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MODELS FOR PANEL DATA

Q

13.1 INTRODUCTION

Data sets that combine time series and cross sections are common in economics. For
example, the published statistics of the OECD contain numerous series of economic
aggregates observed yearly for many countries. Recently constructed longitudinal data
sets contain observations on thousands of individuals or families, each observed at
several points in time. Other empirical studies have analyzed time-series data on sets
of firms, states, countries, or industries simultaneously. These data sets provide rich
sources of information about the economy. Modeling in this setting, however, calls
for some complex stochastic specifications. In this chapter, we will survey the most
commonly used techniques for time-series cross-section data analyses in single equation
models.

13.2 PANEL DATA MODELS

Many recent studies have analyzed panel, or longitudinal, data sets. Two very famous
ones are the National Longitudinal Survey of Labor Market Experience (NLS) and
the Michigan Panel Study of Income Dynamics (PSID). In these data sets, very large
cross sections, consisting of thousands of microunits, are followed through time, but the
number of periods is often quite small. The PSID, for example, is a study of roughly
6,000 families and 15,000 individuals who have been interviewed periodically from 1968
to the present. Another group of intensively studied panel data sets were those from the
negative income tax experiments of the early 1970s in which thousands of families were
followed for 8 or 13 quarters. Constructing long, evenly spaced time series in contexts
such as these would be prohibitively expensive, but for the purposes for which these
data are typically used, it is unnecessary. Time effects are often viewed as “transitions”
or discrete changes of state. They are typically modeled as specific to the period in which
they occur and are not carried across periods within a cross-sectional unit.1 Panel data
sets are more oriented toward cross-section analyses; they are wide but typically short.
Heterogeneity across units is an integral part—indeed, often the central focus—of the
analysis.

1Theorists have not been deterred from devising autocorrelation models applicable to panel data sets; though.
See, for example, Lee (1978) or Park, Sickles, and Simar (2000). As a practical matter, however, the empirical
literature in this field has focused on cross-sectional variation and less intricate time series models. Formal
time-series modeling of the sort discussed in Chapter 12 is somewhat unusual in the analysis of longitudinal
data.

283



Greene-50240 book June 18, 2002 15:28

284 CHAPTER 13 ✦ Models for Panel Data

The analysis of panel or longitudinal data is the subject of one of the most active
and innovative bodies of literature in econometrics,2 partly because panel data provide
such a rich environment for the development of estimation techniques and theoretical
results. In more practical terms, however, researchers have been able to use time-series
cross-sectional data to examine issues that could not be studied in either cross-sectional
or time-series settings alone. Two examples are as follows.

1. In a widely cited study of labor supply, Ben-Porath (1973) observes that at
a certain point in time, in a cohort of women, 50 percent may appear to be
working. It is ambiguous whether this finding implies that, in this cohort, one-
half of the women on average will be working or that the same one-half will be
working in every period. These have very different implications for policy and
for the interpretation of any statistical results. Cross-sectional data alone will
not shed any light on the question.

2. A long-standing problem in the analysis of production functions has been
the inability to separate economies of scale and technological change.3 Cross-
sectional data provide information only about the former, whereas time-series
data muddle the two effects, with no prospect of separation. It is common,
for example, to assume constant returns to scale so as to reveal the technical
change.4 Of course, this practice assumes away the problem. A panel of data on
costs or output for a number of firms each observed over several years can pro-
vide estimates of both the rate of technological change (as time progresses) and
economies of scale (for the sample of different sized firms at each point in time).

In principle, the methods of Chapter 12 can be applied to longitudinal data sets. In the
typical panel, however, there are a large number of cross-sectional units and only a few
periods. Thus, the time-series methods discussed there may be somewhat problematic.
Recent work has generally concentrated on models better suited to these short and wide
data sets. The techniques are focused on cross-sectional variation, or heterogeneity. In
this chapter, we shall examine in detail the most widely used models and look briefly at
some extensions.

The fundamental advantage of a panel data set over a cross section is that it will allow
the researcher great flexibility in modeling differences in behavior across individuals.

2The panel data literature rivals the received research on unit roots and cointegration in econometrics in
its rate of growth. A compendium of the earliest literature is Maddala (1993). Book-length surveys on the
econometrics of panel data include Hsiao (1986), Dielman (1989), Matyas and Sevestre (1996), Raj and Baltagi
(1992), and Baltagi (1995). There are also lengthy surveys devoted to specific topics, such as limited dependent
variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)] and semiparametric methods [Lee (1998)]. An
extensive bibliography is given in Baltagi (1995).
3The distinction between these two effects figured prominently in the policy question of whether it was
appropriate to break up the AT&T Corporation in the 1980s and, ultimately, to allow competition in the
provision of long-distance telephone service.
4In a classic study of this issue, Solow (1957) states: “From time series of �Q/Q, wK, �K/K, wL and �L/L
or their discrete year-to-year analogues, we could estimate �A/Aand thence A(t) itself. Actually an amusing
thing happens here. Nothing has been said so far about returns to scale. But if all factor inputs are classified
either as K or L, then the available figures always show wK and wL adding up to one. Since we have assumed
that factors are paid their marginal products, this amounts to assuming the hypothesis of Euler’s theorem.
The calculus being what it is, we might just as well assume the conclusion, namely, the F is homogeneous of
degree one.”
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The basic framework for this discussion is a regression model of the form

yit = x′
i tβ + z′

iα + εi t . (13-1)

There are K regressors in xi t , not including a constant term. The heterogeneity, or
individual effect is z′

iα where zi contains a constant term and a set of individual or
group specific variables, which may be observed, such as race, sex, location, and so on
or unobserved, such as family specific characteristics, individual heterogeneity in skill
or preferences, and so on, all of which are taken to be constant over time t . As it stands,
this model is a classical regression model. If zi is observed for all individuals, then the
entire model can be treated as an ordinary linear model and fit by least squares. The
various cases we will consider are:

1. Pooled Regression: If zi contains only a constant term, then ordinary least squares
provides consistent and efficient estimates of the common α and the slope vector β.

2. Fixed Effects: If zi is unobserved, but correlated with xi t , then the least squares
estimator of β is biased and inconsistent as a consequence of an omitted variable.
However, in this instance, the model

yit = x′
i tβ + αi + εi t ,

where αi = z′
iα, embodies all the observable effects and specifies an estimable condi-

tional mean. This fixed effects approach takes αi to be a group-specific constant term
in the regression model. It should be noted that the term “fixed” as used here indicates
that the term does not vary over time, not that it is nonstochastic, which need not be
the case.

3. Random Effects: If the unobserved individual heterogeneity, however formulated,
can be assumed to be uncorrelated with the included variables, then the model may be
formulated as

yit = x′
i tβ + E [z′

iα] + {
z′

iα − E [z′
iα]

} + εi t

= x′
i tβ + α + ui + εi t ,

that is, as a linear regression model with a compound disturbance that may be con-
sistently, albeit inefficiently, estimated by least squares. This random effects approach
specifies that ui is a group specific random element, similar to εi t except that for each
group, there is but a single draw that enters the regression identically in each period.
Again, the crucial distinction between these two cases is whether the unobserved indi-
vidual effect embodies elements that are correlated with the regressors in the model,
not whether these effects are stochastic or not. We will examine this basic formulation,
then consider an extension to a dynamic model.

4. Random Parameters: The random effects model can be viewed as a regression
model with a random constant term. With a sufficiently rich data set, we may extend
this idea to a model in which the other coefficients vary randomly across individuals as
well. The extension of the model might appear as

yit = x′
i t (β + hi ) + (α + ui ) + εi t ,

where hi is a random vector which induces the variation of the parameters across
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individuals. This random parameters model was proposed quite early in this literature,
but has only fairly recently enjoyed widespread attention in several fields. It represents
a natural extension in which researchers broaden the amount of heterogeneity across
individuals while retaining some commonalities—the parameter vectors still share a
common mean. Some recent applications have extended this yet another step by allow-
ing the mean value of the parameter distribution to be person-specific, as in

yit = x′
i t (β + �zi + hi ) + (α + ui ) + εi t ,

where zi is a set of observable, person specific variables, and � is a matrix of parameters
to be estimated. As we will examine later, this hierarchical model is extremely versatile.

5. Covariance Structures: Lastly, we will reconsider the source of the heterogeneity in
the model. In some settings, researchers have concluded that a preferable approach to
modeling heterogeneity in the regression model is to layer it into the variation around
the conditional mean, rather than in the placement of the mean. In a cross-country
comparison of economic performance over time, Alvarez, Garrett, and Lange (1991)
estimated a model of the form

yit = f (labor organizationi t , political organizationi t ) + εi t

in which the regression function was fully specified by the linear part, x′
i tβ + α, but

the variance of εi t differed across countries. Beck et al. (1993) found evidence that the
substantive conclusions of the study were dependent on the stochastic specification and
on the methods used for estimation.

Example 13.1 Cost Function for Airline Production
To illustrate the computations for the various panel data models, we will revisit the airline
cost data used in Example 7.2. This is a panel data study of a group of U.S. airlines. We will
fit a simple model for the total cost of production:

ln costi t = β1 + β2 ln outputi t + β3 ln fuel pricei t + β4 load factori t + εi t .

Output is measured in “revenue passenger miles.” The load factor is a rate of capacity
utilization; it is the average rate at which seats on the airline’s planes are filled. More complete
models of costs include other factor prices (materials, capital) and, perhaps, a quadratic term
in log output to allow for variable economies of scale. We have restricted the cost function
to these few variables to provide a straightforward illustration.

Ordinary least squares regression produces the following results. Estimated standard
errors are given in parentheses.

ln costi t = 9.5169(0.22924) + 0.88274(0.013255) ln outputi t

+ 0.45398(0.020304) ln fuel pricei t − 1.62751(0.34540) load factori t + εi t

R2 = 0.9882898, s2 = 0.015528, e′e = 1.335442193.

The results so far are what one might expect. There are substantial economies of scale;
e.s.i t = (1/0.88274) − 1 = 0.1329. The fuel price and load factors affect costs in the pre-
dictable fashions as well. (Fuel prices differ because of different mixes of types of planes and
regional differences in supply characteristics.)
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13.3 FIXED EFFECTS

This formulation of the model assumes that differences across units can be captured in
differences in the constant term.5 Each αi is treated as an unknown parameter to be
estimated. Let yi and Xi be the T observations for the ith unit, i be a T × 1 column of
ones, and let εi be associated T × 1 vector of disturbances. Then,

yi = Xiβ + iαi + εi .

Collecting these terms gives
y1

y2
...

yn

=


X1

X2
...

Xn

β +


i 0 · · · 0
0 i · · · 0

...

0 0 · · · i




α1

α2
...

αn

+


ε1

ε2
...

εn


or

y = [X d1 d2 . . . dn]
[
β

α

]
+ ε, (13-2)

where di is a dummy variable indicating the ith unit. Let the nT × n matrix D =
[d1 d2 . . . dn]. Then, assembling all nT rows gives

y = Xβ + Dα + ε. (13-3)

This model is usually referred to as the least squares dummy variable (LSDV) model
(although the “least squares” part of the name refers to the technique usually used to
estimate it, not to the model, itself).

This model is a classical regression model, so no new results are needed to analyze
it. If n is small enough, then the model can be estimated by ordinary least squares with
K regressors in X and n columns in D, as a multiple regression with K + n parameters.
Of course, if n is thousands, as is typical, then this model is likely to exceed the storage
capacity of any computer. But, by using familiar results for a partitioned regression, we
can reduce the size of the computation.6 We write the least squares estimator of β as

b = [X′MDX]−1[X′MDy], (13-4)

where

MD = I − D(D′D)−1D′.

This amounts to a least squares regression using the transformed data X∗ = MDX and

5It is also possible to allow the slopes to vary across i , but this method introduces some new methodological
issues, as well as considerable complexity in the calculations. A study on the topic is Cornwell and Schmidt
(1984). Also, the assumption of a fixed T is only for convenience. The more general case in which Ti varies
across units is considered later, in the exercises, and in Greene (1995a).
6See Theorem 3.3.
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y∗ = MDy. The structure of D is particularly convenient; its columns are orthogonal, so

MD =


M0 0 0 · · · 0
0 M0 0 · · · 0

· · ·
0 0 0 · · · M0

.

Each matrix on the diagonal is

M0 = IT − 1
T

ii′. (13-5)

Premultiplying any T × 1 vector zi by M0 creates M0zi = zi − z̄i. (Note that the mean is
taken over only the T observations for unit i .) Therefore, the least squares regression of
MDy on MDX is equivalent to a regression of [yit − ȳi.] on [xi t − x̄i.], where ȳi. and x̄i. are
the scalar and K × 1 vector of means of yit and xi t over the T observations for group i .7

The dummy variable coefficients can be recovered from the other normal equation in
the partitioned regression:

D′Da + D′Xb = D′y

or

a = [D′D]−1D′(y − Xb).

This implies that for each i ,

ai = ȳi. − b′x̄i.. (13-6)

The appropriate estimator of the asymptotic covariance matrix for b is

Est.Asy. Var[b] = s2[X′MDX]−1, (13-7)

which uses the second moment matrix with x’s now expressed as deviations from their
respective group means. The disturbance variance estimator is

s2 =
∑n

i=1

∑T
t=1 (yit − x′

i t b − ai )
2

nT − n − K
= (y − MDXb)′(y − MDXb)

(nT − n − K)
. (13-8)

The i tth residual used in this computation is

eit = yit − x′
i t b − ai = yit − x′

i t b − (ȳi. − x̄′
i.b) = (yit − ȳi.) − (xi t − x̄i.)

′b.

Thus, the numerator in s2 is exactly the sum of squared residuals using the least squares
slopes and the data in group mean deviation form. But, done in this fashion, one might
then use nT − K instead of nT − n − K for the denominator in computing s2, so a
correction would be necessary. For the individual effects,

Asy. Var[ai ] = σ 2

T
+ x̄′

i.

{
Asy. Var[b]

}
x̄i.,

so a simple estimator based on s2 can be computed.

7An interesting special case arises if T = 2. In the two-period case, you can show—we leave it as an exercise—
that this least squares regression is done with nT/2 first difference observations, by regressing observation
(yi2 − yi1) (and its negative) on (xi2 − xi1) (and its negative).
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13.3.1 TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The t ratio for ai can be used for a test of the hypothesis that αi equals zero. This
hypothesis about one specific group, however, is typically not useful for testing in this
regression context. If we are interested in differences across groups, then we can test the
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis
of equality, the efficient estimator is pooled least squares. The F ratio used for this
test is

F(n − 1, nT − n − K) =
(

R2
LSDV − R2

Pooled

)/
(n − 1)(

1 − R2
LSDV

)/
(nT − n − K)

, (13-9)

where LSDV indicates the dummy variable model and Pooled indicates the pooled
or restricted model with only a single overall constant term. Alternatively, the model
may have been estimated with an overall constant and n − 1 dummy variables instead.
All other results (i.e., the least squares slopes, s2, R2) will be unchanged, but rather
than estimate αi , each dummy variable coefficient will now be an estimate of αi − α1

where group “1” is the omitted group. The F test that the coefficients on these n − 1
dummy variables are zero is identical to the one above. It is important to keep in mind,
however, that although the statistical results are the same, the interpretation of the
dummy variable coefficients in the two formulations is different.8

13.3.2 THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

We can formulate a pooled regression model in three ways. First, the original formula-
tion is

yit = x′
i tβ + α + εi t . (13-10a)

In terms of deviations from the group means,

yit − ȳi. = (xi t − x̄i.)
′β + εi t − ε̄i., (13-10b)

while in terms of the group means,

ȳi. = x̄′
i.β + α + ε̄i.. (13-10c)

All three are classical regression models, and in principle, all three could be estimated, at
least consistently if not efficiently, by ordinary least squares. [Note that (13-10c) involves
only n observations, the group means.] Consider then the matrices of sums of squares
and cross products that would be used in each case, where we focus only on estimation
of β. In (13-10a), the moments would accumulate variation about the overall means, ¯̄y
and ¯̄x, and we would use the total sums of squares and cross products,

Stotal
xx =

n∑
i=1

T∑
t=1

(xi t − ¯̄x)(xi t − ¯̄x)′ and Stotal
xy =

n∑
i=1

T∑
t=1

(xi t − ¯̄x)(yit − ¯̄y).

For (13-10b), since the data are in deviations already, the means of (yit − ȳi.) and (xi t −x̄i.)

are zero. The moment matrices are within-groups (i.e., variation around group means)

8For a discussion of the differences, see Suits (1984).
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sums of squares and cross products,

Swithin
xx =

n∑
i=1

T∑
t=1

(xi t − x̄i.)(xi t − x̄i.)
′ and Swithin

xy =
n∑

i=1

T∑
t=1

(xi t − x̄i.)(yit − ȳi.).

