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Gravitational instability of a kink
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We study the equilibria of a self-gravitating scalar field in the region outside a reflecting barrier. By
introducing a potential difference between the barrier and infinity, we create a kink which cannot decay to a
zero-energy state. In the realm of a small amplitude, the kink decays to a known static solution of the
Einstein-Klein-Gordon equation. However, for larger kinks the static equilibria are degenerate, forming a
system with two energy levels. The upper level is unstable and, under small perturbations, decays to the lower
energy stable equilibrium. Under large perturbations, the unstable upper level undergoes collapse to a black
hole. The equilibrium of the system provides a remarkably simple and beautiful illustration of a turning point
instability. [ S0556-282(96)03818-0

PACS numbgs): 04.40—hb, 04.25.Dm, 04.30.Db

[. INTRODUCTION spect to infinity introduces nontrivial global effects.
We set the geometry of the mirror to correspond to a
We describe here a simple model of a system exhibiting surface of radiu®k enclosing a flat region of spacetime. The
gravitationally induced transition from an unstable staticevolution of the system then depends uniquely upon the
equilibrium to a lower energy stable equilibriuffor small ~ characteristic data for the scalar field on the initial null hy-
perturbations or to a black hole(for large perturbations Persurface, which extends from the mirror to future null in-
The system is the general relativistic version of a sphericallyinity Z".
symmetric scalar wave reflecting off an inner mirror of We describe this system in terms of a null coordinate
radius R. By holding the mirror at a fixed potential with System with the spherically symmetric line element
respect to infinity, we create kink boundary conditions which
do not a.IIov.v decay of the_ fi.elld to a zero-energy state. In the dszzezﬁdu<!du+ 2dr
nongravitating case, any initial configuration would decay to r
the static solution of the wave equatioi,=AR/r, where ) ) . ) .
A is the potential of the mirror; and this static solution is In these coordinates, the Einstein-Klein-Gordon equations
stable under perturbations. In the self-gravitating case wéeduce td4.5]
will show there is a critical value of kink potentidl. about B.=2mr(D )2 )
which the system displays a classic example of a turning ! e
point instability[1,2], responsible for the above phenomena. V = e?B 3)
Above this critical potential, there are no equilibria and all o '
configurations collapse to a black hole. The behavior of thigyng the scalar wave equatihd =0, which takes the form
system illustrates the remarkable richness of the physical
properties that result from the mixture of long range gravita- 2(r(I))’ur:r‘l(rVCIDY,)‘r . (4
tional forces and nonlinearity.
Our theoretical model is the null-timelike initial value ~ The initial null data necessary for evolution consists of
problem for a spherically symmetric space-time satisfying®(Uo,r), r=R, at initial time u,. (We takeup,=0.) At the
the coupled Einstein-Klein-Gordon equations for a masslesgirror, we setd (u,R) =A=const, with the gauge condition
scalar field. We pose this mixed boundary value problem irthat ®(u,»)=0. We adopt the coordinate condition
the region of space-time outside a timelike inner boundary3(u,R)=0. The condition that the metric match continu-
and to the future of an initial null hypersurface. The math-ously to a flat interior for <R requiresV(u,R)=R. (The
ematical details of this problem have been described beforeormal derivatives ofP and the metric do not match con-
in an investigation of the decay of scalar wave tg8% In  tinuously across =R in accord with the sheet stresses asso-
that case, the scalar field was set to zero on the inner boundiated with the mirro.
ary, so that the boundary acted as a perfectly reflecting mir- With these conditions the scalar field and metric compo-
ror. Here, by holding the inner boundary at a fixed potentialnents have a unique future evolution. The resulting metric
its role as a mirror is unchanged due to the local gauge indoes not have an asymptotic Minkowski formZat. This is
variance of the system with respect to the transformatiortharacterized by the quantity(u)= B(u,») which relates
®—® +const. However, the potential difference with re- Bondi timet atZ* to the proper timer=u at the reflecting

