PHYSICAL REVIEW D 71, 064028 (2005)

Three-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity
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We incorporate a massless scalar field into a three-dimensional code for the characteristic evolution of
the gravitational field. The extended three-dimensional code for the Einstein-Klein-Gordon system is
calibrated to be second-order convergent. It provides an accurate calculation of the gravitational and scalar
radiation at infinity. As an application, we simulate the fully nonlinear evolution of an asymmetric scalar
pulse of ingoing radiation propagating toward an interior Schwarzschild black hole and compute the
backscattered scalar and gravitational outgoing radiation patterns. The amplitudes of the scalar and
gravitational outgoing radiation modes exhibit the predicted power law scaling with respect to the
amplitude of the initial data. For the scattering of an axisymmetric scalar field, the final ring down
matches the complex frequency calculated perturbatively for the £ = 2 quasinormal mode.
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L. INTRODUCTION

Numerical relativity has made significant advances in
simulations which will be helpful toward achieving the
final goal of providing useful information for the detection
of gravitational waves, although the goal of achieving
long-term simulations of binary black holes has not yet
been met. At some level, we have entered an era in which
Einstein’s equations can effectively be considered solved at
the local level; i.e. there are several codes which provide
accurate evolutions in a sufficiently small space-time re-
gion where the gravitational field has small variation when
expressed in a Riemann normal coordinate system.
However, at the global level, the computation of gravita-
tional radiation from black hole space-times remains a
highly challenging problem, in which there are vastly
different time scales at play in the inner and outer regions
and in which the proper choice of gauge is far from
obvious.

Most work in numerical relativity is based upon the
Cauchy 3 + 1 formalism (see, for instance [1]). A different
approach, which is specifically tailored to study radiation,
is based upon the characteristic initial value problem. This
approach, which has been successful in computing gravi-
tational radiation in single black hole space-times, is the
focus of attention in this paper.

Bondi, Sachs, and Penrose [2—4] have proposed formal-
isms to deal with radiation which today are the corner-
stones for the characteristic numerical formulation of
general relativity. All schemes for characteristic evolution
have a common structure. The main ingredient is the
space-time foliation by null hypersurfaces u = const, gen-
erated by a set of bicharacteristic null rays x*, with a
coordinate A varying along them. In null coordinates (u,
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A, xA) the main set of Einstein’s equations has the form

F )\ = Hy[F, G], )

G,u/\ = HG[F’ G]’ (2)

where F represents variables intrinsic to a single null
hypersurface u, G represents the evolution variables, and
Hp and H; are nonlinear operators intrinsic to the null
hypersurface u. Besides these main equations, there is a set
of constraint equations which are satisfied via the Bianchi
identities if they are satisfied on an inner boundary. At null
infinity, these constraints can be interpreted as conserva-
tion conditions governing energy and angular momentum.
The numerical implementation of the characteristic
method consists in evolving a given field (e.g. scalar,
electromagnetic, or gravitational) on a family of null hy-
persurfaces along a discrete sequence of retarded time
steps. A stable, second-order accurate, fully nonlinear,
three-dimensional code (the PITT code) has been based
upon this characteristic formalism. Its implementation,
tests and results have been presented in a series of papers
[5-9]. The code poses data on an initial null hypersurface
and on an inner worldtube boundary and evolves the ex-
terior space-time out to a compactified version of null
infinity. The code calculates waveforms at null infinity
[9,10], tracks a dynamical black hole, and excises its
internal singularity from the computational grid [11,12].
The PITT code uses an explicit finite difference evolu-
tion algorithm based upon retarded time steps on a uniform
three-dimensional null coordinate grid [9,10]. A crucial
ingredient of the code is the 0 module [6] which incorpo-
rates a computational version of the Newman-Penrose &
formalism [13]. The & module covers the sphere with two
overlapping stereographic coordinate grids (north and
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south). It provides everywhere regular, second-order accu-
rate, finite difference expressions for tensor fields on the
sphere and their covariant derivatives. The & calculus
simplifies the underlying equations, avoids spurious coor-
dinate singularities, and allows accurate differentiation of
tensor fields on the sphere in a computationally efficient
and clean way. The approach leads to a straightforward
implementation of a second-order convergent, finite differ-
ence code. The PITT code has undergone recent improve-
ments to increase the accuracy in the simulation of highly
distorted single black hole space-times [8] and in the
calculation of the Bondi news function which describes
the radiated waveform at null infinity 7+ [14,15]. The
characteristic code has been extended to include a naive
hydrodynamical treatment, which has been applied to
model a fluid ball falling into a Schwarzschild black hole
[16] and to model a polytrope in orbit near a Schwarzschild
black hole [17].

