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LIMITED DEPENDENT
VARIABLE AND DURATION
MODELS
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22.1 INTRODUCTION

This chapter is concerned with truncation and censoring.! The effect of truncation
occurs when sample data are drawn from a subset of a larger population of interest. For
example, studies of income based on incomes above or below some poverty line may be
of limited usefulness for inference about the whole population. Truncation is essentially
a characteristic of the distribution from which the sample data are drawn. Censoring
is a more common problem in recent studies. To continue the example, suppose that
instead of being unobserved, all incomes below the poverty line are reported as if they
were at the poverty line. The censoring of a range of values of the variable of interest
introduces a distortion into conventional statistical results that is similar to that of
truncation. Unlike truncation, however, censoring is essentially a defect in the sample
data. Presumably, if they were not censored, the data would be a representative sample
from the population of interest.

This chapter will discuss four broad topics: truncation, censoring, a form of trunca-
tion called the sample selection problem, and a class of models called duration models.
Although most empirical work on the first three involves censoring rather than trun-
cation, we will study the simpler model of truncation first. It provides most of the
theoretical tools we need to analyze models of censoring and sample selection. The
fourth topic, on models of duration—When will a spell of unemployment or a strike
end? —could reasonably stand alone. It does in countless articles and a library of books.?
We include our introduction to this subject in this chapter because in most applications,
duration modeling involves censored data and it is thus convenient to treat duration
here (and because we are nearing the end of our survey and yet another chapter seems
unwarranted).

22.2 TRUNCATION

In this section, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population.

IFive of the many surveys of these topics are Dhrymes (1984), Maddala (1977b, 1983, 1984), and Amemiya
(1984). The last is part of a symposium on censored and truncated regression models. A survey that is
oriented toward applications and techniques is Long (1997). Some recent results on non- and semiparametric
estimation appear in Lee (1996).

2For example, Lancaster (1990) and Kiefer (1985).
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22.2.1 TRUNCATED DISTRIBUTIONS

A truncated distribution is the part of an untruncated distribution that is above or below
some specified value. For instance, in Example 22.2, we are given a characteristic of the
distribution of incomes above $100,000. This subset is a part of the full distribution of
incomes which range from zero to (essentially) infinity.

THEOREM 22.1 Density of a Truncated Random Variable
If a continuous random variable x has pdf f(x) and a is a constant, then

f(x) 3
Prob(x > a)’
The proof follows from the definition of conditional probability and amounts

merely to scaling the density so that it integrates to one over the range above a.
Note that the truncated distribution is a conditional distribution.

folx>a) =

Most recent applications based on continuous random variables use the truncated
normal distribution. If x has a normal distribution with mean u and standard deviation
o, then

a—p

Prob(x>a)=1—<l>< )zl—cb(a),

where o = (a — ) /o and ®(.) is the standard normal cdf. The density of the truncated
normal distribution is then

1 X — [
fo)  @redeumwresh GO\ T
1—®d@) 1— ®(a) T 1l=d)
where ¢ (.) is the standard normal pdf. The truncated standard normal distribution, with
u =0ando = 1,isillustrated fora = —0.5, 0, and 0.5 in Figure 22.1. Another truncated

distribution which has appeared in the recent literature, this one for a discrete random
variable, is the truncated at zero Poisson distribution,

foelx>a) =

(e 1Y)/ y! (e A /!
rob[ yly>0] Prob[Y > 0] 1 — Prob[Y = 0]
(e 1Y)/ y!
= A>0,y=1,...

This distribution is used in models of uses of recreation and other kinds of facilities
where observations of zero uses are discarded.*

For convenience in what follows, we shall call a random variable whose distribution
is truncated a truncated random variable.

3The case of truncation from above instead of below is handled in an analogous fashion and does not require
any new results.

4See Shaw (1988).
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FIGURE 22.1 Truncated Normal Distributions.

22.2.2 MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interested in the mean and variance of the truncated random variable.
They would be obtained by the general formula:

E[x|x>a]=/ooxf(x|x>a)dx

for the mean and likewise for the variance.

Example 22.1 Truncated Uniform Distribution
If x has a standard uniform distribution, denoted U(0, 1), then

f(x) =1, 0=<x<1.
The truncated at x = % distribution is also uniform;

f(x|x>%>—¢=L=g, 15)(51.

B Prob(x > %) (%

1 /3 2
E —| = — Jdx=-.
{x|x>3] /1/3x<2> Ix 3
For a variable distributed uniformly between L and U, the variance is (U — L)2/12.
Thus,

The expected value is

Var[x [x > }

} 1
3] 7 27"

1

The mean and variance of the untruncated distribution are % and 3,

respectively.
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2.

Example 22.1 illustrates two results.

If the truncation is from below, then the mean of the truncated variable is greater
than the mean of the original one. If the truncation is from above, then the mean
of the truncated variable is smaller than the mean of the original one. This is
clearly visible in Figure 22.1.

Truncation reduces the variance compared with the variance in the untruncated
distribution.

Henceforth, we shall use the terms truncated mean and truncated variance to refer to
the mean and variance of the random variable with a truncated distribution.

For the truncated normal distribution, we have the following theorem:?

THEOREM 22.2 Moments of the Truncated Normal Distribution
If x ~ N[, 0] and a is a constant, then

E[x|truncation] = u + o A(a), (22-1)
Var[x | truncation] = 02[1 —8(@)], (22-2)
where o = (a — ) /o, ¢(a) is the standard normal density and
AMa) = ¢(a)/[1 — ®(a)] if truncation is x > a, (22-3a)
AMa) = —¢(a)/P(x) if truncation is x < a, (22-3b)
and
S(a) = M) M) — «]. (22-4)

An important result is

0 < d8(x) <1 for all values of «,

which implies point 2 after Example 22.1. A result that we will use at several points below
isd¢(a)/da = —a¢(«). The function A(«) is called the inverse Mills ratio. The function
in (22-3a) is also called the hazard function for the standard normal distribution.

Example 22.2 A Truncated Lognormal Income Distribution

“The typical ‘upper affluent American’ ... makes $142,000 per year. ... The people surveyed
had household income of at least $100,000.”® Would this statistic tell us anything about the
“typical American”? As it stands, it probably does not (popular impressions notwithstanding).

The 1987 article where this appeared went on to state, “If you’re in that category, pat yourself

on the back—only 2 percent of American households make the grade, according to the
survey.” Since the degree of truncation in the sample is 98 percent, the $142,000 was
probably quite far from the mean in the full population.

Suppose that incomes in the population were lognormally distributed —see Section B.4.4.

Then the log of income had a normal distribution with, say, mean x and standard devia-
tion o. We’ll deduce n and o then determine the population mean income. Let x = income

Details may be found in Johnson, Kotz, and Balakrishnan (1994, pp. 156-158).
%New York Post (1987).
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and let y = Inx. Two useful numbers for this example are In 100 = 4.605 and In 142 = 4.956.
Suppose that the survey was large enough for us to treat the sample average as the true
mean. Then, the article stated that E[y |y > 4.605] = 4.956. It also told us that Prob[y >
4.605] = 0.02. From Theorem 22.2,

op(a)
1—®()

where a = (4.605—u) /o. We also know that ®(«) = 0.98,soa = & 1(0.98) = 2.054. We infer,
then, that (a) 2.054 = (4.605 — ) /o. In addition, given « = 2.054, ¢(«) = ¢(2.054) = 0.0484.
From (22-1), then, 4.956 = 1 + ¢(0.0484/0.02) or (b) 4.956 = u + 2.4200. The solutions to
(@) and (b) are u = 2.635 and o = 0.959.

To obtain the mean income, we now use the result that if y ~ N[u, 0] and x =¢’, then
Elx] = E[e’] = e**°/2, Inserting our values for x and o gives E[x] = $22,087. The 1987
Statistical Abstract of the United States listed average household income across all groups for
the United States as about $25,000. So the estimate, based on surprisingly little information,
would have been relatively good. These meager data did indeed tell us something about the
average American.

Ely|y > 4.605] = u +

22.2.3 THE TRUNCATED REGRESSION MODEL
In the model of the earlier examples, we now assume that
wi =X;B

is the deterministic part of the classical regression model. Then

yi =xB+ei,
where
& | x; ~ NIO, 02],
so that
yi|x; ~ N[X.B, 7). (22-5)

We are interested in the distribution of y; given that y; is greater than the truncation
point a. This is the result described in Theorem 22.2. It follows that
¢l(a —x;B)/o]
1—®[(a—xiB)/o]
The conditional mean is therefore a nonlinear function of a, o, x and B.
The marginal effects in this model in the subpopulation can be obtained by writing

Elyilyi>al=xp+0o (22-6)

Elyilyi > a]l =xB+ oi(w), (22-7)
where now «; = (a — x;B)/o. For convenience, let 1; = A(x;) and §; = §(«;). Then
OE[yilyi > a] _ ﬂ+o(d)»,-/doz,»)%
0X; 0x;
=B+o (A —air)(—B/o) (22-8)
= B(1 =27 +aik)
=B —8).

Note the appearance of the truncated variance. Since the truncated variance is between
zero and one, we conclude that for every element of x;, the marginal effect is less than
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the corresponding coefficient. There is a similar attenuation of the variance. In the
subpopulation y; > a, the regression variance is not o> but

Var[y; | yi > a] = o*(1 = &). (22-9)

Whether the marginal effect in (22-7) or the coefficient g itself is of interest depends on
the intended inferences of the study. If the analysis is to be confined to the subpopulation,
then (22-7) is of interest. If the study is intended to extend to the entire population,
however, then it is the coefficients $ that are actually of interest.

One’s first inclination might be to use ordinary least squares to estimate the param-
eters of this regression model. For the subpopulation from which the data are drawn,
we could write (22-6) in the form

yilyi=a=E[ylyi>al+u =x.B+0k +u, (22-10)

where u; is y; minus its conditional expectation. By construction, &; has a zero mean,
but it is heteroscedastic:

Var[u;] = 0% (1 — A7 + hiey) = 0> (1 — &),

which is a function of x;. If we estimate (22-10) by ordinary least squares regression of
y on X, then we have omitted a variable, the nonlinear term ;. All the biases that arise
because of an omitted variable can be expected.’

Without some knowledge of the distribution of x, it is not possible to determine
how serious the bias is likely to be. A result obtained by Cheung and Goldberger
(1984) is broadly suggestive. If E[x | y] in the full population is a linear function of y,
then plim b = Bt for some proportionality constant t. This result is consistent with
the widely observed (albeit rather rough) proportionality relationship between least
squares estimates of this model and consistent maximum likelihood estimates.® The
proportionality result appears to be quite general. In applications, it is usually found
that, compared with consistent maximum likelihood estimates, the OLS estimates are
biased toward zero. (See Example 22.4.)

22.3 CENSORED DATA

A very common problem in microeconomic data is censoring of the dependent variable.
When the dependent variable is censored, values in a certain range are all transformed
to (or reported as) a single value. Some examples that have appeared in the empirical
literature are as follows:’

1. Household purchases of durable goods [Tobin (1958)],

2. The number of extramarital affairs [Fair (1977, 1978)],

3. The number of hours worked by a woman in the labor force [Quester and Greene
(1982)],

4. The number of arrests after release from prison [Witte (1980)],

7See Heckman (1979) who formulates this as a “specification error.”
8See the appendix in Hausman and Wise (1977) and Greene (1983) as well.
9More extensive listings may be found in Amemiya (1984) and Maddala (1983).
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5. Household expenditure on various commodity groups [Jarque (1987)],
6. Vacation expenditures [Melenberg and van Soest (1996)].

Each of these studies analyzes a dependent variable that is zero for a significant fraction
of the observations. Conventional regression methods fail to account for the qualitative
difference between limit (zero) observations and nonlimit (continuous) observations.

22.3.1 THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a censored variable is similar to that for a truncated
one. Once again, we begin with the normal distribution, as much of the received work
has been based on an assumption of normality. We also assume that the censoring point
is zero, although this is only a convenient normalization. In a truncated distribution,
only the part of distribution above y = 0 is relevant to our computations. To make the
distribution integrate to one, we scale it up by the probability that an observation in
the untruncated population falls in the range that interests us. When data are censored,
the distribution that applies to the sample data is a mixture of discrete and continuous
distributions. Figure 22.2 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from
the original one, y*, by

y=0 ify* <0,
y=y* ify*>0.
The distribution that applies if y*~ N[u,0?] is Prob(y=0)=Prob(y* <0)=
d(—p/o)=1—d(u/o), and if y* > 0, then y has the density of y*.
This distribution is a mixture of discrete and continuous parts. The total probability

is one, as required, but instead of scaling the second part, we simply assign the full
probability in the censored region to the censoring point, in this case, zero.

FIGURE 22.2 Partially Censored Distribution.

777
Capacity Seats demanded

Capacity Tickets sold
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THEOREM 22.3 Moments of the Censored Normal Variable
If y* ~ N[, 02| and y = a if y* < a or else y = y*, then

Ely] =®a+ (1 —-®)(u+ok)

and
Var[y] = (1 — ®)[(1 — 8) + (& — 1)°®],
where
®[(a — p)/o] = ®(a) =Prob(y* <a)=®, r=¢/(1—-P)
and

§ =2 =
Proof: For the mean,
E[y] =Prob(y =a) x E[y|y =a] + Prob(y > a) x E[y|y > a]
= Prob(y* < a) x a + Prob(y* > a) x E[y*|y* > a]
=Pa+(1—-—D)(u+o0o))

using Theorem 22.2. For the variance, we use a counterpart to the decomposition
in (B-70), that is, Var[y] = E[conditional variance] + Var[conditional mean],
and Theorem 22.2.

