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Abstract. We study the evolution of spherically symmetric radiating fluid distributions using the
effective variables method, implemented ab initio in Schwarzschild coordinates. To illustrate the
procedure and to establish some comparison with the original method, we integrate numerically
the set of equations at the surface for two different models. The first model is derived from the
Schwarzschild interior solution. The second model is inspired in the Tolman VI solution.

1. Introduction

In 1980, Herrera, Jiménez and Ruggeri proposed a seminumerical method, here-
after referred to as the effective variables method (EVM), that can be used to
obtain nonstatic models from static solutions. This method divides the spacetime
in two spatial regions. The outer region is described by the Vaidya solution and
the spacetime metric in the interior is obtained by solving the Einstein field equa-
tions. Further, proper boundary conditions are imposed in order to guarantee a
smooth matching of both solutions. The EVM has been used extensively to study
astrophysical scenarios in radiative coordinates (Herrera et al., 1980; Herrera and
Núñez, 1990). The method assumes that the called effective variables ρ̃ and p̃,
which depend also on the time-like coordinate, have the same radial dependence
as the corresponding static physical variables (energy density and pressure) ob-
tained from a static interior solution of the Einstein equations. The rationale behind
such an assumption is the fact that the effective variables reduce to their physical
counterparts in the static limit. This approach can be justified by means of the
characteristic times for different processes which take place in the collapse scen-
ario (Martínez, 1996; Kippenhan and Weigert, 1990; Burrows and Lattimer, 1986).
If the hydrostatic time scale, τhydr. ≈ 1/

√
Gρ, is much shorter than the Kelvin-

Helmholtz time scale τKH , then in a first approximation the inertial terms in the
equation of motion can be ignored. Consequently, it seems reasonable to assume, in
this approximation, that the radial dependence of the physical variables is the same
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as in the static solution. However, a better approximation is obtained by assuming
that the effective variables, not the physical ones, have the same radial dependence
as the corresponding physical variables of the static situation (Herrera et al., 1980).

If the EVM is truly general, an implementation in Schwarzschild coordinates
could be more interesting for astrophysicists since these are the type of coordin-
ates commonly used by them; this is successfully accomplished in this paper. The
idea that we can always cosntruct dynamical solutions from static ones seems a
general method. Besides, as we will show, the EVM in Schwarzschild coordin-
ates introduces higher dynamic corrections, by means of the velocity respect to a
minkowskian observer, than those obtained in the Bondi coordinates treatment.

In this paper we model two simple but physically meaningful scenarios. The
first is obtained from a static solution for an incompressible fluid. Once the sphere
departs from static equilibrium by the emission of energy, it slowly recovers the
initial state (staticity), unless some energy can be reabsorbed at the surface to reach
a constant radius in short time. In fact we show that even in Bondi coordinates the
same result holds if staticity at the surface is enforced. The second model cor-
responds to a highly compressed gas of fermions, Tolman’s solution VI (Tolman,
1939), and leads us to an exploding sphere as has been reported (Herrera et al.,
1980; Barreto, 1993). Additionally, these seminumerical models could serve as
useful test beds for the numerical relativity methods being developed to match
Cauchy and characteristic codes (Bishop, 1992, 1993; Bishop et al., 1996; Clarke
et al., 1995; d’Inverno and Vickers, 1996, 1997; Dubal et al., 1995).

The paper is organized as follows. In Section 2 we write the field equations, for
the inner region, in Schwarzschild coordinates. Describing the exterior space-time
by means of the Vaidya metric, in Section 3, we treat the matching conditions and
write the equations at the boundary of the distribution of matter. In Section 4 we
show our two models; finally we conclude in Section 5.

2. Field Equations

To write the Einstein field equations, inside the distribution of matter, we use the
line element in Schwarzschild coordinates

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (1)

where ν = ν(t, r) and λ = λ(t, r), with (t, r, θ, φ) ≡ (0, 1, 2, 3).
Physical input is obtained by introducing Minkowski coordinates (τ, x, y, z) by

(Bondi, 1964)

dτ = eν/2dt, dx = eλ/2dr, dy = rdθ, dz = r sin θdφ. (2)

In these expressions ν and λ are constants, because they only have local values.
Next we assume that, for an observer moving relative to these coordinates with

velocity ω in the radial (x) direction, the space is filled with a fluid of density
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ρ, pressure p, and unpolarized radiation of energy density ε̂. For this comoving
observer, the covariant energy tensor in Minkowski coordinates is


ρ + ε̂ −ε̂ 0 0
−ε̂ p + ε̂ 0 0
0 0 p 0
0 0 0 p


 . (3)

Note that from (2) the velocity of matter in the Schwarzschild coordinates is

dr

dt
= ωe(ν−λ)/2. (4)

