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SYSTEMS OF REGRESSION
EQUATIONS

Q

14.1 INTRODUCTION

There are many settings in which the models of the previous chapters apply to a group
of related variables. In these contexts, it makes sense to consider the several models
jointly. Some examples follow.

1. The capital asset pricing model of finance specifies that for a given security,

rit − r f t = αi + βi (rmt − rf t ) + εi t ,

where rit is the return over period t on security i, rf t is the return on a risk-free security,
rmt is the market return, and βi is the security’s beta coefficient. The disturbances are
obviously correlated across securities. The knowledge that the return on security i
exceeds the risk-free rate by a given amount gives some information about the excess
return of security j , at least for some j ’s. It may be useful to estimate the equations
jointly rather than ignore this connection.

2. In the Grunfeld–Boot and de Witt investment model of Section 13.9.7, we examined
a set of firms, each of which makes investment decisions based on variables that reflect
anticipated profit and replacement of the capital stock. We will now specify

Iit = β1i + β2iFit + β3i Cit + εi t .

Whether the parameter vector should be the same for all firms is a question that we
shall study in this chapter. But the disturbances in the investment equations certainly
include factors that are common to all the firms, such as the perceived general health
of the economy, as well as factors that are specific to the particular firm or industry.

3. In a model of production, the optimization conditions of economic theory imply
that if a firm faces a set of factor prices p, then its set of cost-minimizing factor demands
for producing output Y will be a set of equations of the form xm = fm(Y, p). The model is

x1 = f1(Y, p : θ) + ε1,

x2 = f2(Y, p : θ) + ε2,

· · ·
xM = fM(Y, p : θ) + εM.

Once again, the disturbances should be correlated. In addition, the same parameters of
the production technology will enter all the demand equations, so the set of equations
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have cross-equation restrictions. Estimating the equations separately will waste the
information that the same set of parameters appears in all the equations.

All these examples have a common multiple equation structure, which we may
write as

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

...

yM = XMβM + εM.

(14-1)

There are M equations and T observations in the sample of data used to estimate them.1

The second and third examples embody different types of constraints across equations
and different structures of the disturbances. A basic set of principles will apply to them
all, however.2

Section 14.2 below examines the general model in which each equation has its
own fixed set of parameters, and examines efficient estimation techniques. Production
and consumer demand models are a special case of the general model in which the
equations of the model obey an adding up constraint that has important implications for
specification and estimation. Some general results for demand systems are considered in
Section 14.3. In Section 14.4 we examine a classic application of the model in Section 14.3
that illustrates a number of the interesting features of the current genre of demand
studies in the applied literature. Section 14.4 introduces estimation of nonlinear systems,
instrumental variable estimation, and GMM estimation for a system of equations.

Example 14.1 Grunfeld’s Investment Data
To illustrate the techniques to be developed in this chapter, we will use the Grunfeld data first
examined in Section 13.9.7 in the previous chapter. Grunfeld’s model is now

I i t = β1i + β2i Fi t + β3i Ci t + εi t ,

where i indexes firms, t indexes years, and

I i t = gross investment,

Fi t = market value of the firm at the end of the previous year,

Ci t = value of the stock of plant and equipment at the end of the previous year.

All figures are in millions of dollars. The sample consists of 20 years of observations (1935–
1954) on five firms. The model extension we consider in this chapter is to allow the coefficients
to vary across firms in an unstructured fashion.

14.2 THE SEEMINGLY UNRELATED
REGRESSIONS MODEL

The seemingly unrelated regressions (SUR) model in (14-1) is

yi = Xiβ i + εi , i = 1, . . . , M, (14-2)

1The use of T is not necessarily meant to imply any connection to time series. For instance, in the third
example above, the data might be cross-sectional.
2See the surveys by Srivastava and Dwivedi (1979), Srivastava and Giles (1987), and Feibig (2001).



Greene-50240 book June 19, 2002 10:4

CHAPTER 14 ✦ Systems of Regression Equations 341

where

ε = [ε′
1, ε

′
2, . . . , ε

′
M]′

and

E [ε | X1, X2, . . . , XM] = 0,

E [εε′ | X1, X2, . . . , XM] = �.

We assume that a total of T observations are used in estimating the parameters of the M
equations.3 Each equation involves Km regressors, for a total of K = ∑n

i=1 Ki . We will
require T > Ki . The data are assumed to be well behaved, as described in Section 5.2.1,
and we shall not treat the issue separately here. For the present, we also assume that
disturbances are uncorrelated across observations. Therefore,

E [εi tε js | X1, X2, . . . , XM] = σi j , if t = s and 0 otherwise.

The disturbance formulation is therefore

E [εiε
′
j | X1, X2, . . . , XM] = σi j IT

or

E [εε′ | X1, X2, . . . , XM] = � =


σ11I σ12I · · · σ1MI
σ21I σ22I · · · σ2MI

...

σM1I σM2I · · · σMMI

 . (14-3)

Note that when the data matrices are group specific observations on the same variables,
as in Example 14.1, the specification of this model is precisely that of the covariance
structures model of Section 13.9 save for the extension here that allows the parameter
vector to vary across groups. The covariance structures model is, therefore, a testable
special case.4

It will be convenient in the discussion below to have a term for the particular kind
of model in which the data matrices are group specific data sets on the same set of
variables. The Grunfeld model noted in Example 14.1 is such a case. This special case
of the seemingly unrelated regressions model is a multivariate regression model. In
contrast, the cost function model examined in Section 14.5 is not of this type—it consists
of a cost function that involves output and prices and a set of cost share equations that
have only a set of constant terms. We emphasize, this is merely a convenient term for a
specific form of the SUR model, not a modification of the model itself.

14.2.1 GENERALIZED LEAST SQUARES

Each equation is, by itself, a classical regression. Therefore, the parameters could be
estimated consistently, if not efficiently, one equation at a time by ordinary least squares.

3There are a few results for unequal numbers of observations, such as Schmidt (1977), Baltagi, Garvin, and
Kerman (1989), Conniffe (1985), Hwang, (1990) and Im (1994). But generally, the case of fixed T is the norm
in practice.
4This is the test of “Aggregation Bias” that is the subject of Zellner (1962, 1963). (The bias results if parameter
equality is incorrectly assumed.)
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The generalized regression model applies to the stacked model,
y1

y2

...

yM

 =


X1 0 · · · 0
0 X2 · · · 0

...

0 0 · · · XM




β1

β2
...

βM

 +


ε1

ε2

...

εM

 = Xβ + ε. (14-4)

Therefore, the efficient estimator is generalized least squares.5 The model has a partic-
ularly convenient form. For the tth observation, the M × M covariance matrix of the
disturbances is

� =


σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...

σM1 σM2 · · · σMM

 , (14-5)

so, in (14-3),

� = � ⊗ I

and

�−1 = �−1 ⊗ I. (14-6)

Denoting the i jth element of �−1 by σ i j , we find that the GLS estimator is

β̂ = [X′�−1X]−1X′�−1y = [X′(�−1 ⊗ I)X]−1X′(�−1 ⊗ I)y.

Expanding the Kronecker products produces

β̂ =


σ 11X′

1X1 σ 12X′
1X2 · · · σ 1MX′

1XM

σ 21X′
2X1 σ 22X′

2X2 · · · σ 2MX′
2XM

...

