Revista Notas de Matemática Vol.4(2), No. 267, 2008, pp.49-53 http://www.saber.ula.ve/notasdematematica/ Comisión de Publicaciones Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes

On some extensions of sequential topologies

Carlos Uzcátegui

Resumen

Dado un ideal \mathcal{I} y una topología τ sobre un conjunto X, existe una extensión natural $\tau_{\mathcal{I}}$ de τ asociada al ideal \mathcal{I} que generaliza la extensión secuencial de τ . En este trabajo mostraremos algunas propiedades de $\tau_{\mathcal{I}}$. Uno de los resultados principales dice que esta extensión preserva primero numerabilidad cuando el ideal \mathcal{I} es un *p*-ideal analítico.

Palabras clave: Espacios Frechet, espacios secuenciales, extensión secuencial, p-ideales.

Abstract

Given an ideal \mathcal{I} and a topology τ over a set X, there is a natural extension $\tau_{\mathcal{I}}$ of τ associated to \mathcal{I} which generalizes the sequential extension of τ . In this note we show some properties of $\tau_{\mathcal{I}}$. One the main results is that this extension preserves first countability when the ideal \mathcal{I} is an analytic *p*-ideal.

key words. Frechet space, sequential space, sequential extension, p-ideal.

AMS(MOS) subject classifications. 54D55, 54H11, 22A05, 03E15.

1 Introduction

A topological space X is Frechet if for every $A \subseteq X$ and every $x \in \overline{A}$ there is a sequence $(x_n)_n$ in A converging to x. It is said to be sequential if every $A \subseteq X$ containing the limit of all its convergent sequence is actually closed. Every Frechet space is sequential but the converse is not true. The following generalization of sequentiality was introduced in [7]. Let \mathcal{I} be an ideal over X containing all finite subsets of X and τ a topology over X. We say that τ is weakly generated by \mathcal{I} if for all $A \subseteq X$ such that $cl_{\tau}(E) \subseteq A$ for all $E \subseteq A$ with $E \in \mathcal{I}$, then A is closed. If \mathcal{I} is the ideal generated by the τ -convergent sequences, this notion corresponds to sequentiality. Analogously, we say that τ is generated by \mathcal{I} if for every $A \subseteq X$, if $x \in cl_{\tau}(A)$, then there is $E \subseteq A$ in \mathcal{I} such that $x \in cl_{\tau}(E)$. That is to say,

$$\overline{A} = \bigcup \{ \overline{E} : E \subseteq A \text{ and } E \in \mathcal{I} \}.$$

In this case, one could say that X is \mathcal{I} -tight. If \mathcal{I} is the ideal generated by the discrete subsets of X, then we to obtain the so called discretely generated spaces [2].

In this note we continue the work started in [7] where it was shown that for every topology τ in X and every ideal \mathcal{I} there is a smallest topology $\tau_{\mathcal{I}}$ such that $\tau \subseteq \tau_{\mathcal{I}}$ and $\tau_{\mathcal{I}}$ is weakly generated by \mathcal{I} . Since the ideal \mathcal{I} used will be clear from the context, we will denote $\tau_{\mathcal{I}}$ by $\overline{\tau}$. We call $\overline{\tau}$ the \mathcal{I} -closure of τ . This topology is characterized as follows:

$$A \text{ is } \overline{\tau}\text{-closed iff } \forall E \ [E \in \mathcal{I} \& E \subseteq A \Rightarrow cl_{\tau}(E) \subseteq A].$$

$$\tag{1}$$

One of the main result presented here says that if τ is a first countable T_1 topology over a countable set X and \mathcal{I} is an analytic *p*-ideal, then $\overline{\tau}$ is first countable.

2 Terminology

A space is said to have the diagonal sequence property if whenever $(x_n^m)_n$ is a sequence converging to x for all m, there is a sequence of natural numbers k_n such that $(x_n^{k_n})_n$ converges to x. We recall that a subset $A \subseteq X$ is called sequentially closed if every convergent sequence of elements of A has the limit inside A. Thus a space is sequential iff every sequentially closed set is closed.