For the special case of a = 0, the mean simplifies to

¢(u/o)

E[yla=0]=®(u/o)(u+or), wherei= S(jo)’

For censoring of the upper part of the distribution instead of the lower, it is only neces-
sary to reverse the role of ® and 1 — ® and redefine A as in Theorem 22.2.

Example 22.3 Censored Random Variable

We are interested in the number of tickets demanded for events at a certain arena. Our
only measure is the number actually sold. Whenever an event sells out, however, we know
that the actual number demanded is larger than the number sold. The number of tickets
demanded is censored when it is transformed to obtain the number sold. Suppose that
the arena in question has 20,000 seats and, in a recent season, sold out 25 percent of the
time. If the average attendance, including sellouts, was 18,000, then what are the mean and
standard deviation of the demand for seats? According to Theorem 22.3, the 18,000 is an
estimate of

E[sales] = 20,000(1 — ®) + [ + o A]®.

Since this is censoring from above, rather than below, > = —¢(«) / ®(«). The argument of @, ¢,
and Aisa =(20,000—pu) /o . If 25 percent of the events are sellouts, then ® = 0.75. Inverting the
standard normal at 0.75 gives « = 0.675. In addition, if « =0.675, then —¢(0.675)/0.75 =)=
—0.424. This result provides two equations in  and o, (a) 18, 000 = 0.25(20, 000) +0.75(« —
0.4240) and (b) 0.6750 =20,000 — 1. The solutions are o =2426 and = 18,362.
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For comparison, suppose that we were told that the mean of 18,000 applies only to the
events that were not sold out and that, on average, the arena sells out 25 percent of the time.
Now our estimates would be obtained from the equations (a) 18,000 = x — 0.4240 and (b)

0.6750 = 20,000 — u. The solutions are ¢ = 1820 and u = 18,772.

22.3.2 THE CENSORED REGRESSION (TOBIT) MODEL

The regression model based on the preceding discussion is referred to as the censored
regression model or the tobit model. [In reference to Tobin (1958), where the model
was first proposed.] The regression is obtained by making the mean in the preceding
correspond to a classical regression model. The general formulation is usually given in

terms of an index function,

Vi =xiB +ei,

yi=0 ifyF <0, (22-11)

yi=y ify;>0.

There are potentially three conditional mean functions to consider, depending on the
purpose of the study. For the index variable, sometimes called the latent variable,
E[yf|x;] is x/p. If the data are always censored, however, then this result will usu-
ally not be useful. Consistent with Theorem 22.3, for an observation randomly drawn

from the population, which may or may not be censored,

X8

o

E[Yi|xi]=(b( )(Xfﬂ-i-d)»i),

where
__9lO=xip)/o] _ ¢(xiB/o)
T 1-0[(0-xp)/o] @ B/o)

Finally, if we intend to confine our attention to uncensored observations, then the
results for the truncated regression model apply. The limit observations should not
be discarded, however, because the truncated regression model is no more amenable
to least squares than the censored data model. It is an unresolved question which of
these functions should be used for computing predicted values from this model. Intu-
ition suggests that E[y; | x;] is correct, but authors differ on this point. For the setting
in Example 22.3, for predicting the number of tickets sold, say, to plan for an upcoming
event, the censored mean is obviously the relevant quantity. On the other hand, if the
objective is to study the need for a new facility, then the mean of the latent variable y;

would be more interesting.
There are differences in the marginal effects as well. For the index variable,
OELyr Ixi] _
8Xl‘

B.

But this result is not what will usually be of interest, since y; is unobserved. For the

observed data, y;, the following general result will be useful:'

108ee Greene (1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura

(1983) for applications based on the normal distribution.

(22-12)
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THEOREM 22.4 Marginal Effects in the Censored

Regression Model
In the censored regression model with latent regression y* = X' +¢ and observed
dependent variable, y=a if y* < a, y=>bify* > b, and y = y* otherwise, where a
and b are constants, let f (&) and F(¢) denote the density and cdf of . Assume that ¢
is a continuous random variable with mean 0 and variance o2, and f (e |x) = f(e).
Then

dE[y|x]

o B x Probla < y* < b].

Proof: By definition,
E[y|x] = aProb[y* <a|x]+ bProb[y* > b|x]
+Probla < y* < b|X]|E[y"|a < y* < b|x].
Letaj = (j—x'B)/o, F; = F(a;), fj = f(a;), and j = a, b. Then
Ely|x]=aF,+b(1 — F) + (F, — F)E[y*|a < y* < b,x].

Since y* = x'B + o[(y* — B'x) /0], the conditional mean may be written

E[y*|la < y* <b,x]=x;ﬂ+UE{y*_Ux'ﬂ a—Ux’ﬂ B y*_ax;ﬂ 3 b_GX,B:|
=x “ (e/o)f(e/o) (&
=xpo [T CPIER(T)

a

Collecting terms, we have

E[y|x] =aF, +b(l - Fy) + (F, — F)f'x+0 / (2) f(f)d<3>.

o o

Now, differentiate with respect to x. The only complication is the last term, for
which the differentiation is with respect to the limits of integration. We use
Leibnitz’s theorem and use the assumption that f(e) does not involve x. Thus,
AE[y|x — — —
U (TB )t~ (Lot + - g+ 800 - 1 (L)
10). o o o
—B
+olapfo — aq fi] - )
After inserting the definitions of o, and ayp, and collecting terms, we find all terms
sum to zero save for the desired result,
IE[y|x]

8y = (Fy — F,)B = B x Probla < y/ < b].
X

Note that this general result includes censoring in either or both tails of the distribu-
tion, and it does not assume that ¢ is normally distributed. For the standard case with
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censoring at zero and normally distributed disturbances, the result specializes to

’
PELLIN] _ o (B%)
3Xi o
Although not a formal result, this does suggest a reason why, in general, least squares
estimates of the coefficients in a tobit model usually resemble the MLEs times the
proportion of nonlimit observations in the sample.

McDonald and Mofitt (1980) suggested a useful decomposition of dE [y; | x;]/9x;,

OE[y; | xi]

e = B Al = xilei + 2] + (e + 20

where o; = x/f, ®; = ®(«;) and A; = ¢;/P;. Taking the two parts separately, this result
decomposes the slope vector into
d Prob[y; > 0]

SETv: | x: AE[yi X,y >0
[yllxl] =Pr0b[y,- >0] [yllxl Yi > ]+E[Yi|xi,)7i >O] )
X, X, 0x;

Thus, a change in x; has two effects: It affects the conditional mean of y; in the positive
part of the distribution, and it affects the probability that the observation will fall in
that part of the distribution.

Example 22.4 Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives,
Quester and Greene (1982) were interested in whether wives whose marriages were statisti-
cally more likely to dissolve hedged against that possibility by spending, on average, more
time working. They reported the tobit estimates given in Table 22.1. The last figure in the
table implies that a very large proportion of the women reported zero hours, so least squares
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the estimated asymp-
totic standard error. The dependent variable is hours worked in the survey year. “Small kids”
is a dummy variable indicating whether there were children in the household. The “education
difference” and “relative wage” variables compare husband and wife on these two dimen-
sions. The wage rate used for wives was predicted using a previously estimated regression
model and is thus available for all individuals, whether working or not. “Second marriage” is a
dummy variable. Divorce probabilities were produced by a large microsimulation model pre-
sented in another study [Orcutt, Caldwell, and Wertheimer (1976)]. The variables used here
were dummy variables indicating “mean” if the predicted probability was between 0.01 and
0.03 and “high” if it was greater than 0.03. The “slopes” are the marginal effects described
earlier.

Note the marginal effects compared with the tobit coefficients. Likewise, the estimate of
o is quite misleading as an estimate of the standard deviation of hours worked.

The effects of the divorce probability variables were as expected and were quite large. One
of the questions raised in connection with this study was whether the divorce probabilities
could reasonably be treated as independent variables. It might be that for these individuals,
the number of hours worked was a significant determinant of the probability.

22.3.3 ESTIMATION

Estimation of this model is very similar to that of truncated regression. The tobit model
has become so routine and been incorporated in so many computer packages that
despite formidable obstacles in years past, estimation is now essentially on the level of
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TABLE 22.1 Tobit Estimates of an Hours Worked Equation

White Wives Black Wives
Least Scaled
Coefficient Slope Coefficient Slope Squares OLS
Constant —1803.13 —2753.87
(—8.64) (—9.68)
Small kids —1324.84 —385.89 —824.19 —376.53 —352.63 —766.56
(—19.78) (—10.14)
Education —48.08 —14.00 22.59 10.32 11.47 24.93
difference (—4.77) (1.96)
Relative wage 312.07 90.90 286.39 130.93 123.95 269.46
(5.71) (3.32)
Second marriage 175.85 51.51 25.33 11.57 13.14 28.57
(3.47) (0.41)
Mean divorce 417.39 121.58 481.02 219.75 219.22 476.57
probability (6.52) (5.28)
High divorce 670.22 195.22 578.66 264.36 24417 530.80
probability (8.40) (5.33)
o 1559 618 1511 826
Sample size 7459 2798
Proportion working 0.29 0.46

ordinary linear regression.!! The log-likelihood for the censored regression model is

. x'B8)? !
InL= Z—;[log(Zn)+lnaz+ (ylaflﬂ)} +Zoln {1 — dJ(X’ﬂ)} (22-13)

o

yi>0

The two parts correspond to the classical regression for the nonlimit observations and
the relevant probabilities for the limit observations, respectively. This likelihood is a
nonstandard type, since it is a mixture of discrete and continuous distributions. In a
seminal paper, Amemiya (1973) showed that despite the complications, proceeding in
the usual fashion to maximize log L would produce an estimator with all the familiar
desirable properties attained by MLEs.

The log-likelihood function is fairly involved, but Olsen’s (1978) reparameterization
simplifies things considerably. With y = /0 and 6 = 1/0, the log-likelihood is

InL= Z —%[ln(Zn) —In 60>+ Oy, —x¥)*] + Z In[1 — ®(X/p)]. (22-14)

%i>0 ¥i=0
The results in this setting are now very similar to those for the truncated regres-
sion. The Hessian is always negative definite, so Newton’s method is simple to use
and usually converges quickly. After convergence, the original parameters can be re-
covered using 0 =1/6 and =y /6. The asymptotic covariance matrix for these esti-

mates can be obtained from that for the estimates of [y, 6] using Est.Asy. Var[8, 6] =
J Asy. Var[p, 0¥, where

y_ [0Br0y" 9Bs00] _[a/en (—1/6%y
"~ |asjoy’ do/i0| | O (-1/6%) |

1ISee Hall (1984).
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Researchers often compute ordinary least squares estimates despite their incon-
sistency. Almost without exception, it is found that the OLS estimates are smaller in
absolute value than the MLEs. A striking empirical regularity is that the maximum
likelihood estimates can often be approximated by dividing the OLS estimates by the
proportion of nonlimit observations in the sample.'? The effect is illustrated in the last
two columns of Table 22.1. Another strategy is to discard the limit observations, but we
now see that just trades the censoring problem for the truncation problem.

22.3.4 SOME ISSUES IN SPECIFICATION

Two issues that commonly arise in microeconomic data, heteroscedasticity and nonnor-
mality, have been analyzed at length in the tobit setting.'?

22.3.4.a Heteroscedasticity

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and
Brown and Moffitt (1982) all have varying degrees of pessimism regarding how in-
consistent the maximum likelihood estimator will be when heteroscedasticity occurs.
Not surprisingly, the degree of censoring is the primary determinant. Unfortunately, all
the analyses have been carried out in the setting of very specific models —for example,
involving only a single dummy variable or one with groupwise heteroscedasticity —so
the primary lesson is the very general conclusion that heteroscedasticity emerges as an
obviously serious problem.

One can approach the heteroscedasticity problem directly. Petersen and Waldman
(1981) present the computations needed to estimate a tobit model with heteroscedastic-
ity of several types. Replacing o with o; in the log-likelihood function and including o7
in the summations produces the needed generality. Specification of a particular model
for o; provides the empirical model for estimation.

Example 22.5 Multiplicative Heteroscedasticity in the Tobit Model
Petersen and Waldman (1981) analyzed the volume of short interest in a cross section of com-
mon stocks. The regressors included a measure of the market component of heterogeneous
expectations as measured by the firm’s BETA coefficient; a company-specific measure of
heterogeneous expectations, NONMARKET; the NUMBER of analysts making earnings fore-
casts for the company; the number of common shares to be issued for the acquisition of
another firm, MERGER; and a dummy variable for the existence of OPTIONSs. They report the
results listed in Table 22.2 for a model in which the variance is assumed to be of the form
o? = exp(x/a). The values in parentheses are the ratio of the coefficient to the estimated
asymptotic standard error.

The effect of heteroscedasticity on the estimates is extremely large. We do note, however,
a common misconception in the literature. The change in the coefficients is often misleading.
The marginal effects in the heteroscedasticity model will generally be very similar to those
computed from the model which assumes homoscedasticity. (The calculation is pursued in
the exercises.)

A test of the hypothesis that « =0 (except for the constant term) can be based on the
likelihood ratio statistic. For these results, the statistic is —2[—547.3 — (—466.27)] = 162.06.
This statistic has a limiting chi-squared distribution with five degrees of freedom. The sample
value exceeds the critical value in the table of 11.07, so the hypothesis can be rejected.

12This concept is explored further in Greene (1980b), Goldberger (1981), and Cheung and Goldberger (1984).

