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SPECIFICATION ANALYSIS
AND MODEL SELECTION

Q
8.1 INTRODUCTION

Chapter 7 presented results which were primarily focused on sharpening the functional
form of the model. Functional form and hypothesis testing are directed toward im-
proving the specification of the model or using that model to draw generally narrow
inferences about the population. In this chapter we turn to some broader techniques that
relate to choosing a specific model when there is more than one competing candidate.
Section 8.2 describes some larger issues related to the use of the multiple regression
model—specifically the impacts of an incomplete or excessive specification on estima-
tion and inference. Sections 8.3 and 8.4 turn to the broad question of statistical methods
for choosing among alternative models.

8.2 SPECIFICATION ANALYSIS AND
MODEL BUILDING

Our analysis has been based on the assumption that the correct specification of the
regression model is known to be

y = Xβ + ε. (8-1)

There are numerous types of errors that one might make in the specification of the esti-
mated equation. Perhaps the most common ones are the omission of relevant variables
and the inclusion of superfluous variables.

8.2.1 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES

Suppose that a correctly specified regression model would be

y = X1β1 + X2β2 + ε, (8-2)

where the two parts of X have K1 and K2 columns, respectively. If we regress y on X1

without including X2, then the estimator is

b1 = (X′
1X1)

−1X′
1y = β1 + (X′

1X1)
−1X′

1X2β2 + (X′
1X1)

−1X′
1ε. (8-3)

Taking the expectation, we see that unless X′
1X2 = 0 or β2 = 0, b1 is biased. The well-

known result is the omitted variable formula:

E [b1 | X] = β1 + P1.2β2, (8-4)
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where

P1.2 = (X′
1X1)

−1X′
1X2. (8-5)

Each column of the K1 × K2 matrix P1.2 is the column of slopes in the least squares
regression of the corresponding column of X2 on the columns of X1.

Example 8.1 Omitted Variables
If a demand equation is estimated without the relevant income variable, then (8-4) shows
how the estimated price elasticity will be biased. Letting b be the estimator, we obtain

E [b | price, income] = β + Cov[price, income]
Var[price]

γ ,

where γ is the income coefficient. In aggregate data, it is unclear whether the missing co-
variance would be positive or negative. The sign of the bias in b would be the same as this
covariance, however, because Var[price] and γ would be positive.

The gasoline market data we have examined in Examples 2.3 and 7.6 provide a striking
example. Figure 7.5 showed a simple plot of per capita gasoline consumption, G/pop against
the price index PG. The plot is considerably at odds with what one might expect. But a look
at the data in Appendix Table F2.2 shows clearly what is at work. Holding per capita income,
I /pop and other prices constant, these data might well conform to expectations. In these
data, however, income is persistently growing, and the simple correlations between G/pop
and I /pop and between PG and I /pop are 0.86 and 0.58, respectively, which are quite large.
To see if the expected relationship between price and consumption shows up, we will have
to purge our data of the intervening effect of I /pop. To do so, we rely on the Frisch–Waugh
result in Theorem 3.3. The regression results appear in Table 7.6. The first column shows
the full regression model, with ln PG, log Income, and several other variables. The estimated
demand elasticity is −0.11553, which conforms with expectations. If income is omitted from
this equation, the estimated price elasticity is +0.074499 which has the wrong sign, but is
what we would expect given the theoretical results above.

In this development, it is straightforward to deduce the directions of bias when there
is a single included variable and one omitted variable. It is important to note, however,
that if more than one variable is included, then the terms in the omitted variable formula
involve multiple regression coefficients, which themselves have the signs of partial, not
simple, correlations. For example, in the demand equation of the previous example, if the
price of a closely related product had been included as well, then the simple correlation
between price and income would be insufficient to determine the direction of the bias in
the price elasticity. What would be required is the sign of the correlation between price
and income net of the effect of the other price. This requirement might not be obvious,
and it would become even less so as more regressors were added to the equation.

