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INFERENCE AND
PREDICTION
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INTRODUCTION

The linear regression model is used for three major functions: estimation, which was
the subject of the previous three chapters (and most of the rest of this book), hypothesis
testing, and prediction or forecasting. In this chapter, we will examine some applications
of hypothesis tests using the classical model. The basic statistical theory was developed
in Chapters 4, 5, and Appendix C, so the methods discussed here will use tools that
are already familiar. After the theory is developed in Sections 6.2-6.4, we will examine
some applications in Sections 6.4 and 6.5. We will be primarily concerned with linear
restrictions in this chapter, and will turn to nonlinear restrictions near the end of the
chapter, in Section 6.5. Section 6.6 discusses the third major use of the regression model,
prediction.

6.2 RESTRICTIONS AND NESTED MODELS

One common approach to testing a hypothesis is to formulate a statistical model that
contains the hypothesis as a restriction on its parameters. A theory is said to have
testable implications if it implies some testable restrictions on the model. Consider, for
example, a simple model of investment, /;, suggested by Section 3.3.2,

Inl; = B1 + Baiy + B3Ap, + BaIn Y, + Bst + &, (6-1)

which states that investors are sensitive to nominal interest rates, i, the rate of inflation,
Apy, (the log of) real output, In Y, and other factors which trend upward through time,
embodied in the time trend, ¢t. An alternative theory states that “investors care about
real interest rates.” The alternative model is

Inl = B+ Bo(iy — Ap) + B3Ap, + BsIn Y, + Bst + &, (6-2)

Although this new model does embody the theory, the equation still contains both
nominal interest and inflation. The theory has no testable implication for our model.
But, consider the stronger hypothesis, “investors care only about real interest rates.”
The resulting equation,

Inlf; = i+ Bolir — Ap) + BaIn Y, + Bst + &, (6-3)

is now restricted; in the context of the first model, the implication is that 8, + 83 = 0.
The stronger statement implies something specific about the parameters in the equation
that may or may not be supported by the empirical evidence.
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The description of testable implications in the preceding paragraph suggests (cor-
rectly) that testable restrictions will imply that only some of the possible models con-
tained in the original specification will be “valid;” that is, consistent with the theory. In
the example given earlier, equation (6-1) specifies a model in which there are five unre-
stricted parameters (81, B2, B3, B4, Bs). But, equation (6-3) shows that only some values
are consistent with the theory, that is, those for which 83 = —g,. This subset of values
is contained within the unrestricted set. In this way, the models are said to be nested.
Consider a different hypothesis, “investors do not care about inflation.” In this case, the
smaller set of coefficients is (81, B2, 0, B4, Bs). Once again, the restrictions imply a valid
parameter space that is “smaller” (has fewer dimensions) than the unrestricted one.
The general result is that the hypothesis specified by the restricted model is contained
within the unrestricted model.

Now, consider an alternative pair of models: Modely: “Investors care only about
inflation;” Model;: “Investors care only about the nominal interest rate.” In this case,
the two parameter vectors are (81,0, B3, B4, Bs) by Modely and (B1, B2, 0, B4, Bs) by
Model;. In this case, the two specifications are both subsets of the unrestricted model,
but neither modelis obtained as a restriction on the other. They have the same number of
parameters; they just contain different variables. These two models are nonnested. We
are concerned only with nested models in this chapter. Nonnested models are considered
in Section 8.3.

Beginning with the linear regression model

y=XB +e,
we consider a set of linear restrictions of the form

rmpr+rif+ - +rikBxk =q
B+ ropr+ -+ bk =@

ripr+rnB+ - +rikBk =qu.

These can be combined into the single equation
RB =q.

Each row of Riis the coefficients in one of the restrictions. The matrix R has K columns to
be conformable with 8,/ rows for a total of J restrictions, and full row rank, so J must be
less than or equal to K. The rows of R must be linearly independent. Although it does not
violate the condition, the case of J = K must also be ruled out.! The restriction R = q
imposes J restrictions on K otherwise free parameters. Hence, with the restrictions
imposed, there are, in principle, only K — J free parameters remaining. One way to
view this situation is to partition R into two groups of columns, one with J and one
with K — J, so that the first set are linearly independent. (There are many ways to do
so; any one will do for the present.) Then, with 8 likewise partitioned and its elements

11fthe K slopes satisfy J = K restriction, then R is square and nonsingular and 8 = R~!q. There is no estimation
or inference problem.
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reordered in whatever way is needed, we may write
R =RiB; +R:B8,=4q.
If the J columns of R; are independent, then
B1=R;'[q— Ropy] (6-4)

The implication is that although 8, is free to vary, once 8, is determined, 8, is determined
by (6-4). Thus, only the K —J elements of B, are free parameters in the restricted model.

6.3 TWO APPROACHES TO TESTING HYPOTHESES

Hypothesis testing of the sort suggested above can be approached from two viewpoints.
First, having computed a set of parameter estimates, we can ask whether the estimates
come reasonably close to satisfying the restrictions implied by the hypothesis. More
formally, we can ascertain whether the failure of the estimates to satisfy the restrictions
is simply the result of sampling error or is instead systematic. An alternative approach
might proceed as follows. Suppose that we impose the restrictions implied by the theory.
Since unrestricted least squares is, by definition, “least squares,” this imposition must
lead to a loss of fit. We can then ascertain whether this loss of fit results merely from
sampling error or whether itis so large as to cast doubt on the validity of the restrictions.
We will consider these two approaches in turn, then show that (as one might hope) within
the framework of the linear regression model, the two approaches are equivalent.

AN IMPORTANT ASSUMPTION

To develop the test statistics in this section, we will assume normally distributed distur-
bances. As we saw in Chapter 4, with this assumption, we will be able to obtain the exact
distributions of the test statistics. In the next section, we will consider the implications
of relaxing this assumption and develop an alternative set of results that allows us to
proceed without it.

