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MAXIMUM LIKELIHOOD
ESTIMATION

Q

17.1 INTRODUCTION

The generalized method of moments discussed in Chapter 18 and the semiparametric,
nonparametric, and Bayesian estimators discussed in Chapter 16 are becoming widely
used by model builders. Nonetheless, the maximum likelihood estimator discussed in
this chapter remains the preferred estimator in many more settings than the others
listed. As such, we focus our discussion of generally applied estimation methods on
this technique. Sections 17.2 through 17.5 present statistical results for estimation and
hypothesis testing based on the maximum likelihood principle. After establishing some
general results for this method of estimation, we will then extend them to the more
familiar setting of econometric models. Some applications are presented in Section 17.6.
Finally, three variations on the technique, maximum simulated likelihood, two-step
estimation and pseudomaximum likelihood estimation are described in Sections 17.7
through 17.9.

17.2 THE LIKELIHOOD FUNCTION AND
IDENTIFICATION OF THE PARAMETERS

The probability density function, or pdf for a random variable y, conditioned on a
set of parameters, θ , is denoted f (y | θ).1 This function identifies the data generating
process that underlies an observed sample of data and, at the same time, provides a
mathematical description of the data that the process will produce. The joint density
of n independent and identically distributed (iid) observations from this process is the
product of the individual densities;

f (y1, . . . , yn | θ) =
n∏

i=1

f (yi | θ) = L(θ | y). (17-1)

This joint density is the likelihood function, defined as a function of the unknown
parameter vector, θ , where y is used to indicate the collection of sample data. Note
that we write the joint density as a function of the data conditioned on the parameters
whereas when we form the likelihood function, we write this function in reverse, as
a function of the parameters, conditioned on the data. Though the two functions are
the same, it is to be emphasized that the likelihood function is written in this fashion to

1Later we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that
would complicate the notation without adding anything of substance to the discussion.
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highlight our interest in the parameters and the information about them that is contained
in the observed data. However, it is understood that the likelihood function is not meant
to represent a probability density for the parameters as it is in Section 16.2.2. In this
classical estimation framework, the parameters are assumed to be fixed constants which
we hope to learn about from the data.

It is usually simpler to work with the log of the likelihood function:

ln L(θ | y) =
n∑

i=1

ln f (yi | θ). (17-2)

Again, to emphasize our interest in the parameters, given the observed data, we denote
this function L(θ | data) = L(θ | y). The likelihood function and its logarithm, evaluated
at θ , are sometimes denoted simply L(θ) and ln L(θ), respectively or, where no ambiguity
can arise, just L or ln L.

It will usually be necessary to generalize the concept of the likelihood function to
allow the density to depend on other conditioning variables. To jump immediately to
one of our central applications, suppose the disturbance in the classical linear regres-
sion model is normally distributed. Then, conditioned on it’s specific xi , yi is normally
distributed with mean µi = x′

iβ and variance σ 2. That means that the observed ran-
dom variables are not iid; they have different means. Nonetheless, the observations are
independent, and as we will examine in closer detail,

ln L(θ | y, X) =
n∑

i=1

ln f (yi | xi , θ) = −1
2

n∑
i=1

[ln σ 2 + ln(2π) + (yi − x′
iβ)2/σ 2], (17-3)

where X is the n × K matrix of data with ith row equal to x′
i .

The rest of this chapter will be concerned with obtaining estimates of the parameters,
θ and in testing hypotheses about them and about the data generating process. Before
we begin that study, we consider the question of whether estimation of the parameters
is possible at all—the question of identification. Identification is an issue related to the
formulation of the model. The issue of identification must be resolved before estimation
can even be considered. The question posed is essentially this: Suppose we had an
infinitely large sample—that is, for current purposes, all the information there is to be
had about the parameters. Could we uniquely determine the values of θ from such a
sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 17.1 Identification
The parameter vector θ is identified (estimable) if for any other parameter vector,
θ∗ �= θ , for some data y, L(θ∗ | y) �= L(θ | y).

This result will be crucial at several points in what follows. We consider two examples,
the first of which will be very familiar to you by now.

Example 17.1 Identification of Parameters
For the regression model specified in (17-3), suppose that there is a nonzero vector a such
that x′

i a = 0 for every xi . Then there is another “parameter” vector, γ = β + a �= β such that
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x′
i β = x′

i γ for every xi . You can see in (17-3) that if this is the case, then the log-likelihood
is the same whether it is evaluated at β or at γ . As such, it is not possible to consider
estimation of β in this model since β cannot be distinguished from γ . This is the case of
perfect collinearity in the regression model which we ruled out when we first proposed the
linear regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider
a model in which identification is secured by the specification of the parameters in the model.
(We will study this model in detail in Chapter 21.) Consider a simple form of the regression
model considered above, yi = β1 + β2xi + εi , where εi | xi has a normal distribution with zero
mean and variance σ 2. To put the model in a context, consider a consumer’s purchases of
a large commodity such as a car where xi is the consumer’s income and yi is the difference
between what the consumer is willing to pay for the car, p∗

i , and the price tag on the car,
pi . Suppose rather than observing p∗

i or pi , we observe only whether the consumer actually
purchases the car, which, we assume, occurs when yi = p∗

i − pi is positive. Collecting this
information, our model states that they will purchase the car if yi > 0 and not purchase it if
yi ≤ 0. Let us form the likelihood function for the observed data, which are (purchase or not)
and income. The random variable in this model is “purchase” or “not purchase”—there are
only two outcomes. The probability of a purchase is

Prob(purchase | β1, β2, σ, xi ) = Prob( yi > 0 | β1, β2, σ, xi )

= Prob(β1 + β2xi + εi > 0 | β1, β2, σ, xi )

= Prob[εi > −(β1 + β2xi ) | β1, β2, σ, xi ]

= Prob[εi /σ > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

= Prob[zi > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

where zi has a standard normal distribution. The probability of not purchase is just one minus
this probability. The likelihood function is∏

i =purchased

[Prob(purchase | β1, β2, σ, xi ) ]
∏

i =not purchased

[1 − Prob(purchase | β1, β2, σ, xi ) ].

We need go no further to see that the parameters of this model are not identified. If β1, β2 and σ
are all multiplied by the same nonzero constant, regardless of what it is, then Prob(purchase)
is unchanged, 1 − Prob(purchase) is also, and the likelihood function does not change.
This model requires a normalization. The one usually used is σ = 1, but some authors
[e.g., Horowitz (1993)] have used β1 = 1 instead.

17.3 EFFICIENT ESTIMATION: THE PRINCIPLE
OF MAXIMUM LIKELIHOOD

The principle of maximum likelihood provides a means of choosing an asymptotically
efficient estimator for a parameter or a set of parameters. The logic of the technique is
easily illustrated in the setting of a discrete distribution. Consider a random sample of
the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1.
The density for each observation is

f (yi | θ) = e−θ θ yi

yi !
.
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FIGURE 17.1 Likelihood and Log-likelihood Functions for a Poisson
Distribution.

Since the observations are independent, their joint density, which is the likelihood for
this sample, is

f (y1, y2, . . . , y10 | θ) =
10∏

i=1

f (yi | θ) = e−10θ θ�10
i=1 yi∏10

i=1 yi !
= e−10θ θ20

207, 360
.

The last result gives the probability of observing this particular sample, assuming that a
Poisson distribution with as yet unknown parameter θ generated the data. What value
of θ would make this sample most probable? Figure 17.1 plots this function for various
values of θ . It has a single mode at θ = 2, which would be the maximum likelihood
estimate, or MLE, of θ .

Consider maximizing L(θ | y) with respect to θ . Since the log function is monoton-
ically increasing and easier to work with, we usually maximize ln L(θ | y) instead; in
sampling from a Poisson population,

ln L(θ | y) = −nθ + ln θ

n∑
i=1

yi −
n∑

i=1

ln(yi !),

∂ ln L(θ | y)

∂θ
= −n + 1

θ

n∑
i=1

yi = 0 ⇒ θ̂ML = ȳn.

For the assumed sample of observations,

ln L(θ | y) = −10θ + 20 ln θ − 12.242,

d ln L(θ | y)

dθ
= −10 + 20

θ
= 0 ⇒ θ̂ = 2,
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and

d2 ln L(θ | y)

dθ2
= −20

θ2
< 0 ⇒ this is a maximum.

The solution is the same as before. Figure 17.1 also plots the log of L(θ | y) to illustrate
the result.

The reference to the probability of observing the given sample is not exact in a
continuous distribution, since a particular sample has probability zero. Nonetheless, the
principle is the same. The values of the parameters that maximize L(θ | data) or its log
are the maximum likelihood estimates, denoted θ̂ . Since the logarithm is a monotonic
function, the values that maximize L(θ | data) are the same as those that maximize
ln L(θ | data). The necessary condition for maximizing ln L(θ | data) is

∂ ln L(θ | data)

∂θ
= 0. (17-4)

This is called the likelihood equation. The general result then is that the MLE is a root
of the likelihood equation. The application to the parameters of the dgp for a discrete
random variable are suggestive that maximum likelihood is a “good” use of the data. It
remains to establish this as a general principle. We turn to that issue in the next section.

Example 17.2 Log Likelihood Function and Likelihood Equations
for the Normal Distribution

In sampling from a normal distribution with mean µ and variance σ 2, the log-likelihood func-
tion and the likelihood equations for µ and σ 2 are

ln L (µ, σ 2) = −n
2

ln(2π ) − n
2

ln σ 2 − 1
2

n∑
i =1

[
( yi − µ) 2

σ 2

]
, (17-5)

∂ ln L
∂µ

= 1
σ 2

n∑
i =1

( yi − µ) = 0, (17-6)

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

n∑
i =1

( yi − µ) 2 = 0. (17-7)

To solve the likelihood equations, multiply (17-6) by σ 2 and solve for µ̂, then insert this solution
in (17-7) and solve for σ 2. The solutions are

µ̂ML = 1
n

n∑
i =1

yi = ȳn and σ̂ 2
ML = 1

n

n∑
i =1

( yi − ȳn) 2. (17-8)

17.4 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their large-
sample or asymptotic properties.
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DEFINITION 17.2 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed (CAN), and has an asymptotic covariance matrix that is not larger than
the asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.2

If certain regularity conditions are met, the MLE will have these properties. The finite
sample properties are sometimes less than optimal. For example, the MLE may be bi-
ased; the MLE of σ 2 in Example 17.2 is biased downward. The occasional statement that
the properties of the MLE are only optimal in large samples is not true, however. It can
be shown that when sampling is from an exponential family of distributions (see Defini-
tion 18.1), there will exist sufficient statistics. If so, MLEs will be functions of them, which
means that when minimum variance unbiased estimators exist, they will be MLEs. [See
Stuart and Ord (1989).] Most applications in econometrics do not involve exponential
families, so the appeal of the MLE remains primarily its asymptotic properties.

We use the following notation: θ̂ is the maximum likelihood estimator; θ0 de-
notes the true value of the parameter vector; θ denotes another possible value of the
parameter vector, not the MLE and not necessarily the true values. Expectation based
on the true values of the parameters is denoted E0[.]. If we assume that the regularity
conditions discussed below are met by f (x, θ0), then we have the following theorem.

THEOREM 17.1 Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following
asymptotic properties:

M1. Consistency: plim θ̂ = θ0.
M2. Asymptotic normality: θ̂

a∼ N[θ0, {I(θ0)}−1], where

I(θ0) = −E0[∂2 ln L/∂θ0∂θ ′
0].

M3. Asymptotic efficiency: θ̂ is asymptotically efficient and achieves the
Cramér–Rao lower bound for consistent estimators, given in M2 and
Theorem C.2.

M4. Invariance: The maximum likelihood estimator of γ 0 = c(θ0) is c(θ̂) if
c(θ0) is a continuous and continuously differentiable function.

17.4.1 REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability
density functions. We assume that (y1, . . . , yn) is a random sample from the population

2Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that
of the efficient estimator plus a nonnegative definite matrix.
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with density function f (yi | θ0) and that the following regularity conditions hold. [Our
statement of these is informal. A more rigorous treatment may be found in Stuart and
Ord (1989) or Davidson and MacKinnon (1993).]

DEFINITION 17.3 Regularity Conditions

R1. The first three derivatives of ln f (yi | θ) with respect to θ are continuous
and finite for almost all yi and for all θ . This condition ensures the
existence of a certain Taylor series approximation and the finite variance
of the derivatives of ln L.

R2. The conditions necessary to obtain the expectations of the first and second
derivatives of ln f (yi | θ) are met.

R3. For all values of θ , |∂3 ln f (yi | θ)/∂θ j∂θk∂θl | is less than a function that
has a finite expectation. This condition will allow us to truncate the Taylor
series.

With these regularity conditions, we will obtain the following fundamental char-
acteristics of f (yi | θ): D1 is simply a consequence of the definition of the likelihood
function. D2 leads to the moment condition which defines the maximum likelihood
estimator. On the one hand, the MLE is found as the maximizer of a function, which
mandates finding the vector which equates the gradient to zero. On the other, D2 is a
more fundamental relationship which places the MLE in the class of generalized method
of moments estimators. D3 produces what is known as the Information matrix equality.
This relationship shows how to obtain the asymptotic covariance matrix of the MLE.

17.4.2 PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition 17.3 have three properties which are used in
establishing the properties of maximum likelihood estimators:

THEOREM 17.2 Moments of the Derivatives of the Log-Likelihood

D1. ln f (yi | θ), gi = ∂ ln f (yi | θ)/∂θ , and Hi = ∂2 ln f (yi | θ)/∂θ∂θ ′,
i = 1, . . . , n, are all random samples of random variables. This statement
follows from our assumption of random sampling. The notation gi (θ0)

and Hi (θ0) indicates the derivative evaluated at θ0.
D2. E0[gi (θ0)] = 0.
D3. Var[gi (θ0)] = −E [Hi (θ0)].

Condition D1 is simply a consequence of the definition of the density.

For the moment, we allow the range of yi to depend on the parameters; A(θ0) ≤ yi ≤
B(θ0). (Consider, for example, finding the maximum likelihood estimator of θ /break

William Greene
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for a continuous uniform distribution with range [0, θ0].) (In the following, the single
integral

∫
. . . dyi , would be used to indicate the multiple integration over all the elements

of a multivariate of yi if that were necessary). By definition,∫ B(θ0)

A(θ0)

f (y − i | θ0) dyi = 1.

Now, differentiate this expression with respect to θ0. Leibnitz’s theorem gives

∂
∫ B(θ0)

A(θ0)
f (yi | θ0) dyi

∂θ0
=

∫ B(θ0)

A(θ0)

∂ f (yi | θ0)

∂θ0
dyi + f (B(θ0) | θ0)

∂ B(θ0)

∂θ0

− f (A(θ0) | θ0)
∂ A(θ0)

∂θ0

= 0.

If the second and third terms go to zero, then we may interchange the operations of
differentiation and integration. The necessary condition is that limyi →A(θ0) f (yi | θ0) =
limyi →B(θ0) f (yi | θ0) = 0. (Note that the uniform distribution suggested above violates
this condition.) Sufficient conditions are that the range of the observed random variable,
yi , does not depend on the parameters, which means that ∂ A(θ0)/∂θ0 = ∂ B(θ0)/∂θ0 = 0
or that the density is zero at the terminal points. This condition, then, is regularity
condition R2. The latter is usually assumed, and we will assume it in what follows. So,

∂
∫

f (yi | θ0) dyi

∂θ0
=

∫
∂ f (yi | θ0)

∂θ0
dyi =

∫
∂ ln f (yi | θ0)

∂θ0
f (yi | θ0)dyi = E0

[
∂ ln f (yi | θ0)

∂θ0

]
=0.

This proves D2.
Since we may interchange the operations of integration and differentiation, we

differentiate under the integral once again to obtain∫ [
∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

f (yi | θ0) + ∂ ln f (yi | θ0)

∂θ0

∂ f (yi | θ0)

∂θ ′
0

]
dyi = 0.

But

∂ f (yi | θ0)

∂θ ′
0

= f (yi | θ0)
∂ ln f (yi | θ0)

∂θ ′
0

,

and the integral of a sum is the sum of integrals. Therefore,

−
∫ [

∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
f (yi | θ0) dyi =

∫ [
∂ ln f (yi | θ0)

∂θ0

∂ ln f (yi | θ0)

∂θ ′
0

]
f (yi | θ0) dyi = [0].

The left-hand side of the equation is the negative of the expected second derivatives
matrix. The right-hand side is the expected square (outer product) of the first derivative
vector. But, since this vector has expected value 0 (we just showed this), the right-hand
side is the variance of the first derivative vector, which proves D3:

Var0

[
∂ ln f (yi | θ0)

∂θ0

]
= E0

[(
∂ ln f (yi | θ0)

∂θ0

)(
∂ ln f (yi | θ0)

∂θ ′
0

)]
= −E

[
∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
.

