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in �. Suppose his girlfriend has arrived this morning to give him a ride to work and when shecame in the house he notices that her coat was wet. With this information Alberto revises hisknowledge base and asserts that it must be raining and he should bring an umbrella. His reasoningwas somehow abductive. From the �rst two formulas he could have concluded that either it wasraining this morning or the sprinkler was on. But from the last sentence in � he was able todisregard the sprinkler and assert that it must be raining (i.e. that r is true), and hence, he willbring the umbrella.Since the rationality postulates for belief revision proposed in [1] by Alchourr�on, G�ardenfors andMakinson appeared much research has been done on how these postulates relate to di�erent revisionalgorithms for knowledge bases. The AGM postulates, as they are referred to in the literature,are important for two reasons. First, the postulates are written independently of the concreterepresentation of the knowledge. They only assume that the knowledge base (KB) represents aclosed set of sentences.2 Secondly, and more important, they provide a minimal set of rationalcriteria to evaluate and compare change operators. However, the AGM postulates cannot be usedto explain Alberto's reasoning in the example since any revision algorithm that follows the AGMpostulates will simply add w to � and Alberto will not realize that he should bring the umbrella.Katsuno and Mendelzon [14, 15] studied the revision theory of KBs represented by sets ofpropositional sentences. In their study they found that the AGM postulates did not apply toupdate operators as usually de�ned in KBs and proposed an alternative set of postulates thatdi�erentiates between updates and revision. If we apply updates to Alberto's problem we will notobtain the correct result either since according to Katsuno and Mendelzon's postulates for updates,whenever a knowledge base is updated with a formula that is consistent with the current knowledgebase the resulting knowledge base must be a theory that is implied by the formula plus the originaltheory. Thus, under these restrictions neither r nor u will be part of the �nal theory.Assume now that we attempt to model Alberto's reasoning using abduction.3 In this situationwe need to select a subset of � as his domain theory. This is the theory that he extends with ex-planations to justify his observations. Assume his domain theory comprises the �rst three formulasin �. Let us call this set �. We also need to decide which formulas in his language can be used asexplanations. Natural choices are formulas formed with the letters r and p.The problem with this setting is that abduction will ignore the fact that :p was true in �. Thecautious explanation (i.e., the disjunction of all abductive explanations) for w in � will be p_r andthus, the new � will be � [ fp _ rg. Any other explanation, such as r or p or r ^ :p, will requireassumptions that are not part of �. Here there is no de�nite answer to the question of whether tobring the umbrella to work or not.If we assume for a moment that � is equal to � it seems that the problem can be solved sincefrom the explanation p _ r and :p in � he can deduce r and then u. However, taking the whole �as the domain theory will induce other problems. Take, for example, the following simpler �,� = 8><>: r ! wr ! u:rAlberto now lives in an apartment and he doesn't know about sprinklers and explanations are madewith r only. He came home yesterday night and listened to the weather report that predicted asunny day today. He wakes up thinking that it is not raining. His girlfriend arrives and her coat2We will work with a propositional language, where most of the research on theory change has focused, eventhough the original paper of Alchourr�on, G�ardenfors and Makinson was written for an unspeci�ed language.3In this paper we follow the logic-based de�nition of abduction as presented, for example, in [16].2



is wet, but now he is not able to conclude r if � = � since it will make his theory inconsistent andabduction preserves consistency. On the other hand, if Alberto is able to revise the theory withthe explanation r he will bring his theory up to date and avoid inconsistencies replacing :r with r.The major contribution of this paper is a theory of abductive changes which expands the AGMpostulates for revisions, expansions and contractions, and Katsuno and Mendelzon postulates forupdates with concepts from the theory of logic-based abduction. A key feature of this new theoryis that it presents a uni�ed view of standard change operators and abductive operators ratherthan a new and independent change theory for abductive changes. Abductive operators reduce tostandard change operators in some limiting cases.Before we enter into speci�cs of the abductive change operators let us introduce the generalidea behind the new operators.2 Basic approachOur general approach is to de�ne abductive operators on top of regular change operators. Toillustrate the idea, let � be a revision operator (in the sense of G�ardenfors), � an abductive domaintheory, K a knowledge base and � a formula, all of them in a �nite language. An abductive revisionof K with � with respect to � requires �nding an explanation 
 for � based on � such that � willbe a consequence of K revised with 
. Formally, an explanation for � (with respect to � accordingto K and �) is any formula 
 such that K � (� ^ 
) ` �.4There is a set of basic (or preferred) atoms Ab (called abducibles) that will be used to de�neexplanations. Explanations are formulas built using atoms from Ab. Given �, we would like to �nda formula which is an explanation for �. LetAbEx(�;K; �) = f
 is an abducible formula consistent with � : K � (� ^ 
) ` �gA new operator �a can be de�ned by letting K �a � = K � (� ^ 
), where 
 2 AbEx(�;K; �).To make this idea precise, let F : Form ! Form be a function such that if AbEx(�;K; �) 6= ;then F (�) 2 AbEx(�;K; �), otherwise F (�) =?. De�ne the abductive revision operator �a byK �a � = K � (� ^ F (�))Notice that if 
 is consistent with � and � ^ 
 ` � (i.e. 
 is an explanation in the standardsense of logic-based abduction) then we have 
 2 AbEx(�;K; �) (since K � � ` �). In this form,our de�nition extends the standard de�nition of abductive explanation.We will work with a �nite propositional language whereK is the set of consequences of a formula�. In this case a revision operator is a function � that maps � and � into a formula � ��. We willdenote by Fc(�) the cautious explanation of �, i.e., the disjunction of all abductive explanations of�. This function is well-de�ned since we are assuming that our language is �nite.It turns out that �a will satisfy postulates similar to the AGM postulates if and only if F isessentially equal to Fc. Thus, our o�cial de�nition of �a will be K �a � = K � (�^Fc(�)). We willshow that there is a selection involved in the de�nition of �a, which is based on an order among allabductive explanations of �.In the more general setting of an abstract change operator, our results show that it is naturalto say that a change operator � is abductive when � � � ` Fc(�), where Fc(�) is the cautiousexplanation of � (with respect to �).4By � ^ 
 we mean the conjunction of all formulas in � and 
. Observe that � is playing a role of an integrityconstraint as modeled by Katsuno-Mendelzon (see [15]). 3



In the next section we will precisely de�ne domain theories and introduce a formal description ofan abductive framework. Then we will introduce the abductive change operators corresponding toexpansions and revisions and state a representation theorem for revisions. Next, we de�ne abductivecontractions in terms of revision operators and prove some of their properties. Finally, we exploreabductive updates and suggest a way of de�ning updates which may lead to a representationtheorem. Some concluding remarks and directions of research are presented in the last section.3 Abductive change operatorsG�ardenfors and his colleagues have introduced three basic operators in theory change: Expansions,Revisions and Contractions, and gave a set of postulates that the operators should satisfy in orderto be considered rational change operators. Katsuno and Mendelzon introduced Update operatorsin order to model a type of change operators which are common in database applications, but theyare not covered by revisions, contractions or expansions.5 In this section we will present abductiveoperators associated with each one of the change operators mentioned before.Our original motivation for studying abductive operators was the view update problem indatabases. In that setting, � can be regarded as consisting of two parts: One that we wouldalways like to keep unmodi�ed (the views or intensional part) and another part where we can makemodi�cations (the extensional part that typically consists of abductive formulas). It is clear thatupdating such a database will consist of two steps: First, given the new fact � to be inserted, �ndthe explanations of � (with respect to the views). Second, update the database with one of theexplanations for � (it is in this step that the actual update occurs). The domain theory that wemade reference in the introduction corresponds to the views in databases. With this idea in mindwe introduce the notion of abductive framework.De�nition 3.1 A domain theory (cf. [16]) will be any consistent set of formulas and it will beusually denoted by �. A knowledge base � will be called acceptable for � if � ` �, i.e., for every� 2 �, we have � ` �. Given a set of atoms Ab, called abducibles, any formula built using onlyatoms in Ab is called an abducible formula. The set of abducible formulas is denoted by AbForm.An abductive framework is any pair (�; Ab) where � is a domain theory and Ab is a set of abducibleatoms.Notice that, except for the acceptability of �, there are no constraints on the structure of � or� and any letter in the language can be designated to be abducible. We even allow the situationwhere there is no domain theory, i.e., every member of the domain theory is a tautology. This isequivalent to say that the domain theory is the empty set. The decision of what can be consideredan explanation or abducible and what part of the theory is the domain theory is problem dependentand will form part of the design of the KB.The goal is to expand, revise or update any possible extension of � (i.e., any acceptable �)using abduction based on a �xed abductive framework (�; Ab).Throughout the paper, a change operator will denote any function � that maps a knowledgebase � and a formula � into a knowledge base � � �. A change operator � is said to satisfyre
exivity if for every �, � � � ` �, and it satis�es reciprocity if � � � ` � and � � � ` � imply� � � � � � �. We will say that � satis�es the Or rule if for every abducible formula 
1 and 
2:� � (
1 _ 
2) ` � � 
1 _� � 
2.5These operators were partly motivated by Winslett's possible world [22] approach for updating logical databases.4



