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Thermoinertial bouncing of a relativistic collapsing sphere: A numerical model
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We present a numerical model of a collapsing radiating sphere, whose boundary surface undergoes
bouncing due to a decreasing of its inertial mass density (and, as expected from the equivalence principle,
also of the ‘‘gravitational’’ force term) produced by the ‘‘inertial’’ term of the transport equation. This
model exhibits for the first time the consequences of such an effect, and shows that under physically
reasonable conditions this decreasing of the gravitational term in the dynamic equation may be large
enough as to revert the collapse and produce a bouncing of the boundary surface of the sphere.
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I. INTRODUCTION

In the study of gravitational collapse of massive stars,
the inclusion of dissipative processes (in particular neu-
trino emission) is enforced by the fact that they provide the
only plausible mechanism to carry away the bulk of bind-
ing energy, leading to a neutron star or black hole [1]. On
the other hand, in cores of densities about 1012 g cm�3 the
mean free path of neutrinos becomes small enough as to
justify the use of diffusion approximation [2,3]. This seems
to be confirmed by the observational data collected from
supernova 1987A, which indicates that the radiation trans-
port regime prevailing during the emission process, is
closer to the diffusion approximation than to the streaming
out limit [4].

Motivated by the comments above, in a recent paper [5],
the Misner and Sharp approach to the study of adiabatic
gravitational collapse [6] was extended as to include dis-
sipation in, both, the streaming out and diffusion approxi-
mation (for the case of pure free streaming approximation
see [7]). Then from the coupling of the dynamical equation
to a causal transport equation in the context of Müller-
Israel-Stewart theory [8,9] it was obtained that the effective
inertial mass density of a fluid element and the gravita-
tional force term in the dynamical equation, reduce by a
factor which depends on dissipative variables. This reduc-
tion, in its turn, might lead to the bouncing of the collaps-
ing sphere, as discussed in [5].

As can be seen from inspection of the transport equation,
such an effect is directly related to the presence of the
inertial term Ta� in the transport equation. This explains
why we refer to such a bouncing as ‘‘thermo-inertial’’.

It is our purpose in this work to present a numerical
model of a radiating collapsing sphere, where the above
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mentioned effect produces the bouncing of the boundary
surface of the sphere, for physically acceptable values of
all variables.

Since we are mainly concerned with time scales of the
order of magnitude of (or even smaller than) the hydro-
static time scale, as in the quick collapse phase preceding
neutron star formation, we cannot rely on the quasistatic
approximation, and therefore the full dynamic description
has to be used [10,11]. This implies that we have to appeal
to a hyperbolic theory of dissipation. The use of a hyper-
bolic theory of dissipation is further justified by the neces-
sity of overcoming the difficulties inherent to parabolic
theories (see Refs. [12–24] and references therein).

The plan of the paper is as follows. In the next section we
define the conventions and present the dynamical equation
coupled to the transport equation. The model to be consid-
ered as well as the strategy for the numerical integration is
presented in Sec. III. Finally, a discussion of results is
presented in Sec. IV.
II. THE DYNAMICAL EQUATION OF THE
DISSIPATIVE FLUID

We consider a spherically symmetric distribution of
collapsing fluid (for simplicity we shall consider the pres-
sure to be locally isotropic) undergoing dissipation in the
form of heat flow, bounded by a spherical surface �. We
assume the interior metric to � to be comoving, shear-free
for simplicity, and spherically symmetric, accordingly it
may be written as

ds2 ��A2�t; r�dt2�B2�t; r��dr2� r2d�2� r2sin2�d�2�;

(1)

and hence we have for the four velocity V� and the heat
flux vector q�

V� � A�1��0 ; q� � q��1 : (2)
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Then it can be shown [5] that the following equation can
be found from Bianchi identities

��� P�DtU � ���� P��m� 4�PR3�
1

R2 � E
2DRP

� E
�

5qB
U
R
� BDtq

�
; (3)

where � is the energy density, P the pressure,

Dt �
1

A
@
@t
; (4)

the proper radial derivativeDR, constructed from the radius
of a spherical surface, as measured from its perimeter
inside �, being

DR �
1

R0
@
@r
; (5)

with

R � rB; (6)

and where dots and primes denote derivatives with respect
to t and r respectively. The velocity U of the collapsing
fluid is defined as

U � rDtB < 0 �in the case of collapse�: (7)

Also, the mass function m�t; r� of Cahill and McVittie [24]
is obtained from the Riemann tensor component R23

