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Abstract

This paper describes a change theory based on abductive reasoning. We take the AGM
postulates for revisions, expansions and contractions, and Katsuno and Mendelzon postulates
for updates and incorporate abduction into them. A key feature of the theory is that presents
a unified view of standard change operators and abductive change operators rather than a new
and independent change theory for abductive changes. Abductive operators reduce to standard
change operators in the limiting cases.

1 Introduction

Many actions taken by rational agents can be explained based on a cause effect reasoning of the
agent. There are actions that are taken to produce an effect. For example, we will put money in
a parking-meter to avoid paying a fine to the city. Feeding the meter causes not getting a parking
ticket as an effect. There are also actions that occur after an explanation or cause is derived from
an observation or effect. The process of finding explanations from observations is usually referred
to as abduction. Consider, for example, the following knowledge base

T —w
p—w
T —u
-p

representing a piece of the description of Alberto’s world. The propositional letter r can be read
as it is raining today, the letter p as the sprinkler is on, the letter w as the clothes are wet and the
letter u as he should bring the umbrella with him today. Since he himself put the sprinkler away
last night, he knows that the sprinkler is not on.! This condition is expressed in the last sentence
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! Actually, he assumes that the sprinkler is away, and although exceptions to this assumption can arise the problem
of dealing with exceptions is outside the scope of this paper.



in ®. Suppose his girlfriend has arrived this morning to give him a ride to work and when she
came in the house he notices that her coat was wet. With this information Alberto revises his
knowledge base and asserts that it must be raining and he should bring an umbrella. His reasoning
was somehow abductive. From the first two formulas he could have concluded that either it was
raining this morning or the sprinkler was on. But from the last sentence in @ he was able to
disregard the sprinkler and assert that it must be raining (i.e. that r is true), and hence, he will
bring the umbrella.

Since the rationality postulates for belief revision proposed in [1] by Alchourrén, Gardenfors and
Makinson appeared much research has been done on how these postulates relate to different revision
algorithms for knowledge bases. The AGM postulates, as they are referred to in the literature,
are important for two reasons. First, the postulates are written independently of the concrete
representation of the knowledge. They only assume that the knowledge base (KB) represents a
closed set of sentences.? Secondly, and more important, they provide a minimal set of rational
criteria to evaluate and compare change operators. However, the AGM postulates cannot be used
to explain Alberto’s reasoning in the example since any revision algorithm that follows the AGM
postulates will simply add w to ® and Alberto will not realize that he should bring the umbrella.

Katsuno and Mendelzon [14, 15] studied the revision theory of KBs represented by sets of
propositional sentences. In their study they found that the AGM postulates did not apply to
update operators as usually defined in KBs and proposed an alternative set of postulates that
differentiates between updates and revision. If we apply updates to Alberto’s problem we will not
obtain the correct result either since according to Katsuno and Mendelzon’s postulates for updates,
whenever a knowledge base is updated with a formula that is consistent with the current knowledge
base the resulting knowledge base must be a theory that is implied by the formula plus the original
theory. Thus, under these restrictions neither r nor u will be part of the final theory.

Assume now that we attempt to model Alberto’s reasoning using abduction.? In this situation
we need to select a subset of ® as his domain theory. This is the theory that he extends with ex-
planations to justify his observations. Assume his domain theory comprises the first three formulas
in ®. Let us call this set 3. We also need to decide which formulas in his language can be used as
explanations. Natural choices are formulas formed with the letters r» and p.

The problem with this setting is that abduction will ignore the fact that —p was true in ®. The
cautious explanation (i.e., the disjunction of all abductive explanations) for w in ¥ will be pVr and
thus, the new ® will be ¥ U {p V r}. Any other explanation, such as r or p or r A =p, will require
assumptions that are not part of 3. Here there is no definite answer to the question of whether to
bring the umbrella to work or not.

If we assume for a moment that ¥ is equal to ® it seems that the problem can be solved since
from the explanation p V r and —p in 3 he can deduce r and then u. However, taking the whole ®
as the domain theory will induce other problems. Take, for example, the following simpler ®,

r—w
dP=<¢ r—ou
—r

Alberto now lives in an apartment and he doesn’t know about sprinklers and explanations are made
with 7 only. He came home yesterday night and listened to the weather report that predicted a
sunny day today. He wakes up thinking that it is not raining. His girlfriend arrives and her coat

We will work with a propositional language, where most of the research on theory change has focused, even
though the original paper of Alchourrén, Gardenfors and Makinson was written for an unspecified language.
3In this paper we follow the logic-based definition of abduction as presented, for example, in [16].



is wet, but now he is not able to conclude r if ¥ = & since it will make his theory inconsistent and
abduction preserves consistency. On the other hand, if Alberto is able to revise the theory with
the explanation r he will bring his theory up to date and avoid inconsistencies replacing —r with r.

The major contribution of this paper is a theory of abductive changes which expands the AGM
postulates for revisions, expansions and contractions, and Katsuno and Mendelzon postulates for
updates with concepts from the theory of logic-based abduction. A key feature of this new theory
is that it presents a unified view of standard change operators and abductive operators rather
than a new and independent change theory for abductive changes. Abductive operators reduce to
standard change operators in some limiting cases.

Before we enter into specifics of the abductive change operators let us introduce the general
idea behind the new operators.

2 Basic approach

Our general approach is to define abductive operators on top of regular change operators. To
illustrate the idea, let o be a revision operator (in the sense of Gardenfors), ¥ an abductive domain
theory, K a knowledge base and a a formula, all of them in a finite language. An abductive revision
of K with a with respect to X requires finding an explanation -y for « based on X such that « will
be a consequence of K revised with . Formally, an explanation for o (with respect to ¥ according
to K and o) is any formula v such that K o (X A7) F a.*

There is a set of basic (or preferred) atoms Ab (called abducibles) that will be used to define
explanations. Explanations are formulas built using atoms from Ab. Given «a, we would like to find
a formula which is an explanation for a. Let

AbEx(a, K,0) = {v is an abducible formula consistent with ¥ : K o (X Avy) F a}

A new operator o, can be defined by letting K o, « = K o (X A~y), where v € AbEz(«, K, o).
To make this idea precise, let F : Form — Form be a function such that if AbEz(a, K,0) # ()
then F(«a) € AbEx(a, K, o), otherwise F'(a) =L. Define the abductive revision operator o, by

Kosa=Ko(XAF(a))

Notice that if v is consistent with ¥ and ¥ Ay F « (i.e. < is an explanation in the standard
sense of logic-based abduction) then we have v € AbEx(«, K,0) (since K o § F ). In this form,
our definition extends the standard definition of abductive explanation.

We will work with a finite propositional language where K is the set of consequences of a formula
®. In this case a revision operator is a function o that maps ® and « into a formula ® o . We will
denote by F.(«) the cautious explanation of «, i.e., the disjunction of all abductive explanations of
«. This function is well-defined since we are assuming that our language is finite.

It turns out that o, will satisfy postulates similar to the AGM postulates if and only if F' is
essentially equal to Fi.. Thus, our official definition of o, will be Ko, @ = Ko (¥ A F.(a)). We will
show that there is a selection involved in the definition of o,, which is based on an order among all
abductive explanations of a.

In the more general setting of an abstract change operator, our results show that it is natural
to say that a change operator x is abductive when ® x « - F,.(«), where F.(«) is the cautious
explanation of « (with respect to x).

‘By ¥ A+ we mean the conjunction of all formulas in ¥ and . Observe that X is playing a role of an integrity
constraint as modeled by Katsuno-Mendelzon (see [15]).



In the next section we will precisely define domain theories and introduce a formal description of
an abductive framework. Then we will introduce the abductive change operators corresponding to
expansions and revisions and state a representation theorem for revisions. Next, we define abductive
contractions in terms of revision operators and prove some of their properties. Finally, we explore
abductive updates and suggest a way of defining updates which may lead to a representation
theorem. Some concluding remarks and directions of research are presented in the last section.

3 Abductive change operators

Gardenfors and his colleagues have introduced three basic operators in theory change: Expansions,
Revisions and Contractions, and gave a set of postulates that the operators should satisfy in order
to be considered rational change operators. Katsuno and Mendelzon introduced Update operators
in order to model a type of change operators which are common in database applications, but they
are not covered by revisions, contractions or expansions.® In this section we will present abductive
operators associated with each one of the change operators mentioned before.

Our original motivation for studying abductive operators was the view update problem in
databases. In that setting, ® can be regarded as consisting of two parts: One that we would
always like to keep unmodified (the views or intensional part) and another part where we can make
modifications (the extensional part that typically consists of abductive formulas). It is clear that
updating such a database will consist of two steps: First, given the new fact « to be inserted, find
the explanations of a (with respect to the views). Second, update the database with one of the
explanations for « (it is in this step that the actual update occurs). The domain theory that we
made reference in the introduction corresponds to the views in databases. With this idea in mind
we introduce the notion of abductive framework.

