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Relativistic gravitational collapse in noncomoving coordinates: The post-quasistatic approximation
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A general iterative method for the description of evolving self-gravitating relativistic spheres is presented.
Modeling is achieved by the introduction of an ansatz whose rationale becomes intelligible and finds full
justification within the context of a suitable definition of the post-quasistatic approximation. As examples of the
application of the method we discuss three models in the adiabatic case.
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[. INTRODUCTION approach for modeling the evolution of self-gravitating
spheres, that may be regarded as a compromise between the
The problem of general relativistic gravitational collapsetwo approaches mentioned abdamalytical and numerical
has attracted the attention of researchers since the seminadeed, the proposed method, starting from any intéeon-
paper by Oppenheimer and Snydél. The motivation for lytical) static spherically symmetri¢'seed”) solution to the
such interest is easily understood: the gravitational collapsEinstein equations, leads to a system of ordinary differential
of massive stars represents one of the few observable pheguations for quantities evaluated at the boundary surface of
nomena where general relativity is expected to play a relthe fluid distribution, whose solutiofnumerica) allows for
evant role. Ever since that work, much has been written bynodeling the dynamics of self-gravitating spheres whose
researchers trying to provide models of evolving gravitatingstatic limit is the original “seed” solution.
sphere;. H0\_/vever, th_is endeavor proved to be difficult and The approach is based on the introduction of a set of
uncertain. Different kinds of advantages and obstacles asonyeniently defined “effective” variables, which are the ef-
pear, depending on the approach adopted for the modelingee ctive pressure and energy density, and a heuristic ansatz on
Thus, numerical met'hodsge[Z] and references thergin t?e latter[ 7], whose rationale and justification become intel-
Si?f?(l:)lljtlat ;ﬁsﬁ;rzgree;sn;? I'[?(;/;Ftl?ﬁtfhesycsggnzfthat arel exltr(t:“.nl‘ﬁaible within the context of the post-quasistatic appproxima-
y Y- general refaliveyinn defined below. In the guasistatic approximatisee the

ity, numerical models have proved valuable for investiga—next section, the effective variables coincide with the corre-
tions of strong field scenarios and have been crucial in re-

vealing unexpected phenomelid. Even specific difficulties sponding physical variabldpressure and fjens).tylnd there- .
associated with numerical solutions of partial differential € the method may be regarded as an iterative method with

equations in the presence of shocks are being over¢dine each con.s'ec_utive step corresponding to a ;tronger departure
These days, what seems to be the main limitation for numeriffom equilibrium. In this work, we shall restrict ourselves to
cal relativity is the computational demands for 3D evolution,the post-quasistatic levébee the next section for details
prohibitive in some casd$]. Nevertheless, purely numerical At this point it is important to stress a crucial difference
solutions usually hinder the investigation of the generalbetween this method and the one proposed many years ago
qualitative aspects of the process. On the other hand, analyﬂ\lith a similar structure, but based on radiative Bondi coor-
cal solutions although more suitable for a general discussioflinates(see[8] and references thereinin the latter the ef-
(see[6] and references thergjrare found either for too sim- fective variables introduced do not coincide with the corre-
plistic equations of state and/or under additional heuristisponding physical variables in the quasistatic approximation
assumptions whose justification is usually uncertain. Therefthey do coincide in the static limitand accordingly the
fore it seems useful to consider nonstatic models which aransatz on those variables remains as a heuristic assumption,
relatively simple to analyze but still contain some of theonly justified by the eventual suitability of the models ob-
essential features of a realistic situation. tained.

Accordingly, it is our purpose in this work to present an  The fluid distribution under consideration will be assumed
to be dissipative. Indeed, dissipation due to the emission of
massless particle@hotons and/or neutrinpss a character-
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quently, in this paper, the matter distribution forming the The metric(1) has to satisfy the Einstein field equations
self-gravitating object will be described as a dissipative fluid.

In the diffusion approximation, it is assumed that the en- G,=—8nT,, (2
ergy flux of radiation(like that of thermal conductignis
proportional to the gradient of temperature. This assumptio
is in general very sensible, since the mean free path of par- 1
ticles responsible for the propagation of energy in stellar in- _87TT8= —Z4er
teriors is in general very small as compared with the typical 2
length of the object. Thus, for a main sequence star such as
the sun, the mean free path of photons at the center, is of the
order of 2 cm. Also, the mean free path of trapped neutrinos - 877Ti: - +e
in compact cores of densities about*a@ cm 3 becomes r
smaller than the size of the stellar c¢fié,11]. Furthermore, _8aT2= —87T3
the observational data collected from supernova 1987A indi- mieT T oMl
cates that the regime of radiation transport prevailing during e v ..
the emission process is closer to the diffusion approximation =— T[Z)\‘F)\()\— V)]
than to the streaming out limjtL2].