De�nition 3.2 Let (�; Ab) be an abductive framework, � an acceptable knowledge base and � achange operator. The set of abductive explanations for � with respect to � and � isAbEx(�;�; �) = f
 is an abducible formula consistent with � : � � (� ^ 
) ` �g:Remarks: (1) When the change operator � is understood from the context we will writeAbEx(�;�).(2) We will show that expansion, revision and update operators satisfy the Or rule, thereforethe disjunction of two explanations of a formula � is also an explanation of �, in other words,when � is any of those operators, AbEx(�;�; �) is closed under _. In general this is not true forthe conjunction of two explanations (for instance, there can be two explanations of � that areinconsistent with each other).(3) The standard de�nition of an explanation of a formula � in an abductive framework (�; Ab)is any abducible formula 
 such that � ^ 
 is consistent and � ^ 
 ` �. The change operators weare considering are such that � � � ` �, hence if 
 is an explanation in the standard sense thenclearly 
 2 AbEx(�;�; �).Following the ideas presented in the introduction, a selection function for � with respect to �will be any function F� : Form! Form such that(i) For every formula �, F�(�) is an abductive explanation of � or, in case such explanationdoes not exist, F�(�) =?.(ii) If 
 is an abducible formula then F�(
) � 
, i.e. the explanation for an abducible formulais the formula itself.When there is no confusion about � we will write F instead of F�. In this paper the mostimportant selection function is the following:De�nition 3.3 Let (�; Ab) be an abductive framework, � an acceptable knowledge base, and �a change operator that satis�es the Or rule. If AbEx(�;�; �) 6= ;, the cautious explanation of� with respect to � and � is the disjunction of all abductive explanations of �. We de�ne thecautious selection function Fc by letting Fc(�) be equal to the cautious explanation of �. IfAbEx(�;�; �) = ; then Fc(�) =?.Remarks: (1) Strictly speaking, Fc depends on � and �, so we should denoted it by F c�;�, but tosimplify the notation we drop � and � which should be clear from the context.(2) Since we are working with a �nite language, the set of all abductive explanations of � is�nite modulo equivalent formulas, hence Fc is well de�ned.De�nition 3.4 Let (�; Ab) be an abductive framework and � be a change operator that satis�esthe Or rule. The abductive operator associated with � is de�ned by� �a � = � � (� ^ Fc(�))where � is an acceptable knowledge base.Now we show that Fc is, in some sense, the only selection function to be used. Let � be a changeoperator that satis�es re
exivity, reciprocity and the Or rule. Let F be any selection function for� with respect to �, and let Fc be the cautious selection function. Let � �a � = � � (�^F (�)). Wewill show that if �a satis�es reciprocity then �a = �a. First, since for every abducible formula 
,
 ` F (
), it follows from the re
exivity and the reciprocity of � that � �a 
 � � � (�^ 
). Second,since F (�) ` Fc(�), we clearly have � �a � ` Fc(�). Now, since � �a Fc(�) � � � (� ^ Fc(�)), then5



� �a Fc(�) ` �. Therefore, by the reciprocity of �a we have � �a � � � �a Fc(�), which implies that� �a � � � � (� ^ Fc(�)), that is to say �a = �a.We are essentially saying that the only selection function that will induce a change operatorsatisfying Reciprocity is the cautious selection function.6 Hence, the only explanation we can be surewill always be part of � � � is the cautious explanation of �. However, in most cases more speci�cexplanations may appear in � ��. These explanations appear because there is another selection ofpreferred explanations involved in the construction of � � �, but this selection is implicitly built inthe operator �. For the particular case of abductive revision operators, we will study the selectionprocess with some care later in the paper (see 3.20). We would also like to remark that if condition(ii) above in the de�nition of a selection function F� is dropped it is possible to �nd other selectionfunctions, besides the cautious selection function, that will de�ne change operators having thesame properties as the one we have de�ned, however, must of the abductive frameworks or changeoperators with some form of abduction (like view updates in databases) that can be found in theliterature assume condition (ii) [12, 13, 16, 11]. How interesting would it be to have functionswithout condition (ii) is a topic of future research. Some remarks regarding expansion operatorsde�ned by more speci�c selection functions can be found at the end of Section 3.3.In the following sections we will study properties of several abductive change operators.3.1 Abductive expansionExpansion is the simplest form of change that one can perform on a knowledge base: Merely addthe formula that is being incorporated. The expansion of a knowledge bases � with a formula � isdenoted by �+� and it is equal to �^�. Expansion is axiomatically characterized by the followingpostulates ([7]):(K+1) � + � ` � ^ � .(K+2) If � ` � then � + � � �.(K+3) If � ` 	 then � + � ` 	+ �.Recall the de�nition of the abductive selection function given in 3.3 for the particular case ofthe operator + and also the de�nition of the abductive operator associated with + given in 3.4.Abductive expansion is then de�ned as follows:De�nition 3.5 Let (�; Ab) be an abductive framework and � an acceptable knowledge base. Theabductive expansion of � with �, denoted by �+a �, is de�ned by� +a � = � ^ Fc(�)Remarks: (1) The domain theory does not play an important role for the de�nition of +a, for �acceptable, � ^ Fc(�) � � ^ (� ^ Fc(�)) (see De�nition 3.4).(2) Notice that when there is no abductive explanation for a formula �, then by de�nitionFc(�) �?, and hence � +a � �?.(3) The de�nition of abductive expansion is very close to the standard framework for abduction(for instance, as presented in [12]). If we have to explain � in � we need to �nd a \minimal" formulathat explains �. That is, a formula 
 consistent with � such that 
 together with � implies �.6Reciprocity is an elementary feature of change operators. In fact, Revision, Contraction, Expansion and Updateoperators satisfy this property. 6



This minimal formula could be the disjunction of all possible consistent explanations of �. If thereis no such explanation then the result of abduction will be the trivial knowledge base (usually, itis said that the explanation is not possible).It is clear that K+1 and K+2 hold for +a (notice that when � ` �, then Fc(�) is a tautology).But K+3 does not hold (as we will see below). However, the following partial version of K+3 holdsfor +a.(AbK+3) If � ` 	 and 
 is an abducible formula then � + 
 ` 	+ 
.To see that AbK+3 holds just notice that if 
 is an abducible formula, then �^Fc(
) � �^
.One of the main consequences of K+3 is the following:(K+4) If � + � ` � then � + � ` �+ �.To see that K+4 still holds for +a even though K+3 does not, notice that if � +a � ` �then Fc(�) is either ? or an abductive explanation of �, and therefore Fc(�) ` Fc(�). Thus� ^ Fc(�) ` � ^ Fc(�).The next theorem says that Fc is essentially the only selection function that can be used tocreate an abductive expansion operator that satis�es postulates K+1, K+2, AbK+3 and K+4from the regular, non-abductive expansion operator.Theorem 3.6 Let (�; Ab) be an abductive framework and � an acceptable knowledge base. LetF = F� be a selection function for � and de�ne an operator +� by � +� � = � ^ F (�). Then +�satis�es K+1, K+2, AbK+3 and K+4 if and only if � ` F (�)$ Fc(�).Proof: (() It is the same argument as for Fc.()) Observe �rst that any operator +� satisfying K+1, K+2 and AbK+3 has the propertythat for every abducible formula 
, � +� 
 � � ^ 
. In fact, from K+1 it su�ces to show that� ^ 
 ` � +� 
. Since � ^ 
 ` �, then from AbK+3 we get that (� ^ 
) +� 
 ` � +� 
 and fromK+2 we have that (� ^ 
) +� 
 � � ^ 
.To complete the proof, from K+4 it follows that whenever � ^ 
 ` �, � ^ 
 ` � ^ F (�). Thus� ^ Fc(�) ` � ^ F (�). But clearly F (�) ` Fc(�), and therefore � ` F (�)$ Fc(�). 2To complete the picture, the next theorem shows that +a is uniquely characterized by the fourpostulates K+1, K+2, AbK+3 and K+4.Theorem 3.7 Let (�; Ab) be an abductive framework. Let +� be an operator satisfying K+1,K+2, AbK+3 and K+4. Let F = F� be a function such that for every formula �, F (�) is anabducible formula with �+� F (�) ` �. Assume that �+� � ` F (�). Then �+� � � �^F (�). Infact F is a selection function for � and � ` F (�)$ Fc(�), i.e � +� � � �+a �.Proof: Since � +� � ` �, then from AbK+3 we get (� +� �) +� F (�) ` � +� F (�). By thehypothesis, � +� � ` F (�), thus from AbK+2 we have � +� � ` � +� F (�). On the other hand,K+4 implies that � +� F (�) ` �+� �. Therefore, � +� � � �+� F (�).By the same argument as in the proof of Theorem 3.6, it follows that for every abducible formula
, � +� 
 � � ^ 
. Therefore � +� � � � ^ F (�). The rest of the proof follows from 3.6 2Remark: To prove the previous theorems we only need the weaker version of K+4 which holdswhen � is an abducible formula. 7



