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Abstract

We study sequential convergence in spaces with analytic topolo-
gies avoiding thus a number of standard pathologies. For example, we
identify bisequentiality of an analytic space as the Frechet property
of its square. We show that a countable Frechet group is metrizable
if and only if its topology is analytic. We also investigate the diago-
nal sequence properties and show their productiveness in the class of
analytic spaces.

1 Introduction

This is a continuation of our paper [20] where we study effective versions
of some standard topological problems and results. Thus we restrict our-
selves to (regular) countable topological spaces X with the property that
the family τX of all open subsets of X is analytic (i.e., continuous image of
the irrationals) as a subset of the Cantor cube 2X . We call any such X an
analytic space. Many of the standard examples of countable spaces are an-
alytic. For example, the Arens space [1], the Arhangelski-Franklin space [3],
and the countable Sequential fan [12] are all analytic spaces. On the other
hand, many topological applications to the study of, say, weak topology of
Banach spaces require results about countable analytic spaces (see e.g., [2]).

Recall, that X is said to be a k-space if and only if an arbitrary subset of
X is closed just in case its intersection with an arbitrary compact subset of
X is closed (see, e.g., [15]). In our context this reduces to the more familiar
class of sequential spaces. Recall that X is said to be sequential if for every
non closed A ⊆ X there is a sequence of elements of A converging to a
point outside of A. If we require a sequence of elements of A to converge
to an arbitrary point of the closure of A we get the considerably more re-
strictive class of Frechet spaces. It is usually in relation to these classes of
spaces that one considers various ways to obtain a converging sequence out
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of a sequence of converging sequences. Recall that the diagonal-sequence
property states that if {xnk} is a double-indexed sequence of members of
X such that for some x ∈ X and all n, xnk →k x. Then for each n we
can choose k(n) such that xnk(n) →n x. If we require that some infinite
subsequence of {xnk(n)} converges to x rather than the sequence itself, we
get the weak diagonal sequence property. Note that the diagonal sequence
property and the weak diagonal sequence property are formally incompara-
ble with the Frechet property. Consider, for example, Arens space and the
Sequential fan. The former has the diagonal sequence property but it is not
Frechet while the later is Frechet but it fails even the weak diagonal sequence
property. It turns out that in the context of analytic spaces the diagonal
sequence property is as restrictive as first countability (metrizability) (see
[17] and [20]]). We give here a variation of this result by showing that an
analytic sequential space with the diagonal sequence property is weakly first
countable. Recall that we say that X is weakly first countable if for every
x ∈ X we can find a decreasing sequence of sets B(x, n) 3 x such that a set
V is open iff for all x ∈ V , there is m with B(x,m) ⊆ V . Note that the
topology of an arbitrary countable weakly first countable space is analytic
(in fact, Fσδ). For example, the Arens space is a typical example of a weakly
first countable space. Note that every weakly first countable space has the
diagonal sequence property and that every Frechet weakly first countable
space is in fact first countable.

Recall now that X is said to be bisequential if for every ultrafilter U over
X converging to some point x there is a sequence An ∈ U converging to
x. Clearly every bisequential space is Frechet but not vice versa. Consider,
for example, the Sequential fan. Note also that every bisequential space
has the weak diagonal sequence property but not vice versa. Consider, for
example, the Arens space. We show however that the two properties jointly
characterize bisequentiality in the class of analytic space. Thus we show that
every analytic Frechet space with the weak diagonal sequence property is
bisequential. We give some application of this result to the study of products
as well as to the study of countable topological groups. For example, we show
that the square of an analytic Frechet space X is Frechet if and only if X
contains no copy of the sequential fan S(ω). As another application we show
that analytic Frechet groups are metrizable solving thus the effective version
of the well known problem of Malyhin (see, e.g., [12]). The preservation of
the weak diagonal sequence property in products of analytic spaces seems
curiously related to the problem whether the Sequential fan is a test space
for the failure of this property in the class of analytic spaces. This can
be seen from the fact which we show here which says that the sequential
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fan does not embed into the product of two analytic spaces with the weak
diagonal sequence property. This can be regarded as a proof of the effective
version of a conjecture of Nogura[10]. The proof of the unrestricted version
of Nogura’s conjecture is given in [19] and our proof here can be regarded
as its effective version.