However, in many other circumstances, the mean free e M
path of particles transporting energy may be large enough to + a
justify the free streaming approximation. Therefore our for-
malism will include simultaneously both limiting cases of .

o D : X A
radiative transpor{diffusion and streaming oltallowing —87To=——, (6)
for description of a wide range of situations. r

In addition to the usual physical variabl@nergy density,
pressure, velocity, heat flow, etave shall also incorporate
into our discussion other quantities which are expected t
play an important role in the evolution of evolving self- :
gravitating systems, such as the Wey! tensor, the shear of tf€Nts we apply the Bondi approatb].
fluid, and the Tolman mass. Therefore these quantities will _1huS, following Bondi, let us introduce purely locally
be calculated and used in the process of modeling. It is alshlinkowski coordinates £,x,y,2)
worth mentioning t'hat, although the most common method __ e?dt:  dx=e2dr; dy=rd6; dz=r sin6dd.
of solving Einstein’s equations is to use comoving coordi-
nates(e.g.,[13,6]), we shall use noncomoving coordinates, Then, denoting the Minkowski components of the energy
Wh|Ch Implles that the VeIOCity Of any f|UId elemdmteﬁned tensor by an overbar' we have
with respect to a conveniently chosen set of obsejas to

thich in our case reafl5]
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where overdots and primes stand for partial differentiation
8vith respect ta andr, respectively.
In order to give physical significance to tfié¢" compo-

be considered as a relevant physical varidhig. TO=70  Ti_7! T2_72 T3_73
. , 0 ' 1 ' 2 v 137 13,
The plan of the paper is as follows. In Sec. Il we define
the conventions and give the field equations and expressions ?01: e VRt

for the kinematical and physical variables we shall use, in
noncomoving coordinates. The proposed approach is preyext, we suppose that, when viewed by an observer moving

method by means of three examples. Finally, a discussion gfgjal direction, the physical content of space consists of an
results is presented in Sec. V. anisotropic fluid of energy density, radial pressureP, ,

tangential pressur®, , radial heat fluxq, and unpolarized

_ _ radiation of energy densit& traveling in the radial direction.
A. The field equations Thus, when viewed by this moving observer the covariant

We consider spherically symmetric distributions of a col-tensor in Minkowski coordinates is
lapsing fluid, which for the sake of completeness we assume

II. RELEVANT EQUATIONS AND CONVENTIONS

to be locally anisotropic, undergoing dissipation in the form pte —-gq-e¢ 0 O
of heat flow and/or free streaming radiation, bounded by a —q—¢ P+e 0 0
spherical surfac&. '
The line element is given in Schwarzschild-like coordi- 0 0 P, 0
nates by 0 0 0 P,
ds’=e’dt*—e*dr’—r?(d6*+sinfod¢?), (1) Then a Lorentz transformation readily shows that
where v(t,r) and \(t,r) are functions of their arguments. 2 N2
We number the coordinate=t; x'=r; x?=¢; x3 ng?ngH_Prw + 2Que 7

=¢. 1-w? (1—w2)1/2+6’
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2 N2
TiZﬂZ— P, +pw 3 2Qwe . @®
1_w2 (1_w2)1/2
T2=T3=To=T3=-P,, (9)

To=e x)/zﬂl

(p+ Pr)we(v+)\)/2

1— w?
ev/2e)\
_(j_Q—2)1/2(1+ wz)—e(”“)’ze, (10
)
with
qe —\/2
=— 11
= (11
and
(1t w) 12
€=6(1_w). (12

Note that the coordinate velocity in the,i, 8,¢) system,
dr/dt, is related tow by

w= dre(x vz

dt (13

Feeding back Eqs(7)—(10) into Egs. (3)—(6), we get the
field equations in the form
p+P,w?

. 2Qwe)\/2
1- w?

(1_ w2)1/2

+e€

(14

s

1 [e”
= —{——[2k+A(A—1)]
=\

4

2V + v = N\"v' +2 (16)

)

+P we(V+ N2 eV/ZG)\
(p r) Q +w2)

1_w2 +(1_w2)1/2(1

A
pelrr e _
8mr’

7
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Observe that itv and\ are fully specified then Eq$14)—
(17) become a system of algebraic equations for the physical
variablesp, P,, P, , w, Q, ande. Obviously, in the most
general case when all these variables are nonvanishing, the
system is underdetermined, and two equations of state should
be given. In general, whenev€+0 a transport equation
has to be assumed. In the case originally considered by
Bondi[15] (locally isotropic fluid and free streaming regime,
Q=0) the system is closed. For the adiabatie=Q=0)
and locally isotropic fluid P, =P, ) the system is overdeter-
mined, and a constraint on the physical variables appears.

At the outside of the fluid distribution, the spacetime is
that of Vaidya, given by

[, 2MW)| o,
ds?=|1— — du?+2dudr
—R2(d6?+sirfod¢?), (18

whereu is a coordinate related to the retarded time, such that
u=const is(asymptotically a null cone open to the future
andR is a null coordinatedzz=0). It should be remarked,
however, that strictly speaking the radiation can be consid-
ered in radial free streaming only at radial infinity.

