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A Self-sim ilar Dynamics in Viscous Spheres
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We study the evolution of radiat ing and viscous ¯ uid spheres assum ing

an addit ional homothet ic symmet ry on the spherically symm et ric space-

t ime. We m atch a very simple solution to the sym metry equat ions with

the ex terior one (Vaidya). We then obtain a system of two ordinary diŒer-

ential equat ions which rule the dynamics, and ® nd a self-similar collapse

which is shear-free and with a barot ropic equat ion of stat e. Considering

a huge set of init ial self-sim ilar dynamics stat es, we work out a model

with an accep table physical behav ior.
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1. INTRODUCTION

Often many authors assume spherical symmetry and perfect ¯ uid approxi-

mation to deal with the problem of self-gravit ating and collapsing distribu-

tions of matter. Also, they use extensively progressive waves or similarity

solut ions (see Refs. 1,2 and references therein) . If the ¯ uid is perfect the

only equat ion of state compatible with self-similar ¯ uids is the barot ropic

one [2]. The present paper deals in part with the validity of the barot ropic

equat ion of state for a viscous and radiat ing ¯ uid sphere.
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In general, there are two types of self-similar space-t imes depending

on whether they are invariant or not under scale transformations. Scale-

free self-similar solut ions are the similarity solut ions of type one and the

result ing space-t ime admits homothet ic Killing vectors. Type two similar-

ity solut ions are not invariant under the simple scaling group [3± 6]. The

self-similar symmetry has been reported to characterize these two types of

self-similar space-t imes [7].

Spherically symmetric and homothetic space-t imes show naked singu-

larit ies. The assumpt ion of similarity rather than spherical symmetry is

crucial in determining the nature of the singularity in any gravit at ionally

collapsing con® gurat ion [8,9]. So far, self-similar space-t imes have been

studied mainly in cosmological contexts [10± 15].

Considering that the perfect ¯ uid approxim ation is likely to fail, at

least in some stages of stellar collapse, in this paper we study radiat ing

and viscous ¯ uid spheres. Speci® cally, we have been concerned with the

radiat ive shear viscosity and its eŒect on the gravitational collapse [16±

18]. We do not consider here the temperature pro® les to determine which

processes can take place during the collapse. For this purpose, transport

equat ions have been proposed to avoid pathological behaviors (see for in-

stance Ref. 19 and references therein) . The motivat ion of this work was

a recent study of radiat ing and dissipat ive spheres [20]. We assume an

addit ional symmetry (homothet ic motion) within the viscous ¯ uid sphere

without heat ¯ ow in the streaming out limit .

The organizat ion of this paper is the following. Section 2 shows the

® eld equat ions, the junct ion condit ions and the surface equat ions. In Sec-

tion 3 we write the homothetic motion equat ions in a convenient form.

We propose a very simple solut ion in Section 4 to work out some models.

Finally, in Section 5, we draw conclusions.

2. DYNAMICS AND MATCHING

2.1. Field equations

To write the Einstein ® eld equat ions we use the line element in

Schwarzschild- like coordinat es

ds
2

= e
u
dt

2
± e

l
dr

2
± r

2
(dh

2
+ sin

2
hdw

2
). (1)

where u = u(t, r ) and l = l(t, r ), with (t, r, h, w ) º (0, 1, 2, 3).

In order to get the physical input we introduce the Minkowski coor-

dinat es (t , x, y, z ) by [21]

dt = e
u / 2

dt, dx = e
l / 2

dr, dy = rdh, dz = r sin hdw , (2)
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In these expressions u and l are constants, because they have only local

values.

Next we assume that , for an observer moving relat ive to these coor-

dinat es with velocity x in the radial (x) direct ion, the space contains

² a viscous ¯ uid of density r, pressure p̂, eŒective bulk pressure pf and

eŒective shear pressure pg, and

² unpolarized radiat ion of energy density ê.

For this moving observer, the covariant energy tensor in Minkowski

coordinat es is thus

r + ê ± ê 0 0

± ê p̂ + ê ± pf ± 2pg 0 0

0 0 p̂ ± pf + pg 0

0 0 0 p̂ ± pf + pg

. (3)

Note that from (2) the velocity of matter in the Schwarzschild coor-

dinat es is
dr

dt
= x e

( u - l ) / 2 . (4)

Now, by means of a Lorentz boost and de® ning Äp º p̂ ± pf , pr º Äp ± 2pg,

pt º Äp + pg and e º ê(1 + x )/ (1 ± x ) we write the ® eld equat ions in

relat ivist ic unit s (G = c = 1) as follows:

r + pr x 2

1 ± x 2
+ e =

1

8pr

1

r
± e -l 1

r
± l , r , (5)

pr + rx 2

1 ± x 2
+ e =

1

8pr
e - l 1

r
+ u, r ±

1

r
, (6)

pt =
1

32p
e - l

2u, r r + u
2
, r ± l , r u, r +

2

r
(u, r ± l , r )

± e - u
[2l , t t + l , t (l , t ± u,t ) ] (7)

(r + pr )
x

1 ± x 2
+ e = ±

l , t

8pr
e - ( 1 / 2) ( u+ l )

, (8)

where the comma (,) represent s part ial diŒerentiat ion with respect to the

indicat ed coordinat e. Equat ions (5) ± (8) are formally the same as for an

anisot ropic ¯ uid in the streaming out approximat ion.

