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Abstract. We study spherical, charged and self-similar distributions of matter in the diffusion
approximation. We propose a simple, dynamic but physically meaningful solution. For such a
solution we obtain a model in which the distribution becomes static and changes to dust. The
collapse is halted with damped mass oscillations about the absolute value of the total charge.

PACS numbers: 0440N, 0440, 0440D

1. Introduction

Several authors have considered charged distributions of matter [1–11], although it is well
known that astrophysical objects are not significantly charged. Nevertheless, in some stages of
the gravitational collapse even a small amount of charge can change the final state of the body.
Some interesting features of charged collapsing matter justify any effort to obtain physical
insight by studying this problem. For instance, naked singularities can be prevented [12];
the final geometrical structure left over after the complete collapse of a spherically symmetric
charged source and of a chargeless rotating star are similar [13]; Cauchy horizons, gravitational
repulsion and perhaps traversable wormholes are also possible [8].

If the mathematical treatment is simplified, the evolution of a charged distribution of matter
can be followed by the Einstein–Maxwell equations. In this paper we explore the self-similar
gravitational collapse of charged spheres in the diffusion approximation. It is well known that
dissipation due to the emission of massless particles is a characteristic process in the evolution
of massive stars. The only plausible mechanism to carry away the bulk of binding energy of
the collapsing star, leading to a neutron star or black hole, is neutrino emission [14]. It seems
clear that the free-streaming process is associated with the initial stages of the collapse, while
the diffusion approximation becomes valid toward the final stages. The junction conditions
at the boundary of a charged and dissipative sphere have been considered with outgoing heat
flow and radiation flux [15, 16]. On the other hand, the field equations admit homothetic
motion [17–20]. Applications of homothetic similarity range from modelling black holes
to producing counterexamples to the cosmic censorship conjecture [21–28]. In particular,
homothetic charged and isotropic (or anisotropic) fluids have been studied [7, 29, 30].

We observe in the literature that much work has been done under static conditions and
dusty charged matter. Also authors make additional assumptions such as equations of state or
relationships between metric variables [30, 31]. In this paper we obtain a dynamical model
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from a simple solution to the homothetic motion, without any additional supposition except
spherical symmetry and self-similarity. In section 2 we write the field equations and the
junction conditions. The equations at the surface of the distribution of matter are presented
in section 3. In section 4 we write the symmetry equations to describe self-similarity. In
section 5, we show an example from a simple solution, which we discuss in the final section.

2. Field equations and matching

Let us consider a non-static distribution of matter which is spherically symmetric and consists
of charged fluid of energy densityρ, pressurep, electric charge densityσ and radiation energy
flux q diffusing in the radial direction, as measured by a local Minkowskian observer comoving
with the fluid. In radiation coordinates [32] the metric takes the form

ds2 = e2β

(
V

r
du2 + 2 du dr

)
− r2

(
dθ2 + sinθ2 dφ2

)
, (1)

whereβ andV are functions ofu andr. Hereu is a timelike coordinate,r is a null coordinate
(grr = 0)—that is,r > 0 is an affine parameter along the null generators ofu = constant null
hypersurfaces—andθ andφ are the usual angular coordinates. We use the radiation coordinates
because they are natural to consider radiation flowing through the source and beyond it [33].
In this paper we use geometrized units.

The Einstein field equations,G = −8πT , are considered with the energy–momentum
tensorT = (ρ + p)v ⊗ v − pg + q ⊗ v + v ⊗ q +E, wherev andq are the 4-velocity and
the heat flux 4-vector, respectively, which must be orthogonal;E is the electromagnetic field
energy–momentum tensor constructed with the Maxwell field tensorF as is usually done. The
Maxwell field equations, d∗F = 4π ∗J and dF = 0, are coupled minimally with gravitation,
whereJ = σv is the electric current 4-vector.