The two coordinate systems(, 8, ¢) and U, R, 6,¢) are
related at the boundary surface and outside it by

r
=t—r—2M In(ZM 1),

R=r.

(19

(20

In order to smoothly match the two metrics above on the
boundary surface=ry(t), we first require the continuity of
the first fundamental form across that surface. Then

. 2M  dR
vs _ ahsi27 q12—| 1 2| g2
[e=—eM3rs]dt=|1 Rs +2du dus, (21

whereR=Ry(u) is the equation of the boundary surface in
(u,R, 6,¢) coordinates.

From Eq.(21), using Eqs(13), (19), and(18), it follows
that

2M

VS —1 — —
e 1 Ry (22
“M=1 M 23
e Ry (23

where, from now on, the subscritindicates that the quan-
tity is evaluated at the boundary surfate

Next, the unit vecton,,, normal to the boundary surface,
has the components

(+) =
n, (24

5 30®

where + indicates that the components are evaluated from
the outside o, andg is given by

104004-3



L. HERRERA, W. BARRETO, A. Di PRISCO, AND N. O. SANTOS

_(4 2M(u) dRg| Y2 o5
S e T 9
The unit vector normal t®,, evaluated from the inside, is
given by
n{)=(-rs7,%00 (26)
with
,y:(e—)\z_i,ge—vz)—lﬂ_ (27)
Let us now define a timelike vecter* such that
dR
o= Bl By Ok (28)
and
—vyl2 wze"‘zlz
vH() = L 5™ 29
(1_w§)1/2 t (1_w§)1/2 r ( )

Then, junction conditions across, require[in addition to
Eq. (21)]

(T,,n*n") 0 =(T,,n#n") ), (30)
(T, ") = (T, n* ")), (31)

PHYSICAL REVIEW 656 104004

Then it follows from Eqs(30) and(31) that

- 1 d™m )
[Prtels=- e dub | (39
s
- 1
[QeM(1-w) Y+ e]y=— AR du 2 (39

Equations(21), (38), and (39) are the necessary and suffi-
cient conditions for a smooth matching of the two metfits
and(18) on .. Combining Eqs(38) and(39) we get

[P ]s=[Q eM(1-w?)¥sy,

expressing the discontinuity of the radial pressure in the
presence of heat flow, which is a well known regdl6].

Next, it will be useful to calculate the radial component of
the conservation law

(40)

where the expressions for the energy-momentum tensor at

both sides of the boundary surface are

TEL_V): (p+ PJ_)u,uuv_ Plguv+ ( Pr - PJ_)S,u,SV

+q,u,+q,u,+ell, (32
and
1 dM
()= _ -
=" 32 dqu onov (33
with
§ e V2 we M2
ur= (1_w2)1/2' (1_w2)1/2'0'o ! (34)
) we*l//Z e*)\/2
ST (1— 0?12’ (1—w2)1’2’0’0 ’ (39
|*=(e""2,e"M20,0), (36)

whereu” denotes the four-velocity of the fluid¥ is a radi-

ally directed spacelike vector orthogonalut, |#is a null
outgoing vector, and
g“=Q(we"""21,0,0. (37

T4.,=0. (41
After tedious but simple calculations we get
167
(=87TY)' = ——(T1= T3 +4m' (T~ Tg)
+ - A+ Y 42
: 5 %) (42)
which in the static case becomes
, v’ 2(P, —Py)
Pi=— 5 (p+P)+——", (43

representing the generalization of the Tolman-Oppenheimer-
Volkof equation for anisotropic fluidgl7].

B. The kinematical variables

The components of the shear tensor are defined by

2

Tu=U,,tU,,—u,a,—ua, 3®Pw, (44)
where
Pu=0u—U,u,, =u“ﬂ,
a,=u’u,.,, (45

denote the projector onto the three-space orthogonal‘to
the expansion, and the four-acceleration, respectively. A
simple calculation gives

e—)\/2

+
2(1_ w2)1/2

20w

+
1- w?

. e—V/2 ()\
2(1_ w2)1/2

200 4w

+_
1-w? T

X| wv'+20"+

: (46)
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2 2w as the “effective gravitational mass,” which will be exhib-
1= o5l €8 A A+ 5 ited below. Even though Tolman’s definition is not without
3(1-09) l1-w its problemg 19,20, we shall see than;, as defined by Eq.
, (56), is a good measure of the active gravitational mass, at
LM gyt 207 20 (47)  least for the systems under consideration.
1-w2 ]| Let us now evaluate expressi@b6). The first integral in
that expressiorl),
e M?(1-w?) 48
022~ 011, r
2 |z4wf r2e T TI—-2TH)dr, (57)
0
e M2(1-w?) 2
033~ > SI"00o1y, (49 may be transformed to givisee[21] for detaild
T00= w2e77\e”0'11, (50) |:e(v+)\)/2 m(r,t)— 4%['31-%}

oo1= —wel” N, (51 ) o

r r<({. N\ Av

| a2l ALY

1 ww 02\ P ov ol foe 2 At 2 2 )dl’, (58)
ap= + +e"%e —+ ,
1-0?| | 1- w? 2 2 1-w?