8.2.2 PRETEST ESTIMATION

The variance of b1 is that of the third term in (8-3), which is

Var[b1 | X] = σ 2(X′
1X1)

−1. (8-6)

If we had computed the correct regression, including X2, then the slopes on X1 would
have been unbiased and would have had a covariance matrix equal to the upper left
block of σ 2(X′X)−1. This matrix is

Var[b1.2 | X] = σ 2(X′
1M2X1)

−1, (8-7)
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where

M2 = I − X2(X′
2X2)

−1X′
2,

or

Var[b1.2 | X] = σ 2[X′
1X1 − X′

1X2(X′
2X2)

−1X′
2X1]−1.

We can compare the covariance matrices of b1 and b1.2 more easily by comparing their
inverses [see result (A-120)];

Var[b1 | X]−1 − Var[b1.2 | X]−1 = (1/σ 2)X′
1X2(X′

2X2)
−1X′

2X1,

which is nonnegative definite. We conclude that although b1 is biased, its variance is
never larger than that of b1.2 (since the inverse of its variance is at least as large).

Suppose, for instance, that X1 and X2 are each a single column and that the variables
are measured as deviations from their respective means. Then

Var[b1 | X] = σ 2

s11
, where s11 =

n∑
i=1

(xi1 − x̄1)
2,

whereas

Var[b1.2 | X] = σ 2[x′
1x1 − x′

1x2(x′
2x2)

−1x′
2x1]−1 = σ 2

s11
(
1 − r2

12

) , (8-8)

where

r2
12 = (x′

1x2)
2

x′
1x1x′

2x2

is the squared sample correlation between x1 and x2. The more highly correlated x1 and
x2 are, the larger is the variance of b1.2 compared with that of b1. Therefore, it is possible
that b1 is a more precise estimator based on the mean-squared error criterion.

The result in the preceding paragraph poses a bit of a dilemma for applied re-
searchers. The situation arises frequently in the search for a model specification. Faced
with a variable that a researcher suspects should be in their model, but which is causing
a problem of collinearity, the analyst faces a choice of omitting the relevant variable or
including it and estimating its (and all the other variables’) coefficient imprecisely. This
presents a choice between two estimators, b1 and b1.2. In fact, what researchers usually
do actually creates a third estimator. It is common to include the problem variable pro-
visionally. If its t ratio is sufficiently large, it is retained; otherwise it is discarded. This
third estimator is called a pretest estimator. What is known about pretest estimators is
not encouraging. Certainly they are biased. How badly depends on the unknown pa-
rameters. Analytical results suggest that the pretest estimator is the least precise of the
three when the researcher is most likely to use it. [See Judge et al. (1985).]

8.2.3 INCLUSION OF IRRELEVANT VARIABLES

If the regression model is correctly given by

y = X1β1 + ε (8-9)
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and we estimate it as if (8-2) were correct (i.e., we include some extra variables), then it
might seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variables as equivalent to
imposing an incorrect restriction on (8-2). In particular, omitting X2 is equivalent to in-
correctly estimating (8-2) subject to the restriction β2 = 0. As we discovered, incorrectly
imposing a restriction produces a biased estimator. Another way to view this error is to
note that it amounts to incorporating incorrect information in our estimation. Suppose,
however, that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X2 in the regression is equivalent to failing
to impose β2 = 0 on (8-2) in estimation. But (8-2) is not incorrect; it simply fails to
incorporate β2 = 0. Therefore, we do not need to prove formally that the least squares
estimator of β in (8-2) is unbiased even given the restriction; we have already proved it.
We can assert on the basis of all our earlier results that

E [b | X] =
[
β1
β2

]
=

[
β1
0

]
. (8-10)

By the same reasoning, s2 is also unbiased:

E
[

e′e
n − K1 − K2

∣∣∣∣ X
]

= σ 2. (8-11)

Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure
to use correct information is always costly. In this instance, the cost is the reduced pre-
cision of the estimates. As we have shown, the covariance matrix in the short regression
(omitting X2) is never larger than the covariance matrix for the estimator obtained in
the presence of the superfluous variables.1 Consider again the single-variable compar-
ison given earlier. If x2 is highly correlated with x1, then incorrectly including it in the
regression will greatly inflate the variance of the estimator.