Definition 3.1 A domain theory (cf. [16]) will be any consistent set of formulas and it will be
usually denoted by . A knowledge base ® will be called acceptable for 3 if ® - X, i.e., for every
o € 3, we have ® I 0. Given a set of atoms Ab, called abducibles, any formula built using only
atoms in Ab is called an abducible formula. The set of abducible formulas is denoted by AbForm.
An abductive framework is any pair (3, Ab) where X is a domain theory and Ab is a set of abducible
atoms.

Notice that, except for the acceptability of ®, there are no constraints on the structure of X or
® and any letter in the language can be designated to be abducible. We even allow the situation
where there is no domain theory, i.e., every member of the domain theory is a tautology. This is
equivalent to say that the domain theory is the empty set. The decision of what can be considered
an explanation or abducible and what part of the theory is the domain theory is problem dependent
and will form part of the design of the KB.

The goal is to expand, revise or update any possible extension of ¥ (i.e., any acceptable ®)
using abduction based on a fixed abductive framework (3, Ab).

Throughout the paper, a change operator will denote any function * that maps a knowledge
base ® and a formula « into a knowledge base ® *x «. A change operator * is said to satisfy
reflezivity if for every a, ® * a - «, and it satisfies reciprocity if ® x a - 8 and ® * § F « imply
®xa = ®x 3. We will say that x satisfies the Or rule if for every abducible formula ~; and ~s:
Dk (11 V) E Dkyy VO xys.

"These operators were partly motivated by Winslett’s possible world [22] approach for updating logical databases.



Definition 3.2 Let (X, Ab) be an abductive framework, ® an acceptable knowledge base and * a
change operator. The set of abductive explanations for o with respect to ® and * is

AbEx(a, @, %) = {7 is an abducible formula consistent with ¥ : ® % (X A ) F a}.

Remarks: (1) When the change operator x is understood from the context we will write AbEz(c, ®).

(2) We will show that expansion, revision and update operators satisfy the Or rule, therefore
the disjunction of two explanations of a formula « is also an explanation of «, in other words,
when x is any of those operators, AbFEx(a, ®,x) is closed under V. In general this is not true for
the conjunction of two explanations (for instance, there can be two explanations of « that are
inconsistent with each other).

(3) The standard definition of an explanation of a formula « in an abductive framework (X, Ab)
is any abducible formula ~ such that ¥ A 7 is consistent and ¥ A v F . The change operators we
are considering are such that ® x a F «, hence if v is an explanation in the standard sense then
clearly v € AbEz(a, @, ).

Following the ideas presented in the introduction, a selection function for ® with respect to *
will be any function Fg : Form — Form such that

(i) For every formula «, Fg(a) is an abductive explanation of « or, in case such explanation
does not exist, Fo(a) =L1.

(ii) If 7y is an abducible formula then Fg(7y) =+, i.e. the explanation for an abducible formula
is the formula itself.

When there is no confusion about ® we will write F' instead of Fg. In this paper the most
important selection function is the following:

Definition 3.3 Let (X, Ab) be an abductive framework, ® an acceptable knowledge base, and *
a change operator that satisfies the Or rule. If AbEz(a, ®,*) # 0, the cautious explanation of
a with respect to @ and * is the disjunction of all abductive explanations of a. We define the
cautious selection function F,. by letting F.(«) be equal to the cautious explanation of a. If
AbEz (o, @, %) = () then F.(a) =L.

Remarks: (1) Strictly speaking, F, depends on ® and %, so we should denoted it by Fg .. but to
simplify the notation we drop ® and % which should be clear from the context.

(2) Since we are working with a finite language, the set of all abductive explanations of « is
finite modulo equivalent formulas, hence F,. is well defined.

Definition 3.4 Let (3, Ab) be an abductive framework and % be a change operator that satisfies
the Or rule. The abductive operator associated with x is defined by

Ox, =% (XAF.(a))
where @ is an acceptable knowledge base.

Now we show that F, is, in some sense, the only selection function to be used. Let * be a change
operator that satisfies reflexivity, reciprocity and the Or rule. Let F' be any selection function for
® with respect to x, and let F,. be the cautious selection function. Let ® x> o = ® % (X A F(«)). We
will show that if %% satisfies reciprocity then *® = x,. First, since for every abducible formula +,
v F F(7v), it follows from the reflexivity and the reciprocity of * that ® «*y = ® x (X A~y). Second,
since F'(a) F F.(a), we clearly have ® x® a = F,(«). Now, since ® x® F.(a) = ® * (X A F.(«v)), then



® «* F.(a) - a. Therefore, by the reciprocity of ** we have ® x* o« = ® x* F.(«), which implies that
O+ =0 x (XA F.(a)), that is to say % = x,.

We are essentially saying that the only selection function that will induce a change operator
satisfying Reciprocity is the cautious selection function.® Hence, the only explanation we can be sure
will always be part of ® x o is the cautious explanation of a. However, in most cases more specific
explanations may appear in ® x «. These explanations appear because there is another selection of
preferred explanations involved in the construction of ® * «, but this selection is implicitly built in
the operator . For the particular case of abductive revision operators, we will study the selection
process with some care later in the paper (see 3.20). We would also like to remark that if condition
(ii) above in the definition of a selection function Fg is dropped it is possible to find other selection
functions, besides the cautious selection function, that will define change operators having the
same properties as the one we have defined, however, must of the abductive frameworks or change
operators with some form of abduction (like view updates in databases) that can be found in the
literature assume condition (ii) [12, 13, 16, 11]. How interesting would it be to have functions
without condition (ii) is a topic of future research. Some remarks regarding expansion operators
defined by more specific selection functions can be found at the end of Section 3.3.

In the following sections we will study properties of several abductive change operators.

3.1 Abductive expansion

Expansion is the simplest form of change that one can perform on a knowledge base: Merely add
the formula that is being incorporated. The expansion of a knowledge bases ® with a formula « is
denoted by ® 4+« and it is equal to ® A . Expansion is axiomatically characterized by the following
postulates ([7]):

(K1) @ +aF®Aa.
(KT2) If @ - then @ + o = @.

(KT3) If @+ U then ® + a - ¥ + a.

Recall the definition of the abductive selection function given in 3.3 for the particular case of
the operator + and also the definition of the abductive operator associated with + given in 3.4.
Abductive expansion is then defined as follows:

Definition 3.5 Let (X, Ab) be an abductive framework and ® an acceptable knowledge base. The
abductive expansion of ® with «, denoted by ® +, «, is defined by

O+,a=DAF.(a)

Remarks: (1) The domain theory does not play an important role for the definition of +,, for ®
acceptable, ® A F.(a) = ® A (X A F,.(«)) (see Definition 3.4).

(2) Notice that when there is no abductive explanation for a formula a, then by definition
F.(a) =1, and hence ® +, a =1.

(3) The definition of abductive expansion is very close to the standard framework for abduction
(for instance, as presented in [12]). If we have to explain « in ® we need to find a “minimal” formula
that explains a. That is, a formula « consistent with ® such that v together with ® implies a.

SReciprocity is an elementary feature of change operators. In fact, Revision, Contraction, Expansion and Update
operators satisfy this property.



This minimal formula could be the disjunction of all possible consistent explanations of «. If there
is no such explanation then the result of abduction will be the trivial knowledge base (usually, it
is said that the explanation is not possible).

It is clear that K*1 and K*2 hold for +, (notice that when @ + «, then F.() is a tautology).
But K*3 does not hold (as we will see below). However, the following partial version of K*3 holds
for +,.

(AbK™3) If ® - ¥ and + is an abducible formula then ® + v = ¥ + .

To see that AbK ™3 holds just notice that if v is an abducible formula, then ® A F.(y) = ® A~.
One of the main consequences of K*3 is the following:

(K*4) If ® + o+ B then ® + a - ® + .

To see that K4 still holds for +, even though K*3 does not, notice that if ® +, o - 3
then F.(«) is either | or an abductive explanation of 3, and therefore F.(«) F F.(). Thus
ONAFe(a) DA F(B).

The next theorem says that F. is essentially the only selection function that can be used to
create an abductive expansion operator that satisfies postulates K1, KT2, AbK*3 and K4
from the regular, non-abductive expansion operator.

Theorem 3.6 Let (3, Ab) be an abductive framework and ® an acceptable knowledge base. Let
F = F, be a selection function for ® and define an operator +* by ® +* o = ® A F(«). Then +*
satisfies K1, K*2, AbK*3 and K4 if and only if ® - F(a) < F.(a).

Proof: (<) It is the same argument as for F,.

(=) Observe first that any operator +* satisfying K*1, K2 and AbK™"3 has the property
that for every abducible formula v, ® +* v = ® A . In fact, from K*1 it suffices to show that
DAy ®+*. Since Ay F &, then from AbK™3 we get that (& Avy) +* v F ® +* v and from
K*2 we have that (P Ay) +*y=d Ay,

To complete the proof, from K*4 it follows that whenever ® Ay a, ® Ay ® A F(a). Thus
O A F.(a) F® A F(a). But clearly F(a) - F.(«), and therefore ® - F(a) <> F.(a). O

To complete the picture, the next theorem shows that +, is uniquely characterized by the four
postulates K*1, K72, AbK*3 and K'4.

