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Gravitational instability of a kink
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We study the equilibria of a self-gravitating scalar field in the region outside a reflecting barrier.
introducing a potential difference between the barrier and infinity, we create a kink which cannot decay
zero-energy state. In the realm of a small amplitude, the kink decays to a known static solution of
Einstein-Klein-Gordon equation. However, for larger kinks the static equilibria are degenerate, formin
system with two energy levels. The upper level is unstable and, under small perturbations, decays to the
energy stable equilibrium. Under large perturbations, the unstable upper level undergoes collapse to a
hole. The equilibrium of the system provides a remarkably simple and beautiful illustration of a turning p
instability. @S0556-2821~96!03818-0#

PACS number~s!: 04.40.2b, 04.25.Dm, 04.30.Db
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I. INTRODUCTION

We describe here a simple model of a system exhibitin
gravitationally induced transition from an unstable sta
equilibrium to a lower energy stable equilibrium~for small
perturbations! or to a black hole~for large perturbations!.
The system is the general relativistic version of a spheric
symmetric scalar waveF reflecting off an inner mirror of
radiusR. By holding the mirror at a fixed potential with
respect to infinity, we create kink boundary conditions wh
do not allow decay of the field to a zero-energy state. In
nongravitating case, any initial configuration would decay
the static solution of the wave equation,F5AR/r , where
A is the potential of the mirror; and this static solution
stable under perturbations. In the self-gravitating case
will show there is a critical value of kink potentialAc about
which the system displays a classic example of a turn
point instability@1,2#, responsible for the above phenomen
Above this critical potential, there are no equilibria and
configurations collapse to a black hole. The behavior of t
system illustrates the remarkable richness of the phys
properties that result from the mixture of long range grav
tional forces and nonlinearity.

Our theoretical model is the null-timelike initial valu
problem for a spherically symmetric space-time satisfy
the coupled Einstein-Klein-Gordon equations for a mass
scalar field. We pose this mixed boundary value problem
the region of space-time outside a timelike inner bound
and to the future of an initial null hypersurface. The ma
ematical details of this problem have been described be
in an investigation of the decay of scalar wave tails@3#. In
that case, the scalar field was set to zero on the inner bo
ary, so that the boundary acted as a perfectly reflecting m
ror. Here, by holding the inner boundary at a fixed potent
its role as a mirror is unchanged due to the local gauge
variance of the system with respect to the transforma
F→F1const. However, the potential difference with r
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spect to infinity introduces nontrivial global effects.
We set the geometry of the mirror to correspond to

surface of radiusR enclosing a flat region of spacetime. The
evolution of the system then depends uniquely upon t
characteristic data for the scalar field on the initial null hy
persurface, which extends from the mirror to future null in
finity I1.

We describe this system in terms of a null coordina
system with the spherically symmetric line element

ds25e2bduSVr du12dr D2r 2~du21sin2udf2!. ~1!

In these coordinates, the Einstein-Klein-Gordon equatio
reduce to@4,5#

b ,r52pr ~F ,r !
2, ~2!

V,r5e2b, ~3!

and the scalar wave equationhF50, which takes the form

2~rF! ,ur5r21~rVF ,r ! ,r . ~4!

The initial null data necessary for evolution consists o
F(u0 ,r ), r>R, at initial time u0. ~We takeu050.! At the
mirror, we setF(u,R)5A5const, with the gauge condition
that F(u,`)50. We adopt the coordinate condition
b(u,R)50. The condition that the metric match continu
ously to a flat interior forr,R requiresV(u,R)5R. ~The
normal derivatives ofF and the metric do not match con-
tinuously acrossr5R in accord with the sheet stresses ass
ciated with the mirror!.

