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Evolution of Relativistic Polytropes
in the Post–Quasi–Static Regime
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A recently presented method for the study of evolving self-gravitating relativistic spheres
is applied to the description of the evolution of relativistic polytropes. Two different
definitions of relativistic polytrope, yielding the same Newtonian limit, are considered.
Some examples are explicitly worked out, describing collapsing polytropes and bringing
out the differences between both types of polytropes.
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1. INTRODUCTION

The use of polytropic equations of state in the study of the stellar structure has a
long and venerable history [1–3] (and references therein). Its great success stems,
mainly, from its simplicity and from the fact that it can be used to describe a large
number of different situations.

It is therefore not surprising that a great deal of work has been devoted to
the study of polytropes in the context of general relativity [4–7] (and references
therein). Nevertheless, since the Lane–Emden equation, which is the cornerstone
in the study of polytropic spheres, is based on the assumption of hydrostatic equlib-
rium, almost all works done so far (to our knowledge) on polytropic equations of
state, concern spheres in hydrostatic equilibrium (collapsing “Newtonian” poly-
tropes withn = 3, have been considered by Goldreich and Weber [8]).

1Escuela de F´ısica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
2Postal address: Apartado Postal 80793, Caracas 1080A, Venezuela; e–mail: laherrera@telcel.net.ve
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However, during their evolution, self–gravitating objects may pass through
phases of intense dynamical activity, with time scales of the order of magnitude
of (or even smaller than) the hydrostatic time scale, and for which the static (or
the quasi–static) approximation is clearly not reliable (e.g. the collapse of very
massive stars [9] and the quick collapse phase preceding neutron star formation
[10] (and references therein). In these cases it is mandatory to take into account
terms which describe departure from equilibrium. Accordingly, it is our purpose
in this work to study the evolution of polytropes out of hydrostatic equilibrium.

For doing so, we shall make use of an approach for modeling the evolu-
tion of self–gravitating spheres, which does not require full numerical integration
of time dependent Einstein equations [11]. The motivation for this, is based on
the following argument: It is true that numerical methods [12] (and references
therein) are enabling researchers to investigate systems which are extremely diffi-
cult to handle analytically. In the case of General Relativity, numerical models have
proved valuable for investigations of strong field scenarios and have been crucial
to reveal unexpected phenomena [13]. Even specific difficulties associated with
numerical solutions of partial differential equations in presence of shocks are being
overpassed [14]. By these days what seems to be the main limitation for numerical
relativity is the computational demands for 3D evolution, prohibitive in some cases
[15]. Nevertheless, it is obviously simpler (in general) to solve ordinary than partial
differential equations and furthermore purely numerical solutions usually hinder
to catch general, qualitative, aspects of the process. Instead, the proposed method,
starting from any interior (analytical or numerical) static spherically symmetric
(“seed”) solution to Einstein equations, leads to a system of ordinary differential
equations for quantities evaluated at the boundary surface of the fluid distribution,
whose solution (numerical), allows for modeling the dynamics of self–gravitating
spheres, whose static limit is the original “seed” solution.

The approach is based on the introduction of a set of conveniently defined “ef-
fective” variables, which are effective pressure and energy density, and an heuris-
tic ansatzs on the latter [11], whose rationale and justification become intelligible
within the context of the post–quasistatic appproximation defined below. In the
quasistatic approximation (see below), the effective variables coincide with the
corresponding physical variables (pressure and density) and therefore the method
may be regarded as an iterative method with each consecutive step corresponding
to a stronger departure from equilibrium. In this work we shall restrain ourselves
to the post–quasistatic level (see section 4 for details).

The fluid distribution under consideration will be assumed to be dissipa-
tive. Indeed, dissipation due to the emission of massless particles (photons and/or
neutrinos) is a characteristic process in the evolution of massive stars. In fact, it
seems that the only plausible mechanism to carry away the bulk of the binding
energy of the collapsing star, leading to a neutron star or black hole is neutrino
emission [16]. Consequently, in this paper, the matter distribution forming the
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selfgravitating object will be described as a dissipative fluid, which in the equilib-
rium regime satisfies a polytropic equation of state.

On the other hand, in the treatment of radiative transfer within stellar objects,
two different approximations are usually adopted: diffusion and streaming out.