Theorem 3.7 Let (3, Ab) be an abductive framework. Let +* be an operator satisfying K*1,
K*2, AbK'3 and K*4. Let F = F, be a function such that for every formula o, F () is an
abducible formula with ® +* F(«) F a. Assume that ® +* o+ F(«). Then @ +* o = & A F(a). In
fact F' is a selection function for ® and @ F F(a) < F.(a), ie P+*a=d +, a.

Proof: Since ® +* a - @, then from AbK'3 we get (® +* a) +* F(a) - ® +* F(a). By the
hypothesis, ® +* a = F(«), thus from AbK™'2 we have ® +* a = ® +* F(a). On the other hand,
K*4 implies that ® +* F(a) F ® +* . Therefore, ® +* a = ® +* F(a).

By the same argument as in the proof of Theorem 3.6, it follows that for every abducible formula
v, ® +* v = ® A~y. Therefore ® +* « = ® A F(a). The rest of the proof follows from 3.6 O
Remark: To prove the previous theorems we only need the weaker version of K*4 which holds
when « is an abducible formula.



Example 3.8 Consider the following modified version of the knowledge base @ from the introduc-
tion:

r—g
d=< p—yg
g—s

The propositional letter r can be read as it rained last night, the letter p as the sprinkler was
on, g as the grass is wet and s as shoes are wet. Let Ab = {p,r} and ¥ = ®. Then we have that
®+,5=>A(rVp). Notice that s is consistent with ® but ® +, s # ® A s. Also note that since
F.(—s) =L then ® 4, —s is the trivial knowledge base. O

The next theorem collects some other facts about +, that we will use later on.

Theorem 3.9 Let (3, Ab) be an abductive framework and ® an acceptable knowledge base. Let
a, (3 be formulas. Then

(i) If 7y is an abducible formula, then ® 4+, v = ® Ay

(i) P+, a=d+,Fifand only if @+, a - fand ® +, 5 F a.

(iii) (P44 ) +o =P +4 (@ A DP). O

Proof: (i)was already proved. (ii) follows from K1 and K*4. For (iii), from K1 we have that

(® +4 @) +4 BF aAB. Then from K*4 we have that (® +, ) +, 8+ ® +, (o A 3) and the other

direction follows easily. O
The following example shows that the abductive expansion operator does not satisfy K*3.

Example 3.10 Let ® be (r — g) A(p = g) A —r and ¥ be r — g. Let ¥ be the empty domain
theory and Ab = {p,r}. Then ® +,9=PApand ¥ +,9g=V Ar. Hence & +, gt/ ¥ +, g. O

Expansions (standard and abductive) are very conservative change operators. It is natural
to ask what kind of expansion operators we could define if we allow explanations that are more
“brave” than the cautious explanation. This situation is similar to the problem that motivates the
definition of revision operators below. We will discuss more about abductive expansion operators
after we introduce revisions in the next section.

Before we move to study abductive revisions let us observe that in the limiting case, when every
atom is abducible 4+, and + are the same operator.

3.2 Abductive revision

Revision operators are defined in order to overcome the problem of trying to expand a knowledge
base ® with a formula that is inconsistent with ®. We would like to accomplish that using abduction,
so let (X, Ab) be an abductive framework and assume that we want to incorporate « into an
acceptable knowledge base ® where ® +, « is the trivial base (there is no “easy” explanation for
«). In the new knowledge base we want to have an explanation for « in terms of (X, Ab), but
at the same time we do not want to change ® “too much”. As indicated in the introduction, the
underlying idea is to revise (in the usual way) ® with an abducible formula -y such that the resulting
theory is acceptable for ¥ and implies a. Let us recall the definition of a revision operator. An
operator o is called a revision operator if the operator satisfies the AGM postulates:

(R1) Poat a.



(R2) If ® A « is satisfiable, then Poa = ® A .

(R3) If « if satisfiable, then ® o « is also satisfiable.
(R4) If &; = &5 and ay = ag, then &1 0 a3 = P9 0 ay.
(R5) (Poa) ANBE o (anpf).

(R6) If (P o ) A [ is satisfiable, then ® o (a A ) F (P o) A LS.

We will now introduce the new set of postulates that characterize abductive revisions. After the
postulates are discussed we will present the typical schema to define abductive revision operators
and some examples of abductive revisions that are defined on top of a well known (non-abductive)
revision operator.

In order to define an abductive version of revision we will need the following notion.

Definition 3.11 Let (3, Ab) be an abductive framework and ® an acceptable knowledge base. We
will say that o is Ab-consistent with @ if there is an abducible formula 7 such that (i) ® A is
consistent and (ii) ® Ay F a.

Remarks: (1) a is Ab-consistent with ® if and only if & +, « # L.

(2) Ab-consistency is not reflexive, if « is Ab-consistent with @ it is not necessarily the case that
® is Ab-consistent with a.

For the propositional case (as presented by Katsuno-Mendelzon) there is no difference between
knowledge bases and the knowledge to be inserted: both are propositional formulas. However, in
an abductive framework there is a special class of formulas, the formulas in the domain theory. We
do not make insertions of formulas that will modify or become part of the domain theory. This
motivates our use of upper case Greek letters for knowledge bases and lower case letters for formulas
to be inserted.

Definition 3.12 Let (X, Ab) be an abductive framework and o, a change operator. Let ® be a
knowledge base acceptable for > and F. the cautious selection function for ® with respect to o,.
We will say that o, is an abductive revision operator if it satisfies the following postulates:

(AO0) For every a, ® o, a F X (i.e., ® o, « is acceptable for X).

(A1) For every a, ® o, a F a.

(A2) If «v is Ab-consistent with @, then ® o, @ = ¢ +,

(A3) If 7y is an abducible formula consistent with X, then ® o, 7y is consistent.
(A4) If &y = &y and a1 = g, then @ 0, a1 = Py 0, an.

(A5) (Posa)+4BF Do, (A p).

(AB6) If 3 is Ab-consistent with ® o, a, then ® o, (A B) F (P o, ) +, 5.

(AA) Po, a - F.(a).



Remarks: (1) For the limiting case when the set Ab of abducibles consists of every atom and X
is the empty domain theory, then axioms A1-A6 transform into R1-R6 (recall that from 3.9(vi)
+, becomes A). So, the new axioms can be justified in the same way as the AGM postulates, i.e.,
essentially, they capture that the changes to ® have to be minimal.

(2) Axiom AOQ says that after changing (abductively) ® we still have a knowledge base that
implies the domain theory. In other words, . is playing the role of an integrity constraint. This is
a basic fact about abduction: the domain theory is not supposed to change.

(3) Axiom AA (which we have called the abductive aziom) says that after inserting « the
cautious explanation of o must also be true. This requirement says that o, has an abductive
nature. Since the cautious explanation can be considered the weakest of all explanation, AA
imposes a mild condition over o,.

(4) Observe that when 7 is an abducible formula then from A1 we have that v - F.(y) and
therefore ® o, v = F.(7), i.e., AA follows from the other postulates for abducible formulas.

(5) It will be shown that any operator o, satisfying A1-A6 will satisfy reciprocity. The operator
will also have the property that if 4, and -5 are abducible formulas then ® o, (71 V) F ® o4 y1 V
® o, 2. As we have shown in the introduction, if F' is a selection function for ® and o, such that
®o, aF F(a) then ® o, F(a) = ® o, F,(a).

Now we will present a basic schema to define abductive revision operators. This schema defines
abductive revision operators in terms of regular revision operators as suggested in Section 2. In
fact, after the representation theorem is proved, it will be clear that any abductive revision operator
will be of this form. For the particular case of revision operators (recall Definition 3.4) we have:

Definition 3.13 Let (X, Ab) be an abductive framework and o a (regular) revision operator. For
each acceptable knowledge base @, let F, be the cautious selection function for ® with respect to
o. The (abductive) operator associated with o is ® o, & = ® o (X A F ().

Remarks: (1) Notice that from R2 we obtain the following: Assume there is v € AbEx(a, ®,0)
consistent with ® (therefore ¥ A v is consistent with ®) and let 4/ be the disjunction of all such
v’s in AbEz(a, ®,0), then P o, @« = ® o (X A Fe(a)) = ® A+, Also, if AbEz(a,®,0) = @ then
Do, a=1.

(2) Notice also that for every v € AbEx(a, ®,0) we have that v - F.(«), but this does not nec-
essarily imply that ®o+y F ®o F,(«). However, we will show later that there are many redundancies
in F.(a), in the sense that there is a subset of AbEx(«, ®,0) which suffices to define o,.

(4) For every abducible formula -y consistent with 3 we have that ® o, v = ® o (X A F.(y)) =
® o (X A+y). This is because o satisfies reciprocity, i.e., if Poa - f and Po S+ a then Poa = o .
(see [7]).

The following theorem shows how standard revision operators relate to abductive operators.

