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SERIAL CORRELATION

Q
12.1 INTRODUCTION

Time-series data often display autocorrelation, or serial correlation of the disturbances
across periods. Consider, for example, the plot of the least squares residuals in the
following example.

Example 12.1 Money Demand Equation
Table F5.1 contains quarterly data from 1950.1 to 2000.4 on the U.S. money stock (M1) and
output (real GDP) and the price level (CPI U). Consider a simple (extremely) model of money
demand,1

ln M1t = β1 + β2 ln GDPt + β3 ln CPIt + εt

A plot of the least squares residuals is shown in Figure 12.1. The pattern in the residuals
suggests that knowledge of the sign of a residual in one period is a good indicator of the sign of
the residual in the next period. This knowledge suggests that the effect of a given disturbance
is carried, at least in part, across periods. This sort of “memory” in the disturbances creates
the long, slow swings from positive values to negative ones that is evident in Figure 12.1. One
might argue that this pattern is the result of an obviously naive model, but that is one of the
important points in this discussion. Patterns such as this usually do not arise spontaneously;
to a large extent, they are, indeed, a result of an incomplete or flawed model specification.

One explanation for autocorrelation is that relevant factors omitted from the time-
series regression, like those included, are correlated across periods. This fact may be
due to serial correlation in factors that should be in the regression model. It is easy to
see why this situation would arise. Example 12.2 shows an obvious case.

Example 12.2 Autocorrelation Induced by Misspecification
of the Model

In Examples 2.3 and 7.6, we examined yearly time-series data on the U.S. gasoline market
from 1960 to 1995. The evidence in the examples was convincing that a regression model
of variation in ln G/pop should include, at a minimum, a constant, ln PG and ln income/pop.
Other price variables and a time trend also provide significant explanatory power, but these
two are a bare minimum. Moreover, we also found on the basis of a Chow test of structural
change that apparently this market changed structurally after 1974. Figure 12.2 displays
plots of four sets of least squares residuals. Parts (a) through (c) show clearly that as the
specification of the regression is expanded, the autocorrelation in the “residuals” diminishes.
Part (c) shows the effect of forcing the coefficients in the equation to be the same both before
and after the structural shift. In part (d), the residuals in the two subperiods 1960 to 1974 and
1975 to 1995 are produced by separate unrestricted regressions. This latter set of residuals
is almost nonautocorrelated. (Note also that the range of variation of the residuals falls as

1Since this chapter deals exclusively with time-series data, we shall use the index t for observations and T for
the sample size throughout.
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FIGURE 12.1 Autocorrelated Residuals.

the model is improved, i.e., as its fit improves.) The full equation is

ln
Gt

popt
= β1 + β2 ln PGt + β3 ln

I t

popt
+ β4 ln PNCt + β5 ln PUCt

+ β6 ln PPTt + β7 ln PNt + β8 ln PDt + β9 ln PSt + β10t + εt .

Finally, we consider an example in which serial correlation is an anticipated part of the
model.

Example 12.3 Negative Autocorrelation in the Phillips Curve
The Phillips curve [Phillips (1957)] has been one of the most intensively studied relationships
in the macroeconomics literature. As originally proposed, the model specifies a negative re-
lationship between wage inflation and unemployment in the United Kingdom over a period of
100 years. Recent research has documented a similar relationship between unemployment
and price inflation. It is difficult to justify the model when cast in simple levels; labor market
theories of the relationship rely on an uncomfortable proposition that markets persistently
fall victim to money illusion, even when the inflation can be anticipated. Current research
[e.g., Staiger et al. (1996)] has reformulated a short run (disequilibrium) “expectations aug-
mented Phillips curve” in terms of unexpected inflation and unemployment that deviates from
a long run equilibrium or “natural rate.” The expectations-augmented Phillips curve can
be written as

�pt − E [�pt | �t−1] = β[ut − u∗] + εt

where �pt is the rate of inflation in year t, E [�pt | �t−1] is the forecast of �pt made in period
t − 1 based on information available at time t − 1, �t−1, ut is the unemployment rate and u∗

is the natural, or equilibrium rate. (Whether u∗ can be treated as an unchanging parameter,
as we are about to do, is controversial.) By construction, [ut − u∗] is disequilibrium, or cycli-
cal unemployment. In this formulation, εt would be the supply shock (i.e., the stimulus that
produces the disequilibrium situation.) To complete the model, we require a model for the
expected inflation. We will revisit this in some detail in Example 19.2. For the present, we’ll
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FIGURE 12.2 Residual Plots for Misspecified Models.

assume that economic agents are rank empiricists. The forecast of next year’s inflation is
simply this year’s value. This produces the estimating equation

�pt − �pt−1 = β1 + β2ut + εt

where β2 = β and β1 = −βu∗. Note that there is an implied estimate of the natural rate of
unemployment embedded in the equation. After estimation, u∗ can be estimated by −b1/b2.
The equation was estimated with the 1950.1–2000.4 data in Table F5.1 that were used in
Example 12.1 (minus two quarters for the change in the rate of inflation). Least squares
estimates (with standard errors in parentheses) are as follows:

�pt − �pt−1 = 0.49189 − 0.090136 ut + et

(0.7405) (0.1257) R2 = 0.002561, T = 201.

The implied estimate of the natural rate of unemployment is 5.46 percent, which is in line with
other recent estimates. The estimated asymptotic covariance of b1 and b2 is −0.08973. Using
the delta method, we obtain a standard error of 2.2062 for this estimate, so a confidence in-
terval for the natural rate is 5.46 percent ±1.96 (2.21 percent) = (1.13 percent, 9.79 percent)
(which seems fairly wide, but, again, whether it is reasonable to treat this as a parameter is at
least questionable). The regression of the least squares residuals on their past values gives
a slope of −0.4263 with a highly significant t ratio of −6.725. We thus conclude that the
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FIGURE 12.3 Negatively Autocorrelated Residuals.

residuals (and, apparently, the disturbances) in this model are highly negatively autocorre-
lated. This is consistent with the striking pattern in Figure 12.3.

The problems for estimation and inference caused by autocorrelation are similar to
(although, unfortunately, more involved than) those caused by heteroscedasticity. As
before, least squares is inefficient, and inference based on the least squares estimates
is adversely affected. Depending on the underlying process, however, GLS and FGLS
estimators can be devised that circumvent these problems. There is one qualitative
difference to be noted. In Chapter 11, we examined models in which the generalized
regression model can be viewed as an extension of the regression model to the con-
ditional second moment of the dependent variable. In the case of autocorrelation, the
phenomenon arises in almost all cases from a misspecification of the model. Views differ
on how one should react to this failure of the classical assumptions, from a pragmatic
one that treats it as another “problem” in the data to an orthodox methodological view
that it represents a major specification issue—see, for example, “A Simple Message to
Autocorrelation Correctors: Don’t” [Mizon (1995).]

We should emphasize that the models we shall examine here are quite far removed
from the classical regression. The exact or small-sample properties of the estimators are
rarely known, and only their asymptotic properties have been derived.

12.2 THE ANALYSIS OF TIME-SERIES DATA

The treatment in this chapter will be the first structured analysis of time series data in
the text. (We had a brief encounter in Section 5.3 where we established some conditions
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under which moments of time series data would converge.) Time-series analysis requires
some revision of the interpretation of both data generation and sampling that we have
maintained thus far.

A time-series model will typically describe the path of a variable yt in terms of
contemporaneous (and perhaps lagged) factors xt , disturbances (innovations), εt , and
its own past, yt−1, . . . For example,

yt = β1 + β2xt + β3 yt−1 + εt .

The time series is a single occurrence of a random event. For example, the quarterly
series on real output in the United States from 1950 to 2000 that we examined in Ex-
ample 12.1 is a single realization of a process, GDPt . The entire history over this period
constitutes a realization of the process. At least in economics, the process could not be
repeated. There is no counterpart to repeated sampling in a cross section or replication
of an experiment involving a time series process in physics or engineering. Nonetheless,
were circumstances different at the end of World War II, the observed history could have
been different. In principle, a completely different realization of the entire series might
have occurred. The sequence of observations, {yt }t=∞

t=−∞ is a time-series process which is
characterized by its time ordering and its systematic correlation between observations
in the sequence. The signature characteristic of a time series process is that empirically,
the data generating mechanism produces exactly one realization of the sequence. Sta-
tistical results based on sampling characteristics concern not random sampling from a
population, but from distributions of statistics constructed from sets of observations
taken from this realization in a time window, t = 1, . . . , T. Asymptotic distribution
theory in this context concerns behavior of statistics constructed from an increasingly
long window in this sequence.

The properties of yt as a random variable in a cross section are straightforward
and are conveniently summarized in a statement about its mean and variance or the
probability distribution generating yt . The statement is less obvious here. It is common
to assume that innovations are generated independently from one period to the next,
with the familiar assumptions

E [εt ] = 0,

Var[εt ] = σ 2,

and

Cov[εt , εs] = 0 for t �= s.

In the current context, this distribution of εt is said to be covariance stationary or
weakly stationary. Thus, although the substantive notion of “random sampling” must
be extended for the time series εt , the mathematical results based on that notion apply
here. It can be said, for example, that εt is generated by a time-series process whose
mean and variance are not changing over time. As such, by the method we will discuss
in this chapter, we could, at least in principle, obtain sample information and use it to
characterize the distribution of εt . Could the same be said of yt ? There is an obvious
difference between the series εt and yt ; observations on yt at different points in time
are necessarily correlated. Suppose that the yt series is weakly stationary and that, for
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the moment, β2 = 0. Then we could say that

E [yt ] = β1 + β3 E [yt−1] + E [εt ] = β1/(1 − β3)

and

Var[yt ] = β2
3 Var[yt−1] + Var[εt ],

or

γ0 = β2
3γ0 + σ 2

ε

so that

γ0 = σ 2

1 − β2
3
.

