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Abstract

We present. some results on the structure of o-ideals of compact sets
from a descriptive set theoretic point of view. We extend to x-Suslin
sets a theorem of Debs-Saint Raymond that gives sufficient conditions
for a o-ideal to have the covering property for analytic sets. Some
results concerning the covering property and product of o-ideals are
presented. ’

1 Introduction.

The study of o—ideals of compact sets has been motivated by problems in
analysis and recently it has received a lot of attention because its connections
with harmonic analysis (see [5]). The descriptive set theoretic approach was
initiated by Kechris, Louveau and Woodin in [6] (see also [4] and [10]) where
it was shown that many structural properties of o-ideals of compact sets
follow from descriptive set theoretical hypothesis. This paper continuous
this line of research and it deals with the so called covering property and
product of o-ideals.

Let us fix the notation and basic notions. Throughout this article X will
be a compact metric space. We will use standard notions of descriptive set
theory as in Moschovakis’ book [8] and we follow the notations from [6]. For
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instance, E% denotes the analytic sets, i.e. the continuous images of Borel
sets, and IT! denotes the co-analytic sets, i.e. sets whose complements are
analytic. The corresponding effective pointclasses are denoted respectively
by ¥1 and II]. When we work with the effective methods of descriptive set
theory we assume that X is recursively presented compact metric space (see
[8])-

By K(X) we denote the collection of closed subsets of X which becomes
itself a compact, metric space under the usual Hausdorff metric: .

Sup{max{d(z,K),d(y,L)}: z€ K,ye L} ,ifK,L+#0
p(K,L) = { diam(X) VifKor L =0
0 LK =L =0.

All topological and descriptive set theoretic notions concerning K (X)
refer to this space (for more details about the topology over K(X) see [6]
and the references given there). '

A subset I C K(X) is called hereditary if for all K,L € K(X) with
K € I and L C K we have that L € I. I is called an ideal, if moreover
for all K,L € I we have taht K UL € I. and [ is called a o—ideal, if in
addition we have that if K, K;, K,,... € K(X) are such that for all : K; € I
and K = |J K;, then K € I. A

Let us give some examples:

(1) For each A C X, let K(A) = {K € K(X): K C A}.

(2) K, (X)={K € K(X): K is countable }.

(3) Imeager = {K € K(X): K is meager }.

(4

) Given a Borel measure p over X, let
I, ={K e K(X): u(K) =0}

(5) Let R =Rajchman probability measures on the unit circle, i.e. those
measures for which fi(n) — 0, as | n |— co. Let

Uo={K e K(X): u(K) =0 for all 4 € R}.

Uy are the closed sets of extended uniqueness (see [5]).
(6) Let X = 2¥, and I.= The o—ideal of closed subsets of 2* that avoid

a cone of Turing degrees.



Given a o—ideal I of closed subsets of X, the most natural way to extend
I to a o—ideal of arbitrary subsets of X is as follows: Let

Ie:l:t = {A g X: H(Kn)nEw in I7 A —C— Un I{n}

I°*t is the smallest o—ideal of subsets of X extending /. A typical example
is when I = I neqqer; the exterior extension of I is the o—ideal of meager sets.
Analogously the exterior extension of K, (X) is the o —ideal of countable séts.

In some cases, however, the exterior extension is not the natural one.
For example: if A is the product measure on 2 and I = I, then I**! is not
the oc—ideal of A\-measure zero sets. But this example suggests other way of
extending I: Let

I ={ACX:K(A)C I}

Clearly I'™ is hereditary, I¢** C I'™ and I'" N K(X) = I. But in general
I'™ is not even an ideal. '

We say that a c—ideal I on X has the covering property if /¢! = '™
for 1 sets, i.e. a X1 set A is in I'"* iff A is in I°** (see [3], [4] and also
the notion of I-regularity of [7]). This is a quite strong property, in fact
the only known o-ideals of compact sets that have the covering property are
K,(X) and Up. For K,(X), the classical perfect set theorem for E% sets is
the assertion that K, (X) has the covering property. And for U is a theorem
of Debs and Saint Raymond (see [1]). In [10] some analogies between the
covering property and the perfect set theorem has been studied.

