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Abstract We present a physically reasonable source for an static, axially-
symmetric solution to the Einstein equations. Arguments are provided, supporting
our belief that the exterior space-time produced by such source, describing
a quadrupole correction to the Schwarzschild metric, is particularly suitable
(among known solutions of the Weyl family) for discussing the properties of
quasi-spherical gravitational fields.
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1 Introduction

As is well known, Weyl solutions [1] represent the family of all static and
axially-symmetric exterior solutions to the Einstein equations. Since there are
as many different Weyl solutions as there are different harmonic functions (see
next section), then the obvious question arises: what is the exact vacuum solution
to the Einstein equations corresponding to a given non-spherical, static axially
symmetric source (an ellipsoid, say)?
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If the field is not particularly intense (r � 2M) and the deviation from spheri-
cal symmetry is slight, then there is not problem in representing the corresponding
field (both inside and outside the source) as a suitable perturbation of the spher-
ically symmetric exact solution. However, as the object becomes more and more
compact, such perturbative scheme will eventually fail.

Indeed, as it is well known [2], the only static and asymptotically-flat vacuum
space-time possessing a regular horizon is the Schwarzschild solution. For all
the others Weyl exterior solutions [1], the physical components of the Riemann
tensor exhibit singularities at r = 2M . Therefore, it is intuitively clear that as
r approaches 2M and gravitational field becomes stronger, the properties of
sources of Weyl space-time should start drastically to differ from the properties
of spherical sources [3]. It is important to keep in mind that this sharp difference
in the behaviour of both types of sources (for very high gravitational fields) is
independent on how small, multipole moments (higher than monopole) of the
Weyl source, are. This is so because, as r approaches 2M , any finite perturbation
of the Schwarzschild space-time becomes fundamentally different from any Weyl
solution, even when the latter is characterized by parameters whose values are
arbitrarily close to those corresponding to the spherical symmetry. This point has
been stressed before [4], but usually it has been overlooked.

Furthermore in a recent work [5] it was shown that for a non-spherical source
(even in the case of slight deviations from spherical symmetry), the speed of en-
tering the collapse regime decreases substantially, as compared with the exactly
spherically symmetric case. In the same order of ideas it has been shown [6] that
small departures from sphericity, produce significant decreasing (increasing) in
the values of active gravitational mass of collapsing (expanding) spheres, with re-
spect to its value in equilibrium, enhancing thereby the stability of the system.
Also, the sensitivity of the trajectories of test particles in the γ spacetime, to small
changes of γ , for orbits close to 2M , has been brought out [7]. It is important
to stress that all these effects take place for strong gravitational fields, but for
r > 2M .

These works [5–7] were done using as Weyl solution, the so-called gamma
metric (γ -metric) [8]. This metric, which is also known as Zipoy–Vorhees met-
ric, belongs to the family of Weyl’s solutions, and is continuously linked to the
Schwarzschild space-time through one of its parameters. The motivation for this
choice was that the exterior γ -metric corresponds to a solution of the Laplace
equation (in cylindrical coordinates) with the same singularity structure as the
Schwarzschild solution (a line segment [8]). In this sense the γ -metric appears
as the “natural” generalization of Schwarzschild space-time to the axisymmetric
case.

However, the existence of so many different (physically distinguishable [9])
Weyl solutions gives rise to the question: which among Weyl solutions is better
entitled to describe small deviations from spherical symmetry?

Although it should be obvious that such a question does not have a unique
answer (there is an infinite number of ways of being non-spherical, so to speak),
we shall invoke a very simple criterion, emerging from Newtonian gravity, in order
to choose our solution.

Indeed, in order to answer the question above, let us recall [10] that most
known Weyl solutions, present a drawback when describing quasi-spherical
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space-times. It consists of the fact that its multipole structure is such that multi-
pole moments, higher than quadrupole, are of the same order as the quadrupole
moment. Instead, as it is intuitively clear, the relevance of such multipole mo-
ments should decrease as we move from lower to higher moments, the quadrupole
moment being the most relevant for a small departure from sphericity. Thus for
example in Newtonian gravity, multipole moments of an ellipsoid of rotation,
with homogeneous density, and axes (a,a,b) read:
{

D2n = (−2)n3Ma2nεn(1 − ε/2)n/[(2n + 1)(2n + 3)], ε ≡ (a − b)/a,

D2n+1 = 0
,

because of the factor εn , this equation clearly exhibits the progressive decreasing
of the relevance of multipole moments as n increases.