8.2.4 MODEL BUILDING—A GENERAL TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the last 20 years or so,
partly based on the results in the previous two sections. With an eye toward maintaining
simplicity, model builders would generally begin with a small specification and gradually
build up the model ultimately of interest by adding variables. But, based on the preceding
results, we can surmise that just about any criterion that would be used to decide whether
to add a variable to a current specification would be tainted by the biases caused by
the incomplete specification at the early steps. Omitting variables from the equation
seems generally to be the worse of the two errors. Thus, the simple-to-general approach
to model building has little to recommend it. Building on the work of Hendry [e.g.,
(1995)] and aided by advances in estimation hardware and software, researchers are now
more comfortable beginning their specification searches with large elaborate models

1There is no loss if X′
1X2 = 0, which makes sense in terms of the information about X1 contained in X2 (here,

none). This situation is not likely to occur in practice, however.
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involving many variables and perhaps long and complex lag structures. The attractive
strategy is then to adopt a general-to-simple, downward reduction of the model to the
preferred specification. Of course, this must be tempered by two related considerations.
In the “kitchen sink” regression, which contains every variable that might conceivably
be relevant, the adoption of a fixed probability for the type I error, say 5 percent
assures that in a big enough model, some variables will appear to be significant, even if
“by accident.” Second, the problems of pretest estimation and stepwise model building
also pose some risk of ultimately misspecifying the model. To cite one unfortunately
common example, the statistics involved often produce unexplainable lag structures in
dynamic models with many lags of the dependent or independent variables.

8.3 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most
powerful for the types of hypotheses we have considered.2 Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the model y = Xβ + ε,

H0 : Rβ = q

versus

H1 : Rβ �= q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

H0 : y = Xβ + ε0 (8-12a)

and

H1 : y = Zγ + ε1. (8-12b)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications.3

Before turning to classical- (frequentist-) based tests in this setting, we should note
that the Bayesian approach to this question might be more intellectually appealing.
Our procedures will continue to be directed toward an objective of rejecting one model
in favor of the other. Yet, in fact, if we have doubts as to which of two models is
appropriate, then we might well be convinced to concede that possibly neither one is
really “the truth.” We have rather painted ourselves into a corner with our “left or right”

2See, for example, Stuart and Ord (1989, Chap. 27).
3Recent surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995),
and Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and
Monfort focus on the underlying theory.
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approach. The Bayesian approach to this question treats it as a problem of comparing
the two hypotheses rather than testing for the validity of one over the other. We enter
our sampling experiment with a set of prior probabilities about the relative merits of the
two hypotheses, which is summarized in a “prior odds ratio,” P01 = Prob[H0]/Prob[H1].
After gathering our data, we construct the Bayes factor, which summarizes the weight
of the sample evidence in favor of one model or the other. After the data have been
analyzed, we have our “posterior odds ratio,”

P01 | data = Bayes factor × P01.

The upshot is that ex post, neither model is discarded; we have merely revised our
assessment of the comparative likelihood of the two in the face of the sample data.
Some of the formalities of this approach are discussed in Chapter 16.