Thus, γ0, the variance of yt , is a fixed characteristic of the process generating yt . Note
how the stationarity assumption, which apparently includes |β3| < 1, has been used. The
assumption that |β3| < 1 is needed to ensure a finite and positive variance.2 Finally, the
same results can be obtained for nonzero β2 if it is further assumed that xt is a weakly
stationary series.3

Alternatively, consider simply repeated substitution of lagged values into the
expression for yt :

yt = β1 + β3(β1 + β3 yt−2 + εt−1) + εt (12-1)

and so on. We see that, in fact, the current yt is an accumulation of the entire history of
the innovations, εt . So if we wish to characterize the distribution of yt , then we might
do so in terms of sums of random variables. By continuing to substitute for yt−2, then
yt−3, . . . in (12-1), we obtain an explicit representation of this idea,

yt =
∞∑

i=0

β i
3(β1 + εt−i ).

Do sums that reach back into infinite past make any sense? We might view the
process as having begun generating data at some remote, effectively “infinite” past. As
long as distant observations become progressively less important, the extension to an
infinite past is merely a mathematical convenience. The diminishing importance of past
observations is implied by |β3| < 1. Notice that, not coincidentally, this requirement is
the same as that needed to solve for γ0 in the preceding paragraphs. A second possibility
is to assume that the observation of this time series begins at some time 0 [with (x0, ε0)

called the initial conditions], by which time the underlying process has reached a state
such that the mean and variance of yt are not (or are no longer) changing over time. The
mathematics are slightly different, but we are led to the same characterization of the
random process generating yt . In fact, the same weak stationarity assumption ensures
both of them.

Except in very special cases, we would expect all the elements in the T component
random vector (y1, . . . , yT) to be correlated. In this instance, said correlation is called

2The current literature in macroeconometrics and time series analysis is dominated by analysis of cases in
which β3 = 1 (or counterparts in different models). We will return to this subject in Chapter 20.
3See Section 12.4.1 on the stationarity assumption.
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“autocorrelation.” As such, the results pertaining to estimation with independent or
uncorrelated observations that we used in the previous chapters are no longer usable.
In point of fact, we have a sample of but one observation on the multivariate ran-
dom variable [yt , t = 1, . . . , T ]. There is a counterpart to the cross-sectional notion of
parameter estimation, but only under assumptions (e.g., weak stationarity) that estab-
lish that parameters in the familiar sense even exist. Even with stationarity, it will emerge
that for estimation and inference, none of our earlier finite sample results are usable.
Consistency and asymptotic normality of estimators are somewhat more difficult to
establish in time-series settings because results that require independent observations,
such as the central limit theorems, are no longer usable. Nonetheless, counterparts to our
earlier results have been established for most of the estimation problems we consider
here and in Chapters 19 and 20.

12.3 DISTURBANCE PROCESSES

The preceding section has introduced a bit of the vocabulary and aspects of time series
specification. In order to obtain the theoretical results we need to draw some conclusions
about autocorrelation and add some details to that discussion.

12.3.1 CHARACTERISTICS OF DISTURBANCE PROCESSES

In the usual time-series setting, the disturbances are assumed to be homoscedastic but
correlated across observations, so that

E [εε′ | X] = σ 2�,

where σ 2� is a full, positive definite matrix with a constant σ 2 = Var[εt | X] on the
diagonal. As will be clear in the following discussion, we shall also assume that �ts is
a function of |t − s|, but not of t or s alone, which is a stationarity assumption. (See
the preceding section.) It implies that the covariance between observations t and s is
a function only of |t − s|, the distance apart in time of the observations. We define the
autocovariances:

Cov[εt , εt−s | X] = Cov[εt+s, εt | X] = σ 2�t,t−s = γs = γ−s .

Note that σ 2�t t = γ0. The correlation between εt and εt−s is their autocorrelation,

Corr[εt , εt−s | X] = Cov[εt , εt−s | X]√
Var[εt | X]Var[εt−s | X]

= γs

γ0
= ρs = ρ−s .

We can then write

E [εε′ | X] = � = γ0R,

where � is an autocovariance matrix and R is an autocorrelation matrix—the ts element
is an autocorrelation coefficient

ρts = γ|t−s|
γ0

.
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(Note that the matrix � = γ0R is the same as σ 2�. The name change conforms to stan-
dard usage in the literature.) We will usually use the abbreviation ρs to denote the
autocorrelation between observations s periods apart.

Different types of processes imply different patterns in R. For example, the most
frequently analyzed process is a first-order autoregression or AR(1) process,

εt = ρεt−1 + ut ,

where ut is a stationary, nonautocorrelated (“white noise”) process and ρ is a parameter.
We will verify later that for this process, ρs = ρs . Higher-order autoregressive processes
of the form

εt = θ1εt−1 + θ2εt−2 + · · · + θpεt−p + ut

imply more involved patterns, including, for some values of the parameters, cyclical
behavior of the autocorrelations.4 Stationary autoregressions are structured so that
the influence of a given disturbance fades as it recedes into the more distant past but
vanishes only asymptotically. For example, for the AR(1), Cov[εt , εt−s] is never zero,
but it does become negligible if |ρ| is less than 1. Moving-average processes, conversely,
have a short memory. For the MA(1) process,

εt = ut − λut−1,

the memory in the process is only one period: γ0 = σ 2
u (1 + λ2), γ1 = −λσ 2

u , but γs = 0
if s > 1.

12.3.2 AR(1) DISTURBANCES

Time-series processes such as the ones listed here can be characterized by their order, the
values of their parameters, and the behavior of their autocorrelations.5 We shall consider
various forms at different points. The received empirical literature is overwhelmingly
dominated by the AR(1) model, which is partly a matter of convenience. Processes more
involved than this model are usually extremely difficult to analyze. There is, however,
a more practical reason. It is very optimistic to expect to know precisely the correct
form of the appropriate model for the disturbance in any given situation. The first-order
autoregression has withstood the test of time and experimentation as a reasonable model
for underlying processes that probably, in truth, are impenetrably complex. AR(1) works
as a first pass—higher order models are often constructed as a refinement—as in the
example below.

The first-order autoregressive disturbance, or AR(1) process, is represented in the
autoregressive form as

εt = ρεt−1 + ut , (12-2)

where

E [ut ] = 0,

E
[
u2

t

] = σ 2
u ,

4This model is considered in more detail in Chapter 20.
5See Box and Jenkins (1984) for an authoritative study.
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and

Cov[ut , us] = 0 if t �= s.

By repeated substitution, we have

εt = ut + ρut−1 + ρ2ut−2 + · · · . (12-3)

From the preceding moving-average form, it is evident that each disturbance εt embodies
the entire past history of the u’s, with the most recent observations receiving greater
weight than those in the distant past. Depending on the sign of ρ, the series will exhibit
clusters of positive and then negative observations or, if ρ is negative, regular oscillations
of sign (as in Example 12.3).

Since the successive values of ut are uncorrelated, the variance of εt is the variance
of the right-hand side of (12-3):

Var[εt ] = σ 2
u + ρ2σ 2

u + ρ4σ 2
u + · · · . (12-4)

To proceed, a restriction must be placed on ρ,

|ρ| < 1, (12-5)

because otherwise, the right-hand side of (12-4) will become infinite. This result is the
stationarity assumption discussed earlier. With (12-5), which implies that lims→∞ ρs = 0,

E [εt ] = 0 and

Var[εt ] = σ 2
u

1 − ρ2
= σ 2

ε . (12-6)

With the stationarity assumption, there is an easier way to obtain the variance:

Var[εt ] = ρ2 Var[εt−1] + σ 2
u

as Cov[ut , εs] = 0 if t > s. With stationarity, Var[εt−1] = Var[εt ], which implies (12-6).
Proceeding in the same fashion,

Cov[εt , εt−1] = E [εtεt−1] = E [εt−1(ρεt−1 + ut )] = ρ Var[εt−1] = ρσ 2
u

1 − ρ2
. (12-7)

By repeated substitution in (12-2), we see that for any s,

εt = ρsεt−s +
s−1∑
i=0

ρi ut−i

(e.g., εt = ρ3εt−3 + ρ2ut−2 + ρut−1 + ut ). Therefore, since εs is not correlated with any
ut for which t > s (i.e., any subsequent ut ), it follows that

Cov[εt , εt−s] = E [εtεt−s] = ρsσ 2
u

1 − ρ2
. (12-8)

Dividing by γ0 = σ 2
u /(1 − ρ2) provides the autocorrelations:

Corr[εt , εt−s] = ρs = ρs . (12-9)

With the stationarity assumption, the autocorrelations fade over time. Depending on
the sign of ρ, they will either be declining in geometric progression or alternating in



Greene-50240 book June 17, 2002 14:1

CHAPTER 12 ✦ Serial Correlation 259

sign if ρ is negative. Collecting terms, we have

σ 2� = σ 2
u

1 − ρ2




1 ρ ρ2 ρ3 · · · ρT−1

ρ 1 ρ ρ2 · · · ρT−2

ρ2 ρ 1 ρ · · · ρT−3

...
...