Thus, in order to describe small departures from sphericity, by means of exact
solution to the Einstein equations, we would require an exact solution whose mul-
tipole structure shares the property mentioned above. Fortunately enough, such so-
lution exists [10]. Indeed, there is one (exact) solution of the Weyl family, which
may be interpreted as a quadrupole correction to the Schwarzschild space-time
(see below).

It is for this exterior metric that we are going to construct a source. The mo-
tivation for this is twofold: On the one hand, it is always interesting to propose
bounded and physically reasonable sources of gravitational fields, which may
serve as models of compact object. On the other hand, spherical symmetry is
a common assumption in the study of compact self-gravitating objects (white
dwarfs, neutron stars, black holes). Therefore it is pertinent to ask, how do small
deviations from this assumption, related to any kind of perturbation (e.g. fluctu-
ations of the stellar matter, external perturbations, etc.), affect the properties of
the system? However, as mentioned before, for sufficiently strong fields, in order
to answer to this question it is necessary to deal with non-spherically symmetric
exact solution to the Einstein equations.

For constructing the source we shall follow a prescription given by
Hernández [11] allowing to obtain interior solutions of Weyl space-time, from
known spherically symmetric interior solutions. Our interior solution will be ob-
tained from the interior Schwarzschild solution (homogeneous density).

The paper is organized as follows. In the next section we review Weyl solutions
and the concept of relativistic multipoles. In Sect. 3 we describe the M–Q solution
[10] and give its properties. The Hernández method is applied in Sect. 4 to obtain
an interior to the M–Q solution. Finally, results are discussed in the last section.

2 The Weyl metrics

Static axisymmetric solutions to the Einstein equations are given by the Weyl
metric [1]

ds2 = −e2�dt2 + e−2� [e2�(dρ2 + dz2) + ρ2dφ2], (1)

where metric functions have to satisfy

�,ρρ + ρ−1�,ρ + �,zz = 0 (2)
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and
�,ρ = ρ

(
�2

,ρ − �2
,z

); �,z = 2ρ�,ρ�,z . (3)

Observe that (2) is just the Laplace equation for � (in the Euclidean space),
and furthermore it represents the integrability condition for (3), implying that for
any “Newtonian” potential we have a specific Weyl metric, a well known result.

The general solution of the Laplace Eq. (2) for the function �, presenting an
asymptotically flat behaviour, results to be

� =
∞∑

n=0

an

rn+1
Pn(cos θ), (4)

where r = (ρ2+z2)1/2, cos θ = z/r are Weyl spherical coordinates and Pn(cos θ)
are Legendre Polynomyals. The coefficients an are arbitrary real constants which
have been named in the literature “Weyl moments”, although they cannot be iden-
tified as relativistic multipole moments in spite of the formal similarity between
expression (4) and the Newtonian potential.

Another interesting way of writing the solution (4) was obtained by
Erez–Rosen [12] and Quevedo [13], integrating Eqs. (2) and (3) in prolate
spheroidal coordinates, which are defined as follows

x = r+ + r−
2σ

, y = r+ − r−
2σ

,

(5)
r± ≡ [ρ2 + (z ± σ)2]1/2, x ≥ 1, −1 ≤ y ≤ 1,

where σ is an arbitrary constant which will be identified later with the
Schwarzschild’s mass. Inverse relation between both families of coordinates is
given by

ρ2 = σ 2(x2 − 1)(1 − y2),
(6)

z = σ x y.

The prolate coordinate x represents a radial coordinate, whereas the other
coordinate, y represents the cosine function of the polar angle.

In these prolate spheroidal coordinates � takes the form

� =
∞∑

n=0

(−1)n+1qn Qn(x)Pn(y), (7)

being Qn(y) Legendre functions of second kind and qn a set of arbitrary constants.
The corresponding expression for the function �, has been obtained by Quevedo
[13].

A sub-family of Weyl solutions has been obtained by Gutsunaev and Manko
[14–16] starting from the Schwarzschild solution as a “seed” solution.

Both sets of coefficients, an and qn , characterize any Weyl metric [13]. Never-
theless, as mentioned before, these constants do not give us physical information
about the metric since they do not represent the “real” multipole moments of the
source. That is not the case for the relativistic multipole moments firstly defined
by Geroch [17], and subsequently by Hansen [18] and Thorne [19], which, as it
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is known, characterize completely and uniquely, at least in the neighbourhood of
infinity, every asymptotically flat and stationary vacuum solution [20], providing
at the same time a physical description of the corresponding solution.