In the diffusion approximation, it is assumed that the energy flux of radiation
(as that of thermal conduction) is proportional to the gradient of temperature.
This assumption is in general very sensible, since the mean free path of particles
responsibles for the propagation of energy in stellar interiors is in general very
small as compared with the typical length of the object. Thus, for a main sequence
star as the sun, the mean free path of photons at the centre, is of the order of
2cm. Also, the mean free path of trapped neutrinos in compact cores of densities
about 1012 g.cm.−3 becomes smaller than the size of the stellar core [17, 18].
Furthermore, the observational data collected from supernovae 1987A indicates
that the regime of radiation transport prevailing during the emission process, is
closer to the diffusion approximation than to the streaming out limit [19].

However in many other circumstances, the mean free path of particles trans-
porting energy may be large enough as to justify the free streaming approximation.
In this work, for simplicity, we shall consider only the streaming out limit.

As we shall see, in the relativistic regime, two (at least) different definitions of
polytrope are possible, yielding the same Newtonian limit. We shall consider both
of them, as possible “seed” equations of state and we shall contrast the patterns of
evolution obtained from each case.

The plan of the paper is as follows. In Section 2 we define the conventions and
give the field equations and expressions for the kinematical and physical variables
we shall use, in noncomoving coordinates. In Section 3 we present a brief review of
the properties of Newtonian polytropes and discuss two possible generalizations to
the relativistic regime. A resume of the proposed approach is presented in Section 4.
In Section 5 the method is applied to the case when the “seed” equation of state
is a relativistic polytrope and some examples are explicitly worked out. Finally a
discussion of results is presented in Section 6.

2. RELEVANT EQUATIONS AND CONVENTIONS

2.1. The Field Equations

We consider spherically symmetric distributions of collapsing fluid, under-
going dissipation in the form of free streaming radiation, bounded by a spherical
surface6.

The line element is given in Schwarzschild–like coordinates by

ds2 = eνdt2− eλdr2− r 2(dθ2+ sin2 θdφ2), (1)



P1: GTQ

General Relativity and Gravitation (GERG) PP1057-gerg-477029 November 6, 2003 16:56 Style file version May 27, 2002

130 Herrera and Barreto

whereν(t, r ) andλ(t, r ) are functions of their arguments. We number the coordi-
nates:x0 = t ; x1 = r ; x2 = θ ; x3 = φ. We use geometric units and therefore we
havec = G = 1.

The metric (1) has to satisfy the Einstein field equations

Gν
µ = −8πTν

µ , (2)

which in our case read [20]:

−8πT0
0 = −

1

r 2
+ e−λ

(
1

r 2
− λ

′

r

)
, (3)

−8πT1
1 = −

1

r 2
+ e−λ

(
1

r 2
+ ν

′

r

)
, (4)

−8πT2
2 = −8πT3

3 = −
e−ν

4
(2λ̈+ λ̇(λ̇− ν̇))

+ e−λ

4

(
2ν ′′ + ν ′2− λ′ν ′ + 2

ν ′ − λ′
r

)
, (5)

−8πT01 = − λ̇
r
, (6)

where dots and primes stand for partial differentiation with respect tot and r ,
respectively.

In order to give physical significance to theTµ
ν components we apply the

Bondi approach [20]. Thus, following Bondi, let us introduce purely locally
Minkowski coordinates (τ, x, y, z)

dτ = eν/2dt ; dx = eλ/2dr ; dy= rdθ ; dz= r sinθdφ.

Then, denoting the Minkowski components of the energy tensor by a bar, we have

T̄0
0 = T0

0 ; T̄1
1 = T1

1 ; T̄2
2 = T2

2 ; T̄3
3 = T3

3 ; T̄01 = e−(ν+λ)/2T01.