Our work here is motivated by the possibility of using
characteristic evolution to model bosonic stars in orbit
about a black hole. Besides the possible astrophysical
and cosmological importance of such stars [18—20], their
existence as solitonic solutions [21-23] offers a way to
model a compact object without the difficulties of a hydro-
dynamic description of the matter field. Other potential
applications, discussed in more detail in Sec. V, are to the
simulation of a highly perturbed black hole, the simulation
of a toroidal matter distribution around a black hole, and
the study of the stability of a Kerr black hole.

The bosonic field can be evolved using the same char-
acteristic techniques developed for the gravitational field.
With this goal in mind, here we incorporate a scalar field in
the PITT code. We demonstrate that the code provides a
stable, convergent evolution of a three-dimensional mass-
less Einstein-Klein-Gordon (EKG) system in the region
exterior to a black hole.

This extension also allows the study of the nonlinear
interaction between gravitational and scalar radiation in a
fully three-dimensional black hole space-time. Previous
studies have measured the nonlinear effects in the scatter-
ing of a gravitational wave off a black hole, using codes
based upon characteristic evolution [9,24] and upon
Cauchy evolution [25,26]. In the purely gravitational
case, the spherical harmonic modes of the gravitational
waves are mixed by quadratic (and higher order) interac-
tions. In the case of the massless EKG system, the scalar
wave modes are only mixed indirectly through their qua-
dratic coupling (via their stress energy tensor) to the gravi-
tational field. As a result, scalar wave modes excite
gravitational wave modes at the quadratic order but they
excite other scalar modes only at a cubic order. Thus the
scalar-scalar interaction is weaker and less interesting
physically than the scalar-gravitational interaction. The
production of gravitational waves by the scattering of
scalar waves has many mathematical features in common
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with the production of gravitational waves by the motion of
fluid bodies. The results presented here demonstrate the
versatility of the characteristic code to compute gravita-
tional waves generated by scalar sources and are an en-
couraging step toward eventually treating a bosonic star in
orbit about a black hole.

The massless scalar field coupled minimally with gravi-
tation has been thoroughly studied in 1D. Choptuik [27,28]
carried out the first numerical study of critical behavior in
the collapse of massless scalar fields in the context of
spherical symmetry. Brady, Chambers, and Gongalves
[29] studied critical behavior in the collapse of spherically
symmetric massive scalar fields. Seidel and Suen [20]
studied the formation of bosonic stars from massive, com-
plex scalar fields. Balakrishna, Seidel, and Suen [30]
evolved self-gravitating massive scalar fields to study the
stability of bosonic star configurations. Recently, axisym-
metric simulations of a complex scalar field have been used
to study angular momentum in critical phenomena [31] and
fully three-dimensional simulations have been used to
study bosonic stars [32] and gravitational collapse [33].

A code based upon both incoming and outgoing null
cones has been used in a combined global treatment of
future infinity and a black hole horizon for an Einstein-
Klein-Gordon field with spherical symmetry [7]. Marsa
and Choptuik [34] used Eddington-Finkelstein coordinates
to study the dispersion of scalar waves in 1D. Siebel, Font,
and Papadopoulos [35] studied the interaction between a
massless scalar field and a neutron star modeled as a
perfect fluid. The first characteristic code in Bondi coor-
dinates for the self-gravitating scalar wave problem was
constructed by Goémez and Winicour [36]. Subsequently
Gomez, Schmidt, and Winicour [37] applied the character-
istic code to study the radiation tail decay of a scalar field.
Barreto et al. [38] also used this characteristic code to
study the instability of a topological kink in the configu-
ration of the scalar field. Recently, two-dimensional and
three-dimensional Cauchy simulations of the massless sca-
lar field have been carried out in the perturbative and
linearized regimes [39,40] (and references therein).

The paper is organized as follows: In Sec. II we give the
field equations in the characteristic form for a massive,
self-interacting, complex scalar field minimally coupled
with gravity. In Sec. III we describe the numerical imple-
mentation. In Sec. IV we present convergence and stability
tests and results for the scattering of a scalar field off a
black hole.