2 Test spaces

In this section we introduce some critical examples of analytic spaces for
testing convergence properties introduced above. The first such a space
is the Arens space [1], denoted by S2, the space on ω≤2 with the following
topology. Each sequence of length 2 is isolated, a basic nbhd of the sequence
〈n〉 consists of all sequences of the form 〈n,m〉 for all but finitely many m’s
and, finally, a set U is a basic nbhd of the empty sequence ∅ if there is a
function f : N→ N and an integer n with the property that 〈m〉, 〈m, k〉 ∈ U
for all m ≥ n and all k ≥ f(m). The following well known fact gives a clear
indication of the importance of the Arens space for this area (see, e.g., [14]).

Proposition 2.1 A sequential space is Frechet if and only if it contains no
homeomorphic copy of the Arens space S2.

The sequential fan, denoted by S(ω), is the space defined over N×N∪{∞}
where all points in N×N are isolated and the nbhd filter of ∞ is generated
by the sets of the form Uf = {(n,m) ∈ N × N : m ≥ f(n)} ∪ {∞} for
f ∈ NN. The sequential fan S(ω) is a typical Frechet space without the
weak diagonal sequence property. The following well known fact shows that
inside the class of Frechet spaces S(ω) is a test space for the weak diagonal
sequence property (see, e.g., [14]).

Proposition 2.2 A Frechet space has the weak diagonal sequence property
if and only if it contains no homeomorphic copy of S(ω).

The following result of Nyikos[11] shows that inside the class of topolog-
ical groups the two spaces perform the same task of testing

Proposition 2.3 A topological group contains a copy of the Arens space if
and only if it contains a copy of the sequential fan.

Corollary 2.4 A sequential topological group is Frechet if and only if it has
the weak diagonal sequence property.
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Note that we are working inside the class of countable spaces X, so
if such an X contains a copy of S2 or S(ω) then it also contains closed
subspaces homeomorphic to S2 or S(ω). This will be implicitly used below.
A natural generalization of the Arens space is the Arkhanglel’skĩı-Franklin
space Sω [3]. It is defined in [3] as the direct limit of the sequence Sn

(n ∈ ω), where Sn+1 is related to Sn the same way the Arens space S2 is
related to the converging sequence S1. We shall, however, not work with
this description of the space Sω. We have a new parametrized class spaces
which for a particular choice of the parameter gives a space homeomorphic
to Sω. We should note, however, that the space Sω is another test space,
especially when one considers high sequential orders. For example, to show
that a given sequential space X has sequential order ω1 one typically shows
this by embedding Sω in X (see [3], [6], [20]).

3 Selective points

A point x ∈ X is called a Frechet point, if for every A ⊆ X with x ∈ A
there is a sequence xn ∈ A converging to x (in short, X is Frechet at x).
Analogously, we define the notion of a bisequential point. We will say that
x is a q+-point, if for every A with x ∈ A and every partition A =

⋃
n Fn of

A into finite sets, there is a subset B of A such that x ∈ B and |B ∩Fn| ≤ 1
for all n. We say that x is a p+-point if given any decreasing sequence Pn of
subset of X such that x ∈ Pn for all n, there is a set P such that x ∈ P and
P ⊆∗ Pn (i.e. P \Pn is finite) for all n. We note that a point which is at the
same time a Frechet point and a p+- point is also called in the literature a
countably bisequential point, or a strongly Frechet point [9, 14]. We will say
that x is a selective point if it is both a p+and q+-point.

Proposition 3.1 Every point of a sequential space is a q+-point.

Proof. Let A be a subset of X and Fm be a partition of A into finite pieces.
Let x ∈ A, we will show by induction on the sequential rank of x in A that
there is F ⊆ A such that |F ∩Fm| ≤ 1 and x ∈ F . Recall that A(1) is the set
of all limits of convergent sequences in A. Let A(0) = A, A(α+1) = [A(α)](1)

and A(β) = ∪α<βA(α) for β a limit ordinal. The sequential closure of A is the
set A(ω1). It is clear that if x ∈ A(1) then the result follows. Suppose we have
proved it for x ∈ A(ξ) with ξ ≤ α and let x ∈ A(α+1). Let xn ∈ A(α) be such
that xn converges to x. By the inductive hypothesis there are Hn

m ⊆ Fm

such that |Hn
m| ≤ 1 for all m,n ∈ N and xn ∈

⋃
m Hn

m. Define D ⊆ N × N
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by
(n,m) ∈ D ⇔ Hn

m 6= ∅
By an standard diagonalization procedure it is easy to find D′ ⊆ D such
that (i) {n} × N ∩ D′ is infinite for all n and (ii) |N × {m} ∩D′| ≤ 1 for
all m. Let

F =
⋃

(n,m)∈D′
Hn

m

Using (i) it follows that xn ∈ F and thus x ∈ F and from (ii) we get that
|F ∩ Fm| ≤ 1. ¤

Proposition 3.2 A Frechet point x ∈ X is a p+-point iff it has the weak
diagonal sequence property.

