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Equation of state and transport processes in self-similar spheres
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We study the effect of transport processes~diffusion and free streaming! on a collapsing spherically sym-
metric distribution of matter in a self-similar space-time. A very simple solution shows interesting features
when it is matched with the Vaidya exterior solution. In the mixed case~diffusion and free streaming!, we find
a barotropic equation of state in the stationary regime. In the diffusion approximation the gravitational potential
at the surface is always constant; if we perturb the stationary state, the system is very stable, recovering the
barotropic equation of state as time progresses. In the free-streaming case the self-similar evolution is station-
ary, but with a nonbarotropic equation of state.@S0556-2821~98!07624-3#

PACS number~s!: 04.40.Dg
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I. INTRODUCTION

The formation of compact objects is usually preceded
an epoch of radiative collapse@1#. One of the main difficul-
ties in the study of these systems is that there is no relia
information about the equation of state in the central regi
of superdense stars, such as neutron stars, and this lea
assumptions of a very general nature@2#.

Few exact solutions to the Einstein equations are relev
to gravitational collapse. For this reason, new collapse s
tions are very useful, even if they are simplified ones@3#. It is
well known that the field equations admit homothetic moti
@3–6#. Applications of homothetic similarity range from
modeling black holes to producing counterexamples to
cosmic censorship conjecture@7–14#.

The natural formulation of the collapse problem is that
initial values, with ana priori defined equation of state
However, there are only a few solutions to the Einstein fi
equations with a well-defined equation of state. It has b
shown that the only perfect fluid equation of state compat
with self-similarity is the barotropic one@4#.

Emission of photons or neutrinos is a typical process
the evolution of massive stars. The only plausible mec
nism to deliver almost all the binding gravitational energ
during the collapse toward a neutron star, is that of neutr
emission@15#. It seems clear that the free-streaming proc
is associated with the initial stages of the collapse, while
diffusion approximation becomes valid toward the fin
stages.

In this paper, we explore self-similar gravitational co
lapse. For such an assumption, we recast the geome
variables so as to have an explicit radial dependence.
fluid is considered with heat flow~the diffusion approxima-
tion! or free propagation in the radial direction~free stream-
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ing!. The interior solution is matched to an exterior~Vaidya!
solution by means of the Darmois-Lichnerowicz condition

We discuss neither the microprocesses that produce
streaming nor the temperature distribution during diffusio
For the latter another approach is necessary to avoid pa
logical behavior@16#.

II. FIELD EQUATIONS AND MATCHING

For the geometric description of the interior of the dist
bution we use the radiation metric in the spherical Bon
form @17#

ds25e2bS V

r
du21du drD2r 2~du21sin2u df2!, ~1!

whereb andV are functions ofu andr. Hereu is a timelike
coordinate,r is a null coordinate (grr 50)—that is,r>0 is
an affine parameter along the null generators ofu5const
null hypersurfaces—andu, f are the usual angular coord
nates; we are using geometrized units (c5G51).

The hydrodynamic scenario, as viewed by a loc
Minkowskian observer comoving with the fluid~with veloc-
ity 2v!, consists of an isotropic fluid of densityr and pres-
surep, unpolarized energy densitye, and heat fluxq travel-
ing in the radial direction. Therefore, for this comovin
observer, the covariant energy-momentum tensor is

S r1e
2q2e

0
0

2q2e
p1e

0
0

0
0
p
0

0
0
0
p
D .

Note that the velocity of matter in the Bondi coordinates
©1998 The American Physical Society08-1
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dr

du
5

V

r

v

12v
. ~2!

We can write the Einstein field equations as@18#

4pr 2

~12v2!
@r1pv212vq1e~11v!2#5m̃,r2

e22bm̃,u

~122m̃/r !
,

~3!

4pr 2

~11v!
@~r2vp!2~12v!q#5m̃,r , ~4!

2pr ~12v!~r1p22q!

~122m̃/r !~11v!
5b ,r , ~5!

8pp522e22bb ,ur1@3b ,r~122m̃,r !2m̃,rr #/r

1~122m̃/r !~2b ,rr 14b ,r
2 2b ,r /r !, ~6!

where the comma subscript represents partial differentia
with respect to the indicated coordinate andm̃ is the Bondi
mass defined bym̃5@r 2V exp(22b)#/2.