...
... · · · ρ

ρT−1 ρT−2 ρT−3 · · · ρ 1




. (12-10)

12.4 SOME ASYMPTOTIC RESULTS FOR
ANALYZING TIME SERIES DATA

Since � is not equal to I, the now familiar complications will arise in establishing the
properties of estimators of β, in particular of the least squares estimator. The finite sam-
ple properties of the OLS and GLS estimators remain intact. Least squares will continue
to be unbiased; the earlier general proof allows for autocorrelated disturbances. The
Aitken theorem and the distributional results for normally distributed disturbances can
still be established conditionally on X. (However, even these will be complicated when
X contains lagged values of the dependent variable.) But, finite sample properties are
of very limited usefulness in time series contexts. Nearly all that can be said about
estimators involving time series data is based on their asymptotic properties.

As we saw in our analysis of heteroscedasticity, whether least squares is consistent
or not, depends on the matrices

QT = (1/T )X′X,

and

Q∗
T = (1/T )X′�X.

In our earlier analyses, we were able to argue for convergence of QT to a positive definite
matrix of constants, Q, by invoking laws of large numbers. But, these theorems assume
that the observations in the sums are independent, which as suggested in Section 12.1, is
surely not the case here. Thus, we require a different tool for this result. We can expand
the matrix Q∗

T as

Q∗
T = 1

T

T∑
t=1

T∑
s=1

ρtsxt x′
s, (12-11)

where x′
t and x′

s are rows of X and ρts is the autocorrelation between εt and εs . Sufficient
conditions for this matrix to converge are that QT converge and that the correlations
between disturbances die off reasonably rapidly as the observations become further
apart in time. For example, if the disturbances follow the AR(1) process described
earlier, then ρts = ρ|t−s| and if x t is sufficiently well behaved, Q∗

T will converge to a
positive definite matrix Q∗ as T → ∞.
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Asymptotic normality of the least squares and GLS estimators will depend on the
behavior of sums such as

√
T w̄T =

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T

(
1
T

X′ε
)

.

Asymptotic normality of least squares is difficult to establish for this general model. The
central limit theorems we have relied on thus far do not extend to sums of dependent
observations. The results of Amemiya (1985), Mann and Wald (1943), and Anderson
(1971) do carry over to most of the familiar types of autocorrelated disturbances, in-
cluding those that interest us here, so we shall ultimately conclude that ordinary least
squares, GLS, and instrumental variables continue to be consistent and asymptotically
normally distributed, and, in the case of OLS, inefficient. This section will provide a
brief introduction to some of the underlying principles which are used to reach these
conclusions.

12.4.1 CONVERGENCE OF MOMENTS—THE ERGODIC THEOREM

The discussion thus far has suggested (appropriately) that stationarity (or its absence) is
an important characteristic of a process. The points at which we have encountered this
notion concerned requirements that certain sums converge to finite values. In particular,
for the AR(1) model, εt = ρεt−1 + ut , in order for the variance of the process to be
finite, we require |ρ| < 1, which is a sufficient condition. However, this result is only
a byproduct. Stationarity (at least, the weak stationarity we have examined) is only a
characteristic of the sequence of moments of a distribution.

DEFINITION 12.1 Strong Stationarity
A time series process, {zt }t=∞

t=−∞ is strongly stationary, or “stationary” if the joint
probability distribution of any set of k observations in the sequence, [zt , zt+1, . . . ,

zt+k] is the same regardless of the origin, t , in the time scale.

For example, in (12-2), if we add ut ∼ N[0, σ 2
u ], then the resulting process {εt }t=∞

t=−∞ can
easily be shown to be strongly stationary.

DEFINITION 12.2 Weak Stationarity
A time series process, {zt }t=∞

t=−∞ is weakly stationary (or covariance stationary) if
E [zt ] is finite and is the same for all t and if the covariances between any two
observations (labeled their autocovariance), Cov[zt , zt−k], is a finite function only
of model parameters and their distance apart in time, k, but not of the absolute
location of either observation on the time scale.

Weak stationary is obviously implied by strong stationary, though it requires less since
the distribution can, at least in principle, be changing on the time axis. The distinction
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is rarely necessary in applied work. In general, save for narrow theoretical examples,
it will be difficult to come up with a process that is weakly but not strongly stationary.
The reason for the distinction is that in much of our work, only weak stationary is
required, and, as always, when possible, econometricians will dispense with unnecessary
assumptions.

As we will discover shortly, stationarity is a crucial characteristic at this point in
the analysis. If we are going to proceed to parameter estimation in this context, we
will also require another characteristic of a time series, ergodicity. There are various
ways to delineate this characteristic, none of them particularly intuitive. We borrow one
definition from Davidson and MacKinnon (1993, p. 132) which comes close:

DEFINITION 12.3 Ergodicity
A time series process, {zt}t=∞

t=−∞ is ergodic if for any two bounded functions that map
vectors in the a and b dimensional real vector spaces to real scalars, f : Ra → R1

and g : Rb → R1,

lim
k→∞

|E [ f (zt , zt+1, . . . , zt+a)g(zt+k, zt+k+1, . . . , zt+k+b)|
= |E [ f (zt , zt+1, . . . , zt+a)| |E [g(zt+k, zt+k+1, . . . , zt+k+b)]| .

The definition states essentially that if events are separated far enough in time, then they
are “asymptotically independent.” An implication is that in a time series, every obser-
vation will contain at least some unique information. Ergodicity is a crucial element of
our theory of estimation. When a time series has this property (with stationarity), then
we can consider estimation of parameters in a meaningful sense.6 The analysis relies
heavily on the following theorem:

THEOREM 12.1 The Ergodic Theorem
If {zt }t=∞

t=−∞ is a time-series process which is stationary and ergodic and E [|zt |] is
a finite constant and E [zt ] = µ, and if z̄T = (1/T )

∑T
t=1 zt , then z̄T

a.s.−→ µ. Note
that the convergence is almost surely, not in probability (which is implied) or in
mean square (which is also implied). [See White (2001, p. 44) and Davidson and
MacKinnon (1993, p. 133).]

What we have in The Ergodic Theorem is, for sums of dependent observations, a coun-
terpart to the laws of large numbers that we have used at many points in the preceding
chapters. Note, once again, the need for this extension is that to this point, our laws of

6Much of the analysis in later chapters will encounter nonstationary series, which are the focus of most of
the current literature—tests for nonstationarity largely dominate the recent study in time series analysis.
Ergodicity is a much more subtle and difficult concept. For any process which we will consider, ergodicity
will have to be a given, at least at this level. A classic reference on the subject is Doob (1953). Another
authoritative treatise is Billingsley (1979). White (2001) provides a concise analysis of many of these concepts
as used in econometrics, and some useful commentary.
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large numbers have required sums of independent observations. But, in this context, by
design, observations are distinctly not independent.

In order for this result to be useful, we will require an extension.

THEOREM 12.2 Ergodicity of Functions
If {zt }t=∞

t=−∞ is a time series process which is stationary and ergodic and if yt =
f {zt } is a measurable function in the probability space that defines zt , then yt is
also stationary and ergodic. Let {zt }t=∞

t=−∞ define a K × 1 vector valued stochastic
process—each element of the vector is an ergodic and stationary series and the
characteristics of ergodicity and stationarity apply to the joint distribution of the
elements of {zt }t=∞

t=−∞. Then The Ergodic Theorem applies to functions of {zt }t=∞
t=−∞.

(See White (2001, pp. 44–45) for discussion.)

Theorem 12.2 produces the results we need to characterize the least squares (and other)
estimators. In particular, our minimal assumptions about the data are

ASSUMPTION 12.1 Ergodic Data Series: In the regression model, yt = x′
tβ + εt ,

[xt , εt ]t=∞
t=−∞ is a jointly stationary and ergodic process.

By analyzing terms element by element we can use these results directly to assert
that averages of wt = xtεt , Qt = xt x′

t and Q∗
t = ε2

t xt xt will converge to their population
counterparts, 0, Q and Q∗.

12.4.2 CONVERGENCE TO NORMALITY—A CENTRAL
LIMIT THEOREM

In order to form a distribution theory for least squares, GLS, ML, and GMM, we will
need a counterpart to the central limit theorem. In particular, we need to establish a
large sample distribution theory for quantities of the form

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T w̄.

As noted earlier, we cannot invoke the familiar central limit theorems (Lindberg–Levy,
Lindberg–Feller, Liapounov) because the observations in the sum are not independent.
But, with the assumptions already made, we do have an alternative result. Some needed
preliminaries are as follows:

DEFINITION 12.4 Martingale Sequence
A vector sequence zt is a martingale sequence if E [zt | zt−1, zt−2, . . .] = zt−1.
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An important example of a martingale sequence is the random walk,

zt = zt−1 + ut

where Cov[ut , us] = 0 for all t �= s. Then

E [zt | zt−1, zt−2, . . .] = E [zt−1 | zt−1, zt−2, . . .] + E [ut | zt−1, zt−2, . . .] = zt−1 + 0 = zt−1.

DEFINITION 12.5 Martingale Difference Sequence
A vector sequence zt is a martingale difference sequence if E [zt | zt−1, zt−2, . . .]
= 0.