Finally, for (13-10c), the mean of group means is the overall mean. The moment matrices
are the between-groups sums of squares and cross products—that is, the variation of
the group means around the overall means;

Sbetween
xx =

n∑
i=1

T(x̄i. − ¯̄x)(x̄i. − ¯̄x)′ and Sbetween
xy =

n∑
i=1

T(x̄i. − ¯̄x)(ȳi. − ¯̄y).

It is easy to verify that

Stotal
xx = Swithin

xx + Sbetween
xx and Stotal

xy = Swithin
xy + Sbetween

xy .

Therefore, there are three possible least squares estimators of β corresponding to
the decomposition. The least squares estimator is

btotal = [
Stotal

xx

]−1Stotal
xy = [

Swithin
xx + Sbetween

xx

]−1[Swithin
xy + Sbetween

xy

]
. (13-11)

The within-groups estimator is

bwithin = [
Swithin

xx

]−1Swithin
xy . (13-12)

This is the LSDV estimator computed earlier. [See (13-4).] An alternative estimator
would be the between-groups estimator,

bbetween = [
Sbetween

xx

]−1Sbetween
xy (13-13)

(sometimes called the group means estimator). This least squares estimator of (13-10c)
is based on the n sets of groups means. (Note that we are assuming that n is at least as
large as K.) From the preceding expressions (and familiar previous results),

Swithin
xy = Swithin

xx bwithin and Sbetween
xy = Sbetween

xx bbetween.

Inserting these in (13-11), we see that the least squares estimator is a matrix weighted
average of the within- and between-groups estimators:

btotal = Fwithinbwithin + Fbetweenbbetween, (13-14)

where

Fwithin = [
Swithin

xx + Sbetween
xx

]−1Swithin
xx = I − Fbetween.

The form of this result resembles the Bayesian estimator in the classical model discussed
in Section 16.2. The resemblance is more than passing; it can be shown [see, e.g., Judge
(1985)] that

Fwithin = {
[Asy. Var(bwithin)]−1 + [Asy. Var(bbetween)]−1}−1[Asy. Var(bwithin)]−1,

which is essentially the same mixing result we have for the Bayesian estimator. In the
weighted average, the estimator with the smaller variance receives the greater weight.
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13.3.3 FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific
effect as well. One way to formulate the extended model is simply to add the time effect,
as in

yit = x′
i tβ + αi + γt + εi t . (13-15)

This model is obtained from the preceding one by the inclusion of an additional
T − 1 dummy variables. (One of the time effects must be dropped to avoid perfect
collinearity—the group effects and time effects both sum to one.) If the number of
variables is too large to handle by ordinary regression, then this model can also be esti-
mated by using the partitioned regression.9 There is an asymmetry in this formulation,
however, since each of the group effects is a group-specific intercept, whereas the time
effects are contrasts—that is, comparisons to a base period (the one that is excluded).
A symmetric form of the model is

yit = x′
i tβ + µ + αi + γt + εi t , (13-15′)

where a full n and T effects are included, but the restrictions∑
i

αi =
∑

t

γt = 0

are imposed. Least squares estimates of the slopes in this model are obtained by regres-
sion of

y∗i t = yit − ȳi. − ȳ.t + ¯̄y (13-16)

on

x∗i t = xi t − x̄i. − x̄.t + ¯̄x,

where the period-specific and overall means are

ȳ.t = 1
n

n∑
i=1

yit and ¯̄y = 1
nT

n∑
i=1

T∑
t=1

yit ,

and likewise for x̄.t and ¯̄x. The overall constant and the dummy variable coefficients can
then be recovered from the normal equations as

µ̂ = m = ¯̄y − ¯̄x′b,

α̂i = ai = (ȳi. − ¯̄y) − (x̄i. − ¯̄x)′b, (13-17)

γ̂t = ct = (ȳ.t − ¯̄y) − (x̄.t − ¯̄x)′b.

9The matrix algebra and the theoretical development of two-way effects in panel data models are complex.
See, for example, Baltagi (1995). Fortunately, the practical application is much simpler. The number of periods
analyzed in most panel data sets is rarely more than a handful. Since modern computer programs, even those
written strictly for microcomputers, uniformly allow dozens (or even hundreds) of regressors, almost any
application involving a second fixed effect can be handled just by literally including the second effect as a set
of actual dummy variables.
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The estimated asymptotic covariance matrix for b is computed using the sums of squares
and cross products of x∗i t computed in (13-16) and

s2 =
∑n

i=1

∑T
t=1(yit − x′

i t b − m − ai − ct )
2

nT − (n − 1) − (T − 1) − K − 1

If one of n or T is small and the other is large, then it may be simpler just to treat the
smaller set as an ordinary set of variables and apply the previous results to the one-
way fixed effects model defined by the larger set. Although more general, this model is
infrequently used in practice. There are two reasons. First, the cost in terms of degrees
of freedom is often not justified. Second, in those instances in which a model of the
timewise evolution of the disturbance is desired, a more general model than this simple
dummy variable formulation is usually used.

Example 13.2 Fixed Effects Regressions
Table 13.1 contains the estimated cost equations with individual firm effects, specific period
effects, and both firm and period effects. For comparison, the least squares and group means
results are given also. The F statistic for testing the joint significance of the firm effects is

F [5, 81] = (0.997434 − 0.98829)/5
(1 − 0.997431)/81

= 57.614.

The critical value from the F table is 2.327, so the evidence is strongly in favor of a firm
specific effect in the data. The same computation for the time effects, in the absence of
the firm effects produces an F [14, 72] statistic of 1.170, which is considerably less than
the 95 percent critical value of 1.832. Thus, on this basis, there does not appear to be a
significant cost difference across the different periods that is not accounted for by the fuel
price variable, output, and load factors. There is a distinctive pattern to the time effects,
which we will examine more closely later. In the presence of the firm effects, the F [14, 67]
ratio for the joint significance of the period effects is 3.149, which is larger than the table
value of 1.842.

TABLE 13.1 Cost Equations with Fixed Firm and Period Effects

Parameter Estimates

Specification β1 β2 β3 β4 R2 s2

No effects 9.517 0.88274 0.45398 −1.6275 0.98829 0.015528
(0.22924) (0.013255) (0.020304) (0.34530)

Group means 85.809 0.78246 −5.5240 −1.7510 0.99364 0.015838
(56.483) (0.10877) (4.47879) (2.74319)

Firm effects 0.91928 0.41749 −1.07040 0.99743 0.003625
(0.029890) (0.015199) (0.20169)

a1 . . . a6: 9.706 9.665 9.497 9.891 9.730 9.793

Time effects 0.86773 −0.48448 −1.95440 0.99046 0.016705
(0.015408) (0.36411) (0.44238)

c1 . . . c8 20.496 20.578 20.656 20.741 21.200 21.411 21.503 21.654
c9 . . . c15 21.829 22.114 22.465 22.651 22.616 22.552 22.537

Firm and time 12.667 0.81725 0.16861 −0.88281 0.99845 0.002727
effects (2.0811) (0.031851) (0.16348) (0.26174)

a1 . . . a6 0.12833 0.06549 −0.18947 0.13425 −0.09265 −0.04596

c1 . . . c8 −0.37402 −0.31932 −0.27669 −0.22304 −0.15393 −0.10809 −0.07686 −0.02073
c9 . . . c15 0.04722 0.09173 0.20731 0.28547 0.30138 0.30047 0.31911

William Greene
change 31 to 34
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13.3.4 UNBALANCED PANELS AND FIXED EFFECTS

Missing data are very common in panel data sets. For this reason, or perhaps just because
of the way the data were recorded, panels in which the group sizes differ across groups
are not unusual. These panels are called unbalanced panels. The preceding analysis
assumed equal group sizes and relied on the assumption at several points. A modification
to allow unequal group sizes is quite simple. First, the full sample size is

∑n
i=1 Ti instead

of nT, which calls for minor modifications in the computations of s2, Var[b], Var[ai ], and
the F statistic. Second, group means must be based on Ti , which varies across groups.
The overall means for the regressors are

¯̄x =
∑n

i=1

∑Ti
t=1xi t∑n

i=1Ti
=

∑n
i=1Ti x̄i.∑n

i=1Ti
=

n∑
i=1

fi x̄i.,

where fi = Ti/(
∑n

i=1 Ti ). If the group sizes are equal, then fi = 1/n. The within groups
moment matrix shown in (13-4),

Swithin
xx = X′MDX,

is
n∑

i=1

X′
i M

0
i Xi =

n∑
i=1

(
T∑

t=1

(xi t − x̄i.)(xi t − x̄i.)
′
)

.

The other moments, Swithin
xy and Swithin

yy , are computed likewise. No other changes are
necessary for the one factor LSDV estimator. The two-way model can be handled
likewise, although with unequal group sizes in both directions, the algebra becomes fairly
cumbersome. Once again, however, the practice is much simpler than the theory. The
easiest approach for unbalanced panels is just to create the full set of T dummy variables
using as T the union of the dates represented in the full data set. One (presumably the
last) is dropped, so we revert back to (13-15). Then, within each group, any of the T
periods represented is accounted for by using one of the dummy variables. Least squares
using the LSDV approach for the group effects will then automatically take care of the
messy accounting details.

13.4 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with the
included variables. We then modeled the differences between units strictly as parametric
shifts of the regression function. This model might be viewed as applying only to the
cross-sectional units in the study, not to additional ones outside the sample. For example,
an intercountry comparison may well include the full set of countries for which it is
reasonable to assume that the model is constant. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the individual
specific constant terms as randomly distributed across cross-sectional units. This view
would be appropriate if we believed that sampled cross-sectional units were drawn from
a large population. It would certainly be the case for the longitudinal data sets listed
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in the introduction to this chapter.10 The payoff to this form is that it greatly reduces
the number of parameters to be estimated. The cost is the possibility of inconsistent
estimates, should the assumption turn out to be inappropriate.

Consider, then, a reformulation of the model

yit = x′
i tβ + (α + ui ) + εi t , (13-18)

where there are K regressors including a constant and now the single constant term is
the mean of the unobserved heterogeneity, E [z′

iα]. The component ui is the random
heterogeneity specific to the ith observation and is constant through time; recall from
Section 13.2, ui = {

z′
iα − E [z′

iα]
}

. For example, in an analysis of families, we can view
ui as the collection of factors, z′

iα, not in the regression that are specific to that family.
We assume further that

E [εi t | X] = E [ui | X] = 0,

E
[
ε2

i t

∣∣ X
] = σ 2

ε ,

E
[
u2

i

∣∣ X
] = σ 2

u ,

E [εi t u j | X] = 0 for all i, t, and j,

E [εi tε js | X] = 0 if t 	= s or i 	= j,

E [ui u j | X] = 0 if i 	= j.

(13-19)

As before, it is useful to view the formulation of the model in blocks of T observations
for group i, yi , Xi , ui i, and εi . For these T observations, let

ηi t = εi t + ui

and

ηi = [ηi1, ηi2, . . . , ηiT]′.

In view of this form of ηi t , we have what is often called an “error components model.”
For this model,

E
[
η2

i t

∣∣ X
] = σ 2

ε + σ 2
u ,

E [ηi tηis | X] = σ 2
u , t 	= s

E [ηi tη js | X] = 0 for all t and s if i 	= j.

For the T observations for unit i , let � = E [ηiη
′
i | X]. Then

� =


σ 2

ε + σ 2
u σ 2

u σ 2
u · · · σ 2

u

σ 2
u σ 2

ε + σ 2
u σ 2

u · · · σ 2
u

· · ·
σ 2

u σ 2
u σ 2

u · · · σ 2
ε + σ 2

u

= σ 2
ε IT + σ 2

u iT i′T, (13-20)

10This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak
(1978) for methodological discussion of the distinction between fixed and random effects.
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where iT is a T × 1 column vector of 1s. Since observations i and j are independent, the
disturbance covariance matrix for the full nT observations is

� =


� 0 0 · · · 0
0 � 0 · · · 0

...

0 0 0 · · · �

= In ⊗ �. (13-21)

13.4.1 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

β̂ = (X′�−1X)−1X′�−1y =
(

n∑
i=1

X′
i�

−1Xi

)−1 (
n∑

i=1

X′
i�

−1yi

)

To compute this estimator as we did in Chapter 10 by transforming the data and using
ordinary least squares with the transformed data, we will require �−1/2 = [In ⊗ �]−1/2.
We need only find �−1/2, which is

�−1/2 = 1
σε

[
I − θ

T
iTi′T

]
,

where

θ = 1 − σε√
σ 2

ε + Tσ 2
u

.

The transformation of yi and Xi for GLS is therefore

�−1/2yi = 1
σε


yı1 − θ ȳı.

yı2 − θ ȳı.
...

yıT − θ ȳı.

, (13-22)

and likewise for the rows of Xi .11 For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of yit on the same
transformations of xi t . Note the similarity of this procedure to the computation in the
LSDV model, which uses θ = 1. (One could interpret θ as the effect that would remain
if σε were zero, because the only effect would then be ui . In this case, the fixed and
random effects models would be indistinguishable, so this result makes sense.)

It can be shown that the GLS estimator is, like the OLS estimator, a matrix weighted
average of the within- and between-units estimators:

β̂ = F̂withinbwithin + (I − F̂within)bbetween,12 (13-23)

11This transformation is a special case of the more general treatment in Nerlove (1971b).
12An alternative form of this expression, in which the weighing matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).
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where now,

F̂within = [
Swithin

xx + λSbetween
xx

]−1Swithin
xx ,

λ = σ 2
ε

σ 2
ε + Tσ 2

u
= (1 − θ)2.

To the extent that λ differs from one, we see that the inefficiency of least squares will
follow from an inefficient weighting of the two estimators. Compared with generalized
least squares, ordinary least squares places too much weight on the between-units vari-
ation. It includes it all in the variation in X, rather than apportioning some of it to
random variation across groups attributable to the variation in ui across units.

There are some polar cases to consider. If λ equals 1, then generalized least squares
is identical to ordinary least squares. This situation would occur if σ 2

u were zero, in which
case a classical regression model would apply. If λ equals zero, then the estimator is the
dummy variable estimator we used in the fixed effects setting. There are two possibilities.
If σ 2

ε were zero, then all variation across units would be due to the different ui s, which,
because they are constant across time, would be equivalent to the dummy variables we
used in the fixed-effects model. The question of whether they were fixed or random
would then become moot. They are the only source of variation across units once the
regression is accounted for. The other case is T → ∞. We can view it this way: If
T → ∞, then the unobserved ui becomes observable. Take the T observations for the
ith unit. Our estimator of [α, β] is consistent in the dimensions T or n. Therefore,

yit − x′
i tβ − α = ui + εi t

becomes observable. The individual means will provide

ȳi. − x̄′
i.β − α = ui + ε̄i .

But ε̄i. converges to zero, which reveals ui to us. Therefore, if T goes to infinity, ui

becomes the αi di we used earlier.
Unbalanced panels add a layer of difficulty in the random effects model. The first

problem can be seen in (13-21). The matrix � is no longer I ⊗ � because the diagonal
blocks in � are of different sizes. There is also groupwise heteroscedasticity, because
the ith diagonal block in �−1/2 is

�
−1/2
i = ITi − θi

Ti
iTi i

′
Ti
, θi = 1 − σε√

σ 2
ε + Tiσ 2

u

.

In principle, estimation is still straightforward, since the source of the groupwise het-
eroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with estimated
variance components, it is necessary only to use the group specific θi in the transforma-
tion in (13-22).

13.4.2 FEASIBLE GENERALIZED LEAST SQUARES
WHEN � IS UNKNOWN

If the variance components are known, generalized least squares can be computed
as shown earlier. Of course, this is unlikely, so as usual, we must first estimate the
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disturbance variances and then use an FGLS procedure. A heuristic approach to esti-
mation of the variance components is as follows:

yit = x′
i tβ + α + εi t + ui (13-24)

and

ȳi. = x̄′
i.β + α + ε̄i. + ui .

Therefore, taking deviations from the group means removes the heterogeneity:

yit − ȳi. = [xi t − x̄i.]′β + [εi t − ε̄i.]. (13-25)

Since

E

[
T∑

t=1

(εi t − ε̄i.)
2

]
= (T − 1)σ 2

ε ,

if β were observed, then an unbiased estimator of σ 2
ε based on T observations in group

i would be

σ̂ 2
ε (i) =

∑T
t=1(εi t − ε̄i.)

2

T − 1
. (13-26)

Since β must be estimated—(13-25) implies that the LSDV estimator is consistent,
indeed, unbiased in general—we make the degrees of freedom correction and use the
LSDV residuals in

s2
e (i) =

∑T
t=1(eit − ēi.)

