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Equation of state and transport processes in self-similar spheres
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We study the effect of transport processdifusion and free streamingn a collapsing spherically sym-
metric distribution of matter in a self-similar space-time. A very simple solution shows interesting features
when it is matched with the Vaidya exterior solution. In the mixed ¢ditusion and free streamingwe find
a barotropic equation of state in the stationary regime. In the diffusion approximation the gravitational potential
at the surface is always constant; if we perturb the stationary state, the system is very stable, recovering the
barotropic equation of state as time progresses. In the free-streaming case the self-similar evolution is station-
ary, but with a nonbarotropic equation of stdi®80556-282(98)07624-3

PACS numbes): 04.40.Dg

I. INTRODUCTION ing). The interior solution is matched to an exter{diaidya)
solution by means of the Darmois-Lichnerowicz conditions.

The formation of compact objects is usually preceded by We discuss neither the microprocesses that produce free
an epoch of radiative collap$é]. One of the main difficul- streaming nor the temperature distribution during diffusion.
ties in the study of these systems is that there is no reliablEOr the latter another approach is necessary to avoid patho-
information about the equation of state in the central regiondegical behaviof 16].
of superdense stars, such as neutron stars, and this leads to
assumptions of a very general nat({igg. Il. FIELD EQUATIONS AND MATCHING

Few exact solutions to the Einstein equations are relevant . . . o
to gravitational collapse. For this reason, new collapse solul-)ut'i:gr: t&i %es(;rrlﬁte”i; dﬁzgggtlsnnet?{cﬂ:ﬁ It%t:rlsorhoefrit:; (g(s)tr:;i
tions are very useful, even if they are simplified of@s It is form [17] P
well known that the field equations admit homothetic motion
[3—6]. Applications of homothetic similarity range from v
modeling black holes to producing counterexamples to the d52232ﬁ<_ du?+du dr) —r2(d6?+sirf6 d¢?), (1)
cosmic censorship conjectufé-14]. r

The natural formulation of the collapse problem is that of , ) o
initial values, with ana priori defined equation of state. WhereéBandV are functions ol andr. Hereu is a timelike
However, there are only a few solutions to the Einstein fieldce0rdinater is a null coordinate g, =0)—that is,r=0 is
equations with a well-defined equation of state. It has beeA" &ffine parameter along the null generatorsusfconst
shown that the only perfect fluid equation of state compatibld!u!l hypersurfaces—and, ¢ are the usual angular coordi-
with self-similarity is the barotropic ong]. nates; we are using geometrized units=G=1).

Emission of photons or neutrinos is a typical process in _1he hydrodynamic scenario, as viewed by a local
the evolution of massive stars. The only plausible mechaMinkowskian observer comoving with the fluiaith veloc-
nism to deliver almost all the binding gravitational energy,!ty — ), consists of an isotropic fluid of densityand pres-
during the collapse toward a neutron star, is that of neutrinGUrep, unpolarized energy densigy and heat fluxg travel-
emission[15]. It seems clear that the free-streaming proces&d in the radial direction. Therefore, for this comoving
is associated with the initial stages of the collapse, while th@PServer, the covariant energy-momentum tensor is
diffusion approximation becomes valid toward the final

stages. pte —Qq-e 0 0

In this paper, we explore self-similar gravitational col- —q-€¢ pte 0 O
lapse. For such an assumption, we recast the geometrical 0 0 p O
variables so as to have an explicit radial dependence. The 0 0 0 p

fluid is considered with heat flo\ithe diffusion approxima-
tion) or free propagation in the radial directi¢itee stream- Note that the velocity of matter in the Bondi coordinates is
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We can write the Einstein field equations[4s)]
47Tr2 2 21 =~ eizﬂﬂm,u
(1—@2) [p+pw +2wq+6(1+w) ]—m’,—(l_z—m/r),
()
4qrr? .
1+ a) [(p—wp)—(l-w)q]=Mm,, (4)
271 (1-w)(p+p-2q) _
(1-2m/r)(1+w) 7 ®
8mp=—2e B, +[3B(1—2M ) —m,]/r
+(1—2M/1) (2B, +4B5— B I1), (6)
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e?f=(rla)' 1. 9