23 and
is for metric (1)

m�t; r� �
�rB�3

2
R23

23 �
r3

2

B _B2

A2 �
r3

2

B02

B
� r2B0; (8)

E is defined as

E �
�rB�0

B
�

�
1�U2 �

2m�t; r�
rB

�
1=2
: (9)

Next, the corresponding transport equation for the heat
flux reads [8,9]

�h��V	q�;	 � q
� � �
h���T;� � Ta��

�
1

2

T2

�
�V�


T2

�
;�
q�; (10)

where h�� is the projector onto the three space orthogonal
to V�, 
 denotes the thermal conductivity, and T and �
denote temperature and relaxation time, respectively.
Observe that due to the symmetry of the problem,
Eq. (10) only has one independent component, which
may be written as:

BDtq � �

T
�E

DtU�

T0

�B
�
qB
�

�
1�

�U
R

�

�

T
�E
�m� 4�P�R�2 �


T2qB
2A�

�
�


T2

�
_�

3UBq
2R

;

(11)
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Then coupling (3) to (11) one obtains (some misprints in
Eq. (39) in [5] has been corrected here)

��� P��1� ��DtU � Fgrav�1� �� � Fhyd �
E
T0

�B

�
EqB
�
�

5qBEU
2R

�

ET2qB

2A�

�
�


T2

�
_; (12)

where Fgrav and Fhyd are defined by

Fgrav � ���� P��m� 4�PR3�
1

R2 ; (13)

and

Fhyd � �E
2DRP; (14)

with � given by

� �

T

���� P�
: (15)

Thus as � tends to 1, the effective inertial mass density of
the fluid element tends to zero. Furthermore observe that
Fgrav is also multiplied by the factor �1� ��. Indicating
that the effective gravitational attraction on any fluid ele-
ment decreases by the same factor as the effective inertial
mass (density). This of course is to be expected, from the
equivalence principle. It is also worth mentioning that Fhyd

is in principle independent (at least explicitly) on this
factor.

With these last comments in mind, let us now imagine
the following situation. As far as the right hand side of (12)
is negative, the system keeps collapsing. However, let us
assume that the collapsing sphere evolves in such a way
that, for some region of the sphere, the value of � increases
and approaches the critical value of 1. Then, as this process
goes on, the ensuing decreasing of the gravitational force
term would eventually lead to a change of the sign of the
right hand side of (12). Since that would happen for small
values of the effective inertial mass density, that would
imply a strong bouncing of that part of the sphere, even for
a small absolute value of the right hand side of (12).

In the next section a model will be presented where the
effect above appears explicitly. For simplicity we shall
consider a particular case of the transport equation, corre-
sponding to the so called truncated version, in which case
the last term on the right of (10) is absent [14,20]. In this
case, (12) becomes

��� P��1� ��DtU � Fgrav�1� �� � Fhyd �
E
T0

�B

�
EqB
�
�

4qBEU
R

: (16)
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III. THE MODEL

In this section we shall present a numerical model where
the decreasing of the effective mass mentioned in the
previous section will produce a bouncing during the evo-
lution of a dissipative sphere. For simplicity we shall
assume our fluid to be shear-free and conformally flat,
and also that a relevant increase of � takes place only at
the boundary surface of the sphere. Thus we shall need
only to integrate at the boundary surface, implying that we
shall deal with ordinary differential equations for variables
defined on that surface.

A. The general form of the metric and the field
equations

If the fluid sphere is shear-free and conformally flat, the
metric functions take the form [25]

A � �C1�t�r2 � 1�B (17)

and

B �
1

C2�t�r2 � C3�t�
; (18)

where C1, C2 and C3 are arbitrary functions of t. Although
the shear-free and the conformally flat conditions are in-
troduced here in order to simplify calculations, it is worth
noticing that these conditions generalize physical assump-
tions widely used in astrophysics. Indeed, the shear-free
condition in the Newtonian regime describes the homolo-
gous evolution and has been extensively considered in
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general relativity [26]. On the other hand it is well known
that the conformally flat condition implies in the perfect
fluid case the homogeneity of the energy density
distribution.

For the numerical integration we shall need to write all
variables in dimensionless form, accordingly we shall re-
define the metric functions C1 and C2 by (C3 is already
dimensionless):

C1;2 !
C1;2

r2
�

; (19)

where r � r� � constant defines the boundary surface of
the fluid sphere.