A o-ideal I is calibrated if for every closed set F' the following holds: If
for some collection {F,,} of closed sets in I, F — | F, € I'™, then F € I.
A typical calibrated o-ideal is the collection of closed null sets with respect
to some Borel measure. On the other hand, the o-ideal of closed meager
sets is not calibrated. Notice also that the covering property clearly implies
calibration.

Most of the structural theory of o-ideals has been developed imposing
definibility conditions over I, for example it has to be a II] subset of K(X). A
very important structural property of o—ideals is the Dichotomy theorem:
Let I be a II] o—ideal of compact sets, then either I is G5 or IIi-complete
([6]). Another definibility condition is the following: Let B be a hereditary
subset of X(X), B, denotes the smallest o—ideal (of closed sets) containing




B, ie., K € B, if there is a sequence {K,} of elements of B such that
K =, K,.. We say that I has a Borel basis if there is a Borel hereditary
set B C I such that I = B,. [ is called locally non-Borel if for every
- closed set FF ¢ I, I NK(F) is not Borel.

The only criterion known to show that an o-ideal has the covering prop-
erty is the following theorem dued to Debs and Saint Raymond, which was
originally used to show that the o—ideal of closed set of uniqueness does not
have a Borel basis (see [5] for a proof of both results). .

Theorem 1.1 (Debs-Saint Raymond [1]). Let I be a calibrated, locally non-
Borel, TI1 o-ideal. If I has a Borel basis, then I has the covering property.

O

In §1 we show that the proof of 1.1 given in [5] can be extended to s-Suslin
sets. It is an open question whether or not a G5 o-ideal can have the covering
property, in §2 we present some results concernig this question and in §3 we
present some results about product of o-ideals showing a relation between
the covering property and what we call the Fubini property. The results on
this article are part of my Caltech’s Ph.D thesis under the supervision of Dr.
Alexander Kechris to whom I am very grateful for his guidence and patience.

2 The covering property for x-Suslin sets

Let « be an infinite cardinal, ¥ denote the smallest cardinal larger than ,
w denotes the first infinite ordinal, i.e., the natural numbers. Put in «“ the
product topology. The usual basis for this topology is given by the collection
of sets Ny = {f € K : f extends t}, where t is a finite sequence on k, i.e.
t € k< (see [8]). As usual for every f € k¥ and n € w f[n denotes the
restriction of f to the first n values, so f[n € k<“.

A subset A C X is called x-Suslin if there is a closed F' C X x &“ such
that A = proj(F), i.e.,

¢ e Aiff 3f € k¥[(z, f) € F].

We will write in this case A = p[F]. It is a classic result that analytic sets
are exactly the Ro-Suslin sets or simply Suslin sets. Most of the properties
of analytic sets can be proved for x-Suslin sets (see [8]). For instance, the



perfect set theorem can be extended to k-Suslin sets: Let A be a k-Suslin set
with more than & elements, then A contains a non-empty perfect set. This
result can be rephrased as follows: Let I be the o-ideal of countable closed
subsets of 2% and A C 2 be a &-Suslin set in ' then |A| < &, i.e., 4 can
be covered by less than % sets in I (see [§] Thm 2C.2). In this section we
will show that similarly Debs-Saint Raymond theorem 1.1 can be extended
to k-Suslin sets.

Theorem 2.1 Let I be a 11}, locally non Borel, calibrated o-ideal of closed
meager subsets of X with a Borel basis. If A is a k-Suslin set in I'™, then
A can be covered by less that k¥ many closed sets in I.

The proof is based on the ideas of the proof of 1.1 given in [5]. We fix a
o-ideal I as in the hypothesis of 2.1. First we define a derivative on closed
subsets of X x £ as follows:

Definition 2.2 Let FF C X x k“ be a closed set and let V, be an enumeration
of an open basis for X '

(z,f) € FO iff Vs¥n(z € V, = p[(V, x Nyp) N F| & I).

By transfinite recursion we define F(®) for all ordinals a.

Observe that F() is also a closed set. Hence there is an ordinal 8 < 7t
such that F) = F(+1) We denote by F(*) this fixed point.

