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LEAST SQUARES

Q
3.1 INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the population
that underlies an observed sample of data. There are a number of different approaches
to estimation of the parameters of the model. For a variety of practical and theoretical
reasons that we will explore as we progress through the next several chapters, the
method of least squares has long been the most popular. Moreover, in most cases in
which some other estimation method is found to be preferable, least squares remains
the benchmark approach, and often, the preferred method ultimately amounts to a
modification of least squares. In this chapter, we begin the analysis of this important set
of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relation yi = x′
iβ + εi are the objects of

estimation. It is necessary to distinguish between population quantities, such as β and εi ,
and sample estimates of them, denoted b and ei . The population regression is E [yi | xi ] =
x′

iβ, whereas our estimate of E [yi | xi ] is denoted

ŷi = x′
i b.

The disturbance associated with the ith data point is

εi = yi − x′
iβ.

For any value of b, we shall estimate εi with the residual

ei = yi − x′
i b.

From the definitions,

yi = x′
iβ + εi = x′

i b + ei .

These equations are summarized for the two variable regression in Figure 3.1.
The population quantity β is a vector of unknown parameters of the probability

distribution of yi whose values we hope to estimate with our sample data, (yi , xi ), i =
1, . . . , n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x′

i b is close to the data points. The measure of closeness constitutes a fitting criterion.
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FIGURE 3.1 Population and Sample Regression.

Although numerous candidates have been suggested, the one used most frequently is
least squares.1

3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:
n∑

i=1

e2
i0 =

n∑
i=1

(yi − x′
i b0)

2, (3-1)

where b0 denotes the choice for the coefficient vector. In matrix terms, minimizing the
sum of squares in (3-1) requires us to choose b0 to

Minimizeb0 S(b0) = e′
0e0 = (y − Xb0)

′(y − Xb0). (3-2)

Expanding this gives

e′
0e0 = y′y − b′

0X′y − y′Xb0 + b′
0X′Xb0 (3-3)

or

S(b0) = y′y − 2y′Xb0 + b0X′Xb0.

The necessary condition for a minimum is

∂S(b0)

∂b0
= −2X′y + 2X′Xb0 = 0. (3-4)

1We shall have to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapters 4 and 5.
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Let b be the solution. Then b satisfies the least squares normal equations,

X′Xb = X′y. (3-5)

If the inverse of X′X exists, which follows from the full rank assumption (Assumption
A2 in Section 2.3), then the solution is

b = (X′X)−1X′y. (3-6)

For this solution to minimize the sum of squares,

∂2S(b)

∂b ∂b′ = 2X′X

must be a positive definite matrix. Let q = c′X′Xc for some arbitrary nonzero vector c.
Then

q = v′v =
n∑

i=1

v2
i , where v = Xc.

Unless every element of v is zero, q is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full rank. Since c is arbitrary, q is positive for every nonzero c, which estab-
lishes that 2X′X is positive definite. Therefore, if X has full rank, then the least squares
solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression, we consider an example based
on the macroeconomic data in Data Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI, and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, . . .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on a
constant, the time trend, and real GNP, which correspond to x1, x2, and x3. (For reasons
to be discussed in Chapter 20, this is probably not a well specified equation for these
macroeconomic variables. It will suffice for a simple numerical example, however.)
Inserting the specific variables of the example, we have

b1n + b2	i Ti + b3	i Gi = 	i Yi ,

b1	i Ti + b2	i T2
i + b3	i Ti Gi = 	i Ti Yi ,

b1	i Gi + b2	i Ti Gi + b3	i G2
i = 	i Gi Yi .

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

b1 = Ȳ − b2T̄ − b3Ḡ

= 0.20333 − b2 × 8 − b3 × 1.2873. (3-7)
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TABLE 3.1 Data Matrices

Real Real Interest Inflation
Investment Constant Trend GNP Rate Rate

(Y) (1) (T) (G) (R) (P)

0.161 1 1 1.058 5.16 4.40
0.172 1 2 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 4.16
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82

y = 0.163 X = 1 8 1.232 6.25 9.31
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:

b2	i (Ti − T̄ )2 + b3	i (Ti − T̄ )(Gi − Ḡ ) = 	i (Ti − T̄ )(Yi − Ȳ ),

b2	i (Ti − T̄ )(Gi − Ḡ ) + b3	i (Gi − Ḡ )2 = 	i (Gi − Ḡ )(Yi − Ȳ ).
(3-8)

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b2 and b3 are

b2 = 	i ti yi	i g2
i − 	i gi yi	i ti gi

	i t2
i 	i g2

i − (	i gi ti )2
= 1.6040(0.359609) − 0.066196(9.82)

280(0.359609) − (9.82)2
= −0.0171984,

b3 = 	i gi yi	i t2
i − 	i ti yi	i ti gi

	i t2
i 	i g2

i − (	i gi ti )2
= 0.066196(280) − 1.6040(9.82)

280(0.359609) − (9.82)2
= 0.653723.