I3Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986b).
An application that explores these two issues in detail is Melenberg and van Soest (1996).
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TABLE 22.2 Estimates of a Tobit Model (Standard errors
in parentheses)

Homoscedastic Heteroscedastic
B B o

Constant —18.28 (5.10) —4.11 (3.28) —0.47 (0.60)
Beta 10.97 (3.61) 2.22 (2.00) 1.20 (1.81)
Nonmarket 0.65 (7.41) 0.12 (1.90) 0.08 (7.55)
Number 0.75 (5.74) 0.33 (4.50) 0.15 (4.58)
Merger 0.50 (5.90) 0.24 (3.00) 0.06 (4.17)
Option 2.56 (1.51) 2.96 (2.99) 0.83 (1.70)
Log L —547.30 —466.27
Sample size 200 200

In the preceding example, we carried out a likelihood ratio test against the hypoth-
esis of homoscedasticity. It would be desirable to be able to carry out the test without
having to estimate the unrestricted model. A Lagrange multiplier test can be used for
that purpose. Consider the heteroscedastic tobit model in which we specify that

02 = o™, (22-15)

This model is a fairly general specification that includes many familiar ones as special
cases. The null hypothesis of homoscedasticity is & =0. (We used this specification
in the probit model in Section 19.4.1.b and in the linear regression model in Section
17.7.1.) Using the BHHH estimator of the Hessian as usual, we can produce a Lagrange
multiplier statistic as follows: Let z; = 1 if y; is positive and 0 otherwise,

a; = z<8—2> +a —zi)<(_1))“i),
o o

(e7/0% 1) (X[B)Ai
bi = z (T +d- z,-)( 53 > (22-16)
- ¢(B/o)
Tl —-@;(xlB/o)’

The data vector is g; = [a;X/, b;, b;w;]". The sums are taken over all observations, and
all functions involving unknown parameters (¢, ¢, X;, A;, etc.) are evaluated at the
restricted (homoscedastic) maximum likelihood estimates. Then,

LM =i'G[G'G]'G'i = nR* (22-17)

in the regression of a column of ones on the K + 1 + P derivatives of the log-likelihood
function for the model with multiplicative heteroscedasticity, evaluated at the estimates
from the restricted model. (If there were no limit observations, then it would reduce to
the Breusch-Pagan statistic discussed in Section 11.4.3.) Given the maximum likelihood
estimates of the tobit model coefficients, it is quite simple to compute. The statistic has
a limiting chi-squared distribution with degrees of freedom equal to the number of
variables in w;.
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22.3.4.b Misspecification of Prob[y* < 0]
In an early study in this literature, Cragg (1971) proposed a somewhat more general
model in which the probability of a limit observation is independent of the regression
model for the nonlimit data. One can imagine, for instance, the decision on whether or
not to purchase a car as being different from the decision on how much to spend on the
car, having decided to buy one. A related problem raised by Lin and Schmidt (1984) is
that in the tobit model, a variable that increases the probability of an observation being
a nonlimit observation also increases the mean of the variable. They cite as an example
loss due to fire in buildings. Older buildings might be more likely to have fires, so that
d Prob[y; > 0]/d age; > 0, but, because of the greater value of newer buildings, older
ones incur smaller losses when they do have fires, so that d E[y; | y; > 0]/9 age; < 0. This
fact would require the coefficient on age to have different signs in the two functions,
which is impossible in the tobit model because they are the same coefficient.

A more general model that accommodates these objections is as follows:

1. Decision equation:
Prob[y’ > 0] = ¢(x]y), z =1if yf > 0,

(22-18)
Problyf <0] =1-®(xy), z =0ify/ <0.

2. Regression equation for nonlimit observations:
Elyilzi=1]=xB + ok,
according to Theorem 22.2.

This model is a combination of the truncated regression model of Section 22.2 and
the univariate probit model of Section 21.3, which suggests a method of analyzing it.
The tobit model of this section arises if y equals B/o. The parameters of the regres-
sion equation can be estimated independently using the truncated regression model of
Section 22.2. A recent application is Melenberg and van Soest (1996).

Fin and Schmidt (1984) considered testing the restriction of the tobit model. Based
only on the tobit model, they devised a Lagrange multiplier statistic that, although a
bit cumbersome algebraically, can be computed without great difficulty. If one is able
to estimate the truncated regression model, the tobit model, and the probit model
separately, then there is a simpler way to test the hypothesis. The tobit log-likelihood
is the sum of the log-likelihoods for the truncated regression and probit models. [To
show this result, add and subtract >, _; In ®(x;8/0) in (22-13). This produces the log-
likelihood for the truncated regression model plus (21-20) for the probit model.'4]
Therefore, a likelihood ratio statistic can be computed using

A= —2[11’1 Lyr—(nLp+1In LTR)],

where
Ly = likelihood for the tobit model in (22-13), with the same coefficients,

Lp = likelihood for the probit model in (19-20), fit separately,

Lrr = likelihood for the truncated regression model, fit separately.

14The likelihood function for the truncated regression model is considered in the exercises.
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22.3.4.c Nonnormality

Nonnormality is an especially difficult problem in this setting. It has been shown that
if the underlying disturbances are not normally distributed, then the estimator based
on (22-13) is inconsistent. Research is ongoing both on alternative estimators and on
methods for testing for this type of misspecification.!

One approach to the estimation is to use an alternative distribution. Kalbfleisch and
Prentice (1980) present a unifying treatment that includes several distributions such as
the exponential, lognormal, and Weibull. (Their primary focus is on survival analysis
in a medical statistics setting, which is an interesting convergence of the techniques in
very different disciplines.) Of course, assuming some other specific distribution does not
necessarily solve the problem and may make it worse. A preferable alternative would be
to devise an estimator that is robust to changes in the distribution. Powell’s (1981, 1984)
least absolute deviations (LAD) estimator appears to offer some promise.'® The main
drawback to its use is its computational complexity. An extensive application of the
LAD estimator is Melenberg and van Soest (1996). Although estimation in the nonnor-
mal case is relatively difficult, testing for this failure of the model is worthwhile to assess
the estimates obtained by the conventional methods. Among the tests that have been
developed are Hausman tests, Lagrange multiplier tests [Bera and Jarque (1981, 1982),
Bera, Jarque and Lee (1982)], and conditional moment tests [Nelson (1981)]. The con-
ditional moment tests are described in the next section.

To employ a Hausman test, we require an estimator that is consistent and efficient
under the null hypothesis but inconsistent under the alternative —the tobit estimator
with normality—and an estimator that is consistent under both hypotheses but ineffi-
cient under the null hypothesis. Thus, we will require a robust estimator of §, which
restores the difficulties of the previous paragraph. Recent applications [e.g., Melenberg
and van Soest (1996)] have used the Hausman test to compare the tobit/normal estima-
tor with Powell’s consistent, but inefficient (robust), LAD estimator. Another approach
to testing is to embed the normal distribution in some other distribution and then use
an LM test for the normal specification. Chesher and Irish (1987) have devised an LM
test of normality in the tobit model based on generalized residuals. In many models,
including the tobit model, the generalized residuals can be computed as the derivatives
of the log-densities with respect to the constant term, so

1
e = _Z[Zl(yl - X:ﬁ) - (1 - Zi)a)‘i]y
o

where z; is defined in (22-18) and %, is defined in (22-16). This residual is an estimate
of ¢; that accounts for the censoring in the distribution. By construction, E[e; | x;] = 0,
and if the model actually does contain a constant term, then Zf:] e; = 0; this is the first
of the necessary conditions for the MLE. The test is then carried out by regressing a
column of Ison d; = [e;X., b;, €}, ¢} —3e?], where b; is defined in (22-16). Note that the

first K + 1 variables in d; are the derivatives of the tobit log-likelihood. Let D be the
n x (K +3) matrix with ith row equal to d;. Then D = [G, M], where the K + 1 columns

15See Duncan (1983, 1986b), Goldberger (1983), Pagan and Vella (1989), Lee (1996), and Fernandez (1986).
We will examine one of the tests more closely in the following section.

16See Duncan (1986a,b) for a symposium on the subject and Amemiya (1984). Additional references are
Newey, Powell, and Walker (1990); Lee (1996); and Robinson (1988).
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of G are the derivatives of the tobit log-likelihood and the two columns in M are the
last two variables in a;. Then the chi-squared statistic is n R?; that is,

LM =iDD'D)"'D'i.

The necessary conditions that define the MLE are i'G = 0, so the first K + 1 elements
of i’'D are zero. Using (B-66), then, the LM statistic becomes

LM = iM[M'M — M'G(G'G)"'G'M]"'M'i,

which is a chi-squared statistic with two degrees of freedom. Note the similarity to
(22-17), where a test for homoscedasticity is carried out by the same method. As emerges
so often in this framework, the test of the distribution actually focuses on the skewness
and kurtosis of the residuals.

22.3.4.d Conditional Moment Tests
Pagan and Vella (1989) [see, as well, Ruud (1984)] describe a set of conditional moment
tests of the specification of the tobit model.!” We will consider three:

1. The variables z have not been erroneously omitted from the model.
2. The disturbances in the model are homoscedastic.
3. The underlying disturbances in the model are normally distributed.

For the third of these, we will take the standard approach of examining the third and
fourth moments, which for the normal distribution are 0 and 30*, respectively. The
underlying motivation for the tests can be made with reference to the regression part
of the tobit model in (22-11),

Yl =xiB+ei.

Neglecting for the moment that we only observe y; subject to the censoring, the three
hypotheses imply the following expectations:

1. E[z(y:—xp)]=0,
2. E{z[(yi —xp)*—0°]} =0,
3. E[(yi—x;#)°] =0and E[(y; —x]B)* —30*] = 0.

In (1), the variables in z; would be one or more variables not already in the model. We
are interested in assessing whether or not they should be. In (2), presumably, although
not necessarily, z; would be the regressors in the model. For the present, we will assume
that y; is observed directly, without censoring. That is, we will construct the CM tests
for the classical linear regression model. Then we will go back to the necessary step and
make the modification needed to account for the censoring of the dependent variable.

Their survey is quite general and includes other models, specifications, and estimation methods. We will
consider only the simplest cases here. The reader is referred to their paper for formal presentation of these
results.

Developing specification tests for the tobit model has been a popular enterprise. A sampling of the
received literature includes Nelson (1981); Bera, Jarque, and Lee (1982); Chesher and Irish (1987); Chesher,
Lancaster, and Irish (1985); Gourieroux et al. (1984, 1987); Newey (1986); Rivers and Vuong (1988); Horowitz
and Neumann (1989); and Pagan and Vella (1989). Newey (1985a,b) are useful references on the general
subject of conditional moment testing. More general treatments of specification testing are Godfrey (1988)
and Ruud (1984).
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Conditional moment tests are described in Section 17.6.4. To review, for a model
estimated by maximum likelihood, the statistic is

C =iM[M'M — M'G(G'G)"'G'M]'Mi,

where the rows of G are the terms in the gradient of the log-likelihood function, (G'G) ™!
is the BHHH estimator of the asymptotic covariance matrix of the MLE of the model
parameters, and the rows of M are the individual terms in the sample moment conditions.
Note that this construction is the same as the LM statistic just discussed. The difference
is in how the rows of M are constructed.

For a regression model without censoring, the sample counterparts to the moment
restrictions in (1) to (3) would be

1 n
r = - Zziei’ where ¢; = y; —x'band b = (X'X)" Xy,
n
i=1

1< ee
rn=—-Y z(e—s?), wheres’>=—,
L
n n
i=

I &
“—zg[e:*—ss‘*]

For the positive observations, we observe y*, so the observations in M are the same as
for the classical regression model; that is,

L. m; =z(y; —x;p),
2. m; =z[(y; — X.B)* — o2,
3. m; =[(yi —xB)° (i —x;B)* — 35"

For the limit observations, these observations are replaced with their expected values,
conditioned on y =0, which means that y* <0 or ¢; < —x}B. Let ¢; = (x/)/0 and }; =
¢i/(1 — ®;). Then from (22-2), (22-3b), and (22-4),

L m=zFE[(y; —x;B)|y=0]=2z[XB—0or)—x;B] =2;201;).
2. m; =z E[(yf —x[B)* —0?|y=0]=z[c*1 +ql) — 0?] =z, (c%q)).

E[e?|y = 0,x;] is not the variance, since the mean is not zero.) For the third and
fourth moments, we simply reproduce Pagan and Vella’s results [see also Greene (1995a,
pp- 618-619)]:

3. m=0%%[—(2+4q%).0q:(3+47)]

These three items are the remaining terms needed to compute M.

22.3.5 CENSORING AND TRUNCATION IN MODELS FOR COUNTS

Truncation and censoring are relatively common in applications of models for counts
(see Section 21.9). Truncation often arises as a consequence of discarding what appear
to be unusable data, such as the zero values in survey data on the number of uses of
recreation facilities [Shaw (1988) and Bockstael et al. (1990)]. The zero values in this
setting might represent a discrete decision not to visit the site, which is a qualitatively
different decision from the positive number for someone who had decided to make at
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least one visit. In such a case, it might make sense to confine attention to the nonzero
observations, thereby truncating the distribution. Censoring, in contrast, is often em-
ployed to make survey data more convenient to gather and analyze. For example, survey
data on access to medical facilities might ask, “How many trips to the doctor did you
make in the last year?” The responses might be 0, 1, 2, 3 or more.

Models with these characteristics can be handled within the Poisson and negative
binomial regression frameworks by using the laws of probability to modify the likeli-
hood. For example, in the censored data case,

: LAl
Fi(j) = Probly: = j] = i - J=012

P.(3) = Prob[y; > 3] =1 — [Prob(y; = 0) + Prob(y; = 1) + Prob(y; = 2)].