6.3.1 THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY
We now consider testing a set of J linear restrictions stated in the null hypothesis,
Hy:RB—q=0
against the alternative hypothesis,
Hy R —q#0.

Eachrow of Ris the coefficients in a linear restriction on the coefficient vector. Typically,
R will have only a few rows and numerous zeros in each row. Some examples would be
as follows:

1. One of the coefficients is zero, 8; = 0

R=[0 0 --- 1 0 --- 0] and q=0.
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2. Two of the coefficients are equal, g = §;,
R=[0 0 1 .-+ -1 ... 0] and q=0.
3. A set of the coefficients sum to one, 8, 4+ 83 + 4 = 1,
R=[0 1 11 0 ---] and q=1.
4. A subset of the coefficients are all zero, 81 =0, o =0, and 3 = 0,

1 0 00 0
R=10 1 0 0 =[I:0] and q= |0
0010 0

01 10 0 1
R=10 0 0 1 and q= |0

0
0
0
5. Several linear restrictions, 8, + B3 =1, B4 + B¢ = 0 and Bs + B = 0,
0
0
000 01 0

1

1

6. All the coefficients in the model except the constant term are zero. [See (4-15) and
Section 4.7.4.]

R=[0:1x_;] and q=0.

Given the least squares estimator b, our interest centers on the discrepancy vector
Rb — q = m. It is unlikely that m will be exactly 0. The statistical question is whether
the deviation of m from 0 can be attributed to sampling error or whether it is significant.
Since b is normally distributed [see (4-8)] and m is a linear function of b, m is also
normally distributed. If the null hypothesis is true, then R — q = 0 and m has mean
vector

Em|X]=RE[b|X]—q=RB—q=0.
and covariance matrix
Var[m | X] = Var[Rb — q| X] = R{Var[b|X]}R’ = o 'RX'X)"'R".
We can base a test of Hy on the Wald criterion:

W =m'{Var[m| X]}flm.

= (Rb — q)'[¢°RX’X)"'R'] "' (Rb — q) (6-5)
(Rb — @)'[RX’X)"'R|"'(Rb — q)

- >

~ x*[7].

The statistic W has a chi-squared distribution with / degrees of freedom if the hypothesis
is correct.? Intuitively, the larger m is—that is, the worse the failure of least squares
to satisfy the restrictions—the larger the chi-squared statistic. Therefore, a large chi-
squared value will weigh against the hypothesis.

2This calculation is an application of the “full rank quadratic form” of Section B.10.5.
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The chi-squared statistic in (6-5) is not usable because of the unknown o2. By using
s?instead of o2 and dividing the result by J, we obtain a usable F'statistic withJ and n— K
degrees of freedom. Making the substitution in (6-5), dividing by J, and multiplying and
dividing by n — K, we obtain

Fo Ve
J 52

_ (Rb— @' [RXX)'R]'Rb—q)\ (1) (02 ((n—K) 6.6
_< o2 ><7>(s_2)((n—1<>> 0

_ (Rb—q)[0°RX’X)"'R']"'(Rb —q)//

B [(n — K)s2/o?]/(n — K)
If RB = q, that is, if the null hypothesis is true, then Rb —q =Rb - R =R(b — B) =
R(X'X) 'X’e. [See (4-4).] Let C = [R(X’X ! R] since @

o o

(o2

the numerator of F equals [(¢/0)T(e/0)]/J where T = D7C~'D. The numerator is
W/J from (6-5) and is distributed as 1/J times a chi-squared[/ ], as we showed earlier.
We found in (4-6) that s> =e’e/(n — K) =¢'Me/(n — K) where M is an idempotent
matrix. Therefore, the denominator of F equals [(¢/0)M(e/0)]/(n — K). This statistic
is distributed as 1/(n — K) times a chi-squared[n — K]. [See (4-11).] Therefore, the F
statistic is the ratio of two chi-squared variables each divided by its degrees of freedom.
Since M(e/0) and T(e/o) are both normally distributed and their covariance TM is 0,
the vectors of the quadratic forms are independent. The numerator and denominator
of F are functions of independent random vectors and are therefore independent. This
completes the proof of the F distribution. [See (B-35).] Canceling the two appearances
of o2 in (6-6) leaves the F statistic for testing a linear hypothesis:

Rb — @)’ {R[s2(X’X)"'|R"} "' (Rb —
F[J’H_K]Z( Q) {R[s*( J) IR} ( @
For testing one linear restriction of the form

Hy:npr+rpr+---+repx =vB =g,
(usually, some of the rs will be zero.) the F statistic is
(Z)rbj — q)?
EjEkrjrk Est. COV[bI', bk] '

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the jth position, R(X’X) 'R’ is the jth diagonal element of the
inverse matrix, and Rb — q is (b; — ¢). The F statistic is then

_ -9
Fll.n—K]= ¢ Var([b;]’

Consider an alternative approach. The sample estimate of ¥’ is

Fll,n— K] = (6-7)

rlbl+r2b2+~-~+erK=r’b=cj.
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If g differs significantly from ¢, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on

,_4-4
se(q)
We require an estimate of the standard error of §. Since g is a linear function of b and we

have an estimate of the covariance matrix of b, s>(X’X) !, we can estimate the variance
of ¢ with

(6-8)

Est. Var[§ | X] = ¥[s2(X'X) !]r.

The denominator of ¢ is the square root of this quantity. In words, ¢ is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding ¢ ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis.

There is a useful relationship between the statistics in (6-7) and (6-8). We can write
the square of the ¢ statistic as

, G- 9* @b—{rPXX) "} @b g
~ Var@-q|X) 1 -

It follows, therefore, that for testing a single restriction, the ¢ statistic is the square root
of the F statistic that would be used to test that hypothesis.