2

T − K − 1
. (13-27)

We have n such estimators, so we average them to obtain

s̄2
e = 1

n

n∑
i=1

s2
e (i) = 1

n

n∑
i=1

[∑T
t=1(eit − ēi.)

2

T − K − 1

]
=

∑n
i=1

∑T
t=1(eit − ēi.)

2

nT − nK − n
. (13-28)

The degrees of freedom correction in s̄2
e is excessive because it assumes that α and

β are reestimated for each i . The estimated parameters are the n means ȳi · and the K
slopes. Therefore, we propose the unbiased estimator13

σ̂ 2
ε = s2

LSDV =
∑n

i=1

∑T
t=1(eit − ēi.)

2

nT − n − K
. (13-29)

This is the variance estimator in the LSDV model in (13-8), appropriately corrected for
degrees of freedom.

It remains to estimate σ 2
u . Return to the original model specification in (13-24). In

spite of the correlation across observations, this is a classical regression model in which
the ordinary least squares slopes and variance estimators are both consistent and, in
most cases, unbiased. Therefore, using the ordinary least squares residuals from the

13A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).
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model with only a single overall constant, we have

plim s2
Pooled = plim

e′e
nT − K − 1

= σ 2
ε + σ 2

u . (13-30)

This provides the two estimators needed for the variance components; the second would
be σ̂ 2

u = s2
Pooled − s2

LSDV . A possible complication is that this second estimator could be
negative. But, recall that for feasible generalized least squares, we do not need an
unbiased estimator of the variance, only a consistent one. As such, we may drop the
degrees of freedom corrections in (13-29) and (13-30). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of using two different sums
of squared residuals.14

There is a remaining complication. If there are any regressors that do not vary
within the groups, the LSDV estimator cannot be computed. For example, in a model
of family income or labor supply, one of the regressors might be a dummy variable
for location, family structure, or living arrangement. Any of these could be perfectly
collinear with the fixed effect for that family, which would prevent computation of the
LSDV estimator. In this case, it is still possible to estimate the random effects variance
components. Let [b, a] be any consistent estimator of [β, α], such as the ordinary least
squares estimator. Then, (13-30) provides a consistent estimator of mee = σ 2

ε + σ 2
u . The

mean squared residuals using a regression based only on the n group means provides a
consistent estimator of m∗∗ = σ 2

u + (σ 2
ε /T ), so we can use

σ̂ 2
ε = T

T − 1
(mee − m∗∗)

σ̂ 2
u = T

T − 1
m∗∗ − 1

T − 1
mee = ωm∗∗ + (1 − ω)mee,

where ω > 1. As before, this estimator can produce a negative estimate of σ 2
u that, once

again, calls the specification of the model into question. [Note, finally, that the residuals
in (13-29) and (13-30) could be based on the same coefficient vector.]

13.4.3 TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random
effects model based on the OLS residuals.15 For

H0: σ 2
u = 0 (or Corr[ηi t , ηis] = 0),

H1: σ 2
u 	= 0,

14See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya
(1971).
15We have focused thus far strictly on generalized least squares and moments based consistent estimation of
the variance components. The LM test is based on maximum likelihood estimation, instead. See, Maddala
(1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.
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the test statistic is

LM = nT
2(T − 1)


∑n

i=1

[∑T
t=1 eit

]2

∑n
i=1

∑T
t=1 e2

i t

− 1


2

= nT
2(T − 1)

[ ∑n
i=1(Tēi.)

2∑n
i=1

∑T
t=1 e2

i t

− 1

]2

. (13-31)

Under the null hypothesis, LM is distributed as chi-squared with one degree of freedom.

Example 13.3 Testing for Random Effects
The least squares estimates for the cost equation were given in Example 13.1. The firm
specific means of the least squares residuals are

ē = [0.068869, −0.013878, −0.19422, 0.15273, −0.021583, 0.0080906]′

The total sum of squared residuals for the least squares regression is e′e = 1.33544, so

LM = nT
2(T − 1)

[
T 2ē′ē
e′e

− 1

]2

= 334.85.

Based on the least squares residuals, we obtain a Lagrange multiplier test statistic of 334.85,
which far exceeds the 95 percent critical value for chi-squared with one degree of freedom,
3.84. At this point, we conclude that the classical regression model with a single constant
term is inappropriate for these data. The result of the test is to reject the null hypothesis in
favor of the random effects model. But, it is best to reserve judgment on that, because there
is another competing specification that might induce these same results, the fixed effects
model. We will examine this possibility in the subsequent examples.

With the variance estimators in hand, FGLS can be used to estimate the parame-
ters of the model. All our earlier results for FGLS estimators apply here. It would also
be possible to obtain the maximum likelihood estimator.16 The likelihood function is
complicated, but as we have seen repeatedly, the MLE of β will be GLS based on the
maximum likelihood estimators of the variance components. It can be shown that the
MLEs of σ 2

ε and σ 2
u are the unbiased estimators shown earlier, without the degrees of

freedom corrections.17 This model satisfies the requirements for the Oberhofer–Kmenta
(1974) algorithm—see Section 11.7.2—so we could also use the iterated FGLS proce-
dure to obtain the MLEs if desired. The initial consistent estimators can be based on
least squares residuals. Still other estimators have been proposed. None will have bet-
ter asymptotic properties than the MLE or FGLS estimators, but they may outperform
them in a finite sample.18

Example 13.4 Random Effects Models
To compute the FGLS estimator, we require estimates of the variance components. The unbi-
ased estimator of σ 2

ε is the residual variance estimator in the within-units (LSDV) regression.
Thus,

σ̂ 2
ε = 0.2926222

90 − 9
= 0.0036126.

16See Hsiao (1986) and Nerlove (2003).
17See Berzeg (1979).
18See Maddala and Mount (1973).
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Using the least squares residuals from the pooled regression we have

̂σ 2
ε + σ 2

u = 1.335442
90 − 4

= 0.015528

so

σ̂ 2
u = 0.015528 − 0.0036126 = 0.0199158.

For purposes of FGLS,

θ̂ = 1 −
[

0.0036126
15(0.0199158)

]1/2

= 0.890032.

The FGLS estimates for this random effects model are shown in Table 13.2, with the fixed
effects estimates. The estimated within-groups variance is larger than the between-groups
variance by a factor of five. Thus, by these estimates, over 80 percent of the disturbance
variation is explained by variation within the groups, with only the small remainder explained
by variation across groups.

None of the desirable properties of the estimators in the random effects model rely
on T going to infinity.19 Indeed, T is likely to be quite small. The maximum likelihood
estimator of σ 2

ε is exactly equal to an average of n estimators, each based on the T
observations for unit i . [See (13-28).] Each component in this average is, in principle,
consistent. That is, its variance is of order 1/T or smaller. Since T is small, this variance
may be relatively large. But, each term provides some information about the parameter.
The average over the n cross-sectional units has a variance of order 1/(nT ), which will
go to zero if n increases, even if we regard T as fixed. The conclusion to draw is that
nothing in this treatment relies on T growing large. Although it can be shown that some
consistency results will follow for T increasing, the typical panel data set is based on data
sets for which it does not make sense to assume that T increases without bound or, in
some cases, at all.20 As a general proposition, it is necessary to take some care in devising
estimators whose properties hinge on whether T is large or not. The widely used conven-
tional ones we have discussed here do not, but we have not exhausted the possibilities.

The LSDV model does rely on T increasing for consistency. To see this, we use the
partitioned regression. The slopes are

b = [X′MDX]−1[X′Mdy].

Since X is nT × K, as long as the inverted moment matrix converges to a zero matrix, b
is consistent as long as either n or T increases without bound. But the dummy variable
coefficients are

ai = ȳi. − x̄′
i.b = 1

T

T∑
t=1

(yit − x′
i t b).

We have already seen that b is consistent. Suppose, for the present, that x̄i. = 0. Then
Var[ai ] = Var[yit ]/T. Therefore, unless T → ∞, the estimators of the unit-specific effects
are not consistent. (They are, however, best linear unbiased.) This inconsistency is worth
bearing in mind when analyzing data sets for which T is fixed and there is no intention

19See Nickell (1981).
20In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact,
take T as given in the model and that base consistency results solely on n increasing. Some additional results
for dynamic models are given by Bhargava and Sargan (1983).

William Greene
change subscript to bold upper case D, like the preceding one.
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to replicate the study and no logical argument that would justify the claim that it could
have been replicated in principle.

The random effects model was developed by Balestra and Nerlove (1966). Their
formulation included a time-specific component, κt , as well as the individual effect:

yit = α + β ′xi t + εi t + ui + κt .

The extended formulation is rather complicated analytically. In Balestra and Nerlove’s
study, it was made even more so by the presence of a lagged dependent variable that
causes all the problems discussed earlier in our discussion of autocorrelation. A full set
of results for this extended model, including a method for handling the lagged dependent
variable, has been developed.21 We will turn to this in Section 13.7.

13.4.4 HAUSMAN’S SPECIFICATION TEST FOR THE RANDOM
EFFECTS MODEL

At various points, we have made the distinction between fixed and random effects mod-
els. An inevitable question is, Which should be used? From a purely practical standpoint,
the dummy variable approach is costly in terms of degrees of freedom lost. On the other
hand, the fixed effects approach has one considerable virtue. There is little justification
for treating the individual effects as uncorrelated with the other regressors, as is assumed
in the random effects model. The random effects treatment, therefore, may suffer from
the inconsistency due to this correlation between the included variables and the random
effect.22

The specification test devised by Hausman (1978)23 is used to test for orthogonality
of the random effects and the regressors. The test is based on the idea that under the
hypothesis of no correlation, both OLS in the LSDV model and GLS are consistent, but
OLS is inefficient,24 whereas under the alternative, OLS is consistent, but GLS is not.
Therefore, under the null hypothesis, the two estimates should not differ systematically,
and a test can be based on the difference. The other essential ingredient for the test is
the covariance matrix of the difference vector, [b − β̂]:

Var[b − β̂] = Var[b] + Var[β̂] − Cov[b, β̂] − Cov[b, β̂]. (13-32)

Hausman’s essential result is that the covariance of an efficient estimator with its differ-
ence from an inefficient estimator is zero, which implies that

Cov[(b − β̂), β̂] = Cov[b, β̂] − Var[β̂] = 0

or that

Cov[b, β̂] = Var[β̂].

Inserting this result in (13-32) produces the required covariance matrix for the test,

Var[b − β̂] = Var[b] − Var[β̂] = �. (13-33)

21See Balestra and Nerlove (1966), Fomby, Hill, and Johnson (1984), Judge et al. (1985), Hsiao (1986),
Anderson and Hsiao (1982), Nerlove (1971a, 2003), and Baltagi (1995).
22See Hausman and Taylor (1981) and Chamberlain (1978).
23Related results are given by Baltagi (1986).
24Referring to the GLS matrix weighted average given earlier, we see that the efficient weight uses θ , whereas
OLS sets θ = 1.
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The chi-squared test is based on the Wald criterion:

W = χ2[K − 1] = [b − β̂]′�̂−1[b − β̂]. (13-34)

For �̂, we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matrix in the random effects model, excluding the
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K − 1 degrees of freedom.

Example 13.5 Hausman Test
The Hausman test for the fixed and random effects regressions is based on the parts of the co-
efficient vectors and the asymptotic covariance matrices that correspond to the slopes in the
models, that is, ignoring the constant term(s). The coefficient estimates are given in Table 13.2.
The two estimated asymptotic covariance matrices are

Est. Var[bF E ] =
[

0.0008934 −0.0003178 −0.001884
−0.0003178 0.0002310 −0.0007686
−0.001884 −0.0007686 0.04068

]

TABLE 13.2 Random and Fixed Effects Estimates

Parameter Estimates

Specification β1 β2 β3 β4 R2 s2

No effects 9.517 0.88274 0.45398 −1.6275 0.98829 0.015528
(0.22924) (0.013255) (0.020304) (0.34530)

Firm effects Fixed effects
0.91930 0.41749 −1.0704 0.99743 0.0036125
(0.029890) (0.015199) (0.20169)

White(1) (0.019105) (0.013533) (0.21662)
White(2) (0.027977) (0.013802) (0.20372)

Fixed effects with autocorrelation ρ̂ = 0.5162
0.92975 0.38567 −1.22074 0.0019179
(0.033927) (0.0167409) (0.20174) s2/(1 − ρ̂2) =

0.002807

Random effects
9.6106 0.90412 0.42390 −1.0646 σ̂ 2

u = 0.0119158
(0.20277) (0.02462) (0.01375) (0.1993) σ̂ 2

ε = 0.00361262

Random effects with autocorrelation ρ̂ = 0.5162
10.139 0.91269 0.39123 −1.2074 σ̂ 2

u = 0.0268079
(0.2587) (0.027783) (0.016294) (0.19852) σ̂ 2

ε = 0.0037341

Fixed effectsFirm and time
effects 12.667 0.81725 0.16861 −0.88281 0.99845 0.0026727

(2.0811) (0.031851) (0.16348) (0.26174)

Random effects
9.799 0.84328 0.38760 −0.92943 σ̂ 2

u = 0.0142291
(0.87910) (0.025839) (0.06845) (0.25721) σ̂ 2

ε = 0.0026395
σ̂ 2

v = 0.0551958
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and

Est. Var[bRE ] =
[ 0.0006059 −0.0002089 −0.001450
−0.0002089 0.00018897 −0.002141
−0.001450 −0.002141 0.03973

]
.

The test statistic is 4.16. The critical value from the chi-squared table with three degrees of
freedom is 7.814, which is far larger than the test value. The hypothesis that the individual
effects are uncorrelated with the other regressors in the model cannot be rejected. Based on
the LM test, which is decisive that there are individual effects, and the Hausman test, which
suggests that these effects are uncorrelated with the other variables in the model, we would
conclude that of the two alternatives we have considered, the random effects model is the
better choice.

13.5 INSTRUMENTAL VARIABLES ESTIMATION
OF THE RANDOM EFFECTS MODEL

Recall the original specification of the linear model for panel data in (13-1)

yit = x′
i tβ + z′

iα + εi t . (13-35)

The random effects model is based on the assumption that the unobserved person spe-
cific effects, zi , are uncorrelated with the included variables, xi t . This assumption is a
major shortcoming of the model. However, the random effects treatment does allow
the model to contain observed time invariant characteristics, such as demographic char-
acteristics, while the fixed effects model does not—if present, they are simply absorbed
into the fixed effects. Hausman and Taylor’s (1981) estimator for the random effects
model suggests a way to overcome the first of these while accommodating the second.

Their model is of the form:

yit = x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εi t + ui

where β = (β ′
1, β

′
2)

′ and α = (α′
1, α

′
2)

′. In this formulation, all individual effects denoted
zi are observed. As before, unobserved individual effects that are contained in z′

iα in
(13-35) are contained in the person specific random term, ui . Hausman and Taylor define
four sets of observed variables in the model:

x1i t is K1 variables that are time varying and uncorrelated with ui ,
z1i is L1 variables that are time invariant and uncorrelated with ui ,
x2i t is K2 variables that are time varying and are correlated with ui ,
z2i is L2 variables that are time invariant and are correlated with ui .

The assumptions about the random terms in the model are

E [ui ] = E [ui | x1i t , z1i ] = 0 though E [ui | x2i t , z2i ] 	= 0,

Var[ui | x1i t , z1i , x2i t , z2i ] = σ 2
u ,

Cov[εi t , ui | x1i t , z1i , x2i t , z2i ] = 0,

Var[εi t + ui | x1i t , z1i , x2i t , z2i ] = σ 2 = σ 2
ε + σ 2

u ,

Corr[εi t + ui , εis + ui | x1i t , z1i , x2i t , z2i ] = ρ = σ 2
u /σ 2.
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Note the crucial assumption that one can distinguish sets of variables x1 and z1 that are
uncorrelated with ui from x2 and z2 which are not. The likely presence of x2 and z2 is what
complicates specification and estimation of the random effects model in the first place.

By construction, any OLS or GLS estimators of this model are inconsistent when
the model contains variables that are correlated with the random effects. Hausman and
Taylor have proposed an instrumental variables estimator that uses only the information
within the model (i.e., as already stated). The strategy for estimation is based on the
following logic: First, by taking deviations from group means, we find that

yit − ȳi. = (x1i t − x̄1i )
′β1 + (x2i t − x̄2i )

′β2 + εi t − ε̄i , (13-36)

which implies that β can be consistently estimated by least squares, in spite of the cor-
relation between x2 and u. This is the familiar, fixed effects, least squares dummy vari-
able estimator—the transformation to deviations from group means removes from the
model the part of the disturbance that is correlated with x2i t . Now, in the original model,
Hausman and Taylor show that the group mean deviations can be used as (K1 + K2)

instrumental variables for estimation of (β, α). That is the implication of (13-36). Since
z1 is uncorrelated with the disturbances, it can likewise serve as a set of L1 instrumental
variables. That leaves a necessity for L2 instrumental variables. The authors show that
the group means for x1 can serve as these remaining instruments, and the model will be
identified so long as K1 is greater than or equal to L2. For identification purposes, then,
K1 must be at least as large as L2. As usual, feasible GLS is better than OLS, and avail-
able. Likewise, FGLS is an improvement over simple instrumental variable estimation
of the model, which is consistent but inefficient.