Next, we suppose that when viewed by an observer moving relative to these coor-
dinates with proper velocityω in the radial direction, the physical content of space
consists of a fluid of energy densityρ, radial pressureP and unpolarized radiation
of energy density ˆε traveling in the radial direction. Thus, when viewed by this
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(comoving with the fluid) observer the covariant tensor in Minkowski coordinates
is 

ρ + ε̂ −ε̂ 0 0
−ε̂ P + ε̂ 0 0
0 0 P 0
0 0 0 P

 .
Then a Lorentz transformation readily shows that

T0
0 = T̄0

0 =
ρ + Pω2

1− ω2
+ ε, (7)

T1
1 = T̄1

1 = −
P + ρω2

1− ω2
− ε, (8)

T2
2 = T3

3 = T̄2
2 = T̄3

3 = −P, (9)

T01 = e(ν+λ)/2T̄01 = − (ρ + P)ωe(ν+λ)/2

1− ω2
− e(ν+λ)/2ε, (10)

with

ε ≡ ε̂ (1+ ω)

(1− ω)
. (11)

Note that the coordinate velocity in the (t, r, θ, φ) system,dr/dt, is related toω
by

ω = dr

dt
e(λ−ν)/2. (12)

Feeding back (7–10) into (3–6), we get the field equations in the form

ρ + Pω2

1− ω2
+ ε = − 1

8π

{
− 1

r 2
+ e−λ

(
1

r 2
− λ

′

r

)}
, (13)

P + ρω2

1− ω2
+ ε = − 1

8π

{
1

r 2
− e−λ

(
1

r 2
+ ν

′

r

)}
, (14)

P = − 1

8π

{
e−ν

4
(2λ̈+ λ̇(λ̇− ν̇))− e−λ

4

(
2ν ′′ + ν ′2− λ′ν ′ + 2

ν ′ − λ′
r

)}
, (15)

(ρ + P)

(1− ω2)
ωe(ν+λ)/2+ e(ν+λ)/2ε = − λ̇

8πr
. (16)
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Observe that ifν andλ are fully specified, then (13–16) becomes a system of
algebraic equations for the physical variablesρ, P, ω andε.

At the outside of the fluid distribution, the spacetime is that of Vaidya, given
by

ds2 = (1− 2M(u)/R) du2+ 2dudR−R2(dθ2+ sin2 θdφ2), (17)

whereu is a coordinate related to the retarded time, such thatu = constant
is (asymptotically) a null cone open to the future andR is a null coordinate
(gRR = 0). It should be remarked, however, that strictly speaking, the radiation
can be considered in radial free streaming only at radial infinity.

The two coordinate systems (t, r, θ, φ) and (u,R, θ, φ) are related at the
boundary surface and outside it by

u = t − r − 2M ln
( r

2M
− 1

)
, (18)

R = r. (19)

In order to match smoothly the two metrics above on the boundary surfacer =
r6(t), we must require the continuity of the first and the second fundamental form
across that surface. Then it follows [11]

eν6 = 1− 2M/R6, (20)

e−λ6 = 1− 2M/R6. (21)

[ P]6 = 0, (22)

where, from now on, subscript6 indicates that the quantity is evaluated at the
boundary surface6. Next, it will be useful to calculate the radial component of
the conservation law

Tµ
ν;µ = 0. (23)

where

Tµν = (ρ + P) uµuν − Pgµν + εlν lµ (24)

with

uµ =
(

e−ν/2

(1− ω2)1/2
,

ω e−λ/2

(1− ω2)1/2
, 0, 0

)
, (25)

lµ = (e−ν/2, e−λ/2, 0, 0), (26)

whereuµ denotes the four velocity of the fluid, andlµ is a null outgoing vector.
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After tedious but simple calculations we get

(−8πT1
1

)′ = 16π

r

(
T1

1 − T2
2

)+ 4πν ′
(
T1

1 − T0
0

)+ e−ν

r

(
λ̈+ λ̇

2

2
− λ̇ν̇

2

)
,

(27)
which in the static case becomes

P′ = −ν
′

2
(ρ + P) , (28)

which is the well known the Tolman–Oppenheimer–Volkoff equation.

3. NEWTONIAN AND RELATIVISTIC POLYTROPE

Although Newtonian polytropes are well known and examined in detail in
most classical books on stellar structure [3], we found it worthwhile to present
here the very basic facts about its theory.

3.1. The Newtonian Case

As mentioned before, the theory of polytropes is based on the assumption of
hydrostatic equilibrium, therefore the two starting equations are (remember that
we are using geometric units)

d P

dr
= −dφ

dr
ρ0, (29)

and

1

r 2

d

dr

(
r 2 dφ

dr

)
= 4πρ0, (30)

with φ andρ0 denoting the Newtonian gravitational potential and the mass (bary-
onic) density, respectively.