Because of the spherical symmetry, only the radial electric fieldFur = −F ru is non-
vanishing. If we define the functionc(u, r) by the relation

Fur = c e−2β/r2, (2)

the inhomogeneous Maxwell equations become

c,r = 4πr2J u e2β (3)

and

c,u = −4πr2J r e2β, (4)

where the comma subscript represents a partial derivative with respect to the indicated
coordinate. The functionc(u, r) is naturally interpreted as the charge within the radiusr

at timeu. The conservation of charge inside a sphere comoving with the fluid is expressed in
an index notation by

vµ∂µc = 0. (5)

Let ω be the velocity of matter as seen by a Minkowskian observer. Then, the matter
velocity in radiation coordinates is then given by

dr

du
= V

r

ω

1− ω . (6)

Introducing the mass function by

m̃(u, r) = (r − V e−2β + c2/r)/2, (7)
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we can write the Einstein equations as

ρ + pω2

1− ω2
+

2ωq

1− ω2
= e−2β(cc,u/r − m̃,u)

4πr(r − 2m̃ + c2/r)
+
m̃,r − cc,r/r

4πr2
, (8)

ρ − pω
1 +ω

−
(

1− ω
1 +ω

)
q = m̃,r − cc,r/r

4πr2
, (9)(

1− ω
1 +ω

)
(ρ + p)− 2

(
1− ω
1 +ω

)
q = β,r

2πr2
(r − 2m̃ + c2/r), (10)

p = − 1

4π
β,ur e−2β +

1

8π
(1− 2m̃/r + c2/r2)(2β,rr + 4β2

,r − β,r/r)

+
1

8πr

[
3β,r(1− 2m̃,r )− m̃,rr

]
+

3β,r
8πr

(2cc,r/r − c2/r2)

+
1

8πr2
(c2
,r + cc,rr − 2cc,r/r). (11)

We describe the exterior spacetime by the Reissner–Nordström–Vaidya metric

ds2
+ =

(
1− 2m(u)

r
+
c2
T

r2

)
du2 + 2 du dr − r2

(
dθ2 + sin2θ dφ2

)
, (12)

wherem(u) is the total mass andcT is the total charge. It can be shown that the junction
conditions to match the metrics (1) and (12), across the moving boundary surfacer = a(u),
are equivalent to the continuity of the functionsm̃(u, r) andβ(u, r) across the boundary, that
is, m̃(u, a) = m(u) andβ(u, a) = 0, and to the equation

−β,u|r=a +

(
1− 2m

a
+
c2
T

a2

)
β,r |r=a − m̃,r |r=a

2a
+
cT c,r |r=a

2a2
= 0. (13)

From now on the subscripta indicates that the quantity is evaluated at the surfacer = a(u).
We have used the continuity of the radial electric field through the boundary assuming no surface
free charge density, yieldingc(u, a) = cT . It should be mentioned that the discontinuity of
the pressure at the boundary,pa = qa, is a direct consequence of (6), (9), (10) and the junction
conditions [15, 16, 34].

3. The surface equations

One of the surface equations is just (6) evaluated atr = a, which takes the form

da

du
=
(

1− 2m

a
+
c2
T

a2

)
ωa

1− ωa , (14)

where (7) has been used as well as the junction conditions form̃, β andc. It is convenient to
scale the variables by the initial massm(0), such that

A ≡ a

m(0)
; M ≡ m

m(0)
; U ≡ u

m(0)
; CT ≡ cT

m(0)
.