An *ideal* over a set X is a collection of subsets of X closed under finite unions and containing the subsets of its elements. An ideal \mathcal{I} is called a *p*-*ideal* if for every sequence $E_n \in I$, with $n \in \mathbb{N}$, there is $E \in \mathcal{I}$ such that $E_n \setminus E$ is finite for all $n \in \mathbb{N}$. A typical example of a *p*-ideal over $\mathbb{N} \times \mathbb{N}$ is the collection $\emptyset \times \text{Fin}$ of all $A \subseteq \mathbb{N} \times \mathbb{N}$ such that every vertical section of A is finite. And a typical non *p*-ideal is the collection $\text{Fin} \times \emptyset$ of all $A \subseteq \mathbb{N} \times \mathbb{N}$ such that only finitely many vertical sections of A are not empty. An ideal \mathcal{I} over X is called *tall* if for every infinite $A \subseteq X$, there is an infinite $E \subseteq A$ with $E \in \mathcal{I}$.

A collection \mathcal{A} of subsets of a countable set X (like a topology or an ideal) is called *analytic* if there is a continuous function $f : \mathbb{N}^{\mathbb{N}} \to 2^X$ such $f[\mathbb{N}^{\mathbb{N}}] = \mathcal{A}$ [3]. Analytic topologies were studied in [5, 6]. $\emptyset \times \text{Fin}$ and $\text{Fin} \times \emptyset$ are example of analytic (in fact, Borel) ideals. We follow the notation for Borel as in [3].

3 Some properties of \mathcal{I} -closures

In this section we will analyze the \mathcal{I} -closure of sequential spaces. We recall from [7] that $cl_{\tau}(E) = cl_{\overline{\tau}}(E)$ for all $E \in \mathcal{I}$. Another property of $\overline{\tau}$ that will be used is that if $(x_n)_n$ is a sequence with range in \mathcal{I} , then $(x_n)_n$ is τ -convergent to x iff it is $\overline{\tau}$ -convergent to x.

We start showing that for a certain class of ideal the \mathcal{I} -closure of a sequential topology does not change the topology.

Theorem 3.1 Let (X, τ) be a sequential space. The following are equivalent

- (i) (X, τ) is a Frechet space.
- (ii) τ is generated by any tall ideal.

Proof: Suppose (X, τ) is Frechet and \mathcal{I} is a tall ideal. Let $A \subseteq X$ and $x \in cl_{\tau}(A) \setminus A$. Then there is a sequence $x_n \in A$ converging to x. Let B be the range of $(x_n)_n$. Since \mathcal{I} is tall, there is $E \subseteq B$ infinite with $E \in \mathcal{I}$. Then $x \in cl_{\tau}(E)$ and thus τ is generated by \mathcal{I} .

Suppose now that (X, τ) is not Frechet. Let $A \subseteq X$ and $x \in cl_{\tau}(A)$ such that no sequence in A converges to x. Let \mathcal{I} be the ideal generated by all τ -convergent sequences together with the τ -closed discrete subsets of X. Then \mathcal{I} is tall. In fact, let $B \subseteq X$ be infinite. Since τ is sequential, then either B contains a (non eventually constant) convergent sequence or it is closed discrete. It is clear that there is no $E \in \mathcal{I}$ such that $E \subseteq A$ and $x \in cl_{\tau}(E)$. Hence τ is not generated by \mathcal{I} .

The following result can be analogously proved.

Theorem 3.2 Let τ be a sequential topology, then τ is weakly generated by any tall ideal.

Example 3.3 Let X be a convergent sequence and \mathcal{I} be (an isomorphic copy) of Fin $\times \emptyset$. Clearly \mathcal{I} is not tall. X is Frechet but it is not generated by \mathcal{I} as $\overline{\tau}$ is the sequential fan.