Condition (7) then implies that the local radial velocity is
determined at the surface in terms of the gravitational poten-
tial M, /a and the parametefsandl:

(1—2m,/a) 1+I
 (Mu/a)  (1+k)

(10

(OP

Equations(2) and(3) evaluated at the surface constitute the
system of (ordinary differential equations ina(u) and
m,(u), to be integrated while taking into account E0).
Thus the dynamics at the surface is completely determined if
we establish how energy is exchanged with the exterior. In
fact, we have found that self-similarity determines the lumi-
nosity profiles[25,26].

IV. TRANSPORT PROCESSES

In order to explore the effect of the transport processes on

where the comma subscript represents partial differentiatiogelf-similar gravitational collapse, we consider below a com-

with respect to the indicated coordinate énds the Bondi
mass defined bfh=[r—V exp(—28)]/2.

bination of the diffusion and free-streaming mechanisms and
the action of each one separately. In particular we discuss

The exterior space-time is described by the Vaidya radiwhether the barotropic equation of state holds in each case.

ating metric[19]. In order to match this to the interior solu-
tion, we use the Darmois-Lichnerowicz conditions. These are
equivalent to the continuity of the functiosandm across

the boundary of the sphere and to the condifi?,21]
[—B.e*P+(1—2mir)B,—M /(2r)],=0,  (7)

which is equivalent tg,=q, . The subscripa indicates that

the quantity is being evaluated at the surfaeea(u).

Ill. SPHERICAL AND SELF-SIMILAR
INTERIOR SOLUTIONS

A. Mixed

If the transport mechanism is mixed, we require addi-
tional information. Only in this case do we suppose orthogo-
nality between the four-velocity and the homothetic vector.
This condition has been employed to obtain static solutions
[27], and it also establishes a relationship between the homo-
thetic vector and the equation of sta®8]. Another meaning
attributable to the orthogonality condition is that the group,
generated by the homothetic vector, is acting upon the three-
space comoving with the observer. The referred condition,
together with £g=2g, can thus be seen as a covariant defi-

Self-similarity is invariably defined by the existence of a njtion of self-similarity[29]. Therefore, from the orthogonal-

homothetic Killing vector field4]. A homothetic vector field

on the manifold is one that satisfiesge=2ng on a local

ity condition we obtain the temporal component of the ho-
mothetic vector:

chart, wheren is a constant on the manifold and £ denotes

the Lie derivative operator. Hi# 0, we have a proper homo-
thetic vector field and it can always be scaled to have
=1; if n=0, then is a Killing vector on the manifold

[22—-24. So for a constant rescaling satisfies £g=2g and

has the formé=A(u,r)d,+X\(u,r)d, . If the matter field is a
perfect fluid, the only equation of state consistent witly £
=2g is a barotropic on¢4]. The homothetic equations re-

duce to&(X)=0, &(Y)=0, A=r, and A=A(u), whereX
=m/r and Y=Ae?#/r. Therefore,X=X(¢) and Y=Y({)

are solutions if the self-similar variable is defined &as

=r exp(—[dU/A). Here we assume that=C,/* and that

Y=C,{', whereC;, C,, k, andl are constants. This power-

A=my(1+1)/(1+Kk). 1y
The radiation flux at the surface is then determined from the
symmetry equations. The heat flux at the surface is also de-
termined from Eq(6) or, equivalently, fromr4.,=0 evalu-
ated at the surface. Now, feeding back E{€) and (11)

into the symmetry equations, we find algebraically, by means
of symbolic manipulation withREDUCE, two restrictions
which allow us to satisfy the symmetry equationiy: k=

=l and(ii) k=[(1-2m,/a)(I+2)—1]/(2M,/a). Restric-
tion (i) leads tow,= — 1 [through Eq(10)]; that is, the fluid
collapses at light speed. We must reject this possibility. Un-

law dependence ohis based on the fact that any function of der restriction(i) k= —1, the homothetic symmetry is pre-