In terms of these dimensionless functions, A and B
become

A � �C1�t��r=r��
2 � 1�B (20)

and

B �
1

C2�t��r=r��
2 � C3�t�

: (21)

Then the following expressions for the physical varia-
bles are obtained from Einstein equations

�r2
� �

3

8�

� _C2�r=r��
2 � _C3

C1�r=r��
2 � 1

�
2
�

3

2�
C2C3; (22)
r2
�P �

1

8��C1�r=r��
2 � 1�2

�2� �C2�r=r��
2 � �C3��C2�r=r��

2 � C3� � 3� _C2�r=r��
2 � _C3�

2

� 2
_C1�r=r��

2

C1�r=r��
2 � 1

� _C2�r=r��
2 � _C3��C2�r=r��

2 � C3�� �
1

2��C1�r=r��
2 � 1�

� �C2�C2 � 2C1C3��r=r��
2 � C3�C1C3 � 2C2��; (23)
qr2
� �

1

2�
�r=r��� _C3C1 � _C2�

�
C2�r=r��

2 � C3

C1�r=r��
2 � 1

�
2
; (24)

where from now on dot denotes derivative with respect to
t=r�.

B. The surface equations

Next, from (6) we obtain for the dimensionless proper
radius of the sphere

R� �
1

C2 � C3
; (25)

and from (9) evaluated at the boundary surface
E� �
C3 � C2

C3 � C2
: (26)

Solving these two equations we obtain

C2 �
1� E�

2R�
(27)

and

C3 �
1� E�

2R�
: (28)

On the other hand we have

A� � �C1 � 1�R�; (29)

and from (7)
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U� � �
_C2 � _C3

�C1 � 1��C2 � C3�
; (30)

where, again, dots denote derivatives with respect to the
dimensionless time t=r�. Using (25) and (29) in (30) we
may write

_R � � A�U�; (31)

which is our first equation at the surface.
Next, we use the total loss of mass equation which can

be easily derived from (8) and the junction condition

P� � �qB��; (32)

to obtain (see [5]) for details)

_M � � �Q�t�A�R��U� � E��; (33)

where M� is the dimensionless mass,Q�t� 	 4�q�R2
� and

q� denotes the dimensionless heat flow qr2
�, evaluated at

the boundary surface. This is our second surface equation.
Finally, in order to obtain the third surface equation we

proceed as follows. From the Eqs. 23 and 32 in [25], it can
be shown that

_U� �
1

2R�
�A��3E2

� � 1�U2
� � 2R�Q�t��

� 2E��A� � 2R���: (34)

This is the third equation to be integrated at the surface of
the distribution.

Thus we have a system of three Eqs. (31), (33), and (34)
for the five unknown functions of time R�; A�; U�; E� and
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Q. In order to integrate such a system, we shall prescribe
the ‘‘luminosity’’ (Q), and obtain a constraint equation
from (16), on what we shall elaborate as follows .

From the dynamic equation (16), using the boundary
condition (32) we obtain the pressure gradient at the sur-
face

P0� � �
R�

E�
f�1� ������ � P���4�R����=3� P��

� _U�=A�� �T �g; (35)

where primes and dots denote derivatives with respect to
the dimensionless variables r=r� and t=r� respectively,

�� �
3M�

4�R3
�

; (36)

P� �
Q�t�

4�R�
; (37)

(observe that �� and P� denote the dimensionless expres-
sions for the energy density and pressure evaluated at the
boundary surface, i.e. these variables multiplied by r2

�) and

T � � ����
0
� � P

0
��
E�

R�
�
E�Q�t�
4�R��

�
4QE�U�

4�R2
�

; (38)

where we have used kT � ����� P� (conveniently adi-
mensionalized) and have assumed for simplicity that �0� �
0. Finally, using the field equations (22)–(24) we obtain the
following expression for A�
A� �
�R��4���3M�=R� �QR�� � _QR��1� ����

2����1� E���QR� � 3M�=R�� �QR��R� � 7U���
: (39)
C. Strategy of integration

The integration scheme is now an easy shot: Giving
initial conditions for R�, U� and M�, and prescribing
�� and Q�t�, we can integrate numerically, Eqs. (31),
(33), and (34), with the constraint equation (39).

The form of �� is suggested by the very idea underlying
the motivation of this work, namely: the fact that as �
increases, the ensuing reduction of the gravitational term in
the dynamical equation may lead to a bouncing of the
sphere. Accordingly, we shall take for �� a smooth func-
tion of time, rising from zero to some value below the
critical one (� � 1).