(52) where the mass functiom, as usual, is defined by

1 wo' v e o e Mrh=1-2m(r,t)/r. (59
a;=— > ;5| Te VM —+ 51
l1-w?|\l-w l-w Next, from[Eqg. (13) in [18]],
(53
and, for the shear scalar, i IE
I\ g[a(g*P\—g)/at]
\/_(® e M2 » )
o=3| = — . (59 1 1
3 o J1-e? :—r‘;ﬁ+§53rg{,+§5%rg(,, (60)

C. The Tolman mass and so the second integrdl) in Eq. (56) may be expressed

The Tolman mass for a spherically symmetric distributionas
of matter is given by Eq. (24) in [18]]

1(r D
' ||=—f r2gh-niz )\+———)dr. 61)
mT=477f02r2e(V”)’2(T8—T}—2T§)dr 2J)o 2 2 (

1 P P Thus

3

+—f re(r Nz g“#dr, (v+N)12 371
2)o at\ ga(g*t\—g)lat] mr=l+Il=e [m(r,t)—4mr=Tq]. (62
(55)

This is, formally, the same expression for in terms ofm

where £ denotes the usual gravitational Lagrangian densitgnd Ti that appears in the statior quasistatig case[Eq.
[Eq. (10) in [18]]. Although Tolman’s formula was intro- (25 in [22]].

duced as a measure of the total energy of the system, with no ReplacingT by Eq.(4) andm by Eq.(59), one also finds
commitment to its localization, we shall define the mass

2
- ; e r
within a sphere of radius, completely inside, as mT:e(V_)\)IZV,E- 63)

;
- 24(vHN)2(TO_ T1_ 572
mr 477f0 re (To~ Ty = 2Tz)dr This last equation brings out the physical meaningngfas

the active gravitational mass. Indeed, it can be easily shown

I NY X JE [23] that the gravitational acceleratianof a test particle,
+ — r e(V )2 gaﬁdr_ . . . . . . )
2Jo at\ g[a(g*—g)lat] instantaneously at rest in a static gravitational field, as mea
sured with standard rods and a coordinate clock is given by
(56)
. . e(v—)\)IZV/ m
This extension of the global concept of energy to a local a=—— =T (64)
level[19] is suggested by the conspicuous role playedriy 2 r2
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A similar conclusion can be obtained by inspection of Eg.many phases of the life of the star. It is of the order of 27 min
(43) (valid only in the static or quasistatic cag@4]. In fact,  for the Sun, 4.5 s for a white dwarf, and 1D s for a neu-
the first term on the right side of this equatitthe “gravi-  tron star of one solar mass and 10 km radius. It is well
tational force” term) is a product of the “passive” gravita- known that all the stellar configurations mentioned above
tional mass densitg+ P, and a term proportional to /r2. generally change on time scales that are very long compared
to their respective hydrostatic time scales. Let us now trans-
D. The Weyl tensor late this assumption into conditions am and the metric

Since the publication of Penrose’s wofR5], there has functions.

. S ) ; . First of all, slow contraction means that the radial velocit
been increasing interest in studying the possible role of th%) as measured by the Minkowski observer is always muc):/h
Weyl tensor(or some function of jtin the evolution of self-

gravitating system$26]. This interest is reinforced by the smaller than the velocity of light¢<1). Therefore we have

2
fact that, for a spherically symmetric distribution of fluid, the 0 priglr?cé te(zlrg)s (i);grsde@(w )-
Weyl tensor may be defined exclusively in terms of the den- 9 y
sity contrast and the local anisotropy of the pressisee A2

be!OV\b, which in turn are known to affect the fate of gravi- N+ 7_%:8“@ (P, +e€) +(p+ pr+2€)V7
tational collapsé27].
Now, usingMAPLE V, it is found that all nonvanishing P —P.—e¢
components of the Weyl tensor are proportional to - Z% (68)
r o, r3e . N2 v I
W= 5 C35,= W+ I N+ RS (65  (observe the contribution af to both P, andp, and the fact |
2 thate, w, andQ are of the same order of smallness, in this
where approximation.
Since, by assumption, in this regime the system is always
BeMer 1 N »'2 S N (not only at a given time) in equilibrium (or very close to
W= 6 (—2——2+ 7 Ve ?—EJFE it), Egs. (43) and (68) imply that, for an arbitrary slowly
r= r evolving configuration,

(66)

L,
corresponds to the contribution in the static case. A~=vA~N\"~0, (69)
Also, from the field equations and the definition of the

Weyl tensor it can be easily shown thaee[21] for detail and of course, time derivatives of any order of the left hand

side of the hydrostatic equilibrium equation must also van-
4 (r A ish, for otherwise the system will deviate from equilibrium.
W= — ?f r3(T8)’dr+?r3(T§—T}). (67)  This condition implies, in particular, that we must demand in
0 this regime

Ill. THE METHOD v~0.