I1. FIELD EQUATIONS

We use coordinates based upon a family of outgoing null
hypersurfaces. We let u label these hypersurfaces; x4 (A =
2, 3) label the null rays; and r be a surface area coordinate.
In the resulting x® = (u, r, x*) coordinates, the metric
takes the Bondi-Sachs form [2,3]
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ds®> = —[e*B(1 + W/r) — rPhypUAUB]du* — 2e*dudr
— 2r2h g UBdudx? + r’hypdx*dx5, Q)
where W is related to the more usual Bondi-Sachs variable
V by V=r+W, and where h*Bhz. =84 and

det(h,p) = det(gup), with g,p a unit sphere metric. We
also use the intermediate variable

Q4 = r*e *Ph,pUB. 4

We work in stereographic coordinates x* = (g, p) in
which the unit sphere metric is

4
gapdxtdx® = ﬁ(dqz +dp?), ()

where
P=1+p>+ ¢~ (6)

We also introduce a complex dyad g, defined by
P .
qA = 5(1’ l)’ (7)

with i = +/—1. For an arbitrary Bondi-Sachs metric, f,p
can then be represented by its dyad component

J = hapqq®/2, (8)

with the spherically symmetric case given by J = 0. The
full nonlinear %, is uniquely determined by J, since the
determinant condition implies that the remaining dyad
component

K = hagq*3®/2 ©)
satisfies 1 = K> — JJ. We also introduce spin-weighted
fields

U= Uq, 0 = 0aq", (10)

as well as the (complex differential) operators d and d (see
[6] for full details).

The null cone problem is normally formulated in the
region of space-time between a timelike or null world tube
I" and J*, with initial data J given on an initial null cone
u = 0. Boundary data for the metric variables 3, Q, U, W,
and J are required on I". We represent J* on a finite grid by
using a compactified radial coordinate x = r/(1 + r), in
terms of which all code variables are globally regular.

The general field equations for a complex scalar field
coupled minimally to gravity are

1
Ry, = 87T<Tab - EgabT>r (11)

with
1 - 2 1 7
T = 5@abs + @) ~ 258050+ F),
(12)

PHYSICAL REVIEW D 71, 064028 (2005)

where F(¢, ¢) includes a possible mass term and self-
interacting potential. The scalar field obeys the wave equa-
tion

d¢

In this paper we treat the case of a massless, real scalar
field where F' = 0. The field equations then reduce to

Rab = 87T¢,a¢,b' (14)

The corresponding Bondi-Sachs hypersurface equations
are

O 0. (13)

B, =2mr(¢,)* + Npg, (15)
(r2Q), = 167r2 ¢ ,0¢ — r2(dJ + OK) ,

+ 2r46<§> + N, (16)
28 _
U, = er—z(KQ ~J0), (17)

_ - - 1
W, = —2me*P[2Kdpdp — J(d)> — J(dh)*] + 5ezﬁiR
_ 1 o
— 1 — ePddef + 4—2[r4(6U + 6U)]7, + Ny, (18)
r
where

- 1,2 - | N
R =2K — 30K + 5(62] + 0%J) + R(élé] —0JdJ);
(19)
and the evolution equation for J is

87

200) = V)1, = S0 2B — (200,

r
2
+=ePd%eP — (W/r),J + Ny
r
(20)

The expressions for Ng, Ny, Ny, and N, are given in [10].
The wave equation (13) for the scalar field is

z(rd)),ur - [V/r(rd)),r],r = _(W/r),r¢ + N(f)) (21)
where

ek r
Ny = T(Nz;bl — Nygo + Ny3) — §N¢4 — Ngs, (22)

Ny = K(03¢ + B3¢ + 3B0), (23)

Ny = %[6]&;5 + dJd¢ + 2(JOBIP + JOBIP)
+ J3*p + J*P], (24)
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1 __ _ _ - - _
Ny = (T30 + 0T3¢ + JoI3¢ + 15T 09),

(25)

Ngy = ¢ ,00U +00) + 2(Ud¢ , + Ud¢ ,)
+U,0¢ + U,0¢, (26)
Nys = Ud¢ + Udg. 27

The data required on the initial null cone are J and ¢,
which constitute the evolution variables. The remaining
auxiliary variables can then be determined on the initial
null cone by explicit radial integration in the following
order: B8 from Eq. (15), Q from Eq. (16), U from Eq. (17),
and W from Eq. (18). The evolution equations (20) and
(21) can then be used to find J and ¢ (in that order) on the
“next” null cone. Boundary data on I is required for the
scalar field ¢ in addition to the gravitational variables J, 3,
O,U,and W.

In concluding this section we point out that we obtain
the Bondi news function by carrying out a transformation
to an inertial frame at J*. The news is then expressed in
terms of the two standard polarization modes N, and N,
as expressed in the computational d formalism (for details
see Ref. [10]).

III. NUMERICAL IMPLEMENTATION

To solve Egs. (15)—(21) we follow the strategy devel-
oped for the vacuum and fluid matter cases [10,16] based
upon a second-order accurate finite difference approxima-
tion. The details follow.