Theorem 3.4 Suppose τ is sequential and $cl_{\tau}(E) \in \mathcal{I}$ for all $E \in \mathcal{I}$, then $\overline{\tau}$ es sequential.

Proof: For a topology ρ over X, let $[A]_{\rho}$ denote the ρ -sequential closure of A, that is to say, the smallest ρ -sequential closed set containing A. Since $\tau \subseteq \overline{\tau}$, then for every $A \subseteq X$,

$$A \subseteq [A]_{\overline{\tau}} \subseteq [A]_{\tau}.$$

We claim

$$[E]_{\overline{\tau}} = [E]_{\tau}$$

for every $E \in \mathcal{I}$. In fact, it suffices to show that $[E]_{\overline{\tau}}$ is τ -sequentially closed. To see this, notice first that $[E]_{\overline{\tau}} \in \mathcal{I}$ because $[E]_{\overline{\tau}} \subseteq cl_{\overline{\tau}}(E) = cl_{\tau}(E)$ and we are assuming that $cl_{\tau}(E) \in \mathcal{I}$. Therefore every sequence in $[E]_{\overline{\tau}}$ which is τ -convergent, is also $\overline{\tau}$ -convergent. Thus $[E]_{\overline{\tau}}$ is τ -sequentially closed.

To show that $\overline{\tau}$ is sequential, let $A \subseteq X$ be a $\overline{\tau}$ -sequentially closed set. To see that A is $\overline{\tau}$ -closed, fix $E \subseteq A$ in \mathcal{I} . We need to show that $cl_{\tau}(E) \subseteq A$. Since τ is sequential, then $[E]_{\tau} = cl_{\tau}(E)$. Thus $cl_{\tau}(E) = [E]_{\overline{\tau}}$. Since A is $\overline{\tau}$ -sequentially closed, then $[E]_{\overline{\tau}} \subseteq A$ and we are done.

Theorem 3.5 Let τ be a T_1 topology and \mathcal{I} be an ideal over X. If τ is Frechet, then $\overline{\tau}$ is sequential. Moreover, if \mathcal{I} is a p-ideal, then $\overline{\tau}$ is Frechet and generated by \mathcal{I} .

Proof: Suppose τ is Frechet and let $A \subseteq X$ be $\overline{\tau}$ -sequentially closed. Let $E \subseteq A$, $E \in \mathcal{I}$ and $x \in cl_{\tau}(E)$. Since τ is Frechet, there is a sequence $(x_n)_n$ in E τ -converging to x. Since the range of $(x_n)_n$ belongs to \mathcal{I} , then $(x_n)_n$ converges to x also with respect to $\overline{\tau}$. Hence $x \in A$ and therefore $cl_{\tau}(E) \subseteq A$. Thus A is $\overline{\tau}$ -closed.

Suppose now that \mathcal{I} is a *p*-ideal. Let $A \subseteq X$. To show that $\overline{\tau}$ is generated by \mathcal{I} , it suffices to show that the following set is $\overline{\tau}$ -closed:

$$B = \bigcup \{ cl_{\tau}(E) : E \subseteq A \& E \in \mathcal{I} \}.$$

Since $\overline{\tau}$ is sequential, it suffices to show that B is $\overline{\tau}$ -sequentially closed. Let $x_n \in B$ be a sequence $\overline{\tau}$ -converging to x. For each n, fix $E_n \in \mathcal{I}$ such that $E_n \subseteq A$ and $x_n \in cl_{\tau}(E_n)$. Since \mathcal{I} is a p-ideal, there is $E \in \mathcal{I}$ such that $E_n \setminus E$ is finite for all n. It is clear that we can assume without lost of generality that $E \subseteq A$. As $x_n \in cl_{\tau}(E)$ for all n, then $x \in cl_{\tau}(E)$. Since $E \in \mathcal{I}$, we conclude that $x \in B$.

