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THE CLASSICAL MULTIPLE
LINEAR REGRESSION

MODEL

Q
2.1 INTRODUCTION

An econometric study begins with a set of propositions about some aspect of the
economy. The theory specifies a set of precise, deterministic relationships among vari-
ables. Familiar examples are demand equations, production functions, and macroeco-
nomic models. The empirical investigation provides estimates of unknown parameters
in the model, such as elasticities or the effects of monetary policy, and usually attempts to
measure the validity of the theory against the behavior of observable data. Once suitably
constructed, the model might then be used for prediction or analysis of behavior. This
book will develop a large number of models and techniques used in this framework.

The linear regression model is the single most useful tool in the econometrician’s
kit. Though to an increasing degree in the contemporary literature, it is often only
the departure point for the full analysis, it remains the device used to begin almost all
empirical research. This chapter will develop the model. The next several chapters will
discuss more elaborate specifications and complications that arise in the application of
techniques that are based on the simple models presented here.

2.2 THE LINEAR REGRESSION MODEL

The multiple linear regression model is used to study the relationship between a depen-
dent variable and one or more independent variables. The generic form of the linear
regression model is

y = f (x1, x2, . . . , xK) + ε

= x1β1 + x2β2 + · · · + xKβK + ε
(2-1)

where y is the dependent or explained variable and x1, . . . , xK are the independent
or explanatory variables. One’s theory will specify f (x1, x2, . . . , xK). This function is
commonly called the population regression equation of y on x1, . . . , xK. In this set-
ting, y is the regressand and xk, k= 1, . . . , K, are the regressors or covariates. The
underlying theory will specify the dependent and independent variables in the model.
It is not always obvious which is appropriately defined as each of these—for exam-
ple, a demand equation, quantity = β1 + price × β2 + income × β3 + ε, and an inverse
demand equation, price = γ1 + quantity × γ2 + income × γ3 + u are equally valid rep-
resentations of a market. For modeling purposes, it will often prove useful to think in
terms of “autonomous variation.” One can conceive of movement of the independent
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8 CHAPTER 2 ✦ The Classical Multiple Linear Regression Model

variables outside the relationships defined by the model while movement of the depen-
dent variable is considered in response to some independent or exogenous stimulus.1

The term ε is a random disturbance, so named because it “disturbs” an otherwise
stable relationship. The disturbance arises for several reasons, primarily because we
cannot hope to capture every influence on an economic variable in a model, no matter
how elaborate. The net effect, which can be positive or negative, of these omitted factors
is captured in the disturbance. There are many other contributors to the disturbance
in an empirical model. Probably the most significant is errors of measurement. It is
easy to theorize about the relationships among precisely defined variables; it is quite
another to obtain accurate measures of these variables. For example, the difficulty of
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet,
flows of services from capital stocks is a recurrent theme in the empirical literature.
At the extreme, there may be no observable counterpart to the theoretical variable.
The literature on the permanent income model of consumption [e.g., Friedman (1957)]
provides an interesting example.

We assume that each observation in a sample (yi , xi1, xi2, . . . , xi K), i = 1, . . . , n, is
generated by an underlying process described by

yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

The observed value of yi is the sum of two parts, a deterministic part and the random
part, εi . Our objective is to estimate the unknown parameters of the model, use the
data to study the validity of the theoretical propositions, and perhaps use the model to
predict the variable y. How we proceed from here depends crucially on what we assume
about the stochastic process that has led to our observations of the data in hand.

Example 2.1 Keynes’s Consumption Function
Example 1.1 discussed a model of consumption proposed by Keynes and his General Theory
(1936). The theory that consumption, C, and income, X , are related certainly seems consistent
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of
course, the linear function is only approximate. Even ignoring the anomalous wartime years,
consumption and income cannot be connected by any simple deterministic relationship.
The linear model, C = α + βX , is intended only to represent the salient features of this part
of the economy. It is hopeless to attempt to capture every influence in the relationship. The
next step is to incorporate the inherent randomness in its real world counterpart. Thus, we
write C = f ( X, ε) , where ε is a stochastic element. It is important not to view ε as a catchall
for the inadequacies of the model. The model including ε appears adequate for the data
not including the war years, but for 1942–1945, something systematic clearly seems to be
missing. Consumption in these years could not rise to rates historically consistent with these
levels of income because of wartime rationing. A model meant to describe consumption in
this period would have to accommodate this influence.