We now have available all the ingredients required to
present our method; however, before doing so some genereJL
considerations will be necessary.

Finally, from the time derivative of Ed6), and using Eq.
0), it follows that

w~0(A\w,vw), (70)
A. Equilibrium and departures from equilibrium
The simplest situation, when dealing with self-gravitatingWhich implies that we also have to neglect terms linear in the
spheres, is that of equilibriurfstatic case In our notation acceleration. From purely physical considerations, it is obvi-
that means thab=e=Q=0, all time derivatives vanishes, ous that the vanishing ab is required to keep the system
and we obtain the generalized Tolman-Oppenheimer-Volko&lways in equilibrium.

equation(43). Thus, in the quasistatic regime we have to assume
Next, we have the quasistatic regime. By this we mean L
that the sphere changes slowly, on a time scale that is very O(w?)=N?=1p?=Apv=A=v=0, (71

long compared to the typical time in which the sphere reacts

to a slight perturbation of hydrostatic equilibrium; this typi- implying that the system remains {or very close td equi-

cal time scale is called the hydrostatic time s¢&@&) (some-  librium. However, during their evolution, self-gravitating ob-
times this time scale is also referred to as the dynamical timgcts may pass through phases of intense dynamical activity,
scale, e.g., see the third referencq 28]). Thus, in this re- with time scales of the order of magnitude @r even
gime the system is always very close to hydrostatic equilibsmaller than the hydrostatic time scale, and for which the
rium and its evolution may be regarded as a sequence afuasistatic approximation is clearly not relialdeg., the col-
static models linked by Eq(17). This assumption is very lapse of very massive star@9] and the quick collapse phase
sensible because the hydrostatic time scale is very small fgreceding neutron star formation; see, for exam[6] and
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references therejnin these cases it is mandatory to take into  (3) Using Eqs.(75) and(74), with ther dependence @
account terms that describe departure from equilibrium. andp, one getsnand up to some functions df which will

be specified below.

B. The effective variables and the post-quasistatic (4) For these functions df one has three ordinary differ-
approximation ential equationghereafter referred to as surface equatipns
Let us now define the following effective variables: namely,(a) Eq. (13) evaluated om =ry ; (b) Eq. (42) evalu-
ated onr=ry; and(c) the equation relating the total mass
~ o PF P,w?> 2QuweM? loss rate to the energy flux through the boundary surface.

(72) (5) Depending on the kind of matter under consideration,
the system of surface equations described above may be
closed with the additional information provided by the trans-
port equation and/or the equation of state for the anisotropic
pressure and/or additional information about some of the
physical variables evaluated on the boundary surfacg.,

In the quasistatic regime the effective variables satisfy thdn€ luminosity. o .
same equatiori43) as the corresponding physical variables ~ (6) Once the system of surface equations is closed, it may
(taking into account the contribution afto the “total” en- D€ integrated for any particular initial data.
ergy density and radial pressure, whenever the free streaming (7) Feeding back the result of integration into the expres-
approximation is being usgdTherefore, in the quasistatic SIONS form and v, these two functions are completely deter-
situation (and obviously in the static t9p effective and Mined. _ _ _ .
physical variables share the same radial dependence. Next, (8) With the input from point 7 above, and using the field
feeding back Eqg72) and(73) into Eqgs.(14) and(15), these equations, together with the equations of state and/or the

two equations may be formally integrated, to obtain transport equation, all physical variables may be found for
any piece of matter distribution.

+ €,
0 1— 2 (1—w2)1/2

Pr+p(1)2 ZQwe)\/Z

1—0)2 (1_w2)1/2

P=-T} +e. (73)

r
— >
m—477for pdr, (74 D. The surface equations
As should be clear from the above the crucial point in the
r 2(47r3P+m) algorithm is the system of surface equations. So, let us
v= Vz+f Trr=2m) dr. (75  specify them now.

x Introducing the dimensionless variables
From here it is obvious that for a given radial dependence of A=ty /my(0),
the effective variables the radial dependence of the metric
functions become completely determined. F=1-2M/A

With this last comment in mind, we shall define the post-
guasistatic regime as that corresponding to a system out of

equilibrium (or quasiequilibrium but whose effective vari- M=m;/ms(0),
ables share the same radial dependence as the corrresponding

physical variables in the state of equilibriu@r quasiequi- Q=wy,
librium). Alternatively, it may be said that the system in the

post-quasistatic regime is characterized by metric functions a=t/ms(0),

whose radial dependence is the same as the metric functions o _

corresponding to the statiquasistatitregime. The rationale Wherems(0) denotes the total initial mass, we obtain the

behind this definition is not difficult to grasp: we look for a first surface equation by evaluating E43) atr=ry. One

regime which, although out of equilibrium, represents thedets

closest possible situation to a quasistatic evolutsee more

on this point in Sec. V¥ d_A_
da

FQ. (76)