The probabilities in the model with truncation above zero would be

I S

(= RO~ [1—en])i
These models are not appreciably more complicated to analyze than the basic Poisson
or negative binomial models. [See Terza (1985b), Mullahy (1986), Shaw (1988), Grogger
and Carson (1991), Greene (1998), Lambert (1992), and Winkelmann (1997).] They do,
however, bring substantive changes to the familiar characteristics of the models. For
example, the conditional means are no longer 4;; in the censoring case,

Fi(j) = Probly; = j]

Elyilx]=x =Y (=3P <.
j=3

Marginal effects are changed as well. Recall that our earlier result for the count data
models was d E[y; | x;]/d x; = A; 8. With censoring or truncation, it is straightforward in
general to show that d E[y; | x;]/0x; = §; 8, but the new scale factor need not be smaller
than A;.

22.3.6 APPLICATION: CENSORING IN THE TOBIT AND POISSON
REGRESSION MODELS

In 1969, the popular magazine Psychology Today published a 101-question survey on
sex and asked its readers to mail in their answers. The results of the survey were dis-
cussed in the July 1970 issue. From the approximately 2,000 replies that were collected
in electronic form (of about 20,000 received), Professor Ray Fair (1978) extracted a
sample of 601 observations on men and women then currently married for the first
time and analyzed their responses to a question about extramarital affairs. He used the
tobit model as a platform. Fair’s analysis in this frequently cited study suggests several
interesting econometric questions. [In addition, his 1977 companion paper in Econo-
metrica on estimation of the tobit model contributed to the development of the EM
algorithm, which was published by and is usually associated with Dempster, Laird, and
Rubin (1977).]

As noted, Fair used the tobit model as his estimation framework for this study. The
nonexperimental nature of the data (which can be downloaded from the Internet at
http://fairmodel.econ.yale.edu/rayfair/work.ss.htm) provides a fine laboratory case that
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we can use to examine the relationships among the tobit, truncated regression, and
probit models. In addition, as we will explore below, although the tobit model seems to
be a natural choice for the model for these data, a closer look suggests that the models
for counts we have examined at several points earlier might be yet a better choice.
Finally, the preponderance of zeros in the data that initially motivated the tobit model
suggests that even the standard Poisson model, although an improvement, might still
be inadequate. In this example, we will reestimate Fair’s original model and then apply
some of the specification tests and modified models for count data as alternatives.

The study was based on 601 observations on the following variables (full details on
data coding are given in the data file and Appendix Table F22.2):

y = number of affairs in the past year, 0, 1, 2, 3, 4-10 coded as 7, “monthly, weekly, or
daily,” coded as 12. Sample mean = 1.46. Frequencies = (451, 34, 17, 19, 42, 38).

71 = sex=0 for female, 1 for male. Sample mean = 0.476.

Zp = age. Sample mean = 32.5.

z3 = number of years married. Sample mean =8.18.

z4 = children, 0 =no, 1 =yes. Sample mean =0.715.

zs = religiousness, 1 =anti, ..., 5 = very. Sample mean =3.12.

z6 = education, years, 9 = grade school, 12 = high school, ..., 20 =Ph.D or
other. Sample mean =16.2.

z7 = occupation, “Hollingshead scale,” 1-7. Sample mean =4.19.

zg = self-rating of marriage, 1 = very unhappy, ..., 5 =very happy. Sample
mean = 3.93.

The tobit model was fit to y using a constant term and all eight variables. A restricted
model was fit by excluding z;, z4, and zg, none of which was individually statistically sig-
nificant in the model. We are able to match exactly Fair’s results for both equations. The
log-likelihood functions for the full and restricted models are 2704.7311 and 2705.5762.
The chi-squared statistic for testing the hypothesis that the three coefficients are zero
is twice the difference, 1.6902. The critical value from the chi-squared distribution with
three degrees of freedom is 7.81, so the hypothesis that the coefficients on these three
variables are all zero is not rejected. The Wald and Lagrange multiplier statistics are
likewise small, 6.59 and 1.681. Based on these results, we will continue the analysis
using the restricted set of variables, Z = (1, z,, 73, 75, 27, Zg). Our interest is solely in
the numerical results of different modeling approaches. Readers may draw their own
conclusions and interpretations from the estimates.

Table 22.3 presents parameter estimates based on Fair’s specification of the normal
distribution. The inconsistent least squares estimates appear at the left as a basis for
comparison. The maximum likelihood tobit estimates appear next. The sample is heavily
dominated by observations with y = 0 (451 of 601, or 75 percent), so the marginal effects
are very different from the coefficients, by a multiple of roughly 0.766. The scale factor
is computed using the results of Theorem 22.4 for left censoring at zero and the upper
limit of +o0, with all variables evaluated at the sample means and the parameters equal
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TABLE 22.3 Model Estimates Based on the Normal Distribution (Standard Errors

in Parentheses)

Tobit Truncated Regression
Least Marginal Scaled Lblt Marginal
Squares Estimate Effect by1l/o Estimate Estimate  Effect
Variable a ) A3) “@) 3) ©) @)
Constant ~ 5.61 8.18 — 0.991 0.997 8.32 —
(0.797) (2.74) — (0.336) (0.361) (3.96) —
2 —0.0504 —-0.179  —0.042 —0.022 —0.022 —0.0841 —0.0407
(0.0221) (0.079)  (0.184) (0.010) (0.102) (0.119)  (0.0578)
z 0.162 0.554 0.130 0.0672 0.0599 0.560 0.271
(0.0369) (0.135)  (0.0312) (0.0161) (0.0171) (0.219)  (0.106)
Zs —0.476 —1.69 —0.394 —0.2004 —0.184 —-1.502  —0.728
(0.111) (0.404)  (0.093) (0.484) (0.0515) (0.617)  (0.299)
z7 0.106 0.326 0.0762 0.0395 0.0375 0.189 0.0916
(0.0711) (0.254)  (0.0595) (0.0308) (0.0328) (0.377)  (0.182)
) —0.712 -2.29 —0.534 —-0.277 —0.273 —-1.35 —0.653
(0.118) (0.408)  (0.0949) (0.0483) (0.0525) (0.565)  (0.273)
o 3.09 8.25 5.53
log L —705.5762 —307.2955 —329.7103

to the maximum likelihood estimates:

_ 3P _ 3P 'R
scale = @ J’OOX‘BML] —® [OXﬂML] —1-d XAﬂML] — 0.234.

A

oML oML oML oML

0—""31\&]:@

These estimates are shown in the third column. As expected, they resemble the least
squares estimates, although not enough that one would be content to use OLS for
estimation. The fifth column in Table 22.3 gives estimates of the probit model estimated
for the dependent variable ¢; = 0if y; =0, g; = 1if y; > 0. If the specification of the
tobit model is correct, then the probit estimators should be consistent for (1/0)8 from
the tobit model. These estimates, with standard errors computed using the delta method,
are shown in column 4. The results are surprisingly close, especially given the results
of the specification test considered later. Finally, columns 6 and 7 give the estimates
for the truncated regression model that applies to the 150 nonlimit observations if the
specification of the model is correct. Here the results seem a bit less consistent.
Several specification tests were suggested for this model. The Cragg/Greene test for
appropriate specification of Prob[y; = 0] is given in Section 22.3.4.b. This test is easily
carried out using the log-likelihood values in the table. The chi-squared statistic, which
hasseven degrees of freedom is —2{ —705.5762 — [—307.2955 + (—392.7103)]} =11.141,
which is smaller than the critical value of 14.067. We conclude that the tobit model is
correctly specified (the decision of whether or not is not different from the decision of
how many, given “whether”). We now turn to the normality tests. We emphasize that
these tests are nonconstructive tests of the skewness and kurtosis of the distribution of €.
A fortiori, if we do reject the hypothesis that these values are 0.0 and 3.0, respectively,
then we can reject normality. But that does not suggest what to do next. We turn to
that issue later. The Chesher-Irish and Pagan—Vella chi-squared statistics are 562.218
and 22.314, respectively. The critical value is 5.99, so on the basis of both of these
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values, the hypothesis of normality is rejected. Thus, both the probability model and
the distributional framework are rejected by these tests.

Before leaving the tobit model, we consider one additional aspect of the original
specification. The values above 4 in the observed data are not true observations on the
response; 7 is an estimate of the mean of observations that fall in the range 4 to 10,
whereas 12 was chosen more or less arbitrarily for observations that were greater than
10. These observations represent 80 of the 601 observations, or about 13 percent of the
sample. To some extent, this coding scheme might be driving the results. [This point was
not overlooked in the original study; “[a] linear specification was used for the estimated
equation, and it did not seem reasonable in this case, given the range of explanatory
variables, to have a dependent variable that ranged from, say, O to 365” [Fair (1978),
p- 55]. The tobit model allows for censoring in both tails of the distribution. Ignoring
the results of the specification tests for the moment, we will examine a doubly censored
regression by recoding all observations that take the values 7, or 12 as4. The modelis thus

Yy =xB+e,

y=0 ify" <0,
y=y" if0 < y* <4,
y=4 if y* >4,

The log-likelihood is built up from three sets of terms:

0—xiB 1 [yi—XxB 4 —x!B
InL= lnd{i’]—k ln—qb[—’}—i— 1n{1—®<7l)].
yz_; o 0<Z:y< , o ; o
Maximum likelihood estimates of the parameters of this model based on the doubly
censored data appear in Table 22.4. The effect on the coefficient estimates is relatively
minor, but the effect on the estimates of the marginal effects is very large; they are
reduced by about 50 percent, which makes sense. With the original data, increases in
the index were associated with increases in y that could be from 3 to 7 or from 3 to 12. But
with the data treated as censored, y cannot increase past 4. Thus, the range of variation
is greatly reduced. The numerical results are also suggestive. Recall that the scale factor
for the singly censored data was 0.2338. For the doubly censored variable, this factor
is ®[(4 — B'x) /o] — ®[(0 — B'x) /0] = 0.8930 — 0.7701 = 0.1229. The regression model

TABLE 22.4 Estimates of a Doubly Censored Tobit Model

Left Censored at 0 Only Censored at Both 0 and 4
Standard  Marginal Standard Marginal
Variable Estimate Error Effect Estimate Error Effect
Constant 8.18 0.797 — 7.90 2.804 —
2 —-0.179 0.079 —0.0420 —-0.178 0.080 —0.0218
z3 0.554 0.135 0.130 0.532 0.141 0.0654
Zs —1.69 0.404 —0.394 —-1.62 0.424 —0.199
Z7 0.326 0.254 0.0762 0.324 0.254 0.0399
z8 —-2.29 0.408 —0.534 -2.21 0.459 —-0.271
o 8.25 Prob(nonlimit) = 0.2338 7.94 Prob(nonlimit) = 0.1229

Ely|x= E[x]] 1.126 0.226
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for y* has not changed much, but the effect now is to assign the upper tail area to the
censored region, whereas before it was in the uncensored region. The effect, then, is to
reduce the scale roughly by this 0.107, from 0.234 to about 0.123.

By construction, the tobit model should only be viewed as an approximation for
these data. The dependent variable is a count, not a continuous measurement. (Thus,
the testing results obtained earlier are not surprising.) The Poisson regression model,
or perhaps one of the many variants of it, should be a preferable modeling framework.
Table 22.5 presents estimates of the Poisson and negative binomial regression model.
There is ample evidence of overdispersion in these data; the f-ratio on the estimated
overdispersion parameter is 7.014/0.945 = 7.42, which is strongly suggestive. The large
absolute value of the coefficient is likewise suggestive.

Before proceeding to a model that specifically accounts for overdispersion, we can
find a candidate for its source, at least to some degree. As discussed earlier, responses
of 7 and 12 do not represent the actual counts. It is unclear what the effect of the first
recoding would be, since it might well be the mean of the observations in this group. But
the second is clearly a censored observation. To remove both of these effects, we have
recoded both the values 7 and 12 as 4 and treated this observation (appropriately) as a
censored observation, with 4 denoting “4 or more.” As shown in the third and fourth sets
of results in Table 22.5, the effect of this treatment of the data is greatly to reduce the
measured effects, which is the same effect we observed for the tobit model. Although
this step does remove a deficiency in the data, it does not remove the overdispersion;
at this point, the negative binomial model is still the preferred specification.

The tobit model remains the standard approach to modeling a dependent variable
that displays a large cluster of limit values, usually zeros. But in these data, it is clear that

TABLE 22.5 Model Estimates Based on the Poisson Distribution

Poisson Regression Negative Binomial Regression

Standard  Marginal Standard  Marginal

Variable Estimate Error Effect Estimate Error Effect
Based on Uncensored Poisson Distribution
Constant 2.53 0.197 — 2.19 0.859 —
2 —0.0322 0.00585 —0.0470 —0.0262 0.0180 —0.00393
23 0.116 0.00991 0.168 0.0848 0.0400 0.127
Zs —0.354 0.0309 —0.515 —0.422 0.171 —0.632
77 0.0798 0.0194 0.116 0.0604 0.0908 0.0906
28 —0.409 0.0274 —0.0596 —-0.431 0.167 —0.646
o 7.01 0.945
log L —1427.037 —728.2441
Based on Poisson Distribution Right Censored at y =4
Constant 1.90 0.283 — 4.79 1.16 —
2 —0.0328 0.00838 —0.0235 —0.0166 0.0250 —0.00428
23 0.105 0.0140 0.0754 0.174 0.0568 0.045
Z5 —-0.323 0.0437 —0.232 —-0.723 0.198 —0.186
27 0.0798 0.0275 0.0521 0.0900 0.116 0.0232
28 —0.390 0.0391 —-0.279 —-0.854 0.216 —-0.220
o 9.39 1.36
log L —747.7541 —482.0505
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the zero value represents something other than a censoring; itis the outcome of a discrete
decision. Thus, for this reason and based on the preceding results, it seems appropriate to
turn to a different model for this dependent variable. The Poisson and negative binomial
models look like an improvement, but there remains a noteworthy problem. Figure 22.3
shows a histogram of the actual values (solid dark bars) and predicted values from the
negative binomial model estimated with the censored data (lighter bars). Predictions
from the latter model are the integer values of E[y | x] = exp(B'x). As in the actual data,
values larger than 4 are censored to 4. Evidently, the negative binomial model predicts
the data fairly poorly. In fact, it is not hard to see why. The source of the overdispersion
in the data is not the extreme values on the right of the distribution; it is the very large
number of zeros on the left.