An algorithm to calculate the Geroch multipole moments was developed by
Fodor, Hoenselaers and Perjes [21] (FHP). By applying such method, the resulting
multipole moments of the solution are expressed in terms of the Weyl moments.
Similar results are obtained from the Thorne’s definition, using harmonic coor-
dinates. The structure of the obtained relation between coefficients an and these
relativistic moments allows to express the Weyl moments as a combination of the
Geroch relativistic moments.

2.1 The Monopole–Quadrupole solution, M–Q

In this section we would like to describe the properties of a solution (hereafter
referred to as the M–Q solution [10]) which is particularly suitable for the
study of perturbations of the spherical symmetry. The main argument to support
this statement is based on the fact that previously known Weyl metrics (e.g.
Gutsunaev–Manko [14], Manko [15], gamma metric [8], Curzon [22], etc.) have
a multipolar structure (in the Geroch sense) such that all the moments higher than
the quadrupole, are of the same order as the quadrupole. In fact for the above
mentioned metrics we have (odd moments are of course vanishing)

MGM
0 = MER

0 = M,

MGM
2 = MER

2 = 2

15
q2 M3,

MGM
4 = −3MER

4 = 4

35
q2 M5,

MGM
6 = MER

6 − 2

7

817

33
M2 MER

4 = 2

15

4

231
q2 M7

(
194

7
+ 14

15
q2

)
,

where q2 is the quadrupole parameter in the Erez-Rosen metric. For the gamma
metric results to be

M0 = γ M,

M2 = γ
M3

3
(1 − γ 2),

M4 = γ
M5

5
(1 − γ 2)

(
1 − 19

21
γ 2

)
,

M6 = γ
M7

7
(1 − γ 2)

(
1 + 389

495
γ 4 − 292

165
γ 2

)
,

and finally, Curzon metric is the worst case of the mentioned metrics since it
possesses a unique parameter which represents the mass, and all higher moments
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are proportional to increasing powers of that parameter, i.e.,

M0 = −a0,

M2 = 1

3
a3

0,

M4 = − 19

105
a5

0,

M6 = 389

3465
a7

0 .

In [10] it was shown that it is possible to find a solution of the Weyl family, by
a convenient choice of coefficients an , such that the resulting solution possesses
only monopole and quadrupole moments (in the Geroch sense) [17]. The obtained
solution (M–Q) may be written as a finite series of Gutsunayev-Manko [14] and
Erez-Rosen [12] solutions, as follows:

�M–Q = �q0 + q�q1 + q2�q2 + · · · =
∞∑

α=0

qα�qα , (8)

where the zeroth order corresponds to the Schwarzschild solution.

�q0 = −
∞∑

n=0

λ2n+1

2n + 1
P2n(cos θ), (9)

with λ ≡ M/r and it appears that each power in q adds a quadrupole correction
to the spherically symmetric solution. Now, it should be observed that due to
the linearity of Laplace equation, these corrections give rise to a series of exact
solutions. In other words, the power series of q may be cut at any order, and
the partial summatory, up to that order, gives an exact solution representing a
quadrupolar correction to the Schwarzschild solution.

The simplest way to interpret physically the exact solutions obtained from the
quadrupolar corrections described above, consists in analyzing the corresponding
multipolar structure. Thus , it can be shown that cutting solution (8) at some order
α, one obtains an exact solution with the following properties:

• Both, the monopole and the quadrupole moments are non-vanishing:
M0 ≡ M , M2 ≡ q M3.

• All the remaining moments until order 2(α + 1) (included) vanish.
• All moments above the 2(α +1)-pole are of order qα+1. Therefore, the solution

represents a quadrupolar correction to the Schwarzschild solution, which is an
exact solution up to the given order.