With these conditions the scalar field and metric comp
nents have a unique future evolution. The resulting metr
does not have an asymptotic Minkowski form atI1. This is
characterized by the quantityH(u)5b(u,`) which relates
Bondi time t at I1 to the proper timet5u at the reflecting
3834 © 1996 The American Physical Society
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54 3835GRAVITATIONAL INSTABILITY OF A KINK
boundary according todt/dt5e2H. Bondi time is the physi-
cally relevant time for distant observers. The Bondi mass
the system can be expressed in either an asymptotic or
gral form @6#:

M ~u!5
1

2
e22Hr 2SVr D

,r
U
r5`

52pE
R

`

e2~b2H !r 2~F ,r !
2dr.

~5!

~Note that the mass content of a null hypersurface only
pends upon field values in the hypersurface and is inde
dent of their time derivative!.

In the flat space limit, Eqs.~2! and ~3! imply b50 and
V5r and Eq.~4! reduces to the wave equation in null-rad
coordinates:

h ~2!g:52g,ur2g,rr50, ~6!

whereg5rF. The general solution satisfying the bounda
condition for a kink potentialA is

g~u,r !5AR1 f ~u/21r !2 f ~u/21R!. ~7!

The first term describes a static monopole; the second
incoming wave; and the third, its reflection off the mirror.
late retarded time, the solution asymptotically approaches
static equilibrium stateF→AR/r . This state is also the so
lution of the variational problem for the energy,dM50 sub-
ject to the constraint thatdF vanishes at the mirror and a
infinity. In this flat space example,

M52pE
R

`

~F ,r !
2r 2dr ~8!

and its variation is given by

dM524pE
R

`

@F ,r r
2# ,rdFdr. ~9!

In the flat space case, the static solutionF5A/r is the
unique extremum satisfying the boundary conditions~which
rule out the trivial solutionF5const!. Furthermore, the sec
ond variation of the mass about this state is positive, so
it represents a stable equilibrium, which the system
proaches after radiating its excess energy to infinity.

In Sec. II, we show that for small kink potentials the
features extend to the curved space, self-gravitating c
But, above the critical kink potential, equilibria do not exi
We show that this critical potential marks a turning po
instability about which the equilibrium configurations bifu
cate into stable and unstable form. In Sec. III, we pres
numerical simulations of the evolution of stable and unsta
kinks.

II. ENERGETICS OF SELF-GRAVITATING KINKS

At the initial retarded time, the null dataF(0,r ) and the
constrained kink potentialA5F(u,R) uniquely determine
the future evolution of the system. In order to discuss
energetics of these states it is convenient to describe the
responding configuration space in terms ofF(V)
5F„0,r (V)…, whereV is considered the independent va
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able. HereV, as determined by Eq.~2! and ~3!, is the affine
parameter along the outgoing null cone. The affine freedo
is fixed by the boundary conditionsV(R)5r (R)5R and
r 8(R)51, where we denote]Vf5 f 8. Then Eqs.~2! and ~3!
can be reexpressed asr5 f , where f satisfies

f 9524p~F8!2f , ~10!

which determinesr (V) uniquely in terms of the initial data.
The mass of the stateF(V) can be obtained by inserting the
solution r (V) of Eq. ~10! into the first version of Eq.~5!,
which gives

M5 1
2 ~r2Vr8!u` , ~11!

when reexpressed withV as the independent variable.

A. Static equilibria

We now show that the asymptotically flat static solutio
C of the Einstein-Klein-Gordon system is an extremum o
the energy, subject to a fixed kink potential. This solutio
@7#, which is the analog of the 1/r solution in a Minkowski
background, can be obtained in null coordinates by setti
F ,u50 in the wave equation~4!. This gives

rVC ,r5const, ~12!

whose solution, after using Eqs.~2! and ~3! to eliminate the
r dependence, is

C~V!5
1

4Apcosha
ln S V1R~e2a21!

V1R~e22a21! D , ~13!

with r (V)5rC given by

rC
2 5e24a tanha@V1R~e22a21!#12tanha

3@V1R~e2a21!#11tanha. ~14!

Here the integration constanta determines the kink poten-
tial:

AC~a!5
a

Apcosha
. ~15!