There are a large variety of models and permutations that one might turn to at
this point. We will conclude with just one of these, Lambert’s (1992) zero-inflated Pois-
son (ZIP) model with a logit “splitting” model discussed in Section 21.9.6 and Exam-
ple 21.12. The doubly censored count is the dependent variable in this model. (Mullahy’s
(1986) hurdle model is an alternative that might be considered. The difference between
these two is in the interpretation of the zero observations. In the ZIP formulation, the
zero observations would be a mixture of “never” and “not in the last year,” whereas
the hurdle model assumes two distinct decisions, “whether or not” and “how many,
given yes.”) The estimates of the parameters of the ZIP model are shown in Table 22.6.
The Vuong statistic of 21.64 strongly supports the ZIP model over the Poisson model.
(An attempt to combine the ZIP model with the negative binomial was unsuccessful.
Since, as expected, the ancillary model for the zeros accounted for the overdispersion
in the data, the negative binomial model degenerated to the Poisson form.) Finally,
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TABLE 22.6 Estimates of a Zero-Inflated Poisson Model

Poisson Regression Logit Splitting Model Marginal Effects
Standard Standard

Variable 1.1Estimate Error Estimate Error ZIP Tobit (0) Tobit (0,4)
Constant 1.27 0.439 —1.85 0.664 — —
Age —0.00422 0.0122 0.0397 0.0190 —0.0252 —0.0420 —0.0218
Years 0.0331 0.0231 —0.0981 0.0318 0.0987  0.130 0.0654
Religion —0.0909 0.0721 0.306 0.0951 —0.288 —0.39%4 —0.199
Occupation 0.0205 0.0441 0.0677 0.0607 0.0644  0.0762 0.0399
Happiness —0.817 0.0666 0.458 0.0949 —0.344 —0.534 —-0.271

the marginal effects, § = d E[y|x]/0x, are shown in Table 22.6 for three models: the
ZIP model, Fair’s original tobit model, and the tobit model estimated with the doubly
censored count. The estimates for the ZIP model are considerably lower than those
for Fair’s tobit model. When the tobit model is reestimated with the censoring on the
right, however, the resulting marginal effects are reasonably close to those from the ZIP
model, though uniformly smaller. (This result may be from not building the censoring
into the ZIP model, a refinement that would be relatively straightforward.)

We conclude that the original tobit model provided only a fair approximation to
the marginal effects produced by (we contend) the more appropriate specification of
the Poisson model. But the approximation became much better when the data were
recorded and treated as censored. Figure 22.3 also shows the predictions from the ZIP
model (narrow bars). As might be expected, it provides a much better prediction of the
dependent variable. (The integer values of the conditional mean function for the tobit
model were roughly evenly split between zeros and ones, whereas the doubly censored
model always predicted y = 0.) Surprisingly, the treatment of the highest observations
does greatly affect the outcome. If the ZIP model is fit to the original uncensored
data, then the vector of marginal effectsis § = [—0.0586, 0.2446, —0.692, 0.115, —0.787],
which is extremely large. Thus, perhaps more analysis is called for—the ZIP model can
be further improved, and one might reconsider the hurdle model —but we have tortured
Fair’s data enough. Further exploration is left for the reader.

22.4 THE SAMPLE SELECTION MODEL

The topic of sample selection, or incidental truncation, has been the subject of an
enormous recent literature, both theoretical and applied.'® This analysis combines both
of the previous topics.

Example 22.6 Incidental Truncation
In the high-income survey discussed in Example 22.2, respondents were also included in the
survey if their net worth, not including their homes, was at least $500,000. Suppose that

18 A large proportion of the analysis in this framework has been in the area of labor economics. The results,
however, have been applied in many other fields, including, for example, long series of stock market returns
by financial economists (“survivorship bias”) and medical treatment and response in long-term studies by
clinical researchers (“attrition bias™). The four surveys noted in the introduction to this chapter provide fairly
extensive, although far from exhaustive, lists of the studies. Some studies that comment on methodological
issues are Heckman (1990), Manski (1989, 1990, 1992), and Newey, Powell, and Walker (1990).
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the survey of incomes was based only on people whose net worth was at least $500,000.
This selection is a form of truncation, but not quite the same as in Section 22.2. This selection
criterion does not necessarily exclude individuals whose incomes at the time might be quite
low. Still, one would expect that, on average, individuals with a high net worth would have a
high income as well. Thus, the average income in this subpopulation would in all likelihood
also be misleading as an indication of the income of the typical American. The data in such
a survey would be nonrandomly selected or incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects
of sample selection on the properties of conventional estimators such as least squares;
have produced a variety of alternative estimation techniques; and, in the process, have
yielded a rich crop of empirical models. In some cases, the analysis has led to a reinter-
pretation of earlier results.

22.4.1 INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation p. We are interested
in the distribution of y given that z exceeds a particular value. Intuition suggests that if y
and z are positively correlated, then the truncation of z should push the distribution of
y to the right. As before, we are interested in (1) the form of the incidentally truncated
distribution and (2) the mean and variance of the incidentally truncated random vari-
able. Since it has dominated the empirical literature, we will focus first on the bivariate
normal distribution.'
The truncated joint density of y and z is

fy. 2

f(y7Z|Z>a)=m-

To obtain the incidentally truncated marginal density for y, we would then integrate z
out of this expression. The moments of the incidentally truncated normal distribution
are given in Theorem 22.5.20

THEOREM 22.5 Moments of the Incidentally Truncated Bivariate
Normal Distribution
If y and z have a bivariate normal distribution with means |1, and ., standard

deviations o, and o, and correlation p, then
Elylz > a] = uy + poyi(ay),
P (22-19)
Varly|z > a] = o}[1 — p*8(ay)],

where
oy = (a — pg) /o, Maz) = ¢(ar)/[1 — ()], and 5(az) = M) [A(oz) — ]

19We will reconsider the issue of the normality assumption in Section 22.4.5.

20Much more general forms of the result that apply to multivariate distributions are given in Johnson and
Kotz (1974). See also Maddala (1983, pp. 266-267).
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Note that the expressions involving z are analogous to the moments of the truncated
distribution of x given in Theorem 22.2. If the truncation is z < a, then we make the
replacement A(o;) = —¢ (o) /D (ay).

As expected, the truncated mean is pushed in the direction of the correlation if the
truncation is from below and in the opposite direction if it is from above. In addition,
the incidental truncation reduces the variance, because both §(«) and p? are between
zero and one.

22.4.2 REGRESSION IN A MODEL OF SELECTION

To motivate a regression model that corresponds to the results in Theorem 22.5, we
consider two examples.

Example 22.7 A Model of Labor Supply
A simple model of female labor supply that has been examined in many studies consists of
two equations:?!

1. Wage equation. The difference between a person’s market wage, what she could
command in the labor market, and her reservation wage, the wage rate necessary to
make her choose to participate in the labor market, is a function of characteristics such
as age and education as well as, for example, number of children and where a person
lives.

2. Hours equation. The desired number of labor hours supplied depends on the wage,
home characteristics such as whether there are small children present, marital status,
and so on.

The problem of truncation surfaces when we consider that the second equation describes
desired hours, but an actual figure is observed only if the individual is working. (In most
such studies, only a participation equation, that is, whether hours are positive or zero, is
observable.) We infer from this that the market wage exceeds the reservation wage. Thus,
the hours variable in the second equation is incidentally truncated.

To put the preceding examples in a general framework, let the equation that deter-
mines the sample selection be
g =Wy, +u.
and let the equation of primary interest be
Vi =xX.B+¢.
The sample rule is that y; is observed only when z is greater than zero. Suppose as
well that ¢; and u; have a bivariate normal distribution with zero means and correlation

p. Then we may insert these in Theorem 22.5 to obtain the model that applies to the
observations in our sample:

E[y; |y is observed] = E[y; | z' > 0]
= Elyilui > —=Wy,]
=xB+ Elei|ui > —wy,]
= X;B + po:hi(ow)
=XiBi + Prki ().

2ISee, for example, Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and
Lewis (1974).



Greene-50240

book

June 28, 2002 17:5

CHAPTER 22 4 Limited Dependent Variable and Duration Models 783

where o, = —W}y /o, and A(«,) = ¢ (W} y /oy,)/ D (W,y /oy). So,

yilzl >0=E[yi |z > 0]+ v
=X,B + Biri(a) + vi.

Leastsquares regression using the observed data—for instance, OLS regression of hours
on its determinants, using only data for women who are working — produces inconsistent
estimates of B. Once again, we can view the problem as an omitted variable. Least
squares regression of y on x and A would be a consistent estimator, but if A is omitted,
then the specification error of an omitted variable is committed. Finally, note that the
second part of Theorem 22.5 implies that even if A; were observed, then least squares
would be inefficient. The disturbance v; is heteroscedastic.

The marginal effect of the regressors on y; in the observed sample consists of two
components. There is the direct effect on the mean of y;, which is . In addition, for a
particular independent variable, if it appears in the probability that z is positive, then
it will influence y; through its presence in ;. The full effect of changes in a regressor
that appears in both x; and w; on y is

IE[yilz = 0] po
_— - = — S s
9%k Bk — Vi - i (o)

where
(Si = )\iz — Oli)\.l‘.zz

Suppose that p is positive and E [y;]is greater when z; is positive than when itis negative.
Since 0 < §; <1, the additional term serves to reduce the marginal effect. The change
in the probability affects the mean of y; in that the mean in the group z; > 0 is higher.
The second term in the derivative compensates for this effect, leaving only the marginal
effect of a change given that 7° > 0 to begin with. Consider Example 22.9, and suppose
that education affects both the probability of migration and the income in either state.
If we suppose that the income of migrants is higher than that of otherwise identical
people who do not migrate, then the marginal effect of education has two parts, one
due to its influence in increasing the probability of the individual’s entering a higher-
income group and one due to its influence on income within the group. As such, the
coefficient on education in the regression overstates the marginal effect of the education
of migrants and understates it for nonmigrants. The sizes of the various parts depend
on the setting. It is quite possible that the magnitude, sign, and statistical significance of
the effect might all be different from those of the estimate of B, a point that appears
frequently to be overlooked in empirical studies.

In most cases, the selection variable z* is not observed. Rather, we observe only
its sign. To consider our two examples, we typically observe only whether a woman is
working or not working or whether an individual migrated or not. We can infer the sign
of z*, but not its magnitude, from such information. Since there is no information on
the scale of z*, the disturbance variance in the selection equation cannot be estimated.
(We encountered this problem in Chapter 21 in connection with the probit model.)

22We have reversed the sign of o, in (22-19) since a =0, and « = y'w/o ) is somewhat more convenient. Also,
as such, 9/ = —34.
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Thus, we reformulate the model as follows:
selection mechanism: zf = wy +u;,z; =1 if zf > 0 and 0 otherwise;
Prob(z; = 1|w;) = ®(w/y) and
Prob(z; =0|w;) =1 — &(Wip). (22-20)
regression model: yi =X.B + ¢ observedonly if z; =1,
(u;, &;) ~ bivariate normal [0, 0, 1, o,, p].

Suppose that, as in many of these studies, z; and w; are observed for a random sample
of individuals but y; is observed only when z; = 1. This model is precisely the one we
examined earlier, with

Elyilz =1,xi, wi] = X8 + poA(W;p).

22.4.3 ESTIMATION

The parameters of the sample selection model can be estimated by maximum like-
lihood.?* However, Heckman’s (1979) two-step estimation procedure is usually used

instead. Heckman’s method is as follows:2*

1. Estimate the probit equation by maximum likelihood to obtain estimates of y. For
each observation in the selected sample, compute ; = o (wip)/P(w.p) and
0 = Ai(Aj — Wi P). A

2. Estimate B and 8, = po. by least squares regression of y on x and A.

It is possible also to construct consistent estimators of the individual parameters p
and o,. At each observation, the true conditional variance of the disturbance would be

of =al(1—p*8).

The average conditional variance for the sample would converge to

1< _
lim =) o? = o2(1 - p%),
plim - ; i =0;(1—=p%)
which is what is estimated by the least squares residual variance e’e/n. For the square
of the coefficient on A, we have

plim b7 = p?o?,

whereas based on the probit results we have

n

1 s <
phmﬁz& =J4.

i=1
We can then obtain a consistent estimator of o2 using

1 a
62 = ;e’e + b3,

2See Greene (1995a).

24Perhaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be known as
the “Heckit” estimator.
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Finally, an estimator of p? is

which provides a complete set of estimators of the model’s parameters.?

To test hypotheses, an estimate of the asymptotic covariance matrix of [b’, b, ] is
needed. We have two problems to contend with. First, we can see in Theorem 22.5 that
the disturbance term in

ilzi =1,%, W) =X, + pochi + v (22-21)
is heteroscedastic;
Var[v; |z = 1, x;, w;] = %2(1 — p%8).

Second, there are unknown parameters in A;. Suppose that we assume for the moment
that A; and §; are known (i.e., we do not have to estimate y). For convenience, let
X’ = [x;, A;], and let b* be the least squares coefficient vector in the regression of y on
x* in the selected data. Then, using the appropriate form of the variance of ordinary
least squares in a heteroscedastic model from Chapter 11, we would have to estimate

n
Var[b*] = o2[X' X, ]! lZ(l - ,0251‘)7‘?"?'1 X.X.]™"!
i=1

= 2 [X. X, ] XL - p2A)X[XX, ]

where I — p?A is a diagonal matrix with (1 — p?8;) on the diagonal. Without any other
complications, this result could be computed fairly easily using X, the sample estimates
of 62 and p?, and the assumed known values of A; and §;.