A. Numerical grid

We define a numerical grid with coordinates
(U, X3 qj pr) = (RAW, 1/2+ (i — DAx, =1+ (j +
3)Ag, —1 + (k + 3)Ap), where the spatial indexes range
from i =1...N,, (j,k) =1...N,, with 2Ax = 1/(N, —
1)and Ag = Ap = 2/(N,; — 5). Using finite differences to
discretize the equations, we center the derivatives at (n +
1/2,i — 1/2, j, k). The evolution proceeds with time step
Au, subject to a Courant-Friedrichs-Levy condition [9].

B. Hypersurface equations

The hypersurface equations (15)—(18) are discretized as
in [10], with the right-hand sides now including the scalar
field evaluated at the midpoints x; _(; /) on the radial grid,
which is straightforward to interpolate from the scalar field
values at the integral grid points x;.

C. Evolution equations

The evolution equation (20) for J is treated exactly as in
[10] after modifying the right-hand side to include the
scalar field terms. Thus, we use a Crank-Nicholson scheme
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to solve the finite difference version of Eq. (20) written in
terms of the compactified radial coordinate x. This scheme
introduces some numerical dissipation that stabilizes the
code even in the regime of very high amplitude fields [10].

We integrate the evolution equation for the scalar field
using the null parallelogram marching algorithm [41,42].
Equation (21) is recast in terms of the two-dimensional
wave operator

OP(rg) = e 2P[2(rd) = (r'V(re),), ] (28)
corresponding to the line element
do? =2l n,dx*dx" = e*P[r'Vdu + 2dr],  (29)

where [, = u, is the normal to the outgoing null cones
and n, is an inward normal null vector to the spheres of
constant r. The evolution equation for the scalar field then
reduces to

2P0 (rgp) = H, (30)
where
H =—(W/r), ¢ + Ny. (31)

Because all two-dimensional wave operators are con-
formally flat, with conformal-weight —2, we can apply to
(30) a flat-space identity relating the values of r¢ at the
corners P, Q, R, and S of a null parallelogram A, with
sides formed by incoming and outgoing radial character-
istics. In terms of r, this relation leads to an integral form
of the evolution equation for the scalar field:

() = (rd)p + (rd)s — (rbe + 5 fﬂ dudr3H.
(32)

The corners of the null parallelogram cannot be chosen to
lie exactly on the grid because the velocity of light in terms
of x coordinate is not constant. The values of r¢ at the
vertices of the parallelogram are approximated to second-
order accuracy by linear interpolations between nearest
neighbor grid points on the same outgoing characteristic.
Then, by approximating the integrand by its value at the
center C of the parallelogram, we have

(rd)g = (ré)p + (rd)s — (ré)g

+ %Au(rQ —rptrs—rR)He  (33)

In order to apply this scheme globally we also must take
into account technical problems concerning the order of
accuracy for points near J*. For this purpose, it is conve-
nient to renormalize (32) by introducing the intermediate
variable ® = (r¢)(1 — x) = x¢. We choose ¢ = 0 ini-
tially at J*. The finite difference version of the evolution
equation for the scalar field preserves this property. After
this substitution, the evolution equation for ® becomes
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CI)Q = —XQAMHC

XQ <(DP + 4XPAM}[C>

1 - 1
+ _XQ (q)S +ZXSAuﬂc>
S
|- 1
— e ((I)R + —xpAud C). (34)
1 _.XR 4

Since @, is defined by linear interpolation, we find (for
2<i<N,)

(I)QA.X - q)?fll(xi - .XQ) .

xi(xQ - xi—l) ’

¢t = (35)

and fori=2ori =N,

0]
1 -0
s

i

(36)

IV. SCATTERING OF A MASSLESS SCALAR FIELD
OFF A SCHWARZSCHILD BLACK HOLE

A. Setting the initial and boundary data

We use the code to evolve an initial configuration where
the gravitational data corresponds to a Schwarzschild black
hole of mass M =1 superimposed with initial data of
compact radial support for the massless scalar field. The
initial gravitational data are

Jw=0,xx%=0. (37)

In the absence of the scalar field, these data would generate
the Schwarzschild solution throughout the exterior Kruskal
quadrant. In the presence of the scalar field, the inner
Schwarzschild white hole horizon is undisturbed but the
black hole horizon is dynamically deformed. Note that
there are no elliptic constraints in prescribing characteristic
gravitational data, as opposed to the corresponding Cauchy

problem.
The data at the inner boundary I', located at r = 2M, are
B =0, 0 =0, U=0,
(38)
W= —-2M, J =0, ¢ =0.