σ M1X′
MX1 σ M2X′

MX2 · · · σ MMX′
MXM


−1



∑M
j=1 σ 1 j X′

1y j∑M
j=1 σ 2 j X′

2y j
...∑M

j=1 σ Mj X′
My j

 . (14-7)

The asymptotic covariance matrix for the GLS estimator is the inverse matrix in (14-7).
All the results of Chapter 10 for the generalized regression model extend to this model
(which has both heteroscedasticity and “autocorrelation”).

This estimator is obviously different from ordinary least squares. At this point,
however, the equations are linked only by their disturbances—hence the name seem-
ingly unrelated regressions model—so it is interesting to ask just how much efficiency
is gained by using generalized least squares instead of ordinary least squares. Zellner
(1962) and Dwivedi and Srivastava (1978) have analyzed some special cases in
detail.

5See Zellner (1962) and Telser (1964).
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1. If the equations are actually unrelated—that is, if σi j = 0 for i 	= j—then there is
obviously no payoff to GLS estimation of the full set of equations. Indeed, full
GLS is equation by equation OLS.6

2. If the equations have identical explanatory variables—that is, if Xi = X j —then
OLS and GLS are identical. We will turn to this case in Section 14.2.2 and then
examine an important application in Section 14.2.5.7

3. If the regressors in one block of equations are a subset of those in another, then
GLS brings no efficiency gain over OLS in estimation of the smaller set of
equations; thus, GLS and OLS are once again identical. We will look at an
application of this result in Section 19.6.5.8

In the more general case, with unrestricted correlation of the disturbances and
different regressors in the equations, the results are complicated and dependent on the
data. Two propositions that apply generally are as follows:

1. The greater is the correlation of the disturbances, the greater is the efficiency gain
accruing to GLS.

2. The less correlation there is between the X matrices, the greater is the gain in
efficiency in using GLS.9

14.2.2 SEEMINGLY UNRELATED REGRESSIONS
WITH IDENTICAL REGRESSORS

The case of identical regressors is quite common, notably in the capital asset pricing
model in empirical finance—see Section 14.2.5. In this special case, generalized least
squares is equivalent to equation by equation ordinary least squares. Impose the as-
sumption that Xi = X j = X, so that X′

i X j = X′X for all i and j in (14-7). The inverse
matrix on the right-hand side now becomes [�−1 ⊗ X′X]−1, which, using (A-76), equals
[� ⊗ (X′X)−1]. Also on the right-hand side, each term X′

i y j equals X′y j , which, in turn
equals X′Xb j . With these results, after moving the common X′X out of the summations
on the right-hand side, we obtain

β̂ =


σ11(X′X)−1 σ12(X′X)−1 · · · σ1M(X′X)−1

σ21(X′X)−1 σ22(X′X)−1 · · · σ2M(X′X)−1

...

σM1(X′X)−1 σM2(X′X)−1 · · · σMM(X′X)−1




(X′X)
∑M

l=1 σ 1lbl

(X′X)
∑M

l=1 σ 2lbl
...

(X′X)
∑M

l=1 σ Mlbl

 . (14-8)

6See also Baltagi (1989) and Bartels and Feibig (1991) for other cases in which OLS = GLS.
7An intriguing result, albeit probably of negligible practical significance, is that the result also applies if the
X’s are all nonsingular, and not necessarily identical, linear combinations of the same set of variables. The
formal result which is a corollary of Kruskal’s Theorem [see Davidson and MacKinnon (1993, p. 294)] is that
OLS and GLS will be the same if the K columns of X are a linear combination of exactly K characteristic
vectors of �. By showing the equality of OLS and GLS here, we have verified the conditions of the corollary.
The general result is pursued in the exercises. The intriguing result cited is now an obvious case.
8The result was analyzed by Goldberger (1970) and later by Revankar (1974) and Conniffe (1982a, b).
9See also Binkley (1982) and Binkley and Nelson (1988).
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Now, we isolate one of the subvectors, say the first, from β̂. After multiplication, the
moment matrices cancel, and we are left with

β̂1 =
M∑

j=1

σ1 j

M∑
l=1

σ j1bl = b1

(
M∑

j=1

σ1 jσ
j1

)
+ b2

(
M∑

j=1

σ1 jσ
j2

)
+ · · · + bM

(
M∑

j=1

σ1 jσ
j M

)
.

The terms in parentheses are the elements of the first row of ��−1 = I, so the end result
is β̂1 = b1. For the remaining subvectors, which are obtained the same way, β̂ i = bi , which
is the result we sought.10

To reiterate, the important result we have here is that in the SUR model, when all
equations have the same regressors, the efficient estimator is single-equation ordinary
least squares; OLS is the same as GLS. Also, the asymptotic covariance matrix of β̂

for this case is given by the large inverse matrix in brackets in (14-8), which would be
estimated by

Est.Asy. Cov[β̂ i , β̂j ] = σ̂i j (X′X)−1, i, j = 1, . . . , M, where �̂i j = σ̂i j = 1
T

e′
i e j .

Except in some special cases, this general result is lost if there are any restrictions on
β, either within or across equations. We will examine one of those cases, the block of
zeros restriction, in Sections 14.2.6 and 19.6.5.

14.2.3 FEASIBLE GENERALIZED LEAST SQUARES

The preceding discussion assumes that � is known, which, as usual, is unlikely to be the
case. FGLS estimators have been devised, however.11 The least squares residuals may
be used (of course) to estimate consistently the elements of � with

σ̂i j si j = e′
i e j

T
. (14-9)

The consistency of si j follows from that of bi and b j . A degrees of freedom correction
in the divisor is occasionally suggested. Two possibilities are

s∗
i j = e′

i e j

[(T − Ki )(T − Kj )]1/2
and s∗∗

i j = e′
i e j

T − max(Ki , Kj )
.12

The second is unbiased only if i equals j or Ki equals Kj , whereas the first is unbiased
only if i equals j . Whether unbiasedness of the estimate of � used for FGLS is a virtue
here is uncertain. The asymptotic properties of the feasible GLS estimator, ˆ̂β do not
rely on an unbiased estimator of �; only consistency is required. All our results from
Chapters 10–13 for FGLS estimators extend to this model, with no modification. We

10See Hashimoto and Ohtani (1996) for discussion of hypothesis testing in this case.
11See Zellner (1962) and Zellner and Huang (1962).
12See, as well, Judge et al. (1985), Theil (1971) and Srivistava and Giles (1987).
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shall use (14-9) in what follows. With

S =


s11 s12 · · · s1M

s21 s22 · · · s2M

...

sM1 sM2 · · · sMM

 (14-10)

in hand, FGLS can proceed as usual. Iterated FGLS will be maximum likelihood if it is
based on (14-9).