D. Model

We have ran a large number of models exhibiting bounc-
ing, under physically reasonable conditions, corresponding
to a wide range of initial data and values of the parameters,
and very different choices of Q�t� and ��t�. For all these
choices, the qualitative behavior associated to the increase
of � is essentially the same. From them we have selected
the following model.

The initial conditions are

R��0� � 20;

M��0� � 1;

U��0� � �0:1;

with � � 0:1. These values correspond to a sphere with an
initial radius of the order of 400 Km, an initial mass of the
order of 10 solar masses and a relaxation time of the order
of 10�4 seconds.

The sphere is assumed to be radiating according to

Q�t� � Q0e��t�tm�
2=�;

where Q0 � 0:001, tm � 0:5 and � � 0:005, producing a
total mass ejection of the order of 0.1%.
-4
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For � we choose

��t� � �m=�e��t�tm�=� � 1�;

with �m ranging from 0 to 1.
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FIG. 2. Evolution of R� (continuous line) and � (dashed line)
for �m � 0:5. The curves were normalized (and shifted only for
R�) in order to display them together.
IV. DISCUSSION

The influence of prerelaxation effects on gravitational
collapse has been brought out in many works in last decade
[27], however the specific effect of bouncing, associated
with the decreasing of the effective inertial mass density,
produced by the increasing of �, had not been illustrated
until now. It is worth stressing that �-terms in Eq. (12)
come from the inertial factor Ta� in Eq. (10).

In this work we provide a numerical model of such
bouncing, by assuming an increasing of � at the boundary
surface. We have concentrated the increase of � on the
boundary surface to illustrate the effect, the remaining of
the sphere is assumed to be dissipating at much lower
values of�. Of course, the increasing of�may in principle
occur at any region of the sphere and even in more that one,
simultaneously. The results of our integration is deployed
in the Figs. 1–6, which exhibit the evolution of different
variables with respect to the dimensionless time t=r�.

Figure 1 shows the evolution of R� for different values
of �m from 0 to 1, the bouncing is clearly exhibited as well
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FIG. 1. Evolution of R� for different values of �m: 0.0 (solid
line); 0.2 (large dashed line); 0.4 (short dashed line); 0.6 (dotted
line); 0.8 (dot–large dashed line) and 1 (dot–short dashed line).
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as its dependence on �. Figure 2 emphasizes further the
link between the increasing of � and the bouncing.

Figs. 3–6 show the behavior of (dimensionless) energy
density, pressure, heat flow and temperature, evaluated at
the boundary surface. Their values are always regular and
satisfy the physical conditions  > P> 0.

The dimensionless quantity 
T� plotted in Fig. 6 is, in
conventional units,


T� � 2106 G

c5
�
��T�� (40)

with G and c denoting the gravitational constant and the
speed of light, and where �
� and �T� denote the numerical
values of conductivity and temperature in g cm�3 K�1 and
K respectively. Therefore the maximum values of 
T�

reached just after the bouncing, correspond to

�
��T�� 
 1046 (41)

which may be obtained with �T�� 
 1012 and �
� 
 1034.
These values are well within the acceptable range for those
variables in a presupernovae event [28].

Thus we have seen that a relatively simple model, whose
physical variables exhibit good behavior and have accept-
able numerical values, may serve to illustrate the bouncing
of a dissipating self-gravitating sphere, produced by the
decreasing of its effective inertial mass density associated
to an increasing of �.
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FIG. 5. Heat flow at the surface (multiplied by 107) evolution
for the same values of �m. They all overlap within the approxi-
mation of the plotter.
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FIG. 4. Pressure at the surface (multiplied by 106) evolution
for the same values of � as in previous figure. They all overlap
within the approximation of the plotter.
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FIG. 6. Temperature at the surface (multiplied by 
107) evo-
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dashed line); 0.4 (short dashed line); 0.6 (dotted line); 0.8 (dot-
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FIG. 3. Energy density at the surface (multiplied by 105)
evolution for different values of �m: 0.0 (solid line); 0.2 (large
dashed line); 0.4 (short dashed line); 0.6 (dotted line); 0.8 (dot-
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Nevertheless, in spite of the appeal of the presented
model, we are well aware that invoking such an effect to
describe a specific observed phenomena, would require a
much more detailed astrophysical setting. This, however, is
out of the scope of this paper.
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