The authors propose the following set of steps for consistent and efficient estimation:

Step 1. Obtain the LSDV (fixed effects) estimator of β = (β ′
1, β

′
2)

′ based on x1 and x2.
The residual variance estimator from this step is a consistent estimator of σ 2

ε .

Step 2. Form the within groups residuals, eit , from the LSDV regression at step 1.
Stack the group means of these residuals in a full sample length data vector. Thus,
e∗

i t = ēi i., t = 1, . . . , T, i = 1, . . . , n. These group means are used as the dependent vari-
able in an instrumental variable regression on z1 and z2 with instrumental variables z1

and x1. (Note the identification requirement that K1, the number of variables in x1 be
at least as large as L2, the number of variables in z2.) The time invariant variables are
each repeated T times in the data matrices in this regression. This provides a consistent
estimator of α.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of
σ ∗2 = σ 2

u + σ 2
ε /T. From this estimator and the estimator of σ 2

ε in step 1, we deduce an
estimator of σ 2

u = σ ∗2 − σ 2
ε /T. We then form the weight for feasible GLS in this model

by forming the estimate of

θ =
√

σ 2
ε

σ 2
ε + Tσ 2

u
.

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of
variables in the model be

w′
i t = (x′

1i t , x′
2i t , z′

1i , z′
2i ).

William Greene
only one eye in subscript at right of equals sign.



Greene-50240 book June 18, 2002 15:28

CHAPTER 13 ✦ Models for Panel Data 305

Collect these nT observations in the rows of data matrix W. The transformed variables
for GLS are, as before when we first fit the random effects model,

w∗′
i t = w′

i t − (1 − θ̂ )w̄′
i and y∗

i t = yit − (1 − θ̂ )ȳi

where θ̂ denotes the sample estimate of θ . The transformed data are collected in the
rows data matrix W∗ and in column vector y∗. Note in the case of the time invariant
variables in wi t , the group mean is the original variable, and the transformation just
multiplies the variable by θ̂ . The instrumental variables are

v′
i t = [(x1i t − x̄1i )

′, (x2i t − x̄2i )
′, z′

1i x̄′
1i ].

These are stacked in the rows of the nT × (K1 + K2 + L1 + K1) matrix V. Note
for the third and fourth sets of instruments, the time invariant variables and group
means are repeated for each member of the group. The instrumental variable estimator
would be

(β̂ ′, α̂′)′IV = [(W∗′V)(V′V)−1(V′W∗)]−1[(W∗′V)(V′V)−1(V′y∗)].25 (13-37)

The instrumental variable estimator is consistent if the data are not weighted, that is,
if W rather than W∗ is used in the computation. But, this is inefficient, in the same
way that OLS is consistent but inefficient in estimation of the simpler random effects
model.

Example 13.6 The Returns to Schooling
The economic returns to schooling have been a frequent topic of study by econometricians.
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage
(or log wage) equations, it is clear that the economic benefits of schooling are correlated
with latent, unmeasured characteristics of the individual such as innate ability, intelligence,
drive, or perseverance. As such, there is little question that simple random effects models
based on panel data will suffer from the effects noted earlier. The fixed effects model is the
obvious alternative, but these rich data sets contain many useful variables, such as race,
union membership, and marital status, which are generally time invariant. Worse yet, the
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor
(1981) proposed the estimator described here as a solution to these problems. The authors
studied the effect of schooling on (the log of) wages using a random sample from the PSID of
750 men aged 25–55, observed in two years, 1968 and 1972. The two years were chosen so
as to minimize the effect of serial correlation apart from the persistent unmeasured individual
effects. The variables used in their model were as follows:

Experience = age—years of schooling—5,
Years of schooling,
Bad Health = a dummy variable indicating general health,
Race = a dummy variable indicating nonwhite (70 of 750 observations),
Union = a dummy variable indicating union membership,
Unemployed = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a period indicator. [The coding of the latter
is not given, but any two distinct values, including 0 for 1968 and 1 for 1972 would produce
identical results. (Why?)]

The primary focus of the study is the coefficient on schooling in the log wage equation.
Since schooling and, probably, Experience and Unemployed are correlated with the latent

25Note that the FGLS random effects estimator would be (β̂ ′, α̂′)′RE = [W∗′W∗]−1W∗′y∗.
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TABLE 13.3 Estimated Log Wage Equations

Variables OLS GLS/RE LSDV HT/IV-GLS HT/IV-GLS

x1 Experience 0.0132 0.0133 0.0241 0.0217
(0.0011)a (0.0017) (0.0042) (0.0031)

Bad health −0.0843 −0.0300 −0.0388 −0.0278 −0.0388
(0.0412) (0.0363) (0.0460) (0.0307) (0.0348)

Unemployed −0.0015 −0.0402 −0.0560 −0.0559
Last Year (0.0267) (0.0207) (0.0295) (0.0246)
Time NRb NR NR NR NR

x2 Experience 0.0241
(0.0045)

Unemployed −0.0560
(0.0279)

z1 Race −0.0853 −0.0878 −0.0278 −0.0175
(0.0328) (0.0518) (0.0752) (0.0764)

Union 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)

Schooling 0.0669 0.0676
(0.0033) (0.0052)

Constant NR NR NR NR NR
z2 Schooling 0.1246 0.2169

(0.0434) (0.0979)
σε 0.321 0.192 0.160 0.190 0.629
ρ =

√
σ 2

u /(σ 2
u + σ 2

ε ) 0.632 0.661 0.817
Spec. Test [3] 20.2 2.24 0.00

aEstimated asymptotic standard errors are given in parentheses.
bNR indicates that the coefficient estimate was not reported in the study.

effect, there is likely to be serious bias in conventional estimates of this equation. Table 13.3
reports some of their reported results. The OLS and random effects GLS results in the first
two columns provide the benchmark for the rest of the study. The schooling coefficient
is estimated at 0.067, a value which the authors suspected was far too small. As we saw
earlier, even in the presence of correlation between measured and latent effects, in this model,
the LSDV estimator provides a consistent estimator of the coefficients on the time varying
variables. Therefore, we can use it in the Hausman specification test for correlation between
the included variables and the latent heterogeneity. The calculations are shown in Section
13.4.4, result (13-34). Since there are three variables remaining in the LSDV equation, the
chi-squared statistic has three degrees of freedom. The reported value of 20.2 is far larger
than the 95 percent critical value of 7.81, so the results suggest that the random effects
model is misspecified.

Hausman and Taylor proceeded to reestimate the log wage equation using their proposed
estimator. The fourth and fifth sets of results in Table 13.3 present the instrumental variable
estimates. The specification test given with the fourth set of results suggests that the proce-
dure has produced the desired result. The hypothesis of the modified random effects model
is now not rejected; the chi-squared value of 2.24 is much smaller than the critical value. The
schooling variable is treated as endogenous (correlated with ui ) in both cases. The difference
between the two is the treatment of Unemployed and Experience. In the preferred equation,
they are included in z2 rather than z1. The end result of the exercise is, again, the coeffi-
cient on schooling, which has risen from 0.0669 in the worst specification (OLS) to 0.2169
in the last one, a difference of over 200 percent. As the authors note, at the same time, the
measured effect of race nearly vanishes.
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13.6 GMM ESTIMATION OF DYNAMIC
PANEL DATA MODELS

Panel data are well suited for examining dynamic effects, as in the first-order model,

yit = x′
i tβ + γ yi,t−1 + αi + εi t

= w′
i tδ + αi + εi t ,

where the set of right hand side variables, wi t now includes the lagged dependent vari-
able, yi,t−1. Adding dynamics to a model in this fashion is a major change in the in-
terpretation of the equation. Without the lagged variable, the “independent variables”
represent the full set of information that produce observed outcome yit . With the lagged
variable, we now have in the equation, the entire history of the right hand side variables,
so that any measured influence is conditioned on this history; in this case, any impact
of xi t represents the effect of new information. Substantial complications arise in es-
timation of such a model. In both the fixed and random effects settings, the difficulty
is that the lagged dependent variable is correlated with the disturbance, even if it is
assumed that εi t is not itself autocorrelated. For the moment, consider the fixed effects
model as an ordinary regression with a lagged dependent variable. We considered this
case in Section 5.3.2 as a regression with a stochastic regressor that is dependent across
observations. In that dynamic regression model, the estimator based on T observations
is biased in finite samples, but it is consistent in T. That conclusion was the main result
of Section 5.3.2. The finite sample bias is of order 1/T. The same result applies here, but
the difference is that whereas before we obtained our large sample results by allowing
T to grow large, in this setting, T is assumed to be small and fixed, and large-sample
results are obtained with respect to n growing large, not T. The fixed effects estimator
of δ = [β, γ ] can be viewed as an average of n such estimators. Assume for now that
T ≥ K + 1 where K is the number of variables in xi t . Then, from (13-4),

δ̂ =
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0yi

]

=
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0Wi di

]

=
n∑

i=1

Fi di

where the rows of the T × (K + 1) matrix Wi are w′
i t and M0 is the T × T matrix that

creates deviations from group means [see (13-5)]. Each group specific estimator, di

is inconsistent, as it is biased in finite samples and its variance does not go to zero
as n increases. This matrix weighted average of n inconsistent estimators will also be
inconsistent. (This analysis is only heuristic. If T < K + 1, then the individual coefficient
vectors cannot be computed.26)

26Further discussion is given by Nickell (1981), Ridder and Wansbeek (1990), and Kiviet (1995).
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The problem is more transparent in the random effects model. In the model

yit = γ yi,t−1 + x′
i tβ + ui + εi t ,

the lagged dependent variable is correlated with the compound disturbance in the
model, since the same ui enters the equation for every observation in group i.

Neither of these results renders the model inestimable, but they do make neces-
sary some technique other than our familiar LSDV or FGLS estimators. The general
approach, which has been developed in several stages in the literature,27 relies on in-
strumental variables estimators and, most recently [by Arellano and Bond (1991) and
Arellano and Bover (1995)] on a GMM estimator. For example, in either the fixed or
random effects cases, the heterogeneity can be swept from the model by taking first
differences, which produces

yit − yi,t−1 = δ(yi,t−1 − yi,t−2) + (xi t − xi,t−1)
′β + (εi t − εi,t−1).

This model is still complicated by correlation between the lagged dependent variable
and the disturbance (and by its first-order moving average disturbance). But without the
group effects, there is a simple instrumental variables estimator available. Assuming that
the time series is long enough, one could use the lagged differences, (yi,t−2−yi,t−3), or the
lagged levels, yi,t−2 and yi,t−3, as one or two instrumental variables for (yi,t−1 − yi,t−2).
(The other variables can serve as their own instruments.) By this construction, then, the
treatment of this model is a standard application of the instrumental variables technique
that we developed in Section 5.4.28 This illustrates the flavor of an instrumental variable
approach to estimation. But, as Arellano et al. and Ahn and Schmidt (1995) have shown,
there is still more information in the sample which can be brought to bear on estimation,
in the context of a GMM estimator, which we now consider.

We extend the Hausman and Taylor (HT) formulation of the random effects model
to include the lagged dependent variable;

yit = γ yi,t−1 + x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εi t + ui

= δ′wi t + εi t + ui

= δ′wi t + ηi t

where

wi t = [yi,t−1, x′
1i t , x′

2i t , z′
1i , z′

2i ]
′

is now a (1 + K1 + K2 + L1 + L2) × 1 vector. The terms in the equation are the same
as in the Hausman and Taylor model. Instrumental variables estimation of the model
without the lagged dependent variable is discussed in the previous section on the HT
estimator. Moreover, by just including yi,t−1 in x2i t , we see that the HT approach extends
to this setting as well, essentially without modification. Arellano et al. suggest a GMM
estimator, and show that efficiency gains are available by using a larger set of moment

27The model was first proposed in this form by Balestra and Nerlove (1966). See, for example, Anderson and
Hsiao (1981, 1982), Bhargava and Sargan (1983), Arellano (1989), Arellano and Bond (1991), Arellano and
Bover (1995), Ahn and Schmidt (1995), and Nerlove (2003).
28There is a question as to whether one should use differences or levels as instruments. Arellano (1989) gives
evidence that the latter is preferable.
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conditions. In the previous treatment, we used a GMM estimator constructed as follows:
The set of moment conditions we used to formulate the instrumental variables were

E




x1i t

x2i t

z1i

x̄1i.

 (ηi t − η̄i )

 = E




x1i t

x2i t

z1i

x̄1i.

 (εi t − ε̄i )

 = 0.

This moment condition is used to produce the instrumental variable estimator. We could
ignore the nonscalar variance of ηi t and use simple instrumental variables at this point.
However, by accounting for the random effects formulation and using the counterpart
to feasible GLS, we obtain the more efficient estimator in (13-37). As usual, this can be
done in two steps. The inefficient estimator is computed in order to obtain the residuals
needed to estimate the variance components. This is Hausman and Taylor’s steps 1 and
2. Steps 3 and 4 are the GMM estimator based on these estimated variance components.

Arellano et al. suggest that the preceding does not exploit all the information in
the sample. In simple terms, within the T observations in group i, we have not used the
fact that

E




x1i t

x2i t

z1i

x̄1i.

 (ηis − η̄i )

 = 0 for some s 	= t.

Thus, for example, not only are disturbances at time t uncorrelated with these variables at
time t , arguably, they are uncorrelated with the same variables at time t − 1, t − 2, possi-
bly t + 1, and so on. In principle, the number of valid instruments is potentially enormous.
Suppose, for example, that the set of instruments listed above is strictly exogenous with
respect to ηi t in every period including current, lagged and future. Then, there are a total
of [T(K1 + K2)+ L1 + K1)] moment conditions for every observation on this basis alone.
Consider, for example, a panel with two periods. We would have for the two periods,

E




x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.

 (ηi1 − η̄i )

 = E




x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.

 (ηi2 − η̄i )

 = 0. (13-38)

How much useful information is brought to bear on estimation of the parameters is un-
certain, as it depends on the correlation of the instruments with the included exogenous
variables in the equation. The farther apart in time these sets of variables become the
less information is likely to be present. (The literature on this subject contains reference
to “strong” versus “weak” instrumental variables.29) In order to proceed, as noted, we
can include the lagged dependent variable in x2i . This set of instrumental variables can
be used to construct the estimator, actually whether the lagged variable is present or
not. We note, at this point, that on this basis, Hausman and Taylor’s estimator did not

29See West (2001).
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actually use all the information available in the sample. We now have the elements of
the Arellano et al. estimator in hand; what remains is essentially the (unfortunately,
fairly involved) algebra, which we now develop.

Let

Wi =


w′

i1
w′

i2
...

w′
iTi

 = the full set of rhs data for group i, and yi =


yi1

yi2
...

yiT

 .

Note that Wi is assumed to be, a T × (1 + K1 + K2 + L1 + L2) matrix. Since there is a
lagged dependent variable in the model, it must be assumed that there are actually T + 1
observations available on yit . To avoid a cumbersome, cluttered notation, we will leave
this distinction embedded in the notation for the moment. Later, when necessary, we
will make it explicit. It will reappear in the formulation of the instrumental variables. A
total of T observations will be available for constructing the IV estimators. We now form
a matrix of instrumental variables. Different approaches to this have been considered
by Hausman and Taylor (1981), Arellano et al. (1991, 1995, 1999), Ahn and Schmidt
(1995) and Amemiya and MaCurdy (1986), among others. We will form a matrix Vi

consisting of Ti − 1 rows constructed the same way for Ti − 1 observations and a final
row that will be different, as discussed below. [This is to exploit a useful algebraic result
discussed by Arellano and Bover (1995).] The matrix will be of the form

Vi =


v′

i1 0′ · · · 0′
0′ v′

i2 · · · 0′
...

...
. . .

...