To illustrate further our point, let us present the explicit solution up to first order,
describing a quadrupolar correction to the monopole. The corresponding metric
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functions read (note a misprint in the Eq. (13) in [23])

�
(1)
M–Q ≡ �q0 + q�q1 = 1

2
ln

(
x − 1

x + 1

)
+ 5

8
q(3y2 − 1)

×
[(

3x2 − 1

4
− 1

3y2 − 1

)
ln

(
x − 1

x + 1

)

− 2x

(x2 − y2)(3y2 − 1)
+ 3x

2

]
, (10)

�
(1)
M–Q ≡ �q0 + q�q1 + q2�q2 = 1

2

(
1 + 225

24
q2

)
ln

(
x2 − 1

x2 − y2

)

+ 225

1024
q2(x2 − 1)(1 − y2)(x2 + y2 − 9x2 y2 − 1) ln2

(
x − 1

x + 1

)

− 15

4
q(1 − y2)

[
1 − 15

64
q(x2 + 4y2 − 9x2 y2 + 4)

]

− 75

16
q2x2 1 − y2

x2 − y2
− 5

4
q(x2 + y2)

1 − y2

(x2 − y2)2

− 75

192
q2(2x6 − x4 + 3x4 y2 − 6x2 y2 + 4x2 y4 − y4 − y6)

1 − y2

(x2 − y2)4

− 15

8
qx(1 − y2)

[
1 − 15

32
q

(
x2 + 7y2 − 9x2 y2 + 1 − 8

3

x2 + 1

x2 − y2

)]

× ln

(
x − 1

x + 1

)
. (11)

The first 12 Geroch moments of this solution are (odd moments vanish because
of the reflexion symmetry)

M0 = M, M2 = M3q, M4 = 0, M6 = −60

77
M7q2,

M8 = −1060

3003
M9q2 − 40

143
M9q3, M10 = − 19880

138567
M11q2 + 146500

323323
M11q3,

M12 = − 23600

437437
M13q2 + 517600

1062347
M13q3 + 4259400

7436429
M13q4. (12)

From the expressions above, it is apparent that the parameter q ≡ M2/M3 rep-
resenting the quadrupole moment, enters into the multipole moments M2n , for
n ≥ 2, only at order 2 or higher. Accordingly, solution (10)–(11) for an small
value of q , up to order q , may be interpreted as the gravitational field outside a
quasi-spherical source. The spacetime being represented by a quadrupole correc-
tion to the monopole (Schwarzschild) solution. This is in contrast with other pre-
viously mentioned solutions of Weyl family, where all moments higher than the
quadrupole are of the same order in q as the quadrupole, and therefore for small
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values of q they cannot be interpreted as a quadrupole perturbation of spherical
symmetry.

Instead of cylindrical coordinates (ρ, z), it will be useful for the next section
to work with Erez-Rosen coordinates (r, θ) given by:

z = (r − M) cos θ,
(13)

ρ = (r2 − 2Mr)1/2 sin θ,

and related to prolate coordinates, by
x = r

M
− 1,

(14)
y = cos θ.

The metric functions of the solution, up to the first order in q , hereafter refered
as M–Q(1) are:

�
(1)
M–Q = 1

2
ln

(
1 − 2

R

)
+ 5

32
q(3y2 − 1)(3R2 − 6R + 2) ln

(
1 − 2

R

)

− 5

8
q ln

(
1− 2

R

)
−5

4
q

R − 1

(R − 1)2 − y2
+15

16
q(3y2 − 1)(R − 1), (15)
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�
(1)
M–Q = 1

2
ln

[
(R − 1)2 − 1

(R − 1)2 − y2

]
− 15

8
q(1 − y2)(R − 1) ln

(
1 − 2

R

)

− 15

4
q(1 − y2) − 5

4
q(1 − y2)

[
(R − 1)2 + y2

((R − 1)2 − y2)2

]
, (16)

with R ≡ r/M . An study of the geodesics in this spacetime, has been recently
presented [24]

In the next section we shall construct a source for M–Q(1) solution.

3 An interior M–Q(1) metric

The Hernández method [11] is based on a heuristic procedure which allows, start-
ing with some spherically symmetric “seed” source, to obtain interior solutions
describing axialsymmetric static sources, which match smoothly on the boundary
surface, to a given metric of the Weyl family (see [11] for details). Some applica-
tions of this method may be found in [25].
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For our exterior spacetime we shall choose the M–Q(1) solution described
above (up to first order in q) and our “seed” interior fluid will be the incompress-
ible Schwarzschild interior solution.