Combining the two equation above with the polytropic equation of state

P = Kργ0 = Kρ1+1/n
0 , (31)

one obtains the well known Lane–Emden equation (forγ 6= 1)

d2ψ0

dξ2
+ 2

ξ

dψ0

dξ
+ ψn

0 = 0 (32)

with

r = ξ/A0, (33)
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A2
0 =

4πρ(n−1)/n
0c

K (n+ 1)
, (34)

ψn
0 = ρ0/ρ0c, (35)

where subscriptc indicates that the quantity is evaluated at the centre, and the
following boundary conditions apply:

dψ0

dξ
(ξ = 0)= 0; ψ0(ξ = 0)= 1.

The boundary surface of the sphere is defined byξ = ξn, such thatψ0(ξn) = 0.
As it is well known, bounded configurations exist only forn < 5 and analytical

solution may be found forn = 0, 1 and 5.
It is also worth remembering that the polytropic equation of state may be used

to model two different type of situations, namely:r When the polytropic constantK is fixed and can be calculated from natural
constants. This is the case of a completely degenerate gas in the non–
relativistic (γ = 5/3; n = 3/2) and relativistic limit (γ = 4/3; n = 3).r WhenK is a free parameter as for example in the case of isothermal ideal
gas or in a completely convective star.

3.2. The Relativistic Case

When considering the polytropic equation of state within the context of gen-
eral relativity, two distinct expressions are often considered. In order to avoid
confussion we shall differentiate them from the beginning. Thus, the following
two cases may be contemplated.

3.3. Case I

In this case the original polytropic equation of state is conserved

P = Kρ1+1/n
0 , (36)

then it follows from the first law of thermodynamics that

d

(
ρ + P

N

)
− d P

N = T d
( σ
N
)
, (37)

whereT denotes temperature,σ is entropy per unit of proper volume andN is the
particle density, such that

ρ0 = Nm0. (38)
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Then for an adiabatic process it follows

d
( ρ
N
)
+ Pd

(
1

N

)
= 0, (39)

which together with (36) leads to

Kργ−2
0 = d(ρ/ρ0)

dρ0
, (40)

with

γ = 1+ 1/n. (41)

If γ 6= 1, (40) may be easily integrated to give

ρ = Cρ0+ P/(γ − 1). (42)

In the non–relativistic limit we should haveρ → ρ0, and thereforeC = 1.
Thus, the polytropic equation of state amounts to

ρ = ρ0+ P/(γ − 1). (43)

It is worth noticing that the familiar “barotropic” equation of state

ρ = P/(γ − 1), (44)

is a particular case of (42) withC = 0.
In the very special caseγ = 1, one obtains

Kρ−1
0 =

d(ρ/ρ0)

dρ0
, (45)

whose solution is

ρ = P logρ0+ ρ0C, (46)

or, if putingC = 1 from the non–relativistic limit

ρ = P logρ0+ ρ0. (47)

From now on we shall only consider theγ 6= 1 case.
Next, let us introduce the following variables

α = Pc/ρc, (48)

r = ξ/A, (49)

A2 = 4πρc/[α(n+ 1)], (50)

ψn
0 = ρ0/ρ0c, (51)

v(ξ ) = m(r )A3/(4πρc), (52)
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where the mass function, as usually is defined by

e−λ = 1− 2m/r. (53)

Then the Tolman–Oppenheimer–Volkoff equation (28) becomes

ξ2 dψ0

dξ

(
1− 2(n+ 1)αv/ξ

(1− α)+ (n+ 1)αψ0

)
+ v + αξ3ψn+1

0 = 0, (54)

and from the definition of mass function and equation (13) in the static case, we
have

m′ = 4πr 2ρ (55)

or

dv

dξ
= ξ2ψn

0 (1− nα + nαψ0). (56)

In the Newtonian limit (α→ 0), (54) and (56) become

ξ2 dψ0

dξ
+ v = 0 (57)

and

dv

dξ
= ξ2ψn

0 , (58)

which are equivalent to the classical Lane–Emden equation

d2ψ0

dξ2
+ 2

ξ

dψ0

dξ
+ ψn

0 = 0. (59)