Now, by means of a Lorentz boost and defining ε ≡ ε̂(1 +ω)/(1 −ω) we write
the field equations in relativistic units (G = c = 1) as follows:

ρ + pω2

1 − ω2
+ ε = 1

8πr

[
1

r
− e−λ

(
1

r
− λ,r

)]
, (5)

p + ρω2

1 − ω2
+ ε = 1

8πr

[
e−λ

(
1

r
+ ν,r

)
− 1

r

]
, (6)

p = 1

32π
{e−λ[2ν,rr + ν2

,r − λ,rν,r + 2

r
(ν,r − λ,r)]

−e−ν[2λ,tt + λ,t (λ,t − ν,t )]}, (7)

(ρ + p)
ω

1 − ω2
+ ε = − λ,t

8πr
e− 1

2 (ν+λ), (8)

where the comma subscript represents partial differentiation with respect to the
indicated coordinate.

We have four field equations for four physical variables (ρ, p, ε and ω) and two
geometrical variables (ν and λ). Obviously, additional information is required to
handle the problem consistently. First, however, we discuss the matching with the
exterior solution and the surface equations that govern the dynamics.

3. Matching Conditions and Surface Equations

We describe the exterior space-time by the Vaidya metric

ds2 =
(

1 − 2M(u)

R

)
du2 + 2dudR − R2(dθ2 + sin2 θdφ2), (9)

where u is a time-like coordinate so that u = constant represents, asymptotically,
null cones open to the future and R is a null coordinate (gRR = 0).
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The exterior and interior solutions are separated by the surface r = a(t). To
match both regions on this surface we require the Darmois matching conditions.
Thus, demanding the continuity of the first fundamental form, we obtain

e−λa = 1 − 2M

Ra

(10)

and

νa = −λa. (11)

From now on, the subscript a indicates that the quantity is evaluated at the sur-
face. Matching conditions are usually obtained from the continuity of the first
and second fundamental forms. Here, however, we will use the continuity of the
independent components of the energy-momentum flow instead of the second fun-
damental form, which have been shown to be equivalent (Herrera and Di Prisco,
1997) but it is simpler to apply in the present case. This last condition guarantees
absence of singular behaviors on the surface. It is easy to check that

pa = 0, (12)

which expresses the continuity of the radial pressure.
To write the surface equations we introduce the mass function m by means of

e−λ(r,t) = 1 − 2m(r, t)/r. (13)

Substituting (13) into (5) and (8) we obtain, after some rearrangements,

dm

dt
= −4πr2

[
dr

dt
p + ε(1 − ω)

(
1 − 2m

r

)1/2

eν/2

]
. (14)

This equation shows the energetics across the moving boundary of the fluid sphere.
Evaluating (14) at the surface and using the boundary condition (12), the energy
loss is given by

ṁa = −4πa2εa(1 − 2ma/a)(1 − ωa). (15)

Hereafter, a dot over any variable indicates d/dt . The evolution of the boundary is
governed by Equation (4) evaluated at the surface

ȧ = (1 − 2ma/a)ωa. (16)

Scaling the total mass ma , the radius a and the time-like coordinate by the initial
mass ma(t = 0) ≡ ma(0),

A ≡ a/ma(0),M ≡ ma/ma(0), t/ma(0) → t,

it is convenient to define

F ≡ 1 − 2M/A, (17)
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% ≡ ωa. (18)

Also we define the luminosity as seen by a comoving observer as (Martínez,
1996)

Ê ≡ (4πr2ε̂)r=a, (19)

and the luminosity perceived by an observer at rest at infinity as

L ≡ −Ṁ = FÊ(1 + %). (20)

The function F is related to the boundary redshift za by

1 + za = νem

νrec
= F−1/2. (21)

Thus the luminosity as measured by a noncomoving observer located on the surface
is

Ē = L(1 + za)
2 = −Ṁ

F
= Ê(1 + %), (22)

where the term (1 +%) accounts for the boundary Doppler shift. With these defin-
itions the surface equations can be written as

Ȧ = F%, (23)

Ḟ = (1 − F)Ȧ + 2L

A
. (24)

Equations (23) and (24) are general within spherical symmetry. We need a third
surface equation to specify the dynamics completely for any set of initial conditions
and a given luminosity profile L(t). For this purpose we can use the conservation
equation T

µ

1;µ = 0 evaluated at the surface. After straightforward manipulations the
condition T

µ

1;µ = 0 results in

p̃,r + (ρ̃ + p̃)(4πr3p̃ + m)

r(r − 2m)

= e−ν

4πr(r − 2m)

(
m,tt + 3m2

,t

r − 2m
− m,tν,t

2

)
+ 2

r
(p − p̃), (25)

where the effective variables are defined by

ρ̃ ≡ ρ + pω2

1 − ω2
+ ε (26)
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and

p̃ ≡ p + ρω2

1 − ω2
+ ε. (27)

These effective variables are essentially the same as have been defined by Herrera
and collaborators, but now the velocity ω introduces a higher dynamics correction
(quadratic). This fact could be of interest to investigate its effect on dissipative
processes (like heat flow and viscosity).

