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Why does gravitational radiation produce vorticity?
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Abstract
We calculate the vorticity of worldlines of observers at rest in a Bondi–Sachs
frame, produced by gravitational radiation, in a general Sachs metric. We claim
that such an effect is related to the super-Poynting vector, in a similar way as
the existence of the electromagnetic Poynting vector is related to the vorticity
in stationary electrovacuum spacetimes.

PACS numbers: 04.20.−q, 04.20.Cv, 04.30.Nk

1. Introduction

The theoretical description and the experimental observation of gravitational radiation are
among the most relevant challenges confronting general relativity.

A great deal of work has been done so far in order to provide a consistent framework for
the study of such a phenomenon. Also, important collaboration efforts have been carried on,
and are now under consideration, to put in evidence gravitational waves.

Therefore, it is clear that any specific phenomenon caused by gravitational radiation, and
which might be observed, could in principle lead to the detection of such elusive waves and is
of utmost relevance.

In this respect, particular attention should be given to the link between gravitational
radiation and vorticity of worldlines of observers at rest in a Bondi spacetime [1–3].
Specifically, it has been shown that the leading term in the vorticity (in an expansion of
powers of 1/r) is expressed through the news function in such a way that it will vanish if and
only if there is no news (no radiation). This suggests the possibility of detecting gravitational
waves by means of gyroscopes [1, 4].

The issue we want to address here is: what is the mechanism by means of which
gravitational radiation produces vorticity?

To answer to such a question, it is worth recalling a result obtained by Bonnor [5]
concerning the dragging of inertial frames by a charged magnetic dipole. To explain
the appearance of vorticity in such spacetimes, Bonnor notes that the corresponding
electromagnetic Poynting vector has a non-vanishing component, describing a flow of
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electromagnetic energy round in circles where frame dragging occurs [6]. He then suggests
that such a flow of energy affects inertial frames by producing vorticity of congruences of
particles, relative to the compass of inertia. This conjecture has been recently confirmed to be
valid for general axially-symmetric stationary electrovacuum metrics [7].

One is then tempted to speculate that a similar mechanism is working in the case
of gravitational radiation, i.e. a flow of gravitational ‘energy’ would produce vorticity of
congruence of observers. For testing such a conjecture we have a tensor quantity available
which allows us to define a covariant super-energy density and a super-Poynting vector, namely
the Bel–Robinson tensor [8].

When the super-Poynting vector (P µ), based on the Bel–Robinson tensor (as defined
in [9]) is calculated for the Bondi metric [10], we obtain that the contravariant azimuthal
component (P φ) of such vector vanishes [3], as expected from the reflection symmetry of the
Bondi metric, which, intuitively, seems to be incompatible with the presence of a circular flow
of energy in the φ direction. However, the vorticity vector, which is orthogonal to the plane
of rotation, has in the Bondi spacetime only one non-vanishing contravariant component (φ),
thereby implying that the plane of the associated rotation is orthogonal to the φ direction.
Therefore, it is not the φ component of P µ (as mistakenly stated in [3]), the possible source
of vorticity, but the θ component, the cause for such an effect, in the Bondi case.

In order to further strengthen the case for the super-Poynting vector as the cause of the
mentioned vorticity, we shall consider here the general radiative metric without axial and
reflection symmetry [11, 12]. In the latter case we shall obtain a non-vanishing P φ , which we
will identify as the cause of the θ component of the vorticity vector. The discussion on these
results is presented in the last section. However, before considering the general (Sachs) case
it is instructive to review very briefly the basic ideas of the Bondi formalism in the reflection
symmetric case.

2. The Bondi formalism

The general form of an axially and reflection-symmetric asymptotically-flat metric given by
Bondi is [10]

ds2 =
(
V

r
e2β − U 2r2e2γ

)
du2 + 2e2β du dr + 2Ur2e2γ du dθ − r2(e2γ dθ2 + e−2γ sin2 θ dφ2),

(1)

where V, β,U and γ are functions of u, r and θ .
We number the coordinates x0,1,2,3 = u, r, θ, φ, respectively. u is a time-like coordinate

such that u = constant defines a null surface. In a flat spacetime, this surface coincides with
the null light cone open to the future. r is a null coordinate (grr = 0) and θ and φ are two
angle coordinates (see [10] for details).