Goodness-of-fit measures for the system have been devised. For instance, McElroy
(1977) suggested the systemwide measure

R2
∗ = 1 − ε̂′�̂−1ε̂∑M

i=1

∑M
j=1 σ̂ i j

[∑T
t=1(yit − ȳi )(yjt − ȳ j )

] = 1 − M

tr(�̂−1Syy)
, (14-11)

where ˆ indicates the FGLS estimate. (The advantage of the second formulation is that
it involves M × M matrices, which are typically quite small, whereas �̂ is MT × MT.
In our case, M equals 5, but MT equals 100.) The measure is bounded by 0 and 1 and
is related to the F statistic used to test the hypothesis that all the slopes in the model
are zero. Fit measures in this generalized regression model have all the shortcomings
discussed in Section 10.5.1. An additional problem for this model is that overall fit
measures such as that in (14-11) will obscure the variation in fit across equations. For the
investment example, using the FGLS residuals for the least restrictive model in Table
13.4 (the covariance structures model with identical coefficient vectors), McElroy’s
measure gives a value of 0.846. But as can be seen in Figure 14.1, this apparently good

FIGURE 14.1 FGLS Residuals with Equality Restrictions.
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FIGURE 14.2 SUR Residuals.

overall fit is an aggregate of mediocre fits for Chrysler and Westinghouse and obviously
terrible fits for GM, GE, and U.S. Steel. Indeed, the conventional measure for GE based
on the same FGLS residuals, 1 − e′

GEeGE/y′
GEM0yGE is −16.7!

We might use (14-11) to compare the fit of the unrestricted model with separate
coefficient vectors for each firm with the restricted one with a common coefficient vec-
tor. The result in (14-11) with the FGLS residuals based on the seemingly unrelated
regression estimates in Table 14.1 (in Example 14.2) gives a value of 0.871, which com-
pared to 0.846 appears to be an unimpressive improvement in the fit of the model. But
a comparison of the residual plot in Figure 14.2 with that in Figure 14.1 shows that, on
the contrary, the fit of the model has improved dramatically. The upshot is that although
a fit measure for the system might have some virtue as a descriptive measure, it should
be used with care.

For testing a hypothesis about β, a statistic analogous to the F ratio in multiple
regression analysis is

F[J, MT − K] = (Rβ̂ − q)′[R(X′�̂−1X)−1R′]−1(Rβ̂ − q)/J

ε̂′�̂−1ε̂/(MT − K)
. (14-12)

The computation requires the unknown �. If we insert the FGLS estimate �̂ based on
(14-9) and use the result that the denominator converges to one, then, in large samples,
the statistic will behave the same as

F̂ = 1
J

(R ˆ̂β − q)′[R V̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (14-13)

This can be referred to the standard F table. Because it uses the estimated �, even
with normally distributed disturbances, the F distribution is only valid approximately.
In general, the statistic F[J, n] converges to 1/J times a chi-squared [J ] as n → ∞.
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Therefore, an alternative test statistic that has a limiting chi-squared distribution with
J degrees of freedom when the hypothesis is true is

J F̂ = (R ˆ̂β − q)′[RV̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (14-14)

This can be recognized as a Wald statistic that measures the distance between R ˆ̂β and
q. Both statistics are valid asymptotically, but (14-13) may perform better in a small or
moderately sized sample.13 Once again, the divisor used in computing σ̂i j may make a
difference, but there is no general rule.

A hypothesis of particular interest is the homogeneity restriction of equal coefficient
vectors in the multivariate regression model. That case is fairly common in this setting.
The homogeneity restriction is that β i = βM, i = 1, . . . , M−1. Consistent with (14-13)–
(14-14), we would form the hypothesis as

Rβ =


I 0 · · · 0 −I

0 I · · · 0 −I

· · ·
0 0 · · · I −I




β1

β2

· · ·
βM

 =


β1 − βM

β2 − βM

· · ·
βM−1 − βM

 = 0. (14-15)

This specifies a total of (M− 1)K restrictions on the KM× 1 parameter vector. Denote
the estimated asymptotic covariance for ( ˆ̂β i ,

ˆ̂β j ) as V̂i j . The bracketed matrix in (14-13)
would have typical block

[R V̂ar[ ˆ̂β]R′]i j = V̂i i − V̂i j − V̂ j i + V̂ j j

This may be a considerable amount of computation. The test will be simpler if the model
has been fit by maximum likelihood, as we examine in the next section.

14.2.4 MAXIMUM LIKELIHOOD ESTIMATION

The Oberhofer–Kmenta (1974) conditions (see Section 11.7.2) are met for the seemingly
unrelated regressions model, so maximum likelihood estimates can be obtained by
iterating the FGLS procedure. We note, once again, that this procedure presumes the
use of (14-9) for estimation of σi j at each iteration. Maximum likelihood enjoys no
advantages over FGLS in its asymptotic properties.14 Whether it would be preferable
in a small sample is an open question whose answer will depend on the particular data
set.

By simply inserting the special form of � in the log-likelihood function for the
generalized regression model in (10-32), we can consider direct maximization instead
of iterated FGLS. It is useful, however, to reexamine the model in a somewhat different
formulation. This alternative construction of the likelihood function appears in many
other related models in a number of literatures.

13See Judge et al. (1985, p. 476). The Wald statistic often performs poorly in the small sample sizes typical in
this area. Feibig (2001, pp. 108–110) surveys a recent literature on methods of improving the power of testing
procedures in SUR models.
14Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the
estimator that allows for the possibility that the normality assumption might be violated.
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Consider one observation on each of the Mdependent variables and their associated
regressors. We wish to arrange this observation horizontally instead of vertically. The
model for this observation can be written

[y1 y2 · · · yM]t = [x∗
t ]′[π1 π2 · · · π M] + [ε1 ε2 · · · εM]t

= [x∗
t ]′�′ + E,

(14-16)

where x∗
t is the full set of all K∗ different independent variables that appear in the model.

The parameter matrix then has one column for each equation, but the columns are not
the same as β i in (14-4) unless every variable happens to appear in every equation.
Otherwise, in the ith equation, π i will have a number of zeros in it, each one imposing
an exclusion restriction. For example, consider the GM and GE equations from the
Boot–de Witt data in Example 14.1. The tth observation would be

[Ig Ie]t = [1 Fg Cg Fe Ce]t



αg αe

β1g 0

β2g 0

0 β1e

0 β2e

 + [εg εe]t .

This vector is one observation. Let εt be the vector of M disturbances for this
observation arranged, for now, in a column. Then E [εtε

′
t ] = �. The log of the joint

normal density of these M disturbances is

log Lt = − M
2

log(2π) − 1
2

log|�| − 1
2
ε′

t�
−1εt . (14-17)

The log-likelihood for a sample of T joint observations is the sum of these over t :

log L =
T∑

t=1

log Lt = − MT
2

log(2π) − T
2

log|�| − 1
2

T∑
t=1

ε′
t�

−1εt . (14-18)

The term in the summation in (14-18) is a scalar that equals its trace. We can always
permute the matrices in a trace, so

T∑
t=1

ε′
t�

−1εt =
T∑

t=1

tr(ε′
t�

−1εt ) =
T∑

t=1

tr(�−1εtε
′
t ).

This can be further simplified. The sum of the traces of T matrices equals the trace of
the sum of the matrices [see (A-91)]. We will now also be able to move the constant
matrix, �−1, outside the summation. Finally, it will prove useful to multiply and divide
by T. Combining all three steps, we obtain

T∑
t=1

tr(�−1εtε
′
t ) = T tr

[
�−1

(
1
T

) T∑
t=1

εtε
′
t

]
= T tr(�−1W) (14-19)

where

Wi j = 1
T

T∑
t=1

εtiεt j .
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Since this step uses actual disturbances, E [Wi j ] = σi j ; W is the M × M matrix we
would use to estimate � if the εs were actually observed. Inserting this result in the
log-likelihood, we have

log L = −T
2

[M log(2π) + log|�| + tr(�−1W)]. (14-20)

We now consider maximizing this function.
It has been shown15 that

∂ log L
∂�′ = T

2
X∗′E�−1

∂ log L
∂�

= −T
2

�−1(� − W)�−1.