It remains to establish how the stochastic element will be incorporated in the equation.
The most frequent approach is to assume that it is additive. Thus, we recast the equation
in stochastic terms: C = α + βX + ε. This equation is an empirical counterpart to Keynes’s
theoretical model. But, what of those anomalous years of rationing? If we were to ignore
our intuition and attempt to “fit” a line to all these data—the next chapter will discuss
at length how we should do that—we might arrive at the dotted line in the figure as our best
guess. This line, however, is obviously being distorted by the rationing. A more appropriate

1By this definition, it would seem that in our demand relationship, only income would be an independent
variable while both price and quantity would be dependent. That makes sense—in a market, price and quantity
are determined at the same time, and do change only when something outside the market changes. We will
return to this specific case in Chapter 15.
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FIGURE 2.1 Consumption Data, 1940–1950.

specification for these data that accommodates both the stochastic nature of the data and
the special circumstances of the years 1942–1945 might be one that shifts straight down
in the war years, C = α + βX + dwaryearsδw + ε, where the new variable, dwaryears equals one in
1942–1945 and zero in other years and �w < ∅.

One of the most useful aspects of the multiple regression model is its ability to identify
the independent effects of a set of variables on a dependent variable. Example 2.2
describes a common application.

Example 2.2 Earnings and Education
A number of recent studies have analyzed the relationship between earnings and educa-
tion. We would expect, on average, higher levels of education to be associated with higher
incomes. The simple regression model

earnings = β1 + β2 education + ε,

however, neglects the fact that most people have higher incomes when they are older than
when they are young, regardless of their education. Thus, β2 will overstate the marginal
impact of education. If age and education are positively correlated, then the regression model
will associate all the observed increases in income with increases in education. A better
specification would account for the effect of age, as in

earnings = β1 + β2 education + β3 age + ε.

It is often observed that income tends to rise less rapidly in the later earning years than in
the early ones. To accommodate this possibility, we might extend the model to

earnings = β1 + β2 education + β3 age + β4 age2 + ε.

We would expect β3 to be positive and β4 to be negative.
The crucial feature of this model is that it allows us to carry out a conceptual experiment

that might not be observed in the actual data. In the example, we might like to (and could)
compare the earnings of two individuals of the same age with different amounts of “education”
even if the data set does not actually contain two such individuals. How education should be
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10 CHAPTER 2 ✦ The Classical Multiple Linear Regression Model

measured in this setting is a difficult problem. The study of the earnings of twins by Ashenfelter
and Krueger (1994), which uses precisely this specification of the earnings equation, presents
an interesting approach. We will examine this study in some detail in Section 5.6.4.

A large literature has been devoted to an intriguing question on this subject. Education
is not truly “independent” in this setting. Highly motivated individuals will choose to pursue
more education (for example, by going to college or graduate school) than others. By the
same token, highly motivated individuals may do things that, on average, lead them to have
higher incomes. If so, does a positive β2 that suggests an association between income and
education really measure the effect of education on income, or does it reflect the effect of
some underlying effect on both variables that we have not included in our regression model?
We will revisit the issue in Section 22.4.

2.3 ASSUMPTIONS OF THE CLASSICAL LINEAR
REGRESSION MODEL

The classical linear regression model consists of a set of assumptions about how a data
set will be produced by an underlying “data-generating process.” The theory will specify
a deterministic relationship between the dependent variable and the independent vari-
ables. The assumptions that describe the form of the model and relationships among its
parts and imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1 LINEARITY OF THE REGRESSION MODEL

Let the column vector xk be the n observations on variable xk, k = 1, . . . , K, and as-
semble these data in an n × K data matrix X. In most contexts, the first column of X is
assumed to be a column of 1s so that β1 is the constant term in the model. Let y be the
n observations, y1, . . . , yn, and let ε be the column vector containing the n disturbances.

TABLE 2.1 Assumptions of the Classical Linear Regression Model

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi . The model specifies a linear relationship
between y and x1, . . . , xK.

