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Relativistic gravitational collapse in noncomoving coordinates: The post-quasistatic approximation
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A general iterative method for the description of evolving self-gravitating relativistic spheres is presented.
Modeling is achieved by the introduction of an ansatz whose rationale becomes intelligible and finds full
justification within the context of a suitable definition of the post-quasistatic approximation. As examples of the
application of the method we discuss three models in the adiabatic case.
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I. INTRODUCTION

The problem of general relativistic gravitational collap
has attracted the attention of researchers since the sem
paper by Oppenheimer and Snyder@1#. The motivation for
such interest is easily understood: the gravitational colla
of massive stars represents one of the few observable
nomena where general relativity is expected to play a
evant role. Ever since that work, much has been written
researchers trying to provide models of evolving gravitat
spheres. However, this endeavor proved to be difficult
uncertain. Different kinds of advantages and obstacles
pear, depending on the approach adopted for the model

Thus, numerical methods~see@2# and references therein!
enable researchers to investigate systems that are extre
difficult to handle analytically. In the case of general relat
ity, numerical models have proved valuable for investig
tions of strong field scenarios and have been crucial in
vealing unexpected phenomena@3#. Even specific difficulties
associated with numerical solutions of partial different
equations in the presence of shocks are being overcome@4#.
These days, what seems to be the main limitation for num
cal relativity is the computational demands for 3D evolutio
prohibitive in some cases@5#. Nevertheless, purely numerica
solutions usually hinder the investigation of the gene
qualitative aspects of the process. On the other hand, ana
cal solutions although more suitable for a general discus
~see@6# and references therein!, are found either for too sim
plistic equations of state and/or under additional heuri
assumptions whose justification is usually uncertain. The
fore it seems useful to consider nonstatic models which
relatively simple to analyze but still contain some of t
essential features of a realistic situation.

Accordingly, it is our purpose in this work to present a
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approach for modeling the evolution of self-gravitatin
spheres, that may be regarded as a compromise betwee
two approaches mentioned above~analytical and numerical!.
Indeed, the proposed method, starting from any interior~ana-
lytical! static spherically symmetric~‘‘seed’’! solution to the
Einstein equations, leads to a system of ordinary differen
equations for quantities evaluated at the boundary surfac
the fluid distribution, whose solution~numerical! allows for
modeling the dynamics of self-gravitating spheres who
static limit is the original ‘‘seed’’ solution.

The approach is based on the introduction of a set
conveniently defined ‘‘effective’’ variables, which are the e
fective pressure and energy density, and a heuristic ansa
the latter@7#, whose rationale and justification become inte
ligible within the context of the post-quasistatic appproxim
tion defined below. In the quasistatic approximation~see the
next section!, the effective variables coincide with the corr
sponding physical variables~pressure and density! and there-
fore the method may be regarded as an iterative method
each consecutive step corresponding to a stronger depa
from equilibrium. In this work, we shall restrict ourselves
the post-quasistatic level~see the next section for details!.

At this point it is important to stress a crucial differenc
between this method and the one proposed many years
with a similar structure, but based on radiative Bondi co
dinates~see@8# and references therein!: in the latter the ef-
fective variables introduced do not coincide with the cor
sponding physical variables in the quasistatic approxima
~they do coincide in the static limit!, and accordingly the
ansatz on those variables remains as a heuristic assump
only justified by the eventual suitability of the models o
tained.

The fluid distribution under consideration will be assum
to be dissipative. Indeed, dissipation due to the emission
massless particles~photons and/or neutrinos! is a character-
istic process in the evolution of massive stars. In fact
seems that the only plausible mechanism to carry away
bulk of the binding energy of the collapsing star, leading to
neutron star or black hole, is neutrino emission@9#. Conse-

a.
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quently, in this paper, the matter distribution forming t
self-gravitating object will be described as a dissipative flu

In the diffusion approximation, it is assumed that the e
ergy flux of radiation~like that of thermal conduction! is
proportional to the gradient of temperature. This assump
is in general very sensible, since the mean free path of
ticles responsible for the propagation of energy in stellar
teriors is in general very small as compared with the typi
length of the object. Thus, for a main sequence star suc
the sun, the mean free path of photons at the center, is o
order of 2 cm. Also, the mean free path of trapped neutri
in compact cores of densities about 1012 g cm23 becomes
smaller than the size of the stellar core@10,11#. Furthermore,
the observational data collected from supernova 1987A in
cates that the regime of radiation transport prevailing dur
the emission process is closer to the diffusion approxima
than to the streaming out limit@12#.

However, in many other circumstances, the mean f
path of particles transporting energy may be large enoug
justify the free streaming approximation. Therefore our f
malism will include simultaneously both limiting cases
radiative transport~diffusion and streaming out!, allowing
for description of a wide range of situations.

In addition to the usual physical variables~energy density,
pressure, velocity, heat flow, etc.! we shall also incorporate
into our discussion other quantities which are expected
play an important role in the evolution of evolving se
gravitating systems, such as the Weyl tensor, the shear o
fluid, and the Tolman mass. Therefore these quantities
be calculated and used in the process of modeling. It is
worth mentioning that, although the most common meth
of solving Einstein’s equations is to use comoving coor
nates~e.g., @13,6#!, we shall use noncomoving coordinate
which implies that the velocity of any fluid element~defined
with respect to a conveniently chosen set of observers! has to
be considered as a relevant physical variable@14#.