William Greene
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17.4.3 THE LIKELIHOOD EQUATION

The log-likelihood function is

ln L(θ | y) =
n∑

i=1

ln f (yi | θ).

The first derivative vector, or score vector, is

g = ∂ ln L(θ | y)

∂θ
=

n∑
i=1

∂ ln f (yi | θ)

∂θ
=

n∑
i=1

gi . (17-9)

Since we are just adding terms, it follows from D1 and D2 that at θ0,

E0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0[g0] = 0. (17-10)

which is the likelihood equation mentioned earlier.

17.4.4 THE INFORMATION MATRIX EQUALITY

The Hessian of the log-likelihood is

H = ∂2 ln L(θ | y)

∂θ∂θ ′ =
n∑

i=1

∂2 ln f (yi | θ)

∂θ∂θ ′ =
N∑

i=1

Hi .

Evaluating once again at θ0, by taking

E0[g0g′
0] = E0


 n∑

i=1

n∑
j=1

g0i g′
0 j




and, because of D1, dropping terms with unequal subscripts we obtain

E0[g0g′
0] = E0

[
n∑

i=1

g0i g′
0i

]
= E0

[
n∑

i=1

(−H0i )

]
= −E0[H0],

so that

Var0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0

[(
∂ ln L(θ0 | y)

∂θ0

)(
∂ ln L(θ0 | y)

∂θ ′
0

)]

= −E0

[
∂2 ln L(θ0 | y)

∂θ0∂θ ′
0

]
.

(17-11)

This very useful result is known as the information matrix equality.

17.4.5 ASYMPTOTIC PROPERTIES OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs
of these results require some fairly intricate mathematics. Two widely cited derivations
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise,



Greene-50240 book June 26, 2002 15:8

CHAPTER 17 ✦ Maximum Likelihood Estimation 477

we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and
indicate where it will be necessary to extend the derivation if it were to be fully general.

17.4.5.a CONSISTENCY

We assume that f (yi | θ0) is a possibly multivariate density which at this point does not
depend on covariates, xi . Thus, this is the iid, random sampling case. Since θ̂ is the MLE,
in any finite sample, for any θ �= θ̂ (including the true θ0) it must be true that

ln L(θ̂) ≥ ln L(θ). (17-12)

Consider, then, the random variable L(θ)/L(θ0). Since the log function is strictly con-
cave, from Jensen’s Inequality (Theorem D.8.), we have

E0

[
log

L(θ)

L(θ0)

]
< log E0

[
L(θ)

L(θ0)

]
. (17-13)

The expectation on the right hand side is exactly equal to one, as

E0

[
L(θ)

L(θ0)

]
=

∫ (
L(θ)

L(θ0)

)
L(θ0) dy = 1 (17-14)

is simply the integral of a joint density. Now, take logs on both sides of (17-13), insert
the result of (17-14), then divide by n to produce

E0[1/n ln L(θ)] − E0[1/n ln L(θ0)] < 0. (17-15)

This produces a central result:

THEOREM 17.3 Likelihood Inequality

E0[(1/n) ln L(θ0)] > E0[(1/n) ln L(θ)] for any θ �= θ0 (including θ̂).

This result is (17-15).

In words, the expected value of the log-likelihood is maximized at the true value of the
parameters.

For any θ , including θ̂ ,

[(1/n) ln L(θ)] = (1/n)

n∑
i=1

ln f (yi | θ)

is the sample mean of n iid random variables, with expectation E0[(1/n) ln L(θ)]. Since
the sampling is iid by the regularity conditions, we can invoke the Khinchine The-
orem, D.5; the sample mean converges in probability to the population mean. Us-
ing θ = θ̂ , it follows from Theorem 17.3 that as n → ∞, lim Prob{[(1/n) ln L(θ̂)] <

[(1/n) ln L(θ0)]} = 1 if θ̂ �= θ0. But, θ̂ is the MLE, so for every n, (1/n) ln L(θ̂) ≥
(1/n) ln L(θ0). The only way these can both be true is if (1/n) times the sample log-
likelihood evaluated at the MLE converges to the population expectation of (1/n)

times the log-likelihood evaluated at the true parameters. There remains one final step.
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Does (1/n) ln L(θ̂) → (1/n) ln L(θ0) imply that θ̂ → θ0? If there is a single parameter
and the likelihood function is one to one, then clearly so. For more general cases, this
requires a further characterization of the likelihood function. If the likelihood is strictly
continuous and twice differentiable, which we assumed in the regularity conditions, and
if the parameters of the model are identified which we assumed at the beginning of this
discussion, then yes, it does, so we have the result.

This is a heuristic proof. As noted, formal presentations appear in more advanced
treatises than this one. We should also note, we have assumed at several points that
sample means converged to the population expectations. This is likely to be true for
the sorts of applications usually encountered in econometrics, but a fully general set
of results would look more closely at this condition. Second, we have assumed iid
sampling in the preceding—that is, the density for yi does not depend on any other
variables, xi . This will almost never be true in practice. Assumptions about the behavior
of these variables will enter the proofs as well. For example, in assessing the large sample
behavior of the least squares estimator, we have invoked an assumption that the data
are “well behaved.” The same sort of consideration will apply here as well. We will
return to this issue shortly. With all this in place, we have property M1, plim θ̂ = θ0.

17.4.5.b ASYMPTOTIC NORMALITY

At the maximum likelihood estimator, the gradient of the log-likelihood equals zero
(by definition), so

g(θ̂) = 0.

(This is the sample statistic, not the expectation.) Expand this set of equations in a
second-order Taylor series around the true parameters θ0. We will use the mean value
theorem to truncate the Taylor series at the second term.

g(θ̂) = g(θ0) + H(θ̄)(θ̂ − θ0) = 0.

The Hessian is evaluated at a point θ̄ that is between θ̂ and θ0 (θ̄ = wθ̂ + (1 − w)θ0 for
some 0 < w < 1). We then rearrange this function and multiply the result by

√
n to

obtain
√

n(θ̂ − θ0) = [−H(θ̄)]−1[
√

ng(θ0)].

Because plim(θ̂−θ0) = 0, plim(θ̂−θ̄) = 0 as well. The second derivatives are continuous
functions. Therefore, if the limiting distribution exists, then

√
n(θ̂ − θ0)

d−→ [−H(θ0)]−1[
√

ng(θ0)].

By dividing H(θ0) and g(θ0) by n, we obtain
√

n(θ̂ − θ0)
d−→ [ − 1

n H(θ0)
]−1[

√
nḡ(θ0)].

We may apply the Lindberg–Levy central limit theorem (D.18) to [
√

nḡ(θ0)], since it
is

√
n times the mean of a random sample; we have invoked D1 again. The limiting

variance of [
√

nḡ(θ0)] is −E0[(1/n)H(θ0)], so
√

nḡ(θ0)
d−→ N

{
0, −E0

[ 1
n H(θ0)

]}
.
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By virtue of Theorem D.2, plim[−(1/n)H(θ0)] = − E0[(1/n)H(θ0)]. Since this result is
a constant matrix, we can combine results to obtain[− 1

n H(θ0)
]−1√

nḡ(θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1{−E0

[ 1
n H(θ0)

]}{−E0[ 1
n H(θ0)]

}−1]
,

or
√

n(θ̂ − θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1]

,

which gives the asymptotic distribution of the MLE:

θ̂
a∼ N[θ0, {I(θ0)}−1].

This last step completes M2.

Example 17.3 Information Matrix for the Normal Distribution
For the likelihood function in Example 17.2, the second derivatives are

∂2 ln L
∂µ2

= −n
σ 2

,

∂2 ln L
∂ (σ 2) 2

= n
2σ 4

− 1
σ 6

n∑
i =1

( xi − µ) 2,

∂2 ln L
∂µ∂σ 2

= −1
σ 4

n∑
i =1

( xi − µ) .

For the asymptotic variance of the maximum likelihood estimator, we need the expectations
of these derivatives. The first is nonstochastic, and the third has expectation 0, as E [xi ] = µ.
That leaves the second, which you can verify has expectation −n/(2σ 4) because each of the
n terms ( xi −µ) 2 has expected value σ 2. Collecting these in the information matrix, reversing
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum
likelihood estimators: {

−E0

[
∂2 ln L
∂θ0 ∂θ ′

0

]}−1

=
[
σ 2/n 0

0 2σ 4/n

]
.

17.4.5.c ASYMPTOTIC EFFICIENCY

Theorem C.2 provides the lower bound for the variance of an unbiased estimator. Since
the asymptotic variance of the MLE achieves this bound, it seems natural to extend the
result directly. There is, however, a loose end in that the MLE is almost never unbiased.
As such, we need an asymptotic version of the bound, which was provided by Cramér
(1948) and Rao (1945) (hence the name):

THEOREM 17.4 Cramér–Rao Lower Bound
Assuming that the density of yi satisfies the regularity conditions R1–R3, the
asymptotic variance of a consistent and asymptotically normally distributed esti-
mator of the parameter vector θ0 will always be at least as large as

[I(θ0)]−1 =
(
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

])−1

=
(

E0

[(
∂ ln L(θ0)

∂θ0

)(
∂ ln L(θ0)

∂θ0

)′ ])−1

.
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The asymptotic variance of the MLE is, in fact, equal to the Cramér–Rao Lower Bound
for the variance of a consistent estimator, so this completes the argument.3

17.4.5.d INVARIANCE

Lastly, the invariance property, M4, is a mathematical result of the method of computing
MLEs; it is not a statistical result as such. More formally, the MLE is invariant to one-to-
one transformations of θ . Any transformation that is not one to one either renders the
model inestimable if it is one to many or imposes restrictions if it is many to one. Some
theoretical aspects of this feature are discussed in Davidson and MacKinnon (1993,
pp. 253–255). For the practitioner, the result can be extremely useful. For example, when
a parameter appears in a likelihood function in the form 1/θ j , it is usually worthwhile
to reparameterize the model in terms of γ j = 1/θ j . In an important application, Olsen
(1978) used this result to great advantage. (See Section 22.2.3.) Suppose that the normal
log-likelihood in Example 17.2 is parameterized in terms of the precision parameter,
θ2 = 1/σ 2. The log-likelihood becomes

ln L(µ, θ2) = −(n/2) ln(2π) + (n/2) ln θ2 − θ2

2

n∑
i=1

(yi − µ)2.

The MLE for µ is clearly still x̄. But the likelihood equation for θ2 is now

∂ ln L(µ, θ2)/∂θ2 = 1
2

[
n/θ2 −

n∑
i=1

(yi − µ)2

]
= 0,

which has solution θ̂2 = n/
∑n

i=1(yi − µ̂)2 = 1/σ̂ 2, as expected. There is a second impli-
cation. If it is desired to analyze a function of an MLE, then the function of θ̂ will, itself,
be the MLE.

17.4.5.e CONCLUSION

These four properties explain the prevalence of the maximum likelihood technique in
econometrics. The second greatly facilitates hypothesis testing and the construction of
interval estimates. The third is a particularly powerful result. The MLE has the minimum
variance achievable by a consistent and asymptotically normally distributed estimator.

17.4.6 ESTIMATING THE ASYMPTOTIC VARIANCE
OF THE MAXIMUM LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix
of parameters that must be estimated (that is, it is a function of the θ0 that is being
estimated). If the form of the expected values of the second derivatives of the log-
likelihood is known, then

[I(θ0)]−1 =
{
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

]}−1

(17-16)

3A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that in principle,
there do exist CAN functions of the data with smaller variances than the MLE. But the finding is a narrow
result with no practical implications. For practical purposes, the statement may be taken as given.
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can be evaluated at θ̂ to estimate the covariance matrix for the MLE. This estimator
will rarely be available. The second derivatives of the log-likelihood will almost always
be complicated nonlinear functions of the data whose exact expected values will be
unknown. There are, however, two alternatives. A second estimator is

[Î(θ̂)]−1 =
(

−∂2 ln L(θ̂)

∂ θ̂ ∂ θ̂ ′

)−1

. (17-17)

This estimator is computed simply by evaluating the actual (not expected) second deriva-
tives matrix of the log-likelihood function at the maximum likelihood estimates. It is
straightforward to show that this amounts to estimating the expected second derivatives
of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can
be used to justify the computation. The only shortcoming of this estimator is that the
second derivatives can be complicated to derive and program for a computer. A third
estimator based on result D3 in Theorem 17.2, that the expected second derivatives
matrix is the covariance matrix of the first derivatives vector is

[ ˆ̂I(θ̂)]−1 =
[

n∑
i=1

ĝi ĝ′
i

]−1

= [Ĝ′Ĝ]−1, (17-18)

where

ĝi = ∂ ln f (xi , θ̂)

∂ θ̂

and

Ĝ = [ĝ1, ĝ2, . . . , ĝn]′.

Ĝ is an n × K matrix with ith row equal to the transpose of the ith vector of derivatives
in the terms of the log-likelihood function. For a single parameter, this estimator is just
the reciprocal of the sum of squares of the first derivatives. This estimator is extremely
convenient, in most cases, because it does not require any computations beyond those
required to solve the likelihood equation. It has the added virtue that it is always non-
negative definite. For some extremely complicated log-likelihood functions, sometimes
because of rounding error, the observed Hessian can be indefinite, even at the maxi-
mum of the function. The estimator in (17-18) is known as the BHHH estimator4 and
the outer product of gradients, or OPG, estimator.

None of the three estimators given here is preferable to the others on statistical
grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will
be the easiest to compute. One caution is in order. As the example below illustrates,
these estimators can give different results in a finite sample. This is an unavoidable
finite sample problem that can, in some cases, lead to different statistical conclusions.
The example is a case in point. Using the usual procedures, we would reject the hypoth-
esis that β = 0 if either of the first two variance estimators were used, but not if the
third were used. The estimator in (17-16) is usually unavailable, as the exact expectation
of the Hessian is rarely known. Available evidence suggests that in small or moderate
sized samples, (17-17) (the Hessian) is preferable.

4It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).
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Example 17.4 Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

f ( yi , xi , β) = 1
β + xi

e−yi /(β+xi ) ,

where y = income and x = education. To find the maximum likelihood estimate of β, we
maximize

ln L (β) = −
n∑

i =1

ln(β + xi ) −
n∑

i =1

yi

β + xi
.

The likelihood equation is

∂ ln L (β)
∂β

= −
n∑

i =1

1
β + xi

+
n∑

i =1

yi

(β + xi ) 2
= 0, (17-19)

which has the solution β̂ = 15.602727. To compute the asymptotic variance of the MLE, we
require

∂2 ln L (β)
∂β2

=
n∑

i =1

1
(β + xi ) 2

− 2
n∑

i =1

yi

(β + xi ) 3
. (17-20)

Since the function E ( yi ) = β + xi is known, the exact form of the expected value in (17-20)
is known. Inserting β + xi for yi in (17-20) and taking the reciprocal yields the first variance
estimate, 44.2546. Simply inserting β̂ = 15.602727 in (17-20) and taking the negative of the
reciprocal gives the second estimate, 46.16337. Finally, by computing the reciprocal of the
sum of squares of first derivatives of the densities evaluated at β̂,

[ ˆ̂I( β̂) ]−1 = 1∑n
i =1[−1/( β̂ + xi ) + yi /( β̂ + xi ) 2]2

,

we obtain the BHHH estimate, 100.5116.

17.4.7 CONDITIONAL LIKELIHOODS AND ECONOMETRIC MODELS

All of the preceding results form the statistical underpinnings of the technique of maxi-
mum likelihood estimation. But, for our purposes, a crucial element is missing. We have
done the analysis in terms of the density of an observed random variable and a vector
of parameters, f (yi | α). But, econometric models will involve exogenous or predeter-
mined variables, xi , so the results must be extended. A workable approach is to treat
this modeling framework the same as the one in Chapter 5, where we considered the
large sample properties of the linear regression model. Thus, we will allow xi to denote
a mix of random variables and constants that enter the conditional density of yi . By
partitioning the joint density of yi and xi into the product of the conditional and the
marginal, the log-likelihood function may be written

ln L(α | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , α) +
n∑

i=1

ln g(xi | α),

where any nonstochastic elements in xi such as a time trend or dummy variable, are
being carried as constants. In order to proceed, we will assume as we did before that the
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process generating xi takes place outside the model of interest. For present purposes,
that means that the parameters that appear in g(xi | α) do not overlap with those that
appear in f (yi | xi , α). Thus, we partition α into [θ , δ] so that the log-likelihood function
may be written

ln L(θ , δ | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , θ) +
n∑

i=1

ln g(xi | δ).

As long as θ and δ have no elements in common and no restrictions connect them (such
as θ + δ = 1), then the two parts of the log likelihood may be analyzed separately. In
most cases, the marginal distribution of xi will be of secondary (or no) interest.