Proof. Let x be a Frechet point. First, suppose x is a p+-point. Let xnk be
a double-indexed sequence in X such that for all n, xnk →k x. Let Pn be
{xmk : m ≥ n, k ≥ 1}. Then Pn is a decreasing sequence of sets with x ∈ Pn.
Since x is a p+-point, there is P ⊆∗ Pn such that x ∈ P . Since x is Frechet,
there is a sequence {ym} in P converging to x. Pick a subsequence ymj and
an increasing sequence of integer n(j) such that ymj ∈ {xn(j),k : k ≥ 1}

Suppose now that x has the weak diagonal sequence property. To see
that x is a p+-point, let Pn be a decreasing sequence of sets with x ∈ Pn.
Since x is Frechet, there is xnk ∈ Pn such that xnk →k x for all n. Let
n(j) and k(j) two sequences of integers such that n(j) is increasing and
xn(j),k(j) →j x. Let P be the range of this sequence. Then P ⊆∗ Pn for all
n. ¤

The following result from [18] (see exercise 3 in page 53) is the key fact
for analyzing bisequentiality in the realm of analytic spaces.

Theorem 3.3 A point in an analytic space is selective if and only if it is
bisequential.

4 Diagonal sequence properties

It turns out that the diagonal sequence property is quite strong in the context
of analytic Frechet spaces. An interpretation of the analytic gap theorem of
[17] shows that a Frechet analytic space has the diagonal sequence property
iff it is first countable (see also [20, theorem 6.6]). We now show that a
similar interpretation of the analytic gap theorem of [17] gives an analogous
result for the class of analytic sequential rather than Frechet spaces.
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Theorem 4.1 An analytic sequential space X is weakly first countable if
and only if X has the diagonal sequence property.

Proof. Suppose X has the diagonal sequence property. Let Cx = {A ⊆
X : A → x} and Dx = {B ⊆ X : x 6∈ B}. Note that Cx and Dx are
two orthogonal families of subsets of ω, i.e., the intersection of an arbitrary
member of Cx with an arbitrary member of Dx is finite. Note also that
Dx is an analytic family of subsets of ω so the analytic gap theorem of [17]
applies giving us the following two alternatives written in the terminology
of [17]:

(1) There is a sequence A(x, n) of members of C⊥
x such that for all B ∈ Dx

there is m such that B ⊆ A(x,m).

(2) There is a Cx-tree all of whose branches belong to Dx.

An application of the diagonal sequence property of X easily eliminates
the alternative (2). It follows that the alternative (1) holds. Without lost
of generality, we may assume that the A(x, n)’s are increasing for each x
and x 6∈ A(x, n) for all n. Let B(x,m) = X \ A(x,m). We claim that
the B(x,m)’s form a weak base. In fact, let V be an open set and x ∈ V .
Suppose that B(x, n) 6⊆ V for all n. Then pick xn ∈ B(x, n) \ V and let
B = {xn : n ∈ N}. Since B ∩ V is empty, then x 6∈ B. Thus by (1) there
is m such that B ∩ B(x,m) is finite. But this is a contradiction, since the
B(x, n)’s are decreasing.

Now suppose that a subset V of X satisfies that for all x ∈ V , there is m
with B(x,m) ⊆ V . We will show that V is sequentially open, and thus open.
Let x ∈ V and A ∈ Cx. By hypothesis there is m such that B(x,m) ⊆ V .
By (1), A ∩A(x,m) is finite, then A ⊆∗ B(x,m) ⊆ V .