The plan of the paper is as follows. In Sec. II we defi
the conventions and give the field equations and express
for the kinematical and physical variables we shall use
noncomoving coordinates. The proposed approach is
sented and explained in Sec. III. In Sec. IV we illustrate
method by means of three examples. Finally, a discussio
results is presented in Sec. V.

II. RELEVANT EQUATIONS AND CONVENTIONS

A. The field equations

We consider spherically symmetric distributions of a c
lapsing fluid, which for the sake of completeness we assu
to be locally anisotropic, undergoing dissipation in the fo
of heat flow and/or free streaming radiation, bounded b
spherical surfaceS.

The line element is given in Schwarzschild-like coord
nates by

ds25endt22eldr22r 2~du21sin2udf2!, ~1!

where n(t,r ) and l(t,r ) are functions of their arguments
We number the coordinatesx05t; x15r ; x25u; x3

5f.
10400
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The metric~1! has to satisfy the Einstein field equation

Gm
n 528pTm

n , ~2!

which in our case read@15#

28pT0
052

1

r 2
1e2lS 1

r 2
2

l8

r D , ~3!

28pT1
152

1

r 2
1e2lS 1

r 2
1

n8

r D , ~4!

28pT2
2528pT3

3

52
e2n

4
@2l̈1l̇~ l̇2 ṅ !#

1
e2l

4 S 2n91n822l8n812
n82l8

r D , ~5!

28pT0152
l̇

r
, ~6!

where overdots and primes stand for partial differentiat
with respect tot and r, respectively.

In order to give physical significance to theTn
m compo-

nents we apply the Bondi approach@15#.
Thus, following Bondi, let us introduce purely locall

Minkowski coordinates (t,x,y,z)

dt5en/2dt; dx5el/2dr; dy5rdu; dz5r sinudf.

Then, denoting the Minkowski components of the ene
tensor by an overbar, we have

T̄0
05T0

0 , T̄1
15T1

1 , T̄2
25T2

2 , T̄3
35T3

3 ,

T̄015e2(n1l)/2T01.

Next, we suppose that, when viewed by an observer mov
relative to these coordinates with proper velocityv in the
radial direction, the physical content of space consists of
anisotropic fluid of energy densityr, radial pressurePr ,
tangential pressureP' , radial heat fluxq̂, and unpolarized
radiation of energy densityê traveling in the radial direction.
Thus, when viewed by this moving observer the covari
tensor in Minkowski coordinates is

S r1 ê 2q̂2 ê 0 0

2q̂2 ê Pr1 ê 0 0

0 0 P' 0

0 0 0 P'

D .

Then a Lorentz transformation readily shows that

T0
05T̄0

05
r1Prv

2

12v2
1

2Qvel/2

~12v2!1/2
1e, ~7!
4-2
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T1
15T̄1

152
Pr1rv2

12v2
2

2Qvel/2

~12v2!1/2
2e, ~8!

T2
25T3

35T̄2
25T̄3

352P' , ~9!

T015e(n1l)/2T̄01

52
~r1Pr !ve(n1l)/2

12v2

2
Qen/2el

~12v2!1/2
~11v2!2e(n1l)/2e, ~10!

with

Q[
q̂e2l/2

~12v2!1/2
~11!

and

e[ê
~11v!

~12v!
. ~12!

Note that the coordinate velocity in the (t,r ,u,f) system,
dr/dt, is related tov by

v5
dr

dt
e(l2n)/2. ~13!

Feeding back Eqs.~7!–~10! into Eqs. ~3!–~6!, we get the
field equations in the form

r1Prv
2

12v2
1

2Qvel/2

~12v2!1/2
1e

52
1

8p H 2
1

r 2
1e2lS 1

r 2
2

l8

r D J , ~14!

Pr1rv2

12v2
1

2Qvel/2

~12v2!1/2
1e

52
1

8p H 1

r 2
2e2lS 1

r 2
1

n8

r D J , ~15!

P'52
1

8p H e2n

4
@2l̈1l̇~ l̇2 ṅ !#

2
e2l

4 S 2n91n822l8n812
n82l8

r D J , ~16!

~r1Pr !ve(n1l)/2

12v2
1

Qen/2el

~12v2!1/2
~11v2!

1e(n1l)/2e52
l̇

8pr
. ~17!
10400
Observe that ifn andl are fully specified then Eqs.~14!–
~17! become a system of algebraic equations for the phys
variablesr, Pr , P' , v, Q, and e. Obviously, in the most
general case when all these variables are nonvanishing
system is underdetermined, and two equations of state sh
be given. In general, wheneverQ5” 0 a transport equation
has to be assumed. In the case originally considered
Bondi @15# ~locally isotropic fluid and free streaming regim
Q50) the system is closed. For the adiabatic (e5Q50)
and locally isotropic fluid (Pr5P') the system is overdeter
mined, and a constraint on the physical variables appear

At the outside of the fluid distribution, the spacetime
that of Vaidya, given by

ds25S 12
2M ~u!

R Ddu212dudR

2R 2~du21sin2udf2!, ~18!

whereu is a coordinate related to the retarded time, such t
u5const is~asymptotically! a null cone open to the future
andR is a null coordinate (gRR50). It should be remarked
however, that strictly speaking the radiation can be cons
ered in radial free streaming only at radial infinity.

The two coordinate systems (t,r ,u,f) and (u,R,u,f) are
related at the boundary surface and outside it by

u5t2r 22M lnS r

2M
21D , ~19!

R5r . ~20!

In order to smoothly match the two metrics above on
boundary surfacer 5r S(t), we first require the continuity of
the first fundamental form across that surface. Then

@enS2elSṙ S
2 # dt25F12

2M

RS
12

dRS

du G du2, ~21!

whereR5RS(u) is the equation of the boundary surface
(u,R,u,f) coordinates.

