ∆1
1 equivalence relation on a compact

Polish space X. Then I(E) is a strongly calibrated, locally non Borel, Π1
1

σ-ideal .

To show that I(E) is locally non Borel we need the following two lemmas.

Lemma 4.2 Let f : 2ω → X be a continuous embedding from E0 into E.
For every closed set K ⊆ 2ω
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K ∈ I(E0) if and only if f [K] ∈ I(E).

Proof: Let K 6∈ I(E0) and put E1 = E0dK. By 2.4, E0 v E1 via a
continuous embedding. But clearly E1 v Edf [K] and v is transitive, hence
E0 v Edf [K], i.e., f [K] 6∈ I(E).

Conversely, suppose K ∈ I(E0) and let A = (An) be a separating family
of Σ1

1 sets for E0dK. Put Bn = f [An] and B = (Bn). We claim that
B is a separating family for Edf [K]. In fact: as f is 1-1 we have that
(∀x, y)(f(x) EB f(y) ↔ xEA y). Hence (∀z, w ∈ f [K])(z EB w ↔ zEw).
Therefore from 2.4 we get that f [K] is E-smooth.

2

Lemma 4.3 I(E0) is not Borel. In fact we have that for every x ∈ 2ω there
is a continuous map f : 2ω → K(2ω) such that

(i) if γ is eventually zero, then f(γ) is a finite subset of [x]E0.
(ii) if γ is not eventually zero, then f(γ) is a non-smooth closed set (with

respect to E0).
In other words, there is a continuous reduction of {α ∈ 2ω : α is eventually

zero } into the collection of finite subsets of [x]E0 and ∼ I(E0). In particular
I(E0) is not Gδ.

Proof: Consider the following function

f(γ) = {α ∈ 2ω : (∀n)(γ(n) = 0 → α(n) = x(n))}.

Clearly if γ is eventually zero, then (i) holds. On the other hand if γ has
infinite many 1’s, then f(α) is a perfect set. Let g : 2ω → 2ω be the canonical
bijection of 2ω onto f(γ). It is not difficult to see that g is actually an
embedding from E0 into E0df(γ), i.e., for all α, β ∈ 2ω, αE0β if and only
if g(α)E0g(β). In fact: Just observe that if T is the tree of f(γ) and some
sequence in T of length n splits, then every sequence in T of length n splits.

Finally, to see that f is continuous, let for each s ∈ 2<ω

As = {α ∈ 2ω : (∀n < lh(s))(s(n) = 0 ⇒ α(n) = x(n))},

each As is closed and if t ≺ s, then As ⊆ At. We have that f(γ) =
⋂

n Aγdn
and also that for every s ∈ 2<ω

f(γ)
⋂

Ns 6= ∅ if and only if ∀n < lh(s)(s(n) = 0 ⇒ γ(n) = x(n))
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which easily implies that f is continuous. By the Baire category theorem
I(E0) is not Gδ and by the dichotomy theorem for σ-ideals (see [10]) I(E0)
is not Borel.

2

Proof of theorem 4.1: It is clear that I(E) is a σ-ideal and since the
smooth sets are the common null sets of all E-ergodic, non atomic measures
on X, by a standard capacitability argument we get that I(E) is strongly
calibrated. A similar argument as in the proof of 2.6(ii) shows that I(E) is
Π1

1.
To see that I(E) is locally not Borel let K ∈ K(X), we then have that

I(E) ∩ K(K) = {F ∈ K(K) : F is E-smooth } = I(EdK).

From 4.2 we get that I(E0) is not Borel if and only if I(EdK) is not Borel.
Now the conclusion follows from 4.3.

2

As a corollary of lemma 4.3 we get the following

Corollary 4.4 Let E be a non smooth Borel equivalence relation on X, then
(i) If J ⊆ I(E0) is a dense σ-ideal, then J is not Σ1

1.
(ii) If J ⊆ I(E) is a σ-ideal such that for every x ∈ X {x} ∈ J , then J

is not Σ1
1.

Proof: (ii) follows from (i), because if f : 2ω → X is an embedding witness-
ing that E is not smooth and J ⊆ I(E) is a σ-ideal containing all singletons,
then J∗ = f−1[J ] is a dense σ-ideal and it is contained in I(E0).

(i) Let J be as in the hypothesis of (i). It suffices to show that J is not
Gδ. Suppose toward a contradiction that J ⊆ I(E0) is a Gδ dense σ-ideal.
Let H = {x ∈ 2ω : {x} ∈ J}, H is a Gδ dense set. Let G be a countable
collection of homeomorphisms of 2ω generating E0. Put H∗ =

⋂
g∈G g[H], H∗

is an invariant dense Gδ subset of H. Let x ∈ H∗. For every y such that
yE0x, we have {y} ∈ J . From lemma 4.3 we get that J is not a Gδ set, a
contradiction.

2

Remarks: (1) (i) above implies that there are no dense Gδ E0-smooth sets ,
because if H is such a set then K(H) would be a dense Gδ subideal of I(E0).
Actually every Baire measurable E0-smooth set is of the first category (see
[13]).
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(2) (ii) above is best possible in the sense that there is a non smooth Borel
equivalence relation E and a dense Gδ set H which is smooth with respect to
E, hence as before we get K(H) is a dense Borel subideal of I(E) (see [13]).

(3) Kechris (see [8]) has proved that the σ-ideal of closed sets of extended
uniqueness also satisfies this hereditary property but even in a stronger form,
i.e., for every perfect set M of restricted multiplicity the σ-ideal U0

⋂K(M)
has no dense Σ1

1 subideals. We do not know if this holds for I(E0).
Since for E smooth I(E) is trivial, we get the following characterization

of a smooth Borel equivalence relation.

Corollary 4.5 Let E be a Borel equivalence relation on X. Then E is
smooth if and only if I(E) is Borel.

2

Other structural property that has been studied in the context of σ-ideals
of compact sets is the so called covering property (see [14]). This is a quite
strong property and there are few known σ-ideals that have it. If for a Borel
equivalence relation E it happens that I(E) has the covering property then
every Σ1

1 smooth sets is meager, which is not true in general. Also, from
large cardinals hypothesis it can be proved that the covering property for
I(E) implies that every Π1

1 E-sparse set is E-smooth (see [14]), however
Becker (see [1]) has shown that in general this is not the case. It is easy to
check that if I(E0) does not have the covering property then no I(E) have
the covering property. However, it is not known if I(E0) has this property,
it will suffices to show that it has a Borel basis (see [14]). By a general fact
it can be proved that I(E0)does no have a Σ0

2 basis. A natural candidate
for I(E0) is the collection of closed E0-transversals (i.e. a set that meets
every equivalence class in at most one point), which form a Gδ set, however
it can be proved it is not a Borel basis for I(E0) (in fact it generates a not
calibrated σ-ideal, see [14]).
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