—r2(d6?+sirfed¢?). (1)
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boundary according tdt/dr=e". Bondi time is the physi- able. HereV, as determined by Eq2) and(3), is the affine
cally relevant time for distant observers. The Bondi mass oparameter along the outgoing null cone. The affine freedom
the system can be expressed in either an asymptotic or intés fixed by the boundary conditiong(R)=r(R)=R and
gral form[6]: r'(R)=1, where we denote,f=f". Then Eqs(2) and(3)

can be reexpressed as f, wheref satisfies

— * 2(B—H),2 2
—27TJR9 B r (q)'r) dr. f”:_47T((I),)2f, (10)

®)  which determines (V) uniquely in terms of the initial data.

(Note that the mass content of a null hypersurface only delN® mass of the state(V) can be obtained by inserting the

pends upon field values in the hypersurface and is indeper?—OI_u'['on_r(V) of Eq. (10) into the first version of Eq(5),
dent of their time derivative which gives

In the flat space limit, Eq92) and(3) imply =0 and
V=r and Eq.(4) reduces to the wave equation in null-radial
coordinates:

M(u)=%e*2Hr <\r_/>

lr=0

M=3(r—=Vr)l|., (11

when reexpressed wittf as the independent variable.

0®g:=29 y—9,,=0, 6
g Gur™Bor © A. Static equilibria
whereg=r®. The general solution satisfying the boundary e now show that the asymptotically flat static solution
condition for a kink potentiah is ¥ of the Einstein-Klein-Gordon system is an extremum of
_ B the energy, subject to a fixed kink potential. This solution
g(u ) =AR+(U2+1) = F(u/2+R). @) [7], which is the analog of the d/solution in a Minkowski

The first term describes a static monopole; the second, dpckground, can be obtained in null coordinates by setting
incoming wave; and the third, its reflection off the mirror. At ¥,u=0 in the wave equatiofd). This gives
late retarded time, the solution asymptotically approaches the _

. P . . rvv =
static equilibrium stateb— AR/r. This state is also the so- r=const, (12
lution of the variational problem for the energyM =0 sub-  \yhose solution, after using Eq) and (3) to eliminate the
ject to the constraint tha#® vanishes at the mirror and at dependence, is
infinity. In this flat space example,
V+R(e?*—1)
V+R(e™**—1)

M ZZWJOC(CD,,)Zerr (8) V)= 4+/mcoshy In
R

| a

. o with r(V)=ry given b
and its variation is given by V)=rvg y
rlZI,:e74atanl"u[V+ R(efza_l)]lftanhw

— _ ” 2
oM = 477JR [q)yrr ]Yrﬁq)dl'. (9) X[V+R(e2a_1)]l+tanm_ (14)

In the flat space case, the static solutifn=A/r is the Here the integration constaat determines the kink poten-
unique extremum satisfying the boundary conditionkich  tial:
rule out the trivial solutionb =cons}. Furthermore, the sec-
ond variation of the mass about this state is positive, so that @
it represents a stable equilibrium, which the system ap- Jmcoshy
proaches after radiating its excess energy to infinity.

In Sec. Il, we show that for small kink potentials these The space-time has a naked singularity when analytically

features extend to the curved space, self-gravitating casextended ta =0 [7]. The Bondi mass of this solution is
But, above the critical kink potential, equilibria do not exist.

We show that this critical potential marks a turning point My (a)=2Rsintfae 2« @, (16)
instability about which the equilibrium configurations bifur-
cate into stable and unstable form. In Sec. Ill, we present In order to investigate the behavior of the Bondi mass
numerical simulations of the evolution of stable and unstablavith respect to variations abott, we consider the solutions
kinks. of the second-order differential equatict0) for an arbitrary
configuration®. The solutionr is uniquely determined by
IIl. ENERGETICS OF SELF-GRAVITATING KINKS the boundary conditiong(R) =R andr’(R)=1 and has as-
ymptotic behavior ~e 2HV+2M+O(1N) asV—x. We
At the initial retarded time, the null datk(0r) and the define a second independent solutioby requiring asymp-
constrained kink potentiah=®(u,R) uniquely determine totic behaviorr~V+O(1/N). For a general configuration
the future evolution of the system. In order to discuss theb, this normalizes the Wronskian of these solutions to the
energetics of these states it is convenient to describe the caBondi mass:
responding configuration space in terms ob(V)
=®(0,r(V)), whereV is considered the independent vari- 2M=r7"—7r'". 17