Suppose now that X is weakly first countable and B(x,m) is a weak base.
Let d(x, y) be 1/m if y ∈ B(x,m)\B(x,m+1) and d(x, y) = 2 otherwise. To
see that the diagonal sequence property holds it clearly suffices to show that
a sequence xn converges to x iff d(x, xn) → 0. To show this claim, suppose
xn → x but d(x, xn) 6→ 0. Let k > 0 be such that A = {xn : d(x, xn) > 1/k}
is infinite. Then A∪{x} is closed. Hence for all y 6∈ A∪{x} there is ny such
that B(y, ny) ⊆ X \ (A∪{x}). Since B(x, k) ⊆ X \A. It follows that X \A
is open. This contradicts that xn converges to x. The other implication is
straightforward. ¤

Corollary 4.2 The topology of every analytic sequential space with the di-
agonal sequence property is Fσδ.
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Remark 4.3 Note that the typical analytic sequential spaces S2 and Sω are
weakly first countable and that in some sense this is the way their topologies
are given.

Let us now return to analytic Frechet spaces. We have already noted that
in this context the diagonal sequence property reduces to first countability.
The following result gives a characterization of the weak diagonal sequence
property in this context.

Theorem 4.4 An analytic Frechet space is bisequential if and only if it has
the weak diagonal sequence property.

Proof. Only the implication from the weak diagonal sequence property to-
wards the bisequentiality is not obvious. Suppose X is Frechet and has the
weak diagonal sequence property. From propositions 3.1 and 3.2 we have
that every point of X is selective. Then by theorem 3.3 X is bisequential.
¤

Corollary 4.5 A Frechet analytic space is bisequential iff it contains no
closed copy of S(ω).

Remark 4.6 The assumption that X is Frechet is essential here. For ex-
ample, the result does not extend to the wider class of sequential spaces
which can be seen by noting that Arens space S2 contains no copy of S(ω).

Corollary 4.7 A countable space with an Fσ basis is bisequential if and
only if it is sequential.

Proof. Suppose X is sequential. Since neither Arens space nor the sequential
fan admits a Fσ basis, then X contains no closed copy of neither of them.
Thus X is Frechet and has the weak diagonal sequence property. Hence X
is bisequential. ¤

Remark 4.8 There are spaces with a Fσ basis which are not sequential and
spaces with Fσ basis which are sequential but not metrizable. For example,
it is well known that the space CO(2N) of all clopen subsets of 2N, as a
subspace of {0, 1}2N with the product topology, it is not sequential but as it
is easily checked it has a Fσ basis. On the other hand, the subspace BCO(2N)
of CO(2N) consisting only of basic clopen sets (including the empty set, of
course) is (bi)sequential (see Example 5.6 of [20]).

7



5 Products

The sequential fan S(ω) is a typical Frechet space whose square is not Frechet
(consider the following subset of S(ω)2: Z = {((m,n), (0,m)) : m,n ∈
N} and note that (∞,∞) ∈ Z while no sequence ((mk, nk), (0,mk)) in Z
converges to (∞,∞).) We start this section with a result which shows that
in the context of countable analytic space, S(ω) is a test space for this
phenomenon.

Theorem 5.1 An analytic space X is bisequential if and only if its square
X2 is Frechet.

Proof. Suppose X2 is Frechet. Since S(ω)2 is not Frechet, then X cannot
contain a closed copy of S(ω). Hence by theorem 4.5 X is bisequential. ¤

Corollary 5.2 The square of an analytic Frechet space X is Frechet if and
only if X contains no closed copy of the sequential fan S(ω).

Remark 5.3 Another example of two Frechet analytic spaces whose prod-
uct is not sequential is the following. Let F be the dual filter of FIN × ∅,
that is to say, the filter on N × N given by A ∈ F iff there is n such that
A∩ ({m ∈ N : m < n}×N) = ∅. Let Y be the space N×N∪ {∞} with the
topology where every element of N × N is isolated and F is the nbhd filter
of ∞. Then Y is Frechet (in fact, metrizable) and S(ω)× Y is not sequen-
tial. To see this, consider the diagonal D ⊆ (N × N)2 which is sequentially
discrete but (∞,∞) ∈ D. It follows that if X is an analytic Frechet space
such that X ×Q is sequential, then X is bisequential. To see this, suppose
towards a contradiction that S(ω) embeds in X. Let Y be the metrizable
space given above. Then Y is homeomorphic to a closed subspace of Q.
Thus X×Q contains a closed copy of S(ω)×Y . But this is a contradiction,
since S(ω)× Y is not sequential.

Let us now turn to the productiveness of the weak diagonal sequence
property. Nogura [10] has shown that there exist two countable Frechet
spaces X and Y with the weak diagonal sequence property such that X×Y
is neither Frechet nor it has the weak diagonal sequence property. From
the results of this paper obtained so far it follows that Nogura’s spaces have
to be quite noneffective. However, this still leaves the following question
unanswered.