With these solutions in hand, the intercept can now be computed using (3-7); b1 =
− 0.500639.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “byx” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

byg = 	i gi yi

	i g2
i

= 0.184078. (3-9)
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Now divide both the numerator and denominator in the expression for b3 by 	i t2
i 	i g2

i .
By manipulating it a bit and using the definition of the sample correlation between G
and T, r2

gt = (	i gi ti )2/(	i g2
i 	i t2

i ), and defining byt and btg likewise, we obtain

byg·t = byg

1 − r2
gt

− byt btg

1 − r2
gt

= 0.653723. (3-10)

(The notation “byg·t ” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of t .”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable t on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, byt = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is −0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which x1 is a constant term is

by2·3 = by2 − by3b32

1 − r2
23

. (3-11)

It is clear from this expression that the magnitudes of by2·3 and by2 can be quite different.
They need not even have the same sign.

As a final observation, note what becomes of byg·t in (3-10) if r2
gt equals zero. The first

term becomes byg , whereas the second becomes zero. (If G and T are not correlated,
then the slope in the regression of G on T, btg , is zero.) Therefore, we conclude the
following.

THEOREM 3.1 Orthogonal Regression
If the variables in a multiple regression are not correlated (i.e., are orthogonal),
then the multiple regression slopes are the same as the slopes in the individual
simple regressions.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes—in addition to the constant, time trend, and GNP—an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are




15.000 120.00 19.310 111.79 99.770
120.000 1240.0 164.30 1035.9 875.60

19.310 164.30 25.218 148.98 131.22
111.79 1035.9 148.98 953.86 799.02

99.770 875.60 131.22 799.02 716.67







b1

b2

b3

b4

b5


 =




3.0500
26.004

3.9926
23.521
20.732


 .
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The solution is

b = (X′X)−1X′y = (−0.50907, −0.01658, 0.67038, −0.002326, −0.00009401)′.

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION

The normal equations are

X′Xb − X′y = −X′(y − Xb) = −X′e = 0. (3-12)

Hence, for every column xk of X, x′
ke = 0. If the first column of X is a column of 1s,

then there are three implications.

1. The least squares residuals sum to zero. This implication follows from x′
1e = i′e =

	i ei = 0.
2. The regression hyperplane passes through the point of means of the data. The first

normal equation implies that ȳ = x̄′b.
3. The mean of the fitted values from the regression equals the mean of the actual

values. This implication follows from point 1 because the fitted values are just
ŷ = Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION

The vector of least squares residuals is

e = y − Xb. (3-13)

Inserting the result in (3-6) for b gives

e = y − X(X′X)−1X′y = (I − X(X′X)−1X′)y = My. (3-14)

The n × n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M′) and idempotent (M = M2). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to (2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
ŷ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

ŷ = y − e = (I − M)y = X(X′X)−1X′y = Py. (3-16)

The matrix P, which is also symmetric and idempotent, is a projection matrix. It is the
matrix formed from X such that when a vector y is premultiplied by P, the result is
the fitted values in the least squares regression of y on X. This is also the projection of
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the vector y into the column space of X. (See Sections A3.5 and A3.7.) By multiplying
it out, you will find that, like M, P is symmetric and idempotent. Given the earlier results,
it also follows that M and P are orthogonal;

PM = MP = 0.

Finally, as might be expected from (3-15)

PX = X.

As a consequence of (3-15) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

y′y = y′P′Py + y′M′My

= ŷ′ŷ + e′e

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

e′e = y′M′My = y′My = y′e = e′y,

e′e = y′y − b′X′Xb = y′y − b′X′y = y′y − y′Xb.

FIGURE 3.2 Projection of y into the column space of X.

y
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3.3 PARTITIONED REGRESSION AND PARTIAL
REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).