Example 3.8 Consider the following modi�ed version of the knowledge base � from the introduc-tion: � = 8><>: r ! gp! gg ! sThe propositional letter r can be read as it rained last night, the letter p as the sprinkler wason, g as the grass is wet and s as shoes are wet. Let Ab = fp; rg and � = �. Then we have that� +a s = � ^ (r _ p). Notice that s is consistent with � but � +a s 6= � ^ s. Also note that sinceFc(:s) =? then � +a :s is the trivial knowledge base. 2The next theorem collects some other facts about +a that we will use later on.Theorem 3.9 Let (�; Ab) be an abductive framework and � an acceptable knowledge base. Let�, � be formulas. Then(i) If 
 is an abducible formula, then � +a 
 � � ^ 
(ii) � +a � � �+a � if and only if � +a � ` � and � +a � ` �.(iii) (� +a �) +a � � �+a (� ^ �). 2Proof: (i)was already proved. (ii) follows from K+1 and K+4. For (iii), from K+1 we have that(� +a �) +a � ` � ^ �. Then from K+4 we have that (� +a �) +a � ` �+a (� ^ �) and the otherdirection follows easily. 2The following example shows that the abductive expansion operator does not satisfy K+3.Example 3.10 Let � be (r ! g) ^ (p ! g) ^ :r and 	 be r ! g. Let � be the empty domaintheory and Ab = fp; rg. Then � +a g = � ^ p and 	 +a g = 	 ^ r. Hence � +a g 6` 	+a g. 2Expansions (standard and abductive) are very conservative change operators. It is naturalto ask what kind of expansion operators we could de�ne if we allow explanations that are more\brave" than the cautious explanation. This situation is similar to the problem that motivates thede�nition of revision operators below. We will discuss more about abductive expansion operatorsafter we introduce revisions in the next section.Before we move to study abductive revisions let us observe that in the limiting case, when everyatom is abducible +a and + are the same operator.3.2 Abductive revisionRevision operators are de�ned in order to overcome the problem of trying to expand a knowledgebase � with a formula that is inconsistent with �. We would like to accomplish that using abduction,so let (�; Ab) be an abductive framework and assume that we want to incorporate � into anacceptable knowledge base � where � +a � is the trivial base (there is no \easy" explanation for�). In the new knowledge base we want to have an explanation for � in terms of (�; Ab), butat the same time we do not want to change � \too much". As indicated in the introduction, theunderlying idea is to revise (in the usual way) � with an abducible formula 
 such that the resultingtheory is acceptable for � and implies �. Let us recall the de�nition of a revision operator. Anoperator � is called a revision operator if the operator satis�es the AGM postulates:(R1) � � � ` �. 8



(R2) If � ^ � is satis�able, then � � � � � ^ �.(R3) If � if satis�able, then � � � is also satis�able.(R4) If �1 � �2 and �1 � �2, then �1 � �1 � �2 � �2.(R5) (� � �) ^ � ` � � (� ^ �).(R6) If (� � �) ^ � is satis�able, then � � (� ^ �) ` (� � �) ^ �.We will now introduce the new set of postulates that characterize abductive revisions. After thepostulates are discussed we will present the typical schema to de�ne abductive revision operatorsand some examples of abductive revisions that are de�ned on top of a well known (non-abductive)revision operator.In order to de�ne an abductive version of revision we will need the following notion.De�nition 3.11 Let (�; Ab) be an abductive framework and � an acceptable knowledge base. Wewill say that � is Ab-consistent with � if there is an abducible formula 
 such that (i) � ^ 
 isconsistent and (ii) � ^ 
 ` �.Remarks: (1) � is Ab-consistent with � if and only if � +a � 6=?.(2) Ab-consistency is not re
exive, if � is Ab-consistent with � it is not necessarily the case that� is Ab-consistent with �.For the propositional case (as presented by Katsuno-Mendelzon) there is no di�erence betweenknowledge bases and the knowledge to be inserted: both are propositional formulas. However, inan abductive framework there is a special class of formulas, the formulas in the domain theory. Wedo not make insertions of formulas that will modify or become part of the domain theory. Thismotivates our use of upper case Greek letters for knowledge bases and lower case letters for formulasto be inserted.De�nition 3.12 Let (�; Ab) be an abductive framework and �a a change operator. Let � be aknowledge base acceptable for � and Fc the cautious selection function for � with respect to �a.We will say that �a is an abductive revision operator if it satis�es the following postulates:(A0) For every �, � �a � ` � (i.e., � �a � is acceptable for �).(A1) For every �, � �a � ` �.(A2) If � is Ab-consistent with �, then � �a � � �+a �(A3) If 
 is an abducible formula consistent with �, then � �a 
 is consistent.(A4) If �1 � �2 and �1 � �2, then �1 �a �1 � �2 �a �2.(A5) (� �a �) +a � ` � �a (� ^ �).(A6) If � is Ab-consistent with � �a �, then � �a (� ^ �) ` (� �a �) +a �.(AA) � �a � ` Fc(�).
9



Remarks: (1) For the limiting case when the set Ab of abducibles consists of every atom and �is the empty domain theory, then axioms A1-A6 transform into R1-R6 (recall that from 3.9(vi)+a becomes ^). So, the new axioms can be justi�ed in the same way as the AGM postulates, i.e.,essentially, they capture that the changes to � have to be minimal.(2) Axiom A0 says that after changing (abductively) � we still have a knowledge base thatimplies the domain theory. In other words, � is playing the role of an integrity constraint. This isa basic fact about abduction: the domain theory is not supposed to change.(3) Axiom AA (which we have called the abductive axiom) says that after inserting � thecautious explanation of � must also be true. This requirement says that �a has an abductivenature. Since the cautious explanation can be considered the weakest of all explanation, AAimposes a mild condition over �a.(4) Observe that when 
 is an abducible formula then from A1 we have that 
 ` Fc(
) andtherefore � �a 
 ` Fc(
), i.e., AA follows from the other postulates for abducible formulas.(5) It will be shown that any operator �a satisfyingA1-A6 will satisfy reciprocity. The operatorwill also have the property that if 
1 and 
2 are abducible formulas then � �a (
1 _ 
2) ` � �a 
1 _� �a 
2. As we have shown in the introduction, if F is a selection function for � and �a such that� �a � ` F (�) then � �a F (�) � � �a Fc(�).Now we will present a basic schema to de�ne abductive revision operators. This schema de�nesabductive revision operators in terms of regular revision operators as suggested in Section 2. Infact, after the representation theorem is proved, it will be clear that any abductive revision operatorwill be of this form. For the particular case of revision operators (recall De�nition 3.4) we have:De�nition 3.13 Let (�; Ab) be an abductive framework and � a (regular) revision operator. Foreach acceptable knowledge base �, let Fc be the cautious selection function for � with respect to�. The (abductive) operator associated with � is � �a � = � � (� ^ Fc(�)).Remarks: (1) Notice that from R2 we obtain the following: Assume there is 
 2 AbEx(�;�; �)consistent with � (therefore � ^ 
 is consistent with �) and let 
0 be the disjunction of all such
's in AbEx(�;�; �), then � �a � = � � (� ^ Fc(�)) � � ^ 
0. Also, if AbEx(�;�; �) = ; then� �a � �?.(2) Notice also that for every 
 2 AbEx(�;�; �) we have that 
 ` Fc(�), but this does not nec-essarily imply that ��
 ` ��Fc(�). However, we will show later that there are many redundanciesin Fc(�), in the sense that there is a subset of AbEx(�;�; �) which su�ces to de�ne �a.(4) For every abducible formula 
 consistent with � we have that � �a 
 = � � (� ^ Fc(
)) ��� (�^
). This is because � satis�es reciprocity, i.e., if ��� ` � and ��� ` � then ��� � ���.(see [7]).The following theorem shows how standard revision operators relate to abductive operators.Theorem 3.14 Let (�; Ab) be an abductive framework. An operator �a satis�es axioms A0{A6and AA if and only if there is a (regular) revision operator �� such that for every acceptable �and every formula � we have � �a � = � ��a �, where ��a is de�ned as in 3.13. In particular, for anyabducible formula 
 we have that � �a 
 � � �� 
. 2Let us see an example.Example 3.15 Consider the knowledge base in Example 3.8. Let Ab = fr; pg and let � be theempty domain theory. We have that Fc(s) = Fc(g) = p _ r and � �a s = � ^ (p _ r). AlsoAbEx(:s;�; �) = AbEx(:g;�; �) = ;, so Fc(:g) = Fc(:s) =? and hence, � �a :s = � �a :g is the10