Asymptotic results for the maximum conditional likelihood estimator must now
account for the presence of xi in the functions and derivatives of ln f (yi | xi , θ). We will
proceed under the assumption of well behaved data so that sample averages such as

(1/n) ln L(θ | y, X) = 1
n

n∑
i=1

ln f (yi | xi , θ)

and its gradient with respect to θ will converge in probability to their population expec-
tations. We will also need to invoke central limit theorems to establish the asymptotic
normality of the gradient of the log likelihood, so as to be able to characterize the
MLE itself. We will leave it to more advance treatises such as Amemiya (1985) and
Newey and McFadden (1994) to establish specific conditions and fine points that must
be assumed to claim the “usual” properties for maximum likelihood estimators. For
present purposes (and the vast bulk of empirical applications), the following minimal
assumptions should suffice:

• Parameter space. Parameter spaces that have gaps and nonconvexities in them
will generally disable these procedures. An estimation problem that produces this
failure is that of “estimating” a parameter that can take only one among a discrete
set of values. For example, this set of procedures does not include “estimating” the
timing of a structural change in a model. (See Section 7.4.) The likelihood function
must be a continuous function of a convex parameter space. We allow unbounded
parameter spaces, such as σ > 0 in the regression model, for example.

• Identifiability. Estimation must be feasible. This is the subject of definition 17.1
concerning identification and the surrounding discussion.

• Well behaved data. Laws of large numbers apply to sample means involving the
data and some form of central limit theorem (generally Lyapounov) can be applied
to the gradient. Ergodic stationarity is broad enough to encompass any situation
that is likely to arise in practice, though it is probably more general than we need for
most applications, since we will not encounter dependent observations specifically
until later in the book. The definitions in Chapter 5 are assumed to hold generally.

With these in place, analysis is essentially the same in character as that we used in the
linear regression model in Chapter 5 and follows precisely along the lines of Section 16.5.
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17.5 THREE ASYMPTOTICALLY EQUIVALENT
TEST PROCEDURES

The next several sections will discuss the most commonly used test procedures: the
likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of these
procedures is given in Godfrey (1988).] We consider maximum likelihood estimation
of a parameter θ and a test of the hypothesis H0: c(θ) = 0. The logic of the tests can be
seen in Figure 17.2.5 The figure plots the log-likelihood function ln L(θ), its derivative
with respect to θ, d ln L(θ)/dθ , and the constraint c(θ). There are three approaches to
testing the hypothesis suggested in the figure:

• Likelihood ratio test. If the restriction c(θ) = 0 is valid, then imposing it should not
lead to a large reduction in the log-likelihood function. Therefore, we base the test
on the difference, ln LU − ln LR, where LU is the value of the likelihood function at
the unconstrained value of θ and LR is the value of the likelihood function at the
restricted estimate.

• Wald test. If the restriction is valid, then c(θ̂MLE) should be close to zero since
the MLE is consistent. Therefore, the test is based on c(θ̂MLE). We reject the
hypothesis if this value is significantly different from zero.

• Lagrange multiplier test. If the restriction is valid, then the restricted estimator
should be near the point that maximizes the log-likelihood. Therefore, the slope
of the log-likelihood function should be near zero at the restricted estimator. The
test is based on the slope of the log-likelihood at the point where the function is
maximized subject to the restriction.

These three tests are asymptotically equivalent under the null hypothesis, but they can
behave rather differently in a small sample. Unfortunately, their small-sample proper-
ties are unknown, except in a few special cases. As a consequence, the choice among
them is typically made on the basis of ease of computation. The likelihood ratio test
requires calculation of both restricted and unrestricted estimators. If both are simple
to compute, then this way to proceed is convenient. The Wald test requires only the
unrestricted estimator, and the Lagrange multiplier test requires only the restricted
estimator. In some problems, one of these estimators may be much easier to compute
than the other. For example, a linear model is simple to estimate but becomes nonlinear
and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic
might be preferable. Alternatively, restrictions sometimes amount to the removal of
nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

17.5.1 THE LIKELIHOOD RATIO TEST

Let θ be a vector of parameters to be estimated, and let H0 specify some sort of restriction
on these parameters. Let θ̂U be the maximum likelihood estimator of θ obtained without
regard to the constraints, and let θ̂ R be the constrained maximum likelihood estimator.
If L̂U and L̂R are the likelihood functions evaluated at these two estimates, then the

5See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points
of intersection have no significance.
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FIGURE 17.2 Three Bases for Hypothesis Tests.

likelihood ratio is

λ = L̂R

L̂U
. (17-21)

This function must be between zero and one. Both likelihoods are positive, and L̂R

cannot be larger than L̂U . (A restricted optimum is never superior to an unrestricted
one.) If λ is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from
a sample of 10 from a Poisson distribution at the beginning of Section 17.3, we found the



Greene-50240 book June 26, 2002 15:8

486 CHAPTER 17 ✦ Maximum Likelihood Estimation

MLE of the parameter θ to be 2. At this value, the likelihood, which is the probability of
observing the sample we did, is 0.104 × 10−8. Are these data consistent with H0: θ = 1.8?
LR = 0.936 × 10−9, which is, as expected, smaller. This particular sample is somewhat
less probable under the hypothesis.

The formal test procedure is based on the following result.

THEOREM 17.5 Limiting Distribution of the Likelihood Ratio
Test Statistic

Under regularity and under H0, the large sample distribution of −2 ln λ is chi-
squared, with degrees of freedom equal to the number of restrictions imposed.

The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,

−2 ln λ = −2 ln
(

0.0936
0.104

)
= 0.21072.

This chi-squared statistic with one degree of freedom is not significant at any conven-
tional level, so we would not reject the hypothesis that θ = 1.8 on the basis of this
test.6

It is tempting to use the likelihood ratio test to test a simple null hypothesis against
a simple alternative. For example, we might be interested in the Poisson setting in
testing H0: θ = 1.8 against H1: θ = 2.2. But the test cannot be used in this fashion. The
degrees of freedom of the chi-squared statistic for the likelihood ratio test equals the
reduction in the number of dimensions in the parameter space that results from imposing
the restrictions. In testing a simple null hypothesis against a simple alternative, this
value is zero.7 Second, one sometimes encounters an attempt to test one distributional
assumption against another with a likelihood ratio test; for example, a certain model
will be estimated assuming a normal distribution and then assuming a t distribution.
The ratio of the two likelihoods is then compared to determine which distribution is
preferred. This comparison is also inappropriate. The parameter spaces, and hence the
likelihood functions of the two cases, are unrelated.

17.5.2 THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation
of both the restricted and unrestricted parameter vectors. In complex models, one or
the other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that
circumvent this problem. Both tests are based on an estimator that is asymptotically
normally distributed.

6Of course, our use of the large-sample result in a sample of 10 might be questionable.
7Note that because both likelihoods are restricted in this instance, there is nothing to prevent −2 ln λ from
being negative.
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These two tests are based on the distribution of the full rank quadratic form con-
sidered in Section B.11.6. Specifically,

If x ∼ NJ [µ, �], then (x − µ)′�−1(x − µ) ∼ chi-squared[J ]. (17-22)

In the setting of a hypothesis test, under the hypothesis that E(x) = µ, the quadratic
form has the chi-squared distribution. If the hypothesis that E(x) = µ is false, however,
then the quadratic form just given will, on average, be larger than it would be if the
hypothesis were true.8 This condition forms the basis for the test statistics discussed in
this and the next section.

Let θ̂ be the vector of parameter estimates obtained without restrictions. We hypo-
thesize a set of restrictions

H0: c(θ) = q.

If the restrictions are valid, then at least approximately θ̂ should satisfy them. If the
hypothesis is erroneous, however, then c(θ̂) − q should be farther from 0 than would
be explained by sampling variability alone. The device we use to formalize this idea is
the Wald test.

THEOREM 17.6 Limiting Distribution of the Wald Test Statistic
The Wald statistic is

W = [c(θ̂) − q]′
(
Asy.Var[c(θ̂) − q]

)−1[c(θ̂) − q].

Under H0, in large samples, W has a chi-squared distribution with degrees of
freedom equal to the number of restrictions [i.e., the number of equations in
c(θ̂)−q = 0]. A derivation of the limiting distribution of the Wald statistic appears
in Theorem 6.15.

This test is analogous to the chi-squared statistic in (17-22) if c(θ̂) − q is normally
distributed with the hypothesized mean of 0. A large value of W leads to rejection of the
hypothesis. Note, finally, that W only requires computation of the unrestricted model.
One must still compute the covariance matrix appearing in the preceding quadratic form.
This result is the variance of a possibly nonlinear function, which we treated earlier.

Est. Asy. Var[c(θ̂) − q] = Ĉ Est. Asy. Var[θ̂ ]Ĉ′,

Ĉ =
[
∂c(θ̂)

∂ θ̂ ′

]
.

(17-23)

That is, C is the J × K matrix whose jth row is the derivatives of the jth constraint with
respect to the K elements of θ . A common application occurs in testing a set of linear
restrictions.

8If the mean is not µ, then the statistic in (17-22) will have a noncentral chi-squared distribution. This
distribution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom,
but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be
larger than a random observation from the central distribution.
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For testing a set of linear restrictions Rθ = q, the Wald test would be based on

H0: c(θ) − q = Rθ − q = 0,

Ĉ =
[
∂c(θ̂)

∂ θ̂
′

]
= R′, (17-24)

Est. Asy. Var[c(θ̂) − q] = R Est. Asy. Var[θ̂ ]R,

and

W = [Rθ̂ − q]′[R Est. Asy. Var(θ̂)R′]−1[Rθ̂ − q].

The degrees of freedom is the number of rows in R.
If c(θ)−q is a single restriction, then the Wald test will be the same as the test based

on the confidence interval developed previously. If the test is

H0: θ = θ0 versus H1: θ �= θ0,

then the earlier test is based on

z = |θ̂ − θ0|
s(θ̂)

, (17-25)

where s(θ̂) is the estimated asymptotic standard error. The test statistic is compared to
the appropriate value from the standard normal table. The Wald test will be based on

W = [(θ̂ − θ0)−0]
(
Asy. Var[(θ̂ − θ0)−0]

)−1[(θ̂ − θ0)−0] = (θ̂ − θ0)
2

Asy. Var[θ̂ ]
= z2. (17-26)

Here W has a chi-squared distribution with one degree of freedom, which is the distri-
bution of the square of the standard normal test statistic in (17-25).

To summarize, the Wald test is based on measuring the extent to which the un-
restricted estimates fail to satisfy the hypothesized restrictions. There are two short-
comings of the Wald test. First, it is a pure significance test against the null hypothesis,
not necessarily for a specific alternative hypothesis. As such, its power may be limited
in some settings. In fact, the test statistic tends to be rather large in applications. The
second shortcoming is not shared by either of the other test statistics discussed here.
The Wald statistic is not invariant to the formulation of the restrictions. For example,
for a test of the hypothesis that a function θ = β/(1 − γ ) equals a specific value q there
are two approaches one might choose. A Wald test based directly on θ − q = 0 would
use a statistic based on the variance of this nonlinear function. An alternative approach
would be to analyze the linear restriction β − q(1 − γ ) = 0, which is an equivalent,
but linear, restriction. The Wald statistics for these two tests could be different and
might lead to different inferences. These two shortcomings have been widely viewed as
compelling arguments against use of the Wald test. But, in its favor, the Wald test does
not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange
multiplier tests. The recent econometrics literature is replete with applications that are
based on distribution free estimation procedures, such as the GMM method. As such,
in recent years, the Wald test has enjoyed a redemption of sorts.
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17.5.3 THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score)
test. It is based on the restricted model instead of the unrestricted model. Suppose that
we maximize the log-likelihood subject to the set of constraints c(θ) − q = 0. Let λ be
a vector of Lagrange multipliers and define the Lagrangean function

ln L∗(θ) = ln L(θ) + λ′(c(θ) − q).

The solution to the constrained maximization problem is the root of

∂ ln L∗

∂θ
= ∂ ln L(θ)

∂θ
+ C′λ = 0,

∂ ln L∗

∂λ
= c(θ) − q = 0,

(17-27)

where C′ is the transpose of the derivatives matrix in the second line of (17-23). If the
restrictions are valid, then imposing them will not lead to a significant difference in the
maximized value of the likelihood function. In the first-order conditions, the meaning is
that the second term in the derivative vector will be small. In particular, λ will be small.
We could test this directly, that is, test H0: λ = 0, which leads to the Lagrange multiplier
test. There is an equivalent simpler formulation, however. At the restricted maximum,
the derivatives of the log-likelihood function are

∂ ln L(θ̂ R)

∂ θ̂ R
= −Ĉ′λ̂ = ĝR. (17-28)

If the restrictions are valid, at least within the range of sampling variability, then ĝR = 0.
That is, the derivatives of the log-likelihood evaluated at the restricted parameter vector
will be approximately zero. The vector of first derivatives of the log-likelihood is the
vector of efficient scores. Since the test is based on this vector, it is called the score test
as well as the Lagrange multiplier test. The variance of the first derivative vector is the
information matrix, which we have used to compute the asymptotic covariance matrix
of the MLE. The test statistic is based on reasoning analogous to that underlying the
Wald test statistic.

THEOREM 17.7 Limiting Distribution of the Lagrange
Multiplier Statistic

The Lagrange multiplier test statistic is

LM =
(

∂ ln L(θ̂ R)

∂ θ̂ R

)′
[I(θ̂ R)]−1

(
∂ ln L(θ̂ R)

∂ θ̂ R

)
.

Under the null hypothesis, LM has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions. All terms are computed at the
restricted estimator.
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The LM statistic has a useful form. Let ĝi R denote the ith term in the gradient of
the log-likelihood function. Then,

ĝR =
n∑

i=1

ĝi R = Ĝ′
Ri,

where ĜR is the n × K matrix with ith row equal to g′
i R and i is a column of 1s. If we use

the BHHH (outer product of gradients) estimator in (17-18) to estimate the Hessian,
then

[Î(θ̂)]−1 = [Ĝ′
RĜR]−1

and

LM = i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri.

Now, since i′i equals n, LM = n(i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri/n) = nR2
i , which is n times the

uncentered squared multiple correlation coefficient in a linear regression of a column of
1s on the derivatives of the log-likelihood function computed at the restricted estimator.
We will encounter this result in various forms at several points in the book.

17.5.4 AN APPLICATION OF THE LIKELIHOOD
BASED TEST PROCEDURES

Consider, again, the data in Example C.1. In Example 17.4, the parameter β in the
model

f (yi |xi , β) = 1
β + xi

e−yi /(β+xi ) (17-29)

was estimated by maximum likelihood. For convenience, let βi = 1/(β + xi ). This expo-
nential density is a restricted form of a more general gamma distribution,

f (yi |xi , β, ρ) = β
ρ
i

�(ρ)
yρ−1

i e−yi βi . (17-30)

The restriction is ρ = 1.9 We consider testing the hypothesis

H0: ρ = 1 versus H1: ρ �= 1

using the various procedures described previously. The log-likelihood and its derivatives
are

ln L(β, ρ) = ρ

n∑
i=1

ln βi − n ln �(ρ) + (ρ − 1)

n∑
i=1

ln yi −
n∑

i=1

yiβi ,

∂ ln L
∂β

= −ρ

n∑
i=1

βi +
n∑

i=1

yiβ
2
i ,

∂ ln L
∂ρ

=
n∑

i=1

ln βi − n�(ρ) +
n∑

i=1

ln yi , (17-31)

∂2ln L
∂β2

= ρ

n∑
i=1

β2
i − 2

n∑
i=1

yiβ
3
i ,

∂2 ln L
∂ρ2

= −n� ′(ρ),
∂2 ln L
∂β∂ρ

= −
n∑

i=1

βi .

9The gamma function �(ρ) and the gamma distribution are described in Sections B.4.5 and E.5.3.
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TABLE 17.1 Maximum Likelihood Estimates

Quantity Unrestricted Estimate a Restricted Estimate

β −4.7198 (2.344) 15.6052 (6.794)
ρ 3.1517 (0.7943) 1.0000 (0.000)
ln L −82.91444 −88.43771
∂ ln L/∂β 0.0000 0.0000
∂ ln L/∂ρ 0.0000 7.9162
∂2 ln L/∂β2 −0.85628 −0.021659
∂2 ln L/∂ρ2 −7.4569 −32.8987
∂2 ln L/∂β∂ρ −2.2423 −0.66885

aEstimated asymptotic standard errors based on V are given in parentheses.