The parameters in y do have to be estimated using the probit equation. Rewrite
(22-21) as

iz =1,%, W) = B'X; + Bidi +vi — Br(hi — A).

In this form, we see that in the preceding expression we have ignored both an additional
source of variation in the compound disturbance and correlation across observations;
the same estimate of y is used to compute A; for every observation. Heckman has
shown that the earlier covariance matrix can be appropriately corrected by adding a
term inside the brackets,

Q = (X, AW)Est.Asy. Var[p (W AX,) = p’FVF’,

where V = Est.Asy. Var[p], the estimator of the asymptotic covariance of the probit
coefficients. Any of the estimators in (21-22) to (21-24) may be used to compute V. The
complete expression is

Est.Asy. Var[b, b,] = 62[X/ X, ] [X, (I - p*A)X, + Q][ X/ X,] 1%

2 Note that p? is not a sample correlation and, as such, is not limited to [0, 1]. See Greene (1981) for discussion.

20This matrix formulation is derived in Greene (1981). Note that the Murphy and Topel (1985) results for
two-step estimators given in Theorem 10.3 would apply here as well. Asymptotically, this method would give
the same answer. The Heckman formulation has become standard in the literature.
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TABLE 22.7 Estimated Selection Corrected Wage Equation

Two-Step Maximum Likelihood Least Squares

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
Bi —0.971 (2.06) —0.632 (1.063) —2.56 (0.929)
B 0.021 (0.0625) 0.00897 (0.000678) 0.0325 (0.0616)
B3 0.000137  (0.00188) —0.334d—4 (0.782d—7) —0.000260 (0.00184)
Ba 0.417 (0.100) 0.147 (0.0142) 0.481 (0.0669)
Bs 0.444 (0.316) 0.144 (0.0614) 0.449 (0.449)
(po) —1.100 (0.127)
0 —0.340 —0.131 (0.218) 0.000
o 3.200 0.321 (0.00866) 3.111

Example 22.8 Female Labor Supply

Examples 21.1 and 21.4 proposed a labor force participation model for a sample of
753 married women in a sample analyzed by Mroz (1987). The data set contains wage and
hours information for the 428 women who participated in the formal market (LFP = 1). Fol-
lowing Mroz, we suppose that for these 428 individuals, the offered wage exceeded the
reservation wage and, moreover, the unobserved effects in the two wage equations are cor-
related. As such, a wage equation based on the market data should account for the sample
selection problem. We specify a simple wage model:

wage = B1 + B2 Exper + B3 Exper2 + B4 Education + Bs City + ¢

where Exper is labor market experience and City is a dummy variable indicating that the indi-
vidual lived in a large urban area. Maximum likelihood, Heckman two-step, and ordinary least
squares estimates of the wage equation are shown in Table 22.7. The maximum likelihood
estimates are FIML estimates—the labor force participation equation is reestimated at the
same time. Only the parameters of the wage equation are shown below. Note as well that
the two-step estimator estimates the single coefficient on 1; and the structural parameters o
and p are deduced by the method of moments. The maximum likelihood estimator computes
estimates of these parameters directly. [Details on maximum likelihood estimation may be
found in Maddala (1983).]

The differences between the two-step and maximum likelihood estimates in Table 22.7
are surprisingly large. The difference is even more striking in the marginal effects. The effect
for education is estimated as 0.417 4+ 0.0641 for the two step estimators and 0.149 in total for
the maximum likelihood estimates. For the kids variable, the marginal effect is —.293 for the
two-step estimates and only —0.0113 for the MLEs. Surprisingly, the direct test for a selection
effect in the maximum likelihood estimates, a nonzero p, fails to reject the hypothesis that p
equals zero.

In some settings, the selection process is a nonrandom sorting of individuals into
two or more groups. The mover-stayer model in the next example is a familiar case.

Example 22.9 A Mover Stayer Model for Migration
The model of migration analyzed by Nakosteen and Zimmer (1980) fits into the framework
described above. The equations of the model are

net benefit of moving: M = wjy +u;,
income if moves: liv = X, B1 + ¢i1,
income if stays: lio = X{oBo + €io-

One component of the net benefit is the market wage individuals could achieve if they move,
compared with what they could obtain if they stay. Therefore, among the determinants of
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TABLE 22.8 Estimated Earnings Equations

Migrant Nonmigrant
Migration Earnings Earnings

Constant —1.509 9.041 8.593
SE —0.708 (—5.72) —4.104 (—9.54) —4.161 (—57.71)
AEMP —1.488 (—2.60) — —
APCI 1.455 (3.14) — —
Age —0.008 (—5.29) — —
Race —0.065 (—1.17) — —
Sex —0.082 (—2.14) — —
ASIC 0.948 (24.15) —0.790 (—2.24) —0.927 (—9.35)
A — 0.212 (0.50) 0.863 (2.84)

the net benefit are factors that also affect the income received in either place. An analysis
of income in a sample of migrants must account for the incidental truncation of the mover’s
income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated
on a nonpositive net benefit. The model implies an income after moving for all observations,
but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied
the selectivity model to a sample of 9,223 individuals with data for 2 years (1971 and 1973)
sampled from the Social Security Administration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The independent
variables in the migration equation were as follows:

SE = self-employment dummy variable; 1 if yes,
AEMP = rate of growth of state employment,
APCI = growth of state per capita income,
X = age, race (nonwhite = 1), sex (female =1),
ASIC = 1 if individual changes industry.

The earnings equations included ASIC and SE. The authors reported the results given in
Table 22.8. The figures in parentheses are asymptotic t ratios.

22.4.4 TREATMENT EFFECTS

The basic model of selectivity outlined earlier has been extended in an impressive variety
of directions.?” An interesting application that has found wide use is the measurement
of treatment effects and program effectiveness.?®

An earnings equation that accounts for the value of a college education is

earnings;, = x;8 + 8C; + ¢,

where C; is a dummy variable indicating whether or not the individual attended college.
The same format has been used in any number of other analyses of programs, experi-
ments, and treatments. The question is: Does § measure the value of a college education

?TFor a survey, see Maddala (1983).

28This is one of the fundamental applications of this body of techniques, and is also the setting for the most
longstanding and contentious debate on the subject. A Journal of Business and Economic Statistics symposium
[Angrist et al. (2001)] raised many of the important questions on whether and how it is possible to measure
treatment effects.
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(assuming that the rest of the regression model is correctly specified)? The answer is
no if the typical individual who chooses to go to college would have relatively high
earnings whether or not he or she went to college. The problem is one of self-selection.
If our observation is correct, then least squares estimates of § will actually overestimate
the treatment effect. The same observation applies to estimates of the treatment effects
in other settings in which the individuals themselves decide whether or not they will
receive the treatment.

To put this in a more familiar context, suppose that we model program participation
(e.g., whether or not the individual goes to college) as

Cr=wy+u,
C; =1 if Cf > 0,0 otherwise.

We also suppose that, consistent with our previous conjecture, u; and ¢; are correlated.
Coupled with our earnings equation, we find that

E[y,|C, :1,Xl‘,Z,'] :X;,B—F(S‘FE[S”CI‘ :1,X,‘,Zi]

(22-22)
=X, + 8 + po A(—W)p)

once again. [See (22-19).] Evidently, a viable strategy for estimating this model is to use
the two-step estimator discussed earlier. The net result will be a different estimate of §
that will account for the self-selected nature of program participation. For nonpartici-
pants, the counterpart to (22-22) is

E[yl|cl =O, Xi,zi] :x:ﬂ+po-8|: _¢(WL)’) :| .

1—o(wy)

The difference in expected earnings between participants and nonparticipants is, then,

éi
Ely|C=1,x;,2;] — E[y; | Ci =0,%;,2;] =8 + po. [Cbi(l — q)i)} .

If the selectivity correction A; is omitted from the least squares regression, then this
difference is what is estimated by the least squares coefficient on the treatment dummy
variable. But since (by assumption) all terms are positive, we see that least squares over-
estimates the treatment effect. Note, finally, that simply estimating separate equations
for participants and nonparticipants does not solve the problem. In fact, doing so would
be equivalent to estimating the two regressions of Example 22.9 by least squares, which,
as we have seen, would lead to inconsistent estimates of both sets of parameters.

There are many variations of this model in the empirical literature. They have been
applied to the analysis of education,” the Head Start program,* and a host of other
settings.?! This strand of literature is particularly important because the use of dummy
variable models to analyze treatment effects and program participation has a long

2Willis and Rosen (1979).
0Goldberger (1972).

31 A useful summary of the issues is Barnow, Cain, and Goldberger (1981). See also Maddala (1983) for a long
list of applications. A related application is the switching regression model. See, for example, Quandt (1982,
1988).
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history in empirical economics. This analysis has called into question the interpretation
of a number of received studies.

22.4.5 THE NORMALITY ASSUMPTION

Some research has cast some skepticism on the selection model based on the normal
distribution. [See Goldberger (1983) for an early salvo in this literature.] Among the
findings are that the parameter estimates are surprisingly sensitive to the distributional
assumption that underlies the model. Of course, this fact in itself does not invalidate the
normality assumption, but it does call its generality into question. On the other hand,
the received evidence is convincing that sample selection, in the abstract, raises serious
problems, distributional questions aside. The literature —for example, Duncan (1986b),
Manski (1989, 1990), and Heckman (1990) —has suggested some promising approaches
based on robust and nonparametric estimators. These approaches obviously have the
virtue of greater generality. Unfortunately, the cost is that they generally are quite
limited in the breadth of the models they can accommodate. That is, one might gain
the robustness of a nonparametric estimator at the cost of being unable to make use of
the rich set of accompanying variables usually present in the panels to which selectivity
models are often applied. For example, the nonparametric bounds approach of Manski
(1990) is defined for two regressors. Other methods [e.g., Duncan (1986b)] allow more
elaborate specification.

Recent research includes specific attempts to move away from the normality
assumption.’> An example is Martins (2001), building on Newey (1991), which takes
the core specification as given in (22-20) as the platform, but constructs an alternative
to the assumption of bivariate normality. Martins’ specification modifies the Heckman
model by employing an equation of the form

Elyilz =1,x,w;]| =X+ n(w.y)

where the latter, “selectivity correction” is not the inverse Mills ratio, but some other
result from a different model. The correction term is estimated using the Klein and
Spady model discussed in Section 21.5.4. This is labeled a “semiparametric” approach.
Whether the conditional mean in the selected sample should even remain a linear index
function remains to be settled. Not surprisingly, Martins’ results, based on two-step
least squares differ only slightly from the conventional results based on normality. This
approach is arguably only a fairly small step away from the tight parameterization of
the Heckman model. Other non- and semiparametric specifications, e.g., Honore and
Kyriazidou (1999, 2000) represent more substantial departures from the normal model,
but are much less operational.>® The upshot is that the issue remains unsettled. For
better or worse, the empirical literature on the subject continues to be dominated by
Heckman’s original model built around the joint normal distribution.

32 Again, Angrist et al. (2001) is an important contribution to this literature.

3 This particular work considers selection in a “panel” (mainly two periods). But, the panel data setting for
sample selection models is more involved than a cross section analysis. In a panel data set, the “selection” is
likely to be a decision at the beginning of Period 1 to be in the data set for all subsequent periods. As such,
something more intricate than the model we have considered here is called for.
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22.4.6 SELECTION IN QUALITATIVE RESPONSE MODELS

The problem of sample selection has been modeled in other settings besides the linear
regression model. In Section 21.6.4, we saw, for example, an application of what amounts
to a model of sample selection in a bivariate probit model; a binary response variable
y; = lif anindividual defaults on aloanis observed only if a related variable z; equals one
(the individual is granted a loan). Greene’s (1992) application to credit card applications
and defaults is similar.

A current strand of literature has developed several models of sample selection for
count data models.’* Terza (1995) models the phenomenon as a form of heterogeneity
in the Poisson model. We write

yi | & ~ Poisson(4;),

(22-23)
Inx; e = X;ﬂ + &

Then the sample selection is similar to that discussed in the previous sections, with

T =wy +u,

zz =1 ifzf > 0,0 otherwise
and [&;, u;] have a bivariate normal distribution with the same specification as in our
earlier model. As before, we assume that [y;, x;] are only observed when z; = 1. Thus, the
effect of the selection is to affect the mean (and variance) of y;, although the effect on the
distribution is unclear. In the observed data, y; no longer has a Poisson distribution. Terza

(1998), Terza and Kenkel (2001) and Greene (1997a) suggested a maximum likelihood
approach for estimation.

22.5 MODELS FOR DURATION DATA¥

Intuition might suggest that the longer a strike persists, the more likely it is that it will
end within, say, the next week. Or is it? It seems equally plausible to suggest that the
longer a strike has lasted, the more difficult must be the problems that led to it in the
first place, and hence the less likely it is that it will end in the next short time interval.
A similar kind of reasoning could be applied to spells of unemployment or the interval
between conceptions. In each of these cases, it is not only the duration of the event, per
se, that is interesting, but also the likelihood that the event will end in “the next period”
given that it has lasted as long as it has.

Analysis of the length of time until failure has interested engineers for decades.
For example, the models discussed in this section were applied to the durability of
electric and electronic components long before economists discovered their usefulness.

34See, for example, Bockstael et al. (1990), Smith (1988), Brannas (1995), Greene (1994, 1995¢, 1997a), Weiss
(1995), and Terza (1995, 1998), and Winkelmann (1997).

