General Relativity and Gravitation, Vol. 30, No. 1, 1998

A Self-similar Dynamics in Viscous Spheres
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We study the evolution of radiating and viscous fluid spheres assuming
an additional homothetic symmetry on the spherically symmetric space-
time. We match a very simple solution to the symmetry equations with
the exterior one (Vaidya). We then obtain a system of two ordinary differ-
ential equations which rule the dynamics, and find a self-similar collapse
which is shear-free and with a barotropic equation of state. Considering
a huge set of initial self-similar dynamics states, we work out a model
with an acceptable physical behavior.
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1. INTRODUCTION

Often many authors assume spherical symmetry and perfect fluid approxi-
mation to deal with the problem of self-gravitating and collapsing distribu-
tions of matter. Also, they use extensively progressive waves or similarity
solutions (see Refs. 1,2 and references therein). If the fluid is perfect the
only equation of state compatible with self-similar fluids is the barotropic
one [2]. The present paper deals in part with the validity of the barotropic
equation of state for a viscous and radiating fluid sphere.
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In general, there are two types of self-similar space-times depending
on whether they are invariant or not under scale transformations. Scale-
free self-similar solutions are the similarity solutions of type one and the
resulting space-time admits homothetic Killing vectors. Type two similar-
ity solutions are not invariant under the simple scaling group [3-6]. The
self-similar symmetry has been reported to characterize these two types of
self-similar space-times [7].

Spherically symmetric and homothetic space-times show naked singu-
larities. The assumption of similarity rather than spherical symmetry is
crucial in determining the nature of the singularity in any gravitationally
collapsing configuration [8,9]. So far, self-similar space-times have been
studied mainly in cosmological contexts [10—15].

Considering that the perfect fluid approximation is likely to fail, at
least in some stages of stellar collapse, in this paper we study radiating
and viscous fluid spheres. Specifically, we have been concerned with the
radiative shear viscosity and its effect on the gravitational collapse [16—
18]. We do not consider here the temperature profiles to determine which
processes can take place during the collapse. For this purpose, transport
equations have been proposed to avoid pathological behaviors (see for in-
stance Ref. 19 and references therein). The motivation of this work was
a recent study of radiating and dissipative spheres [20]. We assume an
additional symmetry (homothetic motion) within the viscous fluid sphere
without heat flow in the streaming out limit.

The organization of this paper is the following. Section 2 shows the
field equations, the junction conditions and the surface equations. In Sec-
tion 3 we write the homothetic motion equations in a convenient form.
We propose a very simple solution in Section 4 to work out some models.
Finally, in Section 5, we draw conclusions.

2. DYNAMICS AND MATCHING

2.1. Field equations
To write the Einstein field equations we use the line element in
Schwarzschild-like coordinates

ds* = e'di* — e"dr* — r*(do* + sin’0d¢*). (1)

where v = v(z,r) and A = A(¢,r), with (¢, 1, 0, ¢) = (0, 1, 2, 3).
In order to get the physical input we introduce the Minkowski coor-
dinates (7, x, y, z) by [21]

dr = e"?dt, dx = e"*dr, dy=rdo, dz = rsinods, (2)
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In these expressions v and A are constants, because they have only local
values.
Next we assume that, for an observer moving relative to these coor-
dinates with velocity @ in the radial (x) direction, the space contains
o a viscous fluid of density p, pressure p, effective bulk pressure p. and
effective shear pressure p,, and
 unpolarized radiation of energy density 2.
For this moving observer, the covariant energy tensor in Minkowski
coordinates is thus

p+§ - 0 0

—g ]/7\+ §—p§—2p,, R 0 0 (3)
0 0 P —pctpy 0

0 0 0 b —pc+ pn

Note that from (2) the velocity of matter in the Schwarzschild coor-
dinates is
dr
“r (v=-2)/2
= we . 4
i (4)
Now, by means of a Lorentz boost and defining p = p-p¢, pr = p—2py,
pr =p+pypand e = 51+ w)/(1 - ®) we write the field equations in
relativistic units (G = ¢ = 1) as follows:

+ pro’ 1 |1 1
prpo 1AL oL ) (5)
2
1l - 8rr Lr r
, + po’ 1 1 1
”—’”’T+g:—{e'x<—+ u;)—_}, (6)
1l - 8nr r r
1 2
Pt = {e_)L |:2U,rr + Uzy - }\v,r v, t _(U,r - }\v,r):|
32r ’ r
—6_0[27\,‘”"!' }\.‘[(}\.‘[ _U‘[)]} (7)
A - v
(P+Pr)1 o2 + = —8_7;[76 (172 ””), (8)

where the comma (,) represents partial differentiation with respect to the
indicated coordinate. Equations (5)—(8) are formally the same as for an
anisot ropic fluid in the streaming out approximation.