(14-21)

where the x∗′
t in (14-16) is row t of X∗. Equating the second of these derivatives to a zero

matrix, we see that given the maximum likelihood estimates of the slope parameters, the
maximum likelihood estimator of � is W, the matrix of mean residual sums of squares
and cross products—that is, the matrix we have used for FGLS. [Notice that there is no
correction for degrees of freedom; ∂ log L/∂� = 0 implies (14-9).]

We also know that because this model is a generalized regression model, the maxi-
mum likelihood estimator of the parameter matrix [β] must be equivalent to the FGLS
estimator we discussed earlier.16 It is useful to go a step further. If we insert our solution
for � in the likelihood function, then we obtain the concentrated log-likelihood,

log Lc = −T
2

[M(1 + log(2π)) + log|W|]. (14-22)

We have shown, therefore, that the criterion for choosing the maximum likelihood
estimator of β is

β̂ML = Minβ
1
2 log|W|, (14-23)

subject to the exclusion restrictions. This important result reappears in many other mod-
els and settings. This minimization must be done subject to the constraints in the pa-
rameter matrix. In our two-equation example, there are two blocks of zeros in the
parameter matrix, which must be present in the MLE as well. The estimator of β is the
set of nonzero elements in the parameter matrix in (14-16).

The likelihood ratio statistic is an alternative to the F statistic discussed earlier for
testing hypotheses about β. The likelihood ratio statistic is

λ = −2(log Lr − log Lu) = T(log|Ŵr | − log|Ŵu|),17 (14-24)

where Ŵr and Ŵu are the residual sums of squares and cross-product matrices using the
constrained and unconstrained estimators, respectively. The likelihood ratio statistic is
asymptotically distributed as chi-squared with degrees of freedom equal to the number
of restrictions. This procedure can also be used to test the homogeneity restriction in the
multivariate regression model. The restricted model is the covariance structures model
discussed in Section 13.9 in the preceding chapter.

15See, for example, Joreskog (1973).
16This equivalence establishes the Oberhofer–Kmenta conditions.
17See Attfield (1998) for refinements of this calculation to improve the small sample performance.
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It may also be of interest to test whether � is a diagonal matrix. Two possible
approaches were suggested in Section 13.9.6 [see (13-67) and (13-68)]. The unrestricted
model is the one we are using here, whereas the restricted model is the groupwise
heteroscedastic model of Section 11.7.2 (Example 11.5), without the restriction of equal-
parameter vectors. As such, the restricted model reduces to separate regression models,
estimable by ordinary least squares. The likelihood ratio statistic would be

λLR = T

[
M∑

i=1

log σ̂ 2
i − log |�̂|

]
, (14-25)

where σ̂ 2
i is e′

i ei/T from the individual least squares regressions and �̂ is the maximum
likelihood estimator of �. This statistic has a limiting chi-squared distribution with
M(M − 1)/2 degrees of freedom under the hypothesis. The alternative suggested by
Breusch and Pagan (1980) is the Lagrange multiplier statistic,

λLM = T
M∑

i=2

i−1∑
j=1

r2
i j , (14-26)

where ri j is the estimated correlation σ̂i j/[σ̂i i σ̂ j j ]1/2. This statistic also has a limiting chi-
squared distribution with M(M − 1)/2 degrees of freedom. This test has the advantage
that it does not require computation of the maximum likelihood estimator of �, since
it is based on the OLS residuals.

Example 14.2 Estimates of a Seemingly Unrelated Regressions Model
By relaxing the constraint that all five firms have the same parameter vector, we obtain a five-
equation seemingly unrelated regression model. The FGLS estimates for the system are given
in Table 14.1, where we have included the equality constrained (pooled) estimator from the co-
variance structures model in Table 13.4 for comparison. The variables are the constant terms,
F and C, respectively. The correlations of the FGLS and equality constrained FGLS residuals
are given below the coefficient estimates in Table 14.1. The assumption of equal-parameter
vectors appears to have seriously distorted the correlations computed earlier. We would have
expected this based on the comparison of Figures 14.1 and 14.2. The diagonal elements in
�̂ are also drastically inflated by the imposition of the homogeneity constraint. The equation
by equation OLS estimates are given in Table 14.2. As expected, the estimated standard
errors for the FGLS estimates are generally smaller. The F statistic for testing the hypothesis
of equal-parameter vectors in all five equations is 129.169 with 12 and (100–15) degrees of
freedom. This value is far larger than the tabled critical value of 1.868, so the hypothesis of
parameter homogeneity should be rejected. We might have expected this result in view of the
dramatic reduction in the diagonal elements of �̂ compared with those of the pooled esti-
mator. The maximum likelihood estimates of the parameters are given in Table 14.3. The
log determinant of the unrestricted maximum likelihood estimator of � is 31.71986, so the
log-likelihood is

log Lu = −20(5)
2

[log(2π ) + 1] − 20
2

31.71986 = −459.0925.

The restricted model with equal-parameter vectors and correlation across equations is dis-
cussed in Section 13.9.6, and the restricted MLEs are given in Table 13.4. (The estimate of
� is not shown there.) The log determinant for the constrained model is 39.1385. The log-
likelihood for the constrained model is therefore −515.422. The likelihood ratio test statistic
is 112.66. The 1 percent critical value from the chi-squared distribution with 12 degrees of
freedom is 26.217, so the hypothesis that the parameters in all five equations are equal is
(once again) rejected.
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TABLE 14.1 FGLS Parameter Estimates (Standard Errors in Parentheses)

GM CH GE WE US Pooled

β1 −162.36 0.5043 −22.439 1.0889 85.423 −28.247
(89.46) (11.51) (25.52) (6.2959) (111.9) (4.888)

β2 0.12049 0.06955 0.03729 0.05701 0.1015 0.08910
(0.0216) (0.0169) (0.0123) (0.0114) (0.0547) (0.00507)

β2 0.38275 0.3086 0.13078 0.0415 0.3999 0.3340
(0.0328) (0.0259) (0.0221) (0.0412) (0.1278) (0.0167)

FGLS Residual Covariance and Correlation Matrices [Pooled estimates]

GM 7216.04 −0.299 0.269 0.257 −0.330
[10050.52] [−0.349] [−0.248] [−.0.356] [−0.716]

CH −313.70 152.85 0.006, 0.238 0.384,
[−4.8051] [305.61] [0.158] [0.246] [0.244]

GE 605.34 2.0474 700.46 0.777 0.482
[−7160.67] [−1966.65] [34556.6] [0.895] [−0.176]

WE 129.89 16.661 200.32 94.912 0.699
[−1400.75] [−123.921] [4274.0] [833.6] [−0.040]

US −2686.5 455.09 1224.4 652.72 9188.2
[4439.99] [2158.595] [−28722.0] [−2893.7] [34468.9]

TABLE 14.2 OLS Parameter Estimates (Standard Errors in Parentheses)

GM CH GE WE US Pooled

β1 −149.78 −6.1899 −9.956 −0.5094 −30.369 −48.030
(105.84) (13.506) (31.374) (8.0152) (157.05) (21.480)