Theorem 3.14 Let (X, Ab) be an abductive framework. An operator o, satisfies axioms A0-A6
and AA if and only if there is a (regular) revision operator o* such that for every acceptable ®
and every formula « we have ® o, @ = ® o} v, where o, is defined as in 3.13. In particular, for any
abducible formula v we have that ® o, v = ® o* ~. O

Let us see an example.

Example 3.15 Consider the knowledge base in Example 3.8. Let Ab = {r,p} and let ¥ be the
empty domain theory. We have that F.(s) = F.(9) = pVr and ®o,s = & A (pVr). Also
AbExz(—s,®,0) = AbEx(—g, ®,0) = (), so F.(—g) = F.(-s) =L and hence, ® o, =s = ® o, —g is the
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trivial knowledge base. Note that in this example we do not need to know what underlying revision
operator o is used to define o, since F.(s) is consistent with ® and by R2, ® o F.(s) = ® A F,(s).
O

Example 3.16 Consider the following knowledge base:

T—g
p—=g
d=< g—=s
-r
-p

Where s, g, 7 and p can be given the same interpretation as in Example 3.8 and Ab = {r,p},
¥ = () are also as in Example 3.8. In this case we have that Mod(®) = {0,{s},{s,g}} (we are
working with Herbrand models).

Let o be Dalal’s revision operator (see [3]).This operator is defined using a distance between
a model M and a knowledge base ® as follows: dist(M,®) = Min{|MAN|: N = ®}, where A
is the symmetric difference. Define now a pre-order by: N <, N’ if and only if dist(N,®) <
dist(N',®). Then N | ® o « if an only if N is <g-minimal among the models of «.Then
MOd(q) ° T) = {{T}v {T,S}, {r,g, s}}7 MOd(q) ° p) = {{p}7 {p,s}, {p797 3}}7 MOd(q) © (p N T)) =
Hp,r}, {p,7, 8}, {p,m,9,5}}. Also, Po—-r =do-p=Po(-rA-p) =& Do (-rAp) = donp,
®o(rA—-p)=Por. Then we have AbEx(s, ®) = AbEx(—s,®) = AbEx(g,®) = AbEx(—g,®) = (.
Thus the abductive revision of ® with s, =s, g and —g is the trivial knowledge bases. However, with
a different choice for the domain theory this problem is overcome. In fact, let ¥ = {r — ¢;p —
g;9 — s} and Ab as before. Then it is easy to verify that ® o, s = X A (p V r). The new choice of
domain theory ¥ can also be seen as a way of introducing views: In this example the formulas —r
and —p in ® are regarded as the extensional database and X as the views. However, we still have
that AbEx(—s,®) = (), this is due to the fact that the domain theory we are using is incomplete.
We will come back to this problem later on. O

3.3 Representation theorems

In this section we will state a representation theorem for abductive revision operators in the same
fashion as the representation theorems of Katsuno-Mendelzon ([15, 14]), Kraus, Lehmann and
Magidor ([17]), Gardenfors-Makinson ([9]) and Freund ([6]). Readers familiar with those papers
will immediately realize the natural similarities between our proof and theirs.

Gardenfors and Makinson [8] were the first to realize the connection that exists between the
theory change and the theory of non-monotonic consequence relations. That connection has a
significant impact on the proof of our results.” In this section we will also present a more precise
description of the abductive revision operators in terms of some orders of the abducible formulas.

Katsuno and Mendelzon gave a semantic characterization of revision operators based on orders
over the collection of interpretations of the language of the knowledge base. They introduced the
following notion of faithful assignments:

Definition 3.17 A faithful assignment is a map that assigns to each ® a total pre-order <, such
that: (i) for every interpretation N and M, if M is a model of ® then M <4 N. (ii) If M € Mod(®)
and N &€ Mod(®) then N <, M does not hold. (iii) If ® = ¥ then <,=<,,.

"These similarities are even more apparent in [19], where we present a similar representation theorem for abductive
non-monotonic consequence relations.

11



Models of the database can be taken as possible state of affairs in the world. The pre-order
represents the preferences the agent may have regarding the plausibility of the different states of
the world and it allows the selection of models for the revised knowledge base after a formula «
is inserted. We will use the same approach to define a notion of explanation: given a faithful
assignment, let Fzpla(a, ®,<4) be the set of all abducible formulas «y consistent with ¥ such that
Min(Mod(3 AN 7),<s) C Mod(a). Also we have the following selection function:

F_(a) =

V{v:v € Ezpla(a,®,<4)} I Ezpla(a,®,<s)#0
n Otherwise

With these concepts we are ready to state the representation theorem for abductive revision
operators.

Theorem 3.18 Let (3, Ab) be an abductive framework. An operator o, satisfies axioms A0-A6
and the abductive axiom AA if and only if there exists a faithful assignment that maps each
acceptable @ to a total pre-order <, over the interpretations of the language such that:

Mod(® oy @) = Min(Mod(X A Fe(a)), <ao).
O

Proofs of most of the theorems can be found at the end of the paper. The following is a
consequence of the previous theorem.

Corollary 3.19 Let X be any consistent set of formulas. Let o be a change operator that satisfies
® o aF X for every a and every ® acceptable for ¥. The operator o satisfies the AGM postulates
if and only if there exists a faithful assignment that maps each acceptable ® to a total pre-order
<s over the interpretations of the language such that:

Mod(® o a) = Min(Mod(X N @), <s).

Proof: Take Ab to be the set of all atoms, then use 3.18, 3.9 and Remark (1) after Definition 3.12.
O

Notice that if ¥ is the empty domain theory the corollary becomes the representation theorem
of Katsuno-Mendelzon ([15], Theorem 3.3). Also, observe that here ¥ is playing the role of an
integrity constraint as modeled in [15].

We will now give a more precise description of o}

» introduced in Theorem 3.14. We will show
that o} is implicitly defined by selecting some abductive explanations of o with respect to an order
given by the original operator o*. So let us fix a revision operator o*.

We will need a method of comparing different explanations. One way to compare two explana-
tions 1 and -y of a formula « is by looking at the consequences of ®o* (¥ A+y;) which are also conse-
quences of ® and hence corroborate ;. Let us define Corr(y,®) ={f: o+ & ®o* (X Avy) F G}
Observe that g € Corr(y, ®) if and only if ® V ®o* (¥ Ay) - 5. Hence we introduce the following

pre-order:
7<59 & DV O (BAY)FED V doF(BAY)

Notice that v <§ +' iff Corr (v, ®) C Corr(y',®), so when both v and +' are explanations of
a, 7' is considered “better” than v because there are more corroborating facts in ® for o' than for
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7.8 Tt is clear that <¢ is a reflexive and transitive relation but not antisymmetric. We define the
strict relation <§ as usual and we say that v =§ +' if v <} 4" and +' <§ 7. We will say that ~ is
maximal with respect to a pre-order < if there is no o' with v < 7/. We define minimal elements
analogously.

Let <4 be a faithful assignment (given by 3.19 with an empty domain theory) which maps each
knowledge base ® into a total pre-order of the interpretations of the language such that

Mod(® o o) = Min(Mod(a), <g).
We define the following pre-order between formulas:
V<Y & @ (BAY) F " (BA(YVY))

Notice that v <} +' if and only if there are N € Mod(® o* (X Av)) and M € Mod(®o* (L Av'))
such that N <, M. Since <, is total and the language is finite, we are assigning to each formula a
natural number and v <%} 4/ amounts to saying that the same relation holds for the corresponding
numbers. In particular this says that <% is a total pre-order.” We define =% as usual.

The following theorem shows that the definition of o implicitly uses the orders <% and < to

select the “best” explanations. This is the selection that we referred to in the introduction.

Theorem 3.20 Let o* be a (regular) revision operator and of be the abductive operator associated
with o* as defined in 3.13. Assume that AbEz(a,®,0*) # () and contains only formulas that
are inconsistent with ®. Let ; be the <}-minimal elements of AbEz(a, ®,0*), then ® of o =
P o* (XA (71 V- V). Moreover, let {J; : 1 < j < m} be the <{-maximal elements of
{7 :1<i<n}, then ot a=do* (XAd)V: - VIPo* (XA, O

We also have the following fact:

Fact 3.21 Under the same hypotheses of 3.20 let v be a <{-maximal element of AbEz(«, ®,0*)
and v’ be any abducible formula. If ® o* (X A)) A+’ is consistent then ® o* (X A ) F +/ O

This fact together with Theorem 3.20 says that to define ® o} o we select some <§-maximal
abducible explanations of «, i.e one of the formulas with one of the largest sets of corroborating
facts. It also says that a <{-maximal formula has the property that any two of its models can not
be distinguished using abducible formulas.'® We can conclude that when an abducible formula
(inconsistent with @) is a <}-maximal explanation of some fact «, then for every abducible formula
7', either ® o* (X A7) F " or ®o* (X A~) F —'. This fact reaffirms that the selection of abducible
formulas is a good selection, since each maximal formula does not leave explanations uncovered.