3.4. Case II

Sometimes it is assumed that the relativistic polytrope is defined by

P = Kρ1+1/n, (60)

instead of (36). Then introducing

ψn = ρ/ρc, (61)

related toψ0 by

ψn = ψn
0 (1− nα + αnψ0). (62)

The TOV equation becomes

ξ2 dψ

dξ

(
1− 2(n+ 1)αv/ξ

1+ αψ
)
+ v + αξ3ψn+1 = 0, (63)



P1: GTQ

General Relativity and Gravitation (GERG) PP1057-gerg-477029 November 6, 2003 16:56 Style file version May 27, 2002

Evolution of Relativistic Polytropes in the Post–Quasi–Static Regime 137

and from (55)

dv

dξ
= ξ2ψn. (64)

In the Newtonian limit (α→ 0), the Lane–Emden equation is also recovered in
this case, as it should be.

Obviously both equations of state differ each other, specially in the highly
relativistic regime. This can be verified by inspection of figures 1 and 2.

Figure 1. ψ0 (Case I) andψ (Case II) as a function ofξ for α = 1
and different values ofn: (a) Case I,n = 0.5; (b) Case II,n = 0.5;
(c) Case I,n = 1.5; (d) Case II,n = 1.5.
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Figure 2. ψ0 (Case I) andψ (Case II) as a function ofξ for α = 1
and different values ofn: (a) Case II,n = 2; (b) Case I,n = 2;
(c) Case II,n = 2.5; (d) Case I,n = 2.5.

4. THE METHOD

Let us now give a brief resume of the method we shall use to describe the
evolution of the relativistic polytrope. However before doing so some general
considerations will be necessary.

4.1. Equilibrium and Quasi–Equilibrium

The simplest situation, when dealing with self–gravitating spheres, is that
of equilibrium (static case). In our notation that means thatω = ε = 0, all time
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derivatives vanishes, and we obtain the generalized Tolman–Oppenheimer–Volkoff
equation (28).

Next, we have the quasistatic regime. By this we mean that the sphere changes
slowly, on a time scale that is very long compared to the typical time in which
the sphere reacts to a slight perturbation of hydrostatic equilibrium, this typical
time scale is called hydrostatic time scale [3] (sometimes this time scale is also
referred to as dynamical time scale, e.g. see [21]). Thus, in this regime the system
is always very close to hydrostatic equilibrium and its evolution may be regarded
as a sequence of static models linked by (16). This assumption is very sensible
because the hydrostatic time scale is very small for many phases of the life of the
star. It is of the order of 27 minutes for the Sun, 4.5 seconds for a white dwarf
and 10−4 seconds for a neutron star of one solar mass and 10 Km radius. It is well
known that any of the stellar configurations mentioned above, generally, change on
a time scale that is very long compared to their respective hydrostatic time scales.

However, as already mentioned, in some important cases, this approximation
is not longer reliable, and one needs to consider departures from quasi–equilibrium.
We shall describe such departures, in the post–quasi–static approximation defined
below.

4.2. The Effective Variables and the Post–Quasistatic Approximation

Let us now define the following effective variables:

ρ̃ = T0
0 =

ρ + Pω2

1− ω2
+ ε, (65)

P̃ = −T1
1 =

P + ρω2

1− ω2
+ ε. (66)

In the quasistatic regime the effective variables satisfy the same equation (28)
as the corresponding physical variables (taking into account the contribution of
ε to the “total” energy density and radial pressure, whenever the free streaming
approximation is being used). Therefore in the quasistatic situation (and obviously
in the static too), effective and physical variables share the same radial dependence.
Next, feeding back (65) and (66) into (13) and (14), these two equations may be
formally integrated, to obtain:

m = 4π
∫ r

0
r 2ρ̃dr , (67)

ν = ν6 +
∫ r

r6

2(4πr 3P̃ +m)

r (r − 2m)
dr. (68)
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From where it is obvious that for a given radial dependence of the effective vari-
ables, the radial dependence of metric functions becomes completely determined.

With this last comment in mind, we shall define the post–quasistatic regime
as that corresponding to a system out of equilibrium (or quasiequilibrium) but
whose effective variables share the same radial dependence as the corresponding
physical variables in the state of equilibrium (or quasiequilibrium). Alternatively
it may be said that the system in the post–quasistatic regime is characterized
by metric functions whose radial dependence is the same as the metric functions
corresponding to the static (quasistatic) regime. The rationale behind this definition
is not difficult to grasp: we look for a regime which although out of equilibrium,
represents the closest possible situation to a quasistatic evolution (see more on this
point in the last Section).