The four metric functions are assumed to be expanded in series of 1/r; then using the
field equations, Bondi gets

γ = cr−1 +
(
C − 1

6c3
)
r−3 + · · · (2)

U = −(cθ + 2c cot θ)r−2 + [2N + 3ccθ + 4c2 cot θ ]r−3 · · · (3)

V = r − 2M − (
Nθ + N cot θ − c2

θ − 4ccθ cot θ − 1
2c2(1 + 8 cot2 θ)

)
r−1 + · · · (4)

β = − 1
4c2r−2 + · · · , (5)

where c, C,N and M are functions of u and θ ; the letters as subscripts denote derivatives.
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Bondi shows that field equations allow us to determine the u-derivatives of all functions
in β and γ with the exceptions of news functions cu.

Thus, the main conclusions emerging from Bondi’s approach may be summarized as
follows.

If γ,M and N are known for some u = a (constant) and cu (the news function) is known
for all u in the interval a � u � b, then the system is fully determined in that interval. In
other words, whatever happens at the source, leading to changes in the field, it can only do so
by affecting cu and vice versa. In light of this comment, the relationship between the news
function and the occurrence of radiation becomes clear.

Now, for an observer at rest in the frame of (1), the 4-velocity vector has components
uα = A−1δα

u , with

A ≡
(

V

r
e2β − U 2r2 e2γ

)1/2

. (6)

Then, it can be shown that for such an observer, the vorticity vector

ωα = 1

2
√−g

ηαηιλuηuι,λ, ηαβγ δ ≡ √−gεαβγ δ, (7)

where ηαβγ δ = +1 for α, β, γ, δ in even order, −1 for α, β, γ, δ in odd order and 0 otherwise,
may be written as (see [1] for details)

ωα = (0, 0, 0, ωφ), (8)

giving for the absolute value of ωα (keeping only the leading term)

� = − 1

2r
(cuθ + 2cu cot θ). (9)

Therefore, up to order 1/r, a gyroscope at rest in (1) will precess as long as the system
radiates (cu �= 0).

Next, the super-Poynting vector based on the Bel–Robinson tensor, as defined in [9], is

Pα = ηαβγ δE
β
ρ Hγρuδ, (10)

where Eµν and Hµν are the electric and magnetic parts of the Weyl tensor, respectively, formed
from the Weyl tensor Cαβγ δ and its dual C̃αβγ δ by contraction with the 4-velocity vector given
by

Eαβ = Cαγβδu
γ uδ (11)

Hαβ = C̃αγβδu
γ uδ = 1

2ηαγ εδC
εδ

βρu
γ uρ. (12)

The electric and magnetic parts of the Weyl tensor have been explicitly calculated for
the Bondi metric in [3], using those expressions the reader can easily verify that in this case
P φ = 0. As mentioned before, this is to be expected due to the reflection symmetry of the
metric.

Indeed, rotation singles out a specific direction of time, which is at variance with the
equivalence of both directions of time, implicit in reflection symmetry. For this reason the
Bondi metric in the time-independent limit becomes the static Weyl metric and not the general
stationary spacetime.

On the other hand, since the associated rotation in this case takes place on the plane
orthogonal to the φ direction, P θ is the quantity to be associated with vorticity. Indeed, the
vorticity vector describes the rate of rotation, on its orthogonal plane, with respect to the proper
time of the set of neighbouring particles, relative to the local compass of inertia [14]. As can
be seen from expressions (29)–(31), in the Bondi limit, such a component does not vanish.