Example 3.22 Consider the following database (this is a minor modification of an example from
[16])

w,s = p

p—g

r—g by

P = r—d

r— 7S

L -r A\ w

8Notice that ® V & o* (¥ A ~) is, by the Harper identity (see Section 3.4), the contraction of ® with =(X A 7).

If we reverse <%, i.e., put a < 8 iff 8 <% «, then < is a possibility order as in [5].

"Notice that when every formula is abducible, a <5-maximal formula is just the conjunction of literals that are
true in a model.
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The propositional letter r can be read as it is raining, the letter p as sprinkler is on, g as the
grass is wet, s as it is sunny day , w as it 1s a warm day and d as the road is wet. Suppose we
observe that the grass is wet. We will abductively revise @ in order to incorporate g. Let Ab
be {w,s,r}. Using Dalal’s revision operator as o*, we conclude that the <§-maximal abductive
explanations of g are ordered according to <% as follows:

w/\s/\—ng—|w/\—|s/\7“/\<gw/\—|s/\r.

So, for Dalal’s operator, w A =s A r is too far away from the initial condition —-r A —w in ®, and
therefore is not included as an explanation of g. Thus we have

Do, g=P0" (EAWASAT)VIP™" (EA-wA-sAT).

Consider now ®' = ®U{s}. We have ®'o,w F g. However, since simple abduction will only expand
3} minimally, the abduction of w will result in X A w but X A w I/ g. This shows that in some cases
an explanation in our terms is not necessarily an explanation in the sense of standard abduction
(but the converse is true as we have already shown). O

For readers familiar with Gardenfors’ work [7] observe that for each <§-maximal y, ® o*
corresponds to a theory revised using a maxi-choice function and the disjunction in 3.20 corresponds
to a theory revised using a partial-meet contraction.

We conclude this section with some remarks regarding expansion operators. As we mentioned
in Section 3.1, sometimes we would like to expand a KB with an explanation that is more specific
than the cautious explanation. This can be done as follows. Let <4 be a total pre-order of Mod(®)
(we do not require the order <, to be faithful). Let define the set Fzpla(a, ®,<,) and the cautious
selection function F. as before. The corresponding change operator (following 3.18) is

Mod(® x a) = Min(Mod(F<(a)), <s).

Notice that we do not need to include the models of ¥ in the definition of ® x «, i.e. we do not
need Mod(X A F.(a)) in the right hand side of the equation above, since ® - 3, and the order
<4 is defined over the models of ®. This operator x is an expansion operator in the sense that
Oxat ®Aa (i.e. KT1 holds). Of course, as we know from the results in Section 3.1 (see Theorem
3.7), the operator * cannot satisfy all properties K2, AbK*™3 and K*4 (unless <, is the trivial
pre-order where every two models are comparable). It is easy to verify that K*4 holds. The other
two axioms do not necessarily hold. In particular, even if « is a tautology we could have ® x« # @,
which seems like a counterintuitive feature of x. This problem can be overcome by selecting a
pre-order <, that depends on both the formula « to be incorporated and the KB ®.'! So, if we
ask the order <g, to be the trivial pre-order when « is in @, then we can show that K2 holds.
However, for this type of operators we do not necessarily have K*4. There is room for further
developments. It seems that these expansion operators are closely related to the classic definition
of abduction, but in this paper we have focused on the use of abduction to update KBs and we
have not addressed the issue of using ideas of change theory to understand problems in the theory
of abduction (see [2]). We believe that there are some connections to be explored. In particular
we know that some forms of abductive reasoning can be formalized using ideas from theory change
(see [19]).

"Katsuno and Mendelzon already explored this possibility in the definition of revision operators [15].
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3.4 Abductive contraction

Contractions are operations that retract incorrect beliefs from a knowledge base. Contraction and
revision operators can both be defined in terms of each other by the so called Levi and Harper
identities ([7]): Namely, let o be a revision operator. The Harper identity defines a contraction

operator as follows:
Pla=dV doa.

Conversely, the Levy identity says that if L is a contraction operator then a revision operator can
be defined as follows: @ oa = (¢ L —a) + a.

We will define abductive contraction using the notion of abductive revision introduced in the
previous section and the Harper identity.

Definition 3.23 Let (3, Ab) be an abductive framework, o a revision operator, ® an acceptable
knowledge base and « a formula. Let o, be the operator defined as in 3.13 based on o. Then the
abductive contraction of ® with respect to «, denoted by ® 1, «, is defined by

Pl,a=dV Do, -

From the definitions it follows that if F. is the cautious selection function for ® with respect to
o, then ® 1, @« = ® L —~F,.(—«), where L is the contraction operator associated with o using the
Harper identity. Clearly ® 1, « is acceptable for 3. We have the following result:

Theorem 3.24 Let (X, Ab) be an abductive framework, o a (regular) revision operator and ® an
acceptable knowledge base. Let |, be defined as in 3.23, then

(i) ® L, atfa.

(ii) If =« is Ab-consistent with ® then ® 1, o = ®.

(iii) (@ Ly ) 4o F O.

(iv) @ l— <I> Lo a

(V If (1)1 = (1)2 and a1 = (9 then (1)1 J_ o] = ‘1)2 J_ 9.

(vi) If @ and $ are abducible formulas then ® L, (e AB)F® LoaV P L, 0.

(vii) If =« is Ab-consistent with ® 1, (¢ A 3) then ® L, aF ® L, (a A ). 0

3.5 Abductive update

Katsuno and Mendelzon [14] introduced another type of change operator called Update which was
motivated by Winslett’s possible model approach to database updates [22]. Updates are used to
make changes in a knowledge base to capture changes that occur in the world. Revisions try to
correct misconceptions about the world represented in a knowledge base. In this section we present
two directions on how abductive update operators may be defined. We recall the postulates for
updates [14]:

Ul) doat a.

U2) If P+ a then Poa = .

(U1)
(U2)
(U3) If & and « are satisfiable then ® ¢ « is also satisfiable.
(U4) If &1 = &y and oy = ap then &1 0 a; = $g 0 an.

(U5)

U5) (Poa)ANBF Do (aAp).
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(U6) f oat fand PofF athen Poa= o f.
(U7) If ® is complete then (Poa) A (Po ) F Do (aVP).

(US) (‘1)1V(I)2)<>015¢1<>OL V &0

One of the main differences between revision and update operators is given by the “disjunctive
rule” U8. In an update, each world will receive equal and independent consideration. On the other
hand, a revision is made in function of the knowledge base as a whole. So, for update operators,
the basic operation is to change a single world. This fact must be reflected in the definition of the
abductive update operator. Hence, we will use a different notion of abductive explanation which
will depend on every single model of ®.

To understand the approach better, we will first recall the semantic characterization of regular
update operators.

Theorem 3.25 (Katsuno-Mendelzon [14]) An operator ¢ on a finite propositional language is an
update operator (i.e. satisfies U1-U8) if and only if there exists a faithful assignment'? which
maps each interpretation M into a partial order <,, on the collection of all interpretations of the
language such that
Mod(® o o) = U Min(Mod(a),<,).
MEMod(®)
O

Given an abductive framework (X, Ab) and an update operator ¢, we define, similar to revision
operators, the set of abductive explanations as follows:

AbEx(a, ®,0) = {y € AbForm : ¥ Ay is consistent and ® o (X Ay) F a}.

Even though update operators work locally in each model, the previous definition is global over @,
ie, v € AbEx(a, ®,0) whenever v is an explanation for o in any model of ®. A local version of
this notion can be defined based on Katsuno and Mendelzon representation theorem for updates
as follows:

Let <,, be a faithful assignment for ¢ (given by 3.25) and M an interpretation, then

AbEx(a, M, <)

{y € AbForm : ¥ A+ is consistent and Min(Mod(X Avy),<y) C Mod(«)}

This is equivalent to say, v € AbEx(a, M, <,,) if we have that « is true after updating M (using
<,) with . Clearly, for every M |= ® it follows that AbEz(«, ®,0) C AbEx(a, M, <,,). But the
converse is not necessarily true. It can be shown using results from [14] that ®o(aV () F PoaVPof.
This implies that AbExz(a, ®,¢) and AbExz(«, M,<,,) are closed under V.

Those two different notions of explanation have naturally associated a cautious selection function
and an abductive operator:

Definition 3.26 Let (3, Ab) be an abductive framework, ¢ an update operator and <,, the cor-
responding faithful assignment (given by theorem 3.25):

2By faithful assignment it is meant that the following conditions hold: For every interpretation N, M <, N and
for all N # M, N £, M. Notice the difference with the analogous notion used for revision operators.
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(i) (Global function) Given an acceptable @, if AbEz(a, ®,0) # 0 put F.(a) to be the disjunction
of all formulas in AbEx(a, ®,0). Otherwise let F.(a) =L.
(ii) (Local function) Given a model M |= X, if AbEx(a, M, <,,) # 0 put Fy, () to be the disjunction
of all formulas in AbEx(a, M, <,,). Otherwise let F,(a) =L.