At this point, for the sake of completeness, we write the effective
viscous pressures in terms of the bulk viscosity ¢, the volume expansion
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O, the shear viscosity n and the scalar shear o [18]

pc = ¢0O 9
2
Py = \/——no (10)
3
where
1 -v/2 }\.‘[ [QION,
O=———7 — 4+ —
(1 - 0?)/? [e ( 2 1-w2)
b Ry Cr 20 (11)
2 1 — w? r
and

e e W
=43 T - —-— . 12
G\/(3 - \/1_(02) (12)
We have four field equations for six physical variables (p, p, & ®, { and
1) and two geometrical variables (v and ). Obviously, we require addi-
tional assumptions to handle the problem consistently. First, however, we

discuss the matching with the exterior solution and the surface equations
that govern the dynamics.

2.2. Junction conditions
We describe the exterior space-time by the Vaidya metric

2M
ds? = (1 _ %l) du® + 2dudR - Rz(de2 + sin’ 0d¢2), (13)

where u is a time-like coordinate so that ¥ = constant represents, asymp-
totically, null cones open to the future and R is a null coordinate (grr = 0).
The relationship between the coordinates (¢, r, 0, ¢) and (u, R, 0, ¢) is

u=t—r—2,’Mln(L—l), R=r. (14)
2M

The exterior and interior solutions are separated by the surface r =
a(t). To match both regions on this surface we require the Darmois junc-
tion conditions. Thus, demanding the continuity of the first fundamental
form, we obtain

-
=1 -=— 15
e R (15)
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and
Ve = —Aa . (16)

From now on the subscript « indicates that the quantity is evaluated at
the surface. Now, instead of writing the junction conditions as usual, we
demand the continuity of the first fundamental form and the continuity
of the independent components of the energy-momentum flow. This last
condition guarantees absence of singular behaviors on the surface. It is
easy to check that [18,22]

]/7\(1 =P + 2Przw (17)
which expresses the discontinuity of the radial pressure in presence of vis-
cous processes.

2.3. Surface equations

To write the surface equations we introduce the mass function m by
means of

e D =1 —2m(r, 1)/r. (18)
Substituting (18) into (5) and (8) we obtain, after some arrangements,
d d
d—”; = —4xr? d_:p, + o1 —w) (1 —2m/r)/2e”?|. (19)

This equation shows the energetics across the moving boundary of the fluid
sphere. Evaluating (19) at the surface and using the boundary condition
(17) (which is equivalent to p,, = 0), the energy loss is given by

e = —4na*ed(1 = 2ma/a) (1 - wq). (20)

Hereafter overdot indicates d/dt. The evolution of the boundary is gov-
erned by eq. (4) evaluated at the surface

a=(1-2my/a)o, . (21

Scaling the total mass m,, the radius a and the time-like coordinate by
the initial mass m,(t = 0) = m,(0),

A= a/Wla(O), M= mzz/ma(o), t/mtl(o) —>1,
and defining

F

1 - 7 (22)

Q=ow,, (23)

E = 47ra2£(,(1 -Q), (24)
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the surface equations can be written as
A=FQ, (25)

F

Z[(l - F)Q + 2E]. (26)
Equations (25) and (26) are general within spherical symmetry. We need
a third surface equation to specify the dynamics completely for any set of
initial conditions and a given luminosity profile E(¢). For this purpose we
can use eq. (7) or appeal to the conservation equation Tffu = 0 evaluated
at the surface. But we follow here another route, that is, we assume
that the space-time admits a one-parameter group of homothetic motion
generated by a homothetic Killing vector orthogonal to the four-velocity.
These assumptions introduce some restrictions on the surface equations as
is shown in the next section.