Suppose that the regression involves two sets of variables X1 and X2. Thus,

y = Xβ + ε = X1β1 + X2β2 + ε.

What is the algebraic solution for b2? The normal equations are

(1)

(2)

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

][
b1

b2

]
=

[
X′

1y
X′

2y

]
. (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b2. We first solve
(1) for b1:

b1 = (X′
1X1)

−1X′
1y − (X′

1X1)
−1X′

1X2b2 = (X′
1X1)

−1X′
1(y − X2b2). (3-18)

This solution states that b1 is the set of coefficients in the regression of y on X1, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X′

1X2 = 0. Then, b1 = (X′
1X1)

−1X′
1y, which is simply the coefficient

vector in the regression of y on X1. The general result, which we have just proved is the
following theorem.

THEOREM 3.2 Orthogonal Partitioned Regression
In the multiple linear least squares regression of y on two sets of variables X1 and
X2, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X1 alone and y on X2 alone.

Note that Theorem 3.2 encompasses Theorem 3.1.
Now, inserting (3-18) in equation (2) of (3-17) produces

X′
2X1(X′

1X1)
−1X′

1y − X′
2X1(X′

1X1)
−1X′

1X2b2 + X′
2X2b2 = X′

2y.

After collecting terms, the solution is

b2 = [
X′

2(I − X1(X′
1X1)

−1X′
1)X2

]−1[X′
2(I − X1(X′

1X1)
−1X′

1)y
]

= (X′
2M1X2)

−1(X′
2M1y). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of X1.
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Thus, M1X2 is a matrix of residuals; each column of M1X2 is a vector of residuals in the
regression of the corresponding column of X2 on the variables in X1. By exploiting the
fact that M1, like M, is idempotent, we can rewrite (3-19) as

b2 = (X∗′
2 X∗

2)
−1X∗′

2 y∗, (3-20)

where

X∗
2 = M1X2 and y∗ = M1y.

This result is fundamental in regression analysis.

THEOREM 3.3 Frisch–Waugh Theorem
In the linear least squares regression of vector y on two sets of variables, X1 and
X2, the subvector b2 is the set of coefficients obtained when the residuals from a
regression of y on X1 alone are regressed on the set of residuals obtained when
each column of X2 is regressed on X1.

This process is commonly called partialing out or netting out the effect of X1.
For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

COROLLARY 3.3.1 Individual Regression Coefficients
The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c = (z′Mz)−1(z′My) = (z∗′z∗)−1z∗′y∗ where z∗ and y∗ are the residual vectors from
least squares regressions of z and y on X; z∗ = Mz and y∗ = My where M is
defined in (3-14).

In terms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
a regression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a
simple regression.2

2Recall our earlier investment example.
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As an application of these results, consider the case in which X1 is i, a column of
1s in the first column of X. The solution for b2 in this case will then be the slopes in a
regression with a constant term. The coefficient in a regression of any variable z on i is
[i′i]−1i′z = z̄, the fitted values are iz̄, and the residuals are zi − z̄. When we apply this to
our previous results, we find the following.

COROLLARY 3.3.2 Regression with a Constant Term
The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

[We used this result in (3-8).] Having obtained the coefficients on X2, how can we
recover the coefficients on X1 (the constant term)? One way is to repeat the exercise
while reversing the roles of X1 and X2. But there is an easier way. We have already
solved for b2. Therefore, we can use (3-18) in a solution for b1. If X1 is just a column of
1s, then the first of these produces the familiar result

b1 = ȳ − x̄2b2 − · · · − x̄KbK (3-21)

[which is used in (3-7).]

3.4 PARTIAL REGRESSION AND PARTIAL
CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. It is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
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controlling for the effect of age, is obtained as follows:

1. y∗ = the residuals in a regression of income on a constant and age.
2. z∗ = the residuals in a regression of education on a constant and age.
3. The partial correlation r∗

yz is the simple correlation between y∗ and z∗.