To see that $\overline{\tau}$ is Frechet, let $x \in cl_{\overline{\tau}}(A)$. Since $\overline{\tau}$ is generated by \mathcal{I} , there is $E \subseteq A$ such that $x \in cl_{\tau}(E)$. As τ is Frechet, there is $(x_n)_n$ in E which is τ -convergent to x. Since $E \in \mathcal{I}$, then $(x_n)_n$ is also $\overline{\tau}$ -convergent.

The proof of theorem 3.5 also says the following:

Theorem 3.6 Let \mathcal{I} be a p-ideal and τ be a T_1 topology over X. If τ is weakly generated by \mathcal{I} , then τ is generated by \mathcal{I} .

Proof: It suffices to show that the following set is τ -closed:

$$B = \bigcup \{ cl_{\tau}(E) : E \subseteq A \& E \in \mathcal{I} \}.$$

We have to show that if $E \subseteq B$ is in \mathcal{I} , then $cl_{\tau}(E) \subseteq B$. In fact, let $y \in cl_{\tau}(E)$ and let $(y_n)_n$ be an enumeration of E. For each n, fix $E_n \subseteq A$ in \mathcal{I} such that $y_n \in cl_{\tau}(E_n)$. Since \mathcal{I} is a p-ideal, there is F in \mathcal{I} such that $E_n \subseteq^* F$. It is clear that $E_n \subseteq^* F \cap A$ and thus we assume that $F \subseteq A$. It is also clear that $y_n \in cl_{\tau}(F)$ (here we use that τ is T_1) for all n and thus $y \in cl_{\tau}(F)$ and hence $y \in B$.

We will say that an ideal \mathcal{I} is a *s*-ideal with respect to τ , if each $E \in \mathcal{I}$ is a subset of a finite union of (the ranges of) τ -convergent sequences. The following result shows that $\overline{\tau}$ is a generalization of the sequential extension of a topology.

Proposition 3.7 Let τ be a topology and \mathcal{I} a s-ideal with respect to τ . Then $\overline{\tau}$ is sequential.

Proof: Let A be a non $\overline{\tau}$ -closed set. Then there is $E \subseteq A$ with $E \in \mathcal{I}$ such that $cl_{\tau}(E) \not\subseteq A$. Since E is a union of finite many τ -convergent sequences then there is a sequence $(x_n)_n$ in E τ -converging outside A. Since the range of $(x_n)_n$ belongs to \mathcal{I} , then $(x_n)_n$ is $\overline{\tau}$ -convergent.

Example 3.8 Given an ideal \mathcal{I} , let $s(\mathcal{I})$ be the ideal generated by the τ -convergent sequences with range in \mathcal{I} . Thus $s(\mathcal{I}) \subseteq \mathcal{I}$. It is obvious that $s(\mathcal{I})$ is a *s*-ideal with respect to τ . Therefore the $s(\mathcal{I})$ -closure of τ is sequential.

Example 3.9 Let \mathcal{I} be Fin $\times \emptyset$ and (X, τ) a first countable space. By 3.5 we know $\overline{\tau}$ is sequential. We will present two examples. One showing that $\overline{\tau}$ can be non Frechet and another showing that it can have sequential rank ω_1 .

Let

$$X = \{1/n + 1/m : n, m \ge 1\} \cup \{1/n : n \ge 1\} \cup \{0\}$$

as a subspace of \mathbb{R} . Let $S_n = \{1/n + 1/m : m \ge 1\} \cup \{1/n\}$ for $n \ge 1$ and $S_0 = \{1/n : n \ge 1\} \cup \{0\}$. We will view X as $\mathbb{N} \times \mathbb{N}$ by identifying S_n with $\{n\} \times \mathbb{N}$. Then $(X, \overline{\tau})$ is homeomorphic to the Arens' space. The fact that the Arens' space is not Frechet says that $(X, \overline{\tau})$ is not generated by \mathcal{I} .