3. HOMOTHETIC MOTION

We assume that the spherically symmetric space-time within the fluid
admits a one-parameter group of homothetic motions. In general, a global
vector field £ on the manifold is called homothetic if £ (g = 2ng holds on
a local chart, where n is a constant on the manifold, and £ denotes the
Lie derivative operator. If n £ 0, & is called proper homothetic and it can
always be scaled so to have n = 1; if n = 0 the & is a Killing vector on the
manifold [23-25]. So, after a constant rescaling we write

£eg=2g, (27)
where the vector field & has the general form
E= A, )0+ T(r, )0, . (28)

After simple manipulations we obtain from (27)

r=r (29)
A, =0, (30)
Am,+Tm,=m, (31)
Av; + To, + 2A = 2. (32)

We further assume that the four-velocity is orthogonal to the orbit of the
group

0= "
r

Ae“"”“. (33)
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Thus we obtain a connection between the time-like component of the ho-
mothetic Killing vector and the surface variables,

Ay = 2 (34)

Now, expanding v near the surface, using (15), (16), (34), and evaluat-
ing at r = a the equations (5), (8), (31) and (32), after straightforward
manipulations we find the surface equation

2
Q= %1(3F—1—2E). (35)

From now on we disregard the bulk effective pressure to promote algebraic
consistence.

4. MODELING

In order to work out models we define the self-similar variables

m

X =— (36)
r
and
y= 22, (37)
r
Thus, egs. (31) and (32) read
AX, +7rX,=0 (38)
and
AY;+rY, =0. (39)

In general these equations have solutions X = X (¢) and Y = Y(c), where
g is
c= re_-[ /N (40)
We propose the specific solutions

X = (41)
and

Y = G, (42)

where Ci, C2, k and [ are constants.
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Solutions (41) and (42) are restricted by (15) and (16). Therefore the

geometrical variables are
k+1
r
m = ma( _) , (43)

a
) )20+ D
F| — . (44)
a

In order to get the unique luminosity

o
1

E

LF(k+ 20+ 3) = (k+ 1)] (45)

we use eqs. (5), (6), (43) and (44) together with the boundary conditions
(15), (16) and (17) to find

G- 2E+ Z 46)
2Ak+ 1)N(F -1)°
where
Z = [F2(5k> + 4kl + 10k + 4> + 121+ 9)
—2F(k+ 1) (5k + 21+ 3) + 5k> + 6k + 1]'/2. (47)

Note that “+” in the numerator of (46) represents the collapsing solution
and “—” an expanding one. We consider here only Q" situations.

Now, combining eqs. (35) and (46) we obtain an equation f(F, k, ) =
0, which is too lengthy to present here, but which permits us to model
different situations. The first one is the shear-free and self-similar collapse
for which k = [ = 0, m/a = 0.3096 (m and a are linear with time) and
p = 0 at any space-time point. The second possibility appears upon solving
for [ = I(F(t = 0), k) and includes the previous case. For k # 0 we obtain
shearing models but the homothetic symmetry is broken for ¢ > 0.

We work out a “tricky” third scenario by “forgetting” the origin of
parameter /, proposing that it depends on time in a very special way. If
we imagine N initial self-similar states which represents the history of the
collapsing surface, the symmetry equations (31) and (32) are satisfied at
every point of the space-time without taking into account the variation
with time of /. Therefore, we integrate numerically only eqgs. (25) and
(26), with (45), (46) and with / = [(t). Here we use standard Runge-Kutta
(fourth order) methods and the initial conditions
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Figure 1. p/p as a function of time, for different values of r/a: 0.1 (uppermost curve),
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (lowermost curve).
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Figure 2. dr/dt as a function of time, for different values of r/a: 0.1 (uppermost
curve), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (lowermost curve).
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Figure 3. ¢ as a function of time, for different values of r/a: 0.1 (initially uppermost
curve), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (initially lowermost curve).
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Figure 4. n as a function of time, for different values of r/a: 0.1 (uppermost curve),
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (lowermost curve).
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A(0) = 3.255, F(0) ~ 0.3856.