Example 6.1 Restricted Investment Equation
Section 6.2 suggested a theory about the behavior of investors: that they care only about real
interest rates. If investors were only interested in the real rate of interest, then equal increases
in interest rates and the rate of inflation would have no independent effect on investment.
The null hypothesis is

Ho:Bo+ B3 =0.
Estimates of the parameters of equations (6-1) and (6-3) using 1950.1 to 2000.4 quarterly data
on real investment, real gdp, an interest rate (the 90-day T-bill rate) and inflation measured

by the change in the log of the CPI (see Appendix Table F5.1) are given in Table 6.1. (One
observation is lost in computing the change in the CPI.)

TABLE 6.1 Estimated Investment Equations (Estimated standard errors in

parentheses)
B B2 Bs B4 Bs
Model (6-1) —9.135 —0.00860 0.00331 1.930 —0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s =0.08618, R?=0.979753, e'e =1.47052,
Est. Cov|b,, b;] = —3.718e — 6

Model (6-3) ~7.907 —0.00443 0.00443 1.764 —0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

s =0.8670, R?=10.979405, e'e =1.49578
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To form the appropriate test statistic, we require the standard error of § = b, + bs,
which is
se(§) =[0.003192 +0.002342 + 2(—3.718 x 107%)]"/2 = 0.002866.

The t ratio for the test is therefore

_ —0.00860 + 0.00331
B 0.002866

= —1.845.

Using the 95 percent critical value from t [203-5] = 1.96 (the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model.
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
(6-2). Then an equivalent way to test Hp would be to fit the investment equation with both the
real interest rate and the rate of inflation as regressors and to test our theory by simply testing
the hypothesis that g3 equals zero, using the standard t statistic that is routinely computed.
When the regression is computed this way, b; = —0.00529 and the estimated standard error
is 0.00287, resulting in a t ratio of —1.844(!). (Exercise: Suppose that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis

B2+ B3 = 0 (investors consider the real interest rate),
B4 =1 (the marginal propensity to invest equals 1),

Bs = 0 (there is no time trend).

Then,

01100 0 —0.0053
R=|0 0 0 1 0|, q= |1 and Rb—q= | 0.9302].
0 0 0 01 0 —0.0057

Inserting these values in Fyields F = 109.84. The 5 percent critical value for F[3, 199] from the
table is 2.60. We conclude, therefore, that these data are not consistent with the hypothesis.
The result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (6-8)
are —1.844, 5.076, and —3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

6.3.2 THE RESTRICTED LEAST SQUARES ESTIMATOR

A different approach to hypothesis testing focuses on the fit of the regression. Recall
that the least squares vector b was chosen to minimize the sum of squared deviations,
¢’e. Since R? equals 1 — e’e/y’'M"y and y’M'y is a constant that does not involve b, it
follows that b is chosen to maximize R?. One might ask whether choosing some other
value for the slopes of the regression leads to a significant loss of fit. For example, in the
investment equation in Example 6.1, one might be interested in whether assuming the
hypothesis (that investors care only about real interest rates) leads to a substantially
worse fit than leaving the model unrestricted. To develop the test statistic, we first
examine the computation of the least squares estimator subject to a set of restrictions.
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Suppose that we explicitly impose the restrictions of the general linear hypothesis
in the regression. The restricted least squares estimator is obtained as the solution to

Minimizey, S(bg) = (y — Xby)' (y — Xby) subject to Rby = q. (6-9)
A Lagrangean function for this problem can be written
L*(by, 1) = (y — Xbp)'(y — Xbg) + 21" (Rby — ¢ (6-10)
The solutions b, and A, will satisfy the necessary conditions
aL*
T —2X'(y — Xb,) +2R’A, =0
i 6-11
oL _ 2(Rb )=0 ( )
on, T O=D
Dividing through by 2 and expanding terms produces the partitioned matrix equation
X'X R'| b, [Xy
| S 12
or
Ad, =v.

Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d.=A"lv. (6-13)

If, in addition, X’X is nonsingular, then explicit solutions for b, and A, may be obtained
by using the formula for the partitioned inverse (A-74),*

b, =b — (X’X)"'R'[RX'X)"'R’]"'(Rb — q)
=b—-Cm
and (6-14)
A = [RX'’X)"'R']'(Rb — q).

Greene and Seaks (1991) show that the covariance matrix for b, is simply o' times
the upper left block of A~!. Once again, in the usual case in which X’X is nonsingular,
an explicit formulation may be obtained:

Varlb, | X] = 02(X’X)"! — ¢2(X’X)"'R'[RX'’X)"'R]'TR(X'X) L. (6-15)
Thus,

Var[b, | X] = Var[b | X]—a nonnegative definite matrix.

3Since A is not restricted, we can formulate the constraints in terms of 21. Why this scaling is convenient will
be clear shortly.

4The general solution given for d, may be usable even if X’X is singular. Suppose, for example, that X’X is
4 x 4 with rank 3. Then X’X is singular. But if there is a parametric restriction on f, then the 5 x 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.

Note that the explicit solution for A, involves the discrepancy vector Rb — q. If the
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers
will equal zero and b, will equal b. Of course, this is unlikely. The constrained solution
b.. is equal to the unconstrained solution b plus a term that accounts for the failure of
the unrestricted solution to satisfy the constraints.