Thus, our exterior metric in Erez-Rosen coordinates read:

grr = e2�−2�

(
1 + λ2 sin2 θ

1 − 2λ

)
= e2q(�q1−�q1 )

/(1 − 2M/r),

gθθ = e2�−2�r2(1 − 2λ + λ2 sin2 θ) = r2e2q(�q1−�q1 )
,

(17)
gφφ = e−2�r2 sin2 θ(1 − 2λ) = r2 sin2 θ e−2q�q1 ,

gtt = −e2� = −(1 − 2M/r) e2q�q1 ,

where the metric functions �q1 and �q1 are given by

�q1 = 5

32
(3y2 − 1)(3R2 − 6R + 2) ln

(
1 − 2

R

)

− 5

8
ln

(
1 − 2

R

)
− 5

4

R − 1

(R − 1)2 − y2
+ 15

16
(3y2 − 1)(R − 1), (18)
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�q1 = −15

8
(1 − y2)(R − 1) ln

(
1 − 2

R

)

− 15

4
(1 − y2) − 5

4
(1 − y2)

[
(R − 1)2 + y2

((R − 1)2 − y2)2

]
. (19)

Now, Darmois conditions, in these coordinates, imply that metric components
as well as gθθ,r , gtt,r , gφφ,r are continuous across the boundary surface (but allows
a jump in grr,r ).

Thus, in the example given by Hernández [11], the following substitutions on
the chosen exterior metric were applied, in order to obtain the interior metric:

2M/r → r2/B2, (20)

for the grr metric component and the following one for the other metric compo-
nents

2M/r → 1 −

3

2

(
1 − r2

�

B2

)1/2

− 1

2

(
1 − r2

B2

)1/2



2

, (21)
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where r = r� is the equation of the boundary surface of the source and B2 =
3/(8πρs), with ρs denoting the energy density of the spherically symmetric “seed”
solution. Since (20) does not have a continuous derivative at the surface, but (21)
has, it is clear that Darmois conditions will be satisfied by the so obtained metric,
on the boundary surface.

However, in our case these substitutions lead to a metric whose grr component
is singular at the origin. Thus as a first step, we are going to modify the Hernández
rule, concerning the grr component. In order to have a regular metric at the origin,
we shall use (21) in those terms of grr which produce the singularity at the origin
and (20) in the remaining terms. For the others metric components we apply (21).
In addition, we modify the spherical factor in gθθ and gφφ by substituting r2 with
r2 + q(r − r�)2, in order to ensure regularity at the origin (however, as we shall
see below this is not enough to assure the correct physical behaviour at the centre).
Thus we obtain,

gtt = −X (r)1+a(r,y)eb(r,y), (22)

grr = (1 − r2/B2)−(1+c(r,y))ed(r,y), (23)

gθθ = (r2 + q(r − r�)2)X (r)−c(r,y)ed(r,y), (24)

gφφ = (r2 + q(r − r�)2) sin2 θ X (r)−a(r,y)e−b(r,y), (25)
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with

X (r) ≡

3

2

(
1 − r2

�

B2

)1/2

− 1

2

(
1 − r2

B2

)1/2



2

, (26)

a(r, y) = 15

8
q

−(1 + X (r)2)(1 − y2) + 4X (r)y2

(1 − X (r))2
, (27)

b(x, y) = 5

2
q

1 + X (r)

1 − X (r)

[
3

4
(3y2 − 1) − (1 − X (r))2

(1 + X (r))2 − y2(1 − X (r))2

]
, (28)

c(r, y) = 15

16
q

[
4(1 − y2)

1 + X (r)

1 − X (r)
+ (3y2 − 1)

(1 + X (r))2

(1 − X (r))2
− y2 − 1

]
, (29)

d(r, y) = −5

2
q

[
3(1 − y2) + 3

4
(3y2 − 1)

1 + X (r)

1 − X (r)

+ (1 − y2)(1 − X (r))2 (1 + X (r))2 + y2(1 − X (r))2

[(1 + X (r))2 − y2(1 − X (r))2]2

− 1 − X (r)2

(1 + X (r))2 − y2(1 − X (r))2

]
. (30)
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Fig. 7 T 1
1 = T 2

2 = T 3
3 as a function of β and y, for α = 6/9. All the surfaces overlap for qo = 0

and qo = −10−4

Next, let us introduce the following dimensionless variables: α = 2M/r� and
β = r/r� , in terms of which we may write

X (β) ≡
[

3

2
(1 − α)1/2 − 1

2
(1 − β2α)1/2

]2

. (31)