Once the boundary evolution and its energetics are determined, we use
(43) [or (18)] and (44) to calculate the physical variables from the field
equations. Figures 1-4 sketch the ratio p/p, dr/dt, ¢ and n, respectively, for
k = (2)1073. These self-similar spheres do not have a barotropic equation
of state (Figure 1). All shells evolve with decreasing collapsing velocities
(Figure 2). This behavior seems to be connected with the absorption
of energy shown in Figure 3 in the late stage. Shear viscosity increases
initially with collapse but later decreases with time on any shell.

5. CONCLUSIONS

We have assumed an additional symmetry to the space-time, homo-
thetic motion, to generate non-static and simple solutions. These solutions
were matched with the Vaidya one. We found that self-similar spheres
with a barotropic equation of state (p = 0) are shear-free, this result is in
complete accord with theoretical expectation [2,26,27]. Other self-similar
scenarios are possible as well if we assume the evolution of the surface as a
huge set of initial self-similar states. The shear viscosity profiles obtained
in this work coincide qualitatively surprisingly well with others calculated
in a more realistic framework [19].

ACKNOWLEDGEMENTS

We benefited from research support by the Consejo de Investigacion
under Grant CI-5-1001-0774/96 of the Universidad de Oriente and from
computer time made available from SUCI-UDO and CeCalCULA.

REFERENCES

1. Cahill, M. E., and Taub, A. H. (1971). Commun. Math. Phys. 21, 1.

2. Ori, A., and Piran, T. (1990). Phys. Rev. D42, 1068.

3. Henriksen, R. N., Emslie, A. G., and Wesson, P. S. (1983). Phys. Rev. D27, 1219.
4. Henriksen, R. N. (1989). Mon. Not. R. Astr. Soc. 240, 917.

5. Alexander, D., Green, R. M., and Emslie, A. G. (1989). Mon. Not. R. Astr. Soc.

237, 93.

Coley, A. A. (1997). Class. Quantum Grav. 14, 87.

Ponce de Leon, J. (1993). Gen. Rel. Grav. 25,9, 865.

Henriksen, R. N., and Patel, K. (1991). Gen. Rel Grav. 23, 527.

Sil, A. and Chatterjee, S. (1996). Gen. Rel. Grav. 28, 775.

Bicknell, G. V., and Henriksen, N. (1978). Astrophys. J. 219, 1043; 225, 237.
Wesson, P. (1979). Astrophys. J. 228, 647.

S e

—_——



26

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.

Barreto, Ovalle and Rodriguez

Coley, A. A. and Tupper, B. O. J. (1985). Astrophys. J. 288, 418.

Ponce de Leon, J. (1990). J. Math. Phys. 31, 2, 371.

Ponce de Leon, J. (1991). J. Math. Phys. 32, 12, 3546.

Coley, A. A., and van den Hoogen, R. J. (1994). In Deterministic Chaos in General
Relativity, D. Hobill, A. Burd and A. A. Coley, eds. (Plenum Press. New York), p.
297.

Herrera, L., Jimeénez, J., and Barreto, W. (1989). Can. J. Phys. 67, 855.

Barreto, W. and Rojas, S. (1992). Astrophys. Space Sci. 193, 201.

Barreto, W. (1993). Astrophys. Space Sci. 201, 191.

Martinez, J. (1996). Phys. Rev. D 53, 6921.

Barreto, W. and Castillo, L. (1995). J. Math. Phys. 36, 5789.

Bondi, H. (1964). Proc. Roy. Soc. Lond. A281, 39.

Herrera, L. (1996). In II Escuela Venezolana de Relatividad, Campos y Astrofisica:
Campos gravitacionales en la materia: La otra cara de la moneda, H. Rago, ed.
(Universidad de los Andes, Mérida, Venezuela), p. 81.

Hall, G. S. (1988). Gen. Rel. Grav. 20, 671.

Hall, G. S. (1990). J. Math. Phys. 31, 1198.

Carot, J., Mas, L., and Sintes, A. M. (1994). J. Math. Phys. 35,7, 3560.

Waugh, P. and Lake, K. (1988). Phys. Rev. D38, 1315.

Hiskock, W., Williams, L., and Eardley, D. (1982). Phys. Rev. D 26, 751.