With Definition 12.5, we have the following broadly encompassing result:

THEOREM 12.3 Martingale Difference Central Limit Theorem
If zt is a vector valued stationary and ergodic martingale difference sequence, with
E [zt z′

t ] = �, where � is a finite positive definite matrix, and if z̄T = (1/T )
∑T

t=1 zt ,

then
√

T z̄T
d−→ N[0,�]. (For discussion, see Davidson and MacKinnon (1993,

Sections. 4.7 and 4.8.)7

Theorem 12.3 is a generalization of the Lindberg–Levy Central Limit Theorem. It
is not yet broad enough to cover cases of autocorrelation, but it does go beyond
Lindberg–Levy, for example, in extending to the GARCH model of Section 11.8.
[Forms of the theorem which surpass Lindberg–Feller (D.19) and Liapounov (Theo-
rem D.20) by allowing for different variances at each time, t , appear in Ruud (2000,
p. 479) and White (2001, p. 133). These variants extend beyond our requirements in this
treatment.] But, looking ahead, this result encompasses what will be a very important
application. Suppose in the classical linear regression model, {xt }t=∞

t=−∞ is a stationary
and ergodic multivariate stochastic process and {εt }t=∞

t=−∞ is an i.i.d. process—that is,
not autocorrelated and not heteroscedastic. Then, this is the most general case of the
classical model which still maintains the assumptions about εt that we made in Chap-
ter 2. In this case, the process {wt }t=∞

t=−∞ = {xtεt }t=∞
t=−∞ is a martingale difference sequence,

so that with sufficient assumptions on the moments of xt we could use this result to
establish consistency and asymptotic normality of the least squares estimator. [See,
e.g., Hamilton (1994, pp. 208–212).]

We now consider a central limit theorem that is broad enough to include the
case that interested us at the outset, stochastically dependent observations on xt and

7For convenience, we are bypassing a step in this discussion—establishing multivariate normality requires
that the result first be established for the marginal normal distribution of each component, then that every
linear combination of the variables also be normally distributed. Our interest at this point is merely to collect
the useful end results. Interested users may find the detailed discussions of the many subtleties and narrower
points in White (2001) and Davidson and MacKinnon (1993, Chapter 4).
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autocorrelation in εt .8 Suppose as before that {zt }t=∞
t=−∞ is a stationary and ergodic

stochastic process. We consider
√

T z̄T . The following conditions are assumed:9

1. Summability of autocovariances: With dependent observations,

lim
T→∞

Var[
√

Tz̄] =
∞∑

t=0

∞∑
s=0

Cov[zt z′
s] =

∞∑
k=−∞

�k = �∗

To begin, we will need to assume that this matrix is finite, a condition called summability.
Note this is the condition needed for convergence of Q∗

T in (12-11). If the sum is to be
finite, then the k = 0 term must be finite, which gives us a necessary condition

E [zt z′
t ] = �0, a finite matrix.

2. Asymptotic uncorrelatedness: E [zt | zt−k, zt−k−1, . . .] converges in mean square to
zero as k→ ∞. Note that is similar to the condition for ergodicity. White (2001) demon-
strates that a (nonobvious) implication of this assumption is E [zt ] = 0.

3. Asymptotic negligibility of innovations: Let

rtk = E [zt | zt−k, zt−k−1, . . .] − E [zt | zt−k−1, zt−k−2, . . .].

An observation zt may be viewed as the accumulated information that has entered the
process since it began up to time t . Thus, it can be shown that

zt =
∞∑

s=0

rts

The vector rtk can be viewed as the information in this accumulated sum that entered
the process at time t − k. The condition imposed on the process is that

∑∞
s=0

√
E [r′

tsrts]
be finite. In words, condition (3) states that information eventually becomes negligible
as it fades far back in time from the current observation. The AR(1) model (as usual)
helps to illustrate this point. If zt = ρzt−1 + ut , then

rt0 = E [zt | zt , zt−1, . . .] − E [zt | zt−1, zt−2, . . .] = zt − ρzt−1 = ut

rt1 = E [zt | zt−1, zt−2 . . .] − E [zt | zt−2, zt−3 . . .]

= E [ρzt−1 + ut | zt−1, zt−2 . . .] − E [ρ(ρzt−2 + ut−1) + ut | zt−2, zt−3, . . .]

= ρ(zt−1 − ρzt−2)

= ρut−1.

By a similar construction, rtk = ρkut−k from which it follows that zt = ∑∞
s=0 ρsut−s , which

we saw earlier in (12-3). You can verify that if |ρ| < 1, the negligibility condition will
be met.

8Detailed analysis of this case is quite intricate and well beyond the scope of this book. Some fairly terse
analysis may be found in White (2001, pp. 122–133) and Hayashi (2000).
9See Hayashi (2000, p. 405) who attributes the results to Gordin (1969).
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With all this machinery in place, we now have the theorem we will need:

THEOREM 12.4 Gordin’s Central Limit Theorem
If conditions (1) – (3) listed above are met, then

√
T z̄T

d−→ N[0, �∗].

We will be able to employ these tools when we consider the least squares, IV and GLS
estimators in the discussion to follow.

12.5 LEAST SQUARES ESTIMATION

The least squares estimator is

b = (X′X)−1X′y = β +
(

X′X
T

)−1 (
X′ε
T

)
.

Unbiasedness follows from the results in Chapter 4—no modification is needed. We
know from Chapter 10 that the Gauss–Markov Theorem has been lost—assuming it ex-
ists (that remains to be established), the GLS estimator is efficient and OLS is not. How
much information is lost by using least squares instead of GLS depends on the data.
Broadly, least squares fares better in data which have long periods and little cyclical
variation, such as aggregate output series. As might be expected, the greater is the auto-
correlation in ε, the greater will be the benefit to using generalized least squares (when
this is possible). Even if the disturbances are normally distributed, the usual F and t
statistics do not have those distributions. So, not much remains of the finite sample prop-
erties we obtained in Chapter 4. The asymptotic properties remain to be established.

12.5.1 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

The asymptotic properties of b are straightforward to establish given our earlier results.
If we assume that the process generating xt is stationary and ergodic, then by Theo-
rems 12.1 and 12.2, (1/T)(X′X) converges to Q and we can apply the Slutsky theorem
to the inverse. If εt is not serially correlated, then wt = xtεt is a martingale difference
sequence, so (1/T)(X′ε) converges to zero. This establishes consistency for the simple
case. On the other hand, if [xt , εt ] are jointly stationary and ergodic, then we can invoke
the Ergodic Theorems 12.1 and 12.2 for both moment matrices and establish consistency.
Asymptotic normality is a bit more subtle. For the case without serial correlation in εt ,
we can employ Theorem 12.3 for

√
T w̄. The involved case is the one that interested us at

the outset of this discussion, that is, where there is autocorrelation in εt and dependence
in xt . Theorem 12.4 is in place for this case. Once again, the conditions described in the
preceding section must apply and, moreover, the assumptions needed will have to be
established both for xt and εt . Commentary on these cases may be found in Davidson
and MacKinnon (1993), Hamilton (1994), White (2001), and Hayashi (2000). Formal
presentation extends beyond the scope of this text, so at this point, we will proceed,
and assume that the conditions underlying Theorem 12.4 are met. The results suggested
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here are quite general, albeit only sketched for the general case. For the remainder
of our examination, at least in this chapter, we will confine attention to fairly simple
processes in which the necessary conditions for the asymptotic distribution theory will
be fairly evident.

There is an important exception to the results in the preceding paragraph. If the
regression contains any lagged values of the dependent variable, then least squares will
no longer be unbiased or consistent. To take the simplest case, suppose that

yt = βyt−1 + εt ,

εt = ρεt−1 + ut .
(12-12)

and assume |β| < 1, |ρ| < 1. In this model, the regressor and the disturbance are corre-
lated. There are various ways to approach the analysis. One useful way is to rearrange
(12-12) by subtracting ρyt−1 from yt . Then,

yt = (β + ρ)yt−1 − βρyt−2 + ut (12-13)

which is a classical regression with stochastic regressors. Since ut is an innovation in
period t , it is uncorrelated with both regressors, and least squares regression of yt on
(yt−1, yt−2) estimates ρ1 = (β + ρ) and ρ2 = −βρ. What is estimated by regression of yt on
yt−1 alone? Let γk = Cov[yt , yt−k] = Cov[yt , yt+k]. By stationarity, Var[yt ] = Var[yt−1],
and Cov[yt , yt−1] = Cov[yt−1, yt−2], and so on. These and (12-13) imply the following
relationships.

γ0 = ρ1γ1 + ρ2γ2 + σ 2
u

γ1 = ρ1γ0 + ρ2γ1

γ2 = ρ1γ1 + ρ2γ0

(12-14)

(These are the Yule Walker equations for this model. See Section 20.2.3.) The slope
in the simple regression estimates γ1/γ0 which can be found in the solutions to these
three equations. (An alternative approach is to use the left out variable formula, which
is a useful way to interpret this estimator.) In this case, we see that the slope in the
short regression is an estimator of (β + ρ) − βρ(γ1/γ0). In either case, solving the three
equations in (12-14) for γ0, γ1 and γ2 in terms of ρ1, ρ2 and σ 2

u produces

plim b = β + ρ

1 + βρ
. (12-15)

This result is between β (when ρ = 0) and 1 (when both β and ρ = 1). Therefore, least
squares is inconsistent unless ρ equals zero. The more general case that includes regres-
sors, xt , involves more complicated algebra, but gives essentially the same result. This
is a general result; when the equation contains a lagged dependent variable in the pres-
ence of autocorrelation, OLS and GLS are inconsistent. The problem can be viewed as
one of an omitted variable.