8.3.1 TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters
and model selection as considered here will turn on the asymmetry between the null
and alternative hypotheses that is a part of the classical testing procedure.4 Since, by
construction, the classical procedures seek evidence in the sample to refute the “null”
hypothesis, how one frames the null can be crucial to the outcome. Fortunately, the
Neyman-Pearson methodology provides a prescription; the null is usually cast as the
narrowest model in the set under consideration. On the other hand, the classical pro-
cedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a type one error. As such, the null is never rejected with certainty, but
only with a prespecified degree of confidence. Model selection tests, in contrast, give
the competing hypotheses equal standing. There is no natural null hypothesis. However,
the end of the process is a firm decision—in testing (8-12a, b), one of the models will be
rejected and the other will be retained; the analysis will then proceed in the framework
of that one model and not the other. Indeed, it cannot proceed until one of the models
is discarded. It is common, for example, in this new setting for the analyst first to test
with one model cast as the null, then with the other. Unfortunately, given the way the
tests are constructed, it can happen that both or neither model is rejected; in either case,
further analysis is clearly warranted. As we shall see, the science is a bit inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was
done in the framework of sample likelihoods and maximum likelihood procedures.
Recent developments have been structured around a common pillar labeled the en-
compassing principle [Mizon and Richard (1986)]. In the large, the principle directs
attention to the question of whether a maintained model can explain the features of
its competitors, that is, whether the maintained model encompasses the alternative.
Yet a third approach is based on forming a comprehensive model which contains both
competitors as special cases. When possible, the test between models can be based,
essentially, on classical (-like) testing procedures. We will examine tests that exemplify
all three approaches.

4See Granger and Pesaran (2000) for discussion.
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8.3.2 AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can
be explained by Model 0 but the reverse is not true.5 Since H0 cannot be written as a
restriction on H1, none of the procedures we have considered thus far is appropriate.
One possibility is an artificial nesting of the two models. Let X̄ be the set of variables in
X that are not in Z, define Z̄ likewise with respect to X, and let W be the variables that
the models have in common. Then H0 and H1 could be combined in a “supermodel”:

y = X̄ β̄ + Z̄ γ̄ + Wδ + ε.

In principle, H1 is rejected if it is found that γ̄ = 0 by a conventional F test, whereas H0

is rejected if it is found that β̄ = 0. There are two problems with this approach. First,
δ remains a mixture of parts of β and γ , and it is not established by the F test that either
of these parts is zero. Hence, this test does not really distinguish between H0 and H1;
it distinguishes between H1 and a hybrid model. Second, this compound model may
have an extremely large number of regressors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If H0 is correct, then y will, apart from the ran-
dom disturbance ε, be fully explained by X. Suppose we then attempt to estimate γ

by regression of y on Z. Whatever set of parameters is estimated by this regression,
say c, if H0 is correct, then we should estimate exactly the same coefficient vector if we
were to regress Xβ on Z, since ε0 is random noise under H0. Since β must be estimated,
suppose that we use Xb instead and compute c0. A test of the proposition that Model 0
“encompasses” Model 1 would be a test of the hypothesis that E [c − c0] = 0. It is
straightforward to show [see Davidson and MacKinnon (1993, pp. 384–387)] that the
test can be carried out by using a standard F test to test the hypothesis that γ 1 = 0 in
the augmented regression,

y = Xβ + Z1γ 1 + ε1,

where Z1 is the variables in Z that are not in X.

8.3.3 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let f0(yi | data, β0) be the assumed
density under Model 0 and define the alternative likewise as f1(yi | data, β1). Then, a
comprehensive model which subsumes both of these is

fc(yi | data, β0, β1) = [ f0(yi | data, β0)]
1−λ[ f1(yi | data, β1)]

λ∫
range of yi

[ f0(yi | data, β0)]1−λ[ f1(yi | data, β1)]λ dyi
.

Estimation of the comprehensive model followed by a test of λ = 0 or 1 is used to assess
the validity of Model 0 or 1, respectively.6

5See Deaton (1982), Dastoor (1983), Gourieroux, et al. (1983, 1995) and, especially, Mizon and Richard
(1986).
6See Section 21.4.4c for an application to the choice of probit or logit model for binary choice suggested by
Silva (2001).
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The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

y = (1 − λ)Xβ + λ(Zγ ) + ε.

In this model, a test of λ = 0 would be a test against H1. The problem is that λ cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estimating γ by a
least squares regression of y on Z followed by a least squares regression of y on X and
Zγ̂ , the fitted values in the first regression. A valid test, at least asymptotically, of H1 is
to test H0 : λ = 0. If H0 is true, then plim λ̂ = 0. Asymptotically, the ratio λ̂/se( λ̂) (i.e.,
the usual t ratio) is distributed as standard normal and may be referred to the standard
table to carry out the test. Unfortunately, in testing H0 versus H1 and vice versa, all
four possibilities (reject both, neither, or either one of the two hypotheses) could occur.
This issue, however, is a finite sample problem. Davidson and MacKinnon show that
as n → ∞, if H1 is true, then the probability that λ̂ will differ significantly from zero
approaches 1.