Question 5.4 Is the weak diagonal sequence property productive in the class
of analytic spaces?
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We shall now see that this question is closely related to the following
test-space problem which is clearly of independent interest.

Problem 5.5 Show that every analytic space without the weak diagonal se-
quence property contains a copy of the sequential fan.

Theorem 5.6 Suppose X and Y are two analytic spaces with the weak di-
agonal sequence property. Then S(ω) does not embed in the product X ×Y .

Proof. The proof is really just an effective version of the proof of Nogura’s
conjecture given in [19], so we are assuming the reader has a copy of that
proof at hand. We start with the assumption that S(ω) does embed into
X × Y and work towards a contradiction. From our assumption one easily
constructs two topologies τX and τY on ω2 ∪ {∞} with ∞ as the only non
isolated point such that τX and τY both have the weak diagonal sequence
property while the topology of S(ω) is generated by τX ∪ τY as subbasis.
For n ∈ ω, set

Cn = {n} × ω

Note that each Cn is a converging sequence in both topologies τX and τY .
Let

A = {A ⊆ ω2 : A →τX ∞ and A ∩ Cn is finite for all n},

B = {B ⊆ ω2 : B →τY ∞ and B ∩ Cn is finite for all n}.
Thus, A (respectively, B) is the family of all sequences that converge to ∞
relative to τX (respectively, relatively to τY ) and which are orthogonal to
each member of the sequence {Cn} of converging sequences. Let

X = {(A,B) ∈ A× B : A ∩B = ∅}.

We endow X with the standard separable metric topology induced from
2ω2

. Consider the following subset of the set X [2] of all unordered pairs of
elements of X :

K = {{(A,B), (A′, B′)} ∈ X [2] : (A ∩B′) ∪ (A′ ∩B) 6= ∅}.
Note that K is an open subset of X [2]. Recall the following two alternatives
given by the effective version of the Open Coloring Axiom:

Case 1. There is perfect Y ⊆ X such that Y [2] ⊆ K.
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Case 2: There is a decomposition

X =
∞⋃

n=0

Xn

such that (Xn)[2] ∩ K = ∅ for all n.
The proof of [19] shows that neither of these two alternatives are possible

and this would finish the proof if the effective OCA can indeed be applied.
Unfortunately, assuming no additional set-theoretic axioms, the effective
OCA applies only to analytic base sets X which is not so in our case here.
It turns out that there exist analytic subfamilies A∗ and B∗ of A and B,
respectively, which are large enough in the sense that they contain all the
results of the applications of the weak diagonal sequence property needed for
in the argument of [19] in order to eliminate the Case 2 for the corresponding
analytic family

X ∗ = {(A,B) ∈ A∗ × B∗ : A ∩B = ∅}.
For a given subset C of ω, set C [2] = {(m,n) ∈ C2 : m < n}. Let

R = {(C, A) ∈ P(ω)×A : A ⊆∗ C [2]},
S = {(C, B) ∈ P(ω)× B : B ⊆∗ C [2]}.

The assumption that τX and τY have the weak diagonal sequence property
yields that R and S are two coanalytic relations whose projections on the
first coordinate include the family [ω]ω of all infinite subsets of ω. Using a
standard Mathias-forcing argument one can show that these two relations
admit local uniformizations by continuous functions. In other words, there
is D∗ ∈ [ω]ω and continuous functions

f : [D∗]ω → P(ω2) and g : [D∗]ω → P(ω2)

such that R(C, f(C)) and S(C, g(C)) hold for all C ∈ [D∗]ω. Finally, we let
A∗ and B∗ be the families obtained from the ranges of f and g, respectively,
by closing under finite changes. Note that so obtained families A∗ and B∗
are analytic. The reader is left to check that A∗ and B∗ are indeed large
enough to allow the proof from [19] be applied in showing that X ∗ cannot
be covered by countably many sets whose symmetric squares avoid K. ¤
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6 Homogeneous spaces

Let ~F = {Fs : s ∈ ω<ω} be a collection of filters over N each of which
contains every cofinite sets. Define a topology τ ~F over ω<ω by letting a
subset U of ω<ω be open if and only if

{n ∈ N : ŝ n ∈ U} ∈ Fs for all s ∈ U

It is clear that τ ~F is T2, zero dimensional and has no isolated points. If
all filters Fs are equal to a filter F we will denote by τF the corresponding
topology. A particular important case is when F is the filter CF of all
cofinite sets. It is not difficult to show that the corresponding space is
homeomorphic to Sω. To analyze this class of spaces we need the following
notion. An ~F-tree with root s ∈ ω<ω is a subset T of ω<ω with s as its
minimal node such that

(i) If t ∈ T , then t|m ∈ T for all lh(s) ≤ m ≤ lh(t).