At this point , for the sake of complet eness, we write the eŒective

viscous pressures in terms of the bulk viscosity f, the volume expansion
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H, the shear viscosity g and the scalar shear s [18]

pf = fH (9)

pg =
2

Ö 3
gs (10)

where

H =
1

(1 ± x 2 )1 / 2 [e - u/ 2( l , t

2
+

x x , t

1 ± x 2 )
+ e - l / 2( u, r

2
x +

x , r

1 ± x 2
+

2 x

r ) ] (11)

and

s = Ö 3( H

3
±

e - l / 2

r

x

Ö 1 ± x 2 ) . (12)

We have four ® eld equat ions for six physical variables (r, p, e, x , f and

g) and two geometrical variables (u and l) . Obviously, we require addi-

tional assumptions to handle the problem consistently. First , however, we

discuss the matching with the exterior solut ion and the surface equat ions

that govern the dynamics.

2.2. Junction conditions

We describe the exterior space-t ime by the Vaidya metric

ds
2

= ( 1 ±
2M (u )

R ) du
2

+ 2dudR ± R
2( dh

2
+ sin

2
hdw

2) , (13)

where u is a t ime-like coordinat e so that u = constant represents, asymp-

totically, null cones open to the future and R is a null coordinat e (gR R = 0).

The relat ionship between the coordinat es (t, r , h, w ) and (u , R , h, w) is

u = t ± r ± 2M ln ( r

2M
± 1) , R = r. (14)

The exterior and interior solut ions are separated by the surface r =

a(t). To match both regions on this surface we require the Darmois junc-

tion condit ions. Thus, demanding the continuity of the ® rst fundamental

form, we obtain

e - l a = 1 ±
2M
Ra

(15)
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and

ua = ± la . (16)

From now on the subscript a indicat es that the quant ity is evaluat ed at

the surface. Now, instead of writing the junct ion condit ions as usual, we

demand the continuity of the ® rst fundament al form and the continuity

of the independent components of the energy-momentum ¯ ow. This last

condit ion guarant ees absence of singular behaviors on the surface. It is

easy to check that [18,22]

p̂a = pfa + 2pga , (17)

which expresses the discont inuity of the radial pressure in presence of vis-

cous processes.

2.3. Surface equations

To write the surface equat ions we introduce the mass funct ion m by

means of

e - l ( r , t )
= 1 ± 2m (r, t)/ r. (18)

Subst itut ing (18) into (5) and (8) we obtain, after some arrangements,

dm

dt
= ± 4pr

2[dr

dt
pr + e(1 ± x ) (1 ± 2m / r )

1 / 2
e

u/ 2]. (19)

This equat ion shows the energetics across the moving boundary of the ¯ uid

sphere. Evaluat ing (19) at the surface and using the boundary condit ion

(17) (which is equivalent to pr a = 0), the energy loss is given by

Çm a = ± 4pa
2
ea (1 ± 2m a / a) (1 ± x a ) . (20)

Hereafter overdot indicat es d/ dt. The evolut ion of the boundary is gov-

erned by eq. (4) evaluat ed at the surface

Ça = (1 ± 2m a / a) x a . (21)

Scaling the total mass m a , the radius a and the t ime-like coordinat e by

the init ial mass m a (t = 0) º m a (0),

A º a/ m a (0) , M º m a / m a (0) , t/ m a (0) ® t,

and de® ning

F º 1 ±
2M

A
, (22)

V º x a , (23)

E º 4pa
2
ea (1 ± V) , (24)



2 0 B a r r e t o , O va ll e a n d R od r Âõ g u e z

the surface equat ions can be written as

ÇA = F V , (25)

ÇF =
F

A
[ (1 ± F )V + 2E ]. (26)

Equat ions (25) and (26) are general within spherical symmetry. We need

a third surface equat ion to specify the dynamics complet ely for any set of

init ial condit ions and a given luminosity pro® le E (t). For this purpose we

can use eq. (7) or appeal to the conservat ion equat ion T
m
1 ;m = 0 evaluat ed

at the surface. But we follow here another route, that is, we assume

that the space-t ime admits a one-parameter group of homothetic motion

generated by a homothetic Killing vector orthogonal to the four-velocity.

These assumpt ions introduce some restrict ions on the surface equat ions as

is shown in the next section.