0′ 0′ · · · a′
i

 . (13-39)

The instrumental variable sets contained in v′
i t which have been suggested might include

the following from within the model:

xi t and xi,t−1 (i.e., current and one lag of all the time varying variables)
xi1, . . . , xiT (i.e., all current, past and future values of all the time varying variables)
xi1, . . . , xi t (i.e., all current and past values of all the time varying variables)

The time invariant variables that are uncorrelated with ui , that is z1i , are appended
at the end of the nonzero part of each of the first T − 1 rows. It may seem that in-
cluding x2 in the instruments would be invalid. However, we will be converting the
disturbances to deviations from group means which are free of the latent effects—that
is, this set of moment conditions will ultimately be converted to what appears in (13-38).
While the variables are correlated with ui by construction, they are not correlated with
εi t − ε̄i . The final row of Vi is important to the construction. Two possibilities have been
suggested:

a′
i = [z′

1i x̄i1] (produces the Hausman and Taylor estimator)

a′
i = [z′

1i x′
1i1, x′

1i2, . . . , x1iT] (produces Amemiya and MaCurdy’s estimator).
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Note that the m variables are exogenous time invariant variables, z1i and the exogenous
time varying variables, either condensed into the single group mean or in the raw form,
with the full set of T observations.

To construct the estimator, we will require a transformation matrix, H constructed
as follows. Let M01 denote the first T − 1 rows of M0, the matrix that creates deviations
from group means. Then,

H =
M01

1
T

i′T

 .

Thus, H replaces the last row of M0 with a row of 1/T. The effect is as follows: if q is T
observations on a variable, then Hq produces q∗ in which the first T − 1 observations
are converted to deviations from group means and the last observation is the group
mean. In particular, let the T × 1 column vector of disturbances

ηi = [ηi1, ηi2, . . . , ηiT] = [(εi1 + ui ), (εi2 + ui ), . . . , (εiT + ui )]′,

then

Hη =


ηi1 − η̄i

...

ηi,T−1 − η̄i

η̄i

 .

We can now construct the moment conditions. With all this machinery in place, we
have the result that appears in (13-40), that is

E [V′
i Hηi ] = E [gi ] = 0.

It is useful to expand this for a particular case. Suppose T = 3 and we use as instruments
the current values in Period 1, and the current and previous values in Period 2 and the
Hausman and Taylor form for the invariant variables. Then the preceding is

E





x1i1 0 0
x2i1 0 0
z1i 0 0
0 x1i1 0
0 x2i1 0
0 x1i2 0
0 x2i2 0
0 z1i 0
0 0 z1i

0 0 x̄1i



ηi1 − η̄i

ηi2 − η̄i

η̄i




= 0. (13-40)
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This is the same as (13-38).30 The empirical moment condition that follows from this is

plim
1
n

n∑
i=1

V′
i Hηi

= plim
1
n

n∑
i=1

V′
i H


yi1 − γ yi0 − x′

1i1β1 − x′
2i1β2 − z′

1iα1 − z′
2iα2

yi2 − γ yi1 − x′
1i2β1 − x′

2i2β2 − z′
1iα1 − z′

2iα2
...

yiT − γ yi,T−1 − x′
1iTβ1 − x′

2iTβ2 − z′
1iα1 − z′

2iα2

 = 0.

Write this as

plim
1
n

n∑
i=1

mi = plim m̄ = 0.

The GMM estimator δ̂ is then obtained by minimizing

q = m̄′Am̄

with an appropriate choice of the weighting matrix, A. The optimal weighting matrix
will be the inverse of the asymptotic covariance matrix of

√
n m̄. With a consistent

estimator of δ in hand, this can be estimated empirically using

Est.Asy. Var[
√

n m̄] = 1
n

n∑
i=1

m̂i m̂′
i = 1

n

n∑
i=1

V′
i Hη̂i η̂

′
i H

′Vi .

This is a robust estimator that allows an unrestricted T × T covariance matrix for the T
disturbances, εi t +ui . But, we have assumed that this covariance matrix is the � defined
in (13-20) for the random effects model. To use this information we would, instead, use
the residuals in

η̂i = yi − Wi δ̂

to estimate σ 2
u and σ 2

ε and then �, which produces

Est.Asy. Var[
√

n m̄] = 1
n

n∑
i=1

V′
i H�̂H′Vi .

We now have the full set of results needed to compute the GMM estimator. The solution
to the optimization problem of minimizing q with respect to the parameter vector δ is

δ̂GMM =
(

n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′�̂HVi

)−1( n∑
i=1

V′
i H

′Wi

)−1

×
(

n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′�̂HVi

)−1( n∑
i=1

V′
i H

′yi

)
. (13-41)

The estimator of the asymptotic covariance matrix for δ̂ is the inverse matrix in brackets.

30In some treatments [e.g., Blundell and Bond (1998)], an additional condition is assumed for the initial value,
yi0, namely E [yi0 | exogenous data] = µ0. This would add a row at the top of the matrix in (13-38) containing
[(yi0 − µ0), 0, 0].
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The remaining loose end is how to obtain the consistent estimator of δ to compute
�. Recall that the GMM estimator is consistent with any positive definite weighting
matrix, A in our expression above. Therefore, for an initial estimator, we could set
A = I and use the simple instrumental variables estimator,

δ̂IV =
[(

N∑
i=1

W′
i HVi

)(
N∑

i=1

V′
i HWi

)]−1( N∑
i=1

W′
i HVi

)(
N∑

i=1

V′
i Hyi

)
.

It is more common to proceed directly to the “two stage least squares” estimator (see
Chapter 15) which uses

A =
(

1
n

n∑
i=1

V′
i H

′HVi

)−1

.

The estimator is, then, the one given earlier in (13-41) with �̂ replace by IT . Either
estimator is a function of the sample data only and provides the initial estimator we
need.

Ahn and Schmidt (among others) observed that the IV estimator proposed here,
as extensive as it is, still neglects quite a lot of information and is therefore (relatively)
inefficient. For example, in the first differenced model,

E [yis(εi t − εi,t−1)] = 0, s = 0, . . . , t − 2, t = 2, . . . , T.

That is, the level of yis is uncorrelated with the differences of disturbances that are at
least two periods subsequent.31 (The differencing transformation, as the transformation
to deviations from group means, removes the individual effect.) The corresponding
moment equations that can enter the construction of a GMM estimator are

1
n

n∑
i=1

yis[(yit − yi,t−1) − δ(yi,t−1 − yi,t−2) − (xi t − xi,t−1)
′β] = 0

s = 0, . . . , t − 2, t = 2, . . . , T.

Altogether, Ahn and Schmidt identify T(T − 1)/2 + T − 2 such equations that involve
mixtures of the levels and differences of the variables. The main conclusion that they
demonstrate is that in the dynamic model, there is a large amount of information to
be gleaned not only from the familiar relationships among the levels of the variables
but also from the implied relationships between the levels and the first differences. The
issue of correlation between the transformed yit and the deviations of εi t is discussed
in the papers cited. (As Ahn and Schmidt show, there are potentially huge numbers
of additional orthogonality conditions in this model owing to the relationship between
first differences and second moments. We do not consider those. The matrix Vi could
be huge. Consider a model with 10 time varying right-hand side variables and suppose
Ti is 15. Then, there are 15 rows and roughly 15 × (10 × 15) or 2,250 columns. (The
Ahn and Schmidt estimator, which involves potentially thousands of instruments in a
model containing only a handful of parameters may become a bit impractical at this
point. The common approach is to use only a small subset of the available instrumental

31This is the approach suggested by Holtz-Eakin (1988) and Holtz-Eakin, Newey, and Rosen (1988).
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variables.) The order of the computation grows as the number of parameters times the
square of T.)

The number of orthogonality conditions (instrumental variables) used to estimate
the parameters of the model is determined by the number of variables in vi t and ai

in (13-39). In most cases, the model is vastly overidentified—there are far more or-
thogonality conditions than parameters. As usual in GMM estimation, a test of the
overidentifying restrictions can be based on q, the estimation criterion. At its mini-
mum, the limiting distribution of q is chi-squared with degrees of freedom equal to the
number of instrumental variables in total minus (1 + K1 + K2 + L1 + L2).32

Example 13.7 Local Government Expenditure
Dahlberg and Johansson (2000) estimated a model for the local government expenditure of
several hundred municipalities in Sweden observed over the nine year period t = 1979 to
1987. The equation of interest is

Si ,t = αt +
m∑

j =1

β j Si ,t− j +
m∑

j =1

γ j Ri ,t− j +
m∑

j =1

δ j Gi ,t− j + fi + εi t .

(We have changed their notation slightly to make it more convenient.) Si ,t , Ri ,t and Gi ,t are
municipal spending, receipts (taxes and fees) and central government grants, respectively.
Analogous equations are specified for the current values of Ri ,t and Gi ,t . The appropriate lag
length, m, is one of the features of interest to be determined by the empirical study. Note that
the model contains a municipality specific effect, fi , which is not specified as being either
“fixed” or “random.” In order to eliminate the individual effect, the model is converted to first
differences. The resulting equation has dependent variable �Si ,t = Si ,t − Si ,t−1 and a moving
average disturbance, �εi ,t = εi ,t − εi ,t−1. Estimation is done using the methods developed
by Ahn and Schmidt (1995), Arellano and Bover (1995) and Holtz-Eakin, Newey, and Rosen
(1988), as described previously. Issues of interest are the lag length, the parameter estimates,
and Granger causality tests, which we will revisit (again using this application) in Chapter 19.
We will examine this application in detail and obtain some estimates in the continuation of
this example in Section 18.5 (GMM Estimation).

13.7 NONSPHERICAL DISTURBANCES
AND ROBUST COVARIANCE ESTIMATION

Since the models considered here are extensions of the classical regression model, we
can treat heteroscedasticity in the same way that we did in Chapter 11. That is, we can
compute the ordinary or feasible generalized least squares estimators and obtain an
appropriate robust covariance matrix estimator, or we can impose some structure on
the disturbance variances and use generalized least squares. In the panel data settings,
there is greater flexibility for the second of these without making strong assumptions
about the nature of the heteroscedasticity. We will discuss this model under the head-
ing of “covariance structures” in Section 13.9. In this section, we will consider robust
estimation of the asymptotic covariance matrix for least squares.

13.7.1 ROBUST ESTIMATION OF THE FIXED EFFECTS MODEL

In the fixed effects model, the full regressor matrix is Z = [X, D]. The White het-
eroscedasticity consistent covariance matrix for OLS—that is, for the fixed effects

32This is true generally in GMM estimation. It was proposed for the dynamic panel data model by Bhargava
and Sargan (1983).
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estimator—is the lower right block of the partitioned matrix

Est.Asy. Var[b, a] = (Z′Z)−1Z′E2Z(Z′Z)−1,

where E is a diagonal matrix of least squares (fixed effects estimator) residuals. This
computation promises to be formidable, but fortunately, it works out very simply. The
White estimator for the slopes is obtained just by using the data in group mean deviation
form [see (13-4) and (13-8)] in the familiar computation of S0 [see (11-7) to (11-9)]. Also,
the disturbance variance estimator in (13-8) is the counterpart to the one in (11-3),
which we showed that after the appropriate scaling of � was a consistent estimator
of σ 2 = plim[1/(nT )]

∑n
i=1

∑T
t=1 σ 2

i t . The implication is that we may still use (13-8) to
estimate the variances of the fixed effects.

A somewhat less general but useful simplification of this result can be obtained if
we assume that the disturbance variance is constant within the ith group. If E [ε2

i t ] = σ 2
i ,

then, with a panel of data, σ 2
i is estimable by e′

i ei/T using the least squares residu-
als. (This heteroscedastic regression model was considered at various points in Sec-
tion 11.7.2.) The center matrix in Est.Asy. Var[b, a] may be replaced with

∑
i (e

′
i ei/T)

Z′
i Zi . Whether this estimator is preferable is unclear. If the groupwise model is correct,

then it and the White estimator will estimate the same matrix. On the other hand, if the
disturbance variances do vary within the groups, then this revised computation may be
inappropriate.

Arellano (1987) has taken this analysis a step further. If one takes the ith group as
a whole, then we can treat the observations in

yi = Xiβ + αi iT + εi

as a generalized regression model with disturbance covariance matrix �i . We saw in
Section 11.4 that a model this general, with no structure on �, offered little hope for
estimation, robust or otherwise. But the problem is more manageable with a panel data
set. As before, let Xi∗ denote the data in group mean deviation form. The counterpart
to X′�X here is

X′
∗�X∗ =

n∑
i=1

(X′
i∗�i Xi∗).

By the same reasoning that we used to construct the White estimator in Chapter 12, we
can consider estimating �i with the sample of one, ei e′

i . As before, it is not consistent
estimation of the individual �i s that is at issue, but estimation of the sum. If n is large
enough, then we could argue that

plim
1

nT
X′

∗�X∗ = plim
1

nT

n∑
i=1

X′
i∗�i X∗i

= plim
1
n

n∑
i=1

1
T

X′
∗i

ei e′
i X∗i

= plim
1
n

n∑
i=1

(
1
T

T∑
t=1

T∑
s=1

eit eisx∗i t x
′
∗is

)
.
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The result is a combination of the White and Newey–West estimators. But the weights
in the latter are 1 rather than [1 − l/(L+ 1)] because there is no correlation across the
groups, so the sum is actually just an average of finite matrices.

13.7.2 HETEROSCEDASTICITY IN THE RANDOM EFFECTS MODEL

Since the random effects model is a generalized regression model with a known struc-
ture, OLS with a robust estimator of the asymptotic covariance matrix is not the
best use of the data. The GLS estimator is efficient whereas the OLS estimator is
not. If a perfectly general covariance structure is assumed, then one might simply use
Arellano’s estimator described in the preceding section with a single overall constant
term rather than a set of fixed effects. But, within the setting of the random effects
model, ηi t = εi t + ui , allowing the disturbance variance to vary across groups would
seem to be a useful extension.

A series of papers, notably Mazodier and Trognon (1978), Baltagi and Griffin (1988),
and the recent monograph by Baltagi (1995, pp. 77–79) suggest how one might allow
the group-specific component ui to be heteroscedastic. But, empirically, there is an
insurmountable problem with this approach. In the final analysis, all estimators of the
variance components must be based on sums of squared residuals, and, in particular, an
estimator of σ 2

ui would be estimated using a set of residuals from the distribution of ui .
However, the data contain only a single observation on ui repeated in each observation
in group i. So, the estimators presented, for example, in Baltagi (1995), use, in effect,
one residual in each case to estimate σ 2

ui. What appears to be a mean squared residual is
only (1/T )

∑T
t=1 û2

i = û2
i . The properties of this estimator are ambiguous, but efficiency

seems unlikely. The estimators do not converge to any population figure as the sample
size, even T, increases. Heteroscedasticity in the unique component, εi t represents a
more tractable modeling possibility.

In Section 13.4.1, we introduced heteroscedasticity into estimation of the ran-
dom effects model by allowing the group sizes to vary. But the estimator there (and
its feasible counterpart in the next section) would be the same if, instead of θi =
1 − σε/(Tiσ

2
u + σ 2

ε )1/2, we were faced with

θi = 1 − σεi√
σ 2

εi + Tiσ 2
u

.

Therefore, for computing the appropriate feasible generalized least squares estimator,
once again we need only devise consistent estimators for the variance components and
then apply the GLS transformation shown above. One possible way to proceed is as
follows: Since pooled OLS is still consistent, OLS provides a usable set of residuals.
Using the OLS residuals for the specific groups, we would have, for each group,

̂σ 2
εi + u2

i = e′
i ei

T
.

The residuals from the dummy variable model are purged of the individual specific
effect, ui , so σ 2

εi may be consistently (in T) estimated with

σ̂ 2
εi = e′lsdv

i elsdv
i

T
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where elsdv
it = yit − x′

i t b
lsdv − ai . Combining terms, then,

σ̂ 2
u = 1

n

n∑
i=1

[(
e′ols

i eols
i

T

)
−

(
e′lsdv

i elsdv
i

T

)]
= 1

n

n∑
i=1

(̂
u2

i

)
.

We can now compute the FGLS estimator as before.

Example 13.8 Heteroscedasticity Consistent Estimation
The fixed effects estimates for the cost equation are shown in Table 13.2 on page 302. The
row of standard errors labeled White (1) are the estimates based on the usual calculation. For
two of the three coefficients, these are actually substantially smaller than the least squares
results. The estimates labeled White (2) are based on the groupwise heteroscedasticity model
suggested earlier. These estimates are essentially the same as White (1). As noted, it is unclear
whether this computation is preferable. Of course, if it were known that the groupwise model
were correct, then the least squares computation itself would be inefficient and, in any event,
a two-step FGLS estimator would be better.

The estimators of σ 2
εi + u2

i based on the least squares residuals are 0.16188, 0.44740,
0.26639, 0.90698, 0.23199, and 0.39764. The six individual estimates of σ 2

εi based on the
LSDV residuals are 0.0015352, 0.52883, 0.20233, 0.62511, 0.25054, and 0.32482, respec-
tively. Two of the six implied estimates (the second and fifth) of u2

i are negative based on
these results, which suggests that a groupwise heteroscedastic random effects model is not
an appropriate specification for these data.