Lemma 2.3 Let A be a £-Suslin set and let F' C X X £“ be a closed set such
that A = p[F]. If F* = 0, then p[F] can be covered by less than k* many
closed sets in I.

Proof: Let 6 < «* be such that F(®) = (. For each (z, f) € F thereis a < 8
such that (z, f) € F(® — F(e+1) thus there is n and s such that z € V; and

p[(Vs x Ngpn) N Fl@)} € I. Then we have

p[F) C U{P[Vs XN,NF®]:scwkues“&a<b

&p[(V, x No) N F@)] € I}.

This proves the lemma.
O

To finish the prove of the theorem will suffice to prove the following:
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Lemma 2.4 If F® # {, then p[F] ¢ I'"*.

Proof: We will show that if F C X x &“ # { is closed and F() = F| then
p[F] ¢ I'™.
Let B C I be a Borel basis for /. We will construct for each t € w<* an
element u; € k<¥, an open set V; and K; € X(X) such that
(i) K; € Ly = p[(V; x N,) N F] and K, € [ — B.
i) diam(Vpy,)) < 2-®) for all n € w.
ii) V, t(m ﬂKt—(Dfor a,llm € w.

(i
(
(iv) V; )ﬂV )—(Dforalln#m
(
(v

V) I{tUU Lt (n)_U Lt (n)"
i) V, ) © Vi Uy strictly extends u; and Limndiam(VtA(n)) = 0.

Fort = 0, put s = u; = 0 and V3 = X, thus Ly € I. Since I is locally
non Borel, there is Ky C Ly such that Ky € I — B.

Assume we have defined K;, V; and u; for all ¢t € w<¥ with [h(t) = k.
Notice that L; is locally not in I, hence K, is nowhere dense in L;. It is
not difficult to find (see [5] page 202, lemma 5) a countable discrete set
D, C p[(V; x N,,) N F] such that

DtﬁKtz(DanthUthﬁt.

Let {z,} be an enumeration of D;. For each n find an open set V),
Ugn) € k<“ properly extending u; so that

o € Pl(Virgy X N ;(n)) N F]

and also

Ly = Pl(Virmy X N, f(n)) N F
satisfies (ii), (iii), (iv), (v) and (vi) (for (v) observe that diam(Ls,)) — 0,

when n — o0).

Now we want to define K, for each n. Since L; ¢ I, as before we can
find K,y € Lyyny € I — B. Clearly all conditions (i)-(vi) are satisfied.
Claim: Let K =, K;. Then K ¢ I.

Proof: We will show that if V is an open set and VNK # @ then V N K ¢ B,
which says that K is locally not in I. Let V be an open set such that
VNK # 0. For somet € w<, VN K, # 0. Since diam(Ly,) — 0,
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when n — oo, then from (v) we get that for some n, L, € V. Thus

Ky €V and in consequence K, C VO K. Therefore from (i) we get
that Ky, € B-
(O Claim.)
As I is calibrated there is a closed set M C K — | J, K; with M & I. We
will show that M C p[F] and we will be done.

Put
Fo = J{K: 1 1h(t) < n} U J{Le : 1A(t) = n}. .

We claim that each F;, is closed: we show it for n = 2, the other cases are
similar. Let {y;} be a sequence in F, and suppose that y; — y. Assume
y & U{K: : lh(t) < 2}, we will show that y € L; for some ¢ with Ih(t) = 2.
By (v) we can assume that y; € L;, with lh(t;) = 2 (or replace {y;} by other
sequence satisfying this condition and with the same limit). From (ii) and
since every Dy is a discrete set, it is easy to show that there is n such that
Yi € Lepm;> for infinite many ¢’s. From (v) and since y ¢ K,.», we get that
Y € Lepm> for some m.

From (v) we get that K C F,, for every n. Therefore M C F, for every n
and thus M C [ F,.. Hence

Mcﬂ U L;.
n lh(t)=n

From this and (vi) it is easy to see that M C p[F].

3 On the covering property for o-ideals of
compact sets

The covering property is an abstract version of the classical perfect set the-
orem (see [10}). In this section we will present some results concerning this
property. As we said it is not known whether or not a Borel (i.e, Gs) o-
ideal can have the covering property. We will give a partial answer to that
question.