The exterior space-time is described by the Vaidya ra
ating metric@19#. In order to match this to the interior solu
tion, we use the Darmois-Lichnerowicz conditions. These
equivalent to the continuity of the functionsb andm̃ across
the boundary of the sphere and to the condition@20,21#

@2b ,ue2b1~122m̃/r !b ,r2m̃,r /~2r !#a50, ~7!

which is equivalent topa5qa . The subscripta indicates that
the quantity is being evaluated at the surfacer 5a(u).

III. SPHERICAL AND SELF-SIMILAR
INTERIOR SOLUTIONS

Self-similarity is invariably defined by the existence of
homothetic Killing vector field@4#. A homothetic vector field
on the manifold is one that satisfies £jg52ng on a local
chart, wheren is a constant on the manifold and £ deno
the Lie derivative operator. IfnÞ0, we have a proper homo
thetic vector field and it can always be scaled to haven
51; if n50, then j is a Killing vector on the manifold
@22–24#. So for a constant rescaling,j satisfies £jg52g and
has the formj5L(u,r )]u1l(u,r )] r . If the matter field is a
perfect fluid, the only equation of state consistent with £jg
52g is a barotropic one@4#. The homothetic equations re
duce toj(X)50, j(Y)50, l5r , and L5L(u), whereX
[m̃/r and Y[Le2b/r . Therefore,X5X(z) and Y5Y(z)
are solutions if the self-similar variable is defined asz
[r exp(2*du/L). Here we assume thatX5C1zk and that
Y5C2z l , whereC1 , C2 , k, andl are constants. This power
law dependence onz is based on the fact that any function
z is a solution of £jg52g. As we shall see, this simplifying
assumption is not devoid of physical meaning. Demand
continuity of the first fundamental form, we get the follow
ing metric solutions:

m̃5m̃a~r /a!k11, ~8!
02400
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e2b5~r /a! l 11. ~9!

Condition ~7! then implies that the local radial velocityv is
determined at the surface in terms of the gravitational pot
tial m̃a /a and the parametersk and l:

va512
~122m̃a /a!

~m̃a /a!

11 l

~11k!
. ~10!

Equations~2! and ~3! evaluated at the surface constitute t
system of ~ordinary differential! equations ina(u) and
m̃a(u), to be integrated while taking into account Eq.~10!.
Thus the dynamics at the surface is completely determine
we establish how energy is exchanged with the exterior
fact, we have found that self-similarity determines the lum
nosity profiles@25,26#.

IV. TRANSPORT PROCESSES

In order to explore the effect of the transport processes
self-similar gravitational collapse, we consider below a co
bination of the diffusion and free-streaming mechanisms
the action of each one separately. In particular we disc
whether the barotropic equation of state holds in each ca

A. Mixed

If the transport mechanism is mixed, we require ad
tional information. Only in this case do we suppose orthog
nality between the four-velocity and the homothetic vect
This condition has been employed to obtain static soluti
@27#, and it also establishes a relationship between the ho
thetic vector and the equation of state@28#. Another meaning
attributable to the orthogonality condition is that the grou
generated by the homothetic vector, is acting upon the th
space comoving with the observer. The referred conditi
together with £jg52g, can thus be seen as a covariant de
nition of self-similarity@29#. Therefore, from the orthogonal
ity condition we obtain the temporal component of the h
mothetic vector:

L5m̃a~11 l !/~11k!. ~11!

The radiation flux at the surface is then determined from
symmetry equations. The heat flux at the surface is also
termined from Eq.~6! or, equivalently, fromT1;m