The space-time has a naked singularity when analytica
extended tor50 @7#. The Bondi mass of this solution is

MC~a!52Rsinh2ae22a tanha. ~16!

In order to investigate the behavior of the Bondi mas
with respect to variations aboutC, we consider the solutions
of the second-order differential equation~10! for an arbitrary
configurationF. The solutionr is uniquely determined by
the boundary conditionsr (R)5R andr 8(R)51 and has as-
ymptotic behaviorr;e22HV12M1O(1/V) asV→`. We
define a second independent solutiont by requiring asymp-
totic behaviort;V1O(1/V). For a general configuration
F, this normalizes the Wronskian of these solutions to th
Bondi mass:

2M5r t82tr 8. ~17!
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Now, for a fixed kink potential, consider th
e-dependent family of perturbed configuratio
F5C1ef, subject to the boundary conditio
f(R)5f(`)50. For e50, we haver5rC and t5tC ,
with rC given by Eq.~14! and

tC
2 5@V1R~e22a21!#11tanha

3@V1R~e2a21!#12tanha. ~18!

To first order ine, dr5r2rC satisfies the perturbed versio
of Eq. ~10!:

dr 9524pdr ~C8!228perCC8f8. ~19!

This linear differential equation fordr is identical to Eq.~10!
except for an inhomogeneous term. Its solution can there
be expressed in terms of the two independent homogen
solutionsrC andtC as @8#

dr52
4pe

MC
E
R

V

dW@rC~W!tC~V!2tC~W!rC~V!#

3rC~W!C8~W!f8~W!. ~20!

Note that this satisfies the proper boundary conditi
dr (R)5dr 8(R)50. By inserting this solution fordr into
Eq. ~11!, we obtain, for the first variation of the Bondi mas

M2MC54peE
R

`

dVtCrCC8f8. ~21!

But direct calculation gives

tCrCC852
Rsinha

Ap
e22a tanha5const ~22!

so that Eq.~21! integrates to yieldM2MC5O(e2).
Thus the static solutions are equilibrium configuratio

For sufficiently small values ofa, the second variation of th
Bondi mass will be positive, as in the flat space case. In
regime, small perturbations can be dissipated by mass
due to scalar radiation. However, if there exists a pertu
tion which lowers the Bondi mass the static equilibria can
be stable since further radiative mass loss would drive
system away from equilibrium. We next see that this ind
occurs in the strongly nonlinear regime.

B. The turning point instability

The one-parameter family of static equilibria has kink p
tentialAC(a), given by Eq.~15!, which increases monoton
cally with a from AC(0)50 until it reaches a maximum a
the turning pointac'1.199 satisfyingactanhac51. Above
ac , AC(a) monotonically decreases to 0 asa→`. Thus,
belowAC(ac), there are two static equilibria for each kin
amplitude. Similarly, the massMC(a)50 increases mono
tonically fromMC(0)50 to a maximum at the same turnin
point ac and then decreases monotonically to the black h
limit, MC(a)→R/2, asa→`.

The quantityk, defined bydMC /da5kdAC /da, plays
an important role in the stability of this system. Explicitly
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k54ApRsinh~a!e22a tanha. ~23!

Denoting ḟ5d f /da, it is easy to verify that k̇ÄC

'0.65R.0 for a5ac .
These are precisely the criteria for the application of

theorem@2# regarding the onset of instability at a turning
point in a one-parameter family of equilibria. We presen
here a finite dimensional version of the argument behind t
theorem as applied to the present case. Proofs for both
finite dimensional and function space cases are given by S
kin @2#.

Consider then the configuration spac
$F(A,X1, . . . ,Xn)% whose elements for each choice
(A,Xi) represent a functionF(V;A,Xi) with boundary con-
ditionsF(R;A,Xi)5A andF(`;A,Xi)50. Let C(a) rep-
resent the one-parameter family of static equilibria, regardi
(AC ,Xi) as functions ofa. We now show that for some
da.0 all the equilibria in the rangeac,a,ac1da are
unstable.