Lemma 3.1 Let D C K(X) be an open hereditay set such that if ' € D
and z € X, then F U {z} € D. Then there is an open dense set U such that
KU) < D.



Proof: Let {z,} be a countable dense subset of X. We will define a sequence
{O,} of open sets such that z,, € O,, and U;V:lO—n € D, for each N.

First, observe that if ' € D, then there is an open set O such that
F C O and K(O) € D. To see this, note that since D is open, there is an
open nghd W in K(X), such that F € W and W C D. Say W = {K €
K(X): K CW&KNV;#0,1 <i<n}, where each V; is an open subset of
X. We claim that X(V5) C D: if K C Vg, let y; € V; for 1 < ¢ < n ; then
KU{y;:1<i<n}eW,hence KU{y;:1 <i:<n}€D. But as I is
hereditary, then K € D.

We define {O,} by induction on n. For n = 0: as {z¢} € D, there is an
open set O such that 29 € O and K(0O) C D. Let Op be an open set such
that zo € Og and Og C O.

Suppose we have defined O, for 0 < n < N such that z, € O, and
Uj‘\[:o O; € D. Then by hypothesis U;-V:O 0O;U{zn+1} € D. By the observation
above, there is an open set V such that U;'V=0 O;U{zns1} S Vand K(V) CD.
Let Ong41 be an open set such that zy41 € Onyq and Oy C V. Clearly
U, O0,eD.

Finally, put U = U;O:O O;. U is clearly an open dense set. Now, if FF C U,
by compactness, there is N such that F' C U;V:O 0, C Uj'\;o O;. Since D is
hereditary F' € D, i.e., K(U) C D.

O

Theorem 3.2 Let I be a II) hereditary collection of compact sets. Assume
there are open sets D, in K(X) such that I = (), D, and for all F € D and
all z € X we have F U {z} € D,,. Then there is a dense Gs set G such that
K(G) C D, i.e., G € I'™. In particular, if I is a I19 ideal of closed meager
sets as above, then I does not have the covering property for I19 sets.

Proof: First, we can assume that each D, is hereditary. In fact, consider
the following sets:

Jo={K e K(X):YF(FCK — F e D,)}.

Recall that the relation R(F, K) iff FF C K is closed in K(X) x K(X). Thus
Jn 1s open (recall that the proyection of an F, set in a compact space is Fy)
and it is clearly a hereditary subset of D,. Notice also that if F' € J,, and
z € X, then FU{z} € J,. Now, as I is hereditary if F' € I, then F € J, for
all n, ie., [ =N,J,.



To prove the theorem, we have by the previous lemma that there are open
dense sets O, such that X(O,) C D,,. Put G =[), O,. G is a dense Gs in
]int'

Finally, the Baire category theorem implies that such G can not be cov-
ered by countable many meager closed sets, in particular G ¢ I°**.

]
Remark: We do not know of any ITJ ideal which does not satisfy the hy-
pothesis of the previous theorem, even in the following weaker form: there is
a dense countable set D such that the condition about {z} U F holds only
for z € D.

Another notion related with the covering property is thinnes. We say
that [ is thin if every collection of pairwise disjoint closed sets not in [ is at
most countable. The typical example of thin ideal is the collection of null
closed set for some Borel measure. The following theorem relates thinnes
with the covering property.

Theorem 3.3 ([10] Theorem 2.5) Let I be a o-ideal of closed sets which
satisfies one of the following non triviality conditions:

(i) I # K(X) and for everyx € X, {z} € I.

(ii) Every K € I is a meager set.

If I is thin, then I does not have the covering property for I1S sets. Ac-
tually, if (ii) holds, then there is a dense Gs set in '™,

Theorem 3.3 connects the covering property with the notion of controlled
ideal. Let’s recall this notion. Let G C 2 x X be a II9-universal set for II9
subsets of X. A code for a IT set H is an « € 2¢ such that H = G,. A
collection A of II subsets of X is compatible with I if the least c—ideal J
of TIY sets containing I and A extends I, i.e., it satisfies JNK(X) = 1. An
ideal I is said to be controlled if there is a A C TI9(X) such that § € A, A is
compatible with 7 and A is 3! in the codes of TIJ sets (i.e., {a € 2¥ : G, € A}
is X] ). Such set A is called a control set for I.