{ is a solution of £g=2g. As we shall see, this simplifying served at all points of the space-time, when we integrate
assumption is not devoid of physical meaning. Demandingiumerically (using the Runge-Kutta methpthe system of
continuity of the first fundamental form, we get the follow- equations at the surface. Specifically, for0 the physical

ing metric solutions:

fh=m,(r/a)“"?, (8)

variables are well behaved and the equation of state is baro-
tropic in the whole sphere; that is, the rafifp is constant at
all points of the materialsee Fig. 1 All shells collapse with
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FIG. 1. Evolution of the physical variables for the mixed trans- |G, 2. The ratiop/p as a function of retarded time in the

port process wittk=0. In each graph the curves correspdfiom itfysjon approximation wittkk=0, considering perturbations of the
the uppermost to the lowermgsb the ratios/a(0)=0.2, 0.4, 0.6, stationary regime.

0.8, and 1.0, respectively. The rafdp is the same at any point of
the material. gree 7, we found that the physically acceptable models are
similar to those that emerge from restrictiGn, k=—1. In
the emission of energy. The pressure, density, heat flow, ar@hy case, the gravitational potential at the surface is constant
radiation flux are stationary inside the sphere. The mattetfh,/a depending only ork) although the distribution col-
velocity decreases toward the center and is constant at tHepses. If we perturb this stationary state, we find numeri-
surface. Observe thqt~(3/5)p, as we expect, because the cally that the system recovers the barotropic equation of state
heat flow diminishes the effective gravitation or, in otheronly for k=0 (see Fig. 2 Perturbations consist of enhancing
words, the equation of state is softened by the diffusive proor diminishing the gravitational potential at the surface,
cess[30,18. For k+#0 the equation of state is not longer while preserving the values & Therefore, we must inte-
barotropic and the physical variables are not stationary, algrate numericallyusing the Runge-Kutta method agathe
though the interior space-time is self-similar. two perturbed differential equations at the surface. It is im-
portant to stress that the symmetry equations are satisfied
everywhere and at all times when we perturb the system.

B. Diffusion
In the diffusion approximationd=0) we again obtain the C. Free streaming
heat flux at the surface from Ep) or Tz, , =0 evaluated at In this transport processqE0) the boundary condition

the surface. From the symmetry equations evgluated at the duces top,=0. We obtain again a gravitational potential
surface, we deduce that the gravitational potential at the SU{ynich is constant at the surfa¢om T~ _evaluated at the

3% 1 1 Na
face,M,/a, is a function of onlyk and|. The surface equa- g rface. Therefore, the luminosity profile and the temporal
tions thus reduce to one differential equation &for Ma). - component of the homothetic vector are determined from
This situation leads us to four possible restrictioisk=" one of the symmetry equations. No restrictions appear on the

—1; (i) 1=—1, which is equivalent te;= 1 [see Eq(10)];  parameter& and|, and no barotropic behavior is found, at
that is, the fluid explodes at light speddi) a complicated |55t for the cases examined.

polynomial of degree 3 ik with coefficients depending dn
(iv) a complicated polynomial of degree 7 kwith coeffi-
cients depending oh We solved analytically the polynomial
of degree JusingREDUCE), obtaining one real and two com- We have studied the effect of diffusion and free streaming
plex solutions. All these must be rejected because they don self-similar gravitational collapse using the solutions to
not have physical meaning for a wide interval of numericalthe Einstein equations given by E¢8) and(9). We find that
values ofl. After solving numerically the polynomial of de- the equation of state is barotropic only when diffusion occurs

V. CONCLUSION
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and the parametdeis zero. In general#0) the equation tor of the group and the four-velocity. It would be of interest
of state is not barotropic, although self-similarity holds ev-to attempt to relax some of our suppositions in order to in-
erywhere. Thus for nonperfect fluids self-similarity is con- vestigate how general our conclusions are.

nected with a barotropic equation of state only under special
conditions. Heat flow seems to be crucial for this result. Vis-
cosity in self-similar distributions has also been considered
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