12.5.2 ESTIMATING THE VARIANCE OF THE LEAST
SQUARES ESTIMATOR

As usual, s2(X′X)−1 is an inappropriate estimator of σ 2(X′X)−1(X′�X)(X′X)−1, both
because s2 is a biased estimator of σ 2 and because the matrix is incorrect. Generalities
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TABLE 12.1 Robust Covariance Estimation

Variable OLS Estimate OLS SE Corrected SE

Constant 0.7746 0.0335 0.0733
ln Output 0.2955 0.0190 0.0394
ln CPI 0.5613 0.0339 0.0708

R2 = 0.99655, d = 0.15388, r = 0.92331.

are scarce, but in general, for economic time series which are positively related to their
past values, the standard errors conventionally estimated by least squares are likely to
be too small. For slowly changing, trending aggregates such as output and consumption,
this is probably the norm. For highly variable data such as inflation, exchange rates,
and market returns, the situation is less clear. Nonetheless, as a general proposition,
one would normally not want to rely on s2(X′X)−1 as an estimator of the asymptotic
covariance matrix of the least squares estimator.

In view of this situation, if one is going to use least squares, then it is desirable to
have an appropriate estimator of the covariance matrix of the least squares estimator.
There are two approaches. If the form of the autocorrelation is known, then one can
estimate the parameters of � directly and compute a consistent estimator. Of course,
if so, then it would be more sensible to use feasible generalized least squares instead
and not waste the sample information on an inefficient estimator. The second approach
parallels the use of the White estimator for heteroscedasticity. Suppose that the form of
the autocorrelation is unknown. Then, a direct estimator of � or �(θ) is not available.
The problem is estimation of

� = 1
T

T∑
t=1

T∑
s=1

ρ|t−s|xt x′
s . (12-16)

Following White’s suggestion for heteroscedasticity, Newey and West’s (1987a) robust,
consistent estimator for autocorrelated disturbances with an unspecified structure is

S∗ = S0 + 1
T

L∑
j=1

T∑
t= j+1

(
1 − j

L+ 1

)
et et− j [xt x′

t− j + xt− j x′
t ], (12-17)

[See (10-16) in Section 10.3.] The maximum lag L must be determined in advance to be
large enough that autocorrelations at lags longer than Lare small enough to ignore. For
a moving-average process, this value can be expected to be a relatively small number.
For autoregressive processes or mixtures, however, the autocorrelations are never zero,
and the researcher must make a judgment as to how far back it is necessary to go.10

Example 12.4 Autocorrelation Consistent Covariance Estimation
For the model shown in Example 12.1, the regression results with the uncorrected standard
errors and the Newey-West autocorrelation robust covariance matrix for lags of 5 quarters
are shown in Table 12.1. The effect of the very high degree of autocorrelation is evident.

10Davidson and MacKinnon (1993) give further discussion. Current practice is to use the smallest integer
greater than or equal to T1/4.
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12.6 GMM ESTIMATION

The GMM estimator in the regression model with autocorrelated disturbances is pro-
duced by the empirical moment equations

1
T

T∑
t=1

xt
(

yt − x′
t β̂GMM

) = 1
T

X′ε̂
(
β̂GMM

) = m̄
(
β̂GMM

) = 0. (12-18)

The estimator is obtained by minimizing

q = m̄′(β̂GMM

)
Wm̄

(
β̂GMM

)
where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {
Asy. Var[

√
T m̄(β)]

}−1

which is the inverse of

Asy. Var[
√

T m̄(β)] = Asy. Var

[
1√
T

n∑
i=1

xiεi

]
= plim

n→∞

1
T

T∑
t=1

T∑
s=1

σ 2ρtsxt x′
s = σ 2Q∗.

The optimal weighting matrix would be [σ 2Q∗]−1. As in the heteroscedasticity case, this
minimization problem is an exactly identified case, so, the weighting matrix is irrelevant
to the solution. The GMM estimator for the regression model with autocorrelated dis-
turbances is ordinary least squares. We can use the results in Section 12.5.2 to construct
the asymptotic covariance matrix. We will require the assumptions in Section 12.4 to
obtain convergence of the moments and asymptotic normality. We will wish to extend
this simple result in one instance. In the common case in which xt contains lagged val-
ues of yt , we will want to use an instrumental variable estimator. We will return to that
estimation problem in Section 12.9.4.

12.7 TESTING FOR AUTOCORRELATION

The available tests for autocorrelation are based on the principle that if the true
disturbances are autocorrelated, then this fact can be detected through the autocorre-
lations of the least squares residuals. The simplest indicator is the slope in the artificial
regression

et = ret−1 + vt ,

et = yt − x′
t b.

r =
(

T∑
t=2

et et−1

)/(
T∑

t=1

e2
t

) (12-19)

If there is autocorrelation, then the slope in this regression will be an estimator of
ρ = Corr[εt , εt−1]. The complication in the analysis lies in determining a formal means
of evaluating when the estimator is “large,” that is, on what statistical basis to reject
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the null hypothesis that ρ equals zero. As a first approximation, treating (12-19) as a
classical linear model and using a t or F (squared t) test to test the hypothesis is a
valid way to proceed based on the Lagrange multiplier principle. We used this device
in Example 12.3. The tests we consider here are refinements of this approach.

12.7.1 LAGRANGE MULTIPLIER TEST

The Breusch (1978)–Godfrey (1978) test is a Lagrange multiplier test of H0: no auto-
correlation versus H1: εt = AR(P) or εt = MA(P). The same test is used for either
structure. The test statistic is

LM = T
(

e′X0(X′
0X0)

−1X′
0e

e′e

)
= TR2

0 (12-20)

where X0 is the original X matrix augmented by P additional columns containing the
lagged OLS residuals, et−1, . . . , et−P. The test can be carried out simply by regressing the
ordinary least squares residuals et on xt0 (filling in missing values for lagged residuals
with zeros) and referring TR2

0 to the tabled critical value for the chi-squared distribution
with P degrees of freedom.11 Since X′e = 0, the test is equivalent to regressing et on the
part of the lagged residuals that is unexplained by X. There is therefore a compelling
logic to it; if any fit is found, then it is due to correlation between the current and lagged
residuals. The test is a joint test of the first P autocorrelations of εt , not just the first.

12.7.2 BOX AND PIERCE’S TEST AND LJUNG’S REFINEMENT

An alternative test which is asymptotically equivalent to the LM test when the null
hypothesis, ρ = 0, is true and when X does not contain lagged values of y is due to Box
and Pierce (1970). The Q test is carried out by referring

Q = T
P∑

j=1

r2
j , (12-21)

where r j = (
∑T

t= j+1 et et− j )/(
∑T

t=1 e2
t ), to the critical values of the chi-squared table with

P degrees of freedom. A refinement suggested by Ljung and Box (1979) is

Q′ = T(T + 2)

P∑
j=1

r2
j

T − j
. (12-22)

The essential difference between the Godfrey–Breusch and the Box–Pierce tests
is the use of partial correlations (controlling for X and the other variables) in the
former and simple correlations in the latter. Under the null hypothesis, there is no
autocorrelation in εt , and no correlation between xt and εs in any event, so the two tests
are asymptotically equivalent. On the other hand, since it does not condition on xt , the

11A warning to practitioners: Current software varies on whether the lagged residuals are filled with zeros
or the first P observations are simply dropped when computing this statistic. In the interest of replicability,
users should determine which is the case before reporting results.
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Box–Pierce test is less powerful than the LM test when the null hypothesis is false, as
intuition might suggest.

12.7.3 THE DURBIN–WATSON TEST

The Durbin–Watson statistic12 was the first formal procedure developed for testing for
autocorrelation using the least squares residuals. The test statistic is

d =
∑T

t=2(et − et−1)
2∑T

t=1 e2
t

= 2(1 − r) − e2
1 + e2

T∑T
t=1 e2

t

(12-23)

where r is the same first order autocorrelation which underlies the preceding two statis-
tics. If the sample is reasonably large, then the last term will be negligible, leaving
d ≈ 2(1 − r). The statistic takes this form because the authors were able to determine
the exact distribution of this transformation of the autocorrelation and could provide
tables of critical values. Useable critical values which depend only on T and K are pre-
sented in tables such as that at the end of this book. The one-sided test for H0: ρ = 0
against H1: ρ > 0 is carried out by comparing d to values dL(T, K) and dU(T, K). If
d < dL the null hypothesis is rejected; if d > dU , the hypothesis is not rejected. If d lies
between dL and dU , then no conclusion is drawn.

12.7.4 TESTING IN THE PRESENCE OF A LAGGED
DEPENDENT VARIABLES

The Durbin–Watson test is not likely to be valid when there is a lagged dependent
variable in the equation.13 The statistic will usually be biased toward a finding of no
autocorrelation. Three alternatives have been devised. The LM and Q tests can be used
whether or not the regression contains a lagged dependent variable. As an alternative to
the standard test, Durbin (1970) derived a Lagrange multiplier test that is appropriate
in the presence of a lagged dependent variable. The test may be carried out by referring

h = r
√

T
/(

1 − Ts2
c

)
, (12-24)

where s2
c is the estimated variance of the least squares regression coefficient on yt−1,

to the standard normal tables. Large values of h lead to rejection of H0. The test has
the virtues that it can be used even if the regression contains additional lags of yt , and
it can be computed using the standard results from the initial regression without any
further regressions. If s2

c > 1/T, however, then it cannot be computed. An alternative
is to regress et on xt , yt−1, . . . , et−1, and any additional lags that are appropriate for et

and then to test the joint significance of the coefficient(s) on the lagged residual(s) with
the standard F test. This method is a minor modification of the Breusch–Godfrey test.
Under H0, the coefficients on the remaining variables will be zero, so the tests are the
same asymptotically.