6.3.3 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient first, then turn to the general case of J linear restrictions. Consider the change
in the fit of a multiple regression when a variable z is added to a model that already
contains K — 1 variables, x. We showed in Section 3.5 (Theorem 3.6), (3-29) that the
effect on the fit would be given by

Ry, = Ry + (1— RY)ry2, (6-16)

where Rg, is the new R” after z is added, Ry is the original R* and r}, is the partial
correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at

the least, does not deteriorate). In deriving the partial correlation coefficient between
y and z in (3-23) we obtained the convenient result

*2 tzz
_ , 6-17
T2t m-K 6-17)

where 72 is the square of the ¢ ratio for testing the hypothesis that the coefficient on z is
zero in the multiple regression of y on X and z. If we solve (6-16) for r;‘g and (6-17) for
tz2 and then insert the first solution in the second, then we obtain the result

R:, — R%)/1
2= ( Xz /L (6-18)
(1-Rg,)/(n—K)
We saw at the end of Section 6.3.1 that for a single restriction, such as 8, = 0,

F[1,n — K] = t*[n — K],

which gives us our result. That is, in (6-18), we see that the squared ¢ statistic (i.e., the
F statistic) is computed using the change in the R”. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the ¢ ratio in (6-8). By this construc-
tion, we see that for a single restriction, Fis a measure of the loss of fit that results from
imposing that restriction. To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let e, equal y — Xb,.. Then, using a familiar device,

e, =y— Xb—X(b, —b) =e—X(b. —b).
The new sum of squared deviations is

ee.=¢ee+ (b, —b)XX(b, —b) > €e.
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(The middle term in the expression involves X'e, which is zero.) The loss of fit is
ee, —ee=(Rb—q'[RX'X)'R]Rb - q). (6-19)

This expression appears in the numerator of the F statistic in (6-7). Inserting the
remaining parts, we obtain

(ele. —e'e)/J

ce K (6-20)

F[J,n— K] =
Finally, by dividing both numerator and denominator of F by X;(y; — )?, we obtain the
general result:

_ (RR-RY/J
T (A-R)/(n—K)

This form has some intuitive appeal in that the difference in the fits of the two models is
directly incorporated in the test statistic. As an example of this approach, consider the
earlier joint test that all of the slopes in the model are zero. This is the overall F ratio
discussed in Section 4.7.4 (4-15), where R = 0.

For imposing a set of exclusion restrictions such as 8, = 0 for one or more coeffi-
cients, the obvious approach is simply to omit the variables from the regression and base
the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testing the hypothesis that a subset, say f,, of the coefficients are
all zero is constructed using R = (0:1), q =0, and J = K, = the number of elements in
B,. The matrix R(X’X) 'R’ is the K, x K; lower right block of the full inverse matrix.
Using our earlier results for partitioned inverses and the results of Section 3.3, we have

F[J,n — K]

(6-21)

RX'X)"'R’ = (X;M;X,) !
and
Rb — q= b,.

Inserting these in (6-19) gives the loss of fit that results when we drop a subset of the
variables from the regression:

ee, —e'e =b X M Xohb,.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short” and “long” regressions, which we saw
earlier.

Example 6.2 Production Function
The data in Appendix Table F6.1 have been used in several studies of production functions.®
Least squares regression of log output (value added) on a constant and the logs of labor and
capital produce the estimates of a Cobb-Douglas production function shown in Table 6.2.
We will construct several hypothesis tests based on these results. A generalization of the

5The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
by Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27.
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TABLE 6.2 Estimated Production Functions
Translog Cobb-Douglas
Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18840
R-squared 0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27
Standard Standard

Variable Coefficient Error t Ratio Coefficient Error t Ratio
Constant 0.944196 2911 0.324 1.171 0.3268 3.583
In L 3.61363 1.548 2.334 0.6030 0.1260 4.787
In K —1.89311 1.016 —1.863 0.3757 0.0853 4.402
I’ L —0.96406 0.7074 -1.363
% In* K 0.08529 0.2926 0.291
InLxInK 0.31239 0.4389 0.712
Estimated Covariance Matrix for Translog (Cobb-Douglas) Coefficient Estimates

Constant InL InkK T’ L jin*K InLInK
Constant 8.472

(0.1068)
InL —2.388 2.397

(—0.01984) (0.01586)

InK —0.3313 —1.231 1.033

(0.00189) (—.00961) (0.00728)
%InzL —0.08760 —0.6658 0.5231 0.5004
1’ K 0.2332 0.03477 0.02637 0.1467 0.08562
InLInK 0.3635 0.1831 —0.2255 —0.2880 —0.1160 0.1927

Cobb-Douglas model is the translog model,® which is
INY =B+ BNl +BsINK + B4 (3In° L) + Ps(3In° K) + fsInLInK +e.

As we shall analyze further in Chapter 14, this model differs from the Cobb-Douglas model
in that it relaxes the Cobb-Douglas’s assumption of a unitary elasticity of substitution. The
Cobb-Douglas model is obtained by the restriction 84 = s = Bs = 0. The results for the
two regressions are given in Table 6.2. The F statistic for the hypothesis of a Cobb-Douglas
model is

(0.85163 — 0.67993) /3

Fis.21] = 0.67993,21

=1.768.

The critical value from the F table is 3.07, so we would not reject the hypothesis that a
Cobb-Douglas model is appropriate.

The hypothesis of constant returns to scale is often tested in studies of production. This
hypothesis is equivalent to a restriction that the two coefficients of the Cobb-Douglas pro-
duction function sum to 1. For the preceding data,

(0.6030 + 0.3757 — 1)2

F[1,24] =
1. 24] 0.01586 + 0.00728 — 2(0.00961)

=0.1157,

®Berndt and Christensen (1973). See Example 2.5 for discussion.
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which is substantially less than the critical value given earlier. We would not reject the hypoth-
esis; the data are consistent with the hypothesis of constant returns to scale. The equivalent
test for the translog model would be 8, + 83 = 1 and B4 + s + 28s = 0. The F statistic with
2 and 21 degrees of freedom is 1.8891, which is less than the critical value of 3.49. Once
again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of
a hypothesis directly on the regression and estimate a restricted model.” For example, to
impose the constraint 8 = 1 on the Cobb-Douglas model, we would write

InY =4y +1.0InL +B3InK +¢
or
INY —InL =B1+B3InK +¢.