This calculation might seem to require a formidable amount of computation. There
is, however, a convenient shortcut. Once the multiple regression is computed, the t ratio
in (4-13) and (4-14) for testing the hypothesis that the coefficient equals zero (e.g., the
last column of Table 4.2) can be used to compute

r∗2
yz = t2

z

t2
z + degrees of freedom

. (3-22)

The proof of this less than perfectly intuitive result will be useful to illustrate some
results on partitioned regression and to put into context two very useful results from
least squares algebra. As in Corollary 3.3.1, let W denote the n × (K + 1) regressor
matrix [X, z] and let M = I − X(X′X)−1X′. We assume that there is a constant term in
X, so that the vectors of residuals y∗ = My and z∗ = Mz will have zero sample means.
The squared partial correlation is

r∗2
yz = (z′

∗y∗)2

(z′∗z∗)(y′∗y∗)
.

Let c and u denote the coefficient on z and the vector of residuals in the multiple
regression of y on W. The squared t ratio in (3-22) is

t2
z = c2[

u′u
n − (K + 1)

]
(W′W)−1

K+1,K+1

,

where (W′W)−1
K+1,K+1 is the (K + 1) (last) diagonal element of (W′W)−1. The partitioned

inverse formula in (A-74) can be applied to the matrix [X, z]′[X, z]. This matrix appears
in (3-17), with X1 = X and X2 = z. The result is the inverse matrix that appears in (3-19)
and (3-20), which implies the first important result.

THEOREM 3.4 Diagonal Elements of the Inverse
of a Moment Matrix

If W = [X, z], then the last diagonal element of (W′W)−1 is (z′Mz)−1 = (z′
∗z∗)−1,

where z∗ = Mz and M = I − X(X′X)−1X′.

(Note that this result generalizes the development in Section A.2.8 where X is only
the constant term.) If we now use Corollary 3.3.1 and Theorem 3.4 for c, after some
manipulation, we obtain

t2
z

t2
z + [n − (K + 1)]

= (z′
∗y∗)2

(z′∗y∗)2 + (u′u)(z′∗z∗)
= r∗2

yz

r∗2
yz + (u′u)/(y′∗y∗)

,
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where

u = y − Xd − zc

is the vector of residuals when y is regressed on X and z. Note that unless X′z = 0,

d will not equal b = (X′X)−1X′y. (See Section 8.2.1.) Moreover, unless c = 0, u will not
equal e = y − Xb. Now we have shown in Corollary 3.3.1 that c = (z′

∗z∗)−1(z′
∗y∗). We

also have, from (3-18), that the coefficients on X in the regression of y on W = [X, z]
are

d = (X′X)−1X′(y − zc) = b − (X′X)−1X′zc.

So, inserting this expression for d in that for u gives

u = y − Xb + X(X′X)−1X′zc − zc = e − Mzc = e − z∗c.

Now

u′u = e′e + c2(z′
∗z∗) − 2cz′

∗e.

But e = My = y∗ and z′
∗e = z′

∗y∗ = c(z′
∗z∗). Inserting this in u′u gives our second useful

result.

THEOREM 3.5 Change in the Sum of Squares When a Variable Is
Added to a Regression

If e′e is the sum of squared residuals when y is regressed on X and u′u is the sum
of squared residuals when y is regressed on X and z, then

u′u = e′e − c2(z′
∗z∗) ≤ e′e, (3-23)

where c is the coefficient on z in the long regression and z∗ =
[I − X(X′X)−1X′]z is the vector of residuals when z is regressed on X.

Returning to our derivation, we note that e′e = y′
∗y∗ and c2(z′

∗z∗) = (z′
∗y∗)2/(z′

∗z∗).
Therefore, (u′u)/(y′

∗y∗) = 1 − r∗2
yz , and we have our result.

Example 3.1 Partial Correlations
For the data the application in Section 3.2.2, the simple correlations between investment and
the regressors r yk and the partial correlations r ∗

yk between investment and the four regressors
(given the other variables) are listed in Table 3.2. As is clear from the table, there is no
necessary relation between the simple and partial correlation coefficients. One thing worth

TABLE 3.2 Correlations of Investment with Other Variables

Simple Partial
Correlation Correlation

Time 0.7496 −0.9360
GNP 0.8632 0.9680
Interest 0.5871 −0.5167
Inflation 0.4777 −0.0221
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noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.

3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

Variation of the dependent variable is defined in terms of deviations from its mean,
(yi − ȳ). The total variation in y is the sum of squared deviations:

SST =
n∑

i=1

(yi − ȳ)2.

FIGURE 3.3 Sample Data.
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(xi, yi)

yi � ŷi ei

yi

ŷi � ȳ

x

y

ȳ

ŷi

yi � ȳ

xi � x̄

x̄ xi

b(xi � x̄)

FIGURE 3.4 Decomposition of yi .