trivial knowledge base. Note that in this example we do not need to know what underlying revisionoperator � is used to de�ne �a since Fc(s) is consistent with � and by R2, � � Fc(s) � � ^ Fc(s).2Example 3.16 Consider the following knowledge base:� = 8>>>>><>>>>>: r ! gp! gg ! s:r:pWhere s, g, r and p can be given the same interpretation as in Example 3.8 and Ab = fr; pg,� = ; are also as in Example 3.8. In this case we have that Mod(�) = f;; fsg; fs; ggg (we areworking with Herbrand models).Let � be Dalal's revision operator (see [3]).This operator is de�ned using a distance betweena model M and a knowledge base � as follows: dist(M;�) = MinfjM4N j : N j= �g, where 4is the symmetric di�erence. De�ne now a pre-order by: N �� N 0 if and only if dist(N;�) �dist(N 0;�). Then N j= � � � if an only if N is ��-minimal among the models of �.ThenMod(� � r) = ffrg; fr; sg; fr; g; sgg, Mod(� � p) = ffpg; fp; sg; fp; g; sgg, Mod(� � (p ^ r)) =ffp; rg; fp; r; sg; fp; r; g; sgg. Also, � � :r � � � :p � � � (:r ^ :p) � �, � � (:r ^ p) � � � p,� � (r ^:p) � � � r. Then we have AbEx(s;�) = AbEx(:s;�) = AbEx(g;�) = AbEx(:g;�) = ;.Thus the abductive revision of � with s, :s, g and :g is the trivial knowledge bases. However, witha di�erent choice for the domain theory this problem is overcome. In fact, let � = fr ! g; p !g; g ! sg and Ab as before. Then it is easy to verify that � �a s � � ^ (p _ r). The new choice ofdomain theory � can also be seen as a way of introducing views: In this example the formulas :rand :p in � are regarded as the extensional database and � as the views. However, we still havethat AbEx(:s;�) = ;, this is due to the fact that the domain theory we are using is incomplete.We will come back to this problem later on. 23.3 Representation theoremsIn this section we will state a representation theorem for abductive revision operators in the samefashion as the representation theorems of Katsuno-Mendelzon ([15, 14]), Kraus, Lehmann andMagidor ([17]), G�ardenfors-Makinson ([9]) and Freund ([6]). Readers familiar with those paperswill immediately realize the natural similarities between our proof and theirs.G�ardenfors and Makinson [8] were the �rst to realize the connection that exists between thetheory change and the theory of non-monotonic consequence relations. That connection has asigni�cant impact on the proof of our results.7 In this section we will also present a more precisedescription of the abductive revision operators in terms of some orders of the abducible formulas.Katsuno and Mendelzon gave a semantic characterization of revision operators based on ordersover the collection of interpretations of the language of the knowledge base. They introduced thefollowing notion of faithful assignments:De�nition 3.17 A faithful assignment is a map that assigns to each � a total pre-order �� suchthat: (i) for every interpretation N andM , ifM is a model of � thenM �� N . (ii) IfM 2Mod(�)and N 62Mod(�) then N �� M does not hold. (iii) If � � 	 then ��=�	.7These similarities are even more apparent in [19], where we present a similar representation theorem for abductivenon-monotonic consequence relations. 11



Models of the database can be taken as possible state of a�airs in the world. The pre-orderrepresents the preferences the agent may have regarding the plausibility of the di�erent states ofthe world and it allows the selection of models for the revised knowledge base after a formula �is inserted. We will use the same approach to de�ne a notion of explanation: given a faithfulassignment, let Expla(�;�;��) be the set of all abducible formulas 
 consistent with � such thatMin(Mod(� ^ 
);��) �Mod(�). Also we have the following selection function:F�(�) = ( Wf
 : 
 2 Expla(�;�;��)g If Expla(�;�;��) 6= ;? OtherwiseWith these concepts we are ready to state the representation theorem for abductive revisionoperators.Theorem 3.18 Let (�; Ab) be an abductive framework. An operator �a satis�es axioms A0-A6and the abductive axiom AA if and only if there exists a faithful assignment that maps eachacceptable � to a total pre-order �� over the interpretations of the language such that:Mod(� �a �) =Min(Mod(� ^ F�(�));��): 2Proofs of most of the theorems can be found at the end of the paper. The following is aconsequence of the previous theorem.Corollary 3.19 Let � be any consistent set of formulas. Let � be a change operator that satis�es� � � ` � for every � and every � acceptable for �. The operator � satis�es the AGM postulatesif and only if there exists a faithful assignment that maps each acceptable � to a total pre-order�� over the interpretations of the language such that:Mod(� � �) =Min(Mod(� ^ �);��):Proof: Take Ab to be the set of all atoms, then use 3.18, 3.9 and Remark (1) after De�nition 3.12.2 Notice that if � is the empty domain theory the corollary becomes the representation theoremof Katsuno-Mendelzon ([15], Theorem 3.3). Also, observe that here � is playing the role of anintegrity constraint as modeled in [15].We will now give a more precise description of ��a introduced in Theorem 3.14. We will showthat ��a is implicitly de�ned by selecting some abductive explanations of � with respect to an ordergiven by the original operator ��. So let us �x a revision operator ��.We will need a method of comparing di�erent explanations. One way to compare two explana-tions 
1 and 
2 of a formula � is by looking at the consequences of ��� (�^
i) which are also conse-quences of � and hence corroborate 
i. Let us de�ne Corr(
;�) = f� : � ` � & � �� (�^ 
) ` �g.Observe that � 2 Corr(
;�) if and only if � _ � �� (�^ 
) ` �. Hence we introduce the followingpre-order: 
 �c� 
0 , � _ � �� (� ^ 
0) ` � _ � �� (� ^ 
)Notice that 
 �c� 
0 i� Corr(
;�) � Corr(
0;�), so when both 
 and 
0 are explanations of�, 
0 is considered \better" than 
 because there are more corroborating facts in � for 
0 than for12




.8 It is clear that �c� is a re
exive and transitive relation but not antisymmetric. We de�ne thestrict relation <c� as usual and we say that 
 =c� 
0 if 
 �c� 
0 and 
0 �c� 
. We will say that 
 ismaximal with respect to a pre-order � if there is no 
0 with 
 < 
0. We de�ne minimal elementsanalogously.Let �� be a faithful assignment (given by 3.19 with an empty domain theory) which maps eachknowledge base � into a total pre-order of the interpretations of the language such thatMod(� �� �) =Min(Mod(�);��):We de�ne the following pre-order between formulas:
 �p� 
0 , � �� (� ^ 
) ` � �� (� ^ (
 _ 
0))Notice that 
 �p� 
0 if and only if there are N 2Mod(��� (�^
)) and M 2Mod(��� (�^
0))such that N �� M . Since �� is total and the language is �nite, we are assigning to each formula anatural number and 
 �p� 
0 amounts to saying that the same relation holds for the correspondingnumbers. In particular this says that �p� is a total pre-order.9 We de�ne =p� as usual.The following theorem shows that the de�nition of ��a implicitly uses the orders �p� and �c� toselect the \best" explanations. This is the selection that we referred to in the introduction.Theorem 3.20 Let �� be a (regular) revision operator and ��a be the abductive operator associatedwith �� as de�ned in 3.13. Assume that AbEx(�;�; ��) 6= ; and contains only formulas thatare inconsistent with �. Let 
i be the �p�-minimal elements of AbEx(�;�; ��), then � ��a � �� �� (� ^ (
1 _ � � � _ 
n)). Moreover, let f�j : 1 � j � mg be the �c�-maximal elements off
i : 1 � i � ng, then � ��a � � � �� (� ^ �1) _ � � � _� �� (� ^ �m) 2We also have the following fact:Fact 3.21 Under the same hypotheses of 3.20 let 
 be a �c�-maximal element of AbEx(�;�; ��)and 
0 be any abducible formula. If � �� (� ^ 
)) ^ 
0 is consistent then � �� (� ^ 
) ` 
0 2This fact together with Theorem 3.20 says that to de�ne � ��a � we select some �c�-maximalabducible explanations of �, i.e one of the formulas with one of the largest sets of corroboratingfacts. It also says that a �c�-maximal formula has the property that any two of its models can notbe distinguished using abducible formulas.10 We can conclude that when an abducible formula 
(inconsistent with �) is a �c�-maximal explanation of some fact �, then for every abducible formula
0, either � �� (�^ 
) ` 
0 or � �� (�^ 
) ` :
0. This fact rea�rms that the selection of abducibleformulas is a good selection, since each maximal formula does not leave explanations uncovered.Example 3.22 Consider the following database (this is a minor modi�cation of an example from[16]) � = 8>>>>>>>>>><>>>>>>>>>>:
w; s! pp! gr! gr! dr! :s

9>>>>>=>>>>>;�:r ^ :w8Notice that � _ � �� (� ^ 
) is, by the Harper identity (see Section 3.4), the contraction of � with :(� ^ 
).9If we reverse �p�, i.e., put � � � i� � �p� �, then � is a possibility order as in [5].10Notice that when every formula is abducible, a �c�-maximal formula is just the conjunction of literals that aretrue in a model. 13