The proof is based upon the equilibrium conditions
MC,A5k andMC,i50, wheref ,A5]Af and f ,i5]Xi f . Dif-
ferentiating these conditions with respect toa along the
equilibrium sequence gives

k̇5MC,AAȦC1MC,AiẊ
i ~24!

and

05ṀC,i Ẋ
i5MC,iAȦCẊ

i1D, ~25!

whereD5MC,i j Ẋ
i Ẋ j represents the second variation of th

mass with respect to the perturbationẊi . Equation~25! im-
plies thatD50 at the turning point whereȦC50, so that
this mode has neutral stability. Taking a further derivative
Eq. ~25! and evaluating at the turning point, we obtain

Ḋ52MC,iAÄCẊ
i52k̇ÄC . ~26!

As remarked above,k̇ÄC.0 at the turning point so that Eq.
~26! implies the instability of this mode in a neighborhoo
a.ac .

C. Unstable modes

Since there are no other turning points, these general c
siderations suggest that the equilibriaC are stable below
ac and unstable aboveac , although the theorem only strictly
implies the onset of instability in a neighborhood ofac . In
order to provide further insight, we now consider specifi
behavior of the second variation ofMC .

For an arbitrary perturbation,F5C1ef, we can follow
the approach in Sec. IIA which led to the expression~21! for
the first variation of the mass and proceed further to det
mine the second variation. At ordere2, this leads to

M2MC52pe2E
R

`

dVtC~rCf8f812drC8f8!, ~27!

wheredr is given by the integral~20!. Becausedr depends
nonlocally on the perturbationf, Eq. ~27! does not give
straightforward information regarding the sign of the secon
variation. However, the first term in the integrand is positiv
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54 3837GRAVITATIONAL INSTABILITY OF A KINK
definite and depends locally on the perturbation. Theref
for perturbations confined to a sufficiently compact regio
the first term dominates thedr term and the second variatio
is positive. This leads us to consider large length scale
turbations in the search for unstable modes.

One such perturbation can be obtained from the st
solution by combining a change ina with a translation,

df~V!5C~V1dR;a1da!2C~V;a!, ~28!

with da anddR adjusted to setdf(R)50 so that the kink
potential is held fixed. This requires

dR5
R~e22~a1da!e4a cosh~a1da!/cosh~a!2e2~a1da!!

12e4a cosh~a1da!/cosh~a! . ~29!

For this perturbation, the change inM can be worked out
analytically to second order~using Maple! from Eq. ~17!,
although the final expression is too lengthy to present h
The important point is that the second-order variation ofM
is positive fora,ac , vanishes precisely fora5ac , and
turns negative in a neighborhooda.ac . This corroborates
our expectation that perturbations are stable belowac and go
unstable as we pass through the turning point.~It is curious
that beyond the turning pointM2MC again becomes posi
tive for values ofa greater than approximately 2.0).

III. GRAVITATIONAL COLLAPSE OF UNSTABLE KINKS

We now examine the behavior of this system numerica
using a null cone evolution algorithm for nonlinear sca
waves developed in@9,4#. The algorithm is based upon th
compactified radial coordinatex5r /(R1r ), so thatI1 is
represented by a finite grid boundary, withx51/2 at the
mirror andx51 at I1. The code has been tested to be g
bally second-order accurate, i.e., the error in global qua
ties such as the Bondi mass isO(Dx2) in terms of the grid
spacingDx.