13.7.3 AUTOCORRELATION IN PANEL DATA MODELS

Autocorrelation in the fixed effects model is a minor extension of the model of the
preceding chapter. With the LSDV estimator in hand, estimates of the parameters of a
disturbance process and transformations of the data to allow FGLS estimation proceed
exactly as before. The extension one might consider is to allow the autocorrelation
coefficient(s) to vary across groups. But even if so, treating each group of observations
as a sample in itself provides the appropriate framework for estimation.

In the random effects model, as before, there are additional complications. The
regression model is

yit = x′
i tβ + α + εi t + ui .

If εi t is produced by an AR(1) process, εi t = ρεi,t−1 + vi t , then the familiar partial
differencing procedure we used before would produce33

yit − ρyi,t−1 = α(1 − ρ) + (xi t − ρxi,t−1)
′β + εi t − ρεi,t−1 + ui (1 − ρ)

= α(1 − ρ) + (xi t − ρxi,t−1)
′β + vi t + ui (1 − ρ) (13-42)

= α(1 − ρ) + (xi t − ρxi,t−1)
′β + vi t + wi .

Therefore, if an estimator of ρ were in hand, then one could at least treat partially
differenced observations two through T in each group as the same random effects
model that we just examined. Variance estimators would have to be adjusted by a factor
of (1−ρ)2. Two issues remain: (1) how is the estimate of ρ obtained and (2) how does one
treat the first observation? For the first of these, the first autocorrelation coefficient of

33See Lillard and Willis (1978).
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the LSDV residuals (so as to purge the residuals of the individual specific effects, ui ) is a
simple expedient. This estimator will be consistent in nT. It is in T alone, but, of course, T
is likely to be small. The second question is more difficult. Estimation is simple if the first
observation is simply dropped. If the panel contains many groups (large n), then omitting
the first observation is not likely to cause the inefficiency that it would in a single time
series. One can apply the Prais–Winsten transformation to the first observation in each
group instead [multiply by (1−ρ2)1/2], but then an additional complication arises at the
second (FGLS) step when the observations are transformed a second time. On balance,
the Cochrane–Orcutt estimator is probably a reasonable middle ground. Baltagi (1995,
p. 83) discusses the procedure. He also discusses estimation in higher-order AR and
MA processes.

In the same manner as in the previous section, we could allow the autocorrelation
to differ across groups. An estimate of each ρi is computable using the group mean
deviation data. This estimator is consistent in T, which is problematic in this setting. In
the earlier case, we overcame this difficulty by averaging over n such “weak” estimates
and achieving consistency in the dimension of n instead. We lose that advantage when
we allow ρ to vary over the groups. This result is the same that arose in our treatment
of heteroscedasticity.

For the airlines data in our examples, the estimated autocorrelation is 0.5086, which
is fairly large. Estimates of the fixed and random effects models using the Cochrane–
Orcutt procedure for correcting the autocorrelation are given in Table 13.2. Despite the
large value of r, the resulting changes in the parameter estimates and standard errors
are quite modest.

13.8 RANDOM COEFFICIENTS MODELS

Thus far, the model yi = Xiβ + εi has been analyzed within the familiar frameworks of
heteroscedasticity and autocorrelation. Although the models in Sections 13.3 and 13.4
allow considerable flexibility, they do entail the not entirely plausible assumption that
there is no parameter variation across firms (i.e., across the cross-sectional units). A
fully general approach would combine all the machinery of the previous sections with
a model that allows β to vary across firms.

Parameter heterogeneity across individuals or groups can be modeled as stochastic
variation.34 Suppose that we write

yi = Xiβ i + εi , (13-43)

where

β i = β + ui , (13-44)

34The most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975),
and Chow (1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995,
2001) and Hsiao (1986). The model bears some resemblance to the Bayesian approach of Section 16.2.2, but
the similarity is only superficial. We maintain our classical approach to estimation.
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and

E [ui | Xi ] = 0,

E [ui u′
i | Xi ] = 
.

(13-45)

(Note that if only the constant term in β is random in this fashion and the other pa-
rameters are fixed as before, then this reproduces the random effects model we studied
in Section 13.4.) Assume for now that there is no autocorrelation or cross-sectional
correlation. Thus, the β i that applies to a particular cross-sectional unit is the outcome
of a random process with mean vector β and covariance matrix 
.35 By inserting (13-44)
in (13-43) and expanding the result, we find that � is a block diagonal matrix with

�ii = E [(yi − Xiβ)(yi − Xiβ)′ | Xi ] = σ 2IT + Xi
X′
i .

We can write the GLS estimator as

β̂ = (X′�−1X)−1X′�−1y =
n∑

i=1

Wi bi (13-46)

where

Wi =
[

n∑
i=1

(

 + σ 2

i (X′
i Xi )

−1)−1

]−1 (

 + σ 2

i (X′
i Xi )

−1)−1
.

Empirical implementation of this model requires an estimator of 
. One approach
[see, e.g., Swamy (1971)] is to use the empirical variance of the set of n least squares
estimates, bi minus the average value of s2

i (X′
i Xi )

−1. This matrix may not be positive
definite, however, in which case [as Baltagi (1995) suggests], one might drop the second
term. The more difficult obstacle is that panels are often short and there may be too
few observations to compute bi . More recent applications of random parameter varia-
tion have taken a completely different approach based on simulation estimation. [See
Section 17.8, McFadden and Train (2000) and Greene (2001).]

Recent research in a number of fields have extended the random parameters model
to a “multilevel” model or “hierarchical regression” model by allowing the means of
the coefficients to vary with measured covariates. In this formulation, (13-44) becomes

β i = β + �zi + ui .

This model retains the earlier stochastic specification, but adds the measurement equa-
tion to the generation of the random parameters. In principle, this is actually only a
minor extension of the model used thus far, as the regression equation would now
become

yi = Xiβ + Xi�zi + (εi + Xi ui )

which can still be fit by least squares. However, as noted, current applications have
found this formulation to be useful in many settings that go beyond the linear model.
We will examine an application of this approach in a nonlinear model in Section 17.8.

35Swamy and Tavlas (2001) label this the “first generation RCM.” We’ll examine the “second generation”
extension at the end of this section.



Greene-50240 book June 18, 2002 15:28

320 CHAPTER 13 ✦ Models for Panel Data

13.9 COVARIANCE STRUCTURES FOR POOLED
TIME-SERIES CROSS-SECTIONAL DATA

Many studies have analyzed data observed across countries or firms in which the number
of cross-sectional units is relatively small and the number of time periods is (potentially)
relatively large. The current literature in political science contains many applications
of this sort. For example, in a cross-country comparison of economic performance over
time, Alvarez, Garrett, and Lange (1991) estimated a model of the form

performancei t = f (labor organizationi t , political organizationi t ) + εi t . (13-47)

The data set analyzed in Examples 13.1–13.5 is an example, in which the costs of six
large firms are observed for the same 15 years. The modeling context considered here
differs somewhat from the longitudinal data sets considered in the preceding sections.
In the typical application to be considered here, it is reasonable to specify a common
conditional mean function across the groups, with heterogeneity taking the form of
different variances rather than shifts in the means. Another substantive difference from
the longitudinal data sets is that the observational units are often large enough (e.g.,
countries) that correlation across units becomes a natural part of the specification,
whereas in a “panel,” it is always assumed away.

In the models we shall examine in this section, the data set consists of n cross-
sectional units, denoted i = 1, . . . , n, observed at each of T time periods, t = 1, . . . , T.
We have a total of nT observations. In contrast to the preceding sections, most of the
asymptotic results we obtain here are with respect to T → ∞. We will assume that n is
fixed.

The framework for this analysis is the generalized regression model:

yit = x′
i tβ + εi t . (13-48)

An essential feature of (13-48) is that we have assumed that β1 = β2 = · · · = βn. It is
useful to stack the n time series,

yi = Xiβ + εi , i = 1, . . . , n,

so that 
y1

y2
...

yn

 =


X1

X2
...

Xn

β +


ε1

ε2
...

εn

 . (13-49)

Each submatrix or subvector has T observations. We also specify

E [εi | X] = 0

and

E [εiε
′
j | X] = σi j�i j

so that a generalized regression model applies to each block of T observations. One new
element introduced here is the cross sectional covariance across the groups. Collecting
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the terms above, we have the full specification,

E [ε | X] = 0

and

E [εε′ | X] = � =


σ11�11 σ12�12 · · · σ1n�1n

σ21�21 σ22�22 · · · σ2n�2n

...

σn1�n1 σn2�n2 · · · σnn�nn

 .

A variety of models are obtained by varying the structure of �.

13.9.1 GENERALIZED LEAST SQUARES ESTIMATION

As we observed in our first encounter with the generalized regression model, the fully
general covariance matrix in (13-49), which, as stated, contains nT(nT + 1)/2 parame-
ters is certainly inestimable. But, several restricted forms provide sufficient generality
for empirical use. To begin, we assume that there is no correlation across periods, which
implies that �i j = I.

� =


σ11I σ12I · · · σ1nI
σ21I σ22I · · · σ2nI

...

σn1I σn2I · · · σnnI

 . (13-50)

The generalized least squares estimator of β is based on a known � would be

β̂ = [X′�−1X]−1[X′�−1y].

The matrix � can be written as

� = � ⊗ I, (13-51)

where � is the n× n matrix [σi j ] (note the contrast to (13-21) where � = In ⊗�). Then,

�−1 = �−1 ⊗ I =


σ 11I σ 12I · · · σ 1nI
σ 21I σ 22I · · · σ 2nI

...

σ n1I σ n2I · · · σ nnI

 . (13-52)

where σ i j denotes the i jth element of �−1. This provides a specific form for the
estimator,

β̂ =
 n∑

i=1

n∑
j=1

σ i j X′
i X j

−1  n∑
i=1

n∑
j=1

σ i j X′
i y j

 . (13-53)

The asymptotic covariance matrix of the GLS estimator is the inverse matrix in brackets.
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13.9.2 FEASIBLE GLS ESTIMATION

As always in the generalized linear regression model, the slope coefficients, β can be
consistently, if not efficiently estimated by ordinary least squares. A consistent estimator
of σi j can be based on the sample analog to the result

E [εi tε j t ] = E
[
ε′

iε j

T

]
= σi j .

Using the least squares residuals, we have

σ̂i j = e′
i e j

T
. (13-54)

Some treatments use T − K instead of T in the denominator of σ̂i j .36 There is no problem
created by doing so, but the resulting estimator is not unbiased regardless. Note that
this estimator is consistent in T. Increasing T increases the information in the sample,
while increasing n increases the number of variance and covariance parameters to be
estimated. To compute the FGLS estimators for this model, we require the full set of
sample moments, y′

i y j , X′
i X j , and X′

i y j for all pairs of cross-sectional units. With σ̂i j in
hand, FGLS may be computed using

ˆ̂β = [X′�̂−1X]−1[X′�̂−1y], (13-55)

where X and y are the stacked data matrices in (13-49)—this is done in practice using
(13-53) and (13-54) which involve only K × K and K × 1 matrices. The estimated
asymptotic covariance matrix for the FGLS estimator is the inverse matrix in brackets
in (13-55).

There is an important consideration to note in feasible GLS estimation of this
model. The computation requires inversion of the matrix �̂ where the i jth element is
given by (13-54). This matrix is n × n. It is computed from the least squares residuals
using

�̂ = 1
T

T∑
t=1

et e′
t = 1

T
E′E

where e′
t is a 1 × n vector containing all n residuals for the n groups at time t, placed as

the tth row of the T × n matrix of residuals, E. The rank of this matrix cannot be larger
than T. Note what happens if n > T. In this case, the n × n matrix has rank T which is
less than n, so it must be singular, and the FGLS estimator cannot be computed. For
example, a study of 20 countries each observed for 10 years would be such a case. This
result is a deficiency of the data set, not the model. The population matrix, � is positive
definite. But, if there are not enough observations, then the data set is too short to obtain
a positive definite estimate of the matrix. The heteroscedasticity model described in the
next section can always be computed, however.

36See, for example, Kmenta (1986, p. 620). Elsewhere, for example, in Fomby, Hill, and Johnson (1984, p. 327),
T is used instead.
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13.9.3 HETEROSCEDASTICITY AND THE CLASSICAL MODEL

Two special cases of this model are of interest. The groupwise heteroscedastic model
of Section 11.7.2 results if the off diagonal terms in � all equal zero. Then, the GLS
estimator, as we saw earlier, is

β̂ = [X′�−1X]−1[X′�−1y] =
[

n∑
i=1

1
σ 2

i
X′

i Xi

]−1 [
n∑

i=1

1
σ 2

i
X′

i yi

]
.

Of course, the disturbance variances, σ 2
i , are unknown, so the two-step FGLS method

noted earlier, now based only on the diagonal elements of � would be used. The second
special case is the classical regression model, which adds the further restriction σ 2

1 =
σ 2

2 = · · · = σ 2
n . We would now stack the data in the pooled regression model in

y = Xβ + ε.

For this simple model, the GLS estimator reduces to pooled ordinary least squares.
Beck and Katz (1995) suggested that the standard errors for the OLS estimates in

this model should be corrected for the possible misspecification that would arise if σi j�i j

were correctly specified by (13-49) instead of σ 2I, as now assumed. The appropriate
asymptotic covariance matrix for OLS in the general case is, as always,

Asy. Var[b] = (X′X)−1X′�X(X′X)−1.

For the special case of �i j = σi j I,

Asy. Var[b] =
(

n∑
i=1

X′
i Xi

)−1
 n∑

i=1

n∑
j=1

σi j X′
i X j

(
n∑

i=1

X′
i Xi

)−1

. (13-56)

This estimator is straightforward to compute with estimates of σi j in hand. Since the
OLS estimator is consistent, (13-54) may be used to estimate σi j .

13.9.4 SPECIFICATION TESTS

We are interested in testing down from the general model to the simpler forms if possible.
Since the model specified thus far is distribution free, the standard approaches, such as
likelihood ratio tests, are not available. We propose the following procedure. Under the
null hypothesis of a common variance, σ 2 (i.e., the classical model) the Wald statistic for
testing the null hypothesis against the alternative of the groupwise heteroscedasticity
model would be

W =
n∑

i=1

(
σ̂ 2

i − σ 2
)2

Var
[
σ̂ 2

i

] .

If the null hypothesis is correct,

W
d−→ χ2[n].

By hypothesis,

plim σ̂ 2 = σ 2,
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where σ̂ 2 is the disturbance variance estimator from the pooled OLS regression. We
must now consider Var[σ̂ 2

i ]. Since

σ̂ 2
i = 1

T

T∑
t=1

e2
i t ,

is a mean of T observations, we may estimate Var[σ̂ 2
i ] with

fii = 1
T

1
T − 1

T∑
t=1

(
e2

i t − σ̂ 2
i

)2
.37 (13-57)

The modified Wald statistic is then

W′ =
n∑

i=1

(
σ̂ 2

i − σ̂ 2
)2

fii
.

A Lagrange multiplier statistic is also simple to compute and asymptotically equiv-
alent to a likelihood ratio test—we consider these below. But, these assume normal-
ity, which we have not yet invoked. To this point, our specification is distribution free.
White’s general test38 is an alternative. To use White’s test, we would regress the squared
OLS residuals on the P unique variables in x and the squares and cross products, in-
cluding a constant. The chi-squared statistic, which has P − 1 degrees of freedom, is
(nT )R2.

For the full model with nonzero off diagonal elements in �, the preceding approach
must be modified. One might consider simply adding the corresponding terms for the
off diagonal elements, with a common σi j = 0, but this neglects the fact that under
this broader alternative hypothesis, the original n variance estimators are no longer
uncorrelated, even asymptotically, so the limiting distribution of the Wald statistic is no
longer chi-squared. Alternative approaches that have been suggested [see, e.g., Johnson
and Wichern (1999, p. 424)] are based on the following general strategy: Under the
alternative hypothesis of an unrestricted �, the sample estimate of � will be �̂ = [σ̂i j ]
as defined in (13-54). Under any restrictive null hypothesis, the estimator of � will be
�̂0, a matrix that by construction will be larger than �̂ in the matrix sense defined in
Appendix A. Statistics based on the “excess variation,” such as T(�̂0 −�̂) are suggested
for the testing procedure. One of these is the likelihood ratio test that we will consider
in Section 13.9.6.

13.9.5 AUTOCORRELATION

The preceding discussion dealt with heteroscedasticity and cross-sectional correlation.
Through a simple modification of the procedures, it is possible to relax the assumption
of nonautocorrelation as well. It is simplest to begin with the assumption that

Corr[εi t , εjs] = 0, if i 	= j.