4.3. The Algorithm

Let us now outline the approach that we shall use:

1. Take an interior solution to Einstein equations, representing a fluid distri-
bution of matter in equilibrium, with a given

ρst = ρ(r ); Pst = P(r ).

This static solution will be obtained in this work by integration of the
relativistic Lane–Emden equations (54), (56) or (63), (64).

2. Assume that ther dependence of̃P andρ̃ is the same as that ofPst and
ρst, respectively.

3. Using equations (67) and (68), with ther dependence of̃P and ρ̃, one
getsm andν up to some functions oft , which will be specified below.

4. For these functions oft one has three ordinary differential equations (here-
after referred to as surface equations), namely:

a. Equation (12) evaluated onr = r6 .
b. The equation relating the total mass loss rate with the energy flux

through the boundary surface.
c. Equation (27) evaluated onr = r6 .

5. The system of surface equations described above may be closed with the
additional information about some of the physical variables evaluated on
the boundary surface (e.g. the luminosity).

6. Once the system of surface equations is closed, it may be integrated for
any particular initial data.

7. Feeding back the result of integration in the expressions form andν, these
two functions are completely determined.
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8. With the input from the point 7 above, and remembering that once metric
functions are fully specified, field equations become an algebraic system
of equations for the physical variables; these may be found for any piece
of matter distribution.

4.4. The Surface Equations

As it should be clear from the above, the crucial point in the algorithm is the
system of surface equations. So, let us specify them now.

Introducing the dimensionless variables

A = r6/m6(0), F = 1− 2M/A, M = m6/m6(0),

Ä = ω6, β = t/m6(0),

wherem6(0) denotes the total initial mass, we obtain the first surface equation by
evaluating (12) atr = r6 . Thus, one gets

d A

dβ
= FÄ. (69)

Next, using junction conditions, one obtains from (53), (13) and (16) evaluated
at r = r6 , that

d M

dβ
= −F(1+Ä)Ê, (70)

with

Ê = 4πr 2
6ε̂6, (71)

where the first and second term on the right of (70) represent the gravitational
redshift and the Doppler shift corrections, respectively.

Then, defining the luminosity perceived by an observer at infinity as

L = −d M

dβ
.

we obtain the second surface equation in the form

d F

dβ
= F

A
(1− F)Ä+ 2L/A. (72)
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The third surface equation may be obtained by evaluating at the boundary
surface the conservation lawTµ

1;µ = 0, which reads

P̃
′ + (ρ̃ + P̃)(4πr 3P̃ +m)

r (r − 2m)

= e−ν

4πr (r − 2m)

(
m̈+ 3ṁ2

r − 2m
− ṁν̇

2

)
+ 2

r
(P − P̃). (73)

In the case when the effective density is separable, i.e., ˜ρ = F(t)H(r ); equa-
tion (73) evaluated at the boundary surface leads to

dÄ

dβ
= Ä2

[
8F

A
+ 2FK(r6)+ 4πρ̃6A(3−Ä2)

]
− F

ρ̃6

[
R+ 2

A

(
ρ̃6Ä

2+ Ē(1+Ä)

4πr 2
6

)]
, (74)

where

R =
[

P̃
′ + P̃ + ρ̃

1− 2m/r

(
4πr P̃ + m

r 2

)]
6

, (75)

Ē = Ê(1+Ä) (76)

and

K(r6) = d

dr6
ln

(
1

r6

∫ r6

0
drr 2H(r )/H(r6)

)
. (77)

Before analyzing specific models, some interesting conclusions can be ob-
tained at this level of generality. One of these conclusions concerns the condition of
bouncing at the surface which, of course, is related to the occurrence of a minimum
radiusA. According to (69) this requiresÄ = 0, and we have

d2A

dβ2
= F

dÄ

dβ
, (78)

or using (74)

dÄ

dβ
(Ä = 0)= − F

ρ̃6

[
R+ 2Ê

4πr 2
6A

]
. (79)

Observe that a positive energy flux (Ê) tends to decrease the radius of the sphere,
i.e., it favors the compactification of the object, which is easily understood. The
same happens whenR> 0. The opposite effect occurs when these quantities have
the opposite signs. Now, for a positive energy flux the sphere can only bounce at
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its surface when

dÄ

dβ
(Ä = 0)≥ 0.