[Recall that �(ρ) = d ln �(ρ)/dρ and � ′(ρ) = d2 ln �(ρ)/dρ2.] Unrestricted maximum
likelihood estimates of β and ρ are obtained by equating the two first derivatives to zero.
The restricted maximum likelihood estimate of β is obtained by equating ∂ ln L/∂β to
zero while fixing ρ at one. The results are shown in Table 17.1. Three estimators are
available for the asymptotic covariance matrix of the estimators of θ = (β, ρ)′. Using
the actual Hessian as in (17-17), we compute V = [−�i∂

2 ln L/∂θ∂θ ′]−1 at the maxi-
mum likelihood estimates. For this model, it is easy to show that E [yi | xi ] = ρ(β + xi )

(either by direct integration or, more simply, by using the result that E [∂ ln L/∂β] = 0
to deduce it). Therefore, we can also use the expected Hessian as in (17-16) to com-
pute VE = {−�i E [∂2 ln L/∂θ∂θ ′]}−1. Finally, by using the sums of squares and cross
products of the first derivatives, we obtain the BHHH estimator in (17-18), VB =
[�i (∂ ln L/∂θ)(∂ ln L/∂θ ′)]−1. Results in Table 17.1 are based on V.

The three estimators of the asymptotic covariance matrix produce notably different
results:

V =
[

5.495 −1.652
−1.652 0.6309

]
, VE =

[
4.897 −1.473

−1.473 0.5770

]
, VB =

[
13.35 −4.314
−4.314 1.535

]
.

Given the small sample size, the differences are to be expected. Nonetheless, the striking
difference of the BHHH estimator is typical of its erratic performance in small samples.

• Confidence Interval Test: A 95 percent confidence interval for ρ based on the
unrestricted estimates is 3.1517 ± 1.96

√
0.6309 = [1.5942, 4.7085]. This interval

does not contain ρ = 1, so the hypothesis is rejected.
• Likelihood Ratio Test: The LR statistic is λ = −2[−88.43771 − (−82.91444)] =

11.0465. The table value for the test, with one degree of freedom, is 3.842. Since
the computed value is larger than this critical value, the hypothesis is again
rejected.

• Wald Test: The Wald test is based on the unrestricted estimates. For this restric-
tion, c(θ) − q = ρ − 1, dc(ρ̂)/dρ̂ = 1, Est.Asy. Var[c(ρ̂) − q] = Est.Asy. Var[ρ̂] =
0.6309, so W = (3.1517 − 1)2/[0.6309] = 7.3384.

The critical value is the same as the previous one. Hence, H0 is once again rejected.
Note that the Wald statistic is the square of the corresponding test statistic that would
be used in the confidence interval test, |3.1517 − 1|/√0.6309 = 2.70895.



Greene-50240 book June 26, 2002 15:8

492 CHAPTER 17 ✦ Maximum Likelihood Estimation

• Lagrange Multiplier Test: The Lagrange multiplier test is based on the restricted
estimators. The estimated asymptotic covariance matrix of the derivatives used to
compute the statistic can be any of the three estimators discussed earlier. The
BHHH estimator, VB, is the empirical estimator of the variance of the gradient
and is the one usually used in practice. This computation produces

LM = [0.0000 7.9162]
[

0.0099438 0.26762
0.26762 11.197

]−1 [
0.0000
7.9162

]
= 15.687.

The conclusion is the same as before. Note that the same computation done
using V rather than VB produces a value of 5.1182. As before, we observe
substantial small sample variation produced by the different estimators.

The latter three test statistics have substantially different values. It is possible to
reach different conclusions, depending on which one is used. For example, if the test
had been carried out at the 1 percent level of significance instead of 5 percent and
LM had been computed using V, then the critical value from the chi-squared statistic
would have been 6.635 and the hypothesis would not have been rejected by the LM test.
Asymptotically, all three tests are equivalent. But, in a finite sample such as this one,
differences are to be expected.10 Unfortunately, there is no clear rule for how to proceed
in such a case, which highlights the problem of relying on a particular significance level
and drawing a firm reject or accept conclusion based on sample evidence.

17.6 APPLICATIONS OF MAXIMUM
LIKELIHOOD ESTIMATION

We now examine three applications of the maximum likelihood estimator. The first
extends the results of Chapters 2 through 5 to the linear regression model with normally
distributed disturbances. In the second application, we fit a nonlinear regression model
by maximum likelihood. This application illustrates the effect of transformation of
the dependent variable. The third application is a relatively straightforward use of the
maximum likelihood technique in a nonlinear model that does not involve the normal
distribution. This application illustrates the sorts of extensions of the MLE into settings
that depart from the linear model of the preceding chapters and that are typical in
econometric analysis.

17.6.1 THE NORMAL LINEAR REGRESSION MODEL

The linear regression model is

yi = x′
iβ + εi .

The likelihood function for a sample of n independent, identically and normally dis-
tributed disturbances is

L = (2πσ 2)−n/2e−ε′ε/(2σ 2). (17-32)

10For further discussion of this problem, see Berndt and Savin (1977).
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The transformation from εi to yi is εi = yi − x′
iβ, so the Jacobian for each observation,

|∂εi/∂yi |, is one.11 Making the transformation, we find that the likelihood function for
the n observations on the observed random variable is

L = (2πσ 2)−n/2e(−1/(2σ 2))(y−Xβ)′(y−Xβ). (17-33)

To maximize this function with respect to β, it will be necessary to maximize the expo-
nent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood
function for the classical regression model:

ln L = −n
2

ln 2π − n
2

ln σ 2 − (y − Xβ)′(y − Xβ)

2σ 2
. (17-34)

The necessary conditions for maximizing this log-likelihood are


∂ ln L
∂β

∂ ln L
∂σ 2


 =




X′(y − Xβ)

σ 2

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4


 =

[
0
0

]
. (17-35)

The values that satisfy these equations are

β̂ML = (X′X)−1X′y = b and σ̂ 2
ML = e′e

n
. (17-36)

The slope estimator is the familiar one, whereas the variance estimator differs from the
least squares value by the divisor of n instead of n − K.12

The Cramér–Rao bound for the variance of an unbiased estimator is the negative
inverse of the expectation of


∂2 ln L
∂β∂β ′

∂2 ln L
∂β∂σ 2

∂2 ln L
∂σ 2∂β ′

∂2 ln L
∂(σ 2)2


 =




−X′X
σ 2

−X′ε
σ 4

−ε′X
σ 4

n
2σ 4

− ε′ε
σ 6


 . (17-37)

In taking expected values, the off-diagonal term vanishes leaving

[I(β, σ 2)]−1 =
[
σ 2(X′X)−1 0

0′ 2σ 4/n

]
. (17-38)

The least squares slope estimator is the maximum likelihood estimator for this model.
Therefore, it inherits all the desirable asymptotic properties of maximum likelihood
estimators.

We showed earlier that s2 = e′e/(n − K) is an unbiased estimator of σ 2. Therefore,
the maximum likelihood estimator is biased toward zero:

E
[
σ̂ 2

ML

] = n − K
n

σ 2 =
(

1 − K
n

)
σ 2 < σ 2. (17-39)

11See (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we
will leave this aspect of the model implicit in the results. As noted earlier, we assume that the data generating
process for X does not involve β or σ 2 and that the data are well behaved as discussed in Chapter 5.
12As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.



Greene-50240 book June 26, 2002 15:8

494 CHAPTER 17 ✦ Maximum Likelihood Estimation

Despite its small-sample bias, the maximum likelihood estimator of σ 2 has the same
desirable asymptotic properties. We see in (17-39) that s2 and σ̂ 2 differ only by a factor
−K/n, which vanishes in large samples. It is instructive to formalize the asymptotic
equivalence of the two. From (17-38), we know that

√
n
(
σ̂ 2

ML − σ 2) d−→ N[0, 2σ 4].

It follows

zn =
(

1 − K
n

)√
n
(
σ̂ 2

ML − σ 2) + K√
n
σ 2 d−→

(
1 − K

n

)
N[0, 2σ 4] + K√

n
σ 2.

But K/
√

n and K/n vanish as n → ∞, so the limiting distribution of zn is also N[0, 2σ 4].
Since zn = √

n(s2 − σ 2), we have shown that the asymptotic distribution of s2 is the
same as that of the maximum likelihood estimator.

The standard test statistic for assessing the validity of a set of linear restrictions in
the linear model, Rβ − q = 0, is the F ratio,

F[J, n − K] = (e′
∗e∗ − e′e)/J

e′e/(n − K)
= (Rb − q)′[Rs2(X′X)−1R′]−1(Rb − q)

J
.

With normally distributed disturbances, the F test is valid in any sample size. There
remains a problem with nonlinear restrictions of the form c(β) = 0, since the counter-
part to F , which we will examine here, has validity only asymptotically even with nor-
mally distributed disturbances. In this section, we will reconsider the Wald statistic and
examine two related statistics, the likelihood ratio statistic and the Lagrange multiplier
statistic. These statistics are both based on the likelihood function and, like the Wald
statistic, are generally valid only asymptotically.

No simplicity is gained by restricting ourselves to linear restrictions at this point, so
we will consider general hypotheses of the form

H0: c(β) = 0,

H1: c(β) �= 0.

The Wald statistic for testing this hypothesis and its limiting distribution under H0 would
be

W = c(b)′{C(b)[σ̂ 2(X′X)−1]C(b)′}−1c(b)
d−→ χ2[J ], (17-40)

where

C(b) = [∂c(b)/∂b′]. (17-41)

The likelihood ratio (LR) test is carried out by comparing the values of the log-
likelihood function with and without the restrictions imposed. We leave aside for the
present how the restricted estimator b∗ is computed (except for the linear model, which
we saw earlier). The test statistic and it’s limiting distribution under H0 are

LR = −2[ln L∗ − ln L]
d−→ χ2[J ]. (17-42)

The log-likelihood for the regression model is given in (17-34). The first-order conditions
imply that regardless of how the slopes are computed, the estimator of σ 2 without
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restrictions on β will be σ̂ 2 = (y−Xb)′(y−Xb)/n and likewise for a restricted estimator
σ̂ 2

∗ = (y − Xb∗)′(y − Xb∗)/n = e′
∗e∗/n. The concentrated log-likelihood13 will be

ln Lc = −n
2

[1 + ln 2π + ln(e′e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we
obtain

LR = n ln[e′
∗e∗/e′e] = n (ln σ̂ 2

∗ − ln σ̂ 2) = n ln(σ̂ 2
∗ /σ̂ 2). (17-43)

The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood
function. The principle of the test is that if the hypothesis is valid, then at the restricted
estimator, the derivatives of the log-likelihood function should be close to zero. There
are two ways to carry out the LM test. The log-likelihood function can be maximized
subject to a set of restrictions by using

ln LLM = −n
2

[
ln 2π + ln σ 2 + [(y − Xβ)′(y − Xβ)]/n

σ 2

]
+ λ′c(β).

The first-order conditions for a solution are


∂ ln LLM

∂β

∂ ln LLM

∂σ 2

∂ ln LLM

∂λ




=




X′(y − Xβ)

σ 2
+ C(β)′λ

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4

c(β)


 =




0
0
0


 . (17-44)

The solutions to these equations give the restricted least squares estimator, b∗; the usual
variance estimator, now e′

∗e∗/n; and the Lagrange multipliers. There are now two ways
to compute the test statistic. In the setting of the classical linear regression model, when
we actually compute the Lagrange multipliers, a convenient way to proceed is to test
the hypothesis that the multipliers equal zero. For this model, the solution for λ∗ is λ∗ =
[R(X′X)−1R′]−1(Rb−q). This equation is a linear function of the least squares estimator.
If we carry out a Wald test of the hypothesis that λ∗ equals 0, then the statistic will be

LM = λ′
∗{Est. Var[λ∗]}−1λ∗ = (Rb − q)′[R s2

∗(X
′X)−1R′]−1(Rb − q). (17-45)

The disturbance variance estimator, s2
∗ , based on the restricted slopes is e′

∗e∗/n.
An alternative way to compute the LM statistic often produces interesting results.

In most situations, we maximize the log-likelihood function without actually computing
the vector of Lagrange multipliers. (The restrictions are usually imposed some other
way.) An alternative way to compute the statistic is based on the (general) result that
under the hypothesis being tested,

E [∂ ln L/∂β] = E [(1/σ 2)X′ε] = 0

and

Asy. Var[∂ ln L/∂β] = −E [∂2 ln L/∂β∂β ′]−1 = σ 2(X′X)−1.14 (17-46)

13See Section E.6.3.
14This makes use of the fact that the Hessian is block diagonal.
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We can test the hypothesis that at the restricted estimator, the derivatives are equal to
zero. The statistic would be

LM = e′
∗X(X′X)−1X′e∗

e′∗e∗/n
= nR2

∗. (17-47)

In this form, the LM statistic is n times the coefficient of determination in a regression
of the residuals ei∗ = (yi − x′

i b∗) on the full set of regressors.
With some manipulation we can show that W = [n/(n − K)]JF and LR and LM

are approximately equal to this function of F .15 All three statistics converge to JF as n
increases. The linear model is a special case in that the LR statistic is based only on the
unrestricted estimator and does not actually require computation of the restricted least
squares estimator, although computation of F does involve most of the computation
of b∗. Since the log function is concave, and W/n ≥ ln(1 + W/n), Godfrey (1988) also
shows that W ≥ LR ≥ LM, so for the linear model, we have a firm ranking of the three
statistics.

There is ample evidence that the asymptotic results for these statistics are problem-
atic in small or moderately sized samples. [See, e.g., Davidson and MacKinnon (1993,
pp. 456–457).] The true distributions of all three statistics involve the data and the un-
known parameters and, as suggested by the algebra, converge to the F distribution
from above. The implication is that critical values from the chi-squared distribution are
likely to be too small; that is, using the limiting chi-squared distribution in small or
moderately sized samples is likely to exaggerate the significance of empirical results.
Thus, in applications, the more conservative F statistic (or t for one restriction) is likely
to be preferable unless one’s data are plentiful.

17.6.2 MAXIMUM LIKELIHOOD ESTIMATION OF NONLINEAR
REGRESSION MODELS

In Chapter 9, we considered nonlinear regression models in which the nonlinearity in
the parameters appeared entirely on the right-hand side of the equation. There are
models in which parameters appear nonlinearly in functions of the dependent variable
as well.

Suppose that, in general, the model is

g(yi , θ) = h(xi , β) + εi .

One approach to estimation would be least squares, minimizing

S(θ , β) =
n∑

i=1

[g(yi , θ) − h(xi , β)]2.

There is no reason to expect this nonlinear least squares estimator to be consistent, how-
ever, though it is difficult to show this analytically. The problem is that nonlinear least
squares ignores the Jacobian of the transformation. Davidson and MacKinnon (1993,
p. 244) suggest a qualitative argument, which we can illustrate with an example. Suppose
y is positive, g(y, θ) = exp(θy) and h(x, β) = βx. In this case, an obvious “solution” is

15See Godfrey (1988, pp. 49–51).
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β = 0 and θ → −∞, which produces a sum of squares of zero. “Estimation” becomes a
nonissue. For this type of regression model, however, maximum likelihood estimation
is consistent, efficient, and generally not appreciably more difficult than least squares.

For normally distributed disturbances, the density of yi is

f (yi ) =
∣∣∣∣∂εi

∂yi

∣∣∣∣(2πσ 2)−1/2e−[g(yi ,θ)−h(xi ,β)]2/(2σ 2).

The Jacobian of the transformation [see (3-41)] is

J (yi , θ) =
∣∣∣∣∂εi

∂yi

∣∣∣∣ =
∣∣∣∣∂g(yi , θ)

∂yi

∣∣∣∣ = Ji .

After collecting terms, the log-likelihood function will be

ln L =
n∑

i=1

−1
2

[ln 2π + ln σ 2] +
n∑

i=1

ln J (yi , θ) −
∑n

i=1[g(yi , θ) − h(xi , β)]2

2σ 2
. (17-48)

In many cases, including the applications considered here, there is an inconsistency
in the model in that the transformation of the dependent variable may rule out some
values. Hence, the assumed normality of the disturbances cannot be strictly correct. In
the generalized production function, there is a singularity at yi = 0 where the Jacobian
becomes infinite. Some research has been done on specific modifications of the model to
accommodate the restriction [e.g., Poirier (1978) and Poirier and Melino (1978)], but in
practice, the typical application involves data for which the constraint is inconsequential.

But for the Jacobians, nonlinear least squares would be maximum likelihood. If
the Jacobian terms involve θ , however, then least squares is not maximum likelihood.
As regards σ 2, this likelihood function is essentially the same as that for the simpler
nonlinear regression model. The maximum likelihood estimator of σ 2 will be

σ̂ 2 = 1
n

n∑
i=1

[g(yi , θ̂) − h(xi , β̂)]2 = 1
n

n∑
i=1

e2
i . (17-49)

The likelihood equations for the unknown parameters are




∂ ln L
∂β

∂ ln L
∂θ

∂ ln L
∂σ 2




=




1
σ 2

n∑
i=1

εi∂h(xi , β)

∂β

n∑
i=1

1
Ji

(
∂ Ji

∂θ

)
−

(
1
σ 2

) n∑
i=1

εi
∂g(yi , θ)

∂θ

−n
2σ 2

+ 1
2σ 4

n∑
i=1

ε2
i




=

0

0
0


 . (17-50)

These equations will usually be nonlinear, so a solution must be obtained iteratively.
One special case that is common is a model in which θ is a single parameter. Given a
particular value of θ , we would maximize ln Lwith respect to β by using nonlinear least
squares. [It would be simpler yet if, in addition, h(xi , β) were linear so that we could use
linear least squares. See the following application.] Therefore, a way to maximize L for
all the parameters is to scan over values of θ for the one that, with the associated least
squares estimates of β and σ 2, gives the highest value of ln L. (Of course, this requires
that we know roughly what values of θ to examine.)