Observe that for a calibrated oc—ideal I, A is compatible with I iff A C
I'™ N II3(X). The following theorem was proved in [6].

Theorem (Kechris, Louveau, Woodin, see [6]): Let I be a controlled 11}
o-ideal of closed subsets of X. Then I is IIS and thin. a

From this and 3.3 we immediately get the following
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Corollary 3.4 Let I be a II] non trivial o-ideal in the sense of 3.3. If I
has the covering property for I19 sets, then I is not controlled. a

‘We do not know yet if there are IIJ c—ideals with the covering property.
However, the corollary above implies that every non trivial II} o—ideal of
closed sets with the covering property has to be true I} on the codes of ITJ
sets. This will follow from the following lemma:

Lemma 3.5 Let G be a 115 universal sets for IS subsets of X and I o I}
o-ideal of closed subsets of X. Then

(i) {a € 2 : G, € I'™} is T0L.

(it) {a € 2% : G, s closed } is I11.

Proof: (i) First, we have that
Gy €™ iff VFEK(X)FCGa=Fel)
Now, the relation R(F,a) & F C G, is 113, because
FCG, iff Ve(z & For(a,z) € G).

And recall that the projection of a F, subset of a compact space is F,.
(ii) Fix a countable open basis for the topology of X, say {V, : n € N}.
Then
Gq is closed iff (Vz)[(Vn)(z € Vo= VoNGa #0) =2 G, (%)

Now, the following relation is clearly ¥1.
R(n,a,z) iff (z € V, = V,NG, #0) iff z & V, or (Fy)(y € Vo & (o, y) € G).
Hence (*) is I1}. o

Proposition 3.6 Let I be a 15 o-ideal of closed subsets of X, which is non
trivial in the sense of 3.8. If I has the covering property, then {a € 2 : G,
is closed and G, € I} is a true II] set.

Proof: Let A = {G, : G, is closed and G, € I}, then § € A and A C
II3(X) N I*"t. As I is not controlled (by 3.4), then A is not £} on the codes
of IT) sets. Hence from 3.5 we get the conclusion of the proposition. 0
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Proof: Let B = (J,, Lm be a basis for I, with each L,, a closed set. Since
Her(L,) = {K : AF € L,, such that K C F} is also a closed subset of I,
we can assume without loss of generality that each L,, is hereditary. Also
assume that L,, C L,41.
We claim that each L,, is meager: Suppose, towards a contradiction, that
W C L, is an open set. As L,, is hereditary there is an open set V C X
such that (V) C Ly, which contradicts that every set in I is meager.
Fix a dense set D C X. We will define a sequence F; for s € 2<¥ such
that :
(1) F; is a finite subset of D.
(2) If s < t, then F, C F, and dist(F,, F,) < 1/2"(),
(3) For all z € F, there is K; & L) such that K; C Fg;) and
(
) F

diam(K?) <1 /2’h (5)+2,
( s{oy —

Assuming th1s sequence has been defined we finish the proof. Put

=J Fafn.

By the previous lemma we have that

fla) = lim, Fy,.

This clearly implies that f is continuous: In fact, we easily get that if a[n =
Bn, then dist(Fy[m, Fgrm) < 2/2" for all m > n.

By (4), it is clear that if « is enventually zero, then f(«) is a finite subset
of D. Now, suppose that « has infinite many 1’s. We will show that f(c)
is locally not in I. Put F = f(a). Let V be an open subset of X with
FNV #0. Then there is n such that F,, NV # 0. Let x € Fyr,, NV, thus
T € FyuNV, forallm > n. As dzam([&arm) — 0, then there is N such that
for all m > N

K™ CcvnFy, CVNF

Therefore for all m > N VN F ¢ L,,, which implies that VN F & I.