Let us now analyse the general case.
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3. The general radiative metric

Shortly after the publication of the seminal paper by Bondi et al [10], Sachs [11] presented a
generalization of the Bondi formalism, relaxing the conditions of axial and reflection symmetry.
In this case, the line element reads (we have found it more convenient to follow the notation
given in [12, 13] which is slightly different from the original Sachs paper)

ds2 = (V r−1 e2β − r2e2γ U 2 cosh 2δ − r2e−2γ W 2

× cosh 2δ − 2r2UW sinh 2δ) du2 + 2e2β du dr + 2r2

× (e2γ U cosh 2δ + W sinh 2δ) du dθ

+ 2r2(e−2γ W cosh 2δ + U sinh 2δ) sin θ du dφ

− r2(e2γ cosh 2δ dθ2 + e−2γ cosh 2δ sin2 θ dφ2 + 2 sinh 2δ sin θ dθ dφ), (13)

where β, γ , δ, U,W,V are functions of x0 = u, x1 = r, x2 = θ, x3 = φ. Observe that, unlike
[13], we adopt the signature −2 as in [12].

The general analysis of the field equations is similar to the one in [10], but of course
expressions are far more complicated (see [11–13] for details). In particular, there are now
two news functions.

The asymptotic expansion of metric functions read in this case (see [12] for details)

γ = cr−1 + [C − c3/6 − 3cd2/2]r−3 + · · · (14)

δ = dr−1 + [H + c2d/2 − d3/6]r−3 + · · · (15)

U = −(cθ + 2c cot θ + dφ csc θ)r−2 + [2N + 3(ccθ + ddθ ) + 4(c2 + d3) cot θ

− 2(cφd − cdφ) csc θ ]r−3 + · · · (16)

W = −(dθ + 2d cot θ − cφ csc θ)r−2

+ [2Q + 2(cθd − cdθ ) + 3(ccφ + ddφ) csc θ ]r−3 + · · · (17)

V = r − 2M − [Nθ + cot θ + Qφ csc θ − (c2 + d2)/2

− (
c2
θ + d2

θ

) − 4(ccθ + ddθ ) cot θ − 4(c2 + d2) cot2 θ

− (
c2
φ + d2

φ

)
csc2 θ + 4(cφd − cdφ) csc θ cot θ

+ 2(cφdθ − cθdφ) csc θ ]r−1 + · · · (18)

β = −(c2 + d2)r−2/4 + · · · , (19)

where c, C, d,H,N,Q and M are now functions of u, θ and φ. It can be shown [11–13] that
field equations allow us to determine the u-derivatives of all functions in β and γ with the
exceptions of news functions cu and du, which remain arbitrary and whose existence represents
a clear-cut criterium for the presence of gravitational radiation.

Let us first calculate the vorticity for the congruence of observers at rest in (13), whose
4-velocity vector is given by uα = A−1δα

u , where now A is given by

A = (V r−1 e2β − r2e2γ U 2 cosh 2δ − r2e−2γ W 2 cosh 2δ − 2r2UW sinh 2δ)1/2. (20)

Thus, (7) lead us to

ωα = (ωu, ωr, ωθ , ωφ), (21)

where

ωu = − 1

2A2 sin θ
{r2e−2β(WUr − UWr) + [2r2 sinh 2δ cosh 2δ(U 2e2γ + W 2e−2γ )
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+ 4UWr2 cosh2 2δ]e−2βγr + 2r2e−2β(W 2e−2γ − U 2e2γ )δr

+ e2β [e−2β(U sinh 2δ + e−2γ W cosh 2δ)]θ
− e2β [e−2β(W sinh 2δ + e−2γ U cosh 2δ]φ} (22)

ωr = 1

e2β sin θ

{
2r2A−2

[
((U 2e2γ + W 2e−2γ ) sinh 2δ cosh 2δ

+ UW cosh2 2δ)γu) + (W 2e−2γ − U 2e2γ )δu +
1

2
(WUu − UWu)

]

+ A2[A−2(W e−2γ cosh 2δ + U sinh 2δ)]θ

−A2[A−2(W sinh 2δ + U e2γ cosh 2δ)]φ

}
(23)

ωθ = 1

2r2 sin θ
{A2e−2β [r2A−2(U sinh 2δ + W e−2γ cosh 2δ)]r

− e2βA−2[e−2βr2(U sinh 2δ + e−2γ W cosh 2δ)]u + e2βA−2(e−2βA2)φ}, (24)

and

ωφ = 1

2r2 sin θ
{A2e−2β [r2A−2(W sinh 2δ + U e2γ cosh 2δ)]r

− e2βA−2[r2e−2β(W sinh 2δ + U e2γ cosh 2δ)]u + A−2 e2β(A2e−2β)θ }. (25)

Thus, for the leading term of the absolute value of ωµ we get

� = − 1

2r
[(cθu + 2cu cot θ + dφu csc θ)2 + (dθu + 2du cot θ − cφu csc θ)2]1/2, (26)

which of course reduces to (9) in the Bondi (axially and reflection symmetric) case
(d = cφ = 0).