3. HOMOTHETIC MOTION

We assume that the spherically symmetric space-t ime within the ¯ uid

admits a one-parameter group of homothetic motions. In general, a global

vector ® eld j on the manifold is called homothetic if £ jg = 2n g holds on

a local chart , where n is a constant on the manifold, and £ denotes the

Lie derivat ive operator. If n /= 0, j is called proper homothet ic and it can

always be scaled so to have n = 1; if n = 0 the j is a Killing vector on the

manifold [23± 25]. So, after a constant rescaling we write

£ jg = 2g , (27)

where the vector ® eld j has the general form

j = L(r, t) ¶ t + C(r, t) ¶ r . (28)

After simple manipulat ions we obtain from (27)

C = r, (29)

L, r = 0, (30)

Lm ,t + Cm , r = m , (31)

Lu, t + Cu, r + 2 ÇL = 2. (32)

We further assume that the four-velocity is orthogonal to the orbit of the

group

x =
L

r
e

(u - l ) / 2 . (33)
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Thus we obtain a connect ion between the time-like component of the ho-

mothetic Killing vector and the surface variables,

L(t) =
aV

F
. (34)

Now, expanding u near the surface, using (15) , (16) , (34) , and evaluat -

ing at r = a the equat ions (5), (8) , (31) and (32) , after straight forward

manipulat ions we ® nd the surface equat ion

ÇV =
(1 ± V2 )

2A
(3F ± 1 ± 2E ) . (35)

From now on we disregard the bulk eŒective pressure to promote algebraic

consistence.

4. MODELING

In order to work out models we de® ne the self-similar variables

X =
m

r
(36)

and

Y =
L

r
e

u / 2 . (37)

Thus, eqs. (31) and (32) read

LX , t + rX , r = 0 (38)

and

LY, t + rY, r = 0 . (39)

In general these equat ions have solut ions X = X ( 1 ) and Y = Y ( 1 ), where

1 is

1 = re - ò d t / L. (40)

We propose the speci® c solut ions

X = C1 1
k

(41)

and

Y = C2 1
l
, (42)

where C1 , C2 , k and l are constants.
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Solut ions (41) and (42) are restricted by (15) and (16) . Therefore the

geometrical variables are

m = m a ( r

a ) k+ 1

, (43)

e
u

= F ( r

a )2 ( l+ 1)

. (44)

In order to get the unique luminosity

E = 1
2 [F (k + 2l + 3) ± (k + 1) ] (45)

we use eqs. (5), (6), (43) and (44) together with the boundary condit ions

(15) , (16) and (17) to ® nd

V =
2E ± Z

2(k + 1)(F ± 1)
, (46)

where

Z = [F
2
(5k

2
+ 4kl + 10k + 4l

2
+ 12l + 9)

± 2F (k + 1) (5k + 2l + 3) + 5k
2

+ 6k + 1]
1 / 2 . (47)

Note that ª + º in the numerator of (46) represent s the collapsing solut ion

and ª ± º an expanding one. We consider here only V+ situat ions.

Now, combining eqs. (35) and (46) we obtain an equat ion f (F, k, l) =

0, which is too lengthy to present here, but which permits us to model

diŒerent situat ions. The ® rst one is the shear-free and self-similar collapse

for which k = l = 0, m / a ¼ 0.3096 (m and a are linear with t ime) and

Äp = 0 at any space-t ime point . The second possibility appears upon solving

for l = l(F (t = 0) , k) and includes the previous case. For k /= 0 we obtain

shearing models but the homothetic symmetry is broken for t > 0.

We work out a ª trickyº third scenario by ª forgett ingº the origin of

parameter l , proposing that it depends on time in a very special way. If

we imagine N init ial self-similar states which represents the history of the

collapsing surface, the symmetry equat ions (31) and (32) are sat is® ed at

every point of the space-t ime without taking into account the variat ion

with time of l. Therefore, we int egrate numerically only eqs. (25) and

(26) , with (45) , (46) and with l = l(t). Here we use standard Runge-Kut ta

(fourth order) methods and the init ial condit ions
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A(0) = 3.255, F (0) ¼ 0.3856.

Once the boundary evolut ion and its energetics are determined, we use

(43) [or (18) ] and (44) to calculat e the physical variables from the ® eld

equat ions. Figures 1± 4 sketch the ratio Äp/ r, dr / dt, e and g, respectively, for

k = (2 )10 - 3 . These self-similar spheres do not have a barotropic equat ion

of state (Figure 1). All shells evolve with decreasing collapsing velocit ies

(Figure 2). This behavior seems to be connected with the absorpt ion

of energy shown in Figure 3 in the late stage. Shear viscosity increases

init ially with collapse but later decreases with time on any shell.

5. CONCLUSIONS

We have assumed an addit ional symmetry to the space-t ime, homo-

thetic motion, to generate non-static and simple solut ions. These solut ions

were matched with the Vaidya one. We found that self-similar spheres

with a barotropic equat ion of state ( Äp = 0) are shear-free, this result is in

complete accord with theoret ical expectation [2,26,27]. Other self-similar

scenarios are possible as well if we assume the evolut ion of the surface as a

huge set of init ial self-similar states. The shear viscosity pro® les obtained

in this work coincide qualit atively surprisingly well with others calculat ed

in a more realist ic framework [19].
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