From Eq.~21!, using Eqs.~13!, ~19!, and~18!, it follows
that

enS512
2M

RS
, ~22!

e2lS512
2M

RS
. ~23!

where, from now on, the subscriptS indicates that the quan
tity is evaluated at the boundary surfaceS.

Next, the unit vectornm , normal to the boundary surface
has the components

nm
(1)5S 2b

dRS

du
,b,0,0D , ~24!

where1 indicates that the components are evaluated fr
the outside ofS, andb is given by
4-3
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b5S 12
2M ~u!

RS
12

dRS

du D 21/2

. ~25!

The unit vector normal toS, evaluated from the inside, i
given by

nm
(2)5~2 ṙ Sg,g,0,0! ~26!

with

g5~e2lS2 ṙ S
2 e2nS!21/2. ~27!

Let us now define a timelike vectorvm such that

vm(1)5bdu
m1b

dRS

du
dR

m ~28!

and

vm(2)5
e2nS/2

~12vS
2 !1/2

d t
m1

vSe2lS/2

~12vS
2 !1/2

d r
m . ~29!

Then, junction conditions acrossS, require @in addition to
Eq. ~21!#

~Tmnnmnn!S
(1)5~Tmnnmnn!S

(2) , ~30!

~Tmnnmvn!S
(1)5~Tmnnmvn!S

(2) , ~31!

where the expressions for the energy-momentum tenso
both sides of the boundary surface are

Tmn
(2)5~r1P'!umun2P'gmn1~Pr2P'!smsn

1qmun1qnum1e l nl m ~32!

and

Tmn
(1)52

1

4pR2

dM

du
dm

0 dn
0 , ~33!

with

um5S e2n/2

~12v2!1/2
,

ve2l/2

~12v2!1/2
,0,0D , ~34!

sm5S ve2n/2

~12v2!1/2
,

e2l/2

~12v2!1/2
,0,0D , ~35!

l m5~e2n/2,e2l/2,0,0!, ~36!

whereum denotes the four-velocity of the fluid,sm is a radi-
ally directed spacelike vector orthogonal toum, l m is a null
outgoing vector, and

qm5Q~ve(l2n)/2,1,0,0!. ~37!
10400
at

Then it follows from Eqs.~30! and ~31! that

@Pr1 ê #S52F 1

4pR2

dM

du
b2G

S

, ~38!

@Qel/2~12v2!1/21 ê #S52F 1

4pR2

dM

du
b2G

S

. ~39!

Equations~21!, ~38!, and ~39! are the necessary and suffi
cient conditions for a smooth matching of the two metrics~1!
and ~18! on S. Combining Eqs.~38! and ~39! we get

@Pr #S5@Q el/2~12v2!1/2#S , ~40!

expressing the discontinuity of the radial pressure in
presence of heat flow, which is a well known result@16#.

Next, it will be useful to calculate the radial component
the conservation law

Tn;m
m 50. ~41!

After tedious but simple calculations we get

~28pT1
1!85

16p

r
~T1

12T2
2!14pn8~T1

12T0
0!

1
e2n

r
S l̈1

l̇2

2
2

l̇ ṅ

2
D , ~42!

which in the static case becomes

Pr852
n8

2
~r1Pr !1

2~P'2Pr !

r
, ~43!

representing the generalization of the Tolman-Oppenheim
Volkof equation for anisotropic fluids@17#.

B. The kinematical variables

The components of the shear tensor are defined by

smn5um;n1un;m2uman2unam2
2

3
QPmn , ~44!

where

Pmn5gmn2umun , Q5u;m
m ,

am5unum;n , ~45!

denote the projector onto the three-space orthogonal toum,
the expansion, and the four-acceleration, respectively
simple calculation gives

Q5
e2n/2

2~12v2!1/2S l̇1
2vv̇

12v2D 1
e2l/2

2~12v2!1/2

3S vn812v81
2v2v8

12v2
1

4v

r D , ~46!
4-4
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s1152
2

3~12v2!3/2Fele2n/2S l̇1
2vv̇

12v2D
1el/2S vn81

2v8

12v2
2

2v

r D G , ~47!

s2252
e2lr 2~12v2!

2
s11, ~48!

s3352
e2lr 2~12v2!

2
sin2us11, ~49!

s005v2e2lens11, ~50!

s0152ve(n2l)/2s11, ~51!

a05
1

12v2 F S vv̇

12v2
1

v2l̇

2 D 1en/2e2l/2S vn8

2
1

v2v8

12v2D G ,

~52!

a152
1

12v2 F S vv8

12v2
1

n8

2 D 1e2n/2el/2S vl̇

2
1

v̇

12v2D G ,

~53!

and, for the shear scalars,

s5A3S Q

3
2

e2l/2

r

v

A12v2D . ~54!

C. The Tolman mass

The Tolman mass for a spherically symmetric distributi
of matter is given by@Eq. ~24! in @18##

mT54pE
0

r S
r 2e(n1l)/2~T0

02T1
122T2

2!dr

1
1

2E0

r S
r 2e(n1l)/2

]

]t S ]£

]@]~gabA2g!/]t#
D gabdr,

~55!

where £ denotes the usual gravitational Lagrangian den
@Eq. ~10! in @18##. Although Tolman’s formula was intro
duced as a measure of the total energy of the system, wit
commitment to its localization, we shall define the ma
within a sphere of radiusr, completely insideS, as

mT54pE
0

r

r 2e(n1l)/2~T0
02T1

122T2
2!dr

1
1

2E0

r

r 2e(n1l)/2
]

]t S ]£

]@]~gabA2g!/]t#
D gabdr.