In terms of the regression equation, we may write the full set of observations as

y = Xb + e = ŷ + e. (3-24)

For an individual observation, we have

yi = ŷi + ei = x′
i b + ei .

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of yi will equal the mean of the actual values. Subtracting
ȳ from both sides and using this result and result 2 in Section 3.2.3 gives

yi − ȳ = ŷi − ȳ + ei = (xi − x̄)′b + ei .

Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms in
this decomposition sum to zero, to quantify this fit, we use the sums of squares instead.
For the full set of observations, we have

M0y = M0Xb + M0e,

where M0 is the n × n idempotent matrix that transforms observations into deviations
from sample means. (See Section A.2.8.) The column of M0X corresponding to the
constant term is zero, and, since the residuals already have mean zero, M0e = e. Then,
since e′M0X = e′X = 0, the total sum of squares is

y′M0y = b′X′M0Xb + e′e.

Write this as total sum of squares = regression sum of squares + error sum of squares,
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or

SST = SSR + SSE. (3-25)

(Note that this is precisely the partitioning that appears at the end of Section 3.2.4.)
We can now obtain a measure of how well the regression line fits the data by

using the

coefficient of determination:
SSR
SST

= b′X′M0Xb
y′M0y

= 1 − e′e
y′M0y

. (3-26)

The coefficient of determination is denoted R2. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always ȳ, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R2 = 1,
occurs if the values of x and y all lie in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of yi lie on a
vertical line, then R2 has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R2 is also useful. First

b′X′M0Xb = ŷ′M0ŷ,

but ŷ = Xb, y = ŷ + e, M0e = e, and X′e = 0, so ŷ′M0ŷ = ŷ′M0y. Multiply R2 =
ŷ′M0ŷ/y′M0y = ŷ′M0y/y′M0y by 1 = ŷ′M0y/ŷ′M0ŷ to obtain

R2 = [	i (yi − ȳ)(ŷi − ˆ̄y)]2

[	i (yi − ȳ)2][	i (ŷi − ˆ̄y)2]
, (3-27)

which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

Example 3.2 Fit of a Consumption Function
The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X , we have ȳ = 273.2727, x̄ = 323.2727, Syy = 12,618.182, Sxx = 12,300.182,
Sxy = 8,423.182, so SST = 12,618.182, b = 8,423.182/12,300.182 = 0.6848014, SSR =
b2Sxx = 5,768.2068, and SSE = SST−SSR = 6,849.975. Then R2 = b2Sxx/SST = 0.457135.
As can be seen in Figure 2.1, this is a moderate fit, although it is not particularly good
for aggregate time-series data. On the other hand, it is clear that not accounting for the
anomalous wartime data has degraded the fit of the model. This value is the R2 for the model
indicated by the dotted line in the figure. By simply omitting the years 1942–1945 from the
sample and doing these computations with the remaining seven observations—the heavy
solid line—we obtain an R2 of 0.93697. Alternatively, by creating a variable WAR which equals
1 in the years 1942–1945 and zero otherwise and including this in the model, which produces
the model shown by the two solid lines, the R2 rises to 0.94639.

We can summarize the calculation of R2 in an analysis of variance table, which
might appear as shown in Table 3.3.

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Section 3.2.2 is given in
Table 3.4.
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TABLE 3.3 Analysis of Variance

Source Degrees of Freedom Mean Square

Regression b′X′y − nȳ2 K − 1 (assuming a constant term)

Residual e′e n − K s2

Total y′y − nȳ2 n − 1 Syy/(n − 1) = s2
y

Coefficient of R2 = 1 − e′e/(y′y − nȳ2)
determination

TABLE 3.4 Analysis of Variance for the Investment Equation

Source Degrees of Freedom Mean Square

Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R2 = 0.0159025/0.016353 = 0.97245.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R2 in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
R2 will never decrease when another variable is added to a regression equation. Equa-
tion (3-23) provides a convenient means for us to establish this result. Once again, we
are comparing a regression of y on X with sum of squared residuals e′e to a regression of
y on X and an additional variable z, which produces sum of squared residuals u′u. Recall
the vectors of residuals z∗ = Mz and y∗ = My = e, which implies that e′e = (y′