We take as the initial data for the scalar field

ré¢(u=0,r4q p)

_[Ar = r)*(r = rp)*G(q, p) if r E[R, Ry),
0 otherwise.

(39

Such data, prescribed here on an outgoing null hypersur-
face, corresponds to an ingoing pulse of scalar radiation.
For G(q, p) = 1, the pulse would be a spherically sym-
metric shell with amplitude A located between r, and rp,.
For the convergence test in this paper, in both hemispheres
we take G to be the function
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[R} — n]*

if R?2 <
Gla.r) =g e

otherwise, (40)

where R2 = (¢ — q,)* + (p — p,)*>. Axisymmetric and
nonaxisymmetric initial massless scalar field configura-
tions can be obtained depending on the values of ¢, p;,
and u. For g, = p, = 0, the initial profile of r¢ is axi-
symmetric about the poles and goes to zero at g> + p*> =
. For other values of (g, p;), ¢ is in general asymmetric.

B. Monitoring convergence

We measure convergence of the scalar field in terms of
the norm

Q(u) = 4[<ﬁ>2dqdpdx, (41)

where the integration volume is taken over the entire null
hypersurface exterior to r = 2M. We use the four-point
formula

Q = Z( ?k + ¢
ik

dqdp

J+1k + ¢Jk+1 + ¢,+1k+1)

X 2
Py /k=(1/2)

: (42)

for the contribution from cells contained completely in the
upper and lower hemisphere. For a cell that crosses the
equator, we approximate the equator by a straight line and
evaluate the cell’s additional contribution to (42) by

9 =...+

() () ()
Plix  \PJjxie  \PJjrx1
+ @y }zs. 3)
plitlk=l Jiko

where dS; is the trapezoidal surface element. The inte-
gration in x is straightforward; we use a second-order
accurate Simpson’s formula. The computation of (41) is
the same order of finite difference approximation as used to
solve (15)—(18).

For the convergence test we take r, = 3.5 and r;, = 12,
A=10"7, w = 0.3, and g, = p, = 0. This gives an axi-
symmetric, equatorial reflection symmetric configuration
corresponding to two ingoing pulses centered about the
axis of symmetry. The following grids were used:

(i) Coarse, n, =41, n, = n, =25

(i) Medium, n, = 81, n, = n, =45

(iii) Fine, n, = 161, n, = n, = 385,
for which Ax and Ag = Ap scale as 4:2:1. Assuming that
the quantity Q behaves as @ = a + bA", it can be shown
that the convergence rate is

Q. — Qm

where Q ., @, and Q , refer to computed values of Q

n =log, ~~——>" (44)
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TABLE I. Convergence in amplitude of the three-dimensional
EKG code.

u QC(IO*IZ) Qm(loilz) Qf(loilz) n
0.05 3.718 3.742 3.748 1.99
0.10 3.684 3.708 3.713 1.99
0.15 3.653 3.675 3.681 1.99
0.20 3.623 3.645 3.651 1.99
TABLE II. Convergence in phase of the three-dimensional
EKG code.

u Qm(1071) Q,,s(107) n
0.05 2.465 6.270 1.97
0.10 2.429 6.204 1.97
0.15 2404 6.141 1.97
0.20 2.382 6.083 1.97

using the coarse, medium, and fine grids, respectively [17].
The results in Table I show that the three-dimensional EKG
code is second-order convergent in amplitude.

We also measure the convergence in phase. It can be
easily shown that the order of convergence in phase is
expressed by

Q,cm
=lo , 45)
n j25) me
where
0. = f‘(@ b)) P dgdpdx
. P -
and
Q oy = 4f_(¢m 2 ¢)7 dqdpdx

are calculated at the same grid points and at the same time
by subsampling from the fine and medium grids to the
coarse one. The results in Table II confirm that our code is
also second-order convergent in phase.

C. Verifying the stability of the EKG-PITT code

We have tested the code by carrying out numerical
experiments which confirm that it is stable, subject to the
Courant-Friedrichs-Levy condition. The stability test con-
sists of evolving random, initially localized scalar data of
small amplitude for a sufficiently long time. The data is
chosen to be random so that all possible numerical fre-
quencies at a given resolution are present. Hence, any
unstable mode is most likely to be excited and to dominate
the evolution in the number of time steps taken. In particu-
lar, data of amplitude || =~ 10~3 was run from u = 0 to
u = 50, corresponding to 2 X 10* time steps for the coarse
grid and 4 X 10* time steps for the medium grid. In physi-
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/A