~56!

This extension of the global concept of energy to a lo
level @19# is suggested by the conspicuous role played bymT
10400
ity

no
s

l

as the ‘‘effective gravitational mass,’’ which will be exhib
ited below. Even though Tolman’s definition is not witho
its problems@19,20#, we shall see thatmT , as defined by Eq.
~56!, is a good measure of the active gravitational mass
least for the systems under consideration.

Let us now evaluate expression~56!. The first integral in
that expression~I!,

I[4pE
0

r

r 2e(n1l)/2~T0
02T1

122T2
2!dr, ~57!

may be transformed to give~see@21# for details!

I5e(n1l)/2Fm~r ,t !2
4p

3
r 3T1

1G
2E

0

r

e(l2n)/2
r 2

2
S l̈1

l̇2

2
2

l̇ ṅ

2
D dr, ~58!

where the mass functionm, as usual, is defined by

e2l(r ,t)5122m~r ,t !/r . ~59!

Next, from @Eq. ~13! in @18##,

]

]t S ]£

]@]~gabA2g!/]t#
D

52Gab
0 1

1

2
da

0Gbs
s 1

1

2
db

0Gas
s , ~60!

and so the second integral~II ! in Eq. ~56! may be expressed
as

II5
1

2E0

r

r 2e(l2n)/2S l̈1
l̇2

2
2

l̇ ṅ

2
D dr. ~61!

Thus

mT[I1II5e(n1l)/2@m~r ,t !24pr 3T1
1#. ~62!

This is, formally, the same expression formT in terms ofm
and T1

1 that appears in the static~or quasistatic! case@Eq.
~25! in @22##.

ReplacingT1
1 by Eq.~4! andm by Eq.~59!, one also finds

mT5e(n2l)/2n8
r 2

2
. ~63!

This last equation brings out the physical meaning ofmT as
the active gravitational mass. Indeed, it can be easily sho
@23# that the gravitational accelerationa of a test particle,
instantaneously at rest in a static gravitational field, as m
sured with standard rods and a coordinate clock is given

a52
e(n2l)/2n8

2
52

mT

r 2
. ~64!
4-5



q

-

th

e
e

en

i-

e

to
e

ng

,
lko

a
ve
c
i-

im

lib
e

l f

in

ell
ve

ared
ns-

ity
ch

is

ays

nd
n-
.
in

the
vi-

-
vity,

e

e

L. HERRERA, W. BARRETO, A. Di PRISCO, AND N. O. SANTOS PHYSICAL REVIEW D65 104004
A similar conclusion can be obtained by inspection of E
~43! ~valid only in the static or quasistatic case! @24#. In fact,
the first term on the right side of this equation~the ‘‘gravi-
tational force’’ term! is a product of the ‘‘passive’’ gravita
tional mass densityr1Pr and a term proportional tomT /r 2.

D. The Weyl tensor

Since the publication of Penrose’s work@25#, there has
been increasing interest in studying the possible role of
Weyl tensor~or some function of it! in the evolution of self-
gravitating systems@26#. This interest is reinforced by th
fact that, for a spherically symmetric distribution of fluid, th
Weyl tensor may be defined exclusively in terms of the d
sity contrast and the local anisotropy of the pressure~see
below!, which in turn are known to affect the fate of grav
tational collapse@27#.

Now, using MAPLE V, it is found that all nonvanishing
components of the Weyl tensor are proportional to

W[
r

2
C232

3 5W(s)1
r 3e2n

12
S l̈1

l̇2

2
2

l̇ ṅ

2
D ~65!

where

W(s)5
r 3e2l

6 S el

r 2
2

1

r 2
1

n8l8

4
2

n82

4
2

n9

2
2

l8

2r
1

n8

2r D
~66!

corresponds to the contribution in the static case.
Also, from the field equations and the definition of th

Weyl tensor it can be easily shown that~see@21# for details!

W52
4p

3 E
0

r

r 3~T0
0!8dr1

4p

3
r 3~T2

22T1
1!. ~67!

III. THE METHOD

We now have available all the ingredients required
present our method; however, before doing so some gen
considerations will be necessary.

A. Equilibrium and departures from equilibrium

The simplest situation, when dealing with self-gravitati
spheres, is that of equilibrium~static case!. In our notation
that means thatv5e5Q50, all time derivatives vanishes
and we obtain the generalized Tolman-Oppenheimer-Vo
equation~43!.

Next, we have the quasistatic regime. By this we me
that the sphere changes slowly, on a time scale that is
long compared to the typical time in which the sphere rea
to a slight perturbation of hydrostatic equilibrium; this typ
cal time scale is called the hydrostatic time scale@28# ~some-
times this time scale is also referred to as the dynamical t
scale, e.g., see the third reference in@28#!. Thus, in this re-
gime the system is always very close to hydrostatic equi
rium and its evolution may be regarded as a sequenc
static models linked by Eq.~17!. This assumption is very
sensible because the hydrostatic time scale is very smal
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many phases of the life of the star. It is of the order of 27 m
for the Sun, 4.5 s for a white dwarf, and 1024 s for a neu-
tron star of one solar mass and 10 km radius. It is w
known that all the stellar configurations mentioned abo
generally change on time scales that are very long comp
to their respective hydrostatic time scales. Let us now tra
late this assumption into conditions onv and the metric
functions.