According to (79) this requires

−R(Ä = 0)≥ 0. (80)

A physical meaning can be associated to this equation as follows. For non–
radiating, static configuration,R as defined by (75) consists of two parts. The first
term which represents the hydrodynamical force (see (28)) and the second which is
of course the gravitational force. The resulting force in the sense of increasingr is
precisely−R, if this is positive a net outward acceleration occurs and vice–versa.
Equation (80) is the natural generalization of this result for general non–static
configurations.

5. MODELS AND THEIR NUMERICAL IMPLEMENTATION

5.1. Effective Variables

Once the profiles of energy density and pressure have been established in the
static case via the integration of the corresponding Lane–Emden equations, we
proceed with the determination of effective variables according to the algorithm
sketched above. However, as it should be clear such determination is not unique.
The following possibilities arise:

1. ρ̃ = f (t)+ h(r ) p̃ = g(t)+ i (r ), whereh(r ) and i (r ) correspond to the
pressure and total energy density obtained from the integration of the rel-
ativistic Lane–Emden equations, in both cases described above. However
this model has not static limit.

2. ρ̃ = f (t)h(r ) and p̃ = g(t)+ K ρ̃1+1/n
0 , for the case I, where ˜ρ0 =

f (t)h0(r ), being h0(r ) the baryonic mass density in the static limit;
p̃ = g(t)+ K ρ̃1+1/n, for the case II. In both casesK = K (m6, r6).

On what follows we shall consider only the possibility 1 above.

5.2. Numerical Implementation of Models

We have used an standard Runge–Kutta routine to obtain functionsh(r ), h0(r )
and i (r ) from the integration of relativistic Lane–Emden equations for different
values ofn andα. Integration was performed fromξ = 0 until the first zero ofψ
(orψ0).



P1: GTQ

General Relativity and Gravitation (GERG) PP1057-gerg-477029 November 6, 2003 16:56 Style file version May 27, 2002

144 Herrera and Barreto

Next, for the third surface equation we need to calculate numerically the
following terms: [

di(r )

dr

]
r=r6

, (81)

k(t) =
∫ r6

0
r 2h(r )dr. (82)

Observe thatdk(t)/dt = 0, sinceh(r6) = 0.
For the calculation of (81) and (82) we have adjusted a Chebyshev polynomial

[22] to functionsh(r ) andi (r ). Also, for the calculation of either of these functions
in the Chebyshev’s nodes or within different interior regions we have used the
interpolating Lagrange polynomials.

A standard Runge–Kutta method has also been applied to solve surface
equations. These three equations are solved as an initial value problem, upon

Figure 3. Adimensional energy density (Case I to the left; Case II to the right) as a function of
dimenssionles time forn = 2 andα = 0.1 at different regions: (a)r6 = 0.25 (multiplied by 10);
(b) r6 = 0.50 (multiplied by 10); (c)r6 = 0.75 (multiplied by 102); (d) r6 = 1.00 (multiplied
by 104).
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specification ofA(t = 0), F(t = 0) and one function ofu. Specifically we choose

L = 2mR√
π

e−4(t−5/2)2,

wheremR is the mass to be radiated.
Once the surface equations have been integrated, we proceed to calculate

the metric functions and their derivatives. For doing so, we need to calculate
numerically the following expressions:

di(r )

dr
, (83)

∫ r

0
r 2h(r )dr, (84)

∫ r

r6 (t)

2(4πr 3 p̃+m)

r (r − 2m)
dr (85)

Figure 4. Adimensional pressure (Case I to the left; Case II to the right) as a function of dimenssionles
time for n = 2 andα = 0.1 at different regions: (a)r6 = 0.25 (multiplied by 103); (b) r6 = 0.50
(multiplied by 102); (c) r6 = 0.75 (multiplied by 103); (d) r6 = 1.00.
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and ∫ r

r6 (t)

∂

∂t

{
2(4πr 3 p̃+m)

r (r − 2m)

}
dr. (86)