O'l 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
u

FIG. 1. The scalar field norm Q /A? is plotted vs retarded time
u for random initial scalar data with amplitude A = 1078 in a
localized region between r, = 3 and r, =5 on a grid of size
n, = 41, n, = n, = 25. The dashed line plots the rescaled norm
Q /A? for the same initial random data but with A = 2.5 X 107
on a grid of size n, = 81, ng=n,= 45.

cal terms, u = 50 is the time required for a massless
particle to complete = 1.5 circular orbits at r = 3M about
the central (M = 1) black hole. During this time, the norm
Q(u) initially decreases due to scattering of the scalar
field. Figure 1 shows that the norm remains bounded at
the end of the run, with a value of @ =~ 6 X 10717,

D. Scattering, scaling, and mode coupling of
axisymmetric pulses off a black hole

We first consider initial data (39) describing an € = 2
m = (0 massless scalar pulse propagating inward toward a
Schwarzschild black hole, with the boundary conditions
(38) and initial gravitational data (37). The parameters of
the initial data are r, =3, r, =5, A = 1078, The radial
location of the initial pulse is chosen for computational
economy since nonlinear effects are weak for r > >3M.
Figure 2 shows the computed time dependence of r¢ at
I*, overlaid with the analytic curve for the corresponding
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3 T T T

10 ro

-3 1 1 1
0 5 10 15 20
u

FIG. 2. The dashed line plots the waveform r¢(u) (multiplied
by 10') radiated to J* in the ¢ = p = 0 direction resulting
from the backscattering of an [ =2, m = 0 pulse. The pulse
parameters for the initial data are r, = 3;r, = 5, A = 1078, The
grid size is 25 X 25 X 101. The solid line is the analytic curve
corresponding to the complex quasinormal mode frequency @ =
0.4875 — i0.098 obtained from a perturbation calculation.

quasinormal mode calculated from perturbation theory
[43,44]. After u = 10M, the ringdown of the computed
waveform agrees with the complex frequency @ =
0.4875 — i0.098 obtained in the perturbative treatment of
a scalar field on a Schwarzschild background.

Next we consider the scattering of an € =1, m =0
scalar pulse, with r, = 3, r, = 5, for arange of amplitudes
A. Figure 3 show the rescaled scalar waveform r¢/A
scattered to J* in the ¢ = p = 0 direction; and Fig. 4
shows the rescaled component N /A? of the gravitational
news function at 7 in the ¢ = p = 0.5 direction. All the
curves overlap for A = 107, 1074, 1073, Thus it is mani-
fest that r¢ has a linear dependence on amplitude and N
has a quadratic dependence, as expected. The results also
show that € = 1 is the lowest scalar mode that generates
gravitational radiation. The quasinormal frequency calcu-
lated using perturbation theory is @ = 0.292935 —
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0.0003 T T T T T T T T T

0.0002

le-04

.0001

rd/A
S

-0.0002

-0.0003

-0.0004

_0.0005 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
u

FIG. 3. The rescaled waveform r¢(u)/ A is plotted for the g =
p = 0 direction at J*. The parameters of the initial data are
r,=3,r,=5,€=1,m=0. The grid size is 25 X 25 X 101.
All the curves overlap for A = 1073, 1074, 1073,

i0.09766 [43,44]. A comparison of the numerical and
perturbative scalar waveforms over the time interval u <
20 reveals good agreement between the oscillation periods.
However, during this time interval the numerical waveform
does not yet display a clean quasinormal decay. Further
investigation of this feature would require longer runs with
higher resolution.

Now we consider scattering of an axisymmetric scalar
“blob” (39) of compact support g> + p> < 0.4 on the
north patch, with r, =3, r, =5, A = 107!, and

24+ p? =047
i_ﬁ_ﬂﬂ. 46)

G(q, p) =
@r ="

The initial angular structure is dominated by the € = 1,
m = 0 harmonic. Figures 5 and 6 display snapshots of the
evolution of r¢ and the spin-weight invariant JJ at I*,
respectively, on the North hemisphere, obtained with a
resolution of 89 X 89 angular grid points and 101 radial
grid points. The radiation pattern has sharp angular fea-
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FIG. 4. The rescaled news function component N, (u)/A? is
plotted for the ¢ = p = 0.5 direction at J*. The initial data
parameters are r, = 3, r, =5, € = 1, m = 0. The grid size is
25 X 25 X 101. All the curves overlap for A = 1073, 1074, 1073,

FIG. 5 (color online).

Axisymmetric surface plots of r¢ on the
North patch of I for u = 1,2, 3, 4, in zig-zag order from top to
bottom, resulting from the scattering of an axisymmetric pulse.
The parameters of the initial data are r, = 3, r, =5, A = 1071,
The grid size is 89 X 89 X 101.