Greene-50240 book June 26, 2002 15:8

498 CHAPTER 17 ✦ Maximum Likelihood Estimation

If θ is a vector of parameters, then direct maximization of L with respect to the
full set of parameters may be preferable. (Methods of maximization are discussed in
Appendix E.) There is an additional simplification that may be useful. Whatever val-
ues are ultimately obtained for the estimates of θ and β, the estimate of σ 2 will be
given by (17-49). If we insert this solution in (17-48), then we obtain the concentrated
log-likelihood,

ln Lc =
n∑

i=1

ln J (yi , θ) − n
2

[1 + ln(2π)] − n
2

ln

[
1
n

n∑
i=1

ε2
i

]
. (17-51)

This equation is a function only of θ and β. We can maximize it with respect to θ and β

and obtain the estimate of σ 2 as a by-product. (See Section E.6.3 for details.)
An estimate of the asymptotic covariance matrix of the maximum likelihood esti-

mators can be obtained by inverting the estimated information matrix. It is quite likely,
however, that the Berndt et al. (1974) estimator will be much easier to compute. The
log of the density for the ith observation is the ith term in (17-50). The derivatives of
ln Li with respect to the unknown parameters are

gi =




∂ ln Li/∂β

∂ ln Li/∂θ

∂ ln Li/∂σ 2


 =




(εi/σ
2)[∂h(xi , β)/∂β]

(1/Ji )[∂ Ji/∂θ ] − (εi/σ
2)[∂g(yi , θ)/∂θ ]

(1/(2σ 2))
[
ε2

i /σ
2 − 1

]

 . (17-52)

The asymptotic covariance matrix for the maximum likelihood estimators is estimated
using

Est.Asy. Var[MLE] =
[

n∑
i=1

ĝi ĝ′
]−1

= (Ĝ′Ĝ)−1. (17-53)

Note that the preceding includes of a row and a column for σ 2 in the covariance
matrix. In a model that transforms y as well as x, the Hessian of the log-likelihood
is generally not block diagonal with respect to θ and σ 2. When y is transformed, the
maximum likelihood estimators of θ and σ 2 are positively correlated, because both
parameters reflect the scaling of the dependent variable in the model. This result may
seem counterintuitive. Consider the difference in the variance estimators that arises
when a linear and a loglinear model are estimated. The variance of ln y around its
mean is obviously different from that of y around its mean. By contrast, consider what
happens when only the independent variables are transformed, for example, by the
Box–Cox transformation. The slope estimators vary accordingly, but in such a way that
the variance of y around its conditional mean will stay constant.16

Example 17.5 A Generalized Production Function
The Cobb–Douglas function has often been used to study production and cost. Among the
assumptions of this model is that the average cost of production increases or decreases
monotonically with increases in output. This assumption is in direct contrast to the standard
textbook treatment of a U-shaped average cost curve as well as to a large amount of empirical
evidence. (See Example 7.3 for a well-known application.) To relax this assumption, Zellner

16See Seaks and Layson (1983).
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TABLE 17.2 Generalized Production Function Estimates

Maximum Likelihood

Estimate SE(1) SE(2) Nonlinear Least Squares

β1 2.914822 0.44912 0.12534 2.108925
β2 0.350068 0.10019 0.094354 0.257900
β3 1.092275 0.16070 0.11498 0.878388
θ 0.106666 0.078702 −0.031634
σ 2 0.0427427 0.0151167
ε′ε 1.068567 0.7655490
ln L −8.939044 −13.621256

and Revankar (1970) proposed a generalization of the Cobb–Douglas production function.17

Their model allows economies of scale to vary with output and to increase and then decrease
as output rises:

ln y + θy = ln γ + α(1 − δ) ln K + αδ ln L + ε.

Note that the right-hand side of their model is intrinsically linear according to the results of
Section 7.3.3. The model as a whole, however, is intrinsically nonlinear due to the parametric
transformation of y appearing on the left.

For Zellner and Revankar’s production function, the Jacobian of the transformation from
εi to yi is ∂εi /∂yi = (θ + 1/yi ) . Some simplification is achieved by writing this as (1 + θyi )/yi .
The log-likelihood is then

ln L =
n∑

i =1

ln(1 + θyi ) −
n∑

i =1

ln yi − n
2

ln(2π ) − n
2

ln σ 2 − 1
2σ 2

n∑
i =1

ε2
i ,

where εi = ( ln yi + θyi − β1 − β2 ln capitali − β3 ln labori ). Estimation of this model is straight-
forward. For a given value of θ , β and σ 2 are estimated by linear least squares. Therefore,
to estimate the full set of parameters, we could scan over the range of zero to one for θ .
The value of θ that, with its associated least squares estimates of β and σ 2, maximizes
the log-likelihood function provides the maximum likelihood estimate. This procedure was
used by Zellner and Revankar. The results given in Table 17.2 were obtained by maximizing
the log-likelihood function directly, instead. The statewide data on output, capital, labor, and
number of establishments in the transportation industry used in Zellner and Revankar’s study
are given in Appendix Table F9.2 and Example 16.6. For this application, y = value added
per firm, K = capital per firm, and L = labor per firm.

Maximum likelihood and nonlinear least squares estimates are shown in Table 17.2. The
asymptotic standard errors for the maximum likelihood estimates are labeled SE(1). These
are computed using the BHHH form of the asymptotic covariance matrix. The second set,
SE(2), are computed treating the estimate of θ as fixed; they are the usual linear least squares
results using ( ln y+θy) as the dependent variable in a linear regression. Clearly, these results
would be very misleading. The final column of Table 10.2 lists the simple nonlinear least
squares estimates. No standard errors are given, because there is no appropriate formula
for computing the asymptotic covariance matrix. The sum of squares does not provide an
appropriate method for computing the pseudoregressors for the parameters in the trans-
formation. The last two rows of the table display the sum of squares and the log-likelihood
function evaluated at the parameter estimates. As expected, the log-likelihood is much larger
at the maximum likelihood estimates. In contrast, the nonlinear least squares estimates lead
to a much lower sum of squares; least squares is still least squares.

17An alternative approach is to model costs directly with a flexible functional form such as the translog model.
This approach is examined in detail in Chapter 14.
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Example 17.6 An LM Test for (Log-) Linearity
A natural generalization of the Box–Cox regression model (Section 9.3.2) is

y(λ) = β ′x(λ) + ε. (17-54)

where z (λ) = (zλ − 1)/λ. This form includes the linear (λ = 1) and loglinear (λ = 0) models
as special cases. The Jacobian of the transformation is |dε/dy| = yλ−1. The log-likelihood
function for the model with normally distributed disturbances is

ln L = −n
2

ln(2π ) − n
2

ln σ 2 + (λ − 1)
n∑

i =1

ln yi − 1
2σ 2

n∑
i =1

(
y(λ)

i − β ′x(λ)
i

)2
. (17-55)

The MLEs of λ and β are computed by maximizing this function. The estimator of σ 2 is
the mean squared residual as usual. We can use a one-dimensional grid search over λ—for
a given value of λ, the MLE of β is least squares using the transformed data. It must be
remembered, however, that the criterion function includes the Jacobian term.

We will use the BHHH estimator of the asymptotic covariance matrix for the maximum
likelihood. The derivatives of the log likelihood are



∂ ln L
∂β

∂ ln L
∂λ

∂ ln L
∂σ 2




=
n∑

i =1




εi x
(λ)
i

σ 2

ln yi − εi

σ 2

[
∂y(λ)

i

∂λ
−

K∑
k=1

βk
∂x (λ)

i k

∂λ

]

1
2σ 2

[
ε2

i

σ 2
− 1

]




=
n∑

i =1

gi (17-56)

where

∂ [zλ − 1]/λ
∂λ

= λzλ ln z − (zλ − 1)
λ2

= 1
λ

(
zλ ln z − z(λ)

)
. (17-57)

(See Exercise 6 in Chapter 9.) The estimator of the asymptotic covariance matrix for the
maximum likelihood estimator is given in (17-53).

The Box–Cox model provides a framework for a specification test of linearity versus log-
linearity. To assemble this result, consider first the basic model

y = f ( x, β1, β2, λ) + ε = β1 + β2x (λ) + ε.

The pseudoregressors are x∗
1 = 1, x∗

2 = x (λ) , x∗
3 = β2(∂x (λ) /∂λ) as given above. We now

consider a Lagrange multiplier test of the hypothesis that λ equals zero. The test is carried
out by first regressing y on a constant and ln x (i.e., the regressor evaluated at λ = 0) and
then computing nR2

∗ in the regression of the residuals from this first regression on x∗
1, x∗

2, and
x∗

3, also evaluated at λ = 0. The first and second of these are 1 and ln x. To obtain the third,
we require x∗

3 | λ=0 = β2 limλ→0(∂x (λ) /∂λ) . Applying L’Hôpital’s rule to the right-hand side of
(12-57), differentiate numerator and denominator with respect to λ. This produces

lim
λ→0

∂x (λ)

∂λ
= lim

λ→0

[
xλ( ln x) 2 − ∂x (λ)

∂λ

]
= 1

2
lim
λ→0

xλ( ln x) 2 = 1
2

( ln x) 2.

Therefore, limλ→0 x∗
3 = β2[ 1

2 ( ln x) 2]. The Lagrange multiplier test is carried out in two steps.
First, we regress y on a constant and ln x and compute the residuals. Second, we regress
these residuals on a constant, ln x, and b2( 1

2 ln2 x) , where b2 is the coefficient on ln x in
the first regression. The Lagrange multiplier statistic is nR2 from the second regression. To
generalize this procedure to several regressors, we would use the logs of all the regressors
at the first step. Then, the additional regressor for the second regression would be

x∗
λ =

K∑
k=1

bk( 1
2 ln2 xk) ,
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where the sum is taken over all the variables that are transformed in the original model and
the bk’s are the least squares coefficients in the first regression.

By extending this process to the model of (17-54), we can devise a bona fide test of
log-linearity (against the more general model, not linearity). [See Davidson and MacKinnon
(1985). A test of linearity can be conducted using λ = 1, instead.) Computing the various
terms at λ = 0 again, we have

ε̂i = ln yi − β̂1 − β̂2 ln xi ,

where as before, β̂1 and β̂2 are computed by the least squares regression of ln y on a constant
and ln x. Let ε̂∗

i = 1
2 ln2 yi − β̂2( 1

2 ln2 xi ) . Then

ĝi =




ε̂i /σ̂
2

( ln xi ) ε̂i /σ̂
2

ln yi − ε̂i ε̂
∗
ı /σ̂

2(
ε̂2

i /σ̂
2 − 1

)
/(2σ̂ 2)


 .

If there are K regressors in the model, then the second component in ĝi will be a vector
containing the logs of the variables, whereas ε̂∗

i in the third becomes

ε̂∗
i = 1

2
ln2 yi −

K∑
k=1

β̂k

(
1
2

ln2 xi k

)
.

Using the Berndt et al. estimator given in (10-54), we can now construct the Lagrange mul-
tiplier statistic as

LM = χ2[1] =
(

n∑
i =1

ĝi

)′ [ n∑
i =1

ĝi ĝ
′
i

]−1 (
n∑

i =1

ĝi

)
= i′G(G′G )−1G′i,

where G is the n × ( K + 2) matrix whose columns are g1 through gK+2 and i is a column
of 1s. The usefulness of this approach for either of the models we have examined is that in
testing the hypothesis, it is not necessary to compute the nonlinear, unrestricted, Box–Cox
regression.

17.6.3 NONNORMAL DISTURBANCES—THE STOCHASTIC
FRONTIER MODEL

This final application will examine a regressionlike model in which the disturbances do
not have a normal distribution. The model developed here also presents a convenient
platform on which to illustrate the use of the invariance property of maximum likelihood
estimators to simplify the estimation of the model.

A lengthy literature commencing with theoretical work by Knight (1933), Debreu
(1951), and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and
Schmidt (1977) has been directed at models of production that specifically account for
the textbook proposition that a production function is a theoretical ideal.18 If y = f (x)

defines a production relationship between inputs, x, and an output, y, then for any given
x, the observed value of y must be less than or equal to f (x). The implication for an
empirical regression model is that in a formulation such as y = h(x, β) + u, u must be
negative. Since the theoretical production function is an ideal—the frontier of efficient

18A survey by Greene (1997b) appears in Pesaran and Schmidt (1997). Kumbhakar and Lovell (2000) is a
comprehensive reference on the subject.
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production—any nonzero disturbance must be interpreted as the result of inefficiency.
A strictly orthodox interpretation embedded in a Cobb–Douglas production model
might produce an empirical frontier production model such as

ln y = β1 + �kβk ln xk − u, u ≥ 0.

The gamma model described in Example 5.1 was an application. One-sided disturbances
such as this one present a particularly difficult estimation problem. The primary theoret-
ical problem is that any measurement error in ln y must be embedded in the disturbance.
The practical problem is that the entire estimated function becomes a slave to any single
errantly measured data point.

Aigner, Lovell, and Schmidt proposed instead a formulation within which observed
deviations from the production function could arise from two sources: (1) productive
inefficiency as we have defined it above and that would necessarily be negative; and
(2) idiosyncratic effects that are specific to the firm and that could enter the model with
either sign. The end result was what they labeled the “stochastic frontier”:

ln y = β1 + �kβk ln xk − u + v, u ≥ 0, v ∼ N
[
0, σ 2

v

]
.

= β1 + �kβk ln xk + ε.

The frontier for any particular firm is h(x, β) + v, hence the name stochastic fron-
tier. The inefficiency term is u, a random variable of particular interest in this setting.
Since the data are in log terms, u is a measure of the percentage by which the particular
observation fails to achieve the frontier, ideal production rate.

To complete the specification, they suggested two possible distributions for the
inefficiency term, the absolute value of a normally distributed variable and an exponen-
tially distributed variable. The density functions for these two compound distributions
are given by Aigner, Lovell, and Schmidt; let ε = v − u, λ = σu/σv, σ = (σ 2

u + σ 2
v )1/2,

and �(z) = the probability to the left of z in the standard normal distribution [see
Sections B.4.1 and E.5.6]. For the “half-normal” model,

ln h(εi | β, λ, σ ) =
[
−ln σ −

(
1
2

)
log

2
π

− 1
2

(
εi

σ

)2

+ ln �

(−εiλ

σ

)]
,

whereas for the exponential model

ln h(εi | β, θ, σv) =
[

ln θ + 1
2
θ2σ 2

v + θεi + ln �

(
− εi

σv

− θσv

)]
.

Both these distributions are asymmetric. We thus have a regression model with a
nonnormal distribution specified for the disturbance. The disturbance, ε, has a nonzero
mean as well; E [ε] = −σu(2/π)1/2 for the half-normal model and −1/θ for the expo-
nential model. Figure 17.3 illustrates the density for the half-normal model with σ = 1
and λ = 2. By writing β0 = β1 + E [ε] and ε∗ = ε− E [ε], we obtain a more conventional
formulation

ln y = β0 + �kβk ln xk + ε∗

which does have a disturbance with a zero mean but an asymmetric, nonnormal distribu-
tion. The asymmetry of the distribution of ε∗ does not negate our basic results for least
squares in this classical regression model. This model satisfies the assumptions of the
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FIGURE 17.3 Density for the Disturbance in the Stochastic Frontier
Model.

Gauss–Markov theorem, so least squares is unbiased and consistent (save for the con-
stant term), and efficient among linear unbiased estimators. In this model, however, the
maximum likelihood estimator is not linear, and it is more efficient than least squares.

We will work through maximum likelihood estimation of the half-normal model in
detail to illustrate the technique. The log likelihood is

ln L = −n ln σ − n
2

ln
2
π

− 1
2

n∑
i=1

(
εi

σ

)2

+
n∑

i=1

ln �

(−εiλ

σ

)
.

This is not a particularly difficult log-likelihood to maximize numerically. Nonetheless, it
is instructive to make use of a convenience that we noted earlier. Recall that maximum
likelihood estimators are invariant to one-to-one transformation. If we let θ = 1/σ and
γ = (1/σ)β, the log-likelihood function becomes

ln L = n ln θ − n
2

ln
2
π

− 1
2

n∑
i=1

(θyi − γ ′xi )
2 +

n∑
i=1

ln �[−λ(θyi − γ ′xi )].