Ay(a)= (15
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Now, for a fixed kink potential, consider the K=4\/;Rsinr(a)e‘2“‘a““*. (23)

e-dependent  family of perturbed configurations . i

d=V+ep, subject to the boundary condition Denoting f=df/de, it is easy to verify that xAy

¢(R)=¢(°)=0. For e=0, we haver=ry and r=r1y, ~0.6R>0 for a=a,.

with ry given by Eq.(14) and These are precisely the criteria for the application of a
) o — theorem[2] regarding the onset of instability at a turning
Ty=[V+R(e “*~1)] point in a one-parameter family of equilibria. We present

20 1\71—tanhw here a finite dimensional version of the argument behind the
X[V+R(e D] ' (18 theorem as applied to the present case. Proofs for both the
To first order ine, 8r =r —ry satisfies the perturbed version :‘(init([a aiimensional and function space cases are given by Sor-
of Eq. (10): in [2].
a.- (10 Consider then the configuration space
St"=—4msr(V')2—8mery V' ¢'. (19) {®(AX!, ... XM} whose elements for each choice

(A,X') represent a functioFD(V;A,Xi_) with boundary con-
This linear differential equation fafr is identical to Eq(10)  ditions ®(R;A,X")=A and ®(«;A,X"')=0. Let ¥ (a) rep-
except for an inhomogeneous term. Its solution can thereforeesent the one-parameter family of static equilibria, regarding
be expressed in terms of the two independent homogeneo@é, ,X') as functions ofa. We now show that for some

solutionsr and 74 as[8] Sa>0 all the equilibria in the range.<a<a.+ da are
unstable.
_ Ame(V The proof is based upon the equilibrium conditions,
or=- Mq,LdV"[rﬂ'(W)T‘P(V)‘W(W)“P(V)] My o=« andMy ;=0, wheref = daf andf = dyf. Dif-
ferentiating these conditions with respect &o along the
Xry(W)P' (W) ' (W). (200 equilibrium sequence gives
Note that this satisfies the proper boundary conditions k:M\I',AAA\If+ Mll',AiXi (24)

or(R)=6r'(R)=0. By inserting this solution fordr into
Eq. (11), we obtain, for the first variation of the Bondi mass, and
o 0=My  X'=My nAgX +A, (25)
M_Mq;:47TEJ dVT\I;r\I;\P,(ZS,. (21) o ' ’
R whereA=My ;;X'X! represents the second variation of the
mass with respect to the perturbatigh Equation(25) im-

But direct calculation gives . : .
plies thatA=0 at the turning point wheré=0, so that

R sinha this mode has neutral stability. Taking a further derivative of
Tylg¥V' =— = e 2@ @M= const (220  Eq.(25 and evaluating at the turning point, we obtain
a
A:_M\pﬁiAA\pXi:_l—(A\p. (26)

so that Eq.(21) integrates to yieldM — My =0(€?). )
Thus the static solutions are equilibrium configurations.As remarked abovesAy >0 at the turning point so that Eq.

For sufficiently small values af, the second variation of the (26) implies the instability of this mode in a neighborhood

Bondi mass will be positive, as in the flat space case. In thag> q,.

regime, small perturbations can be dissipated by mass loss

due to scalar radiation. However, if there exists a perturba- C. Unstable modes

tion which lowers the Bondi mass the static equilibria cannot . . .

be stable since further radiative mass loss would drive the Since there are no other turning points, these general con-

system away from equilibrium. We next see that this indeediderations suggest that the equilibtia are stable below
occurs in the strongly nonlinear regime. a. and unstable abowve,, although the theorem only strictly

implies the onset of instability in a neighborhood @f. In
order to provide further insight, we now consider specific
behavior of the second variation bfy, .