m 50 evalu-
ated at the surface. Now, feeding back Eqs.~10! and ~11!
into the symmetry equations, we find algebraically, by me
of symbolic manipulation withREDUCE, two restrictions
which allow us to satisfy the symmetry equations:~i! k5
2 l and ~ii ! k5@(122m̃a /a)( l 12)21#/(2m̃a /a). Restric-
tion ~ii ! leads tova521 @through Eq.~10!#; that is, the fluid
collapses at light speed. We must reject this possibility. U
der restriction~i! k52 l , the homothetic symmetry is pre
served at all points of the space-time, when we integr
numerically ~using the Runge-Kutta method! the system of
equations at the surface. Specifically, fork50 the physical
variables are well behaved and the equation of state is b
tropic in the whole sphere; that is, the ratiop/r is constant at
all points of the material~see Fig. 1!. All shells collapse with
8-2
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the emission of energy. The pressure, density, heat flow,
radiation flux are stationary inside the sphere. The ma
velocity decreases toward the center and is constant a
surface. Observe thatp'(3/5)r, as we expect, because th
heat flow diminishes the effective gravitation or, in oth
words, the equation of state is softened by the diffusive p
cess@30,18#. For kÞ0 the equation of state is not longe
barotropic and the physical variables are not stationary,
though the interior space-time is self-similar.

B. Diffusion

In the diffusion approximation (e50) we again obtain the
heat flux at the surface from Eq.~6! or T1;m

m 50 evaluated at
the surface. From the symmetry equations evaluated at
surface, we deduce that the gravitational potential at the
face,m̃a /a, is a function of onlyk and l. The surface equa
tions thus reduce to one differential equation fora ~or m̃a!.
This situation leads us to four possible restrictions:~i! k5
2 l ; ~ii ! l 521, which is equivalent tova51 @see Eq.~10!#;
that is, the fluid explodes at light speed;~iii ! a complicated
polynomial of degree 3 ink with coefficients depending onl;
~iv! a complicated polynomial of degree 7 ink with coeffi-
cients depending onl. We solved analytically the polynomia
of degree 3~usingREDUCE!, obtaining one real and two com
plex solutions. All these must be rejected because they
not have physical meaning for a wide interval of numeri
values ofl. After solving numerically the polynomial of de

FIG. 1. Evolution of the physical variables for the mixed tran
port process withk50. In each graph the curves correspond~from
the uppermost to the lowermost! to the ratiosr /a(0)50.2, 0.4, 0.6,
0.8, and 1.0, respectively. The ratiop/r is the same at any point o
the material.
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gree 7, we found that the physically acceptable models
similar to those that emerge from restriction~i!, k52 l . In
any case, the gravitational potential at the surface is cons
~m̃a /a depending only onk! although the distribution col-
lapses. If we perturb this stationary state, we find num
cally that the system recovers the barotropic equation of s
only for k50 ~see Fig. 2!. Perturbations consist of enhancin
or diminishing the gravitational potential at the surfac
while preserving the values ofk. Therefore, we must inte
grate numerically~using the Runge-Kutta method again! the
two perturbed differential equations at the surface. It is i
portant to stress that the symmetry equations are satis
everywhere and at all times when we perturb the system

C. Free streaming

In this transport process (q50) the boundary condition
reduces topa50. We obtain again a gravitational potenti
which is constant at the surface~from T1;m

m evaluated at the
surface!. Therefore, the luminosity profile and the tempor
component of the homothetic vector are determined fr
one of the symmetry equations. No restrictions appear on
parametersk and l, and no barotropic behavior is found,
least for the cases examined.

V. CONCLUSION

We have studied the effect of diffusion and free stream
on self-similar gravitational collapse using the solutions
the Einstein equations given by Eqs.~8! and~9!. We find that
the equation of state is barotropic only when diffusion occ

- FIG. 2. The ratiop/r as a function of retarded time in th
diffusion approximation withk50, considering perturbations of th
stationary regime.
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and the parameterk is zero. In general (kÞ0) the equation
of state is not barotropic, although self-similarity holds e
erywhere. Thus for nonperfect fluids self-similarity is co
nected with a barotropic equation of state only under spe
conditions. Heat flow seems to be crucial for this result. V
cosity in self-similar distributions has also been conside
previously and the same result emerges; that is, the equa
of state can be barotropic@26#. We have found relativistic
and self-similar examples compatible with a nonbarotro
equation of state@31#, at least within our chosen simple so
lutions and the orthogonality condition between the gene
ef

a
,
e
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tor of the group and the four-velocity. It would be of intere
to attempt to relax some of our suppositions in order to
vestigate how general our conclusions are.
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