β2 0.11928 0.07795 0.02655 0.05289 0.1566 0.10509
(0.0258) (0.0198) (0.0157) (0.0157) (0.0789) (0.01378)

β2 0.37144 0.3157 0.15169 0.0924 0.4239 0.30537
(0.0371) (0.0288) (0.0257) (0.0561) (0.1552) (0.04351)

σ 2 7160.29 149.872 660.329 88.662 8896.42 15857.24

Based on the OLS results, the Lagrange multiplier statistic is 29.046, with 10 degrees of
freedom. The 1 percent critical value is 23.209, so the hypothesis that � is diagonal can also
be rejected. To compute the likelihood ratio statistic for this test, we would compute the log
determinant based on the least squares results. This would be the sum of the logs of the
residual variances given in Table 14.2, which is 33.957106. The statistic for the likelihood
ratio test using (14–25) is therefore 20(33.95706 − 31.71986) = 44.714. This is also larger
than the critical value from the table. Based on all these results, we conclude that neither the
parameter homogeneity restriction nor the assumption of uncorrelated disturbances appears
to be consistent with our data.

14.2.5 AN APPLICATION FROM FINANCIAL ECONOMETRICS:
THE CAPITAL ASSET PRICING MODEL

One of the growth areas in econometrics is its application to the analysis of financial
markets.18 The capital asset pricing model (CAPM) is one of the foundations of that
field and is a frequent subject of econometric analysis.

18The pioneering work of Campbell, Lo, and MacKinlay (1997) is a broad survey of the field. The development
in this example is based on their Chapter 5.
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TABLE 14.3 Maximum Likelihood Estimates

GM CH GE WE US Pooled

β1 −173.218 2.39111 −16.662 4.37312 136.969 −2.217
(84.30) (11.63) (24.96) (6.018) (94.8) (1.960)

β2 0.122040 0.06741 0.0371 0.05397 0.08865 0.02361
(0.02025) (0.01709) (0.0118) (0.0103) (0.0454) (0.00429)

β2 0.38914 0.30520 0.11723 0.026930 0.31246 0.17095
(0.03185) (0.02606) (0.0217) (0.03708) (0.118) (0.0152)

Residual Covariance Matrix
GM 7307.30
CH −330.55 155.08
GE 550.27 11.429 741.22
WE 118.83 18.376 220.33 103.13
US −2879.10 463.21 1408.11 734.83 9671.4

Markowitz (1959) developed a theory of an individual investor’s optimal portfolio
selection in terms of the trade-off between expected return (mean) and risk (variance).
Sharpe (1964) and Lintner (1965) showed how the theory could be extended to the
aggregate “market” portfolio. The Sharpe and Lintner analyses produce the following
model for the expected excess return from an asset i :

E [Ri ] − Rf = βi
(

E [Rm] − Rf
)
,

where Ri is the return on asset i, Rf is the return on a “risk-free” asset, Rm is the return
on the market’s optimal portfolio, and βi is the asset’s market “beta,”

βi = Cov[Ri , Rm]
Var[Rm]

.

The theory states that the expected excess return on asset i will equal βi times the
expected excess return on the market’s portfolio. Black (1972) considered the more
general case in which there is no risk-free asset. In this instance, the observed Rf is
replaced by the unobservable return on a “zero-beta” portfolio, E [R0] = γ .

The empirical counterpart to the Sharpe and Lintner model for assets, i = 1, . . . , N,
observed over T periods, t = 1, . . . , T, is a seemingly unrelated regressions (SUR)
model, which we cast in the form of (14-16):

[y1, y2, . . . , yN] = [1, zt ]
[
α1 α2 · · · αN

β1 β2 · · · βN

]
+ [ε1, ε2, . . . , εN]t = x′

t� + ε′
t ,

where yit is Rit − Rf t , the observed excess return on asset i in period t ; zt is Rmt − Rf t ,
the market excess return in period t ; and disturbances εi t are the deviations from the
conditional means. We define the T × 2 matrix X = (

[1, zt ], t = 1, . . . , T
)
. The assump-

tions of the seemingly unrelated regressions model are

1. E [εt | X] = E [εt ] = 0,
2. Var[εt | X] = E [εtε

′
t | X] = �, a positive definite N × N matrix,

3. εt | X ∼ N[0, �].
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The data are also assumed to be “well behaved” so that

4. plim z̄ = E [zt ] = µz.
5. plim s2

z = plim(1/T)
∑T

t=1(zt − z̄)2 = Var[zt ] = σ 2
z .

Since this model is a particular case of the one in (14-16), we can proceed to (14-20)
through (14-23) for the maximum likelihood estimators of � and �. Indeed, since this
model is an unrestricted SUR model with the same regressor(s) in every equation,
we know from our results in Section 14.2.2 that the GLS and maximum likelihood
estimators are simply equation by equation ordinary least squares and that the estimator
of � is just S, the sample covariance matrix of the least squares residuals. The asymptotic
covariance matrix for the 2N × 1 estimator [a, b]′ will be

Asy. Var[a, b]′ = 1
T

plim

[(
X′X

T

)−1

⊗ �

]
= 1

Tσ 2
z

[
σ 2

z + µ2
z µz

µz 1

]
⊗ �,

which we will estimate with (X′X)−1 ⊗ S. [Plim z′z/T = plim[(1/T)�t (zt − z̄)2 + z̄2] =
(σ 2

z + µ2
z).]

The model above does not impose the Markowitz–Sharpe–Lintner hypothesis, H0:
α = 0. A Wald test of H0 can be based on the unrestricted least squares estimates:

W = (a − 0)′
{

Est.Asy. Var[a − 0]
}−1

(a − 0) = a′[(X′X)11S]−1a =
(

Ts2
z

s2
z + z̄2

)
a′S−1a.

[To carry out this test, we now require that T be greater than or equal to N, so that
S = (1/T)�t et e′

t will have full rank. The assumption was not necessary until this point.]
Under the null hypothesis, the statistic has a limiting chi-squared distribution with
N degrees of freedom. The small-sample misbehavior of the Wald statistic has been
widely observed. An alternative that is likely to be better behaved is [(T − N−1)/N]W,
which is exactly distributed as F[N, T − N − 1] under the null hypothesis. To carry out
a likelihood ratio or Lagrange multiplier test of the null hypothesis, we will require the
restricted estimates. By setting α = 0 in the model, we obtain, once again, a SUR model
with identical regressor, so the restricted maximum likelihood estimators are a0i = 0
and b0i = y′

i z/z′z. The restricted estimator of � is, as before, the matrix of mean squares
and cross products of the residuals, now S0. The chi-squared statistic for the likelihood
ratio test is given in (14-24); for this application, it would be

λ = N(ln|S0| − ln|S|).
To compute the LM statistic, we will require the derivatives of the unrestricted log-

likelihood function, evaluated at the restricted estimators, which are given in (14-21).
For this model, they may be written

∂ ln L
∂αi

=
n∑

j=1

σ i j

(
T∑

t=1

ε j t

)
=

N∑
j=1

σ i j (T ε̄ j ),

where σ i j is the ijth element of �−1, and

∂ ln L
∂βi

=
n∑

j=1

σ i j

(
T∑

t=1

ztε j t

)
=

N∑
j=1

σ i j (z′ε j ).
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The first derivatives with respect to β will be zero at the restricted estimates, since the
terms in parentheses are the normal equations for restricted least squares; remember,
the residuals are now e0i t = yit −b0i zt . The first vector of first derivatives can be written
as

∂ ln L
∂α

= �−1E′i = �−1(Tε̄),

where i is a T × 1 vector of 1s, E is a T × N matrix of disturbances, and ε̄ is the N × 1
vector of means of asset specific disturbances. (The second subvector is ∂ ln L/∂β =
�−1E′z.) Since ∂ ln L/∂β = 0 at the restricted estimates, the LM statistic involves only
the upper left submatrix of −H−1. Combining terms and inserting the restricted esti-
mates, we obtain

LM = [
T ē′

0S−1
0 : 0′]′[X′X ⊗ S−1

0

]−1[
T ē′

0S−1
0 : 0′]

= T2(X′X)11ē′
0S−1

0 ē0

= T
(

s2
z + z̄2

s2
z

)
ē′

0S−1
0 ē0.