We have two operators associated with o. Let ® = \/i', ®; with ®; a complete formula and M;
its unique model. Then let:

n
bola®doF(a) and @l a®™ \/ &0k, (a)
=1

O

The following example illustrates a situation where the appropriate operation required is an
abductive update (this example is a minor modification of the one given by Katsuno and Mendelzon
[14] to show the difference between update and revision).

Example 3.27 Consider the following scenario. There are two objects in a room: A book and
telephone. The actions that a robot can perform in the room are two: To read the book and receive
information through the telephone. To verify what kind of internal processing the robot is doing we
can observe the robot. If it is holding the book the robot is reading. If it is holding the telephone
it is receiving information. Let b represent “the robot is holding the book”, p “the robot is holding
the phone”, r “the robot is reading the the book” and w “the robot is receiving information”.
Suppose also, that our original knowledge base consists of the following facts: Either the robot is
reading the book or receiving information but not both.'? Let define ® and ¥ as follows:

L
D= p
rAN-w V rAw

Suppose we would like to explain the state of the robot by doing observations. The set of abducibles,
Ab, will be r and w. Suppose we observe that the robot is holding the book. We will compute
® 09 b and ® ol b for the update operator ¢ defined by the faithful assignment <,, given by: I <,, J
iff the symmetric difference if I and M is a subset of the symmetric difference of J and M.

The models of ® are {b,r}, {b,,p}, {b,p,w} and {p, w}. It is easy to check that AbEz (b, ®,0) =
{r,r A—w,r ANw}: Since Mod(® o (X Ar)) are {b,r}, {b,p,r,w}, Mod(® <o (X A7 A-w)) are {b,r},
{b,r,p} and Mod(® o (X ArAw)) is {b,p,r,w}. Observe that the disjunction of all explanations of
b is equivalent to r, hence F.(b) = r. Thus

PIb=Do(EAT)=XAT

Therefore we have

Model(® o9 b) = {{b,r},{b,r,p},{b,p,r,w}}.

Since the first three models of ® are model of b then the corresponding local selection function is
equivalent to a tautology (but notice that this is not a global explanation). For M = {p, w}, it is
easy to check that F,,(b) = r A w. Thus we have that

Model(® 02 r) = {{b,r},{b,r,p}, {b,p,w}, {b,p,r,w}}

13 Although the robot can do parallel processing.
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However, if we solve this problem using Dalal’s revision operator (abductively) we only get the
models {b,7} and {b,r,p}, which are counterintuitive, since there is no reason to believe that the
robot is not receiving information. O

It is not difficult to show that U1, U2, U4 and U6 hold for both versions of abductive updates.
We can also show that ¢ does not necessarily satisfy the disjunctive rule, but o/, does. With respect
to the other axioms we can say something if we interpret them as we did for the AGM axioms, i.e.,
we substitute A by +, and consistency by Ab-consistency. The abductive version of U5 and U7
does not necessarily hold, even when ® is complete (so there is no difference between ¢J and o).
For U5 there is a remedy, it is enough to restrict the type of faithful assignment used. However,
it is still an open question whether or not there is a similar representation theorem for abductive
updates.

4 Final remarks and future work

In this article we have defined a new class of change operators based on abduction which have well
known non-abductive change operators as limiting cases. Thus, the new theory presents a unified
formalism for the study of both abductive and standard change operators. The idea underlying
this new class of change operators is to carry out expansions in KBs by means of abduction as
the basic “reasoning mechanism”. Our results show that for our operators to be “rational” and
abductive according to our definitions,'* the cautious explanation is the only explanation to be
used during the operation. However, this uniqueness of explanation is deceptive since we have
also shown that there are some choices that can be made during the definition of an abductive
revision. The choices are based on an order among the abducible formulas (and the order is a
reversed possibility ordering as presented in [5]) similar to the orders used to define non-abductive
revisions. This similarity is reflected in our representation theorem. The representation theorem for
abductive revision operators presented here is a generalization of the result in Katsuno-Mendelzon
[15] for non-abductive revisions. Moreover, the domain theory is playing the role of an integrity
constraint as modeled in [15]. A similar approach could be used to study other operators such as
the one in [21] in terms of abduction by trying to define new abductive change operators based on
regular operators.

The operators so defined do not preserve consistency (® and « can be consistent but ® o, o can
be inconsistent). There are two sources (not necessarily independent) for the inconsistency. One
occurs when « is inconsistent with ¥ . The second occurs when there is no abducible explanation
even though X A « is consistent.

This first source of inconsistency can be understood by looking at one of the limiting cases
where every atom is considered abducible. In that case, the operators we define are just regular
revision operators with the domain theory acting as a set of integrity constraints (see corollary
3.19). For the general case of an arbitrary abductive framework (X, Ab) we can view the loss of
consistency as the fact that the set of integrity constraints is being violated. In this sense, abductive
revision operators are very conservative since X is considered core knowledge that is not subject
to revision and can not be changed. However, it is precisely the restrictions we have imposed on
these operators not to modify 3 that have allowed us to model revision processes such as the one
illustrated in the introduction and this can not be achieved with standard revision operators.

The second source of inconsistency can be addressed by adding escape explanations for each
literal in the language. The concept of escape explanations was introduced by Konolige in [16]

14 . ..
At least for expansion and revision operators.
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to avoid inconsistencies in his mechanism of generating explanations in a logic-based abduction
system. A similar approach has been also used in abductive logic programming [13]. How to
introduce escape explanations in our framework of change operators is still an open question.

We would like to say a few words about the computational complexity of these new operators.
Since we have shown that the operators (expansions, revisions, contractions and updates) can
always be defined in terms of regular non-abductive operators, a lower bound of their complexity is
given by the complexity of the underlying non-abductive operator. How complex these operators are
depends on the class of KBs and the way the KBs are represented (models or set of formulas). Some
results regarding the complexity of doing updates can be found in [10]. To the complexity of the
underlying operator we must add the complexity of finding explanations. Again, this complexity
will probably depend on the class of theories we choose to work with. Finding explanations in
Horn theories will be probably easier than in more general theories. Results on the complexity
of computing explanation in logic-based abduction systems can be found in [4]. Details of the
complexity of the abductive operators are open problems.

It is interesting to remark that our notion of explanation differs from the usual notion of
explanation in abductive reasoning by incorporating parts of ® not necessarily in ¥ in the reasoning
process (see example 3.22).1°

We have not considered in this article another very interesting approach to the problem of belief
revision, namely base revision. It will be interesting to find out how the abductive method used
here will work if the description of the world is given by a set of formulas that is not necessarily
logically closed (i.e. a base).

Gardenfors and Makinson [9] have shown that a revision operator can be viewed as a consequence
relation in the following way: Given a background theory @ we say that o non-monotonically entails
0 (with respect to the background theory ®) if ®ow F (. In this setting, AbFxz(a, ®) is the collection
of abducible formulas that non-monotonically implies a. It is natural to study the corresponding
consequence relation: « |~, f if ® o, @ F (. This relation does not satisfy the extended set of
postulates (as given by Gérdenfors and Makinson), because the Or rule fails. However, it satisfies
all axioms for the system CL defined by Kraus, Lehmann and Magidor [17] (i.e., it is a cumulative
system that satisfies the Loop rule). Results on the properties of |, were presented in [19].'6. This
study is also important since we can show how some forms of abductive reasoning can be formalized
using the results from the theory change and make precise connection between abduction and non-
monotonic consequence operators similar to the ones described in [20], in contrast to the work
presented here that takes ideas from abduction to extend the theory of change operators.

5 Proofs

In this section we will present most of the proofs. The main result is 3.18, a representation theorem
for abductive revision operators. We will give a complete proof of this result, even though some of
the lemmas used are well known in the literature ( [15, 14, 17, 9, 6]). In this way we will be able to
get as a corollary (see 3.19) the representation theorem of Katsuno-Mendelzon ([15] Theorem 3.3),
but we do not claim that our proof is easier than theirs.

Proof of 3.18

Y5Here is where the connection to the theory of non-monotonic consequence relations gives a better insight on the
process we are modeling. This connection is explored in [19].
"Many of the proofs for this work were inspired by results in [17] and [9]
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(<) Assume <, is a faithful assignment and o, is an operator defined using equations (i) and (ii).
Notice, that if (ii) applies, then ® o, @ = ® o, F.(cv).
First we observe the following: For every abducible formula

Min(Mod(3 A7), <s) € Mod(E N F. (7))

and
Min(Mod(3 A F.(7)),<s) € Mod(X A7)

which implies:
Min(Mod(S A7), <4) = Min(Mod(S A Fe(7)), <)

Also, this implies that AbEx(a, ®,0,) = Expla(a, ®,<g). From this, it clearly follows that F, =
F., and therefore AA holds. It is straightforward to check that axioms A0, A1, A3, A4 hold.
To prove the other axioms we will need the following fact:

Fact 5.1 For every v and +' in AbForm if (®o,v)A~' is consistent then (o, v) Ay = Po, (yAY).