Example 8.2 J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

H0 : Ct = β1 + β2Yt + β3Yt−1 + ε0t

and

H1 : Ct = γ1 + γ2Yt + γ3Ct−1 + ε1t .

The first model states that consumption responds to changes in income over two periods,
whereas the second states that the effects of changes in income on consumption persist
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable
income are given in Table F5.1. Here we apply the J test to these data and the two proposed
specifications. First, the two models are estimated separately (using observations 1950.2–
2000.4). The least squares regression of C on a constant, Y , lagged Y , and the fitted values
from the second model produces an estimate of λ of 1.0145 with a t ratio of 62.861. Thus,
H0 should be rejected in favor of H1. But reversing the roles of H0 and H1, we obtain an
estimate of λ of −10.677 with a t ratio of −7.188. Thus, H1 is rejected as well.7

8.3.4 THE COX TEST8

Likelihood ratio tests rely on three features of the density of the random variable of
interest. First, under the null hypothesis, the average log density of the null hypothesis
will be less than under the alternative—this is a consequence of the fact that the null
model is nested within the alternative. Second, the degrees of freedom for the chi-
squared statistic is the reduction in the dimension of the parameter space that is specified
by the null hypothesis, compared to the alternative. Third, in order to carry out the test,
under the null hypothesis, the test statistic must have a known distribution which is
free of the model parameters under the alternative hypothesis. When the models are

7For related discussion of this possibility, see McAleer, Fisher, and Volker (1982).
8The Cox test is based upon the likelihood ratio statistic, which will be developed in Chapter 17. The results
for the linear regression model, however, are based on sums of squared residuals, and therefore, rely on
nothing more than least squares, which is already familiar.
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nonnested, none of these requirements will be met. The first need not hold at all. With
regard to the second, the parameter space under the null model may well be larger
than (or, at least the same size) as under the alternative. (Merely reversing the two
models does not solve this problem. The test must be able to work in both directions.)
Finally, because of the symmetry of the null and alternative hypotheses, the distributions
of likelihood based test statistics will generally be functions of the parameters of the
alternative model. Cox’s (1961, 1962) analysis of this problem produced a reformulated
test statistic that is based on the standard normal distribution and is centered at zero.9

Versions of the Cox test appropriate for the linear and nonlinear regression models
have been derived by Pesaran (1974) and Pesaran and Deaton (1978). The latter present
a test statistic for testing linear versus loglinear models that is extended in Aneuryn-
Evans and Deaton (1980). Since in the classical regression model the least squares
estimator is also the maximum likelihood estimator, it is perhaps not surprising that
Davidson and MacKinnon (1981, p. 789) find that their test statistic is asymptotically
equal to the negative of the Cox–Pesaran and Deaton statistic.

The Cox statistic for testing the hypothesis that X is the correct set of regressors
and that Z is not is

c01 = n
2

ln
[

s2
Z

s2
X + (1/n)b′X′MZXb

]
= n

2
ln

[
s2

Z

s2
ZX

]
, (8-13)

where

MZ = I − Z(Z′Z)−1Z′,
MX = I − X(X′X)−1X′,

b = (X′X)−1X′y.

s2
Z = e′

ZeZ/n = mean-squared residual in the regression of y on Z,

s2
X = e′

XeX/n = mean-squared residual in the regression of y on X,

s2
ZX = s2

X + b′X′MZXb/n.

The hypothesis is tested by comparing

q = c01{
Est. Var[c01]

}1/2 = c01√
s2

X

s4
ZX

b′X′MZMXMZXb

(8-14)

to the critical value from the standard normal table. A large value of q is evidence
against the null hypothesis (H0).