Thus, the restricted model is estimated by regressing InY — InL on a constant and In K.
Some care is needed if this regression is to be used to compute an F statistic. If the F statis-
tic is computed using the sum of squared residuals [see (6-20)], then no problem will arise.
If (6-21) is used instead, however, then it may be necessary to account for the restricted
regression having a different dependent variable from the unrestricted one. In the preced-
ing regression, the dependent variable in the unrestricted regression is In Y, whereas in the
restricted regression, it is InY — In L. The R? from the restricted regression is only 0.26979,
which would imply an F statistic of 285.96, whereas the correct value is 9.375. If we compute
the appropriate R? using the correct denominator, however, then its value is 0.94339 and the
correct F value results.

Note that the coefficient on In K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the translog model, the capital elasticity of output is

alny
mzﬂs"f'ﬁsmf(-i—ﬂeml_.

If we insert the coefficient estimates and the mean values for In K and InL (not the logs of
the means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in
line with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb—-
Douglas model. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Var[bs + bs In K + bgIn L] = w’'(Est. Var[b]) w,
where
w=(0,0,1,0,InK, InL)’

and b is the full 6 x 1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

6.4 NONNORMAL DISTURBANCES

AND LARGE SAMPLE TESTS

The distributions of the F, ¢, and chi-squared statistics that we used in the previous section
rely on the assumption of normally distributed disturbances. Without this assumption,

7This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 9.
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the exact distributions of these statistics depend on the data and the parameters and
are not F, ¢, and chi-squared. At least at first blush, it would seem that we need either
a new set of critical values for the tests or perhaps a new set of test statistics. In this
section, we will examine results that will generalize the familiar procedures. These
large-sample results suggest that although the usual ¢ and F statistics are still usable,
in the more general case without the special assumption of normality, they are viewed
as approximations whose quality improves as the sample size increases. By using the
results of Section D.3 (on asymptotic distributions) and some large-sample results for
the least squares estimator, we can construct a set of usable inference procedures based
on already familiar computations.

Assuming the data are well behaved, the asymptotic distribution of the least squares
coefficient estimator, b, is given by

2

b N{ﬂ, %Ql} where Q = plim(¥>. (6-22)

The interpretation is that, absent normality of e, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of \/n(b— B) converges
exactly to a normal distribution, which is how we obtain the finite sample approximation
above. This result is based on the central limit theorem and does not require normally
distributed disturbances. The second result we will need concerns the estimator of o2:

plim s> = 02, where s> = e’e/(n — K).
With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.
The sample statistic for testing the hypothesis that one of the coefficients, Sx equals
a particular value, g is

V(b = BY)

ty = =
s2(X'X/n),,

(Note that two occurrences of /n cancel to produce our familiar result.) Under the
null hypothesis, with normally distributed disturbances, # is exactly distributed as ¢ with
n — K degrees of freedom. [See Theorem 4.4 and (4-13).] The exact distribution of this
statistic is unknown, however, if ¢ is not normally distributed. From the results above,
we find that the denominator of #; converges to V' oQy;'. Hence, if # has a limiting
distribution, then it is the same as that of the statistic that has this latter quantity in the
denominator. That is, the large-sample distribution of #; is the same as that of

V(b — By)

Vo Qu
But 7 = (br— E[by])/(Asy. Var[bi]) '/ from the asymptotic normal distribution (under
the hypothesis g = ), so it follows that 7, has a standard normal asymptotic distri-

bution, and this result is the large-sample distribution of our ¢ statistic. Thus, as a large-
sample approximation, we will use the standard normal distribution to approximate

T =
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the true distribution of the test statistic ¢, and use the critical values from the standard
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For moderately
sized samples, it provides only a suggestion that the ¢ distribution may be a reasonable
approximation. The appropriate critical values only converge to those from the standard
normal, and generally from above, although we cannot be sure of this. In the interest
of conservatism—that is, in controlling the probability of a type I error—one should
generally use the critical value from the ¢ distribution even in the absence of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed
test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is
0.05. The actual size of the test, however, is the true, but unknown, probability that
|tx| > 1.96, which is 0.0612 if the #[25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard ¢-test
retains a large sample validity. Little can be said about the true size of a test based on
the ¢ distribution unless one makes some other equally narrow assumption about &, but
the ¢ distribution is generally used as a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relies on
the central limit theorem. Finally, we consider, as above, the appropriate critical values
to use for this test statistic, which only has large sample validity.

The F statistic for testing the validity of J linear restrictions, Rf — q = 0, is given in
(6-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statistic is F[J, n — K]. To see how F behaves more generally, divide
the numerator and denominator in (6-6) by o and rearrange the fraction slightly, so

_ Rb—¢){R[o*X'X)"'|R'} '(Rb — g)

F J(s2/2)

(6-23)

Since plim s? = o2, and plim(X’X/n) = Q, the denominator of F converges to J and
the bracketed term in the numerator will behave the same as (o%/ nRQ'R’. Hence,
regardless of what this distribution is, if F has a limiting distribution, then it is the same
as the limiting distribution of

W*

1
7 Rb - @)[R(@*/mQ 'R (Rb — q)

1 _
Y(Rb — @)'{Asy. Var[Rb — q]} "Rb — q).

This expressionis (1/J) times a Wald statistic, based on the asymptotic distribution. The
large-sample distribution of W* will be that of (1/J) times a chi-squared with J degrees
of freedom. It follows that with normally distributed disturbances, JF converges to a chi-
squared variate with J degrees of freedom. The proof is instructive. [See White (2001,
9.76).]
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THEOREM 6.1 Limiting Distribution of the Wald Statistic
If J/nb - B) LN N[0,0%Q ' and if Hy : RB — q = 0 is true, then

W = (Rb — q){Rs2(X’X)"'R'}"!(Rb — q) = JF - x2[J].
Proof: Since R is a matrix of constants and R = q,

JiR(® — B) = Vn(Rb — q) —5 N[0, R(*Q HR']. )

For convenience, write this equation as
d
2% N[0, P]. @)

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say T such that T> = P~', and denote T as P~'/%. Let T be
the inverse square root of P. Then, by the same reasoning as in (1) and (2),

if - N[0,P], then P~22-% N[0, P~12PP 2] = N[0,T]. (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

P12y (P 22) = 2P 2 -5 2 (). @)
Reassembling the parts from before, we have shown that the limiting distribution
of

n(Rb — )/'[R(e*Q HR']"'(Rb — q) ®)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.11.6. Finally, if

1 71
plim 52 (;X’X) =d2Q71, (6)

then the statistic obtained by replacing o>Q~" by s>(X'X/n)~Vin (5) has the same
limiting distribution. The ns cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.