As you could verify by trying the derivations, this transformation brings a dramatic
simplification in the manipulation of the log-likelihood and its derivatives. We will
make repeated use of the functions

αi = εi/σ = θyi − γ ′xi ,

δ(yi , xi , λ, θ, γ ) = φ[−λαi ]
�[−λαi ]

= δi .

�i = −δi (−λαi + δi )
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(The second of these is the derivative of the function in the final term in log L. The
third is the derivative of δi with respect to its argument; �i < 0 for all values of λαi .) It
will also be convenient to define the (K + 1) × 1 columns vectors zi = (x′

i , −yi )
′ and

ti = (0′, 1/θ)′. The likelihood equations are

∂ ln L
∂(γ ′, θ)′

=
n∑

i=1

ti +
n∑

i=1

αi zi + λ

n∑
i=1

δi zi = 0,

∂ ln L
∂λ

= −
n∑

i=1

δiαi = 0

and the second derivatives are

H(γ , θ, λ) =
n∑

i=1

{[
(λ2�i − 1)zi z′

i (δi − λαi�i )zi

(δi − λαi�i )z′
i α2

i �i

]
−

[
ti t′i 0

0′ 0

]}
.

The estimator of the asymptotic covariance matrix for the directly estimated parameters
is

Est.Asy. Var[γ̂ ′, θ̂ , λ̂]′ = {−H[γ̂ ′, θ̂ , λ̂]
}−1

.

There are two sets of transformations of the parameters in our formulation. In
order to recover estimates of the original structural parameters σ = 1/θ and β = γ /θ

we need only transform the MLEs. Since these transformations are one to one, the
MLEs of σ and β are 1/θ̂ and γ̂ /θ̂ . To compute an asymptotic covariance matrix for
these estimators we will use the delta method, which will use the derivative matrix

G =




∂β̂/∂ γ̂ ′ ∂β̂/∂θ̂ ∂β̂/∂λ̂

∂σ̂ /∂ γ̂ ′ ∂σ̂ /∂θ̂ ∂σ̂ /∂λ̂

∂λ̂/∂ γ̂ ′ ∂λ̂/∂θ̂ ∂λ̂/∂λ̂


 =




(1/θ̂)I −(1/θ̂2)γ̂ 0

0′ −(1/θ̂2) 0

0′ 0 1


 .

Then, for the recovered parameters, we

Est.Asy. Var[β̂
′
, σ̂ , λ̂]′ = G × {−H[γ̂ ′, θ̂ , λ̂]

}−1 × G′.

For the half-normal model, we would also rely on the invariance of maximum likelihood
estimators to recover estimates of the deeper variance parameters, σ 2

v = σ 2/(1 + λ2)

and σ 2
u = σ 2λ2/(1 + λ2).

The stochastic frontier model is a bit different from those we have analyzed previ-
ously in that the disturbance is the central focus of the analysis rather than the catchall
for the unknown and unknowable factors omitted from the equation. Ideally, we would
like to estimate ui for each firm in the sample to compare them on the basis of their pro-
ductive efficiency. (The parameters of the production function are usually of secondary
interest in these studies.) Unfortunately, the data do not permit a direct estimate, since
with estimates of β in hand, we are only able to compute a direct estimate of ε = y−x′β.
Jondrow et al. (1982), however, have derived a useful approximation that is now the
standard measure in these settings,

E [u | ε] = σλ

1 + λ2

[
φ(z)

1 − �(z)
− z

]
, z = ελ

σ
,

William Greene
lambda should not be bold
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TABLE 17.3 Estimated Stochastic Frontier Functions

Least Squares Half-Normal Model Exponential Model

Standard Standard Standard
Coefficient Estimate Error t Ratio Estimate Error t Ratio Estimate Error t Ratio

Constant 1.844 0.234 7.896 2.081 0.422 4.933 2.069 0.290 7.135
βk 0.245 0.107 2.297 0.259 0.144 1.800 0.262 0.120 2.184
βl 0.805 0.126 6.373 0.780 0.170 4.595 0.770 0.138 5.581
σ 0.236 0.282 0.087 3.237
σu — 0.222 0.136
σv — 0.190 0.171 0.054 3.170
λ — 1.265 1.620 0.781
θ — 7.398 3.931 1.882
log L 2.2537 2.4695 2.8605

for the half normal-model, and

E[u | ε] = z + σv

φ(z/σv)

�(z/σv)
, z = ε − θσ 2

v

for the exponential model. These values can be computed using the maximum likelihood
estimates of the structural parameters in the model. In addition, a structural parameter
of interest is the proportion of the total variance of ε that is due to the inefficiency term.
For the half-normal model, Var[ε] = Var[u] + Var[v] = (1 − 2/π)σ 2

u + σ 2
v , whereas for

the exponential model, the counterpart is 1/θ2 + σ 2
v .

Example 17.7 Stochastic Frontier Model
Appendix Table F9.2 lists 25 statewide observations used by Zellner and Revankar (1970)
to study production in the transportation equipment manufacturing industry. We have used
these data to estimate the stochastic frontier models. Results are shown in Table 17.3.19

The Jondrow, et al. (1982) estimates of the inefficiency terms are listed in Table 17.4. The
estimates of the parameters of the production function, β1, β2, and β3 are fairly similar, but the
variance parameters, σu and σv, appear to be quite different. Some of the parameter difference
is illusory, however. The variance components for the half-normal model are (1 − 2/π )σ 2

u =
0.0179 and σ 2

v = 0.0361, whereas those for the exponential model are 1/θ2 = 0.0183 and
σ 2

v = 0.0293. In each case, about one-third of the total variance of ε is accounted for by the
variance of u.

17.6.4 CONDITIONAL MOMENT TESTS OF SPECIFICATION

A spate of studies has shown how to use conditional moment restrictions for specifica-
tion testing as well as estimation.20 The logic of the conditional moment (CM) based
specification test is as follows. The model specification implies that certain moment re-
strictions will hold in the population from which the data were drawn. If the specification

19N is the number of establishments in the state. Zellner and Revankar used per establishment data in their
study. The stochastic frontier model has the intriguing property that if the least squares residuals are skewed
in the positive direction, then least squares with λ = 0 maximizes the log-likelihood. This property, in fact,
characterizes the data above when scaled by N. Since that leaves a not particularly interesting example and it
does not occur when the data are not normalized, for purposes of this illustration we have used the unscaled
data to produce Table 17.3. We do note that this result is a common, vexing occurrence in practice.
20See, for example, Pagan and Vella (1989).
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TABLE 17.4 Estimated Inefficiencies

State Half-Normal Exponential State Half-Normal Exponential

Alabama 0.2011 0.1459 Maryland 0.1353 0.0925
California 0.1448 0.0972 Massachusetts 0.1564 0.1093
Connecticut 0.1903 0.1348 Michigan 0.1581 0.1076
Florida 0.5175 0.5903 Missouri 0.1029 0.0704
Georgia 0.1040 0.0714 New Jersey 0.0958 0.0659
Illinois 0.1213 0.0830 New York 0.2779 0.2225
Indiana 0.2113 0.1545 Ohio 0.2291 0.1698
Iowa 0.2493 0.2007 Pennsylvania 0.1501 0.1030
Kansas 0.1010 0.0686 Texas 0.2030 0.1455
Kentucky 0.0563 0.0415 Virginia 0.1400 0.0968
Louisiana 0.2033 0.1507 Washington 0.1105 0.0753
Maine 0.2226 0.1725 West Virginia 0.1556 0.1124
Wisconsin 0.1407 0.0971

is correct, then the sample data should mimic the implied relationships. For example,
in the classical regression model, the assumption of homoscedasticity implies that the
disturbance variance is independent of the regressors. As such,

E
{

xi [(yi − β ′xi )
2 − σ 2]

} = E
[
xi

(
ε2

i − σ 2)] = 0.

If, on the other hand, the regression is heteroscedastic in a way that depends on xi , then
this covariance will not be zero. If the hypothesis of homoscedasticity is correct, then
we would expect the sample counterpart to the moment condition,

r̄ = 1
n

n∑
i=1

xi
(
e2

i − s2),
where ei is the OLS residual, to be close to zero. (This computation appears in Breusch
and Pagan’s LM test for homoscedasticity. See Section 11.4.3.) The practical problems
to be solved are (1) to formulate suitable moment conditions that do correspond to the
hypothesis test, which is usually straightforward; (2) to devise the appropriate sample
counterpart; and (3) to devise a suitable measure of closeness to zero of the sample
moment estimator. The last of these will be in the framework of the Wald statistics that
we have examined at various points in this book. So the problem will be to devise the
appropriate covariance matrix for the sample moments.

Consider a general case in which the moment condition is written in terms of vari-
ables in the model [yi , xi , zi ] and parameters (as in the linear regression model) θ̂ . The
sample moment can be written

r̄ = 1
n

n∑
i=1

ri (yi , xi , zi , θ̂) = 1
n

n∑
i=1

r̂i . (17-58)

The hypothesis is that based on the true θ , E [ri ] = 0. Under the null hypothesis that
E [ri ] = 0 and assuming that plim θ̂ = θ and that a central limit theorem (Theorem
D.18 or D.19) applies to

√
n r̄(θ) so that

√
nr̄(θ)

d−→ N[0, �]
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for some covariance matrix � that we have yet to estimate, it follows that the Wald
statistic,

nr̄′�̂−1
r̄

d−→ χ2(J ), (17-59)

where the degrees of freedom J is the number of moment restrictions being tested and
�̂ is an estimate of �. Thus, the statistic can be referred to the chi-squared table.

It remains to determine the estimator of �. The full derivation of � is fairly com-
plicated. [See Pagan and Vella (1989, pp. S32–S33).] But when the vector of parameter
estimators is a maximum likelihood estimator, as it would be for the least squares es-
timator with normally distributed disturbances and for most of the other estimators
we consider, a surprisingly simple estimator can be used. Suppose that the parameter
vector used to compute the moments above is obtained by solving the equations

1
n

n∑
i=1

g(yi , xi , zi , θ̂) = 1
n

n∑
i=1

ĝi = 0, (17-60)

where θ̂ is the estimated parameter vector [e.g., (β̂, σ̂ ) in the linear model]. For the
linear regression model, that would be the normal equations

1
n

X′e = 1
n

n∑
i=1

xi (yi − x′
i b) = 0.

Let the matrix G be the n× K matrix with ith row equal to ĝ′
i . In a maximum likelihood

problem, G is the matrix of derivatives of the individual terms in the log-likelihood
function with respect to the parameters. This is the G used to compute the BHHH
estimator of the information matrix. [See (17-18).] Let R be the n × J matrix whose
ith row is r̂′

i . Pagan and Vella show that for maximum likelihood estimators, � can be
estimated using

S = 1
n

[R′R − R′G(G′G)−1G′R].21 (17-61)

This equation looks like an involved matrix computation, but it is simple with any
regression program. Each element of S is the mean square or cross-product of the
least squares residuals in a linear regression of a column of R on the variables in G.22

Therefore, the operational version of the statistic is

C = nr̄′S−1r̄ = 1
n

i′R[R′R − R′G(G′G)−1G′R]−1R′i, (17-62)

where i is an n × 1 column of ones, which, once again, is referred to the appropriate
critical value in the chi-squared table. This result provides a joint test that all the moment
conditions are satisfied simultaneously. An individual test of just one of the moment

21It might be tempting just to use (1/n)R′R. This idea would be incorrect, because S accounts for R being a
function of the estimated parameter vector that is converging to its probability limit at the same rate as the
sample moments are converging to theirs.
22If the estimator is not an MLE, then estimation of � is more involved but also straightforward using basic
matrix algebra. The advantage of (17-62) is that it involves simple sums of variables that have already been
computed to obtain θ̂ and r̄. Note, as well, that if θ has been estimated by maximum likelihood, then the term
(G′G)−1 is the BHHH estimator of the asymptotic covariance matrix of θ̂ . If it were more convenient, then
this estimator could be replaced with any other appropriate estimator of Asy. Var[θ̂ ].
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restrictions in isolation can be computed even more easily than a joint test. For testing
one of the L conditions, say the �th one, the test can be carried out by a simple t test
of whether the constant term is zero in a linear regression of the �th column of R on
a constant term and all the columns of G. In fact, the test statistic in (17-62) could
also be obtained by stacking the J columns of R and treating the L equations as a
seemingly unrelated regressions model with (i, G) as the (identical) regressors in each
equation and then testing the joint hypothesis that all the constant terms are zero. (See
Section 14.2.3.)

Example 17.8 Testing for Heteroscedasticity in the Linear
Regression Model

Suppose that the linear model is specified as

yi = β1 + β2xi + β3zi + εi .

To test whether

E
[
z2

i

(
ε2

i − σ 2
)] = 0,

we linearly regress z2
i (e2

i − s2) on a constant, ei , xi ei , and zi ei . A standard t test of whether
the constant term in this regression is zero carries out the test. To test the joint hypothesis
that there is no heteroscedasticity with respect to both x and z, we would regress both
x2

i (e2
i − s2) and z2

i (e2
i − s2) i on [1, ei , xi ei , zi ei ] and collect the two columns of residuals in V.

Then S = (1/n)V′V. The moment vector would be

r̄ = 1
n

n∑
i =1

[
xi

zi

](
e2

i − s2
)
.

The test statistic would now be

C = nr̄′S−1r̄ = nr̄′
[

1
n

V′V

]−1

r̄.

We will examine other conditional moment tests using this method in Section 22.3.4
where we study the specification of the censored regression model.

17.7 TWO-STEP MAXIMUM LIKELIHOOD
ESTIMATION

The applied literature contains a large and increasing number of models in which one
model is embedded in another, which produces what are broadly known as “two-step”
estimation problems. Consider an (admittedly contrived) example in which we have the
following.

Model 1. Expected number of children = E [y1 | x1, θ1].
Model 2. Decision to enroll in job training = y2, a function of

(
x2, θ2, E [y1 | x1, θ1]

)
.

There are two parameter vectors, θ1 and θ2. The first appears in the second model,
although not the reverse. In such a situation, there are two ways to proceed. Full in-
formation maximum likelihood (FIML) estimation would involve forming the joint
distribution f (y1, y2 | x1, x2, θ1, θ2) of the two random variables and then maximizing
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the full log-likelihood function,

ln L =
n∑

i=1

f (yi1, yi2 | xi1, xi2, θ1, θ2).

A second, or two-step, limited information maximum likelihood (LIML) procedure for
this kind of model could be done by estimating the parameters of model 1, since it
does not involve θ2, and then maximizing a conditional log-likelihood function using
the estimates from Step 1:

ln L̂ =
n∑

i=1

f [yi2 | xi2, θ2, (xi1, θ̂1)].

There are at least two reasons one might proceed in this fashion. First, it may be straight-
forward to formulate the two separate log-likelihoods, but very complicated to derive
the joint distribution. This situation frequently arises when the two variables being mod-
eled are from different kinds of populations, such as one discrete and one continuous
(which is a very common case in this framework). The second reason is that maximizing
the separate log-likelihoods may be fairly straightforward, but maximizing the joint
log-likelihood may be numerically complicated or difficult.23 We will consider a few
examples. Although we will encounter FIML problems at various points later in the
book, for now we will present some basic results for two-step estimation. Proofs of the
results given here can be found in an important reference on the subject, Murphy and
Topel (1985).

Suppose, then, that our model consists of the two marginal distributions, f1(y1 | x1,

θ1) and f2(y2 | x1, x2, θ1, θ2). Estimation proceeds in two steps.

1. Estimate θ1 by maximum likelihood in Model 1. Let (1/n)V̂1 be n times any of the
estimators of the asymptotic covariance matrix of this estimator that were
discussed in Section 17.4.6.

2. Estimate θ2 by maximum likelihood in model 2, with θ̂1 inserted in place of θ1 as if
it were known. Let (1/n)V̂2 be n times any appropriate estimator of the
asymptotic covariance matrix of θ̂2.

The argument for consistency of θ̂2 is essentially that if θ1 were known, then all our results
for MLEs would apply for estimation of θ2, and since plim θ̂1 = θ1, asymptotically, this
line of reasoning is correct. But the same line of reasoning is not sufficient to justify using
(1/n)V̂2 as the estimator of the asymptotic covariance matrix of θ̂2. Some correction is
necessary to account for an estimate of θ1 being used in estimation of θ2. The essential
result is the following.