The Cox test appears to involve an impressive amount of matrix algebra. But the
algebraic results are deceptive. One needs only to compute linear regressions and re-
trieve fitted values and sums of squared residuals. The following does the first test. The
roles of X and Z are reversed for the second.

1. Regress y on X to obtain b and ŷX = Xb, eX = y − Xb, s2
X = e′

XeX/n.

2. Regress y on Z to obtain d and ŷZ = Zd, eZ = y − Zd, s2
Z = e′

ZeZ/n.

9See Pesaran and Weeks (2001) for some of the formalities of these results.
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3. Regress ŷX on Z to obtain dX and eZ.X = ŷX − ZdX = MZXb, e′
Z.XeZ.X =

b′X′MZXb.
4. Regress eZ.X on X and compute residuals eX.ZX, e′

X.ZXeX.ZX = b′X′MZMXMZXb.

5. Compute s2
ZX = s2

X + e′
Z.XeZ.X/n.

6. Compute c01 = n
2 log

s2
Z

s2
ZX

, v01 = s2
X(e′

X.ZX eX.ZX)

s4
ZX

, q = c01√
v01

.

Therefore, the Cox statistic can be computed simply by computing a series of least
squares regressions.

Example 8.3 Cox Test for a Consumption Function
We continue the previous example by applying the Cox test to the data of Example 8.2. For
purposes of the test, let X = [i y y−1] and Z = [i y c−1]. Using the notation of (8-13) and
(8-14), we find that

s2
X = 7,556.657,

s2
Z = 456.3751,

b′X′MZXb = 167.50707,

b′X′MZMXMZXb = 2.61944,

s2
ZX = 7556.657 + 167.50707/203 = 7,557.483.

Thus,

c01 = 203
2

ln

(
456.3751
7,557.483

)
= −284.908

and

Est. Var[c01] = 7,556.657(2.61944)
7,557.4832

= 0.00034656.

Thus, q = −15,304.281. On this basis, we reject the hypothesis that X is the correct set of
regressors. Note in the previous example that we reached the same conclusion based on a
t ratio of 62.861. As expected, the result has the opposite sign from the corresponding J
statistic in the previous example. Now we reverse the roles of X and Z in our calculations.
Letting d denote the least squares coefficients in the regression of consumption on Z, we
find that

d′Z′MXZd = 1,418,985.185,

d′Z′MXMZMXZd = 22,189.811,

s2
XZ = 456.3751 + 1,418,985.185/203 = 7446.4499.

Thus,

c10 = 203
2

ln

(
7,556.657
7,446.4499

)
= 1.491

and

Est. Var[c10] = 456.3751(22,189.811)
7,446.44992

= 0.18263.

This computation produces a value of q = 3.489, which is roughly equal (in absolute value)
than its counterpart in Example 8.2, −7.188. Since 1.594 is less than the 5 percent critical
value of to −1.96, we once again reject the hypothesis that Z is the preferred set of regressors
though the results do strongly favor Z in qualitative terms.
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Pesaran and Hall (1988) have extended the Cox test to testing which of two non-
nested restricted regressions is preferred. The modeling framework is

H0: y = X0β0 + ε0, Var[ε0 | X0] = σ 2
0I, subject to R0β0 = q0

H0: y = X1β1 + ε1, Var[ε1 | X1] = σ 2
1I, subject to R1β1 = q1.

Like its counterpart for unrestricted regressions, this Cox test requires a large amount
of matrix algebra. However, once again, it reduces to a sequence of regressions, though
this time with some unavoidable matrix manipulation remaining. Let

Gi = (X′
i Xi )

−1 − (X′
i Xi )

−1R′
i [Ri (X′

i Xi )
−1R′

i ]
−1Ri (X′

i Xi )
−1, i = 0, 1,

and Ti = Xi Gi X′
i , mi = rank(Ri ), ki = rank(Xi ), hi = ki − mi and di = n − hi where n

is the sample size. The following steps produce the needed statistics:

1. Compute ei = the residuals from the restricted regression, i = 0, 1.
2. Compute e10 by computing the residuals from the restricted regression of y − e0

on X1. Compute e01 likewise by reversing the subscripts.
3. Compute e100 as the residuals from the restricted regression of y − e10 on X0 and

e110 likewise by reversing the subscripts.
Let vi , vi j and vi jk denote the sums of squared residuals in Steps 1, 2, and 3

and let s2
i = e′

i ei/di .