Equation (25) is the generalization of the Tolman-Oppenheimer-Volkov equa-
tion for hydrostatic support in nonstatic radiative situations. Our equation leads at
the surface to a differential equation for % if we specify in some way the geomet-
rical variables.

4. Modelling

From (5), (6) and (13, easily we obtain

m =
r∫

0

4πr2ρ̃dr, (28)

ν = νa +
r∫

a

2(4πr3p̃ + m)

r(r − 2m)
dr. (29)

Thus, m and ν are expressed in terms of ρ̃ and p̃ in the nonstatic case in the same
way they are in terms of ρ and p in the static case. These considerations suggest
the application of the EVM which until now has been exclusively used in Bondi
coordinates (Herrera et al., 1980; Herrera and Núñez, 1990); that is, we assume
that the r dependence on ρ̃ and p̃ is the same as on the ρstat ic and pstatic.

To illustrate the procedure, in what follows we model two simple scenarios
which correspond to an incompressible fluid and to a highly compressed gas of
fermions.

4.1. SCHWARZSCHILD-LIKE MODEL

Consider the well known Schwarzschild interior solution, where the density satis-
fies ρ = constant . Thus, in the EVM we take the effective density as

ρ̃ = f (t), (30)

where f is an arbitrary function of t . Now, with ρ = constant we can integrate
Equation (25) in the static case and obtain the expression for p which leads us to

p̃ + 1
3 ρ̃

p̃ + ρ̃
=
(

1 − 8π

3
ρ̃r2

)1/2

k(t), (31)
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where k is a function of t to be defined from the boundary condition (12), which
now reads, in terms of the effective variables, as

p̃a = ρ̃a%
2 + εa(1 − %2). (32)

Thus, (31) and (32) give

ρ̃ = 3(1 − F)

8πa2
, (33)

p̃ = ρ̃

3

{
χS

√
F − 3ψSξ

ψSξ − ξS
√
F

}
, (34)

with

ξ = [1 − (1 − F)(r/a)2]1/2

and

χS = 3(%2 + 1)(1 − F) + 2Ē(1 + %),

ψS = (3%2 + 1)(1 − F) + 2Ē(1 + %).

Using (28) and (29) it is easy to obtain expressions for m and ν:

m = ma(r/a)
3, (35)

eν =
{
χS

√
F − ψSξ

2(1 − F)

}2

. (36)

In order to write down explicitly the surface equations for this example, it is inter-
esting to note that the left side of (25) is zero for any value of f (t). Next, evaluating
(25) at the surface, we obtain

%̇ = 2

3F(1 − F)

{[
3

AF

(
FĒ + 3

2
(1 − F)Ȧ

)

+
(
Ḟ − ȦψS

A

)](
FĒ + 3

2
(1 − F)Ȧ

)

+6FEȦ

A
+ 6(1 − F)Ȧ2

A
− Ḟ Ē − F ˙̄E

−3

2
(1 − F)Ḟ% − F 2

A
[ψS − (1 − F)]

}
. (37)
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Figure 1. Evolution of the radius for the Schwarzschild type model.

Figure 2. Density (multiplied by 103), energy density flux (multiplied by 104), pressure (multiplied
by 103) and matter velocity (multiplied by 10) for the Schwarzschild type model as a function of
the time-like coordinate and different pieces of the material: 0.2 (solid line); 0.4 (dotted line); 0.6
(small-dashed line); 0.8 (dashed line); 1.0 (dot-dashed line).
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This last equation, together with (23) and (24), constitute the differential system
for the surface in this example. It is necessary to specify one function of t and the
initial data. To compare with Herrera et al. (1980) we choose L to be a gaussian and
radiating away 1/10 of the initial mass. Therefore, the system can be numerically
integrated for the following initial conditions (among others):

A(0) = 5.0, F (0) = 0.6, % = 0.0.

The integration was done up to some t with good behavior in the physical variables.
Feeding back the numerical values of A, F and % (and their derivatives) in (35)

and (36) we obtain m and ν (and their partial derivatives) for any value of r. Thus,
functions ρ, p, dr/dt and ε can be monitored for any piece of the material, via
field equations. We calculated them for the values r/a = 0.2, 0.4, 0.6, 0.8 and
1.0. It is interesting to observe that once the sphere departs from static equilibrium
by means of an emission of energy, it will not recover a constant radius at all, at
least within the integrated interval of time. This behavior is not evident in Bondi
coordinates, as we show below. Figure 1 shows the evolution of the radius A in a
logarithmic scale. Figure 2 displays the profiles of the physical variables versus the
time-like coordinate for the different comoving regions.