Now consider \mathbb{Q} the rationals with the usual order topology. For each $r \in \mathbb{Q}$, fix a sequence S_r in \mathbb{Q} converging to r and w.l.o.g assume that the S_r 's are pairwise disjoint. Identify $\mathbb{N} \times \mathbb{N}$ with \mathbb{Q} in such a way that each vertical line $\{n\} \times \mathbb{N}$ corresponds to one of the convergent sequences

 S_r (put also r in $\{n\} \times \mathbb{N}$ if r does not belong to a line $\{m\} \times \mathbb{N}$ with m < n). Notice \mathcal{I} is isomorphic to the ideal generated by S_r with $r \in \mathbb{Q}$. Then $(\mathbb{Q}, \overline{\tau})$ is homeomorphic to the Arkhanglel'skiĩ-Franklin space S_{ω} [1].

4 Closure of first countable spaces

In this section we show the following result.

Theorem 4.1 Let τ be a first countable T_1 topology over a countable set X. If \mathcal{I} is an analytic p-ideal, then $\overline{\tau}$ is first countable.

We show first a lemma.

Lemma 4.2 Let τ be a topology with the diagonal sequence property and \mathcal{I} a p-ideal. Then $\overline{\tau}$ has the diagonal sequence property.

Proof: Let $S_n = (x_{nk}) \to_k x$ respect to $\overline{\tau}$ for all n. Then each S_n has a subsequence with range in \mathcal{I} , so we can assume without loss of generality that $E_n = \{x_{nk} : k \ge 1\} \in \mathcal{I}$. Consider now the sequences $S_n^m = \{x_{nk} : k \ge m\}$ with $n, m \in \mathbb{N}$. Since τ has the diagonal sequence property, then there is a sequence $S \tau$ -converging to x such that $S \cap S_n^m \neq \emptyset$ for all $n, m \in \mathbb{N}$. Observe that $S \cap S_n$ is infinite for all n. Since \mathcal{I} is a p-ideal, there is $E \in \mathcal{I}$ such that $E_n \setminus E$ is finite for all n. Therefore $S \cap S_n \cap E$ is infinite. Finally, let T be $S \cap E$. Then T is a sequence converging to xwith range in \mathcal{I} and $T \cap S_n \neq \emptyset$ for all n.

Remark 4.3 The previous result is not true for an arbitrary ideal. In fact, the closure of a first countable space does not necessarily have the diagonal sequence property: For example, the closure of a convergent sequence with respect to the ideal $\text{Fin} \times \emptyset$ is the sequential fan. A natural question is to determine when the weak diagonal sequence property is preserved under the \mathcal{I} -closure operation.

Proof of 4.1: We recall some terminology from [4]. The orthogonal \mathcal{I}^{\perp} of an ideal \mathcal{I} is the collection of those $B \subseteq X$ such that $B \cap E$ is finite for all $E \in \mathcal{I}$.

From 3.5 and 4.2 we know that $\overline{\tau}$ is Frechet and has the diagonal sequence property. By theorem 6.6 of [5] it suffices to show that $\overline{\tau}$ is analytic. Fix $x \in X$ and let V_n be a local base at x for τ such that V_n is decreasing. Let $A \subseteq X$ with $x \in cl_{\tau}(A) \setminus A$. We claim

$$x \in cl_{\overline{\tau}}(A) \iff \forall n \ (A \cap V_n \notin \mathcal{I}^{\perp}) \tag{2}$$

To see (2), first suppose that $x \in cl_{\overline{\tau}}(A)$. By 3.5 $\overline{\tau}$ is generated by \mathcal{I} , therefore there is $E \subseteq A$ in \mathcal{I} such that $x \in cl_{\tau}(E)$. Thus $E \cap V_n$ is infinite for all n and thus $A \cap V_n \notin \mathcal{I}^{\perp}$. Conversely, suppose that for all n there is an infinite $E_n \subseteq A \cap V_n$ in \mathcal{I} . Since \mathcal{I} is a p-ideal, there is $E \in \mathcal{I}$ such that $E_n \setminus E$ is finite for all n. As $E_n \subseteq A$, we can assume that $E \subseteq A$. Since $E \cap V_n$ is infinite for all n then $x \in cl_{\tau}(E)$. Hence $x \in cl_{\overline{\tau}}(A)$.