Defining the surface variableF by

F ≡ 1− 2M

A
+
C2
T

A2
(15)

equation (14) can be written in the form
dA

dU
= F ωa

1− ωa , (16)

which is the first surface equation.
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The second surface equation relates the total mass loss rate to the energy flux through the
boundary surface. It has been shown [34] that this equation can be written as

dF

dU
= 1

A

{
2QF +

[
1− F − C

2
T

A2

]
dA

dU

}
, (17)

where

Q = 1 +ωa
1− ωa (4πr

2q)|r=a. (18)

The third surface equation is the charge conservation law given by (5), evaluated at the boundary

c,u|r=a = −dA

dU
c,r |r=a. (19)

The fourth surface equation is model dependent. This correspond to the Bianchi identity
T
µ
r,µ = 0, given by

∂p̃

∂r
+

ρ̃ + p̃

(1− 2m̃/r + c2/r2)

(
4πrp̃ +

m̃

r2
− c

2

r3

)
− e−2β

(
ρ̃ + p̃

1− 2m̃/r + c2/r2

)
,u

= 2

r
(p − p̃) +

c c,r

4πr4
(20)

wherep̃ = (p−ωρ)/(1+ω)−(1−ω)q/(1+ω) andρ̃ = (ρ−ωp)/(1+ω)−(1−ω)q/(1+ω).
Equation (20) is the generalization of that of Tolman–Oppenheimer–Volkov for non-static and
charged radiative situations [34] (see [4] for the static case).

4. Self-similar spacetime

In this work self-similarity is defined by the existence of a homothetic Killing vector field [18].
We shall assume that the spherical distribution admits a one-parameter group of homothetic
motions. A homothetic vector field on the manifold is one that satisfies £ξg = 2ng on a local
chart, wheren is a constant on the manifold and £ denotes the Lie derivative operator. Ifn 6= 0
we have a proper homothetic vector field and it can always be scaled so as to haven = 1;
if n = 0 thenξ is a Killing vector on the manifold [35, 36]. So, for a constant rescaling,ξ

satisfies

£ξg = 2g (21)

and has the form

ξ = 3(u, r)∂u + λ(u, r)∂r . (22)

The homothetic equations reduce to

ξ(X) = Zξ(Z), (23)

ξ(Y ) = 0, (24)

whereλ = r, 3 = 3(u), X = m̃/r, Y = 3 e2β/r andZ = c/r. Therefore,X = X(ζ),
Y = Y (ζ ) andZ = Z(ζ ) are solutions if the self-similar variable is defined as

ζ ≡ r e−
∫

du/3. (25)

Below, to illustrate our approach, we propose a simple solution which evolves toward staticity,
rendering an inhomogeneous and dusty fluid sphere.
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The simple solutionm̃ = mr/a, e2β = r/a and c = cT r/a satisfies the additional
symmetry equations (23) and (24), the charge conservation equation (19), the continuity of the
radial electric field and the continuity of the first fundamental form. Now, with these solutions
and the junction condition (13) (continuity of the second fundamental form),ωa is determined
by

ωa = 1− 2F

1− F − C2
T /A

2
. (26)

The heat flow at the surface is obtained from the conservation equation (20) evaluated at
the surface, resulting in

Q = F − C2
T /A

2

2F
(1− 2F − C2

T /A
2). (27)

This last equation, together with (26), must be taken into account to integrate numerically the
equations (16) and (17). Using a standard Runge–Kutta algorithm and the initial conditions
A(0) = 3.50 andm(0) = 1.00, we study the effect of charge on collapse. Once the boundary
evolution and its energetics are determined, we calculate the physical variables from the field
equations. Figures 1–7 show the results obtained for our simple solution. We shall discuss
them in the next section.

5. Discussion

Figure 1 displays the evolution of the surface for different values of the total charge. It is
clear that the increase of the total charge favours the collapse in a first stage of the evolution.
Later the collapse is halted, with damped oscillations rendering a distribution which is less
compact for greater total charge. We show in figure 2 how the Bondi mass decreases and
oscillates about the total charge (given as positive) until reaching the same value ofCT . We

Figure 1. Radiusa as a function of the timeu forA(0) = 3.5,m(0) = 1 and for different values of
the total chargeCT : 0.01 (chain curve); 0.05 (broken curve); 0.09 (dotted curve); 0.2 (full curve).
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Figure 2. Bondi mass at the surfacem as a function of timeu for A(0) = 3.5,m(0) = 1 and
for different values of the total chargeCT : 0.01 (chain curve); 0.05 (broken curve); 0.09 (dotted
curve); 0.2 (full curve). Observe that the final mass in each case is equal to the total charge.