Proof: Let N = (®o,v)Av, then N =X AyA+". If N' <, N with N' =X AyA~', then N <, N’
as N is <g-minimal, thus N = ® o, (7 Av’'). For the converse, first note that by hypothesis there
is N' = (P o, y) Ay, thus ¥ Ay Ay is consistent. Let then N = ® o, (7 A7'), since <, is total
and N' =3 Ay A+ then necessarily we have an N <, N'. Since N =X A+, then N = (® o, ),
and thus N = (® o, ) A Y. O
(A2) Assume that « is Ab-consistent with ®, we want to show that ® o, « = ® +, a. Assume
first that a € AbForm, since « is Ab-consistent with ® then « is also consistent with ®. Then, by
faithfulness Min(Mod(X A o), <e) = Mod(® A ) = Mod(® +, «) from (i) in Theorem 3.9.

If « ¢ AbForm, first note that F.(«) is consistent with @, therefore from the previous case we
get o, F.(a) =P+, F.(a) = P A F.(«) and then ® o, @ = P +, .
(A5) If 8 is not Ab-consistent with ® o, o then there is nothing to show. If § is Ab-consistent with
® o, a we will show that (A5) and (A6) hold together, i.e., ® o, (A ) = (P o, ) +4 (.
(A6) Assume that 8 is Ab-consistent with ®o, . Then AbEz (o, ®,0,) # 0 if and only if AbEz(aA
B,®,0,) # (. We will show that ® o, (¢ A 8) = (® o4 @) +4 (. Let 1, ...,7, be all the abducible
formulas such that (® o, @) A «y; is consistent and (® o, @) Ay; F 8. It is easy to see that

(Poga)+aB=(Poga) AN (1 V- V)

Now, from 5.1 we have (® o, Fi.(a)) Ay = @ o, (Fe(a) A yi). Hence F.(a) A+ Fo(a A B3), since
F.(a) A; belongs to AbForm and (® o, F.(«)) Ay; F aA ). Therefore (® o, F.(a)) A F.(a A S) is
consistent and clearly F.(aAB) F F.(a), hence (P o, Fe(a)) ANFe(aNB) = (Pog Fe(a) NFe(anp)) =
®o, F.(a AB) F (. Thus for some i, F.(a A ) = ~; and hence F.(a« A ) = Fo(a) A(y1 V- V),
ie. ®o, Fo(aNpB) = (Pog Fe(a)) A(y1 V-V ). That is to say, P o, (a A ) = (P o, ) +4 5.
(=) Assume that the axioms (A1)-(A6) and the abductive axiom AA hold for the operator o,.
Let @ be acceptable for 3. We will define a total pre-order on the interpretations of the language.
We will say that an interpretation N is normal' if there is an abducible formula v such that
N | ®o,7. First, we will define a relation over the normal interpretations and then we will extend
it to all interpretations.
Let N7 and Ny be normal interpretations, we define <, =¢ and <, as follows:

In [18] a world N is called normal for a formula ~ if (in ours terms) N = ® o, 7.
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e Ny <¢ Ny if and only if Vy;,v9 € AbForm such that Ny = ® o, 7, and Ny = ® o, 79 then
Ny =@ o, (71 Vy2) and Ny = @ o, (71 V y2).

L] N1 =d N2 if and OIlly if N1 7<q> NQ and N2 7<q> Nl.
e N; <z N, if and only if Ny =¢ Ny or N7 <¢ No.

We will show that <; is a total pre-order over the normal interpretations and that the order
is faithful. First, we need the following fact. Notice that part (a) says that every operator that
satisfies A1-A6 will satisfy reciprocity.

Fact 5.2 (a) (Reciprocity) For every formulas « and 8, ® o, a = ® o, (§ if and only if ® o, a - 3
and ® o, B+ «.
(b) Let v and 4’ be abducible formulas then one of the following holds:

(i) @og (y V) =Pou.

(i) @ oq (Y V) =P og .

(iii) P oy (Y V) =Po, v V o, v .

Proof: Observe that for abducible formulas, consistency and Ab-consistency are equivalent notions.
(a) One direction follows directly from A1. For the other direction assume that ® o, a - 3. Then
clearly (3 is Ab-consistent with ® o, v, thus by A5 and A6 we get that ®o, (A () = (P o, a) +, 0.
Hence by K2 we get ® o, (a A 8) = ® o, . But analogously, ® o, (a A 8) = ® o, 3.

(b) We consider three cases. Case 1: If ®o, (yVy') F =/, then from A1 we get ®o, (yV~') F 7.
But clearly ®o,v F (7V+'). Then by reciprocity ®o, (yV~y') = ®o,vy. Case 2: If Do, (yVy') F —y
then by symmetry we get ® o, (yV ') = ® o, '. Case 3: Assume that ® o, (y V') I/ =y and
®o, (yV~')H—y. Then v and 7' are both consistent with ® o, (7 Vv'). Thus, by A5 and A6 we
have

Doy (YVA)AY) = @oq (v V) Ay
and also
Do, ((yVY)AY)=Roa(yVy)AY
and from A4
Do, ((YVA) A7) =oqy
and similarly
Doy ((YVA)AY)=Dogy
Thus
Dogy V ®ogy =Pou ((yV)A(yVY)
and the result follows from A1. O

Fact 5.3 The relation <¢ is transitive.

Proof: Let N1 <¢ No and Ny <g N3 and assume Nj £¢ N3. Then there exist v;,v3 € AbForm
such that Ny |= ® o, v; and N3 |= ® o, y3 but either Ny = ® o, (71 V y3) or N3 |= ® o, (71 V 73).

If Ny £ ® o, (71 Vy3), then from 5.2 (b) we have that ® o, (71 V v3) = ® o, 3. Now, since Ny
is a normal model there exists 7o € AbForm such that Ny = ® o, 9. Then, since Ny <¢ N3 and
N3 = ® o, (71 V y3) we have that Ny = ® o, (71 V 2 V v3). And, again since Ny |= ® o, 7y, and
N; <¢ Ny then it must be the case Ny = ® o, (41 V y2 V v3), which is a contradiction.

If N3 = ® o, (71 Vy3), and Ny <g N3 and there exists v, € AbForm such that Ny = ® o, o
then Ny |= ® o, (71 V2 Vy3). But since Ny <¢ Ny and N7 = ® o,y then it must be the case that
Ny = ® o, (71 V y2 V y3) which is a contradiction. |
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Fact 5.4 (i) Let N and M be normal models. Then N <¢ M if and only if Iyy, 7y abducible
formulas such that N |= ® o, vy, M |= ®o,var and N = @ o, (yn Vyar) but M = @ o, (ywv V yar).
(ii) In consequence, for N and M normal models, N =¢ M if and only if for all abducible formulas
v and 7' such that N = ® o, v, M = ® o, v we have N, M = ® o, (yV ).

Proof: (i) The if part comes directly form the definition of <¢. Assume that such 7y and 7, exist
and let v and +' be any abducible formulas such that N |= ® o, v and M = ® o, y'. From 5.2(b)
we get that (® o, (YVY')) A(ynv Vym) and (@ o, (yv V) A (v V') both are consistent. Hence
using A5, A6 and 3.9 we get that (® o (yn Vym)) A(YVY) = (Poa (v VY)) A(yw Vym) and
from this the result follows. (ii) follows from (i). a

Fact 5.5 The relation =¢ is an equivalence relation.

Proof: By definition the relation is reflexive and symmetric. The interesting case is when Ny # Ny
and Ny # N3. Let Ny =g Ny and No =g N3. We will find v}, v4 in AbForm such that Ny |= ®o,7],
N3 |= ®o,v5 and Ny, N3 = ® o, (71 V 3), then we will have that N; £ N3 and N3 £ Ny, and thus
Ny =¢ N3. Let 1,72 and 73 be AbForm such that N; = ® o, y;, for i = 1,2,3 (These 7’s exist
since N;’s are normal models). Since Ny =¢ N3 then, from 5.4, we get No, N3 = ® o, (72 V 73).
Similarly, Ny, Ny |= ® o, (71 V2 Vy3) and No, N3 = P o, (71 VY2 Vys). Take v =5 = v1 Vy2 Vys.
O

Now, we prove that <g is a total pre-order. Reflexivity comes from the reflexivity of =¢. For
transitivity, let N7 <, Ny and Ny <, N3. We have four cases. (1) When Ny =¢ Ny and Ny =4 N3
, then Ny =¢ Nj follows from Fact 5.5. (2) When N; =¢ Ny and Ny <¢ N3, the only case
to consider is if N3 <g¢ Ny, but this case is impossible since by transitivity of < we have that
Ny <¢ Nj contradicting the fact that Ny =¢ Ny. (3) When Ny <¢ Ny and Ny =¢ Nj, the situation
is analogous to the second case. (4) When Ny <g Ny and Ny <g N3 follows from the transitivity
of <g.