First of all, slow contraction means that the radial veloc
v as measured by the Minkowski observer is always mu
smaller than the velocity of light (v!1). Therefore we have
to neglect terms of orderO(v2).

Then Eq.~42! yields

l̈1
l̇2

2
2

ṅ l̇

2
58prenF ~Pr1e!81~r1Pr12e!

n8

2

22
P'2Pr2e

r G ~68!

~observe the contribution ofe to bothPr andr, and the fact
that e, v, andQ are of the same order of smallness, in th
approximation!.

Since, by assumption, in this regime the system is alw
~not only at a given timet) in equilibrium ~or very close to
it!, Eqs. ~43! and ~68! imply that, for an arbitrary slowly
evolving configuration,

l̈'ṅl̇'l̇2'0, ~69!

and of course, time derivatives of any order of the left ha
side of the hydrostatic equilibrium equation must also va
ish, for otherwise the system will deviate from equilibrium
This condition implies, in particular, that we must demand
this regime

n̈'0.

Finally, from the time derivative of Eq.~6!, and using Eq.
~10!, it follows that

v̇'O~ l̈,l̇v,ṅv!, ~70!

which implies that we also have to neglect terms linear in
acceleration. From purely physical considerations, it is ob
ous that the vanishing ofv̇ is required to keep the system
always in equilibrium.

Thus, in the quasistatic regime we have to assume

O~v2!5l̇25 ṅ25l̇ ṅ5l̈5 n̈50, ~71!

implying that the system remains in~or very close to! equi-
librium. However, during their evolution, self-gravitating ob
jects may pass through phases of intense dynamical acti
with time scales of the order of magnitude of~or even
smaller than! the hydrostatic time scale, and for which th
quasistatic approximation is clearly not reliable~e.g., the col-
lapse of very massive stars@29# and the quick collapse phas
preceding neutron star formation; see, for example,@30# and
4-6



to

th
es

c

e

o
tr

st
t

n

he
on
tio

a
th

s
,

-
s

s
.
n,
be

s-
pic
the

ay

es-
r-

ld
the
for

he
us

he

s.

RELATIVISTIC GRAVITATIONAL COLLAPSE IN . . . PHYSICAL REVIEW D 65 104004
references therein!. In these cases it is mandatory to take in
account terms that describe departure from equilibrium.

B. The effective variables and the post-quasistatic
approximation

Let us now define the following effective variables:

r̃5T0
05

r1Prv
2

12v2
1

2Qvel/2

~12v2!1/2
1e, ~72!

P̃52T1
15

Pr1rv2

12v2
1

2Qvel/2

~12v2!1/2
1e. ~73!

In the quasistatic regime the effective variables satisfy
same equation~43! as the corresponding physical variabl
~taking into account the contribution ofe to the ‘‘total’’ en-
ergy density and radial pressure, whenever the free stream
approximation is being used!. Therefore, in the quasistati
situation ~and obviously in the static too!, effective and
physical variables share the same radial dependence. N
feeding back Eqs.~72! and~73! into Eqs.~14! and~15!, these
two equations may be formally integrated, to obtain

m54pE
0

r

r 2r̃dr, ~74!

n5nS1E
r S

r 2~4pr 3P̃1m!

r ~r 22m!
dr. ~75!

From here it is obvious that for a given radial dependence
the effective variables the radial dependence of the me
functions become completely determined.

With this last comment in mind, we shall define the po
quasistatic regime as that corresponding to a system ou
equilibrium ~or quasiequilibrium! but whose effective vari-
ables share the same radial dependence as the corrrespo
physical variables in the state of equilibrium~or quasiequi-
librium!. Alternatively, it may be said that the system in t
post-quasistatic regime is characterized by metric functi
whose radial dependence is the same as the metric func
corresponding to the static~quasistatic! regime. The rationale
behind this definition is not difficult to grasp: we look for
regime which, although out of equilibrium, represents
closest possible situation to a quasistatic evolution~see more
on this point in Sec. V!.

C. The algorithm

Let us now outline the approach that we propose.
~1! Take an interior solution to the Einstein equation

representing a fluid distribution of matter in equilibrium
with a given

rst5r~r !, Prst5Pr~r !.

~2! Assume that ther dependence ofP̃ and r̃ is the same
as that ofPrst andrst , respectively.
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~3! Using Eqs.~75! and~74!, with the r dependence ofP̃
andr̃, one getsm andn up to some functions oft, which will
be specified below.

~4! For these functions oft one has three ordinary differ
ential equations~hereafter referred to as surface equation!,
namely,~a! Eq. ~13! evaluated onr 5r S ; ~b! Eq. ~42! evalu-
ated onr 5r S ; and ~c! the equation relating the total mas
loss rate to the energy flux through the boundary surface

~5! Depending on the kind of matter under consideratio
the system of surface equations described above may
closed with the additional information provided by the tran
port equation and/or the equation of state for the anisotro
pressure and/or additional information about some of
physical variables evaluated on the boundary surface~e.g.,
the luminosity!.

~6! Once the system of surface equations is closed, it m
be integrated for any particular initial data.

~7! Feeding back the result of integration into the expr
sions form andn, these two functions are completely dete
mined.

~8! With the input from point 7 above, and using the fie
equations, together with the equations of state and/or
transport equation, all physical variables may be found
any piece of matter distribution.

D. The surface equations

As should be clear from the above the crucial point in t
algorithm is the system of surface equations. So, let
specify them now.

Introducing the dimensionless variables

A5r S /mS~0!,

F5122M /A,

M5mS /mS~0!,

V5vS ,

a5t/mS~0!,

where mS(0) denotes the total initial mass, we obtain t
first surface equation by evaluating Eq.~13! at r 5r S . One
gets

dA

da
5FV. ~76!