We define the sequence F; by induction on the length of s € 2<¥. Fix
To € D and let Fy = {zo}. Suppose we have defined F; for all s € 2" and
(1)-(4) are satisfied. Put Fq = F. To define Fg,y consider the following:
For every z € F; let V* be an open ball such that z € V$ and diam(V}?) <

12



1/2!Me)+2 - As L) is meager, then there is 75 C V* such that TF & L)
As D is dense there is K} C D finite such that K] C V*. Now, one of those
K3’s is not in Ly(s): Otherwise, as Ly ) is closed, then T} would be in L)
'So put
Fayy = F,U{K;:z € F}.

Notice, for every y € F; 1) there 1s z € F; such that y € KJ U F; and
d(z,y) < 1/2")+1 ) Hence dist(y, F) < 1/2HE)+1

Thus Fg,, satisfies (1)-(4). This finishes the construction of f.

To finish the proof of the theorem, let J C I be a dense o—ideal. We
will show that J is not Borel. By the dichotomy theorem it suffices to show
that J is not II9. Let D = {z € X : {z} € J}. As J is dense, so is D. We
just have proved that there is a continuous reduction of the eventually zero
sequences into the collection of finite subsets of D and the complement of .
In particular it says that we cannot separate with a G set the collection of
finite subsets of D from the complement of J. Hence J is not II3.

Finally, let F' be a closed set locally not in [ and I’ be the restriction of I
to K(F). I’ clearly has a X basis and since F is locally not in I, then every
set in I’ is meager in F. Hence the same argument applies.

0

As we have said before A. Louveau has given a more general argument:
Let I be a I1} dense o—ideal of closed meager sets which is meager (as a
subset of X(X)). For every dense set D C X there is a continuous function
f:2¥ — K(X) as in the statement of the previous theorem and such if « is
eventually zero, then f(«) is a finite subset of D. In particular,if J C [ is a
dense o—ideal then J is not Borel.

Let D be a countable dense subset of X such that for allz € D {z} € I.
Let G C K(X) be a G5 dense set such that ING = 0. Put A = {F €
K(X) : F is a finite subset of D}. Ais a dense F, set. By the Baire category
theorem no F, set L separates G from A (i.e., G C L and LN A = (). Hence
by the Hurewicz-type theorem (see [6] §1 theorem 4) there is a continuous
function f : 2% — K(X) such that

(i) If a is eventually zero, then f(a) € A.

(i1) If o is not eventually zero, then f(a) € G.

This function clearly works. Let us observe that if I has a X9 basis, then
the collection of I-perfect sets is a II3 dense set. Hence [ is meager.
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To see how the covering property follows from a definability condition
suppose [ is a o—ideal which does not have non-trivial dense Borel subideal
and suppose also that this holds locally i.e., if M is locally not in I, then
I N K(M) does not have non-trivial dense (in X(M)) Borel subideal. In
particular, if G C X is G5 dense set, then K(G) € I i.e., G € I'™ and the
same happens locally. That is to say, I has the covering property for II) sets.
By the theorem 3.8 this is the case of a o—ideal I with a X3 basis, in fact in
[4] it was shown that such I has the covering property. .

4 Products of o-ideals

Given two o—ideals I and J over X and Y respectively there is a natural
way to define an ideal I x J over X x Y (see the definition below). In this
section we will look at I x J from a descriptive set theoretic point of view.
We will prove that if I and J are II] o—ideals then so is [ x J (assuming
some extra hypothesis on I). In fact, if I and J are G5 o—ideals (recall the
Dichotomy theorem) then I x J is also Gs. We will also see some results on
the covering property and about the Fubini theorem in this abstract setting
of o—ideals of compact sets.

Definition 4.1 Let X and Y be compact Polish spaces. Let I and J be o-
ideals on X and Y respectively. Define the product of I and J as follows:
Let K C X XY be a closed set, denote by K, the z-section of K, i.e.,
K,={yeY:(z,y) € K}

KelxJ iff {zeX:K,¢gJ}eI™

If J is II9, then for every closed subset K of X x Y {z: K, ¢ J} is XJ.
So {z: K, ¢ J} =, F» for some closed sets F,,. Then K € I x J iff for all
n, F, € I. We will see below that if I is also IT9, then I x J is a I o —ideal.