Since \mathcal{I} is an analytic *p*-ideal, then its orthogonal is countable generated [4], in particular, \mathcal{I}^{\perp} is F_{σ} . It follows from (2) that $\{A \subseteq X : x \in cl_{\overline{\tau}}(A)\}$ is Borel for all $x \in X$ and therefore $\overline{\tau}$ is also Borel.

In general the \mathcal{I} -closure of a metrizable space is not metrizable even when \mathcal{I} is a *p*-ideal (see example 4.5 below). In the case of a countable space the question reduces to know when the closure of a metrizable space is regular. The following proposition is related to this problem.

Proposition 4.4 Suppose \mathcal{I} contains a τ -dense set. Then

- (i) τ and $\overline{\tau}$ have the same clopen sets.
- (ii) If in addition, X is countable and $\overline{\tau}$ is regular, then $\tau = \overline{\tau}$.

Proof: (i) Let $E \in \mathcal{I}$ be a τ -dense set. Since $cl_{\tau}(E) = cl_{\overline{\tau}}(E)$ then E is also $\overline{\tau}$ -dense. It suffices to show that $cl_{\tau}(W) = cl_{\overline{\tau}}(W)$ for all $W \in \overline{\tau}$. Fix $W \in \overline{\tau}$, then

$$cl_{\overline{\tau}}(W) = cl_{\overline{\tau}}(W \cap E) = cl_{\tau}(W \cap E) = cl_{\tau}(W).$$

To see the last equality observe: if $x \in cl_{\tau}(W)$ and $x \in V \in \tau$, then $\emptyset \neq V \cap W \in \overline{\tau}$. Therefore $V \cap W \cap E \neq \emptyset$, as E is $\overline{\tau}$ -dense. Hence $x \in cl_{\tau}(W \cap E)$.

Clearly (ii) follows from (i) as every countable regular space is necessarily zero-dimensional.

Example 4.5 Suppose $(\mathbb{N} \times \mathbb{N}, \tau)$ is a copy of \mathbb{Q} in $\mathbb{N} \times \mathbb{N}$ such that at least one vertical line is not τ -closed discrete and one horizontal line is τ -dense. Let \mathcal{I} be $\emptyset \times \text{Fin}$. Notice that every vertical line is $\overline{\tau}$ -closed discrete and every horizontal line belongs to \mathcal{I} . Therefore $\tau \neq \overline{\tau}$ and by the previous proposition $\overline{\tau}$ is not regular.

References

- A. V. Arkhanglel'skii and S. P. Franklin. Ordinal invariants for topological spaces. Mich. Math. J., 15:313–320, 1968.
- [2] A. Dow, M. G. Tkachenko, V. V. Tkachuk, and R. G. Wilson. Topologies generated by discrete subspaces. *Glas. Math. Ser. III*, 37(57):187–210, 2002.
- [3] A. S. Kechris. Classical descriptive set theory. Springer-Verlag, 1994.
- [4] S. Todorčević. Analytic gaps. Fund. Math., 150(1):55–66, 1996.
- [5] S. Todorčević and C. Uzcátegui. Analytic topologies over countable sets. Top. and its Appl., 111(3):299–326, 2001.
- [6] S. Todorčević and C. Uzcátegui. Analytic k-spaces. Top. and its Appl., 146-147:511-526, 2005.
- [7] C. Uzcátegui. Topologies generated by ideals. Comment. Math. Univ. Carolin., 47(2):317– 335, 2006.

CARLOS UZCÁTEGUI

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes Mérida 5101, Venezuela e-mail: uzca@ula.ve