In the case of a mirror boundary at zero potential~no
kink!, as studied in@3#, a weak scalar field radiates com
pletely to infinity, so that the final mass of the system is ze

FIG. 1. Bondi mass as a function of amplitude, for the sta
equilibria.
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However, above a critical strength, the scalar field undergoe
gravitational collapse to form a horizon. In this case, some o
the scalar energy is radiated to infinity and the remainde
crosses the horizon and contributes to the final black ho
mass. The mirror itself must fall into the horizon for other-
wise it would continue to reflect the scalar field until all
scalar energy were radiated to infinity. Near the critica
strength, the sensitivity of the final mass is somewhat anal
gous to the critical behavior studied by Choptuik@10,11#,
except there is now a mass gap because the final black ho
must have a mass larger thanR/2 in order to contain the
mirror. In the present case of a mirror with nonvanishing

tic FIG. 2. Bondi mass as a function of Bondi time for perturba-
tions of a stable equilibrium. Different curves represent the differen
values of the perturbation parameterl: 0.15 ~continuous line!;
0.18 ~dashed line!; 0.19 ~small-dashed line!; 0.1925~dotted line!;
0.1928~dot-dashed line!. The system collapses to a black hole for
l greater thanlc'0.1929.

FIG. 3. Bondi mass as a function of Bondi time for perturba-
tions of an unstable equilibrium. The different values of the pertur
bation parameterl are 0 ~continuous line!, 1024 ~dashed line!,
(1.2) 1024 ~small-dashed line!, (1.3) 1024 ~dotted line!,
(1.31) 1024 ~dot-dashed line!. For these values the system makes a
transition to the stable equilibrium. The system collapses to a blac
hole forlc'(1.311)31024.
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3838 54W. BARRETO, R. GÓMEZ, L. LEHNER, AND J. WINICOUR
kink potential, we would expect this behavior to be modifi
in several ways.

First, we consider kink potentialsA,AC(ac). In this
case, two static equilibrium statesC(a2) andC(a1) are
possible,a2,ac,a1 , with the former expected to b
stable and the latter unstable. The double valued behavio
M (A) is graphed in Fig. 1. It shows tha
MC(a1).MC(a2). Consequently, the following scenario
are expected. A state close toC(a2) should return to
C(a2) but a state close toC(a1) could either evolve to-
ward C(a2) or collapse to a black hole. These scenar
have been confirmed by the following numerical simulatio
~All these simulations are run settingR51).

With kink potentialA5AC(a2)'0.365 63 fora251,
we study the stable equilibrium by evolving initial data
the form F5C(a2)1l(122x)/2r . For values ofl less
than a critical valuelc'0.1929, the system returns to th
equilibrium stateC(a2) at late times. Figure 2 graphs th
corresponding time behavior of the Bondi mass showing
asymptotic approach to the equilibrium valu
M→MC(a2)'0.602 20. Forl.lc , the system collapse
to form a black hole.

Next, for the same kink potentialA'0.365 63, we study
the evolution of the unstable equilibrium by evolving initi
data of the form F5C(a1)1l(122x)/2r . ~Here
a1'1.424 29). Figure 3 graphs the corresponding beha
of the Bondi mass. In this case, because of the instability
the static equilibriumC(a1), the system undergoes a d
namical change, even whenl50 because of the perturbatio
introduced by discretization error in the initial data. F

FIG. 4. Evolution of g. The initial data are
g(0,x)52x(Ac1l), for l50.3. The upper line representsu50;
and the lower one,u51.19. The system collapses to a black ho
ed
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small l, the stateC(a1) makes a transition to the stable
state C(a2). But again there is a critical value
lc'(1.311)31024 above which the final state is a black
hole.

Now consider a kink potentialA.Ac , for which no static
equilibria exist. With these boundary conditions, we wou
expect any initial state to undergo collapse to a black ho
We explore this by considering initial data of the form
F52(Ac1l)/(r1R). Figures 4 and 5 show the resulting
behavior of g as a function ofx at several times, for
l50.3 andl51022, respectively. At late times, these state
indeed form a black hole, as evidenced by the flattening
g, outside the cusp being formed at the black hole radius,
the exterior field sheds its ‘‘hair.’’

In summary, the behavior of this system is in comple
accord with theoretical expectations.
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FIG. 5. Evolution of g. The initial data are
g(0,x)52x(Ac1l), for l51022. The upper line represents
u50, and the lower oneu515.33. The system collapses to a blac
hole.
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