C. The algorithm o . i .
i Next, using junction conditions, one obtains from Eqgs.
Let us now outline the approach that we propose. (59), (14), and(17) evaluated at =r5 that
(1) Take an interior solution to the Einstein equations, ’

representing a fluid distribution of matter in equilibrium, dM A
with a given ——=—F(1+Q)E, (77)

da
pst=p(r), Pri=P(r). .
with

(2) Assume that the dependence dP andp is the same . yon
as that ofP,, andps;, respectively. E=4mrsi(es+as), (78)
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FIG. 1. Energy densitpm(0)? as a function ofdimensionless FIG. 2. Radial pressurB,m(0)? as a function of time for the

time («) for the Schwarzschild-type model. The initial conditions Schwarzschild-type model. The initial conditions af¢0)=5,
are A(0)=5, F(0)=0.6, andQ(0)=—0.1. Curves represent dif- F(0)=0.6, andQ(0)=—0.1. Curves represent different regions:
ferent regions:r/ry=0.25 (continuous ling 0.50 (dashed ling r/ry=0.25(continuous ling 0.50(dashed ling 0.75(short-dashed
0.75(short-dashed line and 1.00(dotted ling. line); and 1.00(dotted ling.

where the first and second terms on the right of E&)  Now, in the following section we consider two relatively
represent the gravitational redshift and the Doppler shift cor-

) . - C el S simple models with a separable effective density, ie.,
rections, respectively. Then, defining the luminosity per-— i
ceived by an observer at infinity as =f(t)h(r); thus Eqg.(80) evaluated at the boundary surface

leads to
. d™m
=——=, dQ 8F ~
da aznz A+2Fk(r2)+4wp2A(3—02)}
we obtain the second surface equation in the form _
. Flo 2 o e E(1+Q)) -
F_F —= |R= 7| Pix=px Q= ———1|,
Ja = a(l-Fa+2L/A (79) ps A 4mrd
The third surface equation may be obtained by evaluating/here
at the boundary surface the conservation Tefy, = 0, which o
reads Re| P+ 4B m g2
- S|P o | AP ) 82
B (p+P)(4mr°P+m) )
r(r—2m) o
) . =E(1+Q), (83)
B e’ - 3m?>  my| 2 b B (80
“dmrr—2m\ " r=2m 2 (PP B0 g
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FIG. 3. Radial velocityw as a function of time for the FIG. 4. Shear om(0) as a function of time for the

Schwarzschild-type model. The initial conditions a#€0)=5, Schwarzschild-type model. The initial conditions a#¢0)=5,
F(0)=0.6, andQ(0)=—0.1. Curves represent different regions: F(0)=0.6, and()(0)=—0.1. Curves represent different regions:
r/ry=0.25(continuous ling 0.50(dashed ling 0.75(short-dashed r/rsy=0.25(continuous ling 0.50(dashed ling 0.75(short-dashed
line); and 1.00(dotted ling. line); and 1.00(dotted ling.

d (s, , object, which is easily understandable. The same happens
k(ry)=g;-In r_fo drreh(r)/h(ry) |. (84 when R>0 or P,y<0. The opposite effect occurs when
* = these quantities have the opposite signs. Now, for a positive

Before analyzing specific models, some interesting con&nergy flux the sphere can bounce at its surface only when

clusions can be obtained at this level of generality. One of

; . ; do
these conclusions concerns the condition of bouncing at the (Q=0)=0.
surface which, of course, is related to the occurrence of a da

minimum radiusA. According to Eq.(76) this requires()
=0, and we have According to Eq.(86) this is equivalent to

d’A _dQ 2P.s

da? " da

(85) -R(Q=0)+ =0. (87

A physical meaning can be associated with this equation

or, using Eq.(81), o ; ) :
as follows. For a nonradiating, static configurati®as de-

do = 2 fined by Eq.(82) consists of two parts, the first term, which
—(Q=0)=—=—|R——| P, s~ 2) (86)  together with —[2(P,—P,)/r]s represents the hydrody-
da ps A Amrs namical force[see Eq.(43)], and the second, which is of

. course the gravitational force. The resulting force in the
Observe that a positive energy fluk) tends to decrease the sense of increasingis precisely—R+[2(P, —P,)/r]s; if
radius of the sphere, i.e., it favors the compactification of thehis is positive a net outward acceleration occurs, and vice
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FIG. 5. Weyl tensorW/m(0) as a function of time for the FIG. 6. Radial velocityw as a function of /ry for «=10. The
Schwarzschild-type model. The initial conditions a#&0)=5, initial velocity at the surface is-0.001. Curves represent different

F(0)=0.6, andQ(0)=—0.1. Curves represent different regions: values of F(0): 0.6 (continuous ling& 0.96 (dashed ling and
r/ry=0.25(continuous ling 0.50(dashed ling 0.75(short-dashed  0.996 (short-dashed line
line); and 1.00(dotted ling.