PHYSICAL REVIEW D 71, 064028 (2005)

FIG. 6 (color online). Surface plots of the spin-weight invari-
ant JJ on the North patch of I* for u = 1,2,3,4, in zig-zag
order from top to bottom, resulting from the scattering of an
axisymmetric pulse with initial data parameters r, = 3, r, =5,
A = 107", The grid size is 89 X 89 X 101.

tures arising from the phase differences between the back-
scattering at different angles. The angular resolution is
sufficient to reveal the main features of the evolution in
fairly smooth snapshots. The numerical evolution of the
axisymmetric initial data preserves the axisymmetry. The
gravitational invariant JJ vanishes at the pole ¢ = p = 0,
as required by axisymmetry. Figure 7 shows a global view
of how the scalar field is backscattered to infinity while
approaching the black hole.

Figures 8 and 9 display the rescaled radiation amplitudes
r¢p/Aand N, /A% at I* produced on the North hemisphere

C
oll ( |

FIG. 7 (color online). Global radial-angular view of r¢ on the
North patch for u = 0, 2,4, 6, §, 10, in zig-zag order from top to
bottom. We set p =0, —1.2 < g < 1.2 (from bottom to top),
0.5 <x < 1.0 (from left to right). The initial data parameters are
r, =3,r,=5,A=10"". The grid size is 25 X 25 X 41.
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2 T T T T T T T T T

1.5 . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
u

FIG. 8. r¢(u)/A (multiplied by 10°) is plotted for the g = p =
0 direction at JI*; all the curves overlap for A=
107121073, 1072, 107 L.

) . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
u

FIG. 9. N, (u) (multiplied by 10?) is plotted for the g = p =
0.5 direction. The curves for A = 1073, 1072, 10~! (broken line)
overlap. For A = 10~'? (continuous line), numerical error breaks
the expected quadratic scaling.

PHYSICAL REVIEW D 71, 064028 (2005)

1.5 T T T T T T T T T

10°F,q/A
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u

FIG. 10. The rescaled coefficient F,(1)/A (multiplied by 103)
is plotted for A = 107'2, 1073, 1072, 10™!; all the curves over-
lap.

_2 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
u

FIG. 11. The rescaled coefficient Fy,(u)/A (multiplied by 103)
is plotted for A = 107'2, 1073, 1072, 10~!; all the curves over-
lap.
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by the scattering of the blob with varying amplitude A.
Once again, the scalar field radiation pattern scales linearly
and the gravitational polarization mode N, scales quad-
ratically for incident amplitudes up to A = 10~!. Note in
Fig. 9 that the scaling of N breaks down at the very small
A = 1072 amplitude where the quadratic response is be-
low numerical error.

It is also possible to analyze the nonlinear content of the
scalar waveform at J* by decomposing it in the spin-0
spherical harmonic amplitudes

Fi, = j{rd)Y,mdQ. 47

These are computed by second-order accurate integration
over the sphere (with solid angle ) = 47). We vary the
amplitude of the ingoing axisymmetric blob from A =
1072 to A = 107" and carry out the simulations with a
resolution of 25 X 25 angular grid points and 41 radial grid
points (the coarse grid in the convergence tests). This is
sufficient to illustrate the qualitative behavior with reason-
able computational expense. We display the results for
Fp,,(w)/A, with [ = 2,4,6 and m = 0, in Figs. 10-12.
The graph of Fyy(u)/A in Fig. 10 shows that the radia-
tion amplitude varies linearly with input amplitude A, even

10°F g, /A

_1.5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
u

FIG. 12. The rescaled coefficient Fg(u)/A (multiplied by 103)
is plotted for A = 107'2, 1073, 1072, 10™!; all the curves over-
lap.

PHYSICAL REVIEW D 71, 064028 (2005)

at the larger amplitudes. The graphs in Figs. 11 and 12 of
Fuo(u)/ A and Fgy(u)/ A show similar behavior, i.e., a pre-
dominantly linear response, without nonlinear effects on
the scalar field radiation. Thus it appears that up to an
amplitude of A = 107! that the scattered waveform of the
scalar field is in excellent agreement with results obtained
by perturbation theory on a Schwarzschild background.
This is in accord with expectations since the nonlinear
effects are introduced by the gravitational field and thus
are O(A%) compared with the O(A) linear terms.