4. Compute trace (B 2
0 ) = h1 − trace[(T0T1)

2] − {
h1 − trace[(T0T1)

2]
}2/

(n − h0) and
trace (B 2

1 ) likewise by reversing subscripts.
5. Compute s2

10 = (
v10 + s2

0 trace[I − T0 − T1 + T0T1]
)

and s2
01 likewise.

The authors propose several statistics. A Wald test based on Godfrey and Pesaran (1983)
is based on the difference between an estimator of σ 2

1 and the probability limit of this
estimator assuming that H0 is true

W0 = √
n(v1 − v0 − v10)

/√
4v0v100.

Under the null hypothesis of Model 0, the limiting distribution of W0 is standard normal.
An alternative statistic based on Cox’s likelihood approach is

N0 = (n/2)ln
(
s2

1/s2
10

)/√
4v100s2

0/
(
s2

10

)2
.

Example 8.4 Cox Test for Restricted Regressions
The example they suggest is two competing models for expected inflation, Pe

t , based on
commonly used lag structures involving lags of Pe

t and current lagged values of actual infla-
tion, Pt ;

(Regressive): Pe
t = Pt + θ1( Pt − Pt−1) + θ2( Pt−1 − Pt−2) + ε0t

(Adaptive) Pe
t = Pe

t−1 + λ1

(
Pt − Pe

t−1

) + λ2

(
Pt−1 − Pe

t−2

) + ε1t .

By formulating these models as

yt = β1 Pe
t−1 + β2 Pe

t−2 + β3 Pt + β4 Pt−1 + β5 Pt−2 + εt ,



Greene-50240 book June 11, 2002 18:49

CHAPTER 8 ✦ Specification Analysis and Model Selection 159

They show that the hypotheses are

H0: β1 = β2 = 0, β3 + β4 + β5 = 1

H1: β1 + β3 = 1, β2 + β4 = 0, β5 = 0.

Pesaran and Hall’s analysis was based on quarterly data for British manufacturing from 1972
to 1981. The data appear in the Appendix to Pesaran (1987) and are reproduced in Table F8.1.
Using their data, the computations listed before produce the following results:

W0: Null is H0; −3.887, Null is H1; −0.134

N0: Null is H0; −2.437, Null is H1; −0.032.

These results fairly strongly support Model 1 and lead to rejection of Model 0.10

8.4 MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R2 and the Cox test, are useful when interest centers on
the within-sample fit or within-sample prediction of the dependent variable. When the
model building is directed toward forecasting, within-sample measures are not neces-
sarily optimal. As we have seen, R2 cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section 6.6) despite the improved fit to the data. With
this thought in mind, the adjusted R2,

R̄2 = 1 − n − 1
n − K

(1 − R2) = 1 − n − 1
n − K

(
e′e∑n

i=1(yi − ȳ)2

)
, (8-15)

has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R̄2 may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R̄2 does not rise when a variable is added to
a model unless the t ratio associated with that variable exceeds one in absolute value.)
The adjusted R2 has been found to be a preferable fit measure for assessing the fit of
forecasting models. [See Diebold (1998b, p. 87), who argues that the simple R2 has
a downward bias as a measure of the out-of-sample, one-step-ahead prediction error
variance.]