∗y∗). Let
c be the coefficient on z in the longer regression. Then c = (z′

∗z∗)−1(z′
∗y∗), and inserting

this in (3-23) produces

u′u = e′e − (z′
∗y∗)2

(z′∗z∗)
= e′e

(
1 − r∗2

yz

)
, (3-28)

where r∗
yz is the partial correlation between y and z, controlling for X. Now divide

through both sides of the equality by y′M0y. From (3-26), u′u/y′M0y is (1 − R2
Xz) for the

regression on X and z and e′e/y′M0y is (1 − R2
X). Rearranging the result produces the

following:

THEOREM 3.6 Change in R2 When a Variable Is Added
to a Regression

Let R2
Xz be the coefficient of determination in the regression of y on X and an

additional variable z, let R2
X be the same for the regression of y on X alone, and

let r∗
yz be the partial correlation between y and z, controlling for X. Then

R2
Xz = R2

X + (
1 − R2

X

)
r∗2

yz . (3-29)
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Thus, the R2 in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R2 will continue to rise to its limit
of 1.3 The adjusted R2 (for degrees of freedom), which incorporates a penalty for these
results is computed as follows:

R̄2 = 1 − e′e/(n − K)

y′M0y/(n − 1)
.4 (3-30)

For computational purposes, the connection between R2 and R̄2 is

R̄2 = 1 − n − 1
n − K

(1 − R2).

The adjusted R2 may decline when a variable is added to the set of independent variables.
Indeed, R̄2 may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R2 will equal −1/(n − 2).
(Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R̄2 is not actually computed as the square of any quantity.) Whether R̄2 rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R̄2 When a Variable Is Added
to a Regression

In a multiple regression, R̄2 will fall (rise) when the variable x is deleted from the
regression if the t ratio associated with this variable is greater (less) than 1.

We have shown that R2 will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X2 is added to the regression is

e′
1,2e1,2 = e′

1e1 − b′
2X′

2M1X2b2,

where we use subscript 1 to indicate the regression based on X1 alone and 1,2 to indicate
the use of both X1 and X2. The coefficient vector b2 is the coefficients on X2 in the
multiple regression of y on X1 and X2. [See (3-19) and (3-20) for definitions of b2 and
M1.] Therefore,

R2
1,2 = 1 − e′

1e1 − b′
2X′

2M1X2b2

y′M0y
= R2

1 + b′
2X′

2M1X2b2

y′M0y
,

3This result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.
4This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis.
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which is greater than R2
1 unless b2 equals zero. (M1X2 could not be zero unless X2 was a

linear function of X1, in which case the regression on X1 and X2 could not be computed.)
This equation can be manipulated a bit further to obtain

R2
1,2 = R2

1 + y′M1y
y′M0y

b′
2X′

2M1X2b2

y′M1y
.

But y′M1y = e′
1e1, so the first term in the product is 1 − R2

1 . The second is the multiple
correlation in the regression of M1y on M1X2, or the partial correlation (after the effect
of X1 is removed) in the regression of y on X2. Collecting terms, we have

R2
1,2 = R2

1 + (
1 − R2

1

)
r2

y2·1.

[This is the multivariate counterpart to (3-29).]
Therefore, it is possible to push R2 as high as desired just by adding regressors.

This possibility motivates the use of the adjusted R-squared in (3-30), instead of R2

as a method of choosing among alternative models. Since R̄2 incorporates a penalty
for reducing the degrees of freedom while still revealing an improvement in fit, one
possibility is to choose the specification that maximizes R̄2. It has been suggested that the
adjusted R-squared does not penalize the loss of degrees of freedom heavily enough.5

Some alternatives that have been proposed for comparing models (which we index
by j) are

R̃
2
j = 1 − n + Kj

n − Kj

(
1 − R2

j

)
,

which minimizes Amemiya’s (1985) prediction criterion,

PCj = e′
j e j

n − Kj

(
1 + Kj

n

)
= s2

j

(
1 + Kj

n

)
and the Akaike and Bayesian information criteria which are given in (8-18) and (8-19).