In order to explore the slow recovery of staticity at the surface we force it to
return to rest quickly after the emission of energy; we prescribe its evolution instead
of giving the luminosity L. For such a prescription the surface equations change;
now we obtain the luminosity profile from a differential equation. We choose a
radius evolving as

A(t) = (Ai − Af )(e
−td /σ + 1)

e(t−td)/σ+1
+ Af ,

where Ai = 5.0 is the initial radius, Af = 4.663901 the final radius, td = 8.0 the
decay time and σ = 1.5 is the decay rate. Figure 3 shows the luminosity profile
and the prescribed radius. Observe that it is necessary to absorb some quantity of
energy (less than the total emitted) to reach a final constant radius. We confirmed
the same behavior in Bondi coordinates. It is interesting to note that in Herrera
et al. (1980) the interior profiles of the flux radiation (for the Schwarzschild type
model) have the same qualitative behavior as we show in Figure 3: It is clear the
absorption of energy.

4.2. TOLMAN VI-LIKE MODEL

In this subsection we discuss the model obtained from Tolman’s solution VI (Her-
rera et al., 1980; Tolman, 1939). Let us take

ρ̃ = 3g

r2
, (38)

p̃ = g

r2

{
1 − 9Dr

1 − Dr

}
, (39)
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Figure 3. Evolution of the enforced radius A (dashed line) and the resulting luminosity E (solid line
multiplied by 102) for the Schwarzschild type model in Schwarzschild and Bondi coordinates.
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where g and D are functions of t , which can be determined using (32). Thus,

ρ̃ = 3(1 − F)

24πr2
, (40)

p̃ = (1 − F)

24πr2

{
ψT − 9χT (r/a)

ψT − χT (r/a)

}
, (41)

where

χT = (3%2 − 1)(1 − F) + 6Ē(1 + %),

ψT = 3(%2 − 3)(1 − F) + 6Ē(1 + %).

Using (28) and (29) we obtain

m = mar/a, (42)

eν = F

{(
ψT − χT (r/a)

ψT − χT

)2

(r/a)

}4(1−F)/3F

. (43)

In this model, the LHS of (25) results in

R̃(t) = (1 − F)

12πa3(ψT − χT )

{
(ψT − 9χT )χT

2(ψT − χT )
− ψT + 9χT

2

}

+ 1

16πa3F
[(1 − F)(1 + %2) + 2Ē(1 + %)]2, (44)

which lets us write the third equation at the surface as

%̇ = 2

F(1 − F)

{
Ḟ 2A

4F
+ Ḟ Ȧ + ḞA

4F

{
Ḟ − Ȧ

A
[(1 − F)(%2 + 1) + 2E(1 + %)]

}

−
{
ĖF + 4πA2F 2R̃ + F 2

A
[(1 − F)%2 + 2Ē(1 + %)]

}}
. (45)

Again the system can be numerically integrated for a reasonable set of initial condi-
tions (with L being a gaussian as in the Schwarzschild-like model, radiating away
1/100 of the initial mass), as for example,

A(0) = 6.67, F (0) = 0.70, % = −0.17.

Figure 4 shows the evolution of the radius of the sphere. Initially the fluid sphere
collapses, but later it bounces. Figure 5 gives the evolution of the matter variables
for different regions. Note, for the matter velocity profiles, that some inner zones
continue contracting after the bounce of the outermost ones.
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Figure 4. Evolution of the radius for the Tolman VI type model.

Figure 5. Density (multiplied by 103), energy density flux (multiplied by 104), pressure (multiplied
by 103) and matter velocity (multiplied by 10) for the Tolman VI type model as a function of the
time-like coordinate and different pieces of the material: r/a = 0.2 (solid line); 0.4 (dotted line); 0.6
(small-dashed line); 0.8 (dashed line); 1.0 (dot-dashed line).
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5. Concluding Remarks

We have sought the dependence of the EVM upon the Bondi coordinates. The idea
that we can always construct dynamical solutions from static ones seems a general
method. In this paper we accomplish successfully such a construction, at least,
for the Schwarzschild coordinates. Some research is in progress for more realistic
luminosity profiles and dissipative transport mechanisms, considering extended
thermo-dynamics under the time relaxation approximation. We considered in this
paper two simple and idealized models, not deprived of physical meaning at all. We
may hope that they contain some of the essential features of gravitational collapse
inasmuch as we have fed the models with some observational data (initial velocity
and total mass radiated). Also, we can hope that our toy models could serve as test
beds for the numerical relativity methods and codes.
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