The adjusted R2 penalizes the loss of degrees of freedom that occurs when a model
is expanded. There is, however, some question about whether the penalty is sufficiently
large to ensure that the criterion will necessarily lead the analyst to the correct model
(assuming that it is among the ones considered) as the sample size increases. Two alter-
native fit measures that have seen suggested are the Akaike information criterion,

AIC(K) = s2
y(1 − R2)e2K/n (8-16)

10Our results differ somewhat from Pesaran and Hall’s. For the first row of the table, they reported
(−2.180, −1.690) and for the second, (−2.456, −1.907). They reach the same conclusion, but the numbers
do differ substantively. We have been unable to resolve the difference.
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and the Schwartz or Bayesian information criterion,

BIC(K) = s2
y(1 − R2)nK/n. (8-17)

(There is no degrees of freedom correction in s2
y.) Both measures improve (decline) as

R2 increases, but, everything else constant, degrade as the model size increases. Like
R̄2, these measures place a premium on achieving a given fit with a smaller number
of parameters per observation, K/n. Logs are usually more convenient; the measures
reported by most software are

AIC(K) = log
(

e′e
n

)
+ 2K

n
(8-18)

BIC(K) = log
(

e′e
n

)
+ K log n

n
. (8-19)

Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (1998b, p. 90).] The Schwarz criterion, with its heavier penalty
for degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

8.5 SUMMARY AND CONCLUSIONS

This is the last of seven chapters that we have devoted specifically to the most heavily
used tool in econometrics, the classical linear regression model. We began in Chapter 2
with a statement of the regression model. Chapter 3 then described computation of
the parameters by least squares—a purely algebraic exercise. Chapters 4 and 5 reinter-
preted least squares as an estimator of an unknown parameter vector, and described
the finite sample and large sample characteristics of the sampling distribution of the
estimator. Chapters 6 and 7 were devoted to building and sharpening the regression
model, with tools for developing the functional form and statistical results for testing
hypotheses about the underlying population. In this chapter, we have examined some
broad issues related to model specification and selection of a model among a set of
competing alternatives. The concepts considered here are tied very closely to one of
the pillars of the paradigm of econometrics, that underlying the model is a theoretical
construction, a set of true behavioral relationships that constitute the model. It is only
on this notion that the concepts of bias and biased estimation and model selection make
any sense—“bias” as a concept can only be described with respect to some underlying
“model” against which an estimator can be said to be biased. That is, there must be a
yardstick. This concept is a central result in the analysis of specification, where we con-
sidered the implications of underfitting (omitting variables) and overfitting (including
superfluous variables) the model. We concluded this chapter (and our discussion of the
classical linear regression model) with an examination of procedures that are used to
choose among competing model specifications.
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Key Terms and Concepts

• Adjusted R-squared
• Akaike criterion
• Biased estimator
• Comprehensive model
• Cox test
• Encompassing principle
• General-to-simple strategy
• Inclusion of superfluous

variables

• J test
• Mean squared error
• Model selection
• Nonnested models
• Omission of relevant

variables
• Omitted variable formula
• Prediction criterion
• Pretest estimator

• Schwarz criterion
• Simple-to-general
• Specification analysis
• Stepwise model building

Exercises

1. Suppose the true regression model is given by (8-2). The result in (8-4) shows that if
either P1.2 is nonzero or β2 is nonzero, then regression of y on X1 alone produces a
biased and inconsistent estimator of β1. Suppose the objective is to forecast y, not to
estimate the parameters. Consider regression of y on X1 alone to estimate β1 with
b1 (which is biased). Is the forecast of y computed using X1b1 also biased? Assume
that E [X2 | X1] is a linear function of X1. Discuss your findings generally. What are
the implications for prediction when variables are omitted from a regression?

2. Compare the mean squared errors of b1 and b1.2 in Section 8.2.2. (Hint: The compar-
ison depends on the data and the model parameters, but you can devise a compact
expression for the two quantities.)

3. The J test in Example 8.2 is carried out using over 50 years of data. It is optimistic
to hope that the underlying structure of the economy did not change in 50 years.
Does the result of the test carried out in Example 8.2 persist if it is based on data
only from 1980 to 2000? Repeat the computation with this subset of the data.

4. The Cox test in Example 8.3 has the same difficulty as the J test in Example 8.2. The
sample period might be too long for the test not to have been affected by underlying
structural change. Repeat the computations using the 1980 to 2000 data.
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