Under the null hypothesis, the limiting distribution of LM is chi-squared with N degrees
of freedom.

The model formulation gives E [Rit ] = Rf t + βi
(

E [Rmt ] − Rf t
)
. If there is no risk-

free asset but we write the model in terms of γ , the unknown return on a zero-beta
portfolio, then we obtain

Rit = γ + βi (Rmt − γ ) + εi t

= (1 − βi )γ + βi Rmt + εi t .

This is essentially the same as the original model, with two modifications. First, the
observables in the model are real returns, not excess returns, which defines the way
the data enter the model. Second, there are nonlinear restrictions on the parameters;
αi = (1 − βi )γ . Although the unrestricted model has 2N free parameters, Black’s for-
mulation implies N − 1 restrictions and leaves N + 1 free parameters. The nonlinear
restrictions will complicate finding the maximum likelihood estimators. We do know
from (14-21) that regardless of what the estimators of βi and γ are, the estimator of � is
still S = (1/T)E′E. So, we can concentrate the log-likelihood function. The Oberhofer
and Kmenta (1974) results imply that we may simply zigzag back and forth between
S and (β̂, γ̂ ) (See Section 11.7.2.) Second, although maximization over (β, γ ) remains
complicated, maximization over β for known γ is trivial. For a given value of γ , the
maximum likelihood estimator of βi is the slope in the linear regression without a con-
stant term of (Rit −γ ) on (Rmt −γ ). Thus, the full set of maximum likelihood estimators
may be found just by scanning over the admissible range of γ to locate the value that
maximizes

ln Lc = −1
2

ln|S(γ )|,
where

si j (γ ) =
∑T

t=1

{
Rit − γ [1 − β̂ i (γ )] − β̂ i (γ )Rmt

}{
Rjt − γ [1 − β̂ j (γ )] − β̂ j (γ )Rmt

}
T

,
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and

β̂ i (γ ) =
∑T

t=1(Rit − γ )(Rmt − γ )∑T
t=1(Rmt − γ )2

.

For inference purposes, an estimator of the asymptotic covariance matrix of the
estimators is required. The log-likelihood for this model is

ln L = −T
2

[N ln 2π + ln|�|] − 1
2

T∑
t=1

ε′
t�

−1εt

where the N×1 vector εt is εi t = [Rit −γ (1−βi )−βi Rmt ], i = 1, . . . , N. The derivatives
of the log-likelihood can be written

∂ ln L
∂[β ′ γ ]′

=
T∑

t=1

[
(Rmt − γ )�−1εt

(i − β)′�−1εt

]
=

T∑
t=1

g t .

(We have omitted � from the gradient because the expected Hessian is block diagonal,
and, at present, � is tangential.) With the derivatives in this form, we have

E [g t g′
t ] =

[
(Rmt − γ )2�−1 (Rmt − γ )�−1(i − β)

(Rmt − γ )(i − β)′�−1 (i − β)′�−1(i − β)

]
. (14-27)

Now, sum this expression over t and use the result that
T∑

t=1

(Rmt − γ )2 =
T∑

t=1

(Rmt − R̄m)2 + T(R̄m − γ )2 = T
[
s2

Rm + (R̄m − γ )2]
to obtain the negative of the expected Hessian,

−E

 ∂2 ln L

∂

[
β

γ

]
∂

[
β

γ

]′

 = T

[[
s2

Rm + (R̄m − γ )2
]
�−1 (R̄m − γ )�−1(i − β)

(R̄m − γ )(i − β)′�−1 (i − β)′�−1(i − β)

]
. (14-28)

The inverse of this matrix provides the estimator for the asymptotic covariance matrix.
Using (A-74), after some manipulation we find that

Asy. Var[γ̂ ] = 1
T

[
1 + (µRm − γ )2

σ 2
Rm

]
[(i − β)′�−1(i − β)]−1.

where µRm = plim R̄m and σ 2
Rm = plim s2

Rm.
A likelihood ratio test of the Black model requires the restricted estimates of the

parameters. The unrestricted model is the SUR model for the real returns, Rit on the
market returns, Rmt , with N free constants, αi , and N free slopes, βi . Result (14-24)
provides the test statistic. Once the estimates of βi and γ are obtained, the implied
estimates of αi are given by αi = (1−βi )γ . With these estimates in hand, the LM statistic
is exactly what it was before, although now all 2N derivatives will be required and X is
[i, Rm]. The subscript ∗ indicates computation at the restricted estimates;

LM = T
(

s2
Rm + R̄2

m

s2
Rm

)
ē′

∗S−1
∗ ē∗ +

(
1

Ts2
Rm

)
R′

mE∗S−1
∗ E′

∗Rm −
(

2R̄m

s2
z

)
R′

mE∗S−1
∗ ē∗.
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A Wald test of the Black model would be based on the unrestricted estimators. The
hypothesis appears to involve the unknown γ , but in fact, the theory implies only
the N − 1 nonlinear restrictions: [(αi/αN) − (1 − βi )/(1 − βN)] = 0 or [αi (1 − βN) −
αN(1 − βi )] = 0. Write this set of N − 1 functions as c(α, β) = 0. The Wald statistic
based on the least squares estimates would then be

W = c(a, b)′
{

Est.Asy. Var[c(a, b)]
}−1c(a, b).

Recall in the unrestricted model that Asy. Var[a, b] = (1/T)plim(X′X/T)−1 ⊗ � = 	,
say. Using the delta method (see Section D.2.7), the asymptotic covariance matrix for
c(a, b) would be

Asy. Var[c(a, b)] = 
	
′ where 
 = ∂c(α, β)

∂(α, β)
.

The ith row of the 2N × 2N matrix 
 has four only nonzero elements, one each in the
ith and Nth positions of each of the two subvectors.

Before closing this lengthy example, we reconsider the assumptions of the model.
There is ample evidence [e.g., Affleck–Graves and McDonald (1989)] that the normality
assumption used in the preceding is not appropriate for financial returns. This fact in
itself does not complicate the analysis very much. Although the estimators derived
earlier are based on the normal likelihood, they are really only generalized least squares.
As we have seen before (in Chapter 10), GLS is robust to distributional assumptions. The
LM and LR tests we devised are not, however. Without the normality assumption, only
the Wald statistics retain their asymptotic validity. As noted, the small-sample behavior
of the Wald statistic can be problematic. The approach we have used elsewhere is to
use an approximation, F = W/J , where J is the number of restrictions, and refer the
statistic to the more conservative critical values of the F[J, q] distribution, where q
is the number of degrees of freedom in estimation. Thus, once again, the role of the
normality assumption is quite minor.