) . o . calculate the physical and geometrical variables for any piece
versa. Equatiori87) is the natural generalization of this re- of matter, as functions of the timelike coordinate. In spite of
sult for general nonstatic configurations. the simplicity of the models, some interesting conclusions

As mentioned befor.e, in addition to the surface equationsgpo it the physical meaning of different variables may be
in some casegdepending on the type of matter under con- aached.

sideration further information has to be provided in the form 5o of the models has as the “seed” solution the well

of an equation of state for the tangential stresses and/or g,own Schwarzschild interior solution, whose properties
transport equation. In the next section we shall illustrate oupaye peen extensively discussed in the literature. The second
method with three examples, one of which refers to an angyample is based on an anisotropic fluid without radial pres-
isotropic fluid, and for which we shall further assume theg ;e Models of this kind have also been discussed exten-
equation of staté¢see[31,32) sively since the original Einstein papésee[33]). Finally,

the third example represents the dynamic version of the Tol-

C(P+p)(4mr3P+m) man type-VI static solutiofi34], whose equation of state, as
L —P= > , (88) is well known, approaches that for a highly compressed
(r=2m) Fermi gas.

whereC is a constant.
A. Schwarzschild-type model

IV. EXAMPLES This model is inspired by the well known interior

The only purpose of the present section is to illustrate the>cWarzschild solution. Accordingly we take

proposed method. For simplification we shall consider only B
the adiabatic caseeEQ=0). For all these models we shall p="1(1), (89
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FIG. 7. Radial velocityw as a function of time for the Tolman
type-VI model. The initial conditions aré(0)=0.581428528 and
((0)=-0.0001. Curves represent different regiomérs=0.2
(continuous ling 0.4 (dashed ling 0.6 (short-dashed line 0.8
(dotted ling; and 1.0(dot-dashed ling

wheref is an arbitrary function of. The expression foP is

P+ 17

8 1/2
=(1 3pr2) k(t), (90

P+p
wherek is a function oft to be determined from the junction
conditions (40), which in terms of effective variables be-
comes

AFBZ\ZZZ‘QZ. (91)
Thus, using Eqs(90) and (91) we have for the effective
variables

~ 3(1-F) ©2
P 87TI'§

= P XFY-3y¢

P_3| wf—xFl’Z]’ *
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FIG. 8. Radial velocityw as a function of time for the Tolman-
type model. The initial conditions ar&(0)=0.561428547 and
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(continuous ling 0.4 (dashed ling 0.6 (short-dashed line 0.8
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with
E=[1-(1-F)(r/ry)*]"2
and
x=3(Q2+1)(1—F),
#=(30%+1)(1—-F).

For the metric functionsn and» we get, using Eqg.74) and
(795)

m=ms(r/rs)3, (94)
N YEV2— ) 2
_{2(1_F)] . ©5

The third surface equation for this model becomes

dQ

QZ
dia = ﬂ[7—392+ 3F(Q2_ 1)]

(96)
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FIG. 9. Weyl tensoiN/m(0) atr/ry=0.4 as a function of time FIG. 10. Weyl tensoW/m(0) atr/rs=1.0 as a function of time

for the Tolman type-VI type model. The initial conditions are for the Tolman type-VI type model. The initial conditions are
F(0)=0.581428528(dashed ling F(0)=0.561428547(continu-  F(0)=0.581428528(dashed ling F(0)=0.561428547(continu-
ous ling; andQ(0)= —0.0001. ous ling; and((0)= —0.0001.

This equation together with Eqé76) and (79) form the  opgerve that in this case, because of H§3) and (98), it
set of surface equations for this model. We have integrated ¥iows from Egs.(72) and (73) that the radial pressure is

numerically and from this integration all physical variables §iscontinuous at the boundary surface, with
are found for any piece of the fluid distribution, following

the algorithm described above.

Figures 1-5 exhibit the behavior pf P, w, o, andW for P,s=—3(1— F)Qzl87rr§ , (99
an initially contracting configuration, as functions @fand
different pieces of matter. Figure 6 shows the profilescdis

a function ofr/ry for a=10 for otherwise eitheps or ) should vanish ak. Therefore

the only way to “dynamize” this model is by relaxing
boundary conditions, allowing for the presence of a kind of
surface tension.