The one-parameter family of static equilibria has kink po-  For an arbitrary perturbatiod) =¥ + e, we can follow
tential Ay («), given by Eq.(15), which increases monotoni- the approach in Sec. IIA which led to the expresg@D for
cally with o from Ay (0)=0 until it reaches a maximum at the first variation of the mass and proceed further to deter-
the turning pointa.~1.199 satisfyinga tanhn,=1. Above  mine the second variation. At ordef, this leads to
a., Ag(a) monotonically decreases to 0 as—«. Thus,
below Ay («.), there are two static equilibria for each kink
amplitude. Similarly, the mashly(«)=0 increases mono-
tonically fromM(0)=0 to a maximum at the same turning
point a. and then decreases monotonically to the black holevhere ér is given by the integra(20). Becausesr depends
limit, My (a)—R/2, asa—x. nonlocally on the perturbatiors, Eq. (27) does not give

The quantityx, defined bydMy, /da=kdAy /da, plays  straightforward information regarding the sign of the second
an important role in the stability of this system. Explicitly, variation. However, the first term in the integrand is positive

B. The turning point instability

M — MW=2WEZI dVry(ryd' ¢’ +28cW' ¢'), (27)
R
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FIG. 1. Bondi mass as a function of amplitude, for the static  FIG. 2. Bondi mass as a function of Bondi time for perturba-
equilibria. tions of a stable equilibrium. Different curves represent the different
values of the perturbation parameter 0.15 (continuous ling
definite and depends locally on the perturbation. Therefore).18 (dashed ling 0.19 (small-dashed line 0.1925(dotted ling;
for perturbations confined to a sufficiently compact region,0.1928(dot-dashed ling The system collapses to a black hole for
the first term dominates thér term and the second variation \ greater than.~0.1929.
is positive. This leads us to consider large length scale per-

turbations in the search for unstable modes. However, above a critical strength, the scalar field undergoes
One such perturbation can be obtained from the statigravitational collapse to form a horizon. In this case, some of
solution by combining a change i with a translation, the scalar energy is radiated to infinity and the remainder
crosses the horizon and contributes to the final black hole

Sp(V)=V(V+5R;a+ da)—V(V;a), (29 mass. The mirror itself must fall into the horizon for other-

wise it would continue to reflect the scalar field until all
with Sa and SR adjusted to seb¢(R)=0 so that the kink scalar energy were radiated to infinity. Near the critical
potential is held fixed. This requires strength, the sensitivity of the final mass is somewhat analo-
gous to the critical behavior studied by Choptyik0,11],
except there is now a mass gap because the final black hole
oR= 1 — g cosia+ 6a)lcosia) : (29 must have a mass larger th&d2 in order to contain the

mirror. In the present case of a mirror with nonvanishing

R( e 2(a+ 5a)e4a cosia+ Sa)/cosia) __ eZ(a+ 5a))

For this perturbation, the change M can be worked out
analytically to second ordefusing Maple from Egq. (17), 0.6070 , ,
although the final expression is too lengthy to present here.
The important point is that the second-order variatiorMof

is positive fora<a., vanishes precisely foe=«a., and 0.6060
turns negative in a neighborhoaed> «. This corroborates

our expectation that perturbations are stable belgwand go
unstable as we pass through the turning pdintis curious

that beyond the turning poirl — My again becomes posi- M
tive for values ofa greater than approximately 2.0). 0.6040 |

0.6050

ll. GRAVITATIONAL COLLAPSE OF UNSTABLE KINKS .
0.6030 |
We now examine the behavior of this system numerically,
using a null cone evolution algorithm for nonlinear scalar
waves developed if9,4]. The algorithm is based upon the 0.6020
compactified radial coordinate=r/(R+r), so thatZ" is ' Ty
represented by a finite grid boundary, wit+1/2 at the