We can now calculate the components of the energy–momentum tensor. How-
ever when this is done, negative values of the energy density close to the center
appear, even in the weak field limit. To solve this problem and to assure a correct
physical behaviour of all physical variables, we shall consider the parameter q as
a function of r , such that

q = 0; β ∈ [0, βo] (32)

and
q = qo(β − βo)

4(β − βs)
4; β ∈ [βo, (βo + βs)/2], (33)

where βo, βs and qo are constants such that βo + βs = 2 and the value of q at
the boundary surface, which is qo[(βo − βs)/2]8 coincides with the quadrupole
parameter of the exterior M–Q(1) solution, i.e. q = q� , where q� denotes the
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Fig. 8 T 1
2 (multiplied by 106) as a function of β and y, for α = 6/9. Dashed lines indicate

qo = 0 and continuous lines qo = −10−4

quadrupole parameter of the exterior M–Q(1). It should be observed that since
both q and its first derivative are continuous across the boundary surface, junction
conditions are satisfied, after the replacement above. The specific form of β as
well as the values of different parameters, are indicated in Fig.1 and in its legend.

Thus our source consists of a spherical inner core continuously matched to a
non-spherical distribution of matter, producing a M–Q(1) spacetime at the outside,
and satisfying the continuity of the first and the second fundamental forms at the
boundary surface.

Calculations of different physical variables show their correct physical be-
haviour within the matter distribution.

Expressions are extremely lengthy and therefore we omit them here, however
they are available upon request to W. Barreto.

The non-vanishing components are T 0
0 , T 1

1 , T 2
2 , T 3

3 , T 1
2 . For α < 0.7 all these

components are regular within the fluid distribution and energy conditions are
satisfied (e.g. energy density is positive and larger than stresses). In the weak field
limit (α 	 1) we obtain a quadrupole correction to the incompressible fluid.
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4 Conclusions

We have seen that the M–Q(1) solution satisfies the requested condition to be con-
sidered as a quadrupole correction to the spherical symmetry, namely: all rela-
tivistic moments higher than the quadrupole are of higher order in q . Accordingly
it represents, among the known members of the Weyl family, a good candidate to
describe small departures from spherical symmetry.

Next, we have found a source for that space-time. The interior solution ob-
tained by an application of the Hernández algorithm, matches smoothly to the
M–Q(1) metric on the boundary of the matter distribution, is regular and satisfies
all standard physical conditions. In the weak field approximation it represents a
quadrupole correction to the incompressible fluid sphere.

As we have mentioned before, a spherical core was introduced in order to
assure acceptable physical behaviour at the centre. It consists of a sphere of in-
compressible fluid with positive energy density, larger than pressure and which
matches smoothly to the outer part of the source. For the models presented below
the spherical core represents about the 0.1% of the total volume of the source.

Since we are interested in slight deviations from spherical symmetry we shall
consider models with very small values of q . Indeed the magnitude of the q’s
in the models presented are many orders of magnitude smaller than the values
corresponding to the earth and the sun, which in our units are approximately 1015

and 105 respectively [9]. However for a neutron star of one solar mass, 10 km
radius and the same eccentricity as the sun, the order of magnitude of q is 10−4

[9], as in one of the models below.
It is also worth noticing that the critical value of alpha (≈0.7) is smaller than

the corresponding value in the exactly spherically symmetric case (8/9)
We have ran a large number of models for a wide range of values of the param-

eters and, both, positive and negative q’s. Below we show figures corresponding
to two models, one with small α and the other with a value of α close to its critical
value. In both models we considered negative values of q since we are primarily
interested in oblate objects.
Figs. 2–5 exhibit the behaviour of physical variables for an small value of α (weak
field limit). Despite the small value of the quadrupole parameter, its contribution
is clearly shown in Figs. 2–4. In Fig. 5 the numerical error is comparable with the
quadrupole contribution, and accordingly the latter is somehow screened by the
former.

Figures 6–8 display the physical variables for a large value of α. In this case,
the quadrupole correction appears sharply in T 0

0 and T 1
2 . However it is negligible

in T 1
1 , T 2

2 and T 3
3 .

Finally, Fig. 9 display the range of parameters α and q for which the solution
is physically acceptable.

It is our hope that this source as well as other interiors to some Weyl metrics
presented elsewhere ([25] and [26]) could be used as initial configurations to de-
scribe the departure from equilibrium of very compact objects endowed with an
small but non-vanishing quadrupole structure.
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