3There are a large number of highly technical articles on this topic but relatively few accessible sources for
the uninitiated. A particularly useful introductory survey is Kiefer (1988), upon which we have drawn heavily
for this section. Other useful sources are Kalbfleisch and Prentice (1980), Heckman and Singer (1984a),
Lancaster (1990) and Florens, Fougere, and Mouchart (1996).
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Likewise, the analysis of survival times—for example, the length of survival after the
onset of a disease or after an operation such as a heart transplant—has long been a
staple of biomedical research. Social scientists have recently applied the same body of
techniques to strike duration, length of unemployment spells, intervals between con-
ception, time until business failure, length of time between arrests, length of time from
purchase until a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration
data. As usual, we will restrict our attention to a few straightforward, relatively uncom-
plicated techniques and applications, primarily to introduce terms and concepts. The
reader can then wade into the literature to find the extensions and variations. We will
concentrate primarily on what are known as parametric models. These apply familiar
inference techniques and provide a convenient departure point. Alternative approaches
are considered at the end of the discussion.

22.5.1 DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses
from the beginning of some event either until its end or until the measurement is taken,
which may precede termination. Observations will typically consist of a cross section of
durations, t1, tp, . . ., t,,. The process being observed may have begun at different points
in calendar time for the different individuals in the sample. For example, the strike
duration data examined in Example 22.10 are drawn from nine different years.

Censoring is a pervasive and usually unavoidable problem in the analysis of
duration data. The common cause is that the measurement is made while the process is
ongoing. An obvious example can be drawn from medical research. Consider analyzing
the survival times of heart transplant patients. Although the beginning times may be
known with precision, at the time of the measurement, observations on any individuals
who are still alive are necessarily censored. Likewise, samples of spells of unemployment
drawn from surveys will probably include some individuals who are still unemployed at
the time the survey is taken. For these individuals, duration, or survival, is at least the
observed #;, but not equal to it. Estimation must account for the censored nature of the
data for the same reasons as considered in Section 22.3. The consequences of ignoring
censoring in duration data are similar to those that arise in regression analysis.

In a conventional regression model that characterizes the conditional mean and
variance of a distribution, the regressors can be taken as fixed characteristics at the
point in time or for the individual for which the measurement is taken. When measuring
duration, the observation is implicitly on a process that has been under way for an
interval of time from zero to ¢. If the analysis is conditioned on a set of covariates (the
counterparts to regressors) X,, then the duration is implicitly a function of the entire
time path of the variable x(¢), ¢t = (0, ¢), which may have changed during the interval.
For example, the observed duration of employment in a job may be a function of the
individual’s rank in the firm. But their rank may have changed several times between
the time they were hired and when the observation was made. As such, observed rank
at the end of the job tenure is not necessarily a complete description of the individual’s
rank while they were employed. Likewise, marital status, family size, and amount of
education are all variables that can change during the duration of unemployment and
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that one would like to account for in the duration model. The treatment of time-varying
covariates is a considerable complication.*

22.5.2 A REGRESSION-LIKE APPROACH: PARAMETRIC MODELS
OF DURATION

We will use the term spell as a catchall for the different duration variables we might
measure. Spell length is represented by the random variable 7. A simple approach to
duration analysis would be to apply regression analysis to the sample of observed spells.
By this device, we could characterize the expected duration, perhaps conditioned on a
set of covariates whose values were measured at the end of the period. We could also
assume that conditioned on an x that has remained fixed from 7=0to T =t¢,t has a
normal distribution, as we commonly do in regression. We could then characterize the
probability distribution of observed duration times. But, normality turns out not to
be particularly attractive in this setting for a number of reasons, not least of which is
that duration is positive by construction, while a normally distributed variable can take
negative values. (Lognormality turns out to be a palatable alternative, but it is only one
among a long list of candidates.)

22.5.2.a Theoretical Background
Suppose that the random variable 7 has a continuous probability distribution f(¢),
where ¢ is a realization of T. The cumulative probability is

F@) = / f(s)ds = Prob(T < t).
0

We will usually be more interested in the probability that the spell is of length at least
t, which is given by the survival function,

St)=1— F(t) = Prob(T > 1).

Consider the question raised in the introduction: Given that the spell has lasted until
time ¢, what is the probability that it will end in the next short interval of time, say At?
Itis

I(t, Aty =Prob(t < T <t+At|T>1).
A useful function for characterizing this aspect of the distribution is the hazard rate,

. Probt <T<t+At|T=>1) . Fat+AH—-F@) f@
A(t) = lim = lim = .
At—0 At At—0 At S(t) S(t)

Roughly, the hazard rate is the rate at which spells are completed after duration ¢, given
that they last at least until z. As such, the hazard function gives an answer to our original
question.

The hazard function, the density, the CDF and the survival function are all related.
The hazard function is

—dIn S(t)

MO =

36See Petersen (1986) for one approach to this problem.
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SO

f@) = SOIQ).

Another useful function is the integrated hazard function

t
A() =/ A(s) ds,
0
for which
S(t) = e MO,
SO
A(t)=—In S().

The integrated hazard function is generalized residual in this setting. [See Chesher and
Irish (1987) and Example 22.10.]

22.5.2.b Models of the Hazard Function

For present purposes, the hazard function is more interesting than the survival rate
or the density. Based on the previous results, one might consider modeling the hazard
function itself, rather than, say, modeling the survival function then obtaining the density
and the hazard. For example, the base case for many analyses is a hazard rate that does
not vary over time. That is, A(f) is a constant . This is characteristic of a process that
has no memory; the conditional probability of “failure” in a given short interval is the
same regardless of when the observation is made. Thus,

Alt) = M.

From the earlier definition, we obtain the simple differential equation,

—dIn S(t

T() = A
The solution is

InS(t) = k— At
or

S(t) = Ke™,

where K is the constant of integration. The terminal condition that §(0) = 1 implies that
K =1, and the solution is

S(t) =e M.

This solution is the exponential distribution, which has been used to model the time
until failure of electronic components. Estimation of A is simple, since with an expo-
nential distribution, £[¢] = 1/A. The maximum likelihood estimator of A would be the
reciprocal of the sample mean.

A natural extension might be to model the hazard rate as a linear function, A(t) =
a + Bt. Then A(t) =at + %ﬂﬂ and f(t) =A@)S(t) =1 (t) exp[—A(¢)]. To avoid a nega-
tive hazard function, one might depart from 1(¢) = exp[g(¢, )], where 6 is a vector of
parameters to be estimated. With an observed sample of durations, estimation of & and
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TABLE 22.9 Survival Distributions

Distribution Hazard Function, A(¢) Survival Function, S(t)
Exponential A, Sit)=eM
Weibull Ap(At)P=1, S(t) = e~ 07
Lognormal £ = (p/0$[pInGun)] S(t) = ®[—pIn(a)]

[In ¢ is normally distributed with mean —In A and standard deviation 1/ p.]
Loglogistic At = ApOOPL[1 4 (A)P], St) = 1/[1 4 (x)?]

[In¢ has a logistic distribution with mean —In A and variance 72/(3p?).]

B is, at least in principle, a straightforward problem in maximum likelihood. [Kennan
(1985) used a similar approach.]

A distribution whose hazard function slopes upward is said to have positive duration
dependence. For such distributions, the likelihood of failure at time ¢, conditional upon
duration up to time ¢, is increasing in ¢. The opposite case is that of decreasing hazard
or negative duration dependence. Our question in the introduction about whether the
strike is more or less likely to end at time ¢ given that it has lasted until time ¢ can be
framed in terms of positive or negative duration dependence. The assumed distribution
has a considerable bearing on the answer. If one is unsure at the outset of the analysis
whether the data can be characterized by positive or negative duration dependence,
then it is counterproductive to assume a distribution that displays one characteristic
or the other over the entire range of ¢. Thus, the exponential distribution and our sug-
gested extension could be problematic. The literature contains a cornucopia of choices
for duration models: normal, inverse normal [inverse Gaussian; see Lancaster (1990)],
lognormal, F, gamma, Weibull (which is a popular choice), and many others.*’ To
illustrate the differences, we will examine a few of the simpler ones. Table 22.9 lists
the hazard functions and survival functions for four commonly used distributions. Each
involves two parameters, a location parameter, A and a scale parameter, p. [Note that in
the benchmark case of the exponential distribution, A is the hazard function. In all other
cases, the hazard function is a function of A, p and, where there is duration dependence,
t as well. Different authors, e.g., Kiefer (1988), use different parameterizations of these
models; We follow the convention of Kalbfleisch and Prentice (1980).]

All these are distributions for a nonnegative random variable. Their hazard func-
tions display very different behaviors, as can be seen in Figure 22.4. The hazard function
for the exponential distribution is constant, that for the Weibull is monotonically in-
creasing or decreasing depending on p, and the hazards for lognormal and loglogistic
distributions first increase and then decrease. Which among these or the many alterna-
tives is likely to be best in any application is uncertain.

22.5.2.c Maximum Likelihood Estimation

The parameters A and p of these models can be estimated by maximum likelihood.
For observed duration data, t1, t, . . ., t,,, the log-likelihood function can be formulated
and maximized in the ways we have become familiar with in earlier chapters. Censored
observations can be incorporated as in Section 22.3 for the tobit model. [See (22-13).]

3TThree sources that contain numerous specifications are Kalbfleisch and Prentice (1980), Cox and Oakes
(1985), and Lancaster (1990).
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FIGURE 22.4 Parametric Hazard Functions.

As such,

In L(6) = Z Inf(t0)+ Z InS(z | 9),

uncensored censored
observations observations

where § = (A, p). For some distributions, it is convenient to formulate the log-likelihood
function in terms of f(¢) = A(t)S(¢) so that

InL= > xcl®)+ >  InSel6).

uncensored all
observations observations

Inference about the parameters can be done in the usual way. Either the BHHH estima-
tor or actual second derivatives can be used to estimate asymptotic standard errors for
the estimates. The transformation w = p(Int +1In 1) for these distributions greatly facil-
itates maximum likelihood estimation. For example, for the Weibull model, by defining
w = p(Int +1In 1), we obtain the very simple density f(w) = exp[w — exp(w)] and sur-
vival function S(w) = exp(—exp(w)).* Therefore, by using In ¢ instead of ¢, we greatly
simplify the log-likelihood function. Details for these and several other distributions
may be found in Kalbfleisch and Prentice (1980, pp. 56-60). The Weibull distribution is
examined in detail in the next section.

38The transformation is exp(w) = (At)? so t:(l/k)[exp(w)]“ﬂ. The Jacobian of the transformation is
dt/dw =[exp(w)]"/? /(Ap). The density in Table 22.9 is Ap[exp(w)]~/P)~1[exp(—exp(w))]. Multiplying by
the Jacobian produces the result, f(w)= exp[w — exp(w)]. The survival function is the antiderivative,
[exp(—exp(w))].



Greene-50240 book June 28, 2002 17:5

796 CHAPTER 22 4 Limited Dependent Variable and Duration Models

22.5.2.d Exogenous Variables

One limitation of the models given above is that external factors are not given a role
in the survival distribution. The addition of “covariates” to duration models is fairly
straightforward, although the interpretation of the coefficients in the model is less so.
Consider, for example, the Weibull model. (The extension to other distributions will be
similar.) Let

A= e_"f’g,

where x; is a constant term and a set of variables that are assumed not to change from
time 7'=0 until the “failure time,” T'=t;. Making A; a function of a set of regressors
is equivalent to changing the units of measurement on the time axis. For this reason,
these models are sometimes called accelerated failure time models. Note as well that
in all the models listed (and generally), the regressors do not bear on the question of
duration dependence, which is a function of p.

Let 0 =1/p and let §; =1 if the spell is completed and §; =0 if it is censored. As
before, let

(Int; —x;B)

o

w; = pln(nt;) =

and denote the density and survival functions f(w;) and S(w;). The observed random
variable is

Int; = ow; +x!B.

The Jacobian of the transformation from w; to Int; is dw;/dInt; =1/0 so the density
and survival functions for In #; are

fng |x;, B, o) = f(lnta ﬂ) and S(lnzi|xi,/3,(,)=S<lnt(y ﬁ>

The log-likelihood for the observed data is

n

In L(B. o |data) = > [ In f(ng; |x:. B.0) + (1 —8)InSns | x;, B. o)),

i=1
For the Weibull model, for example (see footnote 38)

fwi) = exp(w; — "

and
S(w;) = exp(—e™).
Making the transformation to In ¢ and collecting terms reduces the log-likelihood to
In L(B. o | data) = 3 [3, <h” i XA 1na> —exp (m’;"ﬂﬂ .

(Many other distributions, including the others in Table 22.9, simplify in the same way.

The exponential model is obtained by setting o to one.) The derivatives can be equated to
zero using the methods described in Appendix E. The individual terms can also be used
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to form the BHHH estimator of the asymptotic covariance matrix for the estimator.?
The Hessian is also simple to derive, so Newton’s method could be used instead.*’

Note that the hazard function generally depends on ¢, p, and x. The sign of an
estimated coefficient suggests the direction of the effect of the variable on the hazard
function when the hazard is monotonic. But in those cases, such as the loglogistic, in
which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of
the effects may also be difficult to interpret in terms of the hazard function. In a few
cases, we do get a regression-like interpretation. In the Weibull and exponential models,
Eft]x;] = expX;B)I'[(1/p) + 1], whereas for the lognormal and loglogistic models,
E[lnt|x;] = x;B. In these cases, fi is the derivative (or a multiple of the derivative)
of this conditional mean. For some other distributions, the conditional median of ¢
is easily obtained. Numerous cases are discussed by Kiefer (1988), Kalbfleisch and
Prentice (1980), and Lancaster (1990).