Next, calculation of the super-Poynting gives the following result:

Pµ = (0, Pr , Pθ , Pφ), (27)

where the explicit terms are too long to be written at this point.
Although algebraic manipulation by hand is feasible for the Bondi metric, for the Bondi–

Sachs one it is quite cumbersome. Thus, we calculated the super-Poynting components using
two different sets of Maple scripts (available upon request). One uses the Maple intrinsic
procedures to deal with tensors; the electric and magnetic parts of the Weyl tensor were not
manipulated explicitly up to the leading term output for the super-Poynting vector components.
The most important feature for this procedure, which leads to considerable simplification, is
the use of the shift vector UA = (U,W/ sin θ) and the 2-surfaces metric of constant u

hAB =
(

e2γ cosh 2δ sinh 2δ sin θ

sinh 2δ sin θ e−2γ cosh 2δ sin2 θ

)
, (28)

where A,B runs from 2 to 3. In our calculations we keep these auxiliary variables, UA and
hAB , as far as possible. The other set of Maple scripts uses the GRTensor II computer algebra
package (running on Maple); in this case, all the relevant objects (electric and magnetic parts
of the Weyl tensor, super-Poynting vector P α) were calculated exactly for the metric (13)
performing next a series expansion (at r → ∞) for the components of P α , taking into account
expressions (14)–(19) for the metric functions and keeping just the leading term in the series.
Both approaches led us to the same results.

The leading terms for each super-Poynting component are

Pr = −2r−2
(
d2

uu + c2
uu

)
, (29)
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Pθ = − 2

r2 sin θ

{[
2
(
d2

uu + c2
uu

)
c + cuucu + duudu

]
cos θ +

[
cuucθu + duudθu +

(
c2
uu + d2

uu

)
cθ

]
sin θ

+ cuudφu − duucφu +
(
d2

uu + c2
uu

)
dφ

}
, (30)

Pφ = 2

r2

{
2
[
cuudu − duucu − (

d2
uu + c2

uu

)
d
]

cos θ +
[
cuudθu − duucθu − (

c2
uu + d2

uu

)
dθ

]
sin θ

+
(
d2

uu + c2
uu

)
cφ − (cuucφu + duudφu)

}
, (31)

from which it follows

P φ = − 2

r4 sin2 θ
{sin θ [duθcuu − duucuθ ] + 2 cos θ [cuudu − duucu] − [cuucuφ + duuduφ]},

(32)

which of course vanishes in the Bondi case.

4. Discussion

We have seen so far that gravitational radiation produces vorticity in the congruence of
observers at rest in the frame of (13). We conjecture that such vorticity is caused by the
presence of a flow of super-energy, as described by the super-Poynting vector (10).

In the case of axial and reflection symmetry (Bondi), the plane of rotation is orthogonal
to the unit vector êφ , in the φ direction, and accordingly it is the P θ component which is
responsible for such vorticity, whereas the azimuthal component P φ vanishes, in agreement
with the fact that the symmetry of the Bondi metric excludes rotation along the φ direction.

In the general case, we have shown that the vorticity vector also has components along
êr and êθ , thereby implying rotations on the corresponding orthogonal planes. In particular,
rotations in the φ direction are now allowed (ωθ �= 0), and therefore we should expect a
non-vanishing P φ , which is in fact what happens.

Thus, we have shown that there is always a non-vanishing component of P µ, on the
plane orthogonal to a unit vector along which there is a non-vanishing component of vorticity.
Inversely, P µ vanishes on a plane orthogonal to a unit vector along which the component of
vorticity vector vanishes (Bondi). This further supports our conjecture about the link between
the super-Poynting vector and vorticity.
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