23There is a third possible motivation. If either model is misspecified, then the FIML estimates of both models
will be inconsistent. But if only the second is misspecified, at least the first will be estimated consistently.
Of course, this result is only “half a loaf,” but it may be better than none.
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THEOREM 17.8 Asymptotic Distribution of the Two-Step MLE
[Murphy and Topel (1985)]

If the standard regularity conditions are met for both log-likelihood functions, then
the second-step maximum likelihood estimator of θ2 is consistent and asymptoti-
cally normally distributed with asymptotic covariance matrix

V∗
2 = 1

n

[
V2 + V2[CV1C′ − RV1C′ − CV1R′]V2

]
,

where

V1 = Asy.Var[
√

n(θ̂1 − θ1)] based on ln L1,

V2 = Asy.Var[
√

n(θ̂2 − θ2)] based on ln L2 | θ1,

C = E
[

1
n

(
∂ ln L2

∂θ2

)(
∂ ln L2

∂θ ′
1

)]
, R = E

[
1
n

(
∂ ln L2

∂θ2

)(
∂ ln L1

∂θ ′
1

)]
.

The correction of the asymptotic covariance matrix at the second step requires
some additional computation. Matrices V1 and V2 are estimated by the respective
uncorrected covariance matrices. Typically, the BHHH estimators,

V̂1 =
[

1
n

n∑
i=1

(
∂ ln fi1

∂ θ̂1

)(
∂ ln fi1

∂ θ̂
′
1

)]−1

and

V̂2 =
[

1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
2

)]−1

are used. The matrices R and C are obtained by summing the individual obser-
vations on the cross products of the derivatives. These are estimated with

Ĉ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
1

)

and

R̂ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi1

∂ θ̂ ′
1

)

Example 17.9 Two-Step ML Estimation
Continuing the example discussed at the beginning of this section, we suppose that yi 2 is a
binary indicator of the choice whether to enroll in the program ( yi 2 = 1) or not ( yi 2 = 0) and
that the probabilities of the two outcomes are

Prob[yi 2 = 1 | xi 1, xi 2] = ex′
i 2

β+γ E [yi 1 | x′
i 1

]

1 + ex′
i 2

β+γ E [yi 1 | x′
i 1

]
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and Prob[yi 2 = 0 | xi 1, xi 2] = 1 − Prob[yi 2 = 1 | xi 1, xi 2], where xi 2 is some covariates that
might influence the decision, such as marital status or age and xi 1 are determinants of family
size. This setup is a logit model. We will develop this model more fully in Chapter 21. The
expected value of yi 1 appears in the probability. (Remark: The expected, rather than the
actual value was chosen deliberately. Otherwise, the models would differ substantially. In our
case, we might view the difference as that between an ex ante decision and an ex post one.)
Suppose that the number of children can be described by a Poisson distribution (see Section
B.4.8) dependent on some variables xi 1 such as education, age, and so on. Then

Prob [yi 1 = j | xi 1] = e−λi λ
j
i

j !
, j = 0, 1, . . . ,

and suppose, as is customary, that

E [yi 1] = λi = exp(x′
i 1δ) .

The models involve θ = [δ, β, γ ], where θ1 = δ. In fact, it is unclear what the joint distri-
bution of y1 and y2 might be, but two-step estimation is straightforward. For model 1, the
log-likelihood and its first derivatives are

ln L1 =
n∑

i =1

ln f1( yi 1 | xi 1, δ)

=
n∑

i =1

[−λi + yi 1 ln λi − ln yi 1!] =
n∑

i =1

[−exp(x′
i 1δ) + yi 1(x′

i 1δ) − ln yi 1!],

∂ ln L1

∂δ
=

n∑
i =1

( yi 1 − λi )xi 1 =
n∑

i =1

ui xi 1.

Computation of the estimates is developed in Chapter 21. Any of the three estimators of V1
is also easy to compute, but the BHHH estimator is most convenient, so we use

V̂1 =
[

1
n

n∑
i =1

û2
i xi 1x′

i 1

]−1

.

[In this and the succeeding summations, we are actually estimating expectations of the
various matrices.]

We can write the density function for the second model as

f2( yi 2 | xi 1, xi 2, β, γ , δ) = Pyi 2
i × (1 − Pi ) 1−yi 2 ,

where Pi = Prob[yi 2 = 1 | xi 1, xi 2] as given earlier. Then

ln L2 =
n∑

i =1

yi 2 ln Pi + (1 − yi 2) ln(1 − Pi ) .

For convenience, let x̂∗
i 2 = [x′

i 2, exp(x′
i 1δ̂) ]′, and recall that θ2 = [β, γ ]′. Then

ln L̂2 =
n∑

i =1

yi 2[x̂∗′
i 2θ2 − ln(1 + exp( x̂∗′

i 2θ2) ) ] + (1 − yi 2) [− ln(1 + exp( x̂∗′
i 2θ2) ) ].

So, at the second step, we create the additional variable, append it to xi 2, and estimate the
logit model as if δ (and this additional variable) were actually observed instead of estimated.
The maximum likelihood estimates of [β, γ ] are obtained by maximizing this function. (See
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Chapter 21.) After a bit of manipulation, we find the convenient result that

∂ ln L̂2

∂θ2
=

n∑
i =1

( yi 2 − Pi ) x̂
∗
i 2 =

n∑
i =1

vi x̂
∗
i 2.

Once again, any of the three estimators could be used for estimating the asymptotic covari-
ance matrix, but the BHHH estimator is convenient, so we use

V̂2 =
[

1
n

n∑
i =1

v̂2
i x̂∗

i 2x̂∗′
i 2

]−1

.

For the final step, we must correct the asymptotic covariance matrix using Ĉ and R̂. What
remains to derive—the few lines are left for the reader—is

∂ ln L2

∂δ
=

n∑
i =1

vi [γ exp(x′
i 1δ) ]xi 1.

So, using our estimates,

Ĉ = 1
n

n∑
i =1

v̂2
i [exp(x′

i 1δ̂) ]x̂∗
i 2x′

i 1, and R̂ = 1
n

n∑
i =1

ûi v̂i x̂
∗
i 2x′

i 1.

We can now compute the correction.

In many applications, the covariance of the two gradients R converges to zero. When
the first and second step estimates are based on different samples, R is exactly zero. For
example, in our application above, R = ∑n

i=1 uivi x∗
i2x′

i1. The two “residuals,” u and v,
may well be uncorrelated. This assumption must be checked on a model-by-model basis,
but in such an instance, the third and fourth terms in V∗

2 vanish asymptotically and what
remains is the simpler alternative,

V∗∗
2 = (1/n)[V2 + V2CV1C′V2].

We will examine some additional applications of this technique (including an empirical
implementation of the preceding example) later in the book. Perhaps the most com-
mon application of two-step maximum likelihood estimation in the current literature,
especially in regression analysis, involves inserting a prediction of one variable into a
function that describes the behavior of another.

17.8 MAXIMUM SIMULATED LIKELIHOOD
ESTIMATION

The technique of maximum simulated likelihood (MSL) is essentially a classical sam-
pling theory counterpart to the hierarchical Bayesian estimator we considered in Sec-
tion 16.2.4. Since the celebrated paper of Berry, Levinsohn, and Pakes (1995), and a
related literature advocated by McFadden and Train (2000), maximum simulated like-
lihood estimation has been used in a large and growing number of studies based on
log-likelihoods that involve integrals that are expectations.24 In this section, we will lay
out some general results for MSL estimation by developing a particular application,

24A major reference for this set of techniques is Gourieroux and Monfort (1996).
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the random parameters model. This general modeling framework has been used in the
majority of the received applications. We will then continue the application to the dis-
crete choice model for panel data that we began in Section 16.2.4.

The density of yit when the parameter vector is β i is f (yit | xi t , β i ). The parameter
vector β i is randomly distributed over individuals according to

β i = β + �zi + vi

where β+�zi is the mean of the distribution, which depends on time invariant individual
characteristics as well as parameters yet to be estimated, and the random variation comes
from the individual heterogeneity, vi . This random vector is assumed to have mean zero
and covariance matrix, �. The conditional density of the parameters is denoted

g(β i | zi , β, �, �) = g(vi + β + �zi , �),

where g(.) is the underlying marginal density of the heterogeneity. For the T observa-
tions in group i , the joint conditional density is

f (yi | Xi , β i ) =
T∏

t=1

f (yit | xi t , β i ).

The unconditional density for yi is obtained by integrating over β i ,

f (yi | Xi , zi , β, �, �) = Eβ i [ f (yi | Xi , β i )] =
∫

β i

f (yi | Xi , β i )g(β i | zi , β, �, �)dβ i .

Collecting terms, and making the transformation from vi to β i , the true log-likelihood
would be

ln L =
n∑

i=1

ln

{∫
vi

[
T∏

t=1

f (yit | xi t , β + �zi + vi )

]
g(vi | �)dvi

}

=
n∑

i=1

ln
{∫

vi

f (yi | Xi , β + �zi + vi )g(vi | �)dvi

}
.

Each of the n terms involves an expectation over vi . The end result of the integration is
a function of (β, �, �) which is then maximized.

As in the previous applications, it will not be possible to maximize the log-likelihood
in this form because there is no closed form for the integral. We have considered two
approaches to maximizing such a log-likelihood. In the latent class formulation, it is
assumed that the parameter vector takes one of a discrete set of values, and the log-
likelihood is maximized over this discrete distribution as well as the structural parame-
ters. (See Section 16.2.3.) The hierarchical Bayes procedure used Markov Chain–Monte
Carlo methods to sample from the joint posterior distribution of the underlying param-
eters and used the empirical mean of the sample of draws as the estimator. We now
consider a third approach to estimating the parameters of a model of this form, maxi-
mum simulated likelihood estimation.

The terms in the log-likelihood are each of the form

ln Li = Evi [ f (yi | Xi , β + �zi + vi )].

As noted, we do not have a closed form for this function, so we cannot compute it directly.
Suppose we could sample randomly from the distribution of vi . If an appropriate law
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of large numbers can be applied, then

lim
R→∞

1
R

R∑
r=1

f (yi | Xi , β + �zi + vir ) = Evi [ f (yi | Xi , β + �zi + vi )]

where vir is the rth random draw from the distribution. This suggests a strategy for
computing the log-likelihood. We can substitute this approximation to the expectation
into the log-likelihood function. With sufficient random draws, the approximation can be
made as close to the true function as desired. [The theory for this approach is discussed
in Gourieroux and Monfort (1996), Bhat (1999), and Train (1999, 2002). Practical details
on applications of the method are given in Greene (2001).] A detail to add concerns
how to sample from the distribution of vi . There are many possibilities, but for now,
we consider the simplest case, the multivariate normal distribution. Write � in the
Cholesky form � = LL′ where L is a lower triangular matrix. Now, let uir be a vector
of K independent draws from the standard normal distribution. Then a draw from the
multivariate distribution with covariance matrix � is simply vir = Luir. The simulated
log-likelihood is

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

[
T∏

t=1

f (yit | xi t , β + �zi + Luir )

]}
.

The resulting function is maximized with respect to β, � and L. This is obviously not
a simple calculation, but it is feasible, and much easier than trying to manipulate the
integrals directly. In fact, for most problems to which this method has been applied, the
computations are surprisingly simple. The intricate part is obtaining the function and
its derivatives. But, the functions are usually index function models that involve x′

itβ i
which greatly simplifies the derivations.

Inference in this setting does not involve any new results. The estimated asymp-
totic covariance matrix for the estimated parameters is computed by manipulating the
derivatives of the simulated log-likelihood. The Wald and likelihood ratio statistics are
also computed the way they would usually be. As before, we are interested in estimating
person specific parameters. A prior estimate might simply use β + �zi , but this would
not use all the information in the sample. A posterior estimate would compute

Êvi [β i | β, �, zi , �] =
∑R

r=1 β̂ ir f (yi | Xi , β̂ ir)∑R
r=1 f (yi | Xi , β̂ ir)

, β̂ ir = β̂ + �̂zi + L̂uir .

Mechanical details on computing the MSLE are omitted. The interested reader is
referred to Gourieroux and Monfort (1996), Train (2000, 2002), and Greene (2001,
2002) for details.

Example 17.10 Maximum Simulated Likelihood Estimation of a Binary
Choice Model

We continue Example 16.5 where estimates of a binary choice model for product innovation
are obtained. The model is for Prob[ yi t = 1 | xi t , β i ] where

yi t = 1 if firm i realized a product innovation in year t and 0 if not.
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The independent variables in the model are

xi t1 = constant,

xi t2 = log of sales,

xi t3 = relative size = ratio of employment in business unit to employment in the industry,

xi t4 = ratio of industry imports to (industry sales + imports),

xi t5 = ratio of industry foreign direct investment to (industry sales + imports),

xi t6 = productivity = ratio of industry value added to industry employment,

xi t7 = dummy variable indicating the firm is in the raw materials sector,

xi t8 = dummy variable indicating the firm is in the investment goods sector.

The sample consists of 1,270 German manufacturing firms observed for five years,
1984–1988. The density that enters the log-likelihood is

f ( yi t | xi t , β i ) = Prob[ yi t | x′
i tβ i ] = �[(2yi t − 1)x′

i tβ i ], yi t = 0, 1.

where
β i = β + vi , vi ∼ N[0, �].

To be consistent with Bertschek and Lechner (1998) we did not fit any firm-specific, time-
invariant components in the main equation for β i .

Table 17.5 presents the estimated coefficients for the basic probit model in the first column.
The estimates of the means, β are shown in the second column. There appear to be large
differences in the parameter estimates, though this can be misleading since there is large vari-
ation across the firms in the posterior estimates. The third column presents the square roots
of the implied diagonal elements of � computed as the diagonal elements of LL′. These esti-
mated standard deviations are for the underlying distribution of the parameter in the model—
they are not estimates of the standard deviation of the sampling distribution of the estimator.
For the mean parameter, that is shown in parentheses in the second column. The fourth col-
umn presents the sample means and standard deviations of the 1,270 estimated posterior

TABLE 17.5 Estimated Random Parameters Model

Probit RP Means RP Std. Devs. Empirical Distn. Posterior

Constant −1.96 −3.91 2.70 −3.27 −3.38
(0.23) (0.20) (0.57) (2.14)

lnSales 0.18 0.36 0.28 0.32 0.34
(0.022) (0.019) (0.15) (0.09)

Rel.Size 1.07 6.01 5.99 3.33 2.58
(0.14) (0.22) (2.25) (1.30)

Import 1.13 1.51 0.84 2.01 1.81
(0.15) (0.13) (0.58) (0.74)

FDI 2.85 3.81 6.51 3.76 3.63
(0.40) (0.33) (1.69) (1.98)

Prod. −2.34 −5.10 13.03 −8.15 −5.48
(0.72) (0.73) (8.29) (1.78)

RawMtls −0.28 −0.31 1.65 −0.18 −0.08
(0.081) (0.075) (0.57) (0.37)

Invest. 0.19 0.27 1.42 0.27 0.29
(0.039) (0.032) (0.38) (0.13)

ln L −4114.05 −3498.654
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estimates of the coefficients. The last column repeats the estimates for the latent class model.
The agreement in the two sets of estimates is striking in view of the crude approximation
given by the latent class model.

Figures 17.4a and b present kernel density estimators of the firm-specific probabilities
computed at the 5-year means for the random parameters model and with the original probit
estimates. The estimated probabilities are strikingly similar to the latent class model, and
also fairly similar to, though smoother than the probit estimates.

FIGURE 17.4a Probit Probabilities.
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FIGURE 17.4b Random Parameters Probabilities.
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Figure 17.5 shows the kernel density estimate for the firm-specific estimates of the log
sales coefficient. The comparison to Figure 16.5 shows some striking difference. The random
parameters model produces estimates that are similar in magnitude, but the distributions are
actually quite different. Which should be preferred? Only on the basis that the three point
discrete latent class model is an approximation to the continuous variation model, we would
prefer the latter.

FIGURE 17.5a Random Parameters, βsales.
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FIGURE 17.5b Latent Class Model, βsales.
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17.9 PSEUDO-MAXIMUM LIKELIHOOD
ESTIMATION AND ROBUST ASYMPTOTIC
COVARIANCE MATRICES

Maximum likelihood estimation requires complete specification of the distribution of
the observed random variable. If the correct distribution is something other than what
we assume, then the likelihood function is misspecified and the desirable properties
of the MLE might not hold. This section considers a set of results on an estimation
approach that is robust to some kinds of model misspecification. For example, we have
found that in a model, if the conditional mean function is E [y | x] = x′β, then certain
estimators, such as least squares, are “robust” to specifying the wrong distribution of
the disturbances. That is, LS is MLE if the disturbances are normally distributed, but
we can still claim some desirable properties for LS, including consistency, even if the
disturbances are not normally distributed. This section will discuss some results that
relate to what happens if we maximize the “wrong” log-likelihood function, and for those
cases in which the estimator is consistent despite this, how to compute an appropriate
asymptotic covariance matrix for it.25

Let f (yi | xi , β) be the true probability density for a random variable yi given a set
of covariates xi and parameter vector β. The log-likelihood function is (1/n) log L(β | y,

X) = (1/n)
∑n

i=1 log f (yi |xi , β). The MLE, β̂ML, is the sample statistic that maximizes
this function. (The division of log Lby n does not affect the solution.) We maximize the
log-likelihood function by equating its derivatives to zero, so the MLE is obtained by
solving the set of empirical moment equations

1
n

n∑
i=1

∂ log f (yi | xi , β̂ML)

∂β̂ML
= 1

n

n∑
i=1

di (β̂ML) = d̄(β̂ML) = 0.