E. Scattering of a nonaxisymmetric pulse off
a black hole

In order to confirm the robustness of the implementa-
tion, we consider the scattering of an asymmetric scalar
blob of compact support by a Schwarzschild black hole.
The initial pulse (39) has parameters A = 1077, r, = 3.5,
r, = 12, u = 0.03, with offset g; = 0.2, p;, = 0.3 (which
breaks the axisymmetry). The evolution is carried out on a
85 X 85 X 101 grid.

Figures 13 and 14 show surface plots at J™, at four
different times, of the resulting scalar radiation r¢ and the
gravitational wave energy flux [N|?> = |N,|> + |[Ny|?, re-
spectively. As the evolution proceeds, the nonlinear effects
produce a rich structure in the gravitational radiation. It
also is clear from the snapshots of the scalar field that much
finer angular grids are necessary to obtain smooth results in
the asymmetric case.

FIG. 13 (color online).

Surface plots of r¢ on the South patch
of I* for u=1,2,3,4, in zig-zag order from top to bottom,
resulting from the scattering of an asymmetric pulse. The initial
data parameters are r, = 3.5, r, =12, A =10"7, u = 0.03,
qs, = 0.2, p, = 0.3. The grid size is 85 X 85 X 101.
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FIG. 14 (color online).

Surface plots of the gravitational en-
ergy flux |N|?> = |N,|?> + |N«|? on the South patch of I* for
u=1,2,3,4, in zig-zag order from top to bottom. The initial
data parameters are r, = 3.5, r, = 12, A=10"7, u = 0.03,
qs = 0.2, p, = 0.3. The grid size is 85 X 85 X 101. The maxi-
mum value of |N| is of order 10715,

F. Speed of the code

The tests were performed on Linux machines with a
single AMD Athlon T-Bird processor running at
900 MHz. One unit of physical time on a grid of 85 X 85 X
101 points takes about 21 hours.

V. CONCLUSION

In this paper we have incorporated a massless scalar
field into a three-dimensional characteristic code for the
Einstein field equations. The code has been verified to be
stable and convergent. A scalar field provides a clean way
to simulate a variety of physically interesting scenarios:

(i) Highly-perturbed black holes. The single black
hole formed just after the merger of a binary black
hole, or just after the asymmetric collapse of a star,
would be highly distorted. A fully nonlinear gen-
eral relativistic code is necessary to probe this
regime. This requires a stable code that can deal
with a single, dynamical, black hole and a “per-
turbing” agent, as can be modeled by a scalar field.
Recent studies of gravitational waves incident on a
black hole [24] have revealed interesting phe-
nomena arising from such highly nonlinear pertur-
bations of the gravitational field. The scalar field
provides an alternative perturbation to shed light on
the robustness of these effects.

(i1) Toroidal distributions of ““sources” around black
holes. Toroidal distributions of matter fields around
black holes play a major role in models describing
active galactic nuclei, quasars, and even gravita-
tional wave sources. A successful simulation of
these systems will require, at the very least, robust

PHYSICAL REVIEW D 71, 064028 (2005)

general relativistic codes appropriately coupled to
relativistic hydrodynamics. A toroidal scalar field
distribution around a black hole represents an in-
termediate step for assessing the performance of
the implementation. Although this has limitations,
it does provide a geometrical setup similar to the
one expected in real astrophysical sources.
Therefore, it can shed light on issues such as the
gravitational wave output of physical systems, the
characteristics of the expected waveforms, the radi-
ated angular momentum, etc. Additionally, the
equivalence of a massless scalar field to an irrota-
tional stiff fluid provides a simple computational
alternative to general relativistic hydrodynamics
[45], which can be used to probe the interaction
of the torus with the black hole. Preliminary rela-
tivistic hydrodynamical simulations already reveal
that this system gives rise to rich scenarios [46,47].

(iii) Stability of Kerr black holes under massive scalar
fields. Although the stability question of
Schwarzschild black holes has been settled [48],
the problem for spinning black holes is still quite
open. In particular, it has been pointed out that for
massive scalar fields, unstable modes are likely
[49,50]. A mathematical analysis of such a system
is complicated even in the axisymmetric case [51].
Numerical simulations of massive scalar perturba-
tions might help shed light on this problem.

(iv) Boson star orbiting a black hole [19,20]. Such a
simulation would shed light on both the orbital
decay and the waveform radiated to null infinity.
While this is perhaps the physically most interest-
ing project, it is also the most computationally
demanding because of the necessity to resolve the
compact distribution of the scalar field.

Some of the above projects already can be studied with
the code as implemented in this work. However, for more
“realistic’’ scenarios one would like to extend this treat-
ment to include massive scalar fields and spinning black
holes. Work in these directions is in progress.
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