The appropriate critical values for the F test of the restrictions R — q=0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statistic
(see the Appendix tables). For example, for testing J =5 restrictions, the critical value
from the chi-squared table (Appendix Table G.4) for 95 percent significance is 11.07. The
critical values from the F table (Appendix Table G.5) are 3.33 =16.65/5 forn — K =10,
2.60=13.00/5 forn — K =25,2.40=12.00/5 forn — K=50,2.31=11.55/5forn— K=
100, and 2.214 =11.07/5 for large n — K. Thus, with normally distributed disturbances,
as n gets large, the F test can be carried out by referring JF to the critical values from
the chi-squared table.
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The crucial result for our purposes here is that the distribution of the Wald statisticis
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The implication is that an appropriate large sample test statistic
is chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases.

Exercise 7 at the end of this chapter suggests another approach to testing that has
validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
in (6-14) is [R(X’X)"'R’]"}(Rb — q), that is, a multiple of the least squares discrepancy
vector. In principle, a test of the hypothesis that A.equals zero should be equivalent to
a test of the null hypothesis. Since the leading matrix has full rank, this can only equal™_

chi-squared with J degrees of freedom. (The procedure is considered in Exercise 7.) For
a set of exclusion restrictions, 8, = 0, there is a simple way to carry out this test. The
chi-squared statistic, in this case with K, degrees of freedom can be computed as nR? in
the regression of e, (the residuals in the short regression) on the full set of independent
variables.

6.5 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function
of the regression coefficients:

Hy:c(B) =q.

We shall look first at the case of a single restriction. The more general one, in which
¢(B) = qis aset of restrictions, is a simple extension. The counterpart to the test statistic
we used earlier would be

c(B)—q

- estimated standard error

(6-24)

or its square, which in the preceding were distributed as ¢t[n — K] and F[1,n — K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of c(B) — g, however, involves the variance of a
nonlinear function of 8.
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The results we need for this computation are presented in Sections B.10.3 and D.3.1.
A linear Taylor series approximation to c¢(f) around the true parameter vector f§ is

b ~cpy+ ("5 ) BB (6-25)
We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If plim B =B, then we are justified in using c(f) as an estimate of c¢(8). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

Var[c(B)] ~ (82_(/;%) ,Var[ﬁA] (aca(/f) ) . (6-20)

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use s>(X’X)~!. Finally, we
rely on Theorem D.2.2 in Section D.3.1 and use the standard normal distribution instead
of the ¢ distribution for the test statistic. Using g(8) to estimate g(8) = dc(8)/3B, we
can now test a hypothesis in the same fashion we did earlier.

Example 6.3 A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to con-
sume can be written in the form

INCt=a+BInY:+yInCi_1 + &,

which is a distributed lag model. In this model, the short-run marginal propensity to consume
(MPC) (elasticity, since the variables are in logs) is 8, and the long-run MPCis § = /(1 —y).
Consider testing the hypothesis that § = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.1. The estimated equation based on these
data is

InC; = 0.003142 + 0.07495InY; + 0.9246InC;_; +&, R?=0.999712, s=0.00874
(0.01055) (0.02873) (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est.Asy. Cov|b, c] =
—0.0003298. The estimate of the long-run MPC is d = b/(1 — ¢) = 0.07495/(1 — 0.9246) =
0.99403. To compute the estimated variance of d, we will require

;
en 00 _ 1 _ 132626, gczg—i: b

=— = —13.1834.
b 1-c 3.183

(1-92

The estimated asymptotic variance of d is

Est.Asy. Var[d] = gZEst.Asy. Var[b] + g2Est.Asy. Var[c] + 2g,g:Est.Asy. Covlb, c]
= 13.2626% x 0.02873% + 13.18342 x 0.02859°
+2(13.2626)(13.1834) (—0.0003298) = 0.17192.
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The square root is 0.41464. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

_0.99403 — 1

0.41464 0.0144.
Because we are using a large sample approximation, we refer to a standard normal table
instead of the t distribution. The hypothesis that y = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if§ =1,then =1—y,orB+y = 1. Theestimateisqg =b+c—1 = —0.00045. The
estimated standard error of this linear function is [0.028732 + 0.028592 — 2(0.0003298)]"/? =
0.03136. The t ratio for this test is —0.01435 which is the same as before. Since the sample
used here is fairly large, this is to be expected. However, there is nothing in the computations
that assures this outcome. In a smaller sample, we might have obtained a different answer.
For example, using the last 11 years of the data, the t statistics for the two hypotheses are
7.652 and 5.681. The Wald test is not invariant to how the hypothesis is formulated. In a
borderline case, we could have reached a different conclusion. This lack of invariance does
not occur with the likelihood ratio or Lagrange multiplier tests discussed in Chapter 17. On
the other hand, both of these tests require an assumption of normality, whereas the Wald
statistic does not. This illustrates one of the trade-offs between a more detailed specification
and the power of the test procedures that are implied.