Where the last expression appears in the equation for the time derivative ofν given
by

ν̇ = ν̇6 +
∫ r

r6 (t)

∂

∂t

{
2(4πr 3 p̃+m)

r (r − 2m)

}
dr −

{
2(4πr 3 p̃+m)

r (r − 2m)

}
r6 (t)

ṙ6

For the numerical integration of (85) and (86) it is necessary to calculate the inte-
grands on points of the lattice defined in the integration of Lane–Emden equation,
using again the Chebyshev’s polynomials and Lagrange interpolants. Once the
metric functions and their derivatives have been completely determined, we use
the field equations to obtain algebraically the physical variables.

All along evolution we keep radial dependence obtained from the solution of
the Lane–Emden equations. This was implemented fitting theh(r ) andi (r ) profiles
to the radius’s distribution at timet . Thus, the radial coordinate is scaled by means

Figure 5. Radial velocity (Case I to the left; Case II to the right) as a function of dimenssionles
time for n = 2 and α = 0.1 at different regions: (a)r6 = 0.25; (b) r6 = 0.50; (c) r6 = 0.75;
(d) r6 = 1.00.
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of:

r →
(

r6(t)

r6(0)

)
r.

The developed code was paralelized using MPI routines for FORTRAN. We
use as many nodes as interior regions studied. One typical run takes, for one region
and one time unit, one a half hour in a 900 MHz. Central processing unit.

5.3. Models

Although a large number of models has been worked out, we shall present here
only two for illustration, corresponding to the cases I and II. Both were calculated
for values:n = 2,α = 0.1,Ä(0)= −0.05, with an emission of 0.01 of the initial
mass. The profiles of physical variables are exhibited in figures 3–6. As we increase
the emission we arrive at a point where case II becomes unphysical before case
I. If we increasen, for both cases, the initial distribution is less compact. On the

Figure 6. Adimensional flux of energy (Case I to the left; Case II to the right) as a function of
dimenssionles time forn = 2 andα = 0.1 at different regions: (a)r6 = 0.25 (multiplied by 103);
(b) r6 = 0.50 (multiplied by 102); (c) r6 = 0.75 (multiplied by 103); (d) r6 = 1.00 (multiplied
by 104).
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Figure 7. Evolution of the normalized radii forα = 0.1, both cases
and different values ofn: (a) Case I,n = 2.5; (b) Case II,n = 2.5;
(c) Case I,n = 1.5; (d) Case II,n = 1.5.

contrary, if we increaseα the initial distribution is more compact. Figure 7 shows
the normalized radii evolution for both cases, different values ofn andα = 0.1.

6. CONCLUSIONS

We have considered two possible definitions of relativistic polytrope and have
presented a method to study their evolution. The models represent a generalization
of the static polytrope to the case of evolving and dissipating fluid spheres, which
in the static limit satisfy a polytropic equation of state. This allows for modeling
self–gravitating objects, and at the same time brings out differences between the
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two possible definitions of polytropes, considered here. We have incorporated
dissipation, a fundamental process in the process of gravitational collapse, into
discussion. It remains, to consider the diffusion limit, however because of the
additional complication associated to the necessity of introducing an equation of
transport, we have only considered here the simplest, streaming out limit.

Although the examples are presented with the sole purpose of illustrating the
method (our main goal here being to provide a tool for modeling the evolution of
relativistic polytropes), some comments on them, are in order.

The difference between the two definitions of polytrope considered here,
are clearly exhibited in figures 1–2. To magnify such difference we present the
results corresponding to the “ultra–relativistic” case (α = 1). As can be seen, for
n ≤ 1.365, configurations of case I have smaller radii than those corresponding to
the case II. This situation reverses forn > 1.365. In general, bounded relativistic
configurations exist for smaller values ofn, than in the Newtonian case.

Figures 3–6 show how differently, both polytropes evolve. As it appears from
these figures, the case II leads to an stronger collapse. This tendency is confirmed
by curvesc− d of figure 7. Also, curvesa− bon this same figure show an example
of bouncing forn = 2.5. The strongest bouncing of case I, further indicates that
the equation of state resulting from case I is stiffer than the obtained from case II.
It is worth mentioning that these differences are observed in a large number of
models, for a wide range of values ofn, α and initial data.
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