(ii) {n : t̂ n ∈ T} ∈ Ft, for all t ∈ T .

Proposition 6.1 The collection of all ~F-trees with root s forms a local basis
at s for the topology τ ~F .

Proof. It is clear that every ~F-tree is a τ ~F -open set. So, it suffices to show
that for every τ ~F -open set O and any s ∈ O there is a τ ~F -tree T with stem s
contained in O. We will define by induction a sequence Tn ⊆ ωlh(s)+n such
that Tn ⊆ O for all n. For t ∈ ω<ω, let At = {n : t̂ n ∈ O}. Since O is open,
At ∈ Ft for every t ∈ O. Let T0 = {s}. Suppose we have defined Tk and let

Tk+1 =
⋃

t∈Tk

{t̂ n : n ∈ At}

By the inductive hypothesis, Tk+1 ⊆ O and therefore At ∈ Ft for every t ∈
Tk+1. Let T =

⋃
k Tk. Then T is a τ ~F -tree with stem s and by construction

T ⊆ O. ¤
A particular striking class of examples is obtained when one takes each

Fs to be an ultrafilter. In this case τF is an extremely disconnected topology
of ω<ω so this case resembles the space of Sirota [13]. Note that so extremal
choice of the parameter is not going to give us anything new in the realm of
analytic spaces since every analytic extremely disconnected space must be
discrete. To see this, suppose X is an extremely disconnected non discrete
analytic space. Let x ∈ X be a non isolated point. Let {Oi}i ∈ I be a
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maximal family of pairwise disjoint open sets such that x 6∈ Oi for all i ∈ I.
Define an ideal I over I by letting A ∈ I if and only if x 6∈ ⋃

i∈A Oi. Then
I is a non principal analytic ideal on I. It is also easy to check that it is
maximal. However, it is well-known that nonprincipal maximal ideals are
never analytic.

It is easy to see that τF is never a Frechet topology. For instance, observe
that ∅ is an accumulation point of ω2, but no sequence in ω2 converges to it.
Recall that a filter F over N is said to be Frechet if for all A ⊆ N that has
nonempty intersection with every member of F , there is an infinite B ⊆ A
such that B \ C is finite for all C ∈ F (or equivalently, the space N ∪ {∞}
with the topology where each n ∈ N is isolated and F is the nbhd filter
of ∞ is a Frechet space). The next proposition characterizes when τ ~F is
sequential.

Proposition 6.2 The topology τ ~F is sequential if and only if Fs is Frechet
for every s ∈ ω<ω.

Proof. Suppose that τ ~F is sequential. Fix s ∈ ω<ω. It is clear that Xs =
{s}∪{ŝ n : n ∈ N} is a closed subspace of ω<ω and thus it is itself sequential.
Since s is the only non isolated point of Xs, then it is Frechet. Thus Fs

is Frechet as it is the nbhd filter of s in Xs . Conversely, suppose that
each Fs is Frechet and let A ⊆ ω<ω. We will show that the sequential
closure [A]seq of A is τ ~F -closed. Let t 6∈ [A]seq. We claim that the set
D = {n ∈ N : t̂ n 6∈ [A]seq} belongs to Ft. Otherwise, if D 6∈ Ft, then
E = N \ D satisfies that E ∩ C 6= ∅ for every C ∈ Ft. Therefore, as Ft is
Frechet, there is B ⊆ E such that B \ C is finite for all C ∈ Ft. This says
that {t̂ n : n ∈ B} is a sequence in [A]seq converging to t, which contradicts
our assumption. Thus D belongs to Ft and therefore [A]seq is closed. ¤

Corollary 6.3 If (ω<ω, τF) is sequential, then Sω embeds into it as a closed
subspace.

Question 6.4 Is there a homogeneous analytic sequential space of sequen-
tial order ω1 containing no copy of Sω ?

The following simple fact shows that many of the spaces from the class
are indeed homogeneous.