The propositional letter r can be read as it is raining, the letter p as sprinkler is on, g as thegrass is wet, s as it is sunny day , w as it is a warm day and d as the road is wet. Suppose weobserve that the grass is wet. We will abductively revise � in order to incorporate g. Let Abbe fw; s; rg. Using Dalal's revision operator as ��, we conclude that the �c�-maximal abductiveexplanations of g are ordered according to �p� as follows:w ^ s ^ :r =p� :w ^ :s ^ r^ <p� w ^ :s ^ r:So, for Dalal's operator, w ^ :s ^ r is too far away from the initial condition :r ^ :w in �, andtherefore is not included as an explanation of g. Thus we have� �a g � � �� (� ^w ^ s ^ :r) _ � �� (� ^ :w ^ :s ^ r):Consider now �0 = �[fsg. We have �0 �aw ` g. However, since simple abduction will only expand� minimally, the abduction of w will result in �^w but �^w 6` g. This shows that in some casesan explanation in our terms is not necessarily an explanation in the sense of standard abduction(but the converse is true as we have already shown). 2For readers familiar with G�ardenfors' work [7] observe that for each �c�-maximal 
, � �� 
corresponds to a theory revised using a maxi-choice function and the disjunction in 3.20 correspondsto a theory revised using a partial-meet contraction.We conclude this section with some remarks regarding expansion operators. As we mentionedin Section 3.1, sometimes we would like to expand a KB with an explanation that is more speci�cthan the cautious explanation. This can be done as follows. Let �� be a total pre-order of Mod(�)(we do not require the order �� to be faithful). Let de�ne the set Expla(�;�;��) and the cautiousselection function F� as before. The corresponding change operator (following 3.18) isMod(� � �) =Min(Mod(F�(�));��):Notice that we do not need to include the models of � in the de�nition of � � �, i.e. we do notneed Mod(� ^ F�(�)) in the right hand side of the equation above, since � ` �, and the order�� is de�ned over the models of �. This operator � is an expansion operator in the sense that��� ` �^� (i.e. K+1 holds). Of course, as we know from the results in Section 3.1 (see Theorem3.7), the operator � cannot satisfy all properties K+2, AbK+3 and K+4 (unless �� is the trivialpre-order where every two models are comparable). It is easy to verify that K+4 holds. The othertwo axioms do not necessarily hold. In particular, even if � is a tautology we could have ��� 6= �,which seems like a counterintuitive feature of �. This problem can be overcome by selecting apre-order <�;� that depends on both the formula � to be incorporated and the KB �.11 So, if weask the order <�;� to be the trivial pre-order when � is in �, then we can show that K+2 holds.However, for this type of operators we do not necessarily have K+4. There is room for furtherdevelopments. It seems that these expansion operators are closely related to the classic de�nitionof abduction, but in this paper we have focused on the use of abduction to update KBs and wehave not addressed the issue of using ideas of change theory to understand problems in the theoryof abduction (see [2]). We believe that there are some connections to be explored. In particularwe know that some forms of abductive reasoning can be formalized using ideas from theory change(see [19]).11Katsuno and Mendelzon already explored this possibility in the de�nition of revision operators [15].14



3.4 Abductive contractionContractions are operations that retract incorrect beliefs from a knowledge base. Contraction andrevision operators can both be de�ned in terms of each other by the so called Levi and Harperidentities ([7]): Namely, let � be a revision operator. The Harper identity de�nes a contractionoperator as follows: �� � = � _ � � :�:Conversely, the Levy identity says that if � is a contraction operator then a revision operator canbe de�ned as follows: � � � = (�� :�) + �.We will de�ne abductive contraction using the notion of abductive revision introduced in theprevious section and the Harper identity.De�nition 3.23 Let (�; Ab) be an abductive framework, � a revision operator, � an acceptableknowledge base and � a formula. Let �a be the operator de�ned as in 3.13 based on �. Then theabductive contraction of � with respect to �, denoted by ��a �, is de�ned by��a � = � _ � �a :�From the de�nitions it follows that if Fc is the cautious selection function for � with respect to�, then � �a � = � � :Fc(:�), where � is the contraction operator associated with � using theHarper identity. Clearly ��a � is acceptable for �. We have the following result:Theorem 3.24 Let (�; Ab) be an abductive framework, � a (regular) revision operator and � anacceptable knowledge base. Let �a be de�ned as in 3.23, then(i) ��a � 6` �.(ii) If :� is Ab-consistent with � then ��a � � �.(iii) (��a �) +a � ` �.(iv) � ` ��a �.(v) If �1 � �2 and �1 � �2 then �1 �a �1 � �2 �a �2.(vi) If � and � are abducible formulas then ��a (� ^ �) ` ��a � _ ��a �.(vii) If :� is Ab-consistent with ��a (� ^ �) then ��a � ` ��a (� ^ �). 23.5 Abductive updateKatsuno and Mendelzon [14] introduced another type of change operator called Update which wasmotivated by Winslett's possible model approach to database updates [22]. Updates are used tomake changes in a knowledge base to capture changes that occur in the world. Revisions try tocorrect misconceptions about the world represented in a knowledge base. In this section we presenttwo directions on how abductive update operators may be de�ned. We recall the postulates forupdates [14]:(U1) � � � ` �.(U2) If � ` � then � � � � �.(U3) If � and � are satis�able then � � � is also satis�able.(U4) If �1 � �2 and �1 � �2 then �1 � �1 � �2 � �2.(U5) (� � �) ^ � ` � � (� ^ �). 15



(U6) If � � � ` � and � � � ` � then � � � � � � �.(U7) If � is complete then (� � �) ^ (� � �) ` � � (� _ �).(U8) (�1 _ �2) � � � �1 � � _ �2 � �One of the main di�erences between revision and update operators is given by the \disjunctiverule" U8. In an update, each world will receive equal and independent consideration. On the otherhand, a revision is made in function of the knowledge base as a whole. So, for update operators,the basic operation is to change a single world. This fact must be re
ected in the de�nition of theabductive update operator. Hence, we will use a di�erent notion of abductive explanation whichwill depend on every single model of �.To understand the approach better, we will �rst recall the semantic characterization of regularupdate operators.Theorem 3.25 (Katsuno-Mendelzon [14]) An operator � on a �nite propositional language is anupdate operator (i.e. satis�es U1-U8) if and only if there exists a faithful assignment12 whichmaps each interpretation M into a partial order �M on the collection of all interpretations of thelanguage such that Mod(� � �) = [M2Mod(�)Min(Mod(�);�M ): 2Given an abductive framework (�; Ab) and an update operator �, we de�ne, similar to revisionoperators, the set of abductive explanations as follows:AbEx(�;�; �) = f
 2 AbForm : � ^ 
 is consistent and � � (� ^ 
) ` �g:Even though update operators work locally in each model, the previous de�nition is global over �,i.e., 
 2 AbEx(�;�; �) whenever 
 is an explanation for � in any model of �. A local version ofthis notion can be de�ned based on Katsuno and Mendelzon representation theorem for updatesas follows:Let �M be a faithful assignment for � (given by 3.25) and M an interpretation, thenAbEx(�;M;�M )=f
 2 AbForm : � ^ 
 is consistent and Min(Mod(� ^ 
);�M) �Mod(�)gThis is equivalent to say, 
 2 AbEx(�;M;�M ) if we have that � is true after updating M (using�M) with 
. Clearly, for every M j= � it follows that AbEx(�;�; �) � AbEx(�;M;�M ). But theconverse is not necessarily true. It can be shown using results from [14] that ��(�_�) ` ���_���.This implies that AbEx(�;�; �) and AbEx(�;M;�M ) are closed under _.Those two di�erent notions of explanation have naturally associated a cautious selection functionand an abductive operator:De�nition 3.26 Let (�; Ab) be an abductive framework, � an update operator and �M the cor-responding faithful assignment (given by theorem 3.25):12By faithful assignment it is meant that the following conditions hold: For every interpretation N , M �M N andfor all N 6=M , N 6�M M . Notice the di�erence with the analogous notion used for revision operators.16



(i) (Global function) Given an acceptable �, if AbEx(�;�; �) 6= ; put Fc(�) to be the disjunctionof all formulas in AbEx(�;�; �). Otherwise let Fc(�) =?.(ii) (Local function) Given a modelM j= �, if AbEx(�;M;�M ) 6= ; put FM(�) to be the disjunctionof all formulas in AbEx(�;M;�M ). Otherwise let FM(�) =?.We have two operators associated with �. Let � � Wni=1�i with �i a complete formula and Miits unique model. Then let:� �ga � def= � � Fc(�) and � �la � def= n_i=1�i � FMi(�) 2The following example illustrates a situation where the appropriate operation required is anabductive update (this example is a minor modi�cation of the one given by Katsuno and Mendelzon[14] to show the di�erence between update and revision).Example 3.27 Consider the following scenario. There are two objects in a room: A book andtelephone. The actions that a robot can perform in the room are two: To read the book and receiveinformation through the telephone. To verify what kind of internal processing the robot is doing wecan observe the robot. If it is holding the book the robot is reading. If it is holding the telephoneit is receiving information. Let b represent \the robot is holding the book", p \the robot is holdingthe phone", r \the robot is reading the the book" and w \the robot is receiving information".Suppose also, that our original knowledge base consists of the following facts: Either the robot isreading the book or receiving information but not both.13 Let de�ne � and � as follows:� = 8>>><>>>: r ! bw ! p )�r ^ :w _ :r ^ wSuppose we would like to explain the state of the robot by doing observations. The set of abducibles,Ab, will be r and w. Suppose we observe that the robot is holding the book. We will compute��ga b and ��la b for the update operator � de�ned by the faithful assignment �M given by: I �M Ji� the symmetric di�erence if I and M is a subset of the symmetric di�erence of J and M .The models of � are fb; rg, fb; r; pg, fb; p; wg and fp;wg. It is easy to check that AbEx(b;�; �) =fr; r ^:w; r ^wg: Since Mod(� � (�^ r)) are fb; rg, fb; p; r; wg, Mod(� � (�^ r ^:w)) are fb; rg,fb; r; pg and Mod(� � (�^ r^w)) is fb; p; r; wg. Observe that the disjunction of all explanations ofb is equivalent to r, hence Fc(b) = r. Thus� �ga b = � � (� ^ r) = � ^ r:Therefore we have Model(� �ga b) = ffb; rg; fb; r; pg; fb; p; r; wgg:Since the �rst three models of � are model of b then the corresponding local selection function isequivalent to a tautology (but notice that this is not a global explanation). For M = fp;wg, it iseasy to check that FM(b) � r ^w. Thus we have thatModel(� �la r) = ffb; rg; fb; r; pg; fb; p; wg; fb; p; r; wgg13Although the robot can do parallel processing. 17