On the other hand if J is II}, then {z : K, € J} is £1. So, in order
to get that [ x J is a c—ideal we need that the collection of X} sets in 7*"*
forms a o—ideal. This happens, for instance, when I is strongly calibrated
(see lemma 3.6 of [10]). We will show that under this hypothesis we also get
that I x J is a I1} calibrated o—ideal.

Proposition 4.2 Let [ and J be TI) o-ideals of closed subsets of X and Y
respectively. Then I x J is a TI o-ideal of closed subset of K(X) x K(Y').
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Proof: Consider the following relation on X x (X x Y)
Pz, K) <> K, € J.

Claim: P; is IT).
Proof: We have that
Pz, k)<= VLe K(Y)[LC K,= Lel.
Now, consider the relation: R(z, K,L) < L C K,. Then .

R(z,K,L) <= YVopeninY [K, CV = LCV]

For every open set V let Ry(L) & L C V and Ry(z,K) & K, C V.
Clearly Ry is closed in K(Y) and

Ry (z,K) < (\{y eY)(z,y) e K &yeV]

Thus the complement of R}, is the projection of a compact set. Hence Ry, is
open. Therefore R is closed and thus P; is II. (O Claim)

From the claim there are closed sets F,, C X x K(X x Y) such that
{(z,K): K. ¢ JH{=|]F.

For each K C X x K(X xY) closed let F,,(K) ={z € X : (z,K) € F,}.
Notice that F,(K) is closed.
Then

KelxJ iff {z:K.dJ) eI
iU, Fu(K) € I
it ValFL(K) € ).

As before we have that {K € K(X xY) : F,(K) € I} is IIJ. Therefore
I x Jis IIY.

It is clear that [ x J is hereditary. To see that [ x J is a o-ideal let
K =|J K, be a closed set with each K,, € (X xY). As before we get that

{: K. ¢ T} = J{z: (Kn)e ¢ J} = | Fu(Kn).
Thus
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KelIxJ iff VnV¥m Fo(Ky)e€l
f Vm K, €1 % J.

O

As we said before in the case that I and J are II1 we need an extra

hypothesis to get a similar result as in 4.2. Let recall the notion of strong
calibration introduced in [6] and proved to imply calibration. '

Definition 4.3 An ideal I is strongly calibrated if for every closed set
FC X with F &I and every IIY set H C X x 2 such that proj(H) = F,
there is a closed set K C H such that proj(K) ¢ I.

Proposition 4.4 Suppose I is a strongly calibrated TI} o-ideal on X and
J a T1} calibrated o-ideal on Y. Then I x J is a calibrated II} o-ideal on
X xY.

Proof: For every K € K(X xY) {z: K, ¢ J} is a £ set. By lemma 3.6
of {10] we know that the collection of ] sets in I'" is a o —ideal. From this
we easily get that I x J is a o—ideal.

To show that I x J is II consider the following relation: Let Q C K(Y) x
2“ be a II set such that

F ¢ Jiff da Q(F, a).
Then given K € K(X xY) and z € X we have
K, ¢ J iff o 3IF (F = K, & Q(F,a)).
So consider the following relation on X x K(Y) x 2¥ x K(X x Y)
Rz, Fo,K) & F =K, & Q(F, a).
It is easy to check that R is ITJ. We get
{z: K, ¢ J}={z:3e3F [R(z, F,a, K)|}.
Since [ is strongly calibrated we get

{e: K, &J}&I™ iff AP € K(X x K(Y) x 2%)[proj(P) € I & P C Rk]
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where

Rk ={(z,F,a) e X xK(Y) x 2¥: R(z, F,a, K)}.
And we have
PCRg it Ve XVFeK(Y)Vae2¥[(z,F,a) € P= R(z,F,a, K)]

which clearly is a IT9 relation on P and K. Hence {z: K, ¢ J} &€ ['" is a
31 relation on K, i.e., I x J is H%. .
It remains to show that I x J is calibrated. We will need the following

Claim: Let G C X x Y be a II9 set. Then G € (I x J)™ iff {z : G, ¢
Jint} c Iint.
Proof: First suppose {z : G, & J™} € I'™. Let K C G be a closed set.
Then

{z: K, g J}C {z: G, ¢ J™}

hence K € I x J,i.e.,, G € (I x J)™, :
Conversely, suppose {z : Go ¢ J"™} ¢ I'™ and let H C {z: G, ¢ J™}
with H ¢ I. Consider the following relation on X x K(Y)
Rz, )& FCG, &F¢J&ze H.