Proposition 6.5 For every filter F , the space (ω<ω, τF) is homogeneous.
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Proof. Since (ω<ω, τF) is a regular space without isolated points, it suffices to
show (see [4]) that for every s, t ∈ ω<ω there are two τF -clopen nbhds U and
V , respectively, of s and t, and a homeomorphism h : U → V with h(s) = t.
Let U and V be the F-trees with stem s, respectively t, {u ∈ ω<ω : s ≤ u}
and {u ∈ ω<ω : t ≤ u}. Define h by h(ŝ u) = t̂ u. It is easy to check that h
is an homeomorphism. ¤

For two filters F and G on ω we write F ≤ G if there is A in F and B
in G+ such that the restriction of F on A and the restriction of G on B are
isomorphic filters. Note that if (ω<ω, τF) is homeomorphic to a subspace of
(ω<ω, τG) then F ≤ G.

Proposition 6.6 There is a family Fi (i ∈ I) of size bigger than the con-
tinuum of Frechet filters on ω such that Fi � Fj whenever i 6= j.

Proof. We construct the filters on 2<ω rather than on ω identifying the
Cantor set 2ω with the set of branches of the binary tree 2<ω. For a subset
C of the complete binary tree 2<ω, let [C] = {x ∈ 2ω : x∩C is infinite}. For
a subset X of the Cantor set 2ω, let FX be the filter on 2<ω generated by
the complements of branches from X as well as complements of finite sets.
Note that FX is always a Frechet filter on 2<ω. Suppose φ : A → B is a
bijection witnessing FX ≤ FY for some subsets X and Y of the Cantor set.
Define fφ : [A] → P([B]) and gφ : [B] → P([A]) as follows

fφ(x) = {y ∈ 2ω : φ′′x ∩ y is infinite},
gφ(y) = {x ∈ 2ω : φ−1y ∩ x is infinite}.

Note that fφ(x) is a finite subset of Y for all x ∈ X and that gφ(y) is a
finite subset of X for all y ∈ Y . Also note that y ∈ fφ(x) iff x ∈ gφ(y).
Fix enumerations {xη}η<c of 2N and {φα}α<c of all bijections between two
subsets of 2<ω. Using a standard diagonalisation argument construct a
subset Z = {zα : α < c} such that for every β, η < α < c, if fφβ

(zη)
is finite, then zα is above (w.r.t. the enumeration of 2N) every element of
fφβ

(zη); and analogously for gφβ
.

Pick a family X of subsets of Z such that X \ Y has size continuum for
every pair X and Y of distinct elements of X . Then FX (X ∈ X ) satisfies
the conclusion of the Proposition. In fact, towards a contradiction, suppose
φβ witnesses that FX ≤ FY . Pick α > β such that zα ∈ X \Y . Noti ce that
fφβ

(zα) is a finite subset of Y . Let zη ∈ fφβ
(zα). Since zα 6∈ Y , then η < α

by construction. But zα ∈ gφβ
(zη) and this contradict the choice of zα.

¤

13



Corollary 6.7 There is a family Xi (i ∈ I) of size bigger than the contin-
uum of sequential homogeneous spaces of sequential order ω1 such that the
space Xi is not homeomorphic to a subspace of Xj whenever i 6= j.

Note that Corollary 6.7 gives a very generous positive answer to a ques-
tion from [3] (see page 319). The question has been actually answered long
ago by Kannan[7] though he was able to construct only two new sequential
homogeneous spaces. It is interesting, however, that Kannan’s spaces are
both analytic so one may ask for an analytic analogue of Corollary 6.7. The
following fact shows that indeed there is such an analogue.

Proposition 6.8 There is an uncountable family of pairwise nonhomeo-
morphic analytic sequential spaces of sequential order ω1.

Proof. Going back to the proof of Proposition 6.6. By identifying Z with 2N,
it suffices to take an uncountable collection X of closed subsets of 2N such
that X \ Y is uncountable for every pair X and Y of distinct elements of X
(for instance, take X to be the collection of sets P(A) for A belonging to an
uncountable almost disjoint family of subset of N). Notice that FX is Borel
(in fact Fσ) when X is closed and in this case the corresponding topology
τFX

is analytic (in fact Fσδ). ¤
Applying the result of van Douwen [4] to the homogeneous space (ω<ω, τF),

we conclude that for every F and every countable and infinite group G there
is a topology τ on G such that (G, τ) is homeomorphic to (ω<ω, τF) and such
that the multiplication of G is left-continuous with respect to the topology
τ . So, it is natural to ask whether one can find such a topology τ for which
the group operations are actually continuous. It turns out that there is no
group structure on ω<ω compatible with τF for F Frechet. In fact, one can
say even more.