12Durbin and Watson (1950, 1951, 1971).
13This issue has been studied by Nerlove and Wallis (1966), Durbin (1970), and Dezhbaksh (1990).
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12.7.5 SUMMARY OF TESTING PROCEDURES

The preceding has examined several testing procedures for locating autocorrelation in
the disturbances. In all cases, the procedure examines the least squares residuals. We
can summarize the procedures as follows:

LM Test LM = TR2 in a regression of the least squares residuals on [xt , et−1, . . . et−P].
Reject H0 if LM > χ2

∗ [P]. This test examines the covariance of the residuals with lagged
values, controlling for the intervening effect of the independent variables.

Q Test Q = T(T − 2)
∑P

j=1 r2
j /(T − j). Reject H0 if Q > χ2

∗ [P]. This test examines
the raw correlations between the residuals and P lagged values of the residuals.

Durbin–Watson Test d = 2(1 − r), Reject H0: ρ = 0 if d < d∗
L. This test looks di-

rectly at the first order autocorrelation of the residuals.

Durbin’s Test FD = the F statistic for the joint significance of P lags of the residuals
in the regression of the least squares residuals on [xt , yt−1, . . . yt−R, et−1, . . . et−P].
Reject H0 if FD > F∗[P, T − K − P]. This test examines the partial correlations be-
tween the residuals and the lagged residuals, controlling for the intervening effect of
the independent variables and the lagged dependent variable.

The Durbin–Watson test has some major shortcomings. The inconclusive region is
large if T is small or moderate. The bounding distributions, while free of the parameters
β and σ , do depend on the data (and assume that X is nonstochastic). An exact version
based on an algorithm developed by Imhof (1980) avoids the inconclusive region, but is
rarely used. The LM and Box–Pierce statistics do not share these shortcomings—their
limiting distributions are chi-squared independently of the data and the parameters.
For this reason, the LM test has become the standard method in applied research.

12.8 EFFICIENT ESTIMATION WHEN � IS KNOWN

As a prelude to deriving feasible estimators for β in this model, we consider full gen-
eralized least squares estimation assuming that � is known. In the next section, we will
turn to the more realistic case in which � must be estimated as well.

If the parameters of � are known, then the GLS estimator,

β̂ = (X′�−1X)−1(X′�−1y), (12-25)

and the estimate of its sampling variance,

Est. Var[β̂] = σ̂ 2
ε [X′�−1X]−1, (12-26)

where

σ̂ 2
ε = (y − Xβ̂)′�−1(y − Xβ̂)

T
(12-27)
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can be computed in one step. For the AR(1) case, data for the transformed model
are

y∗ =




√
1 − ρ2 y1

y2 − ρy1

y3 − ρy2
...

yT − ρyT−1




, X∗ =




√
1 − ρ2x1

x2 − ρx1

x3 − ρx2
...

xT − ρxT−1




. (12-28)

These transformations are variously labeled partial differences, quasi differences, or
pseudodifferences. Note that in the transformed model, every observation except the
first contains a constant term. What was the column of 1s in X is transformed to
[(1 − ρ2)1/2, (1 − ρ), (1 − ρ), . . .]. Therefore, if the sample is relatively small, then the
problems with measures of fit noted in Section 3.5 will reappear.

The variance of the transformed disturbance is

Var[εt − ρεt−1] = Var[ut ] = σ 2
u .

The variance of the first disturbance is also σ 2
u ; [see (12-6)]. This can be estimated using

(1 − ρ2)σ̂ 2
ε .

Corresponding results have been derived for higher-order autoregressive processes.
For the AR(2) model,

εt = θ1εt−1 + θ2εt−2 + ut , (12-29)

the transformed data for generalized least squares are obtained by

z∗1 =
[

(1 + θ2)
[
(1 − θ2)

2 − θ2
1

]
1 − θ2

]1/2

z1,

z∗2 = (
1 − θ2

2

)1/2z2 − θ1
(
1 − θ2

1

)1/2

1 − θ2
z1,

z∗t = zt − θ1zt−1 − θ2zt−2, t > 2,

(12-30)

where zt is used for yt or xt . The transformation becomes progressively more complex
for higher-order processes.14

Note that in both the AR(1) and AR(2) models, the transformation to y∗ and X∗
involves “starting values” for the processes that depend only on the first one or two
observations. We can view the process as having begun in the infinite past. Since the
sample contains only T observations, however, it is convenient to treat the first one
or two (or P) observations as shown and consider them as “initial values.” Whether
we view the process as having begun at time t = 1 or in the infinite past is ultimately
immaterial in regard to the asymptotic properties of the estimators.

The asymptotic properties for the GLS estimator are quite straightforward given
the apparatus we assembled in Section 12.4. We begin by assuming that {xt , εt } are

14See Box and Jenkins (1984) and Fuller (1976).
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jointly an ergodic, stationary process. Then, after the GLS transformation, {x∗t , ε∗t }
is also stationary and ergodic. Moreover, ε∗t is nonautocorrelated by construction. In
the transformed model, then, {w∗t } = {x∗tε∗t } is a stationary and ergodic martingale
difference series. We can use the Ergodic Theorem to establish consistency and the
Central Limit Theorem for martingale difference sequences to establish asymptotic
normality for GLS in this model. Formal arrangement of the relevant results is left as
an exercise.

12.9 ESTIMATION WHEN � IS UNKNOWN

For an unknown �, there are a variety of approaches. Any consistent estimator of �(ρ)

will suffice—recall from Theorem (10.8) in Section 10.5.2, all that is needed for efficient
estimation of β is a consistent estimator of �(ρ). The complication arises, as might be
expected, in estimating the autocorrelation parameter(s).

12.9.1 AR(1) DISTURBANCES

The AR(1) model is the one most widely used and studied. The most common procedure
is to begin FGLS with a natural estimator of ρ, the autocorrelation of the residuals. Since
b is consistent, we can use r . Others that have been suggested include Theil’s (1971)
estimator, r [(T − K)/(T − 1)] and Durbin’s (1970), the slope on yt−1 in a regression of
yt on yt−1, x t and x t−1. The second step is FGLS based on (12-25)–(12-28). This is the
Prais and Winsten (1954) estimator. The Cochrane and Orcutt (1949) estimator (based
on computational ease) omits the first observation.

It is possible to iterate any of these estimators to convergence. Since the estimator
is asymptotically efficient at every iteration, nothing is gained by doing so. Unlike the
heteroscedastic model, iterating when there is autocorrelation does not produce the
maximum likelihood estimator. The iterated FGLS estimator, regardless of the estima-
tor of ρ, does not account for the term (1/2) ln(1 − ρ2) in the log-likelihood function
[see the following (12-31)].

Maximum likelihood estimators can be obtained by maximizing the log-likelihood
with respect to β, σ 2

u , and ρ. The log-likelihood function may be written

ln L = −
∑T

t=1 u2
t

2σ 2
u

+ 1
2

ln(1 − ρ2) − T
2

(
ln 2π + ln σ 2

u

)
, (12-31)

where, as before, the first observation is computed differently from the others using
(12-28). For a given value of ρ, the maximum likelihood estimators of β and σ 2

u are
the usual ones, GLS and the mean squared residual using the transformed data. The
problem is estimation of ρ. One possibility is to search the range −1 < ρ < 1 for the
value that with the implied estimates of the other parameters maximizes ln L. [This is
Hildreth and Lu’s (1960) approach.] Beach and MacKinnon (1978a) argue that this way
to do the search is very inefficient and have devised a much faster algorithm. Omitting
the first observation and adding an approximation at the lower right corner produces
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the standard approximations to the asymptotic variances of the estimators,

Est.Asy. Var
[
β̂ML

] = σ̂ 2
ε,ML

[
X′�̂−1

MLX
]−1

,

Est.Asy. Var
[
σ̂ 2

u,ML

] = 2σ̂ 4
u,ML/T,

Est.Asy. Var[ρ̂ML] = (
1 − ρ̂2

ML

)/
T.

(12-32)

All the foregoing estimators have the same asymptotic properties. The available evi-
dence on their small-sample properties comes from Monte Carlo studies and is, unfor-
tunately, only suggestive. Griliches and Rao (1969) find evidence that if the sample is
relatively small and ρ is not particularly large, say less than 0.3, then least squares is
as good as or better than FGLS. The problem is the additional variation introduced
into the sampling variance by the variance of r . Beyond these, the results are rather
mixed. Maximum likelihood seems to perform well in general, but the Prais–Winsten
estimator is evidently nearly as efficient. Both estimators have been incorporated in all
contemporary software. In practice, the Beach and MacKinnon’s maximum likelihood
estimator is probably the most common choice.

12.9.2 AR(2) DISTURBANCES

Maximum likelihood procedures for most other disturbance processes are exceedingly
complex. Beach and MacKinnon (1978b) have derived an algorithm for AR(2) dis-
turbances. For higher-order autoregressive models, maximum likelihood estimation is
presently impractical, but the two-step estimators can easily be extended. For models
of the form

εt = θ1εt−1 + θ2εt−2 + · · · + θpεt−p + ut , (12-33)

a simple approach for estimation of the autoregressive parameters is to use the follow-
ing method: Regress et on et−1, . . . , et−p, to obtain consistent estimates of the autore-
gressive parameters. With the estimates of ρ1, . . . , ρp in hand, the Cochrane–Orcutt
estimator can be obtained. If the model is an AR(2), the full FGLS procedure can be
used instead. The least squares computations for the transformed data provide (at least
asymptotically) the appropriate estimates of σ 2

u and the covariance matrix of β̂. As
before, iteration is possible but brings no gains in efficiency.