The generalization to more than one function of the parameters proceeds along
similar lines. Let ¢(f) be a set of J functions of the estimated parameter vector and let
the J x K matrix of derivatives of ¢(f8) be

. dc(B
G- 2B (6-27)
ap
The estimate of the asymptotic covariance matrix of these functions is
Est.Asy. Var[¢] = G{Est.Asy. Var[$]}G'. (6-28)

The jth row of G is K derivatives of ¢; with respect to the K elements of B. For example,
the covariance matrix for estimates of the short- and long-run marginal propensities to
consume would be obtained using

0 1 0

C=lo ya—y sra-y|

The statistic for testing the J hypotheses ¢(f) = q is
W = (& — q)'{Est. Asy. Var[¢]} ' @ — q). (6-29)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (6-24).
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6.6 PREDICTION

After the estimation of parameters, a common use of regression is for prediction.®
Suppose that we wish to predict the value of y° associated with a regressor vector x.
This value would be

yO — XO/ﬂ + 80.
It follows from the Gauss—Markov theorem that
$9° =x"b (6-30)
is the minimum variance linear unbiased estimator of E[y°|x"]. The forecast error is
60 — yO _ .)A)O — (ﬂ _b)/xo +50.
The prediction variance to be applied to this estimate is
Var[e’|X, x°] = 6% 4 Var[(8 — b)'x" X, x"] = ¢ + x"[¢2(X'X) ' [x". (6-31)
If the regression contains a constant term, then an equivalent expression is
1 Ko1Kl
0 2 0_ = 0_ - 0g jk
Var[e’]| =0~ |1+ . + Z Z (xj —xj)(xk —xk)(Z’M VAU
j=1 k=1
where Z is the K — 1 columns of X not including the constant. This result shows that
the width of the interval depends on the distance of the elements of x” from the center
of the data. Intuitively, this idea makes sense; the farther the forecasted point is from
the center of our experience, the greater is the degree of uncertainty.

The prediction variance can be estimated by using s in place of o2. A confidence
interval for y° would be formed using a

prediction interval = 7° + ¢, 2 se(e").

Figure 6.1 shows the effect for the bivariate case. Note that the prediction variance
is composed of three parts. The second and third become progressively smaller as we
accumulate more data (i.e., as n increases). But the first term o is constant, which
implies that no matter how much data we have, we can never predict perfectly.

Example 6.4 Prediction for Investment
Suppose that we wish to “predict” the first quarter 2001 value of real investment. The
average rate (secondary market) for the 90 day T-bill was 4.48% (down from 6.03 at
the end of 2000); real GDP was 9316.8; the CPI_U was 528.0 and the time trend would equal
204. (We dropped one observation to compute the rate of inflation. Data were
obtained from www.economagic.com.) The rate of inflation on a yearly basis would be

8tis necessary at this point to make a largely semantic distinction between “prediction” and “forecasting.” We
will use the term “prediction” to mean using the regression model to compute fitted values of the dependent
variable, either within the sample or for observations outside the sample. The same set of results will apply
to cross sections, time series, or panels. These are the methods considered in this section. It is helpful at this
point to reserve the term “forecasting” for usage of the time series models discussed in Chapter 20. One of
the distinguishing features of the models in that setting will be the explicit role of “time” and the presence of
lagged variables and disturbances in the equations and correlation of variables with past values.
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FIGURE 6.1 Prediction Intervals.

100% x 4 x In(528.0/521.1) = 5.26%. The data vector for predicting In /50011 would be
x® =[1, 4.48,5.26, 9.1396, 204]". Using the regression results in Example 6.1,

x”b = [1, 4.48,5.26, 9.1396, 204] x [-9.1345, —0.008601, 0.003308, 1.9302, —0.005659)]'
= 7.3312.

The estimated variance of this prediction is
s2[1 4+ x%(X’X)~"x°] = 0.0076912. (6-32)

The square root, 0.087699, gives the prediction standard deviation. Using this value, we
obtain the prediction interval:

7.3312 +1.96(0.087699) = (7.1593, 7.5031).

The yearly rate of real investment in the first quarter of 2001 was 1721. The log is 7.4507, so
our forecast interval contains the actual value.

We have forecasted the log of real investment with our regression model. If it is desired to
forecast the level, the natural estimator would be | = exp(In /). Assuming that the estimator,
itself, is at least asymptotically normally distributed, this should systematically underestimate
the level by a factor of exp(62/2) based on the mean of the lognormal distribution. [See
Wooldridge (2000, p. 203) and Section B.4.4.] It remains to determine what to use for 2. In
(6-32), the second part of the expression will vanish in large samples, leaving (as Wooldridge
suggests) s? = 0.007427.° Using this scaling, we obtain a prediction of 1532.9, which is
still 11 percent below the actual value. Evidently, this model based on an extremely long
time series does not do a very good job of predicting at the end of the sample period. One
might surmise various reasons, including some related to the model specification that we will
address in Chapter 20, but as a first guess, it seems optimistic to apply an equation this simple
to more than 50 years of data while expecting the underlying structure to be unchanging

9Wooldridge suggests an alternative not necessarily based on an assumption of normality. Use as the scale
factor the single coefficient in a within sample regression of y; on the exponents of the fitted logs.
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through the entire period. To investigate this possibility, we redid all the preceding calculations
using only the data from 1990 to 2000 for the estimation. The prediction for the level of
investment in 2001.1 is now 1885.2 (using the suggested scaling), which is an overestimate
of 9.54 percent. But, this is more easily explained. The first quarter of 2001 began the first
recession in the U.S. economy in nearly 10 years, and one of the early symptoms of a
recession is a rapid decline in business investment.

All the preceding assumes that x” is either known with certainty, ex post, or fore-
casted perfectly. If x” must, itself, be forecasted (an ex ante forecast), then the formula
for the forecast variance in (6-31) would have to be modified to include the variation
in x°, which greatly complicates the computation. Most authors view it as simply in-
tractable. Beginning with Feldstein (1971), derivation of firm analytical results for the
correct forecast variance for this case remain to be derived except for simple special
cases. The one qualitative result that seems certain is that (6-31) will understate the
true variance. McCullough (1996) presents an alternative approach to computing ap-
propriate forecast standard errors based on the method of bootstrapping. (See the end
of Section 16.3.2.)