The homoscedasticity and nonautocorrelation assumptions are potentially more
problematic. The latter almost certainly invalidates the entire model. [See Campbell,
Lo, and MacKinlay (1997) for discussion.] If the disturbances are only heteroscedastic,
then we can appeal to the well-established consistency of ordinary least squares in the
generalized regression model. A GMM approach might seem to be called for, but GMM
estimation in this context is irrelevant. In all cases, the parameters are exactly identified.
What is needed is a robust covariance estimator for our now pseudomaximum likelihood
estimators. For the Sharpe–Lintner formulation, nothing more than the White estimator
that we developed in Chapters 10 and 11 is required; after all, despite the complications
of the models, the estimators both with and without the restrictions are ordinary least
squares, equation by equation. For each equation separately, the robust asymptotic
covariance matrix in (10-14) applies. For the least squares estimators qi = (ai , bi ), we
seek a robust estimator of

Asy. Cov[qi , q j ] = T plim(X′X)−1X′εiε
′
j X(X′X)−1.

Assuming that E [εi tε j t ] = σi j , this matrix can be estimated with

Est.Asy. Cov[qi , q j ] = [(X′X)−1]

(
T∑

t=1

xt x′
t ei t e jt

)
[(X′X)−1].
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To form a counterpart for the Black model, we will once again rely on the assumption
that the asymptotic covariance of the MLE of � and the MLE of (β ′, γ ) is zero. Then
the “sandwich” estimator for this M estimator (see Section 17.8) is

Est. Asy. Var(β̂, γ ) = A−1BA−1
,

where A appears in (14-28) and B is in (14-27).

14.2.6 MAXIMUM LIKELIHOOD ESTIMATION OF THE SEEMINGLY
UNRELATED REGRESSIONS MODEL WITH A BLOCK
OF ZEROS IN THE COEFFICIENT MATRIX

In Section 14.2.2, we considered the special case of the SUR model with identical re-
gressors in all equations. We showed there that in this case, OLS and GLS are identical.
In the SUR model with normally distributed disturbances, GLS is the maximum likeli-
hood estimator. It follows that when the regressors are identical, OLS is the maximum
likelihood estimator. In this section, we consider a related case in which the coefficient
matrix contains a block of zeros. The block of zeros is created by excluding the same
subset of the regressors from some of but not all the equations in a model that without
the exclusion restriction is a SUR with the same regressors in all equations.

This case can be examined in the context of the derivation of the GLS estimator in
(14-7), but it is much simpler to obtain the result we seek for the maximum likelihood
estimator. The model we have described can be formulated as in (14-16) as follows.
We first transpose the equation system in (14-16) so that observation t on y1, . . . , yM is
written

yt = �xt + εt .

If we collect all T observations in this format, then the system would appear as

Y′ = � X′ + E′ .

M × T M × K K × T M × T

(Each row of � contains the parameters in a particular equation.) Now, consider once
again a particular observation and partition the set of dependent variables into two
groups of M1 and M2 variables and the set of regressors into two sets of K1 and K2

variables. The equation system is now(
y1

y2

)
t

=
[
�11 �12

�21 �22

] (
x1

x2

)
t
+

(
ε1

ε2

)
t
, E

[
ε1

ε2

∣∣∣∣ X
]

t
=

[
0
0

]
, Var

[
ε1

ε2

∣∣∣∣ X
]

t
=

[
�11 �12

�21 �22

]
.

Since this system is still a SUR model with identical regressors, the maximum likelihood
estimators of the parameters are obtained using equation by equation least squares
regressions. The case we are interested in here is the restricted model, with �12 = 0,
which has the effect of excluding x2 from all the equations for y1. The results we will
obtain for this case are:

1. The maximum likelihood estimator of �11 when �12 = 0 is equation-by-equation
least squares regression of the variables in y1 on x1 alone. That is, even with the
restriction, the efficient estimator of the parameters of the first set of equations is
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equation-by-equation ordinary least squares. Least squares is not the efficient
estimator for the second set, however.

2. The effect of the restriction on the likelihood function can be isolated to its effect
on the smaller set of equations. Thus, the hypothesis can be tested without
estimating the larger set of equations.

We begin by considering maximum likelihood estimation of the unrestricted system.
The log-likelihood function for this multivariate regression model is

ln L =
T∑

t=1

ln f (y1t , y2t | x1t , x2t )

where f (y1t , y2t | x1t , x2t ) is the joint normal density of the two vectors. This result is
(14-17) through (14-19) in a different form. We will now write this joint normal density
as the product of a marginal and a conditional:

f (y1t , y2t | x1t , x2t ) = f (y1t | x1t , x2t ) f (y2t | y1t , x1t , x2t ).

The mean and variance of the marginal distribution for y1t are just the upper portions
of the preceding partitioned matrices:

E [y1t | x1t , x2t ] = �11x1t + �12x2t , Var[y1t | x1t , x2t ] = �11.

The results we need for the conditional distribution are given in Theorem B.6. Collecting
terms, we have

E [y2t | y1t , x1t , x2t ] = [
�21 − �21�

−1
11 �11

]
x1t + [

�22 − �21�
−1
11 �12

]
x2t + [

�21�
−1
11

]
y1t

= �21x1t + �22x2t + 
y1t ,

Var[y2t | y1t , x1t , x2t ] = �22 − �21�
−1
11 �12 = �22.

Finally, since the marginal distributions and the joint distribution are all multivariate
normal, the conditional distribution is also. The objective of this partitioning is to par-
tition the log-likelihood function likewise;

ln L =
T∑

t=1

ln f (y1t , y2t | x1t , x2t )

=
T∑

t=1

ln f (y1t | x1t , x2t ) f (y2t | y1t , x1t , x2t )

=
T∑

t=1

ln f (y1t | x1t , x2t ) +
T∑

t=1

ln f (y2t | y1t , x1t , x2t ).

With no restrictions on any of the parameters, we can maximize this log-likelihood by
maximizing its parts separately. There are two multivariate regression systems defined
by the two parts, and they have no parameters in common. Because �21, �22, �21,
and �22 are all free, unrestricted parameters, there are no restrictions imposed on
�21, �22, 
, or �22. Therefore, in each case, the efficient estimators are equation-by-
equation ordinary least squares. The first part produces estimates of �11, �22, and �11

directly. From the second, we would obtain estimates of �21, �22, 
, and �22. But it is
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easy to see in the relationships above how the original parameters can be obtained from
these mixtures:

�21 = �21 + 
�11,

�22 = �22 + 
�12,

�21 = 
�11,

�22 = �22 + 
�11

′.

Because of the invariance of maximum likelihood estimators to transformation, these
derived estimators of the original parameters are also maximum likelihood estimators.
Thus, the result we have up to this point is that by manipulating this pair of sets of
ordinary least squares estimators, we can obtain the original least squares, efficient
estimators. This result is no surprise, of course, since we have just rearranged the original
system and we are just rearranging our least squares estimators.