A2. Full rank: There is no exact linear relationship among any of the independent variables
in the model. This assumption will be necessary for estimation of the parameters of the
model.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0. This states that
the expected value of the disturbance at observation i in the sample is not a function of the
independent variables observed at any observation, including this one. This means that the
independent variables will not carry useful information for prediction of εi .
A4. Homoscedasticity and nonautocorrelation: Each disturbance, εi has the same finite
variance, σ 2 and is uncorrelated with every other disturbance, ε j . This assumption limits the
generality of the model, and we will want to examine how to relax it in the chapters to
follow.
A5. Exogenously generated data: The data in (xj1, xj2, . . . , xj K) may be any mixture of
constants and random variables. The process generating the data operates outside the
assumptions of the model—that is, independently of the process that generates εi . Note that
this extends A3. Analysis is done conditionally on the observed X.
A6. Normal distribution: The disturbances are normally distributed. Once again, this is a
convenience that we will dispense with after some analysis of its implications.
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The model in (2-1) as it applies to all n observations can now be written

y = x1β1 + · · · + xKβK + ε, (2-2)

or in the form of Assumption 1,

ASSUMPTION: y = Xβ + ε. (2-3)

A NOTATIONAL CONVENTION.
Henceforth, to avoid a possibly confusing and cumbersome notation, we will use a
boldface x to denote a column or a row of X. Which applies will be clear from the
context. In (2-2), xk is the kth column of X. Subscripts j and k will be used to denote
columns (variables). It will often be convenient to refer to a single observation in (2-3),
which we would write

yi = x′
i β + εi . (2-4)

Subscripts i and t will generally be used to denote rows (observations) of X. In (2-4), xi

is a column vector that is the transpose of the ith 1 × K row of X.

Our primary interest is in estimation and inference about the parameter vector β.
Note that the simple regression model in Example 2.1 is a special case in which X has
only two columns, the first of which is a column of 1s. The assumption of linearity of the
regression model includes the additive disturbance. For the regression to be linear in
the sense described here, it must be of the form in (2-1) either in the original variables
or after some suitable transformation. For example, the model

y = Axβeε

is linear (after taking logs on both sides of the equation), whereas

y = Axβ + ε

is not. The observed dependent variable is thus the sum of two components, a deter-
ministic element α + βx and a random variable ε. It is worth emphasizing that neither
of the two parts is directly observed because α and β are unknown.

The linearity assumption is not so narrow as it might first appear. In the regression
context, linearity refers to the manner in which the parameters and the disturbance enter
the equation, not necessarily to the relationship among the variables. For example, the
equations y = α +βx + ε, y = α +β cos(x)+ ε, y = α +β/x + ε, and y = α +β ln x + ε

are all linear in some function of x by the definition we have used here. In the examples,
only x has been transformed, but y could have been as well, as in y = Axβeε, which is a
linear relationship in the logs of x and y; ln y = α + β ln x + ε. The variety of functions
is unlimited. This aspect of the model is used in a number of commonly used functional
forms. For example, the loglinear model is

ln y = β1 + β2 ln X2 + β3 ln X3 + · · · + βK ln XK + ε.

This equation is also known as the constant elasticity form as in this equation, the
elasticity of y with respect to changes in x is ∂ ln y/∂ ln xk = βk, which does not vary
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with xk. The log linear form is often used in models of demand and production. Different
values of β produce widely varying functions.

Example 2.3 The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1960—1995 are given in Table F2.2 in
Appendix F. We will use these data to obtain, among other things, estimates of the income,
own price, and cross-price elasticities of demand in this market. These data also present an
interesting question on the issue of holding “all other things constant,” that was suggested
in Example 2.2. In particular, consider a somewhat abbreviated model of per capita gasoline
consumption:

ln(G/pop) = β1 + β2 ln income + β3 ln priceG + β4 ln Pnewcars + β5 ln Pusedcars + ε.

This model will provide estimates of the income and price elasticities of demand for gasoline
and an estimate of the elasticity of demand with respect to the prices of new and used cars.
What should we expect for the sign of β4? Cars and gasoline are complementary goods, so if
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise,
not lower. We can use the multiple regression model and the gasoline data to attempt to
answer the question.

A semilog model is often used to model growth rates:

ln yt = x′
tβ + δt + εt .

In this model, the autonomous (at least not explained by the model itself) proportional,
per period growth rate is d ln y/dt = δ. Other variations of the general form

f (yt ) = g(x′
tβ + εt )

will allow a tremendous variety of functional forms, all of which fit into our definition
of a linear model.

The linear regression model is sometimes interpreted as an approximation to some
unknown, underlying function. (See Section A.8.1 for discussion.) By this interpretation,
however, the linear model, even with quadratic terms, is fairly limited in that such
an approximation is likely to be useful only over a small range of variation of the
independent variables. The translog model discussed in Example 2.4, in contrast, has
proved far more effective as an approximating function.