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R2 concerns the constant term in the model. The proof that
0 ≤ R2 ≤ 1 requires X to contain a column of 1s. If not, then (1) M0e �= e and
(2) e′M0X �= 0, and the term 2e′M0Xb in y′M0y = (M0Xb + M0e)′(M0Xb + M0e)

in the preceding expansion will not drop out. Consequently, when we compute

R2 = 1 − e′e
y′M0y

,

the result is unpredictable. It will never be higher and can be far lower than the same
figure computed for the regression with a constant term included. It can even be negative.
Computer packages differ in their computation of R2. An alternative computation,

R2 = b′X′y
y′M0y

,

is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R2 may be larger than 1. Some computer packages

5See, for example, Amemiya (1985, pp. 50–51).
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bypass these difficulties by reporting a third “R2,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen,
all three computations give the same answer. Even if not, this last one will still produce
a value between zero and one. But, it is not a proportion of variation explained. On
the other hand, for the purpose of comparing models, this squared correlation might
well be a useful descriptive device. It is important for users of computer packages to be
aware of how the reported R2 is computed. Indeed, some packages will give a warning
in the results when a regression is fit without a constant or by some technique other
than linear least squares.

3.5.3 COMPARING MODELS

The value of R2 we obtained for the consumption function in Example 3.2 seems high
in an absolute sense. Is it? Unfortunately, there is no absolute basis for comparison.
In fact, in using aggregate time-series data, coefficients of determination this high are
routine. In terms of the values one normally encounters in cross sections, an R2 of 0.5
is relatively high. Coefficients of determination in cross sections of individual data as
high as 0.2 are sometimes noteworthy. The point of this discussion is that whether a
regression line provides a good fit to a body of data depends on the setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if supposedly generated by the same data gener-
ating mechanism. One must be careful, however, even in a single context, to be sure to
use the same basis for comparison for competing models. Usually, this concern is about
how the dependent variable is computed. For example, a perennial question concerns
whether a linear or loglinear model fits the data better. Unfortunately, the question
cannot be answered with a direct comparison. An R2 for the linear regression model is
different from an R2 for the loglinear model. Variation in y is different from variation
in ln y. The latter R2 will typically be larger, but this does not imply that the loglinear
model is a better fit in some absolute sense.

It is worth emphasizing that R2 is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi = α + β(xi − γ )2 + εi .

(The constant γ allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R2 as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
values. It is always correct to write

yi − ȳ = (ŷi − ȳ) + ei

regardless of how ŷi is computed. Thus, one might use ŷi = exp(l̂nyi ) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model
contains a constant term. Thus, in in the suggested example, it would still be unclear
whether the linear or loglinear model fits better; the cross-product term has been ignored

William Greene
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in computing R2 for the loglinear model. Only in the case of least squares applied to
a linear equation with a constant term can R2 be interpreted as the proportion of
variation in y explained by variation in x. An analogous computation can be done
without computing deviations from means if the regression does not contain a constant
term. Other purely algebraic artifacts will crop up in regressions without a constant,
however. For example, the value of R2 will change when the same constant is added
to each observation on y, but it is obvious that nothing fundamental has changed in
the regression relationship. One should be wary (even skeptical) in the calculation and
interpretation of fit measures for regressions without constant terms.

3.6 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to
a set of points using the method of least squares. We considered the primary problem
first, using a data set of n observations on K variables. We then examined several aspects
of the solution, including the nature of the projection and residual maker matrices and
several useful algebraic results relating to the computation of the residuals and their
sum of squares. We also examined the difference between gross or simple regression
and correlation and multiple regression by defining “partial regression coefficients” and
“partial correlation coefficients.” The Frisch-Waugh Theorem (3.3) is a fundamentally
useful tool in regression analysis which enables us to obtain in closed form the expression
for a subvector of a vector of regression coefficients. We examined several aspects of
the partitioned regression, including how the fit of the regression model changes when
variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

• Adjusted R-squared
• Analysis of variance
• Bivariate regression
• Coefficient of determination
• Disturbance
• Fitting criterion
• Frisch-Waugh theorem
• Goodness of fit
• Least squares
• Least squares normal

equations

• Moment matrix
• Multiple correlation
• Multiple regression
• Netting out
• Normal equations
• Orthogonal regression
• Partial correlation

coefficient
• Partial regression coefficient
• Partialing out
• Partitioned regression

• Prediction criterion
• Population quantity
• Population regression
• Projection
• Projection matrix
• Residual
• Residual maker
• Total variation

Exercises

1. The Two Variable Regression. For the regression model y = α + βx + ε,

a. Show that the least squares normal equations imply 	i ei = 0 and 	i xi ei = 0.
b. Show that the solution for the constant term is a = ȳ − bx̄.
c. Show that the solution for b is b = [

∑n
i=1(xi − x̄)(yi − ȳ)]/[

∑n
i=1(xi − x̄)2].
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d. Prove that these two values uniquely minimize the sum of squares by showing
that the diagonal elements of the second derivatives matrix of the sum of squares
with respect to the parameters are both positive and that the determinant is
4n[(

∑n
i=1 x2

i ) − nx̄2] = 4n[
∑n

i=1(xi − x̄)2], which is positive unless all values of
x are the same.