Various measures have been proposed for assessing the predictive accuracy of fore-
casting models.'” Most of these measures are designed to evaluate ex post forecasts,
that is, forecasts for which the independent variables do not themselves have to be fore-
casted. Two measures that are based on the residuals from the forecasts are the root

mean Squal‘ed error
1 .
RMSE = 0 E i =)

and the mean absolute error
1 R
MAE = EZ'” — il
1

where n° is the number of periods being forecasted. (Note that both of these as well as
the measures below, are backward looking in that they are computed using the observed
data on the independent variable.) These statistics have an obvious scaling problem —
multiplying values of the dependent variable by any scalar multiplies the measure by that
scalar as well. Several measures that are scale free are based on the Theil U statistic:'!

N (VLD S I
A/, v}
This measure is related to R? but is not bounded by zero and one. Large values indicate

a poor forecasting performance. An alternative is to compute the measure in terms of
the changes in y:

U — QMO Ay — Ay
8 A/n%) Y, (Ay,)?

10See Theil (1961) and Fair (1984).
HTheil (1961).
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where Ay; = y;—y;_1and AJ; = $;—y;_1,0r,in percentage changes, Ay; = (yi—yi_1)/ Vi1
and Ay; = (§;—yi—1)/yi—1. These measures will reflect the model’s ability to track turning
points in the data.

6.7 SUMMARY AND CONCLUSIONS

This chapter has focused on two uses of the linear regression model, hypothesis testing
and basic prediction. The central result for testing hypotheses is the F statistic. The F
ratio can be produced in two equivalent ways; first, by measuring the extent to which
the unrestricted least squares estimate differs from what a hypothesis would predict
and second, by measuring the loss of fit that results from assuming that a hypothesis is
correct. We then extended the Fstatistic to more general settings by examining its large
sample properties, which allow us to discard the assumption of normally distributed
disturbances and by extending it to nonlinear restrictions.

Key Terms and Concepts

¢ Alternative hypothesis ¢ Nested models ¢ Prediction variance
e Distributed lag ¢ Nonlinear restriction e Restricted least squares
¢ Discrepancy vector ¢ Nonnested models e Root mean squared error
¢ Exclusion restrictions ¢ Noninvariance of Wald test e Testable implications
¢ Ex post forecast ¢ Nonnormality o Theil U statistic
e Lagrange multiplier test e Null hypothesis e Wald criterion
¢ Limiting distribution e Parameter space
e Linear restrictions e Prediction interval
Exercises

1. A multiple regression of y on a constant x; and x, produces the following results:
§=4+0.4x +09x,, R> =8/60, ¢’e = 520, n = 29,

29 0 0
X'X=|0 50 10
0 10 80

Test the hypothesis that the two slopes sum to 1.
2. Using the resultsin Exercise 1, test the hypothesis that the slope on x; is 0 by running
the restricted regression and comparing the two sums of squared deviations.
3. The regression model to be analyzed isy = X;8; + X8, + &, where X; and X,
have K; and K, columns, respectively. The restriction is 8, = 0.
a. Using (6-14), prove that the restricted estimator is simply [by., 0], where by, is
the least squares coefficient vector in the regression of y on X.
b. Prove that if the restriction is B, = B5 for a nonzero B9, then the restricted
estimator of B, is by, = (X} X)) "' X! (y — Xo89).
4. The expression for the restricted coefficient vector in (6-14) may be written in the
form b, =[I — CR]b + w, where w does not involve b. What is C? Show that the
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covariance matrix of the restricted least squares estimator is
2(X'X)™! - 2 (X'X) 'R [RX’X) 'R ' RX’X) !
and that this matrix may be written as
Var[b | X]{[Var(b|X)] ' — R’[Var(Rb) | X] 'R} Var[b | X].

5. Prove the result that the restricted least squares estimator never has a larger
covariance matrix than the unrestricted least squares estimator.

6. Prove the result that the R? associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

@ 7. The Lagrange multiplier test of the hypothesis Rf — q = 0 is equivalent to a Wald
test of the hypothesis that =0, where i,is defined in (6-14). Prove that
’
x* = ¥{Est. Var[}4# * = (n — K) [e*e* - 1} :

e’e

Note that the fraction in brackets is the ratio of two estimators of 2. By virtue
of (6-19) and the preceding discussion, we know that this ratio is greater than 1.
@ﬁnally, prove that statistic is equivalent to JF, where J is
the number of restrictions being tested and F is the conventional F statistic given
in (6-6).
8. Use the E=¢range multiplier test to test the hypothesis in Exercise 1.
@9. Using the data and model of Example 2.3, carry out a test of the hypothesis that
the three aggregate price indices are not significant determinants of the demand

for gasoline.
10. The full model of Example 2.3 may be written in logarithmic terms as

InG/pop =a+B,In P, + By InY + y,cIn Py + e In Py + yp In By
+ pByear +384In Py + 8, In P, + 8, In P + ¢.

Consider the hypothesis that the microelasticities are a constant proportion of the
elasticity with respect to their corresponding aggregate. Thus, for some positive 6
(presumably between 0 and 1), yue = 084, Yue = 084, Vpr = 05s.
The first two imply the simple linear restriction y,,. = y,.. By taking ratios, the
first (or second) and third imply the nonlinear restriction
Yne _ 8d
=2 Or  Yncls — yptfsd =0.
Vpt Js
a. Describe in detail how you would test the validity of the restriction.
b. Using the gasoline market data in Table F2.2, test the restrictions separately and
jointly.
11. Prove that under the hypothesis that Rg = q, the estimator
S2 _ (y - Xb*),(y - Xb*)
n—K+1J '
where J is the number of restrictions, is unbiased for 2.
12. Show that in the multiple regression of y on a constant, x; and x, while imposing
the restriction 81 4+ B, = 1 leads to the regression of y —x; on a constant and x, —X;.
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