12.9.3 APPLICATION: ESTIMATION OF A MODEL
WITH AUTOCORRELATION

A restricted version of the model for the U.S. gasoline market that appears in Exam-
ple 12.2 is

ln
Gt

popt
= β1 + β2 ln PG,t + β3 ln

It

popt
+ β4 ln PNC,t + β5 ln PUC,t + εt .

The results in Figure 12.2 suggest that the specification above may be incomplete, and,
if so, there may be autocorrelation in the disturbance in this specification. Least squares
estimation of the equation produces the results in the first row of Table 12.2. The
first 5 autocorrelations of the least squares residuals are 0.674, 0.207, −0.049, −0.159,
and −0.158. This produces Box–Pierce and Box–Ljung statistics of 19.816 and 21.788,
respectively, both of which are larger than the critical value from the chi-squared table
of 11.07. We regressed the least squares residuals on the independent variables and



Greene-50240 book June 17, 2002 14:1

CHAPTER 12 ✦ Serial Correlation 275

TABLE 12.2 Parameter Estimates (Standard Errors in Parentheses)

β1 β2 β3 β4 β5 ρ

OLS −7.736 −0.0591 1.373 −0.127 −0.119 0.000
R2 = 0.95799 (0.674) (0.0325) (0.0756) (0.127) (0.0813) (0.000)
Prais– −6.782 −0.152 1.267 −0.0308 −0.0638 0.862
Winsten (−0.955) (0.0370) (0.107) (0.127) (0.0758) (0.0855)
Cochrane– −7.147 −0.149 1.307 −0.0599 −0.0563 0.849
Orcutt (1.297) (0.0382) (0.144) (0.146) (0.0789) (−.0893)

Maximum −5.159 −0.208 1.0828 0.0878 −0.0351 0.930
Likelihood (1.132) (0.0349) (0.127) (0.125) (0.0659) (0.0620)
AR(2) −11.828 −0.0310 1.415 −0.192 −0.114 0.760

(0.888) (0.0292) (0.0682) (0.133) (0.0846) (r1)

θ1 = 0.9936319, θ2 = −4620284

five lags of the residuals. The coefficients on the lagged residuals and the associated
t statistics are 1.075 (5.493), −0.712 (−2.488), 0.310 (0.968), −0.227 (−0.758), 0.000096
(0.000). The R2 in this regression is 0.598223, which produces a chi-squared value of
21.536. The conclusion is the same. Finally, the Durbin–Watson statistic is 0.60470. For
four regressors and 36 observations, the critical value of dl is 1.24, so on this basis as well,
the hypothesis ρ = 0 would be rejected. The plot of the residuals shown in Figure 12.4
seems consistent with this conclusion.

The Prais and Winsten FGLS estimates appear in the second row of Table 12.4,
followed by the Cochrane and Orcutt results then the maximum likelihood estimates.

FIGURE 12.4 Least Squares Residuals.
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In each of these cases, the autocorrelation coefficient is reestimated using the FGLS
residuals. This recomputed value is what appears in the table.

One might want to examine the residuals after estimation to ascertain whether the
AR(1) model is appropriate. In the results above, there are two large autocorrelation
coefficients listed with the residual based tests, and in computing the LM statistic, we
found that the first two coefficients were statistically significant. If the AR(1) model is
appropriate, then one should find that only the coefficient on the first lagged residual
is statistically significant in this auxiliary, second step regression. Another indicator is
provided by the FGLS residuals, themselves. After computing the FGLS regression,
the estimated residuals,

ε̂ = yt − x′
t β̂

will still be autocorrelated. In our results using the Prais–Winsten estimates, the auto-
correlation of the FGLS residuals is 0.865. The associated Durbin–Watson statistic is
0.278. This is to be expected. However, if the model is correct, then the transformed
residuals

ût = ε̂t − ρ̂ε̂t−1

should be at least close to nonautocorrelated. But, for our data, the autocorrelation of
the adjusted residuals is 0.438 with a Durbin–Watson statistic of 1.125. It appears on
this basis that, in fact, the AR(1) model has not completed the specification.

The results noted earlier suggest that an AR(2) process might better characterize
the disturbances in this model. Simple regression of the least squares residuals on a
constant and two lagged values (the two period counterpart to a method of obtaining
r in the AR(1) model) produces slope coefficients of 0.9936319 and −0.4620284.15

The GLS transformations for the AR(2) model are given in (12-30). We recomputed
the regression using the AR(2) transformation and these two coefficients. These are the
final results shown in Table 12.2. They do bring a substantial change in the results. As an
additional check on the adequacy of the model, we now computed the corrected FGLS
residuals from the AR(2) model,

ût = ε̂t − θ̂1ε̂t−1 − θ̂2ε̂t−2

The first five autocorrelations of these residuals are 0.132, 0.134, 0.016, 0.022, and−0.118.
The Box–Pierce and Box–Ljung statistics are 1.605 and 1.857, which are far from sta-
tistically significant. We thus conclude that the AR(2) model accounts for the autocor-
relation in the data.

The preceding suggests how one might discover the appropriate model for auto-
correlation in a regression model. However, it is worth keeping in mind that the source
of the autocorrelation might itself be discernible in the data. The finding of an AR(2)
process may still suggest that the regression specification is incomplete or inadequate
in some way.

15In fitting an AR(1) model, the stationarity condition is obvious; |r | must be less than one. For an AR(2)
process, the condition is less than obvious. We will examine this issue in Chapter 20. For the present, we
merely state the result; the two values (1/2)[θ1 ± (θ2

1 + 4θ2)
1/2] must be less than one in absolute value. Since

the term in parentheses might be negative, the “roots” might be a complex pair a ± bi , in which case a2 + b2

must be less than one. You can verify that the two complex roots for our process above are indeed “inside
the unit circle.”
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12.9.4 ESTIMATION WITH A LAGGED DEPENDENT VARIABLE

In Section 12.5.1, we considered the problem of estimation by least squares when the
model contains both autocorrelation and lagged dependent variable(s). Since the OLS
estimator is inconsistent, the residuals on which an estimator of ρ would be based are
likewise inconsistent. Therefore, ρ̂ will be inconsistent as well. The consequence is that
the FGLS estimators described earlier are not usable in this case. There is, however, an
alternative way to proceed, based on the method of instrumental variables. The method
of instrumental variables was introduced in Section 5.4. To review, the general problem
is that in the regression model, if

plim(1/T)X′ε �= 0,

then the least squares estimator is not consistent. A consistent estimator is

bIV = (Z′X)−1(Z′y),

where Z is set of K variables chosen such that plim(1/T)Z′ε = 0 but plim(1/T)Z′X �= 0.
For the purpose of consistency only, any such set of instrumental variables will suffice.
The relevance of that here is that the obstacle to consistent FGLS is, at least for the
present, is the lack of a consistent estimator of ρ. By using the technique of instrumental
variables, we may estimate β consistently, then estimate ρ and proceed.

Hatanaka (1974, 1976) has devised an efficient two-step estimator based on this prin-
ciple. To put the estimator in the current context, we consider estimation of the model

yt = x′
tβ + γ yt−1 + εt ,

εt = ρεt−1 + ut .

To get to the second step of FGLS, we require a consistent estimator of the slope pa-
rameters. These estimates can be obtained using an IV estimator, where the column
of Z corresponding to yt−1 is the only one that need be different from that of X. An
appropriate instrument can be obtained by using the fitted values in the regression of
yt on xt and xt−1. The residuals from the IV regression are then used to construct

ρ̂ =
∑T

t=3 ε̂t ε̂t−1∑T
t=3 ε̂2

t

,

where

ε̂t = yt − b′
IVxt − cIV yt−1.

FGLS estimates may now be computed by regressing y∗t = yt − ρ̂yt−1 on

x∗t = xt − ρ̂xt−1,

y∗t−1 = yt−1 − ρ̂yt−2,

ε̂t−1 = yt−1 − b′
IVxt−1 − cIV yt−2.

Let d be the coefficient on ε̂t−1 in this regression. The efficient estimator of ρ is

ˆ̂ρ = ρ̂ + d.

Appropriate asymptotic standard errors for the estimators, including ˆ̂ρ, are obtained
from the s2[X′∗X∗]−1 computed at the second step. Hatanaka shows that these estimators
are asymptotically equivalent to maximum likelihood estimators.
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12.10 COMMON FACTORS

We saw in Example 12.2 that misspecification of an equation could create the appear-
ance of serially correlated disturbances when, in fact, there are none. An orthodox
(perhaps somewhat optimistic) purist might argue that autocorrelation is always an
artifact of misspecification. Although this view might be extreme [see, e.g., Hendry
(1980) for a more moderate, but still strident statement], it does suggest a useful point.
It might be useful if we could examine the specification of a model statistically with
this consideration in mind. The test for common factors is such a test. [See, as well, the
aforementioned paper by Mizon (1995).]