; — +
mirror andx=1 at7". The code has been tested to be glo- FIG. 3. Bondi mass as a function of Bondi time for perturba-

bally second-order accurate, i.e., the error in global quantitons of an unstable equilibrium. The different values of the pertur-
ties such as the Bondi mass@(Ax?) in terms of the grid  pation parameteh are O (continuous ling 10 (dashed ling
spacingAx. (1.2) 104 (small-dashed ling (1.3) 10* (dotted line,

In the case of a mirror boundary at zero potentia  (1.31) 10“ (dot-dashed ling For these values the system makes a
kink), as studied in3], a weak scalar field radiates com- transition to the stable equilibrium. The system collapses to a black
pletely to infinity, so that the final mass of the system is zerohole for A ;~(1.311)x 104

100.0
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FIG. 4. Evolution of g. The initial data are FIG. 5. Evoluton of g. The inital data are
9(0x)=2x(ActA), for A=0.3. The upper line represenis=0;  g(0x)=2x(A.+\), for A=10"2. The upper line represents
and the lower oney=1.19. The system collapses to a black hole. ;= and the lower ona=15.33. The system collapses to a black

kink potential, we would expect this behavior to be modifiedh0|e'

in several ways. »

First, we consider kink potential&<Ag(ac). In this small A, the state¥(«a ) makes a tr§n5|t|on t_o_ the stable
case, two static equilibrium stateék(a_) and V(a.,) are State ¥(a_). _B4Ut again there is a critical value
possible, «_ <a.<a, , with the former expected to be Ac~(1.311)X 10 * above which the final state is a black
stable and the latter unstable. The double valued behavior &€ . . ) ] )
M(A) is graphed in Fig. 1. It shows that Now consider a kink potentigh>A., for which no static
My (a,)>My(e_). Consequently, the following scenarios equilibria exist. With these boundary conditions, we would
are expected. A state close W(a_) should return to expect any initial state to undergo collapse to a black hole.
¥ (a_) but a state close t&(a,) could either evolve to- We explore this by cqnsidering initial data of the fqrm
ward W(a_) or collapse to a black hole. These scenarios? =2(Ac+\)/(r+R). Figures 4 and 5 show the resulting

have been confirmed by the following numerical simulationsPe€havior ofg as a function ofx at several times, for
(All these simulations are run settif=1). N=0.3 and\=10" <, respectively. At late times, these states

With kink potential A=A, («_)~0.365 63 fora_=1, indeed_form a black hple, as evidenced by the flattenling of
we study the stable equilibrium by evolving initial data of 9, outside the cusp being fgfm_efj at the black hole radius, as
the form ®=W(a_)+\(1—2x)/2r. For values of\ less the exterior field sheds its “hair.” o
than a critical value\,~0.1929, the system returns to the !N Summary, the behavior of this system is in complete
equilibrium state¥(a_) at late times. Figure 2 graphs the 2ccord with theoretical expectations.
corresponding time behavior of the Bondi mass showing its
asymptotic  approach to the equilibrium value
M—My(a_)~0.602 20. For\>X\., the system collapses
to form a black hole. We benefited from research support from the National

Next, for the same kink potenti#l~0.365 63, we study Science Foundation under Grant No. PHY9510895 to the
the evolution of the unstable equilibrium by evolving initial University of Pittsburgh and from computer time made avail-
data of the form ®=V¥(a,;)+A(1-2x)/2r. (Here able through Grant No. PHY850023P from the Pittsburgh
ay~1.424 29). Figure 3 graphs the corresponding behavioBupercomputing Center. W.B. is grateful for the hospitality
of the Bondi mass. In this case, because of the instability oshown to him by the Relativity Group of the University of
the static equilibrium¥(a ), the system undergoes a dy- Pittsburgh, during his sabbatical year. He was supported in
namical change, even whan=0 because of the perturbation part by the Consejo de Investigasiale la Universidad de
introduced by discretization error in the initial data. For Oriente, Venezuela.
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