37Note that would apply strictly if we had observed the true disturbances, εi t . We are using the residuals as
estimates of their population counterparts. Since the coefficient vector is consistent, this procedure will obtain
the desired results.
38See Section 11.4.1.
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That is, the disturbances between cross-sectional units are uncorrelated. Now, we can
take the approach of Chapter 12 to allow for autocorrelation within the cross-sectional
units. That is,

εi t = ρiεi,t−1 + uit ,

Var[εi t ] = σ 2
i = σ 2

ui

1 − ρ2
i
.

(13-58)

For FGLS estimation of the model, suppose that ri is a consistent estimator of ρi . Then,
if we take each time series [yi , Xi ] separately, we can transform the data using the
Prais–Winsten transformation:

y∗i =



√
1 − r2

i yi1

yi2 − ri yi1

yi3 − ri yi2
...

yiT − ri yi,T−1

 , X∗i =



√
1 − r2

i xi1

xi2 − ri xi1

xi3 − ri xi2
...

xiT − ri xi,T−1

 . (13-59)

In terms of the transformed data y∗i and X∗i , the model is now only heteroscedastic; the
transformation has removed the autocorrelation. As such, the groupwise heteroscedas-
tic model applies to the transformed data. We may now use weighted least squares, as
described earlier. This requires a second least squares estimate. The first, OLS regres-
sion produces initial estimates of ρi . The transformed data are then used in a second
least squares regression to obtain consistent estimators,

σ̂ 2
ui = e′

∗i
e∗i

T
= (y∗i − X∗i β̂)′(y∗i − X∗i β̂)

T
. (13-60)

[Note that both the initial OLS and the second round FGLS estimators of β are consis-
tent, so either could be used in (13-60). We have used β̂ to denote the coefficient vector
used, whichever one is chosen.] With these results in hand, we may proceed to the cal-
culation of the groupwise heteroscedastic regression in Section 13.9.3. At the end of the
calculation, the moment matrix used in the last regression gives the correct asymptotic
covariance matrix for the estimator, now ˆ̂β. If desired, then a consistent estimator of
σ 2

εi is

σ̂ 2
εi = σ̂ 2

ui

1 − r2
i
. (13-61)

The remaining question is how to obtain the initial estimates ri . There are two
possible structures to consider. If each group is assumed to have its own autocorrelation
coefficient, then the choices are the same ones examined in Chapter 12; the natural
choice would be

ri =
∑T

t=2 eit ei,t−1∑T
t=1 e2

i t

.

If the disturbances have a common stochastic process with the same ρi , then several
estimators of the common ρ are available. One which is analogous to that used in the
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single equation case is

r =
∑n

i=1

∑T
t=2 eit ei,t−1∑n

i=1

∑T
t=1 e2

i t

(13-62)

Another consistent estimator would be sample average of the group specific estimated
autocorrelation coefficients.

Finally, one may wish to allow for cross-sectional correlation across units. The pre-
ceding has a natural generalization. If we assume that

Cov[uit , ujt] = σuij,

then we obtain the original model in (13-49) in which the off-diagonal blocks of �, are

σi j�i j = σuij

1 − ρiρ j



1 ρ j ρ2
j · · · ρT−1

j

ρi 1 ρ j · · · ρT−2
j

ρ2
i ρi 1 · · · ρT−3

j
...
...

ρT−1
i ρT−2

i ρT−3
i · · · 1


. (13-63)

Initial estimates of ρi are required, as before. The Prais–Winsten transformation renders
all the blocks in � diagonal. Therefore, the model of cross-sectional correlation in
Section 13.9.2 applies to the transformed data. Once again, the GLS moment matrix
obtained at the last step provides the asymptotic covariance matrix for ˆ̂β. Estimates
of σεi j can be obtained from the least squares residual covariances obtained from the
transformed data:

σ̂εi j = σ̂uij

1 − rir j
, (13-64)

where σ̂uij = e′
∗i

e∗ j /T.

13.9.6 MAXIMUM LIKELIHOOD ESTIMATION

Consider the general model with groupwise heteroscedasticity and cross group correla-
tion. The covariance matrix is the � in (13-49). We now assume that the n disturbances
at time t, εt have a multivariate normal distribution with zero mean and this n × n co-
variance matrix. Taking logs and summing over the T periods gives the log-likelihood
for the sample,

ln L(β, � | data) = −nT
2

ln 2π − T
2

ln |�| − 1
2

T∑
t=1

ε′
t�

−1εt , (13-65)

εi t = yit − x′
i tβ, i = 1, . . . , n.

(This log-likelihood is analyzed at length in Section 14.2.4, so we defer the more de-
tailed analysis until then.) The result is that the maximum likelihood estimator of β

is the generalized least squares estimator in (13-53). Since the elements of � must be
estimated, the FGLS estimator in (13-54) is used, based on the MLE of �. As shown in
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Section 14.2.4, the maximum likelihood estimator of � is

σ̂i j =
(
y′

i − Xi
ˆ̂βML

)′(y j − X j
ˆ̂βML

)
T

= ε̂′
i ε̂ j

T
(13-66)

based on the MLE of β. Since each MLE requires the other, how can we proceed to
obtain both? The answer is provided by Oberhofer and Kmenta (1974) who show that
for certain models, including this one, one can iterate back and forth between the two
estimators. (This is the same estimator we used in Section 11.7.2.) Thus, the MLEs are
obtained by iterating to convergence between (13-66) and

ˆ̂β = [X′�̂−1X]−1[X′�̂−1y].

The process may begin with the (consistent) ordinary least squares estimator, then
(13-66), and so on. The computations are simple, using basic matrix algebra. Hypothesis
tests about β may be done using the familiar Wald statistic. The appropriate estimator
of the asymptotic covariance matrix is the inverse matrix in brackets in (13-55).

For testing the hypothesis that the off-diagonal elements of � are zero—that is, that
there is no correlation across firms—there are three approaches. The likelihood ratio
test is based on the statistic

λLR = T(ln |�̂heteroscedastic| − ln | �̂general|) = T

(
n∑

i=1

ln σ̂ 2
i − ln | �̂|

)
, (13-67)

where σ̂ 2
i are the estimates of σ 2

i obtained from the maximum likelihood estimates of
the groupwise heteroscedastic model and �̂ is the maximum likelihood estimator in the
unrestricted model. (Note how the excess variation produced by the restrictive model is
used to construct the test.) The large-sample distribution of the statistic is chi-squared
with n(n−1)/2 degrees of freedom. The Lagrange multiplier test developed by Breusch
and Pagan (1980) provides an alternative. The general form of the statistic is

λLM = T
n∑

i=2

i−1∑
j=1

r2
i j , (13-68)

where r2
i j is the i jth residual correlation coefficient. If every individual had a different

parameter vector, then individual specific ordinary least squares would be efficient
(and ML) and we would compute ri j from the OLS residuals (assuming that there are
sufficient observations for the computation). Here, however, we are assuming only a
single-parameter vector. Therefore, the appropriate basis for computing the correlations
is the residuals from the iterated estimator in the groupwise heteroscedastic model, that
is, the same residuals used to compute σ̂ 2

i . (An asymptotically valid approximation to
the test can be based on the FGLS residuals instead.) Note that this is not a procedure
for testing all the way down to the classical, homoscedastic regression model. That
case, which involves different LM and LR statistics, is discussed next. If either the
LR statistic in (13-67) or the LM statistic in (13-68) are smaller than the critical value
from the table, the conclusion, based on this test, is that the appropriate model is the
groupwise heteroscedastic model.

For the groupwise heteroscedasticity model, ML estimation reduces to groupwise
weighted least squares. The maximum likelihood estimator of β is feasible GLS. The
maximum likelihood estimator of the group specific variances is given by the diagonal
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element in (13-66), while the cross group covariances are now zero. An additional
useful result is provided by the negative of the expected second derivatives matrix of
the log-likelihood in (13-65) with diagonal �,

−E [H(β, σ 2
i , i = 1, . . . , n)] =


n∑

i=1

(
1
σ 2

i

)
X′

i Xi 0

0 diag
(

T

2σ 4
i
, i = 1, . . . , n

)
 .

Since the expected Hessian is block diagonal, the complete set of maximum likelihood
estimates can be computed by iterating back and forth between these estimators for σ 2

i
and the feasible GLS estimator of β. (This process is also equivalent to using a set of n
group dummy variables in Harvey’s model of heteroscedasticity in Section 11.7.1.)

For testing the heteroscedasticity assumption of the model, the full set of test strate-
gies that we have used before is available. The Lagrange multiplier test is probably the
most convenient test, since it does not require another regression after the pooled least
squares regression. It is convenient to rewrite

∂ log L

∂σ 2
i

= T

2σ 2
i

[
σ̂ 2

i

σ 2
i

− 1
]

,

where σ̂ 2
i is the ith unit-specific estimate of σ 2

i based on the true (but unobserved) dis-
turbances. Under the null hypothesis of equal variances, regardless of what the common
restricted estimator of σ 2

i is, the first-order condition for equating ∂ ln L/∂β to zero will
be the OLS normal equations, so the restricted estimator of β is b using the pooled data.
To obtain the restricted estimator of σ 2

i , return to the log-likelihood function. Under the
null hypothesis σ 2

i = σ 2, i = 1, . . . , n, the first derivative of the log-likelihood function
with respect to this common σ 2 is

∂ log LR

∂σ 2
= − nT

2σ 2
+ 1

2σ 4

n∑
i=1

ε′
iεi .

Equating this derivative to zero produces the restricted maximum likelihood estimator

σ̂ 2 = 1
nT

n∑
i=1

ε′
iεi. = 1

n

n∑
i=1

σ̂ 2
i ,

which is the simple average of the n individual consistent estimators. Using the least
squares residuals at the restricted solution, we obtain σ̂ 2 = (1/nT )e′e and σ̂ 2

i =
(1/T )e′

i ei . With these results in hand and using the estimate of the expected Hessian
for the covariance matrix, the Lagrange multiplier statistic reduces to

λLM =
n∑

i=1

[
T

2σ̂ 2

(
σ̂ 2

i

σ̂ 2
− 1

)]2(2σ̂ 4

T

)
= T

2

n∑
i=1

[
σ̂ 2

i

σ̂ 2
− 1

]2

.

The statistic has n − 1 degrees of freedom. (It has only n − 1 since the restriction is that
the variances are all equal to each other, not a specific value, which is n−1 restrictions.)

With the unrestricted estimates, as an alternative test procedure, we may use the
Wald statistic. If we assume normality, then the asymptotic variance of each variance
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estimator is 2σ 4
i /T and the variances are asymptotically uncorrelated. Therefore, the

Wald statistic to test the hypothesis of a common variance σ 2, using σ̂ 2
i to estimate σ 2

i , is

W =
n∑

i=1

(
σ̂ 2

i − σ 2)2
(

2σ 4
i

T

)−1

= T
2

n∑
i=1

(
σ 2

σ̂ 2
i

− 1
)2

.

Note the similarity to the Lagrange multiplier statistic. The estimator of the common
variance would be the pooled estimator from the first least squares regression. Recall,
we produced a general counterpart for this statistic for the case in which disturbances
are not normally distributed.

We can also carry out a likelihood ratio test using the test statistic in Section 12.3.4.
The appropriate likelihood ratio statistic is

λLR = T(ln |�̂homoscedastic| − ln |�̂heteroscedastic|) = (nT ) ln σ̂ 2 −
n∑

i=1

T ln σ̂ 2
i ,

where

σ̂ 2 = e′e
nT

and σ̂ 2
i = ε̂i ε̂i

T
,

with all residuals computed using the maximum likelihood estimators. This chi-squared
statistic has n − 1 degrees of freedom.

13.9.7 APPLICATION TO GRUNFELD’S INVESTMENT DATA

To illustrate the techniques developed in this section, we will use a panel of data that
has for several decades provided a useful tool for examining multiple equation estima-
tors. Appendix Table F13.1 lists part of the data used in a classic study of investment
demand.39 The data consist of time series of 20 yearly observations for five firms (of 10
in the original study) and three variables:

Iit = gross investment,

Fit = market value of the firm at the end of the previous year,

Cit = value of the stock of plant and equipment at the end of the previous year.

All figures are in millions of dollars. The variables Fit and Iit reflect anticipated profit and
the expected amount of replacement investment required.40 The model to be estimated
with these data is

Iit = β1 + β2 Fit + β3Cit + εi t ,
41

39See Grunfeld (1958) and Grunfeld and Griliches (1960). The data were also used in Boot and deWitt (1960).
Although admittedly not current, these data are unusually cooperative for illustrating the different aspects
of estimating systems of regression equations.
40In the original study, the authors used the notation Ft−1 and Ct−1. To avoid possible conflicts with the usual
subscripting conventions used here, we have used the preceding notation instead.
41Note that we are modeling investment, a flow, as a function of two stocks. This could be a theoretical
misspecification—it might be preferable to specify the model in terms of planned investment. But, 40 years
after the fact, we’ll take the specified model as it is.
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TABLE 13.4 Estimated Parameters and Estimated Standard Errors

β1 β2 β3

Homoscedasticity
Least squares −48.0297 0.10509 0.30537

R2 = 0.77886, σ̂ 2 = 15708.84, log-likelihood = −624.9928
OLS standard errors (21.16) (0.01121) (0.04285)
White correction (15.017) (0.00915) (0.05911)
Beck and Katz (10.814) (0.00832) (0.033043)

Heteroscedastic
Feasible GLS −36.2537 0.09499 0.33781

(6.1244) (0.00741) (0.03023)
Maximum likelihood −23.2582 0.09435 0.33371

(4.815) (0.00628) (0.2204)

Pooled σ̂ 2 = 15,853.08, log-likelihood = −564.535
Cross-section correlation

Feasible GLS −28.247 0.089101 0.33401
(4.888) (0.005072) (0.01671)

Maximum likelihood −2.217 0.02361 0.17095
(1.96) (0.004291) (0.01525)

log-likelihood = −515.422
Autocorrelation model

Heteroscedastic −23.811 0.086051 0.33215
(7.694) (0.009599) (0.03549)

Cross-section correlation −15.424 0.07522 0.33807
(4.595) (0.005710) (0.01421)

where i indexes firms and t indexes years. Different restrictions on the parameters
and the variances and covariances of the disturbances will imply different forms of
the model. By pooling all 100 observations and estimating the coefficients by ordinary
least squares, we obtain the first set of results in Table 13.4. To make the results com-
parable all variance estimates and estimated standard errors are based on e′e/(nT ).
There is no degrees of freedom correction. The second set of standard errors given are
White’s robust estimator [see (10-14) and (10-23)]. The third set of standard errors given
above are the robust standard errors based on Beck and Katz (1995) using (13-56) and
(13-54).

The estimates of σ 2
i for the model of groupwise heteroscedasticity are shown in

Table 13.5. The estimates suggest that the disturbance variance differs widely across
firms. To investigate this proposition before fitting an extended model, we can use the
tests for homoscedasticity suggested earlier. Based on the OLS results, the LM statistic
equals 46.63. The critical value from the chi-squared distribution with four degrees
of freedom is 9.49, so on the basis of the LM test, we reject the null hypothesis of
homoscedasticity. To compute White’s test statistic, we regress the squared least squares
residuals on a constant, F , C, F2, C2, and FC. The R2 in this regression is 0.36854, so the
chi-squared statistic is (nT )R2 = 36.854 with five degrees of freedom. The five percent
critical value from the table for the chi-squared statistic with five degrees of freedom
is 11.07, so the null hypothesis is rejected again. The likelihood ratio statistic, based on
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TABLE 13.5 Estimated Group Specific Variances

σ 2
GM σ 2

CH σ 2
GE σ 2

W E σ 2
US

Based on OLS 9,410.91 755.85 34,288.49 633.42 33,455.51
Heteroscedastic FGLS 8,612.14 409.19 36,563.24 777.97 32,902.83

(2897.08) (136.704) (5801.17) (323.357) (7000.857)
Heteroscedastic ML 8,657.72 175.80 40,210.96 1,240.03 29,825.21
Cross Correlation FGLS 10050.52 305.61 34556.6 833.36 34468.98
Autocorrelation, s2

ui
(ui ) 6525.7 253.104 14,620.8 232.76 8,683.9

Autocorrelation, s2
ei
(ei ) 8453.6 270.150 16,073.2 349.68 12,994.2

the ML results in Table 13.4, is

χ2 = 100 ln s2 −
n∑

i=1

20 ln σ̂ 2
i = 120.915.