The assumption that the correctly specified model is

yt = x′
tβ + εt , εt = ρεt−1 + ut , t = 1, . . . , T

implies the “reduced form,”

M0: yt = ρyt−1 + (xt − ρxt−1)
′β + ut , t = 2, . . . , T,

where ut is free from serial correlation. The second of these is actually a restriction on
the model

M1: yt = ρyt−1 + x′
tβ + x′

t−1α + ut , t = 2, . . . , T,

in which, once again, ut is a classical disturbance. The second model contains 2K + 1
parameters, but if the model is correct, then α = −ρβ and there are only K + 1 para-
meters and K restrictions. Both M0 and M1 can be estimated by least squares, although
M0 is a nonlinear model. One might then test the restrictions of M0 using an F test. This
test will be valid asymptotically, although its exact distribution in finite samples will not
be precisely F . In large samples, KF will converge to a chi-squared statistic, so we use
the F distribution as usual to be conservative. There is a minor practical complication
in implementing this test. Some elements of α may not be estimable. For example, if xt

contains a constant term, then the one in α is unidentified. If xt contains both current
and lagged values of a variable, then the one period lagged value will appear twice in
M1, once in xt as the lagged value and once in xt−1 as the current value. There are other
combinations that will be problematic, so the actual number of restrictions that appear
in the test is reduced to the number of identified parameters in α.

Example 12.5 Tests for Common Factors
We will examine the gasoline demand model of Example 12.2 and consider a simplified
version of the equation

ln
Gt

popt
= β1 + β2 ln PG,t + β3 ln

I t

popt
+ β4 ln PNC,t + β5 ln PUC,t + εt .

If the AR(1) model is appropriate for εt , then the restricted model,

ln
Gt

popt
= β1 + β2( ln PG,t − ρ ln PG,t−1) + β3

(
ln

I t

popt
− ρ ln

I t−1

popt−1

)
+ β4( ln PNC,t − ρ ln PNC,t−1) + β5( ln PUC,t − ρ ln PUC,t−1)

+ ρ ln Gt−1/popt−1 + ut ,

with six free coefficients will not significantly degrade the fit of the unrestricted model, which
has 10 free coefficients. The F statistic, with 4 and 25 degrees of freedom, for this test equals
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4.311, which is larger than the critical value of 2.76. Thus, we would conclude that the AR(1)
model would not be appropriate for this specification and these data. Note that we reached
the same conclusion after a more conventional analysis of the residuals in the application in
Section 12.9.3.

12.11 FORECASTING IN THE PRESENCE
OF AUTOCORRELATION

For purposes of forecasting, we refer first to the transformed model,

y∗t = x′
∗t
β + ε∗t .

Suppose that the process generating εt is an AR(1) and that ρ is known. Since this
model is a classical regression model, the results of Section 6.6 may be used. The optimal
forecast of y0

∗T+1
, given x0

T+1 and xT (i.e., x0
∗T+1

= x0
T+1 − ρxT), is

ŷ0
∗T+1

= x0′
∗T+1

β̂.

Disassembling ŷ0
∗T+1

, we find that

ŷ0
T+1 − ρyT = x0′

T+1β̂ − ρx′
Tβ̂

or

ŷ0
T+1 = x0′

T+1β̂ + ρ(yT − x′
Tβ̂)

= x0′
T+1β̂ + ρeT.

(12-34)

Thus, we carry forward a proportion ρ of the estimated disturbance in the preceding
period. This step can be justified by reference to

E [εT+1 | εT] = ρεT.

It can also be shown that to forecast n periods ahead, we would use

ŷ0
T+n = x0′

T+nβ̂ + ρneT.

The extension to higher-order autoregressions is direct. For a second-order model, for
example,

ŷ0
T+n = β̂ ′x0

T+n + θ1eT+n−1 + θ2eT+n−2. (12-35)

For residuals that are outside the sample period, we use the recursion

es = θ1es−1 + θ2es−2, (12-36)

beginning with the last two residuals within the sample.
Moving average models are somewhat simpler, as the autocorrelation lasts for only

Q periods. For an MA(1) model, for the first postsample period,

ŷ0
T+1 = x0

T+1
′
β̂ + ε̂T+1,

where

ε̂T+1 = ûT+1 − λûT.
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Therefore, a forecast of εT+1 will use all previous residuals. One way to proceed is to
accumulate ε̂T+1 from the recursion

ût = ε̂t + λût−1

with ûT+1 = û0 = 0 and ε̂t = (yt − x′
t β̂). After the first postsample period,

ε̂T+n = ûT+n − λûT+n−1 = 0.

If the parameters of the disturbance process are known, then the variances for
the forecast errors can be computed using the results of Section 6.6. For an AR(1)
disturbance, the estimated variance would be

s2
f = σ̂ 2

ε + (xt − ρxt−1)
′{Est. Var [β̂]

}
(xt − ρxt−1). (12-37)

For a higher-order process, it is only necessary to modify the calculation of x∗t accord-
ingly. The forecast variances for an MA(1) process are somewhat more involved. Details
may be found in Judge et al. (1985) and Hamilton (1994). If the parameters of the dis-
turbance process, ρ, λ, θ j , and so on, are estimated as well, then the forecast variance
will be greater. For an AR(1) model, the necessary correction to the forecast variance
of the n-period-ahead forecast error is σ̂ 2

ε n2ρ2(n−1)/T. [For a one-period-ahead forecast,
this merely adds a term, σ̂ 2

ε /T, in the brackets in (12-36)]. Higher-order AR and MA
processes are analyzed in Baillie (1979). Finally, if the regressors are stochastic, the
expressions become more complex by another order of magnitude.

If ρ is known, then (12-34) provides the best linear unbiased forecast of yt+1.16

If, however, ρ must be estimated, then this assessment must be modified. There is
information about εt+1 embodied in et . Having to estimate ρ, however, implies that
some or all the value of this information is offset by the variation introduced into the
forecast by including the stochastic component ρ̂et .17 Whether (12-34) is preferable to
the obvious expedient ŷ0

T+n = β̂ ′x0
T+n in a small sample when ρ is estimated remains to

be settled.

12.12 SUMMARY AND CONCLUSIONS

This chapter has examined the generalized regression model with serial correlation in
the disturbances. We began with some general results on analysis of time-series data.
When we consider dependent observations and serial correlation, the laws of large num-
bers and central limit theorems used to analyze independent observations no longer
suffice. We presented some useful tools which extend these results to time series set-
tings. We then considered estimation and testing in the presence of autocorrelation. As
usual, OLS is consistent but inefficient. The Newey–West estimator is a robust estima-
tor for the asymptotic covariance matrix of the OLS estimator. This pair of estimators
also constitute the GMM estimator for the regression model with autocorrelation. We
then considered two-step feasible generalized least squares and maximum likelihood
estimation for the special case usually analyzed by practitioners, the AR(1) model. The

16See Goldberger (1962).
17See Baillie (1979).
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model with a correction for autocorrelation is a restriction on a more general model with
lagged values of both dependent and independent variables. We considered a means of
testing this specification as an alternative to “fixing” the problem of autocorrelation.

Key Terms and Concepts

• AR(1)
• Asymptotic negligibility
• Asymptotic normality
• Autocorrelation
• Autocorrelation matrix
• Autocovariance
• Autocovariance matrix
• Autoregressive form
• Cochrane–Orcutt estimator
• Common factor model
• Covariance stationarity
• Durbin–Watson test
• Ergodicity

• Ergodic Theorem
• First-order autoregression
• Expectations augmented

Phillips curve
• GMM estimator
• Initial conditions
• Innovation
• Lagrange multiplier test
• Martingale sequence
• Martingale difference

sequence
• Moving average form
• Moving average process

• Partial difference
• Prais–Winsten estimator
• Pseudo differences
• Q test
• Quasi differences
• Stationarity
• Summability
• Time-series process
• Time window
• Weakly stationary
• White noise
• Yule Walker equations

Exercises

1. Does first differencing reduce autocorrelation? Consider the models yt = β ′xt +εt ,

where εt = ρεt−1 + ut and εt = ut −λut−1. Compare the autocorrelation of εt in the
original model with that of vt in yt − yt−1 = β ′(xt − xt−1) + vt , where vt = εt − εt−1.

2. Derive the disturbance covariance matrix for the model

yt = β ′xt + εt ,

εt = ρεt−1 + ut − λut−1.

What parameter is estimated by the regression of the OLS residuals on their lagged
values?

3. The following regression is obtained by ordinary least squares, using 21 observa-
tions. (Estimated asymptotic standard errors are shown in parentheses.)

yt = 1.3 + 0.97yt−1 + 2.31xt , D − W = 1.21.

(0.3) (0.18) (1.04)

Test for the presence of autocorrelation in the disturbances.
4. It is commonly asserted that the Durbin–Watson statistic is only appropriate for

testing for first-order autoregressive disturbances. What combination of the coef-
ficients of the model is estimated by the Durbin–Watson statistic in each of the
following cases: AR(1), AR(2), MA(1)? In each case, assume that the regression
model does not contain a lagged dependent variable. Comment on the impact on
your results of relaxing this assumption.

5. The data used to fit the expectations augmented Phillips curve in Example 12.3 are
given in Table F5.1. Using these data, reestimate the model given in the example.
Carry out a formal test for first order autocorrelation using the LM statistic. Then,
reestimate the model using an AR(1) model for the disturbance process. Since
the sample is large, the Prais–Winsten and Cochrane–Orcutt estimators should
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give essentially the same answer. Do they? After fitting the model, obtain the
transformed residuals and examine them for first order autocorrelation. Does the
AR(1) model appear to have adequately “fixed” the problem?

6. Data for fitting an improved Phillips curve model can be obtained from many
sources, including the Bureau of Economic Analysis’s (BEA) own website, Econo-
magic.com, and so on. Obtain the necessary data and expand the model of exam-
ple 12.3. Does adding additional explanatory variables to the model reduce the
extreme pattern of the OLS residuals that appears in Figure 12.3?