This model has as the “seed” solution a configuration Once the effective variables are defined, we need only the
with homogeneous energy density and vanishing radial presralue of the tangential pressure at the boundary to close the
sure. Configurations of this kind were suggested for the firssystem of surface equations. This is obtained by evaluating

B. Lemaitre-Florides-type model

time by Lemaitre[35]. Eq.(88) atX.
The corresponding effective variables now are Next, following the algorithm, all physical variables may
5 be found for any piece of material as functions of the time-
p=f(t) (97 like coordinate. Although we are not going to exhibit them
here, because the graphics are not particularly illuminating,
and we wanted to present an example that, in addition to the fact

that it implies an anisotropic fluid, requires the introduction
(98 of a surface tension to allow the application of the algorithm.

o
|
©
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C. Tolman type-VI model

Our last example is based on the Tolman type-VI solution. =

Accordingly the effective variables for this model will be

(100

and

g[9—bK(r/ry)]

B ,
[9—Db(r/rg)]r?

(101)

whereg andb are functions ofa, to be obtained from Eg.
(92). Then,

~ 3(1-F) (102
P am?

Using Eqgs.(74) and(75) we get
m=msr/rs, (103
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8 b(r/irs)—K
v=InF+Lg{4In(r/r2)+8ln %)

(104

Finally, solving the surface equations for this modal,
and v are completely determined and all physical variables
can thereby be calculated. In addition to the intrinsic physi-
cal interest of the equation of state of this “seed” model
mentioned before, it is interesting because of the fact that the
static limit of the modekunlike the previous ongss “un-
stable,” in the sense that it requires a specific value of the
gravitational potential at the boundary, namety; (0)/ry
=3/14. For values abovédelow) this, the sphere starts to
collapse(expand.

Figures 7 and 8 display the evolution of velocity)( for
different regions of the sphere, and for initial valuesFof
corresponding to values ofs(0)/rs above and below the
equilibrium value, respectively. Figures 9 and 10, represent
the evolution of the Weyl tens@W) for some internal region
and the boundary surface, respectively, and initial values of
F corresponding to values ahy(0)/rs above and below
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equilibrium. Finally, Figs. 11 and 12 exhibit the behavior of justifies going through the complexities associated with the
the shear §) for different regions and initial values d¥ “post-post-quasistatic” approximation.
corresponding to values ofis (0)/rs above and below equi- In order to illustrate the method, and without the preten-
librium. sion of modeling specific astrophysical scenarios, we have
We shall comment on these graphics in the next sectionpresented three examples, in the simplestiabati¢ case.
In the first model, the profiles of the shear and the Weyl
V. CONCLUSIONS tensor clearly illustrate the “dynamics” of the model, tend-
ing to zero in the static limit. The fact that these two quan-
A method has been presented that allows for the descriities vanish in the quasistatic regimdor this specific
tion of radiating self-gravitating relativistic spheres. In its mode) further brings out their relevance in the treatment of
most general form, the approach incorporates the two limitsjtyations off equilibrium. On the other hand however, the
ing cases of radiation transpdftee streaming and diffusion  ye|ocity profiles show almost no difference between the two
as well as the possibility of dealing with anisotropic fluids. regimes. Deviations from homology contraction due to rela-
The cornerstone of the algorithm is an ansatz based on @jstic gravitational effects are also indicated.
specific definition of the post-quasistatic approximation, The purpose of the second example was to illustrate the
namely: considering different degrees of departure frommplementation of the algorithm for anisotropic fluids. The
equilibrium, the post-quasistatic regintee., the next step yery particular form of the “seed” equation of state of this
a.fter the quaSiStatiC S|tuat|b[s deﬁned as that Characterized mode' imposes discontinuit&surface tensiohof the radia'

by metric functions whose radial dependence is the same ggessure at the boundary. Of course this discontinuity van-

effective variables defined above share the same radial de- Finally, a model based on the Tolman type-VI solution
pendence as the correspondig physical variables of the qugas presented. This static solution, as was already men-
intelligible when it is remembered that in the latter céb®  any deviation from this value leads to deviations from the
guasistatit the effective varlabl_es shar_e the same radla_l destatic regime(observe that the quasistatic regime is incom-
pendence as that of the physical variables in the static resatible with this solution The velocity profiles indicate that
gime. Thus, starting with a static configuration, the firsta|| regions either expand or contract, and therefore cracking
level” of equilibrium, beyond the quasistatic situation, is (gifferent signs of the velocity for different regions of the
represented by t.h? post”—qua3|s_tat|c regime. spheré will not occur[36]. This is consistent with the estab-
Once the stati¢“seed”) solution has been selected, then jished fact that cracking occurs only for anisotropic fluids or
the definition of the effective variables together with surfacejsotropic fluids with outgoing radiation in the free streaming
equations allows for determination of the metric funCt'Onsrapproximation.
which in turn lead to the full description of the physical ~ also, the profiles of the Weyl tensor and the shear, clearly
gion of the sphere. In this process, depending on the kind ofyojution becomes more and more “dynamic,” stress once

matter and/or the prevailing transport approximation, addingain their roles in describing departures from equilibrium.
tional equations of state and/or transport equations and/or
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