22.5.2.e Heterogeneity

The problem of heterogeneity in duration models can be viewed essentially as the result
of an incomplete specification. Individual specific covariates are intended to incorpo-
rate observation specific effects. But if the model specification is incomplete and if
systematic individual differences in the distribution remain after the observed effects
are accounted for, then inference based on the improperly specified model is likely to
be problematic. We have already encountered several settings in which the possibility
of heterogeneity mandated a change in the model specification; the fixed and random
effects regression, logit, and probit models all incorporate observation-specific effects.
Indeed, all the failures of the linear regression model discussed in the preceding chap-
ters can be interpreted as a consequence of heterogeneity arising from an incomplete
specification.

There are a number of ways of extending duration models to account for het-
erogeneity. The strictly nonparametric approach of the Kaplan—Meier estimator (see
Section 22.5.3) is largely immune to the problem, but it is also rather limited in how
much information can be culled from it. One direct approach is to model heterogeneity
in the parametric model. Suppose that we posit a survival function conditioned on the
individual specific effect v;. We treat the survival function as S(t;|v;). Then add to that
a model for the unobserved heterogeneity f(v;). (Note that this is a counterpart to the
incorporation of a disturbance in a regression model and follows the same procedures
that we used in the Poisson model with random effects.) Then

S(t) = E,[S(t|v)] = / St v) f(v) dv.

The gamma distribution is frequently used for this purpose.*! Consider, for example,
using this device to incorporate heterogeneity into the Weibull model we used earlier.
As is typical, we assume that v has a gamma distribution with mean 1 and variance

3Note that the log-likelihood function has the same form as that for the tobit model in Section 22.3. By just
reinterpreting the nonlimit observations in a tobit setting, we can, therefore, use this framework to apply a
wide range of distributions to the tobit model. [See Greene (1995a) and references given therein.]

40See Kalbfleisch and Prentice (1980) for numerous other examples.

4See, for example, Hausman, Hall, and Griliches (1984), who use it to incorporate heterogeneity in the
Poisson regression model. The application is developed in Section 21.9.5.
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6 = 1/k. Then

f(U) — k_ke—kvvk—l
T (k)

and
St |v) = e W,

After a bit of manipulation, we obtain the unconditional distribution,

S(t) = /Oo S(t|v) fw)dv = [1+6nr)P]V°.
0

The limiting value, with 6 =0, is the Weibull survival model, so 6 = 0 corresponds to
Var[v] =0, or no heterogeneity.*> The hazard function for this model is

At) = Ap)P SO,

which shows the relationship to the Weibull model.

This approach is common in parametric modeling of heterogeneity. In an important
paper on this subject, Heckman and Singer (1984b) argued that this approach tends
to overparameterize the survival distribution and can lead to rather serious errors in
inference. They gave some dramatic examples to make the point. They also expressed
some concern that researchers tend to choose the distribution of heterogeneity more
on the basis of mathematical convenience than on any sensible economic basis.

22.5.3 OTHER APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much
structure on the data as they do, the models may distort the estimated hazard rates.
It may be that a more accurate representation can be obtained by imposing fewer
restrictions.

The Kaplan—-Meier (1958) product limit estimator is a strictly empirical, nonpara-
metric approach to survival and hazard function estimation. Assume that the obser-
vations on duration are sorted in ascending order so that #; < t, and so on and, for
now, that no observations are censored. Suppose as well that there are K distinct sur-
vival times in the data, denoted 7;; K will equal n unless there are ties. Let n; denote
the number of individuals whose observed duration is at least 7. The set of individuals
whose duration is at least 7j is called the risk set at this duration. (We borrow, once
again, from biostatistics, where the risk set is those individuals still “at risk” at time 7).
Thus, ny is the size of the risk set at time 7. Let Ax denote the number of observed spells
completed at time 7. A strictly empirical estimate of the survivor function would be

—_ hi
n '

A k n; — hi n;
STy =[] =
i=1 L

“For the strike data analyzed earlier, the maximum likelihood estimate of 6 is 0.0004, which suggests that at
least in the context of the Weibull model, heterogeneity does not appear to be a problem.
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The estimator of the hazard rate is

MT) = @. (22-24)

ni

Corrections are necessary for observations that are censored. Lawless (1982),
Kalbfleisch and Prentice (1980), Kiefer (1988), and Greene (1995a) give details. Susin
(2001) points out a fundamental ambiguity in this calculation (one which he argues ap-
pears in the 1958 source). The estimator in (22-24) is not a “rate” as such, as the width
of the time window is undefined, and could be very different at different points in the
chain of calculations. Since many intervals, particularly those late in the observation
period, might have zeros, the failure to acknowledge these intervals should impart an
upward bias to the estimator. His proposed alternative computes the counterpart to
(22-24) over a mesh of defined intervals as follows:

b
Zj:a h]
b

> i—aftjbj
where the interval is from ¢ = a to ¢t = b, h; is the number of failures in each period in
this interval, ; is the number of individuals at risk in that period and b; is the width of
the period. Thus, an interval [a, b) is likely to include several “periods.”

Cox’s (1972) approach to the proportional hazard model is another popular, semi-
parametric method of analyzing the effect of covariates on the hazard rate. The model
specifies that

MI7) =

A(t) = exp(—x;B)Aro(t;)

The function A is the “baseline” hazard, which is the individual heterogeneity. In prin-
ciple, this hazard is a parameter for each observation that must be estimated. Cox’s
partial likelihood estimator provides a method of estimating § without requiring esti-
mation of 4. The estimator is somewhat similar to Chamberlain’s estimator for the logit
model with panel data in that a conditioning operation is used to remove the hetero-
geneity. (See Section 21.5.1.b.) Suppose that the sample contains K distinct exit times,
1i, ..., Tx. For any time Ty, the risk set, denoted Ry, is all individuals whose exit time
is at least 7. The risk set is defined with respect to any moment in time 7 as the set of
individuals who have not yet exited just prior to that time. For every individual / in risk
set Ry, t; > Ti. The probability that an individual exits at time 7; given that exactly one
individual exits at this time (which is the counterpart to the conditioning in the binary
logit model in Chapter 21) is

eﬂ’xi
ZjERk eﬂ %
Thus, the conditioning sweeps out the baseline hazard functions. For the simplest case

in which exactly one individual exits at each distinct exit time and there are no censored
observations, the partial log-likelihood is

K
InL=> [fx—In)_ P
k=1

JER,

Prob[t; = Tj | risk sety] =
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TABLE 22.10 Estimated Duration Models (Estimated Standard
Errors in Parentheses)

A p Median Duration
Exponential 0.02344 (0.00298) 1.00000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27.543 (3.997)
Loglogistic 0.04153 (0.00707) 1.33148 (0.17201) 24.079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08865) 22.152 (3.954)

If my individuals exit at time 7, then the contribution to the log-likelihood is the sum
of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations because
it is a reasonable compromise between the Kaplan—Meier estimator and the possibly
excessively structured parametric models. Hausman and Han (1990) and Meyer (1988),
among others, have devised other, “semiparametric” specifications for hazard models.

Example 22.10 Survival Models for Strike Duration
The strike duration data given in Kennan (1985, pp. 14-16) have become a familiar standard
for the demonstration of hazard models. Appendix Table F22.1 lists the durations in days of
62 strikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000
workers and began at the expiration or reopening of a contract. Kennan reported the actual
duration. In his survey, Kiefer, using the same observations, censored the data at 80 days
to demonstrate the effects of censoring. We have kept the data in their original form; the
interested reader is referred to Kiefer for further analysis of the censoring problem.*?
Parameter estimates for the four duration models are given in Table 22.10. The estimate
of the median of the survival distribution is obtained by solving the equation S(t) = 0.5. For
example, for the Weibull model,

S(M) = 0.5 = exp[—(AM)"]
or
M = [(In2)"/P]/A.

For the exponential model, p=1. For the lognormal and loglogistic models, M = 1/x. The
delta method is then used to estimate the standard error of this function of the parameter
estimates. (See Section 5.2.4.) All these distributions are skewed to the right. As such, E [t] is
greater than the median. For the exponential and Weibull models, E [t] = [1/A]T[(1/p) +1]; for
the normal, E [t] = (1/A)[exp(1/p?)]"/?. The implied hazard functions are shown in Figure 22.4.

The variable x reported with the strike duration data is a measure of unanticipated ag-
gregate industrial production net of seasonal and trend components. It is computed as the
residual in a regression of the log of industrial production in manufacturing on time, time
squared, and monthly dummy variables. With the industrial production variable included as
a covariate, the estimated Weibull model is

—InA =38.7772 —9.3515 x, p = 1.00288
(0.1394) (2.973) (0.1217),
median strike length = 27.35(3.667) days, E [t] = 39.83 days.

Note that the Weibull model is now almost identical to the exponential model (p = 1). Since
the hazard conditioned on x is approximately equal to %;, it follows that the hazard function
is increasing in “unexpected” industrial production. A one percent increase in x leads to a
9.35 percent increase in 1, which since p &~ 1 translates into a 9.35 percent decrease in the
median strike length or about 2.6 days. (Note that M =In2/A.)

BOur statistical results are nearly the same as Kiefer’s despite the censoring,
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The proportional hazard model does not have a constant term. (The baseline hazard is an
individual specific constant.) The estimate of 8 is —9.0726, with an estimated standard error
of 3.225. This is very similar to the estimate obtained for the Weibull model.

22.6 SUMMARY AND CONCLUSIONS

This chapter has examined three settings in which, in principle, the linear regression
model of Chapter 2 would apply, but the data generating mechanism produces a nonlin-
ear form. In the truncated regression model, the range of the dependent variable is re-
stricted substantively. Certainly all economic data are restricted in this way —aggregate
income data cannot be negative, for example. But, when data are truncated so that plau-
sible values of the dependent variable are precluded, for example when zero values for
expenditure are discarded, the data that remain are analyzed with models that explicitly
account for the truncation. When data are censored, values of the dependent variable
that could in principle be observed are masked. Ranges of values of the true variable
being studied are observed as a single value. The basic problem this presents for model
building is that in such a case, we observe variation of the independent variables without
the corresponding variation in the dependent variable that might be expected. Finally,
the issue of sample selection arises when the observed data are not drawn randomly
from the population of interest. Failure to account for this nonrandom sampling pro-
duces a model that describes only the nonrandom subsample, not the larger population.
In each case, we examined the model specification and estimation techniques which
are appropriate for these variations of the regression model. Maximum likelihood is
usually the method of choice, but for the third case, a two step estimator has become
more common. In the final section, we examined an application, models of duration,
which describe variables with limited (nonnegative) ranges of variation and which are
often observed subject to censoring.

Key Terms and Concepts

e Accelerated failure time
e Attenuation

¢ Censored regression

e Censored variable

¢ Censoring

e Conditional moment test
e Count data

e Degree of truncation

e Delta method

e Duration dependence

e Duration model

e Generalized residual

e Hazard function

e Hazard rate

e Heterogeneity

e Heteroscedasticity

e Incidental truncation

e Integrated hazard function

e Inverse Mills ratio

e Lagrange multiplier test

e Marginal effects

e Negative duration
dependence

¢ Olsen’s reparameterization

e Parametric model

e Partial likelihood

e Positive duration
dependence

e Product limit

¢ Proportional hazard

e Risk set

e Sample selection

e Semiparametric model

e Specification error

e Survival function

e Time varying covariate

o Tobit model

e Treatment effect

e Truncated bivariate normal
distribution

e Truncated distribution

e Truncated mean

e Truncated random variable

e Truncated variance

e Two step estimation

e Weibull model
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Exercises

1. The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040  0.00000  0.00000 44132 8.0230
5.7971 7.0828  0.00000 0.80260 13.0670 4.3211
0.00000  8.6801  5.4571 0.00000 8.1021  0.00000
1.2526 5.6016

The applicable model is

*

Vi W+ &,
yi =y’ if u+¢& > 0,0 otherwise,
&~ N[O, 0‘2].

Exercises 1 through 4 in this section are based on the preceding information. The
OLS estimator of u in the context of this tobit model is simply the sample mean.
Compute the mean of all 20 observations. Would you expect this estimator to over-
or underestimate u? If we consider only the nonzero observations, then the trun-
cated regression model applies. The sample mean of the nonlimit observationsis the
least squares estimator in this context. Compute it and then comment on whether
this sample mean should be an overestimate or an underestimate of the true mean.

2. We now consider the tobit model that applies to the full data set.

a. Formulate the log-likelihood for this very simple tobit model.

b. Reformulate the log-likelihood in terms of & = 1/0 and y = /0. Then derive
the necessary conditions for maximizing the log-likelihood with respect to 6
and y.

c. Discuss how you would obtain the values of § and y to solve the problem in
Part b.

d. Compute the maximum likelihood estimates of © and o.

3. Using only the nonlimit observations, repeat Exercise 2 in the context of the trun-
cated regression model. Estimate u and o by using the method of moments esti-
mator outlined in Example 22.2. Compare your results with those in the previous
exercises.

4. Continuing to use the data in Exercise 1, consider once again only the nonzero
observations. Suppose that the sampling mechanism is as follows: y* and another
normally distributed random variable z have population correlation 0.7. The two
variables, y* and z, are sampled jointly. When z is greater than zero, y is reported.
When zis less than zero, both z and y are discarded. Exactly 35 draws were required
to obtain the preceding sample. Estimate u and o. [Hint: Use Theorem 22.5.]

5. Derive the marginal effects for the tobit model with heteroscedasticity that is
described in Section 22.3.4.a.

6. Prove that the Hessian for the tobit model in (22-14) is negative definite after
Olsen’s transformation is applied to the parameters.