Next, using junction conditions, one obtains from Eq
~59!, ~14!, and~17! evaluated atr 5r S that

dM

da
52F~11V!Ê, ~77!

with

Ê54pr S
2 ~ êS1q̂S!, ~78!
4-7
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where the first and second terms on the right of Eq.~77!
represent the gravitational redshift and the Doppler shift c
rections, respectively. Then, defining the luminosity p
ceived by an observer at infinity as

L52
dM

da
,

we obtain the second surface equation in the form

dF

da
5

F

A
~12F !V12L/A. ~79!

The third surface equation may be obtained by evalua
at the boundary surface the conservation lawT1;m

m 50, which
reads

P̃81
~ r̃1 P̃!~4pr 3P̃1m!

r ~r 22m!

5
e2n

4pr ~r 22m!
S m̈1

3ṁ2

r 22m
2

ṁṅ

2
D 1

2

r
~P'2 P̃!. ~80!

FIG. 1. Energy densityrm(0)2 as a function of~dimensionless!
time (a) for the Schwarzschild-type model. The initial condition
are A(0)55, F(0)50.6, andV(0)520.1. Curves represent dif
ferent regions:r /r S50.25 ~continuous line!; 0.50 ~dashed line!;
0.75 ~short-dashed line!; and 1.00~dotted line!.
10400
r-
-

g

Now, in the following section we consider two relative
simple models with a separable effective density, i.e.,r̃
5 f (t)h(r ); thus Eq.~80! evaluated at the boundary surfac
leads to

dV

da
5V2F8F

A
12Fk~r S!14pr̃SA~32V2!G

2
F

r̃S
FR2

2

A S P'S2 r̃SV22
Ē~11V!

4pr S
2 D G , ~81!

where

R5F P̃81
P̃1 r̃

122m/r S 4pr P̃1
m

r 2D G
S

, ~82!

Ē5Ê~11V!, ~83!

and

FIG. 2. Radial pressurePrm(0)2 as a function of time for the
Schwarzschild-type model. The initial conditions areA(0)55,
F(0)50.6, andV(0)520.1. Curves represent different region
r /r S50.25~continuous line!; 0.50~dashed line!; 0.75~short-dashed
line!; and 1.00~dotted line!.
4-8
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k~r S!5
d

drS
lnS 1

r S
E

0

r S
drr 2h~r !/h~r S! D . ~84!

Before analyzing specific models, some interesting c
clusions can be obtained at this level of generality. One
these conclusions concerns the condition of bouncing at
surface which, of course, is related to the occurrence o
minimum radiusA. According to Eq.~76! this requiresV
50, and we have

d2A

da2
5F

dV

da
, ~85!

or, using Eq.~81!,

dV

da
~V50!52

F

r̃S
FR2

2

A S P'S2
Ê

4pr S
2 D G . ~86!

Observe that a positive energy flux (Ê) tends to decrease th
radius of the sphere, i.e., it favors the compactification of

FIG. 3. Radial velocity v as a function of time for the
Schwarzschild-type model. The initial conditions areA(0)55,
F(0)50.6, andV(0)520.1. Curves represent different region
r /r S50.25~continuous line!; 0.50~dashed line!; 0.75~short-dashed
line!; and 1.00~dotted line!.
10400
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e

object, which is easily understandable. The same happ
when R.0 or P'S,0. The opposite effect occurs whe
these quantities have the opposite signs. Now, for a pos
energy flux the sphere can bounce at its surface only wh

dV

da
~V50!>0.

According to Eq.~86! this is equivalent to

2R~V50!1
2P'S

A
>0. ~87!

A physical meaning can be associated with this equa
as follows. For a nonradiating, static configuration,R as de-
fined by Eq.~82! consists of two parts, the first term, whic
together with 2@2(P'2Pr)/r #S represents the hydrody
namical force@see Eq.~43!#, and the second, which is o
course the gravitational force. The resulting force in t
sense of increasingr is precisely2R1@2(P'2Pr)/r #S ; if
this is positive a net outward acceleration occurs, and v

FIG. 4. Shear sm(0) as a function of time for the
Schwarzschild-type model. The initial conditions areA(0)55,
F(0)50.6, andV(0)520.1. Curves represent different region
r /r S50.25~continuous line!; 0.50~dashed line!; 0.75~short-dashed
line!; and 1.00~dotted line!.
4-9



-

n
n
m
or
ou
an
he

th
nl
ll

ece
of
ns
be

ell
ies
ond

es-
ten-

ol-
s
ed

r

s:
t

L. HERRERA, W. BARRETO, A. Di PRISCO, AND N. O. SANTOS PHYSICAL REVIEW D65 104004
versa. Equation~87! is the natural generalization of this re
sult for general nonstatic configurations.

As mentioned before, in addition to the surface equatio
in some cases~depending on the type of matter under co
sideration! further information has to be provided in the for
of an equation of state for the tangential stresses and/
transport equation. In the next section we shall illustrate
method with three examples, one of which refers to an
isotropic fluid, and for which we shall further assume t
equation of state~see@31,32#!

P'2Pr5
C~ P̃1 r̃ !~4pr 3P̃1m!

~r 22m!
, ~88!

whereC is a constant.