However, if we solve this problem using Dalal's revision operator (abductively) we only get themodels fb; rg and fb; r; pg, which are counterintuitive, since there is no reason to believe that therobot is not receiving information. 2It is not di�cult to show that U1, U2, U4 andU6 hold for both versions of abductive updates.We can also show that �ga does not necessarily satisfy the disjunctive rule, but �la does. With respectto the other axioms we can say something if we interpret them as we did for the AGM axioms, i.e.,we substitute ^ by +a and consistency by Ab-consistency. The abductive version of U5 and U7does not necessarily hold, even when � is complete (so there is no di�erence between �ga and �la).For U5 there is a remedy, it is enough to restrict the type of faithful assignment used. However,it is still an open question whether or not there is a similar representation theorem for abductiveupdates.4 Final remarks and future workIn this article we have de�ned a new class of change operators based on abduction which have wellknown non-abductive change operators as limiting cases. Thus, the new theory presents a uni�edformalism for the study of both abductive and standard change operators. The idea underlyingthis new class of change operators is to carry out expansions in KBs by means of abduction asthe basic \reasoning mechanism". Our results show that for our operators to be \rational" andabductive according to our de�nitions,14 the cautious explanation is the only explanation to beused during the operation. However, this uniqueness of explanation is deceptive since we havealso shown that there are some choices that can be made during the de�nition of an abductiverevision. The choices are based on an order among the abducible formulas (and the order is areversed possibility ordering as presented in [5]) similar to the orders used to de�ne non-abductiverevisions. This similarity is re
ected in our representation theorem. The representation theorem forabductive revision operators presented here is a generalization of the result in Katsuno-Mendelzon[15] for non-abductive revisions. Moreover, the domain theory is playing the role of an integrityconstraint as modeled in [15]. A similar approach could be used to study other operators such asthe one in [21] in terms of abduction by trying to de�ne new abductive change operators based onregular operators.The operators so de�ned do not preserve consistency (� and � can be consistent but ��a � canbe inconsistent). There are two sources (not necessarily independent) for the inconsistency. Oneoccurs when � is inconsistent with � . The second occurs when there is no abducible explanationeven though � ^ � is consistent.This �rst source of inconsistency can be understood by looking at one of the limiting caseswhere every atom is considered abducible. In that case, the operators we de�ne are just regularrevision operators with the domain theory acting as a set of integrity constraints (see corollary3.19). For the general case of an arbitrary abductive framework (�; Ab) we can view the loss ofconsistency as the fact that the set of integrity constraints is being violated. In this sense, abductiverevision operators are very conservative since � is considered core knowledge that is not subjectto revision and can not be changed. However, it is precisely the restrictions we have imposed onthese operators not to modify � that have allowed us to model revision processes such as the oneillustrated in the introduction and this can not be achieved with standard revision operators.The second source of inconsistency can be addressed by adding escape explanations for eachliteral in the language. The concept of escape explanations was introduced by Konolige in [16]14At least for expansion and revision operators. 18



to avoid inconsistencies in his mechanism of generating explanations in a logic-based abductionsystem. A similar approach has been also used in abductive logic programming [13]. How tointroduce escape explanations in our framework of change operators is still an open question.We would like to say a few words about the computational complexity of these new operators.Since we have shown that the operators (expansions, revisions, contractions and updates) canalways be de�ned in terms of regular non-abductive operators, a lower bound of their complexity isgiven by the complexity of the underlying non-abductive operator. How complex these operators aredepends on the class of KBs and the way the KBs are represented (models or set of formulas). Someresults regarding the complexity of doing updates can be found in [10]. To the complexity of theunderlying operator we must add the complexity of �nding explanations. Again, this complexitywill probably depend on the class of theories we choose to work with. Finding explanations inHorn theories will be probably easier than in more general theories. Results on the complexityof computing explanation in logic-based abduction systems can be found in [4]. Details of thecomplexity of the abductive operators are open problems.It is interesting to remark that our notion of explanation di�ers from the usual notion ofexplanation in abductive reasoning by incorporating parts of � not necessarily in � in the reasoningprocess (see example 3.22).15We have not considered in this article another very interesting approach to the problem of beliefrevision, namely base revision. It will be interesting to �nd out how the abductive method usedhere will work if the description of the world is given by a set of formulas that is not necessarilylogically closed (i.e. a base).G�ardenfors and Makinson [9] have shown that a revision operator can be viewed as a consequencerelation in the following way: Given a background theory � we say that � non-monotonically entails� (with respect to the background theory �) if ��� ` �. In this setting, AbEx(�;�) is the collectionof abducible formulas that non-monotonically implies �. It is natural to study the correspondingconsequence relation: � j�a � if � �a � ` �. This relation does not satisfy the extended set ofpostulates (as given by G�ardenfors and Makinson), because the Or rule fails. However, it satis�esall axioms for the system CL de�ned by Kraus, Lehmann and Magidor [17] (i.e., it is a cumulativesystem that satis�es the Loop rule). Results on the properties of j�a were presented in [19].16. Thisstudy is also important since we can show how some forms of abductive reasoning can be formalizedusing the results from the theory change and make precise connection between abduction and non-monotonic consequence operators similar to the ones described in [20], in contrast to the workpresented here that takes ideas from abduction to extend the theory of change operators.5 ProofsIn this section we will present most of the proofs. The main result is 3.18, a representation theoremfor abductive revision operators. We will give a complete proof of this result, even though some ofthe lemmas used are well known in the literature ( [15, 14, 17, 9, 6]). In this way we will be able toget as a corollary (see 3.19) the representation theorem of Katsuno-Mendelzon ([15] Theorem 3.3),but we do not claim that our proof is easier than theirs.Proof of 3.1815Here is where the connection to the theory of non-monotonic consequence relations gives a better insight on theprocess we are modeling. This connection is explored in [19].16Many of the proofs for this work were inspired by results in [17] and [9]19