This result far exceeds the tabled critical value. The Lagrange multiplier statistic based
on all variances computed using the OLS residuals is 46.629. The Wald statistic based
on the FGLS estimated variances and the pooled OLS estimate (15,708.84) is 17,676.25.
We observe the common occurrence of an extremely large Wald test statistic. (If the test
is based on the sum of squared FGLS residuals, σ̂ 2 = 15,853.08, then W = 18,012.86,
which leads to the same conclusion.) To compute the modified Wald statistic absent the
assumption of normality, we require the estimates of the variances of the FGLS residual
variances. The square roots of fii are shown in Table 13.5 in parentheses after the FGLS
residual variances. The modified Wald statistic is W′ = 14,681.3, which is consistent with
the other results. We proceed to reestimate the regression allowing for heteroscedastic-
ity. The FGLS and maximum likelihood estimates are shown in Table 13.4. (The latter
are obtained by iterated FGLS.)

Returning to the least squares estimator, we should expect the OLS standard er-
rors to be incorrect, given our findings. There are two possible corrections we can use,
the White estimator and direct computation of the appropriate asymptotic covariance
matrix. The Beck et al. estimator is a third candidate, but it neglects to use the known re-
striction that the off-diagonal elements in � are zero. The various estimates shown at the
top of Table 13.5 do suggest that the OLS estimated standard errors have been distorted.

The correlation matrix for the various sets of residuals, using the estimates in
Table 13.4, is given in Table 13.6.42 The several quite large values suggests that the more
general model will be appropriate. The two test statistics for testing the null hypothesis
of a diagonal �, based on the log-likelihood values in Table 13.4, are

λLR = −2(−565.535 − (−515.422)) = 100.226

and, based on the MLE’s for the groupwise heteroscedasticity model, λLM = 66.067 (the
MLE of � based on the coefficients from the heteroscedastic model is not shown).

For 10 degrees of freedom, the critical value from the chi-squared table is 23.21, so
both results lead to rejection of the null hypothesis of a diagonal �. We conclude that

42The estimates based on the MLEs are somewhat different, but the results of all the hypothesis tests are the
same.
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TABLE 13.6 Estimated Cross-Group Correlations Based on FGLS Estimates
(Order is OLS, FGLS heteroscedastic, FGLS correlation,
Autocorrelation)

Estimated and Correlations

GM CH GE WE US

GM 1
CH −0.344

−0.185 1
−0.349
−0.225

GE −0.182 0.283
−0.185 0.144 1
−0.248 0.158
−0.287 0.105

WE −0.352 0.343 0.890
−0.469 0.186 0.881 1
−0.356 0.246 0.895
−0.467 0.166 0.885

US −0.121 0.167 −0.151 −0.085
−0.016 0.222 −0.122 −0.119 1
−0.716 0.244 −0.176 −0.040
−0.015 0.245 −0.139 −0.101

the simple heteroscedastic model is not general enough for these data.
If the null hypothesis is that the disturbances are both homoscedastic and uncor-

related across groups, then these two tests are inappropriate. A likelihood ratio test
can be constructed using the OLS results and the MLEs from the full model; the test
statistic would be

λLR = (nT ) ln(e′e/nT ) − T ln|�̂|.
This statistic is just the sum of the LR statistics for the test of homoscedasticity and the
statistic given above. For these data, this sum would be 120.915 + 100.226 = 221.141,
which is far larger than the critical value, as might be expected.

FGLS and maximum likelihood estimates for the model with cross-sectional corre-
lation are given in Table 13.4. The estimated disturbance variances have changed dra-
matically, due in part to the quite large off-diagonal elements. It is noteworthy, however,
that despite the large changes in �̂, with the exceptions of the MLE’s in the cross section
correlation model, the parameter estimates have not changed very much. (This sample
is moderately large and all estimators are consistent, so this result is to be expected.)

We shall examine the effect of assuming that all five firms have the same slope
parameters in Section 14.2.3. For now, we note that one of the effects is to inflate the
disturbance correlations. When the Lagrange multiplier statistic in (13-68) is recom-
puted with firm-by-firm separate regressions, the statistic falls to 29.04, which is still
significant, but far less than what we found earlier.

We now allow for different AR(1) disturbance processes for each firm. The firm
specific autocorrelation coefficients of the ordinary least squares residuals are

r′ = (0.478 − 0.251 0.301 0.578 0.576).



Greene-50240 book June 18, 2002 15:28

CHAPTER 13 ✦ Models for Panel Data 333

[An interesting problem arises at this point. If one computes these autocorrelations
using the standard formula, then the results can be substantially affected because
the group-specific residuals may not have mean zero. Since the population mean is
zero if the model is correctly specified, then this point is only minor. As we will ex-
plore later, however, this model is not correctly specified for these data. As such,
the nonzero residual mean for the group specific residual vectors matters greatly.
The vector of autocorrelations computed without using deviations from means is r0 =
(0.478, 0.793, 0.905, 0.602, 0.868). Three of the five are very different. Which way the
computations should be done now becomes a substantive question. The asymptotic
theory weighs in favor of (13-62). As a practical matter, in small or moderately sized
samples such as this one, as this example demonstrates, the mean deviations are prefer-
able.]

Table 13.4 also presents estimates for the groupwise heteroscedasticity model and
for the full model with cross-sectional correlation, with the corrections for first-order
autocorrelation. The lower part of the table displays the recomputed group specific
variances and cross-group correlations.

13.9.8 SUMMARY

The preceding sections have suggested a variety of different specifications of the gener-
alized regression model. Which ones apply in a given situation depends on the setting.
Homoscedasticity will depend on the nature of the data and will often be directly ob-
servable at the outset. Uncorrelatedness across the cross-sectional units is a strong
assumption, particularly because the model assigns the same parameter vector to all
units. Autocorrelation is a qualitatively different property. Although it does appear to
arise naturally in time-series data, one would want to look carefully at the data and
the model specification before assuming that it is present. The properties of all these
estimators depend on an increase in T, so they are generally not well suited to the types
of data sets described in Sections 13.2–13.8.

Beck et al. (1993) suggest several problems that might arise when using this model
in small samples. If T < n, then with or without a correction for autocorrelation, the
matrix �̂ is an n × n matrix of rank T (or less) and is thus singular, which precludes
FGLS estimation. A preferable approach then might be to use pooled OLS and make
the appropriate correction to the asymptotic covariance matrix. But in this situation,
there remains the possibility of accommodating cross unit heteroscedasticity. One could
use the groupwise heteroscedasticity model. The estimators will be consistent and more
efficient than OLS, although the standard errors will be inappropriate if there is cross-
sectional correlation. An appropriate estimator that extends (11-17) would be

Est. Var[b] = [X′V̂−1X]−1[X′V̂−1�̂V̂−1X][X′V̂−1X]−1

=
[
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σ̂i i

)
X′

i Xi

]−1
 n∑
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σ̂i i σ̂ j j

)
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i X j
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(Note that this estimator bases all estimates on the model of groupwise heteroscedas-
ticity, but it is “robust” to the possibility of cross-sectional correlation.) When n is large
relative to T, the number of estimated parameters in the autocorrelation model be-
comes very large relative to the number of observations. Beck and Katz (1995) found
that as a consequence, the estimated asymptotic covariance matrix for the FGLS slopes
tends to underestimate the true variability of the estimator. They suggest two compro-
mises. First, use OLS and the appropriate covariance matrix, and second, impose the
restriction of equal autocorrelation coefficients across groups.

13.10 SUMMARY AND CONCLUSIONS

The preceding has shown a few of the extensions of the classical model that can be
obtained when panel data are available. In principle, any of the models we have ex-
amined before this chapter and all those we will consider later, including the multiple
equation models, can be extended in the same way. The main advantage, as we noted
at the outset, is that with panel data, one can formally model the heterogeneity across
groups that is typical in microeconomic data.

We will find in Chapter 14 that to some extent this model of heterogeneity can
be misleading. What might have appeared at one level to be differences in the vari-
ances of the disturbances across groups may well be due to heterogeneity of a different
sort, associated with the coefficient vectors. We will consider this possibility in the next
chapter. We will also examine some additional models for disturbance processes that
arise naturally in a multiple equations context but are actually more general cases of
some of the models we looked at above, such as the model of groupwise heteroscedas-
ticity.
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Exercises

1. The following is a panel of data on investment (y) and profit (x) for n = 3 firms
over T = 10 periods.

i = 1 i = 2 i = 3

t y x y x y x

1 13.32 12.85 20.30 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 5.48 9.31 9.16 3.87 1.47
4 14.94 13.79 18.01 18.73 24.19 24.91
5 15.80 15.41 7.63 11.31 3.99 5.01
6 12.20 12.59 19.84 21.15 5.73 8.34
7 14.93 16.64 13.76 16.13 26.68 22.70
8 29.82 26.45 10.00 11.61 11.49 8.36
9 20.32 19.64 19.51 19.55 18.49 15.44

10 4.77 5.43 18.32 17.06 20.84 17.87

a. Pool the data and compute the least squares regression coefficients of the model
yit = α + βxit + εi t .

b. Estimate the fixed effects model of (13-2), and then test the hypothesis that the
constant term is the same for all three firms.

c. Estimate the random effects model of (13-18), and then carry out the Lagrange
multiplier test of the hypothesis that the classical model without the common
effect applies.

d. Carry out Hausman’s specification test for the random versus the fixed effect
model.

2. Suppose that the model of (13-2) is formulated with an overall constant term and
n − 1 dummy variables (dropping, say, the last one). Investigate the effect that this
supposition has on the set of dummy variable coefficients and on the least squares
estimates of the slopes.

3. Use the data in Section 13.9.7 (the Grunfeld data) to fit the random and fixed effect
models. There are five firms and 20 years of data for each. Use the F, LM, and/or
Hausman statistics to determine which model, the fixed or random effects model,
is preferable for these data.

4. Derive the log-likelihood function for the model in (13-18), assuming that εi t and
ui are normally distributed. [Hints: Write the log-likelihood function as ln L =∑n

i=1 ln Li , where ln Li is the log-likelihood function for the T observations in
group i. These T observations are joint normally distributed, with covariance ma-
trix given in (13-20). The log-likelihood is the sum of the logs of the joint normal
densities of the n sets of T observations,

εi t + ui = yit − α − β ′xi t .

This step will involve the inverse and determinant of �. Use (B-66) to prove that

�−1 = 1
σ 2

ε

[
I − σ 2

u

σ 2
ε + Tσ 2

u
iTi′T

]
.

To find the determinant, use the product of the characteristic roots. Note first that
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|σ 2
ε I + σ 2

u ii′| = (σ 2
ε )T|I + σ 2

u
σ 2

ε
ii′|. The roots are determined by[

I + σ 2
u

σ 2
ε

ii′
]

c = λc or
σ 2

u

σ 2
ε

ii′c = (λ − 1)c.

Any vector whose elements sum to zero is a solution. There are T − 1 such inde-
pendent vectors, so T − 1 characteristic roots are (λ − 1) = 0 or λ = 1. Premultiply
the expression by i′ to obtain the remaining characteristic root. (Remember to add
one to the result.) Now, collect terms to obtain the log-likelihood.]

5. Unbalanced design for random effects. Suppose that the random effects model of
Section 13.4 is to be estimated with a panel in which the groups have different
numbers of observations. Let Ti be the number of observations in group i.
a. Show that the pooled least squares estimator in (13-11) is unbiased and consistent

despite this complication.
b. Show that the estimator in (13-29) based on the pooled least squares estimator of

β (or, for that matter, any consistent estimator ofβ) is a consistent estimator ofσ 2
ε .

6. What are the probability limits of (1/n)LM, where LM is defined in (13-31) under
the null hypothesis that σ 2

u = 0 and under the alternative that σ 2
u 	= 0?

7. A two-way fixed effects model. Suppose that the fixed effects model is modified to
include a time-specific dummy variable as well as an individual-specific variable.
Then yit = αi + γt + β ′xi t + εi t . At every observation, the individual- and time-
specific dummy variables sum to 1, so there are some redundant coefficients. The
discussion in Section 13.3.3 shows that one way to remove the redundancy is to
include an overall constant and drop one of the time specific and one of the time-
dummy variables. The model is, thus,

yit = µ + (αi − α1) + (γt − γ1) + β ′xi t + εi t .

(Note that the respective time- or individual-specific variable is zero when t or
i equals one.) Ordinary least squares estimates of β are then obtained by regression
of yit − ȳi.− ȳ.t + ¯̄y on xi t −x̄i.−x̄.t + ¯̄x. Then (αi −α1) and (γt −γ1) are estimated using
the expressions in (13-17) while m= ¯̄y − b′ ¯̄x. Using the following data, estimate the
full set of coefficients for the least squares dummy variable model:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
i = 1

y 21.7 10.9 33.5 22.0 17.6 16.1 19.0 18.1 14.9 23.2
x1 26.4 17.3 23.8 17.6 26.2 21.1 17.5 22.9 22.9 14.9
x2 5.79 2.60 8.36 5.50 5.26 1.03 3.11 4.87 3.79 7.24

i = 2

y 21.8 21.0 33.8 18.0 12.2 30.0 21.7 24.9 21.9 23.6
x1 19.6 22.8 27.8 14.0 11.4 16.0 28.8 16.8 11.8 18.6
x2 3.36 1.59 6.19 3.75 1.59 9.87 1.31 5.42 6.32 5.35

i = 3

y 25.2 41.9 31.3 27.8 13.2 27.9 33.3 20.5 16.7 20.7
x1 13.4 29.7 21.6 25.1 14.1 24.1 10.5 22.1 17.0 20.5
x2 9.57 9.62 6.61 7.24 1.64 5.99 9.00 1.75 1.74 1.82

i = 4

y 15.3 25.9 21.9 15.5 16.7 26.1 34.8 22.6 29.0 37.1
x1 14.2 18.0 29.9 14.1 18.4 20.1 27.6 27.4 28.5 28.6
x2 4.09 9.56 2.18 5.43 6.33 8.27 9.16 5.24 7.92 9.63
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Test the hypotheses that (1) the “period” effects are all zero, (2) the “group” effects
are all zero, and (3) both period and group effects are zero. Use an F test in each
case.

8. Two-way random effects model. We modify the random effects model by the addition
of a time specific disturbance. Thus,

yit = α + β ′xi t + εi t + ui + vt ,

where

E [εi t ] = E [ui ] = E [vt ] = 0,

E [εi t u j ] = E [εi tvs] = E [uivt ] = 0 for all i, j, t, s

Var[εi t ] = σ 2, Cov[εi t , ε js] = 0 for all i, j, t, s

Var[ui ] = σ 2
u , Cov[ui , u j ] = 0 for all i, j

Var[vt ] = σ 2
v , Cov[vt , vs] = 0 for all t, s.

Write out the full covariance matrix for a data set with n = 2 and T = 2.
9. The model [

y1

y2

]
=

[
x1

x2

]
β +

[
ε1

ε2

]
satisfies the groupwise heteroscedastic regression model of Section 11.7.2. All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2


20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

 .

a. Compute the two separate OLS estimates of β, their sampling variances, the
estimates of σ 2

1 and σ 2
2 , and the R2’s in the two regressions.

b. Carry out the Lagrange multiplier test of the hypothesis that σ 2
1 = σ 2

2 .
c. Compute the two-step FGLS estimate of β and an estimate of its sampling vari-

ance. Test the hypothesis that β equals 1.
d. Carry out the Wald test of equal disturbance variances.
e. Compute the maximum likelihood estimates of β, σ 2

1 , and σ 2
2 by iterating the

FGLS estimates to convergence.
f. Carry out a likelihood ratio test of equal disturbance variances.
g. Compute the two-step FGLS estimate of β, assuming that the model in (14-7)

applies. (That is, allow for cross-sectional correlation.) Compare your results
with those of part c.

10. Suppose that in the groupwise heteroscedasticity model of Section 11.7.2, Xi is the
same for all i. What is the generalized least squares estimator of β? How would you
compute the estimator if it were necessary to estimate σ 2

i ?
11. Repeat Exercise 10 for the cross sectionally correlated model of Section 13.9.1.
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12. The following table presents a hypothetical panel of data:

i = 1 i = 2 i = 3

t y x y x y x

1 30.27 24.31 38.71 28.35 37.03 21.16
2 35.59 28.47 29.74 27.38 43.82 26.76
3 17.90 23.74 11.29 12.74 37.12 22.21
4 44.90 25.44 26.17 21.08 24.34 19.02
5 37.58 20.80 5.85 14.02 26.15 18.64
6 23.15 10.55 29.01 20.43 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 25.65 25.41 15.86

10 36.85 25.60 33.90 11.66 26.04 13.28

a. Estimate the groupwise heteroscedastic model of Section 11.7.2. Include an esti-
mate of the asymptotic variance of the slope estimator. Use a two-step procedure,
basing the FGLS estimator at the second step on residuals from the pooled least
squares regression.

b. Carry out the Wald, Lagrange multiplier, and likelihood ratio tests of the hy-
pothesis that the variances are all equal. For the likelihood ratio test, use the
FGLS estimates.

c. Carry out a Lagrange multiplier test of the hypothesis that the disturbances are
uncorrelated across individuals.