Example 2.4 The Translog Model
Modern studies of demand and production are usually done in the context of a flexible func-
tional form. Flexible functional forms are used in econometrics because they allow analysts
to model second-order effects such as elasticities of substitution, which are functions of the
second derivatives of production, cost, or utility functions. The linear model restricts these to
equal zero, whereas the log linear model (e.g., the Cobb–Douglas model) restricts the inter-
esting elasticities to the uninteresting values of –1 or +1. The most popular flexible functional
form is the translog model, which is often interpreted as a second-order approximation to
an unknown functional form. [See Berndt and Christensen (1973).] One way to derive it is
as follows. We first write y = g( x1, . . . , xK ) . Then, ln y = ln g( . . .) = f ( . . .) . Since by a trivial
transformation xk = exp( ln xk) , we interpret the function as a function of the logarithms of
the x’s. Thus, ln y = f ( ln x1, . . . , ln xK ) .

wgreene
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Now, expand this function in a second-order Taylor series around the point x = [1, 1, . . . , 1]′

so that at the expansion point, the log of each variable is a convenient zero. Then

ln y = f (0) +
K∑

k=1

[∂ f ( ·)/∂ ln xk]| ln x=0 ln xk

+ 1
2

K∑
k=1

K∑
l=1

[∂2 f ( ·)/∂ ln xk∂ ln xl ]| ln x=0 ln xk ln xl + ε.

The disturbance in this model is assumed to embody the familiar factors and the error of
approximation to the unknown function. Since the function and its derivatives evaluated at
the fixed value 0 are constants, we interpret them as the coefficients and write

ln y = β0 +
K∑

k=1

βk ln xk + 1
2

K∑
k=1

K∑
l=1

γkl ln xk ln xl + ε.

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature
when it is used to approximate another function. An interesting feature of this formulation is
that the log linear model is a special case, γkl = 0. Also, there is an interesting test of the
underlying theory possible because if the underlying function were assumed to be continuous
and twice continuously differentiable, then by Young’s theorem it must be true that γkl = γl k.
We will see in Chapter 14 how this feature is studied in practice.

Despite its great flexibility, the linear model does not include all the situations we
encounter in practice. For a simple example, there is no transformation that will reduce
y = α + 1/(β1 + β2x) + ε to linearity. The methods we consider in this chapter are not
appropriate for estimating the parameters of such a model. Relatively straightforward
techniques have been developed for nonlinear models such as this, however. We shall
treat them in detail in Chapter 9.

2.3.2 FULL RANK

Assumption 2 is that there are no exact linear relationships among the variables.

ASSUMPTION: X is an n × K matrix with rank K. (2-5)

Hence, X has full column rank; the columns of X are linearly independent and there
are at least K observations. [See (A-42) and the surrounding text.] This assumption is
known as an identification condition. To see the need for this assumption, consider an
example.

Example 2.5 Short Rank
Suppose that a cross-section model specifies

C = β1 + β2 nonlabor income + β3 salary + β4 total income + ε,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact
linear dependency in the model. Now let

β ′
2 = β2 + a,

β ′
3 = β3 + a,

and

β ′
4 = β4 − a,

wgreene
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where a is any number. Then the exact same value appears on the right-hand side of C if
we substitute β ′

2, β ′
3, and β ′

4 for β2, β3, and β4. Obviously, there is no way to estimate the
parameters of this model.

If there are fewer than K observations, then X cannot have full rank. Hence, we make
the (redundant) assumption that n is at least as large as K.

In a two-variable linear model with a constant term, the full rank assumption means
that there must be variation in the regressor x. If there is no variation in x, then all our
observations will lie on a vertical line. This situation does not invalidate the other
assumptions of the model; presumably, it is a flaw in the data set. The possibility that
this suggests is that we could have drawn a sample in which there was variation in x,
but in this instance, we did not. Thus, the model still applies, but we cannot learn about
it from the data set in hand.

2.3.3 REGRESSION

The disturbance is assumed to have conditional expected value zero at every observa-
tion, which we write as

E [εi | X] = 0. (2-6)

For the full set of observations, we write Assumption 3 as:

ASSUMPTION: E [ε | X] =




E [ε1 | X]
E [ε2 | X]

...