Figure 3. Pressurep as a function of timeu for A(0) = 3.5, m(0) = 1 andCT = 0.09 at
different points:r/a = 0.25 (chain curve);r/a = 0.33 (broken curve);r/a = 0.50 (dotted curve);
r/a = 1.00 (full curve).

obtain a dust-like final configuration for different values of the total chargeCT . For all cases
the initial conditions are the same and faraway from a dust-like scenario. Besides, the fluid
becomes dust-like and the charge asymptotes to the mass at the same time. Therefore, we
can treat the final static solutions as configurations of stable equilibria. Figures 3–6 sketch
the pressurep, the densityρ, the heat flowq and the matter velocity dr/du. Observe that
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Figure 4. Densityρ as a function of timeu for A(0) = 3.5, m(0) = 1 andCT = 0.09 at
different points:r/a = 0.25 (chain curve);r/a = 0.33 (broken curve);r/a = 0.50 (dotted curve);
r/a = 1.00 (full curve).

Figure 5. Heat flowq as a function of timeu for A(0) = 3.5, m(0) = 1 andCT = 0.09 at
different points:r/a = 0.25 (chain curve);r/a = 0.33 (broken curve);r/a = 0.50 (dotted curve);
r/a = 1.00 (full curve).

the whole sphere of fluid becomes dust (p = 0 at all points) and inhomogeneous when
staticity is reached. It is interesting to note that the cooling proceeds with emission and
absorption of energy and consequently all the shells bounce and contract as a unit, over and
over, until reaching staticity over the whole sphere. Also it is striking how the ratiop/ρ is
a function only of the Bondi time, i.e. it is the same at any point of the charged distribution
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Figure 6. Matter velocity dr/du as a function of timeu forA(0) = 3.5,m(0) = 1 andCT = 0.09
at different points:r/a = 0.25 (chain curve);r/a = 0.33 (broken curve);r/a = 0.50 (dotted
curve);r/a = 1.00 (full curve).

Figure 7. Ratiop/ρ as a function of timeu for A(0) = 3.5, m(0) = 1 andCT = 0.09 at all
points.

(see figure 7). It has been shown that the only perfect fluid equation of state compatible with
self-similarity is the barotropic one [17]. Clearly our simple and dynamic solution leads to an
equation of state which is barotropic-like although the fluid is non-perfect (with heat flow) and
charged.
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We would like to stress that our solution, in spite of its simplicity, behaves very well
when one takes into account the results reported by other authors. The sphere collapses and
rebounds as a unit [13], over and over, until reaching staticity. Equilibrium configurations are
possible, with no necessity of internal pressure; moreover, electric charge halts the gravitational
collapse [1, 4]. The spheres of charged matter can oscillate and the final static configuration
is reached when the total mass is equal to the total charge [2], that is, the charged spheres
of dust in equilibrium belong to the interior Papapetrou–Majumdar class [6]. Besides, our
simple solution is just one possibility in which3(u) does not appear as a relevant variable.
We think our approach avoids rescaling ofu to ‘see’ how the source evolves toward a static
and self-similar regime.

Finally, we make special mention of the Herrera and Ponce de León homothetic models
[7]. For a null radial pressure at the surface (as a boundary condition) they find a charged dust.
Otherwise, the distribution is infinitely extended. From an altogether physical point of view,
perhaps it is possible to find finite perfect (and self-similar) fluid sources with zero pressure at
the surface, considering free-streaming as the inner transport mechanism. In general, Herrera
and Ponce de Léon find that the total charge is less than the total mass. The equality will only
be valid in the case of homothetic charged dust spheres.
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