R is £} and proj(R) = H. As I is strongly calibrated there is a closed
@ C R such that proj(Q) ¢ I. Define P C X x Y as follows

Plz,y) 3F e KY)(ye F & (z,y) € Q)

As @ C R then P is a (closed) subset of G and proj(Q) ={z: P, & J} ¢
I. Hence P € I x J,ie.,G ¢ (I x J)™. (Claim 0O)

Let K = GU|J, H, be a closed set , where G € (I x J)™ is IIj and each
H, isin I x J. We want to show that K € I x J. For all z we have

K. =G, U| J(Hn)e

Since J is calibrated one easily gets that

K.¢J iff G, ¢ J™ or In[(H,), & J]
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That is to say
{e¢: K, g J}={x:G. ¢ J™}U| J{z: (Ho)x & J}.

By the claim {z : G, ¢ J™} € I'"* and since every H, € I x J then
{z:(H,), ¢ J} € I'™. As [ is strongly calibrated, the collection of X1 sets
in I'™" is a o—ideal. So we get {z : K, g J} € I'™ e, K €I x J.
+ 0
In relation with the covering property we have the following

Proposition 4.5 Let I and J be o-ideals of meager closed sets on X and Y
respectively. If I x J has the covering property for II3 sets, then I and J has
the covering property for IS sets.

Proof: Suppose I does not have the covering property for IIJ sets. By
lemma 2.4 of [10] there is a locally non in I closed set M and a II) set G
with G = M and G € I'™. Put H = G x Y. Clearly H is a IIJ set and
He(IxJ)y™ (if KCH,then{z: K, €J}=G). Also H= M x Y. So,
it remains to show that H is locally not in I x J. Let V C X, W C Y be
open sets. Then (V x W)YNH =(VNG) x W. Thus

{z:[(VxW)nH,gJ}={z:[(VOM)xW],¢J}=VnM¢glI

(since for every open set W, W & J).
Analogously, if J does not have the covering property, then a similar
argument shows that I x J does not have the covering property.
O
Given two ideals I and J on X there is a natural question regarding the
definition of I x J: Let K C X x X be a closed set, does the following hold:

{z: K, ¢J}eI™ iff {y:K,¢I}eJnt (*)

In other wordsis I x J =J x I ?

In particular if I = J we say that I has the Fubini property if (*) holds
for every closed K € X x X. For instance, if I = Null(y) for a measure p
on X then Fubini theorem says that I has the Fubini property. Also, if
is the ideal of meager sets, the Kuratowski- Ulam theorem (see [9]) implies
that I has the Fubini property. In relation with this property we have the
following
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Proposition 4.6 Let [ be a TI} o-ideal of closed subsets of 2¢. If I is not
thin, then I does not have the Fubini property. In particular, if I has the
Fubini property and is non trivial in the sense of 3.3, then I does not have
the covering property for I13 sets.

Proof: By theorem 2 §3 [6], as I is not thin, there is a continuous function
f12¥ = K(2¥) such that
(i) For all @ € 2¥ f(a) & 1. .
(ii) For all o, 8 € 2¥, if a # (B then f(a) N f(B) = 0.

Consider the following subset of 2¢ x 2¢

K(a,B) iff o€ f(B)

then
K(a,p) iff (AF)(a € F&f(B)=F)

As f is continuous then K is closed and we have that
{B:KP ¢ I} =2 and {a: K, g1} =0.

Hence I does not have the Fubini property. The last part of the proposition
follows directly from 3.3.
O

Remark: For an arbitrary compact Polish space X we can analogously get
that there is a Borel set B C X x X such that {8 : Bf ¢ [t} = 2 and
{a: B, € I} = 0 (but actually every section B? and B, is closed). The
reason is that in this case the thickness witness f : X — K(X) is a Borel
function. ‘
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