E [εn | X]


 = 0. (2-7)

There is a subtle point in this discussion that the observant reader might have noted.
In (2-7), the left-hand side states, in principle, that the mean of each εi conditioned on
all observations xi is zero. This conditional mean assumption states, in words, that no
observations on x convey information about the expected value of the disturbance.
It is conceivable—for example, in a time-series setting—that although xi might pro-
vide no information about E [εi |·], x j at some other observation, such as in the next
time period, might. Our assumption at this point is that there is no information about
E [εi | ·] contained in any observation x j . Later, when we extend the model, we will
study the implications of dropping this assumption. [See Woolridge (1995).] We will
also assume that the disturbances convey no information about each other. That is,
E [εi | ε1, . . . , εi–1, εi+1, . . . , εn] = 0. In sum, at this point, we have assumed that the
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, since

E [εi ] = Ex[E [εi | X]] = Ex[0] = 0.

Since, for each εi , Cov[E [εi | X], X] = Cov[εi , X], Assumption 3 implies that Cov[εi , X]=
0 for all i . (Exercise: Is the converse true?)

In most cases, the zero mean assumption is not restrictive. Consider a two-variable
model and suppose that the mean of ε is µ 
= 0. Then α + βx + ε is the same as
(α + µ) + βx + (ε – µ). Letting α′ = α + µ and ε′ = ε–µ produces the original model.
For an application, see the discussion of frontier production functions in Section 17.6.3.
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But, if the original model does not contain a constant term, then assuming E [εi ] = 0
could be substantive. If E [εi ] can be expressed as a linear function of xi , then, as before, a
transformation of the model will produce disturbances with zero means. But, if not, then
the nonzero mean of the disturbances will be a substantive part of the model structure.
This does suggest that there is a potential problem in models without constant terms. As
a general rule, regression models should not be specified without constant terms unless
this is specifically dictated by the underlying theory.2 Arguably, if we have reason to
specify that the mean of the disturbance is something other than zero, we should build it
into the systematic part of the regression, leaving in the disturbance only the unknown
part of ε. Assumption 3 also implies that

E [y | X] = Xβ. (2-8)

Assumptions 1 and 3 comprise the linear regression model. The regression of y on X is
the conditional mean, E [y | X], so that without Assumption 3, Xβ is not the conditional
mean function.

The remaining assumptions will more completely specify the characteristics of the
disturbances in the model and state the conditions under which the sample observations
on x are obtained.

2.3.4 SPHERICAL DISTURBANCES

The fourth assumption concerns the variances and covariances of the disturbances:

Var[εi | X] = σ 2, for all i = 1, . . . , n,

and

Cov[εi , ε j | X] = 0, for all i 
= j.

Constant variance is labeled homoscedasticity. Consider a model that describes the prof-
its of firms in an industry as a function of, say, size. Even accounting for size, measured in
dollar terms, the profits of large firms will exhibit greater variation than those of smaller
firms. The homoscedasticity assumption would be inappropriate here. Also, survey data
on household expenditure patterns often display marked heteroscedasticity, even after
accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. In
Figure 2.1, there is some suggestion that the disturbances might not be truly independent
across observations. Although the number of observations is limited, it does appear
that, on average, each disturbance tends to be followed by one with the same sign. This
“inertia” is precisely what is meant by autocorrelation, and it is assumed away at this
point. Methods of handling autocorrelation in economic data occupy a large proportion
of the literature and will be treated at length in Chapter 12. Note that nonautocorrelation
does not imply that observations yi and yj are uncorrelated. The assumption is that
deviations of observations from their expected values are uncorrelated.

2Models that describe first differences of variables might well be specified without constants. Consider yt – yt–1.
If there is a constant term α on the right-hand side of the equation, then yt is a function of αt , which is an
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We
will return to this issue in Chapter 19.
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The two assumptions imply that

E [εε′ | X] =




E [ε1ε1 | X] E [ε1ε2 | X] · · · E [ε1εn | X]
E [ε2ε1 | X] E [ε2ε2 | X] · · · E [ε2εn | X]

...
...

...
...

E [εnε1 | X] E [εnε2 | X] · · · E [εnεn | X]




=




σ 2 0 · · · 0
0 σ 2 · · · 0

...

0 0 · · · σ 2


 ,

which we summarize in Assumption 4:

ASSUMPTION: E [εε′ | X] = σ 2I. (2-9)

By using the variance decomposition formula in (B-70), we find

Var[ε] = E [Var[ε | X]] + Var[E [ε | X]] = σ 2I.