(() Assume �� is a faithful assignment and �a is an operator de�ned using equations (i) and (ii).Notice, that if (ii) applies, then � �a � = � �a Fc(�).First we observe the following: For every abducible formula 
Min(Mod(� ^ 
);��) �Mod(� ^ F�(
))and Min(Mod(� ^ F�(
));��) �Mod(� ^ 
)which implies: Min(Mod(� ^ 
);��) =Min(Mod(� ^ F�(
));��)Also, this implies that AbEx(�;�; �a) = Expla(�;�;��). From this, it clearly follows that Fc =F�, and therefore AA holds. It is straightforward to check that axioms A0, A1, A3, A4 hold.To prove the other axioms we will need the following fact:Fact 5.1 For every 
 and 
0 in AbForm if (��a
)^
0 is consistent then (��a
)^
0 � ��a (
^
0).Proof: Let N j= (��a 
)^
0, then N j= �^
^
0. If N 0 �� N with N 0 j= �^
^
0, then N �� N 0as N is ��-minimal, thus N j= � �a (
 ^ 
0). For the converse, �rst note that by hypothesis thereis N 0 j= (� �a 
) ^ 
0, thus � ^ 
 ^ 
0 is consistent. Let then N j= � �a (
 ^ 
0), since �� is totaland N 0 j= � ^ 
 ^ 
0 then necessarily we have an N �� N 0. Since N j= � ^ 
, then N j= (� �a 
),and thus N j= (� �a 
) ^ 
0. 2(A2) Assume that � is Ab-consistent with �, we want to show that � �a � � � +a �. Assume�rst that � 2 AbForm, since � is Ab-consistent with � then � is also consistent with �. Then, byfaithfulness Min(Mod(� ^ �);��) =Mod(� ^ �) �Mod(� +a �) from (i) in Theorem 3.9.If � 62 AbForm, �rst note that Fc(�) is consistent with �, therefore from the previous case weget � �a Fc(�) � �+a Fc(�) � � ^ Fc(�) and then � �a � � �+a �.(A5) If � is not Ab-consistent with � �a � then there is nothing to show. If � is Ab-consistent with� �a � we will show that (A5) and (A6) hold together, i.e., � �a (� ^ �) � (� �a �) +a �.(A6) Assume that � is Ab-consistent with ��a�. Then AbEx(�;�; �a) 6= ; if and only if AbEx(�^�;�; �a) 6= ;. We will show that � �a (� ^ �) � (� �a �) +a �. Let 
1; : : : ; 
n be all the abducibleformulas such that (� �a �) ^ 
i is consistent and (� �a �) ^ 
i ` �. It is easy to see that(� �a �) +a � � (� �a �) ^ (
1 _ � � � _ 
n)Now, from 5.1 we have (� �a Fc(�)) ^ 
i � � �a (Fc(�) ^ 
i). Hence Fc(�) ^ 
i ` Fc(� ^ �), sinceFc(�)^ 
i belongs to AbForm and (� �a Fc(�))^ 
i ` �^ �). Therefore (� �a Fc(�))^Fc(�^�) isconsistent and clearly Fc(�^�) ` Fc(�), hence (��aFc(�))^Fc(�^�) � (��aFc(�)^Fc(�^�)) �� �a Fc(� ^ �) ` �. Thus for some i, Fc(� ^ �) = 
i and hence Fc(� ^ �) � Fc(�) ^ (
1 _ � � � _ 
n),i.e. � �a Fc(� ^ �) � (� �a Fc(�)) ^ (
1 _ � � � _ 
n). That is to say, � �a (� ^ �) � (� �a �) +a �.()) Assume that the axioms (A1)-(A6) and the abductive axiom AA hold for the operator �a.Let � be acceptable for �. We will de�ne a total pre-order on the interpretations of the language.We will say that an interpretation N is normal17 if there is an abducible formula 
 such thatN j= ��a 
. First, we will de�ne a relation over the normal interpretations and then we will extendit to all interpretations.Let N1 and N2 be normal interpretations, we de�ne <�, =� and �� as follows:17In [18] a world N is called normal for a formula 
 if (in ours terms) N j= � �a 
.20



� N1 <� N2 if and only if 8
1; 
2 2 AbForm such that N1 j= � �a 
1 and N2 j= � �a 
2 thenN1 j= � �a (
1 _ 
2) and N2 6j= � �a (
1 _ 
2).� N1 =� N2 if and only if N1 6<� N2 and N2 6<� N1.� N1 �� N2 if and only if N1 =� N2 or N1 <� N2.We will show that �� is a total pre-order over the normal interpretations and that the orderis faithful. First, we need the following fact. Notice that part (a) says that every operator thatsatis�es A1-A6 will satisfy reciprocity.Fact 5.2 (a) (Reciprocity) For every formulas � and �, � �a � � � �a � if and only if � �a � ` �and � �a � ` �.(b) Let 
 and 
0 be abducible formulas then one of the following holds:(i) � �a (
 _ 
0) � � �a 
.(ii) � �a (
 _ 
0) � � �a 
0.(iii) � �a (
 _ 
0) � � �a 
 _ � �a 
0.Proof: Observe that for abducible formulas, consistency and Ab-consistency are equivalent notions.(a) One direction follows directly from A1. For the other direction assume that � �a � ` �. Thenclearly � is Ab-consistent with � �a �, thus by A5 and A6 we get that � �a (�^�) � (� �a �)+a �.Hence by K+2 we get � �a (� ^ �) � � �a �. But analogously, � �a (� ^ �) � � �a �.(b) We consider three cases. Case 1: If ��a (
_
0) ` :
0, then from A1 we get ��a (
_
0) ` 
.But clearly ��a 
 ` (
_
0). Then by reciprocity ��a (
_
0) � ��a 
. Case 2: If ��a (
_
0) ` :
then by symmetry we get � �a (
 _ 
0) � � �a 
0. Case 3: Assume that � �a (
 _ 
0) 6` :
0 and� �a (
 _ 
0) 6` :
. Then 
 and 
0 are both consistent with � �a (
 _ 
0). Thus, by A5 and A6 wehave � �a ((
 _ 
0) ^ 
) � � �a (
 _ 
0) ^ 
and also � �a ((
 _ 
0) ^ 
0) � � �a (
 _ 
0) ^ 
0and from A4 � �a ((
 _ 
0) ^ 
) � � �a 
and similarly � �a ((
 _ 
0) ^ 
0) � � �a 
0Thus � �a 
 _ � �a 
0 � � �a ((
 _ 
0) ^ (
 _ 
0)and the result follows from A1. 2Fact 5.3 The relation <� is transitive.Proof: Let N1 <� N2 and N2 <� N3 and assume N1 6<� N3. Then there exist 
1; 
3 2 AbFormsuch that N1 j= � �a 
1 and N3 j= � �a 
3 but either N1 6j= � �a (
1 _ 
3) or N3 j= � �a (
1 _ 
3).If N1 6j= � �a (
1 _ 
3), then from 5.2 (b) we have that � �a (
1 _ 
3) � � �a 
3. Now, since N2is a normal model there exists 
2 2 AbForm such that N2 j= � �a 
2. Then, since N2 <� N3 andN3 j= � �a (
1 _ 
3) we have that N2 j= � �a (
1 _ 
2 _ 
3). And, again since N1 j= � �a 
1, andN1 <� N2 then it must be the case N2 6j= � �a (
1 _ 
2 _ 
3), which is a contradiction.If N3 j= � �a (
1 _ 
3), and N2 <� N3 and there exists 
2 2 AbForm such that N2 j= � �a 
2then N2 j= � �a (
1 _ 
2 _ 
3). But since N1 <� N2 and N1 j= � �a 
1 then it must be the case thatN2 6j= � �a (
1 _ 
2 _ 
3) which is a contradiction. 221



Fact 5.4 (i) Let N and M be normal models. Then N <� M if and only if 9
N ; 
M abducibleformulas such that N j= � �a 
N , M j= � �a 
M and N j= � �a (
N _ 
M ) but M 6j= � �a (
N _ 
M).(ii) In consequence, for N and M normal models, N =� M if and only if for all abducible formulas
 and 
0 such that N j= � �a 
, M j= � �a 
0 we have N , M j= � �a (
 _ 
0).Proof: (i) The if part comes directly form the de�nition of <�. Assume that such 
N and 
M existand let 
 and 
0 be any abducible formulas such that N j= � �a 
 and M j= � �a 
0. From 5.2(b)we get that (� �a (
 _ 
0)) ^ (
N _ 
M ) and (� �a (
N _ 
M )) ^ (
 _ 
0) both are consistent. Henceusing A5, A6 and 3.9 we get that (� �a (
N _ 
M )) ^ (
 _ 
0) � (� �a (
 _ 
0)) ^ (
N _ 
M ) andfrom this the result follows. (ii) follows from (i). 2Fact 5.5 The relation =� is an equivalence relation.Proof: By de�nition the relation is re
exive and symmetric. The interesting case is when N1 6= N2and N2 6= N3. Let N1 =� N2 and N2 =� N3. We will �nd 
01; 
03 in AbForm such that N1 j= ��a
01,N3 j= � �a 
03 and N1; N3 j= � �a (
1 _ 
3), then we will have that N1 6< N3 and N3 6< N1, and thusN1 =� N3. Let 
1; 
2 and 
3 be AbForm such that Ni j= � �a 
i, for i = 1; 2; 3 (These 
's existsince Ni's are normal models). Since N2 =� N3 then, from 5.4, we get N2; N3 j= � �a (
2 _ 
3).Similarly, N1; N2 j= ��a (
1_
2_
3) and N2; N3 j= ��a (
1_
2_
3). Take 
01 = 
03 = 
1_
2_
3.2 Now, we prove that �� is a total pre-order. Re
exivity comes from the re
exivity of =�. Fortransitivity, let N1 �� N2 and N2 �� N3. We have four cases. (1) When N1 =� N2 and N2 =� N3, then N1 =� N3 follows from Fact 5.5. (2) When N1 =� N2 and N2 <� N3, the only caseto consider is if N3 <� N1, but this case is impossible since by transitivity of <� we have thatN2 <� N1 contradicting the fact that N1 =� N2. (3) When N1 <� N2 and N2 =� N3, the situationis analogous to the second case. (4) When N1 <� N2 and N2 <� N3 follows from the transitivityof <�.There are three conditions that need to be proved to show that the order is faithful: (i) forevery pair of interpretations N and M , if M is a model of � then M �� N . (ii) If M 2 Mod(�)and N 62 Mod(�) then N �� M does not hold. (iii) If � � 	 then the relation �� is the samefor both � and 	. Condition (iii) follows from A4. Condition (i) is true since there is always
 2 AbForm such that M j= 
, therefore for any 
0 2 AbForm, M j= � �a (
 _ 
0) (in particularM is normal) since ��a (
 _
0) � �^ (
_
0) from A2 and (vi) in 3.9. Condition (ii) follows since,similar to condition (i), for any 
; 
0 2 AbForm if M j= � �a 
 then � �a (
 _ 
0) = � ^ (
 _ 
0).Hence N 6j= � �a (
 _ 
0) since N 6j= �.We extend �� to an order on all interpretations as follows: If N is normal andM is not normal,then N <� M , and every two non-normal models are =�. It is clear that the extended relation ��is a total pre-order and it is faithful.Next, we show that for 
 2 AbForm, Mod(� �a 
) = Min(Mod(� ^ 
);��). From A3, if 
 isan abducible formula consistent with � then � �a 
 is consistent and hence there is a normal Nwith N j= 
. Let Normal(
) be the collection of all normal models of 
. We have just showed thatfor every abducible formula 
 consistent with �, Normal(
) is not empty. Also, from A0 we havethat Normal(
) = Normal(�^ 
). It follows from the way we extended �� that for 
 2 AbForm,Min(Mod(� ^ 
);��) = Min(Normal(
);��). We will show that for an abducible formula 
consistent with �, Mod(� �a 
) =Min(Normal(
);��).(�) By contradiction, assume that M 2 Mod(� �a 
) but M 62 Min(Normal(
);��). Then9N <� M;N 2Min(Normal(
);��). Then for any 
1 such that N j= ��a
1, N j= ��a(
1_
) andM 6j= ��a(
1_
). Hence ��a(
1_
)^
 is consistent sinceN is a model, therefore 
 is Ab-consistent22