IV. EXAMPLES

The only purpose of the present section is to illustrate
proposed method. For simplification we shall consider o
the adiabatic case (e5Q50). For all these models we sha

FIG. 5. Weyl tensorW/m(0) as a function of time for the
Schwarzschild-type model. The initial conditions areA(0)55,
F(0)50.6, andV(0)520.1. Curves represent different region
r /r S50.25~continuous line!; 0.50~dashed line!; 0.75~short-dashed
line!; and 1.00~dotted line!.
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calculate the physical and geometrical variables for any pi
of matter, as functions of the timelike coordinate. In spite
the simplicity of the models, some interesting conclusio
about the physical meaning of different variables may
reached.

One of the models has as the ‘‘seed’’ solution the w
known Schwarzschild interior solution, whose propert
have been extensively discussed in the literature. The sec
example is based on an anisotropic fluid without radial pr
sure. Models of this kind have also been discussed ex
sively since the original Einstein paper~see@33#!. Finally,
the third example represents the dynamic version of the T
man type-VI static solution@34#, whose equation of state, a
is well known, approaches that for a highly compress
Fermi gas.

A. Schwarzschild-type model

This model is inspired by the well known interio
Schwarzschild solution. Accordingly we take

r̃5 f ~ t !, ~89!

FIG. 6. Radial velocityv as a function ofr /r S for a510. The
initial velocity at the surface is20.001. Curves represent differen
values of F(0): 0.6 ~continuous line!; 0.96 ~dashed line!; and
0.996~short-dashed line!.
4-10
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wheref is an arbitrary function oft. The expression forP̃ is

P̃1 1
3 r̃

P̃1 r̃
5S 12

8p

3
r̃r 2D 1/2

k~ t !, ~90!

wherek is a function oft to be determined from the junctio
conditions ~40!, which in terms of effective variables be
comes

P̃S5 r̃SV2. ~91!

Thus, using Eqs.~90! and ~91! we have for the effective
variables

r̃5
3~12F !

8pr S
2

, ~92!

P̃5
r̃

3 H xF1/223cj

cj2xF1/2 J , ~93!

FIG. 7. Radial velocityv as a function of time for the Tolman
type-VI model. The initial conditions areF(0)50.581428528 and
V(0)520.0001. Curves represent different regions:r /r S50.2
~continuous line!; 0.4 ~dashed line!; 0.6 ~short-dashed line!; 0.8
~dotted line!; and 1.0~dot-dashed line!.
10400
with

j5@12~12F !~r /r S!2#1/2,

and

x53~V211!~12F !,

c5~3V211!~12F !.

For the metric functionsm andn we get, using Eqs.~74! and
~75!

m5mS~r /r S!3, ~94!

en5H xF1/22cj

2~12F ! J 2

. ~95!

The third surface equation for this model becomes

dV

da
5

V2

2A
@723V213F~V221!#. ~96!

FIG. 8. Radial velocityv as a function of time for the Tolman
type model. The initial conditions areF(0)50.561428547 and
V(0)520.0001. Curves represent different regions:r /r S50.2
~continuous line!; 0.4 ~dashed line!; 0.6 ~short-dashed line!; 0.8
~dotted line!; and 1.0~dot-dashed line!.
4-11
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This equation together with Eqs.~76! and ~79! form the
set of surface equations for this model. We have integrate
numerically and from this integration all physical variabl
are found for any piece of the fluid distribution, followin
the algorithm described above.

Figures 1–5 exhibit the behavior ofr, P, v, s, andW for
an initially contracting configuration, as functions ofa and
different pieces of matter. Figure 6 shows the profile ofv as
a function ofr /r S for a510.

B. Lemaitre-Florides-type model

This model has as the ‘‘seed’’ solution a configurati
with homogeneous energy density and vanishing radial p
sure. Configurations of this kind were suggested for the fi
time by Lemaitre@35#.

The corresponding effective variables now are

r̃5 f ~ t ! ~97!

and

P̃50. ~98!

FIG. 9. Weyl tensorW/m(0) at r /r S50.4 as a function of time
for the Tolman type-VI type model. The initial conditions a
F(0)50.581428528~dashed line!; F(0)50.561428547~continu-
ous line!; andV(0)520.0001.
10400
it

s-
st

Observe that in this case, because of Eqs.~97! and ~98!, it
follows from Eqs.~72! and ~73! that the radial pressure i
discontinuous at the boundary surface, with

PrS523~12F !V2/8pr S
2 , ~99!

for otherwise eitherrS or V should vanish atS. Therefore
the only way to ‘‘dynamize’’ this model is by relaxing
boundary conditions, allowing for the presence of a kind
surface tension.

Once the effective variables are defined, we need only
value of the tangential pressure at the boundary to close
system of surface equations. This is obtained by evalua
Eq. ~88! at S.

Next, following the algorithm, all physical variables ma
be found for any piece of material as functions of the tim
like coordinate. Although we are not going to exhibit the
here, because the graphics are not particularly illuminat
we wanted to present an example that, in addition to the
that it implies an anisotropic fluid, requires the introducti
of a surface tension to allow the application of the algorith

FIG. 10. Weyl tensorW/m(0) atr /r S51.0 as a function of time
for the Tolman type-VI type model. The initial conditions a
F(0)50.581428528~dashed line!; F(0)50.561428547~continu-
ous line!; andV(0)520.0001.
4-12
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C. Tolman type-VI model

Our last example is based on the Tolman type-VI soluti
Accordingly the effective variables for this model will be

r̃5
3g~ t !

r 2
~100!

and

P̃5
g@92bK~r /r S!#

@92b~r /r S!#r 2
, ~101!

whereg and b are functions ofa, to be obtained from Eq
~91!. Then,

r̃5
3~12F !