Theorem 6.9 If a topological group is homeomorphic to a space of the form
(ω<ω, τF), then it has no non trivial convergent sequences.

Proof. Let ∗ and −1 be some group operations on ω<ω continuous relative
to some topology on ω<ω of the form τF for a filter F on N. We can assume
w.l.o.g that ∅ is the identity element. Suppose xk → x is a non trivial
convergent sequence in (ω<ω, τF). Also w.l.o.g. assume that x = ∅. Observe
that any sequence τF -convergent to ∅ is eventually of the form 〈nk〉 for some
strictly increasing sequence nk ∈ N. Thus we can assume that the xk’s are of
that form. Now for each fixed k, we have that 〈nj〉 ∗ 〈nk〉 → 〈nk〉. The only
non trivial sequences converging to 〈n〉 relative to τF are eventually of the
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form 〈n,mk〉 for some strictly increasing sequence mk ∈ N. Therefore we can
find a strictly increasing sequence jk of integers such that yk = 〈njk

〉 ∗ 〈nk〉
belongs to ω2 for all k. By the joint continuity of the operations yk converges
to ∅. This is a contradiction, since no sequence in ω2 converges to ∅. ¤

Remark 6.10 It is well known, that if U is a selective ultrafilter, then
([ω]<ω, τU ) is a topological group with the operation of symmetric difference
(see [13]). By theorem 6.9, ([ω]<ω, τU ) contains no nontrivial convergent
sequences.

7 Topological groups

It is known that there exist analytic homogeneous sequential spaces with
an arbitrary sequential order ≤ ω1 (see [5]). It turns out that for topolog-
ical groups the situation is much less clear. While there exists a countable
(analytic) sequential group of sequential order ω1 (the free group of the
converging sequence), the existence of such group of sequential order < ω1

depends presently on the Continuum Hypothesis(see, [12]). It is therefore
rather natural to investigate the following Question.

Question 7.1 Is every analytic sequential group of countable sequential or-
der metrizable?

This can also be considered as a variation on the following well known open
problem about countable topological groups (see, e.g., [12]).

Question 7.2 (Malyhin) Is every countable Frechet topological group metriz-
able?

It is well known that the Haar group {0, 1}ω1 may be a Frechet space
under various additional set-theoretic assumptions, so in such a situation any
countable dense subgroup of {0, 1}ω1 gives a negative answer to Malyhin’s
problem (see [12]). Perhaps less known is the fact that only Martin’s axiom
is sufficient to produce not only negative answer to Malyhin’s problem but
also to the problem of productiveness of the Frechet property in the realm
of countable topological groups. This can easily be deduced from the fact
(first pointed out in the Remark on p.150 of [16]) that under MA there
exist two sets of reals X and Y such that Cp(X) and Cp(Y ) are Frechet
spaces but their product is not. To see this, pick a countable subset D
of the product which accumulates to 0 but no sequence of elements of D
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converges to 0, and let G and H be the subgroups of Cp(X) and Cp(Y ),
respectively, generated by the projections of D. It is easily seen that the
topologies of such subgroups G and H can never be analytic. Similarly, no
countable dense subgroup of {0, 1}ω1 can have analytic topology. So, it is
natural to consider the status of Malyhin’s problem in the class of analytic
spaces. As an application of theorem 4.4, we give a positive answer to the
effective version of Malyhin’s problem.

Theorem 7.3 A countable Frechet topological group is metrizable iff its
topology is analytic.

Proof. Only the reverse implication needs a proof. Let G be a Frechet
topological group with an analytic topology. It suffices to show that G is
first countable. By theorems 2.4 and 4.4, G is bisequential. It is known
that bisequential groups are first countable (see [12]). To see this, let U
be an ultrafilter extending the nbhd filter of the identity element e of G
and moreover assume that U contains no nowhere dense sets. Let An be a
sequence of elements of U converging to e. Let Bn = int(An). Note that
Bn is nonempty for all n. Moreover, note that Bn · (Bn)−1 form a countable
nbhd base of e. ¤

Remark 7.4 There are examples of sequential analytic topological groups
without the Frechet property. For example, the free topological group over
the convergent sequence is sequential but not Frechet and its topology is
analytic (see [12]).
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