Once again, we should emphasize that this assumption describes the information about
the variances and covariances among the disturbances that is provided by the indepen-
dent variables. For the present, we assume that there is none. We will also drop this
assumption later when we enrich the regression model. We are also assuming that the
disturbances themselves provide no information about the variances and covariances.
Although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[εt | εt–1] = σ 2 + αε2

t−1—a “GARCH” model (see
Section 11.8)—do not violate our conditional variance assumption, but do assume that
Var[εt | εt–1] 
= Var[εt ].

Disturbances that meet the twin assumptions of homoscedasticity and nonautocor-
relation are sometimes called spherical disturbances.3

2.3.5 DATA GENERATING PROCESS FOR THE REGRESSORS

It is common to assume that xi is nonstochastic, as it would be in an experimental
situation. Here the analyst chooses the values of the regressors and then observes yi .
This process might apply, for example, in an agricultural experiment in which yi is yield
and xi is fertilizer concentration and water applied. The assumption of nonstochastic
regressors at this point would be a mathematical convenience. With it, we could use the
results of elementary statistics to obtain our results by treating the vector xi simply as a
known constant in the probability distribution of yi . With this simplification, Assump-
tions A3 and A4 would be made unconditional and the counterparts would now simply
state that the probability distribution of εi involves none of the constants in X.

Social scientists are almost never able to analyze experimental data, and relatively
few of their models are built around nonrandom regressors. Clearly, for example, in

3The term will describe the multivariate normal distribution; see (B-95). If � = σ 2I in the multivariate normal
density, then the equation f (x) = c is the formula for a “ball” centered at µ with radius σ in n-dimensional
space. The name spherical is used whether or not the normal distribution is assumed; sometimes the “spherical
normal” distribution is assumed explicitly.
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any model of the macroeconomy, it would be difficult to defend such an asymmetric
treatment of aggregate data. Realistically, we have to allow the data on xi to be random
the same as yi so an alternative formulation is to assume that xi is a random vector and
our formal assumption concerns the nature of the random process that produces xi . If xi

is taken to be a random vector, then Assumptions 1 through 4 become a statement about
the joint distribution of yi and xi . The precise nature of the regressor and how we view
the sampling process will be a major determinant of our derivation of the statistical
properties of our estimators and test statistics. In the end, the crucial assumption is
Assumption 3, the uncorrelatedness of X and ε. Now, we do note that this alternative
is not completely satisfactory either, since X may well contain nonstochastic elements,
including a constant, a time trend, and dummy variables that mark specific episodes
in time. This makes for an ambiguous conclusion, but there is a straightforward and
economically useful way out of it. We will assume that X can be a mixture of constants
and random variables, but the important assumption is that the ultimate source of the
data in X is unrelated (statistically and economically) to the source of ε.

ASSUMPTION: X may be fixed or random, but it is generated by a
mechanism that is unrelated to ε.

(2-10)

2.3.6 NORMALITY

It is convenient to assume that the disturbances are normally distributed, with zero mean
and constant variance. That is, we add normality of the distribution to Assumptions 3
and 4.

ASSUMPTION: ε | X ∼ N[0, σ 2I]. (2-11)

In view of our description of the source of ε, the conditions of the central limit the-
orem will generally apply, at least approximately, and the normality assumption will be
reasonable in most settings. A useful implication of Assumption 6 is that it implies that
observations on εi are statistically independent as well as uncorrelated. [See the third
point in Section B.8, (B-97) and (B-99).] Normality is often viewed as an unnecessary and
possibly inappropriate addition to the regression model. Except in those cases in which
some alternative distribution is explicitly assumed, as in the stochastic frontier model
discussed in Section 17.6.3, the normality assumption is probably quite reasonable.

Normality is not necessary to obtain many of the results we use in multiple regression
analysis, although it will enable us to obtain several exact statistical results. It does prove
useful in constructing test statistics, as shown in Section 4.7. Later, it will be possible
to relax this assumption and retain most of the statistical results we obtain here. (See
Sections 5.3, 5.4 and 6.4.)

2.4 SUMMARY AND CONCLUSIONS

This chapter has framed the linear regression model, the basic platform for model build-
ing in econometrics. The assumptions of the classical regression model are summarized
in Figure 2.2, which shows the two-variable case.
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FIGURE 2.2 The Classical Regression Model.
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