2. Change in the sum of squares. Suppose that b is the least squares coefficient vector
in the regression of y on X and that c is any other K × 1 vector. Prove that the
difference in the two sums of squared residuals is

(y − Xc)′(y − Xc) − (y − Xb)′(y − Xb) = (c − b)′X′X(c − b).

Prove that this difference is positive.
3. Linear Transformations of the data. Consider the least squares regression of y on

K variables (with a constant) X. Consider an alternative set of regressors Z = XP,
where P is a nonsingular matrix. Thus, each column of Z is a mixture of some of the
columns of X. Prove that the residual vectors in the regressions of y on X and y on
Z are identical. What relevance does this have to the question of changing the fit of
a regression by changing the units of measurement of the independent variables?

4. Partial Frisch and Waugh. In the least squares regression of y on a constant and X,
to compute the regression coefficients on X, we can first transform y to deviations
from the mean ȳ and, likewise, transform each column of X to deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y? What if we
only transform X?

5. Residual makers. What is the result of the matrix product M1M where M1 is defined
in (3-19) and M is defined in (3-14)?

6. Adding an observation. A data set consists of n observations on Xn and yn. The
least squares estimator based on these n observations is bn = (X′

nXn)
−1X′

nyn.
Another observation, xs and ys , becomes available. Prove that the least squares
estimator computed using this additional observation is

bn,s = bn + 1
1 + x′

s(X′
nXn)−1xs

(X′
nXn)

−1xs(ys − x′
sbn).

Note that the last term is es , the residual from the prediction of ys using the coeffi-
cients based on Xn and bn. Conclude that the new data change the results of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

7. Deleting an observation. A common strategy for handling a case in which an obser-
vation is missing data for one or more variables is to fill those missing variables with
0s and add a variable to the model that takes the value 1 for that one observation
and 0 for all other observations. Show that this ‘strategy’ is equivalent to discard-
ing the observation as regards the computation of b but it does have an effect on
R2. Consider the special case in which X contains only a constant and one variable.
Show that replacing missing values of x with the mean of the complete observations
has the same effect as adding the new variable.

8. Demand system estimation. Let Y denote total expenditure on consumer durables,
nondurables, and services and Ed, En, and Es are the expenditures on the three
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categories. As defined, Y = Ed + En + Es . Now, consider the expenditure system

Ed = αd + βdY + γdd Pd + γdn Pn + γds Ps + εd,

En = αn + βnY + γnd Pd + γnn Pn + γns Ps + εn,

Es = αs + βsY + γsd Pd + γsn Pn + γss Ps + εs .

Prove that if all equations are estimated by ordinary least squares, then the sum
of the expenditure coefficients will be 1 and the four other column sums in the
preceding model will be zero.

9. Change in adjusted R2. Prove that the adjusted R2 in (3-30) rises (falls) when
variable xk is deleted from the regression if the square of the t ratio on xk in the
multiple regression is less (greater) than 1.

10. Regression without a constant. Suppose that you estimate a multiple regression
first with then without a constant. Whether the R2 is higher in the second case than
the first will depend in part on how it is computed. Using the (relatively) standard
method R2 = 1 − (e′e/y′M0y), which regression will have a higher R2?

11. Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variable is C = N + D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n − 1) as the divisor.

12. Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R2.

13. In the December, 1969, American Economic Review (pp. 886–896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

ln S/Y = 7.3439 + 0.1596 ln Y/N + 0.0254 ln G − 1.3520 ln D1 − 0.3990 ln D2

ln S/N = 8.7851 + 1.1486 ln Y/N + 0.0265 ln G − 1.3438 ln D1 − 0.3966 ln D2

where S/Y = domestic savings ratio, S/N = per capita savings, Y/N = per capita
income, D1 = percentage of the population under 15, D2 = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Explain.