with � �a (
1 _ 
). Then from A5 and A6 we have � �a (
1 _ 
)^ 
 � � �a ((
1 _ 
)^ 
) � � �a 
,contradicting that M 6j= � �a (
1 _ 
).(�) Let M 2Min(Normal(
);��), and let 
0 2 AbForm such that M j= ��a 
0 (
0 exists becauseM is normal). Since Mod(� �a 
) 6= ; and Mod(� �a 
) � Min(Normal(
);��), then there is Nsuch that N j= � �a 
 and N =� M (recall that �� is total). Then from 5.4, M j= � �a (
 _ 
0)and hence M j= (� �a (
 _ 
0)) ^ 
. Therefore, 
 is Ab-consistent with � �a (
 _ 
0) and thus fromA5, A6 and 3.9 we get (� �a (
 _ 
0)) ^ 
 � � �a ((
 _ 
0) ^ 
) � � �a 
. Thus, M j= � �a 
.Finally we show Mod(� �a �) = Min(Normal(F (�));��). Since �a satis�es reciprocity, thenfrom AA we get that � �a � � � �a Fc(�), and now the result follows, since we already have shownwhen � is an abducible formula. 23.18Proof of 3.14()) Let �a be an operator which satis�es axioms A0-A6 and AA and let �� be a faithfulassignment given by 3.18. We can assume, with loss of generality, that �� is de�ned for every �18. Let �� be the operator de�ned by the equation Mod(� �� �) = Min(Mod(� ^ �);��). Thenclearly for every abducible formula 
 we have that � �� (�^ 
) = � �a 
. Hence, it su�ces to showthat for every abducible formula 
 we have that � ��a 
 = � �a 
. But this follows from the factthat � �� (� ^ 
) � � �� (� ^ Fc(
)) (see remark (4) after 3.13).(() By 3.18, it su�ces to show that there is a faithful assignment �� for every � acceptable for�. Apply 3.19 to �� (with Ab the collection of all atoms and the trivial domain theory) and obtaina faithful assignment �� such thatMod(� �� �) =Min(Mod(�);��):From de�nition 3.13 of ��a and Fc(�) we get that if 
 is an abducible formula thenMod(� ��a 
) =Min(Mod(� ^ F (
));��):and from here we get that AbEx(�;�; ��) = Expla(�;�;��) (the last set de�ned as in 3.18). Fromthis the result follows. 23.14Proof of 3.20First, we recall the following fact which follows from 5.2. Let �� be a applied to an abductiveframework where every atom is abducible and the domain theory is empty.Fact 5.6 (a) (Reciprocity) For every formulas 
 and 
0, � �� 
 � � �� 
0 if and only if � �� 
 ` 
0and � �� 
0 ` 
.(b) For every formulas 
 and 
0 one of the following holds :(i) � �� (
 _ 
0) � � �� 
.(ii) � �� (
 _ 
0) � � �� 
0.(iii) � �� (
 _ 
0) � � �� 
 _ � �� 
0. 2Fact 5.7 (i) If � �� (� ^ 
0) ` � �� (� ^ 
) then 
 �c� 
0.(ii) If 
0 is inconsistent with � then 
 �c� 
0 implies � �� (� ^ 
0) ` � �� (� ^ 
).(iii) If 
 is consistent with � then 
 is a �c�-maximum.18The only case not covered is when � is not acceptable, then let �� be any total pre-order which satis�esfaithfulness. 23



Proof: (i) Obvious. (ii) Assume that 
0 is inconsistent with � and 
 �c� 
0. Let M be a model of� �� (� ^ 
0). Then M is a model of � _ � �� (� ^ 
), and since � �� (� ^ 
) implies 
, thenM is a model of � �� (� ^ 
). (iii) If 
 is consistent with � then � �� (� ^ 
) = � ^ 
. Thus� _ � �� (� ^ 
) � �. 2Fact 5.8 (i) If � �� (� ^ 
) ` � �� (� ^ 
0) then 
 �p� 
0(ii) Let 
i be formulas and let 
ik be its �p�-minimal (there could be more than one since �� isa pre-order). Then � �� (� ^ (
1 _ � � � _ 
n)) � � �� c(� ^ 
i1) _ � � � _ � �� (� ^ 
ik).Proof: From 5.6(b) we get the following:(a) If 
 <p� 
0 then � �� (� ^ 
) � � �� (� ^ (
 _ 
0)).(b) If 
 and 
0 are both �p�-minimal in f
; 
0g then ��� (�^(
_
0)) � ��� (�^
)_��� (�^
0).Now, (i) follows easily from (a) and (b), and (ii) follows from 5.6(b). 2Fact 5.9 Let 
i be the �p�-minimal elements of AbEx(�;�; ��) and put 
� = 
1 _ � � � _ 
m. Letf�1; : : : ; �ng =Max(f
i : 1 � i �mg;�c�), and �� = �1_� � �_�n. Then ��� (�^
�) � ��� (�^��).Proof: Let A = f
 2 AbForm : for some i, 
i �c� 
 and 
 is inconsistent with �g. From 5.7(ii) if
 2 A then � �� (� ^ 
) ` � �� (� ^ 
i) (some i), thus 
 2 AbExp(�;�; ��) and also 
 �p� 
i (from5.8(i)). Thus for some j, 
 = 
j. Therefore Max(A;�c�) = f�1; � � � ; �ng.To prove the claim, �rst notice that � �� (� ^ ��) ` 
� thus from 5.6(a) it su�ces to showthat � �� (� ^ 
�) ` ��. So, assume, towards a contradiction, that � �� (� ^ 
�) 6` �� and let
0 � 
� ^:��. Then 
0 2 AbForm. Since 
0 is consistent with � �� (�^ 
�), from R6 we have that(� �� (� ^ 
�)) ^ 
0 � � �� (� ^ (
� ^ 
0)) � � �� (� ^ 
0). Hence 
� �c� 
0 (from 5.7(i)). Therefore
0 2 A (notice that from 5.8(ii) 
� � 
i for some i and clearly 
0 is inconsistent with �) and hencethere is j such that 
0 �c� �j . But � �� (� ^ 
0) ` :�i, a contradiction. 2The proof of 3.20 now follows from 5.8 and 5.9. 23.20Proof of 3.21Since �� is a revision operator (��� (�^
))^
0 � ��� (�^ (
^
0)). Thus, 
^
0 is in AbEx(�;�)and 
 �c� 
 ^ 
0. Therefore, by the maximality of 
, we have that 
 ^ 
0 �c� 
 and hence (using5.7(ii)) � �� (� ^ 
) ` 
0. 23.21Proof of 3.24(o) follows from A0 for �a. (i) follows from the fact that � �a � ` �. (ii) From A2 we know that� �a :� = � +a :�, and hence � _ � �a :� � �. (iii) If (� �a �) +a � is inconsistent there isnothing to show, otherwise let 
 be an abducible formula such that (��a �) ^ 
 is consistent and(��a �)^ 
 ` �. Then 
 is inconsistent with � �a :� and thus, (�_� �a :�)^ 
 � �^ 
. Hence(� �a �) +a 
 ` �. (iv) follows from the de�nition of �a. (v) follows from A4 for �a. (vi) Since:� and :� are abducible formulas then from 5.2 (b) � �a (:� _ :�) ` � �a :� _ � �a :�). Hence�_��a (:�_:�) ` (�_��a:�)_ (�_��a:�). (vii) There are two cases to consider: (a) If :� isAb-consistent with � then ��a:� � �+a:� ` �. Therefore ��a� ` � and hence ��a ` (�^�).(b) If :� is not Ab-consistent with �, then :� is Ab-consistent with ��a (:�_:�). Then from A6we get that � �a :� � � �a ((:�_:�)^:�) ` � �a (:�_:�). Therefore ��a :� ` ��a (�_ �).23.2424
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