There are three conditions that need to be proved to show that the order is faithful: (i) for
every pair of interpretations N and M, if M is a model of ® then M <o N. (ii) If M € Mod(®)
and N ¢ Mod(®) then N <, M does not hold. (iii) If ® = ¥ then the relation <, is the same
for both @ and ¥. Condition (iii) follows from A4. Condition (i) is true since there is always
v € AbForm such that M |= v, therefore for any v € AbForm, M = ® o, (yV ') (in particular
M is normal) since ®o, (yV~') = ®A(yV~) from A2 and (vi) in 3.9. Condition (ii) follows since,
similar to condition (i), for any v, € AbForm if M = ® o, then ® o, (y V') = P A (y V).
Hence N [£ ® o, (7 Vy') since N [~ ®.

We extend <, to an order on all interpretations as follows: If NV is normal and M is not normal,
then NV <¢ M, and every two non-normal models are =4. It is clear that the extended relation <,
is a total pre-order and it is faithful.

Next, we show that for v € AbForm, Mod(® o, v) = Min(Mod(X A7), <,). From A3, if ~y is
an abducible formula consistent with 3 then ® o, v is consistent and hence there is a normal N
with N |= . Let Normal(y) be the collection of all normal models of y. We have just showed that
for every abducible formula 7 consistent with 3, Normal(y) is not empty. Also, from A0 we have
that Normal(y) = Normal(X A+y). It follows from the way we extended <, that for v € AbForm,
Min(Mod(X A 7v),<e) = Min(Normal(y),<s). We will show that for an abducible formula 7
consistent with X, Mod(® o, v) = Min(Normal(y), <s).

(C) By contradiction, assume that M € Mod(® o, v) but M ¢ Min(Normal(y),<s). Then
AN <¢ M,N € Min(Normal(y),<s). Then for any v; such that N = ®o,v;, N = ®o,(y1Vy) and
M = ®oy(y1Vy). Hence ®o,(y1Vy) Ay is consistent since N is a model, therefore y is Ab-consistent

22



with ® o, (71 V). Then from A5 and A6 we have ®o, (13 VY) Ay = Do, ((v1 VY)AYy) = Po, 7,
contradicting that M [~ ® o, (71 V 7).
(D) Let M € Min(Normal(vy),<s), and let 4" € AbForm such that M |= ®o,~' (7' exists because
M is normal). Since Mod(® o, 7y) # 0 and Mod(® o, v) € Min(Normal(y), <s), then there is N
such that N = ® o, v and N =¢ M (recall that <4 is total). Then from 5.4, M = ® o, (v V v')
and hence M |= (® o, (v V') Avy. Therefore, v is Ab-consistent with ® o, (v V +') and thus from
A5, A6 and 3.9 we get (o, (YVY)Ay=Po, ((yVY)AY)=Po,7y. Thus, M |= P o, .
Finally we show Mod(® o, o) = Min(Normal(F(«)),<s). Since o, satisfies reciprocity, then
from AA we get that ®o, @ = P o, F.(a), and now the result follows, since we already have shown
when « is an abducible formula. 03.18

Proof of 3.14

(=) Let o, be an operator which satisfies axioms A0-A6 and AA and let <, be a faithful
assignment given by 3.18. We can assume, with loss of generality, that <; is defined for every ®
18 Let o* be the operator defined by the equation Mod(® o* o) = Min(Mod(%: A «),<,). Then
clearly for every abducible formula v we have that ® o* (X Avy) = ® o, y. Hence, it suffices to show
that for every abducible formula v we have that ® o} v = ® o, v. But this follows from the fact
that ® o* (X Ay) = ®o* (¥ A Fe(y)) (see remark (4) after 3.13).

(<) By 3.18, it suffices to show that there is a faithful assignment <, for every ® acceptable for
Y. Apply 3.19 to o* (with Ab the collection of all atoms and the trivial domain theory) and obtain
a faithful assignment <, such that

Mod(® o a) = Min(Mod(a), <g).
From definition 3.13 of o} and F.(a) we get that if v is an abducible formula then
Mod(® o} 7) = Min(Mod(3: A F(3)), <a).

and from here we get that AbFEx(«, ®,0*) = Expla(a, ®, <) (the last set defined as in 3.18). From
this the result follows. 03.14

Proof of 3.20

First, we recall the following fact which follows from 5.2. Let o* be a applied to an abductive
framework where every atom is abducible and the domain theory is empty.

Fact 5.6 (a) (Reciprocity) For every formulas v and ', ® o* v = ® o* 4/ if and only if ® o* v 4/
and @ o* ' F .
(b) For every formulas v and 4" one of the following holds :

(i) @o* (yVy) = Do .

(ii) @ o* (yV ) = o™ 9",

(iii) P o* (y V) =P o*y V do* 4. O

Fact 5.7 (i) If ®o* (X A9') F ®o* (¥ A7) then y <§ +.
(ii) If o' is inconsistent with ® then v <$ +/ implies ® o* (X A7) F @ o* (X A7y).
(iii) If v is consistent with @ then v is a <§-maximum.

®The only case not covered is when & is not acceptable, then let <& be any total pre-order which satisfies
faithfulness.
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Proof: (i) Obvious. (ii) Assume that 4 is inconsistent with ® and v < +'. Let M be a model of
® o* (¥ A9'). Then M is a model of @ V & o* (¥ A ), and since ® o* (X A7) implies -y, then
M is a model of ® o* (¥ A «y). (iii) If v is consistent with ® then ® o* (¥ Ay) = ® A~. Thus
OV Do (NAy) = 0. 0

Fact 5.8 (i) If ®o* (X A7) F ®o* (X A4') then y < +
(ii) Let ; be formulas and let ~;, be its <§-minimal (there could be more than one since <, is
a pre-order). Then ® o* (N A (y1 V- V) =Po* c(EA7y,) V- VE* (XAv,).

Proof: From 5.6(b) we get the following:

(a) If v <& +' then @ o* (X Ay) = @ o* (R A (yV7)).

(b) If v and ' are both <%-minimal in {y,7'} then ®o* (LA (yVy')) = ®o* (X Ay)VBo* (X AY).
Now, (i) follows easily from (a) and (b), and (ii) follows from 5.6(b). O

Fact 5.9 Let v; be the <\-minimal elements of AbExz(c, ®,0*) and put v* = y1 V--- V 7,,. Let
{01, 0n} =Maz({yi:1<i<m},<$),and §* =6;V---Vd,. Then Po* (XA~*) = Po* (X AI¥).

Proof: Let A = {vy € AbForm : for some i, y; <5 7 and < is inconsistent with ®}. From 5.7(ii) if
v € A then ® o* (X A) F ®o* (X Av;) (some i), thus v € AbExp(a, ®,0*) and also v <% +; (from
5.8(i)). Thus for some j, v = ;. Therefore Max(A, <) = {01, -+, dn}.

To prove the claim, first notice that ® o* (X A §*) F 4* thus from 5.6(a) it suffices to show
that ® o* (¥ A v*) F §*. So, assume, towards a contradiction, that ® o* (¥ A v*) I/ 6* and let
v =~* A=d6*. Then ' € AbForm. Since v’ is consistent with ® o* (X Av*), from R6 we have that
(@o* (BAY))AY =D* (ZA(Y*AY)) = Po* (X AY). Hence v* <5 ' (from 5.7(i)). Therefore
7' € A (notice that from 5.8(ii) y* = +; for some 7 and clearly ' is inconsistent with ®) and hence
there is j such that 4" <§ d;. But ® o* (¥ A4') F =d;, a contradiction. O

The proof of 3.20 now follows from 5.8 and 5.9. 03.20

Proof of 3.21

Since o* is a revision operator (® o* (X Ay)) Ay = ®o* (XA (yAY')). Thus, yA~v'is in AbEz(a, ®)
and v <$ v A~. Therefore, by the maximality of -y, we have that v Ay’ <% v and hence (using
5.7(ii)) B o* (X A7) F . 03.21

Proof of 3.24

(0) follows from AO for o,. (i) follows from the fact that ® o, @ F . (ii) From A2 we know that
® o, ~a = P+, -, and hence ® V ® o, ~a = ®. (iii) If (® L, @) +, @ is inconsistent there is
nothing to show, otherwise let v be an abducible formula such that (® L, &) A~y is consistent and
(® L, a) Ay F «. Then v is inconsistent with ® o, -« and thus, (VP o, ~a) Ay = ® A~. Hence
(® Ly a)+47F ®. (iv) follows from the definition of L,. (v) follows from A4 for o,. (vi) Since
—a and —f are abducible formulas then from 5.2 (b) ® o, (waV =) F ® o, —a V ® o, =3). Hence
OVPo,(—aV-P)F (dVDo,—a)V (PVPo,—3). (vii) There are two cases to consider: (a) If -« is
Ab-consistent with ® then ® o, v = &+, —~a F ®. Therefore ® L, a - ® and hence &L, F (A ).
(b) If =« is not Ab-consistent with ®, then —« is Ab-consistent with ® o, (Vv —=3). Then from A6
we get that ® o, na = P o, ((—aV—5) A —a) - ®o, (ma VvV —S). Therefore ® L, -at+ & L, (V).

03.24
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