24pr 2
. ~102!

Using Eqs.~74! and ~75! we get

m5mSr /r S , ~103!

FIG. 11. Shearsm(0) as a function of time for the Tolman
type-VI type model. The initial conditions areF(0)
50.581428528 andV(0)520.0001. Curves represent different r
gions: r /r S50.2 ~continuous line!; 0.4 ~dashed line!; 0.6 ~short-
dashed line!; 0.8 ~dotted line!; and 1.0~dot-dashed line!.
10400
. n5 ln F1
8pg

F H 4 ln~r /r S!18 lnS b~r /r S!2K

b29 D J .

~104!

Finally, solving the surface equations for this model,m
and n are completely determined and all physical variab
can thereby be calculated. In addition to the intrinsic phy
cal interest of the equation of state of this ‘‘seed’’ mod
mentioned before, it is interesting because of the fact that
static limit of the model~unlike the previous ones! is ‘‘un-
stable,’’ in the sense that it requires a specific value of
gravitational potential at the boundary, namely,mS(0)/r S

53/14. For values above~below! this, the sphere starts t
collapse~expand!.

Figures 7 and 8 display the evolution of velocity (v) for
different regions of the sphere, and for initial values ofF
corresponding to values ofmS(0)/r S above and below the
equilibrium value, respectively. Figures 9 and 10, repres
the evolution of the Weyl tensor~W! for some internal region
and the boundary surface, respectively, and initial values
F corresponding to values ofmS(0)/r S above and below

FIG. 12. Shearsm(0) as a function of time for the Tolman-typ
model. The initial conditions areF(0)50.561428547 andV(0)
520.0001. Curves represent different regions:r /r S50.2 ~continu-
ous line!; 0.4 ~dashed line!; 0.6 ~short-dashed line!; 0.8 ~dotted
line!; and 1.0~dot-dashed line!.
4-13
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equilibrium. Finally, Figs. 11 and 12 exhibit the behavior
the shear (s) for different regions and initial values ofF
corresponding to values ofmS(0)/r S above and below equi
librium.

We shall comment on these graphics in the next secti

V. CONCLUSIONS

A method has been presented that allows for the desc
tion of radiating self-gravitating relativistic spheres. In
most general form, the approach incorporates the two lim
ing cases of radiation transport~free streaming and diffusion!
as well as the possibility of dealing with anisotropic fluids

The cornerstone of the algorithm is an ansatz based
specific definition of the post-quasistatic approximatio
namely: considering different degrees of departure fr
equilibrium, the post-quasistatic regime~i.e., the next step
after the quasistatic situation! is defined as that characterize
by metric functions whose radial dependence is the sam
that of the quasistatic regime. This in turn implies, that
effective variables defined above share the same radia
pendence as the correspondig physical variables of the
sistatic regime. The rationale behind this definition see
intelligible when it is remembered that in the latter case~the
quasistatic! the effective variables share the same radial
pendence as that of the physical variables in the static
gime. Thus, starting with a static configuration, the fi
‘‘level’’ of equilibrium, beyond the quasistatic situation,
represented by the post-quasistatic regime.

Once the static~‘‘seed’’! solution has been selected, the
the definition of the effective variables together with surfa
equations allows for determination of the metric function
which in turn lead to the full description of the physic
variables as functions of the timelike coordinate for any
gion of the sphere. In this process, depending on the kin
matter and/or the prevailing transport approximation, ad
tional equations of state and/or transport equations an
some of the surface variables~e.g., the luminosity! have to
be specified.

Once all physical variables have been found~particularly
the energy density and the radial pressure! then we may, in
principle, go to the next step, assuming that the effec
variables now share the same radial dependence as that o
physical variables just obtained. In this sense the algori
may be regarded as an iterative approach. For obvious
sons we have restricted ourselves to the first step of the
cess. It remains to be seen if available physical evide
ss
r,
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justifies going through the complexities associated with
‘‘post-post-quasistatic’’ approximation.

In order to illustrate the method, and without the prete
sion of modeling specific astrophysical scenarios, we h
presented three examples, in the simplest~adiabatic! case.

In the first model, the profiles of the shear and the W
tensor clearly illustrate the ‘‘dynamics’’ of the model, ten
ing to zero in the static limit. The fact that these two qua
tities vanish in the quasistatic regime~for this specific
model! further brings out their relevance in the treatment
situations off equilibrium. On the other hand however, t
velocity profiles show almost no difference between the t
regimes. Deviations from homology contraction due to re
tivistic gravitational effects are also indicated.

The purpose of the second example was to illustrate
implementation of the algorithm for anisotropic fluids. Th
very particular form of the ‘‘seed’’ equation of state of th
model imposes discontinuity~surface tension! of the radial
pressure at the boundary. Of course this discontinuity v
ishes in the static~or quasistatic! regime.

Finally, a model based on the Tolman type-VI solutio
was presented. This static solution, as was already m
tioned, requires a specific value ofmS(0)/r S ; accordingly,
any deviation from this value leads to deviations from t
static regime~observe that the quasistatic regime is inco
patible with this solution!. The velocity profiles indicate tha
all regions either expand or contract, and therefore crack
~different signs of the velocity for different regions of th
sphere! will not occur @36#. This is consistent with the estab
lished fact that cracking occurs only for anisotropic fluids
isotropic fluids with outgoing radiation in the free streami
approximation.

Also, the profiles of the Weyl tensor and the shear, clea
diverging from the initial values as time proceeds and
evolution becomes more and more ‘‘dynamic,’’ stress on
again their roles in describing departures from equilibrium
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