The population counterpart to the sample moment equation is

E
[

1
n

∂ log L
∂β

]
= E

[
1
n

n∑
i=1

di (β)

]
= E [d̄(β)] = 0.

Using what we know about GMM estimators, if E [d̄(β)] = 0, then β̂ML is consistent
and asymptotically normally distributed, with asymptotic covariance matrix equal to

VML = [G(β)′G(β)]−1G(β)′
{

Var[d̄(β)]
}

G(β)[G(β)′G(β)]−1,

where G(β) = plim ∂d̄(β)/∂β ′. Since d̄(β) is the derivative vector, G(β) is 1/n times
the expected Hessian of log L; that is, (1/n)E [H(β)] = H̄(β). As we saw earlier,
Var[∂ log L/∂β] = −E [H(β)]. Collecting all seven appearances of (1/n)E [H(β)], we
obtain the familiar result VML = {−E [H(β)]

}−1
. [All the ns cancel and Var[d̄] =

(1/n)H̄(β).] Note that this result depends crucially on the result Var[∂ log L/∂β] =
−E [H(β)].

25The following will sketch a set of results related to this estimation problem. The important references on this
subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); and Amemiya (1985).
A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations
in these works are complex, and we will only attempt to provide an intuitive introduction to the topic.
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The maximum likelihood estimator is obtained by maximizing the function h̄n(y,

X, β) = (1/n)
∑n

i=1 log f (yi , xi , β). This function converges to its expectation as n → ∞.

Since this function is the log-likelihood for the sample, it is also the case (not proven
here) that as n → ∞, it attains its unique maximum at the true parameter vector, β.

(We used this result in proving the consistency of the maximum likelihood estimator.)
Since plim h̄n(y, X, β) = E [h̄n(y, X, β)], it follows (by interchanging differentiation and
the expectation operation) that plim ∂ h̄n(y, X, β)/∂β = E [∂ h̄n(y, X, β)/∂β]. But, if this
function achieves its maximum at β, then it must be the case that plim ∂ h̄n(y, X, β)/

∂β = 0.

An estimator that is obtained by maximizing a criterion function is called an M
estimator [Huber (1967)] or an extremum estimator [Amemiya (1985)]. Suppose that
we obtain an estimator by maximizing some other function, Mn(y, X, β) that, although
not the log-likelihood function, also attains its unique maximum at the true β as n → ∞.

Then the preceding argument might produce a consistent estimator with a known asymp-
totic distribution. For example, the log-likelihood for a linear regression model with
normally distributed disturbances with different variances, σ 2ωi , is

h̄n(y, X, β) = 1
n

n∑
i=1

{−1
2

[
log(2πσ 2ωi ) + (yi − x′

iβ)2

σ 2ωi

]}
.

By maximizing this function, we obtain the maximum likelihood estimator. But we
also examined another estimator, simple least squares, which maximizes Mn(y, X, β) =
−(1/n)

∑n
i=1(yi − x′

iβ)2. As we showed earlier, least squares is consistent and asymp-
totically normally distributed even with this extension, so it qualifies as an M estimator
of the sort we are considering here.

Now consider the general case. Suppose that we estimateβ by maximizing a criterion
function

Mn(y|X, β) = 1
n

n∑
i=1

log g(yi |xi , β).

Suppose as well that plimMn(y, X, β) = E [Mn(y, X, β)] and that as n → ∞, E [Mn(y,

X, β)] attains its unique maximum at β. Then, by the argument we used above for the
MLE, plim ∂ Mn(y, X, β)/∂β = E [∂Mn(y, X, β)/∂β] = 0. Once again, we have a set of
moment equations for estimation. Let β̂E be the estimator that maximizes Mn(y, X, β).

Then the estimator is defined by

∂ Mn(y, X, β̂E)

∂β̂E
= 1

n

n∑
i=1

∂ log g(yi |xi , β̂E)

∂β̂E
= m̄(β̂E) = 0.

Thus, β̂E is a GMM estimator. Using the notation of our earlier discussion, G(β̂E) is
the symmetric Hessian of E [Mn(y, X, β)], which we will denote (1/n)E [HM(β̂E)] =
H̄M(β̂E). Proceeding as we did above to obtain VML, we find that the appropriate
asymptotic covariance matrix for the extremum estimator would be

VE = [H̄M(β)]−1
(

1
n
�

)
[HM(β)]−1

where � = Var[∂ log g(yi |xi , β)/∂β], and, as before, the asymptotic distribution is
normal.
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The Hessian in VE can easily be estimated by using its empirical counterpart,

Est.[H̄M(β̂E)] = 1
n

n∑
i=1

∂2 log g(yi |xi , β̂E)

∂β̂E∂β̂ ′
E

.

But,� remains to be specified, and it is unlikely that we would know what function to use.
The important difference is that in this case, the variance of the first derivatives vector
need not equal the Hessian, so VE does not simplify. We can, however, consistently
estimate � by using the sample variance of the first derivatives,

�̂ = 1
n

n∑
i=1

[
∂ log g(yi |xi , β̂)

∂β̂

] [
∂ log g(yi |xi , β̂)

∂β̂ ′

]
.

If this were the maximum likelihood estimator, then �̂ would be the BHHH estimator
that we have used at several points. For example, for the least squares estimator in
the heteroscedastic linear regression model, the criterion is Mn(y, X, β) = −(1/n)

∑n
i=1

(yi − x′
iβ)2, the solution is b, G(b) = (−2/n)X′X, and

�̂ = 1
n

n∑
i=1

[2xi (yi − x′
iβ)][2xi (yi − x′

iβ)]′ = 4
n

n∑
i=1

e2
i xi x′

i .

Collecting terms, the 4s cancel and we are left precisely with the White estimator of
(11-13)!

At this point, we consider the motivation for all this weighty theory. One disad-
vantage of maximum likelihood estimation is its requirement that the density of the
observed random variable(s) be fully specified. The preceding discussion suggests that
in some situations, we can make somewhat fewer assumptions about the distribution
than a full specification would require. The extremum estimator is robust to some kinds
of specification errors. One useful result to emerge from this derivation is an estimator
for the asymptotic covariance matrix of the extremum estimator that is robust at least to
some misspecification. In particular, if we obtain β̂E by maximizing a criterion function
that satisfies the other assumptions, then the appropriate estimator of the asymptotic
covariance matrix is

Est. VE = 1
n

[H̄(β̂E)]−1�̂(β̂E)[H̄(β̂E)]−1.

If β̂E is the true MLE, then VE simplifies to
{−[H(β̂E)]

}−1
. In the current literature,

this estimator has been called the “sandwich” estimator. There is a trend in the current
literature to compute this estimator routinely, regardless of the likelihood function. It
is worth noting that if the log-likelihood is not specified correctly, then the parameter
estimators are likely to be inconsistent, save for the cases such as those noted below, so
robust estimation of the asymptotic covariance matrix may be misdirected effort. But
if the likelihood function is correct, then the sandwich estimator is unnecessary. This
method is not a general patch for misspecified models. Not every likelihood function
qualifies as a consistent extremum estimator for the parameters of interest in the model.

One might wonder at this point how likely it is that the conditions needed for all
this to work will be met. There are applications in the literature in which this machin-
ery has been used that probably do not meet these conditions, such as the tobit model
of Chapter 22. We have seen one important case. Least squares in the generalized
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regression model passes the test. Another important application is models of “individ-
ual heterogeneity” in cross-section data. Evidence suggests that simple models often
overlook unobserved sources of variation across individuals in cross sections, such as
unmeasurable “family effects” in studies of earnings or employment. Suppose that the
correct model for a variable is h(yi |xi , vi , β, θ), where vi is a random term that is not ob-
served and θ is a parameter of the distribution of v. The correct log-likelihood function
is �i log f (yi |xi , β, θ) = �i log ∫v h(yi |xi , vi , β, θ) f (vi ) dvi . Suppose that we maximize
some other pseudo-log-likelihood function, �i log g(yi |xi , β) and then use the sandwich
estimator to estimate the asymptotic covariance matrix of β̂. Does this produce a con-
sistent estimator of the true parameter vector? Surprisingly, sometimes it does, even
though it has ignored the nuisance parameter, θ . We saw one case, using OLS in the GR
model with heteroscedastic disturbances. Inappropriately fitting a Poisson model when
the negative binomial model is correct—see Section 21.9.3—is another case. For some
specifications, using the wrong likelihood function in the probit model with proportions
data (Section 21.4.6) is a third. [These two examples are suggested, with several others,
by Gourieroux, Monfort, and Trognon (1984).] We do emphasize once again that the
sandwich estimator, in and of itself, is not necessarily of any virtue if the likelihood
function is misspecified and the other conditions for the M estimator are not met.

17.10 SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood
estimation, which is the most frequently used estimation technique in econometrics
after least squares. The maximum likelihood estimators are consistent, asymptotically
normally distributed, and efficient among estimators that have these properties. The
drawback to the technique is that it requires a fully parametric, detailed specification
of the data generating process. As such, it is vulnerable to misspecification problems.
The next chapter considers GMM estimation techniques which are less parametric, but
more robust to variation in the underlying data generating process.
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Exercises

1. Assume that the distribution of x is f (x) = 1/θ, 0 ≤ x ≤ θ. In random sampling
from this distribution, prove that the sample maximum is a consistent estimator of
θ. Note: You can prove that the maximum is the maximum likelihood estimator of
θ. But the usual properties do not apply here. Why not? [Hint: Attempt to verify
that the expected first derivative of the log-likelihood with respect to θ is zero.]

2. In random sampling from the exponential distribution f (x) = (1/θ)e−x/θ , x ≥ 0,

θ > 0, find the maximum likelihood estimator of θ and obtain the asymptotic
distribution of this estimator.

3. Mixture distribution. Suppose that the joint distribution of the two random variables
x and y is

f (x, y) = θe−(β+θ)y(βy)x

x!
, β, θ > 0, y ≥ 0, x = 0, 1, 2, . . . .

a. Find the maximum likelihood estimators of β and θ and their asymptotic joint
distribution.

b. Find the maximum likelihood estimator of θ/(β + θ) and its asymptotic
distribution.

c. Prove that f (x) is of the form

f (x) = γ (1 − γ )x, x = 0, 1, 2, . . . ,

and find the maximum likelihood estimator of γ and its asymptotic distribution.
d. Prove that f (y | x) is of the form

f (y | x) = λe−λy(λy)x

x!
, y ≥ 0, λ > 0.

Prove that f (y | x) integrates to 1. Find the maximum likelihood estimator of λ

and its asymptotic distribution. [Hint: In the conditional distribution, just carry
the xs along as constants.]

e. Prove that

f (y) = θe−θy, y ≥ 0, θ > 0.

Find the maximum likelihood estimator of θ and its asymptotic variance.
f. Prove that

f (x | y) = e−βy(βy)x

x!
, x = 0, 1, 2, . . . , β > 0.

Based on this distribution, what is the maximum likelihood estimator of β?
4. Suppose that x has the Weibull distribution

f (x) = αβxβ−1e−αxβ

, x ≥ 0, α, β > 0.

a. Obtain the log-likelihood function for a random sample of n observations.
b. Obtain the likelihood equations for maximum likelihood estimation of α and β.

Note that the first provides an explicit solution for α in terms of the data and
β. But, after inserting this in the second, we obtain only an implicit solution
for β. How would you obtain the maximum likelihood estimators?
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c. Obtain the second derivatives matrix of the log-likelihood with respect to α and
β. The exact expectations of the elements involving β involve the derivatives
of the gamma function and are quite messy analytically. Of course, your exact
result provides an empirical estimator. How would you estimate the asymptotic
covariance matrix for your estimators in Part b?

d. Prove that αβCov[ln x, xβ] = 1. [Hint: The expected first derivatives of the
log-likelihood function are zero.]

5. The following data were generated by the Weibull distribution of Exercise 4:

1.3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1.0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0.33453 1.1227 2.0296 1.2797 0.96080 2.0070

a. Obtain the maximum likelihood estimates of α and β, and estimate the asymp-
totic covariance matrix for the estimates.

b. Carry out a Wald test of the hypothesis that β = 1.

c. Obtain the maximum likelihood estimate of α under the hypothesis that β = 1.

d. Using the results of Parts a and c, carry out a likelihood ratio test of the hypothesis
that β = 1.

e. Carry out a Lagrange multiplier test of the hypothesis that β = 1.

6. (Limited Information Maximum Likelihood Estimation). Consider a bivariate
distribution for x and y that is a function of two parameters, α and β. The joint
density is f (x, y | α, β). We consider maximum likelihood estimation of the two
parameters. The full information maximum likelihood estimator is the now famil-
iar maximum likelihood estimator of the two parameters. Now, suppose that we
can factor the joint distribution as done in Exercise 3, but in this case, we have
f (x, y | α, β) = f (y | x, α, β) f (x | α). That is, the conditional density for y is a func-
tion of both parameters, but the marginal distribution for x involves only α.

a. Write down the general form for the log likelihood function using the joint
density.

b. Since the joint density equals the product of the conditional times the marginal,
the log-likelihood function can be written equivalently in terms of the factored
density. Write this down, in general terms.

c. The parameter α can be estimated by itself using only the data on x and the log
likelihood formed using the marginal density for x. It can also be estimated with
β by using the full log-likelihood function and data on both y and x. Show this.

d. Show that the first estimator in Part c has a larger asymptotic variance than
the second one. This is the difference between a limited information maximum
likelihood estimator and a full information maximum likelihood estimator.

e. Show that if ∂2 ln f (y | x, α, β)/∂α∂β = 0, then the result in Part d is no longer
true.

7. Show that the likelihood inequality in Theorem 17.3 holds for the Poisson distribu-
tion used in Section 17.3 by showing that E [(1/n) ln L(θ | y)] is uniquely maximized
at θ = θ0. Hint: First show that the expectation is −θ + θ0 ln θ − E0[ln yi !].

8. Show that the likelihood inequality in Theorem 17.3 holds for the normal
distribution.

9. For random sampling from the classical regression model in (17-3), reparameterize
the likelihood function in terms of η = 1/σ and δ = (1/σ)β. Find the maximum
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likelihood estimators of η and δ and obtain the asymptotic covariance matrix of the
estimators of these parameters.

10. Section 14.3.1 presents estimates of a Cobb–Douglas cost function using Nerlove’s
1955 data on the U.S. electric power industry. Christensen and Greene’s 1976 update
of this study used 1970 data for this industry. The Christensen and Greene data are
given in Table F5.2. These data have provided a standard test data set for estimating
different forms of production and cost functions, including the stochastic frontier
model examined in Example 17.5. It has been suggested that one explanation for
the apparent finding of economies of scale in these data is that the smaller firms were
inefficient for other reasons. The stochastic frontier might allow one to disentangle
these effects. Use these data to fit a frontier cost function which includes a quadratic
term in log output in addition to the linear term and the factor prices. Then examine
the estimated Jondrow et al. residuals to see if they do indeed vary negatively with
output, as suggested. (This will require either some programming on your part
or specialized software. The stochastic frontier model is provided as an option in
TSP and LIMDEP. Or, the likelihood function can be programmed fairly easily for
RATS or GAUSS. Note, for a cost frontier as opposed to a production frontier, it
is necessary to reverse the sign on the argument in the � function.)

11. Consider, sampling from a multivariate normal distribution with mean vector
µ = (µ1, µ2, . . . , µM) and covariance matrix σ 2I. The log-likelihood function is

ln L = −nM
2

ln(2π) − nM
2

ln σ 2 − 1
2σ 2

n∑
i=1

(yi − µ)′(yi − µ).

Show that the maximum likelihood estimates of the parameters are

σ̂ 2
ML =

∑n
i=1

∑M
m=1 (yim − ȳm)2

nM
= 1

M

M∑
m=1

1
n

n∑
i=1

(yim − ȳm)2 = 1
M

M∑
m=1

σ̂ 2
m.

Derive the second derivatives matrix and show that the asymptotic covariance
matrix for the maximum likelihood estimators is{

−E
[
∂2 ln L
∂θ∂θ ′

]}−1

=
[

σ 2I/n 0
0 2σ 4/(nM)

]
.

Suppose that we wished to test the hypothesis that the means of the M distributions
were all equal to a particular value µ0. Show that the Wald statistic would be

W = (ȳ − µ0i)′
(

σ̂ 2

n
I
)−1

(ȳ − µ0i), =
( n

s2

)
(ȳ − µ0i)′(ȳ − µ0i),

where ȳ is the vector of sample means.