Now, consider estimation of the same system subject to the restriction �12 = 0. The
second equation system is still completely unrestricted, so maximum likelihood esti-
mates of its parameters, �21, �22 (which now equals �22), 
, and �22, are still obtained
by equation-by-equation least squares. The equation systems have no parameters in
common, so maximum likelihood estimators of the first set of parameters are obtained
by maximizing the first part of the log-likelihood, once again, by equation-by-equation
ordinary least squares. Thus, our first result is established. To establish the second result,
we must obtain the two parts of the log-likelihood. The log-likelihood function for this
model is given in (14-20). Since each of the two sets of equations is estimated by least
squares, in each case (null and alternative), for each part, the term in the log-likelihood
is the concentrated log-likelihood given in (14-22), where W j j is (1/T) times the ma-
trix of sums of squares and cross products of least squares residuals. The second set of
equations is estimated by regressions on x1, x2, and y1 with or without the restriction
�12 = 0. So, the second part of the log-likelihood is always the same,

ln L2c = −T
2

[M2(1 + ln 2π) + ln|W22|].

The concentrated log-likelihood for the first set of equations equals

ln L1c = −T
2

[M1(1 + ln 2π) + ln|W11|],

when x2 is included in the equations, and the same with W11(�12 = 0) when x2 is ex-
cluded. At the maximum likelihood estimators, the log-likelihood for the whole system is

ln Lc = ln L1c + ln L2c.

The likelihood ratio statistic is

λ = −2[(ln Lc | �12 = 0) − (ln Lc)] = T[ln|W11(�12 = 0)| − ln|W11|].
This establishes our second result, since W11 is based only on the first set of equations.

The block of zeros case was analyzed by Goldberger (1970). Many regression sys-
tems in which the result might have proved useful (e.g., systems of demand equations)
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imposed cross-equation equality (symmetry) restrictions, so the result of the analysis
was often derailed. Goldberger’s result, however, is precisely what is needed in the more
recent application of testing for Granger causality in the context of vector autoregres-
sions. We will return to the issue in Section 19.6.5.

14.2.7 AUTOCORRELATION AND HETEROSCEDASTICITY

The seemingly unrelated regressions model can be extended to allow for autocorrelation
in the same fashion as in Section 13.9.5. To reiterate, suppose that

yi = Xiβ i + εi ,

εi t = ρiεi,t−1 + uit ,

where uit is uncorrelated across observations. This extension will imply that the blocks
in � in (14-3), instead of σi j I, are σi j�i j , where �i j is given in (13-63).

The treatment developed by Parks (1967) is the one we used earlier.19 It calls for a
three-step approach:

1. Estimate each equation in the system by ordinary least squares. Compute any
consistent estimators of ρ. For each equation, transform the data by the
Prais–Winsten transformation to remove the autocorrelation.20 Note that there
will not be a constant term in the transformed data because there will be a column
with (1 − r2

i )1/2 as the first observation and (1 − ri ) for the remainder.
2. Using the transformed data, use ordinary least squares again to estimate �.
3. Use FGLS based on the estimated � and the transformed data.

There is no benefit to iteration. The estimator is efficient at every step, and iteration
does not produce a maximum likelihood estimator because of the Jacobian term in the
log likelihood [see (12-30)]. After the last step, � should be reestimated with the GLS
estimates. The estimated covariance matrix for ε can then be reconstructed using

σ̂mn(ε) = σ̂mn

1 − rmrn
.

As in the single equation case, opinions differ on the appropriateness of such cor-
rections for autocorrelation. At one extreme is Mizon (1995) who argues forcefully
that autocorrelation arises as a consequence of a remediable failure to include dynamic
effects in the model. However, in a system of equations, the analysis that leads to this

19Guilkey and Schmidt (1973), Guilkey (1974) and Berndt and Savin (1977) present an alternative treatment
based on εt = Rεt−1 + ut , where εt is the M× 1 vector of disturbances at time t and R is a correlation matrix.
Extensions and additional results appear in Moschino and Moro (1994), McLaren (1996), and Holt (1998).
20There is a complication with the first observation that is not treated quite correctly by this procedure. For
details, see Judge et al. (1985, pp. 486–489). The strictly correct (and quite cumbersome) results are for the
true GLS estimator, which assumes a known �. It is unlikely that in a finite sample, anything is lost by using
the Prais–Winsten procedure with the estimated �. One suggestion has been to use the Cochrane–Orcutt
procedure and drop the first observation. But in a small sample, the cost of discarding the first observation is
almost surely greater than that of neglecting to account properly for the correlation of the first disturbance
with the other first disturbances.
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TABLE 14.4 Autocorrelation Coefficients

GM CH GE WE US

Durbin–Watson 0.9375 1.984 1.0721 1.413 0.9091
Autocorrelation 0.531 0.008 0.463 0.294 0.545

Residual Covariance Matrix [σ̂i j/(1 − ri r j)]

GM 6679.5
CH −220.97 151.96
GE 483.79 43.7891 684.59
WE 88.373 19.964 190.37 92.788
US −1381.6 342.89 1484.10 676.88 8638.1

Parameter Estimates (Standard Errors in Parentheses)
β1 −51.337 −0.4536 −24.913 4.7091 14.0207

(80.62) (11.86) (25.67) (6.510) (96.49)
β2 0.094038 0.06847 0.04271 0.05091 0.16415

(0.01733) (0.0174) (0.01134) (0.01060) (0.0386)
β3 0.040723 0.32041 0.10954 0.04284 0.2006

(0.04216) (0.0258) (0.03012) (0.04127) (0.1428)

conclusion is going to be far more complex than in a single equation model.21 Suffice
to say, the issue remains to be settled conclusively.

Example 14.3 Autocorrelation in a SUR Model
Table 14.4 presents the autocorrelation-corrected estimates of the model of Example 14.2.
The Durbin–Watson statistics for the five data sets given here, with the exception of Chrysler,
strongly suggest that there is, indeed, autocorrelation in the disturbances. The differences
between these and the uncorrected estimates given earlier are sometimes relatively large, as
might be expected, given the fairly high autocorrelation and small sample size. The smaller
diagonal elements in the disturbance covariance matrix compared with those of Example
14.2 reflect the improved fit brought about by introducing the lagged variables into the
equation.

In principle, the SUR model can accommodate heteroscedasticity as well as au-
tocorrelation. Bartels and Feibig (1991) suggested the generalized SUR model, � =
A[� ⊗ I]A′ where A is a block diagonal matrix. Ideally, A is made a function of mea-
sured characteristics of the individual and a separate parameter vector, θ , so that the
model can be estimated in stages. In a first step, OLS residuals could be used to form a
preliminary estimator of θ , then the data are transformed to homoscedasticity, leaving
� and β to be estimated at subsequent steps using transformed data. One applica-
tion along these lines is the random parameters model of Feibig, Bartels and Aigner
(1991)—(13-46) shows how the random parameters model induces heteroscedastic-
ity. Another application is Mandy and Martins–Filho, who specified σi j (t) = α′

i j zi j (t).
(The linear specification of a variance does present some problems, as a negative
value is not precluded.) Kumbhakar and Heshmati (1996) proposed a cost and demand

21Dynamic SUR models in the spirit of Mizon’s admonition were proposed by Anderson and Blundell (1982).
A few recent applications are Kiviet, Phillips, and Schipp (1995) and Deschamps (1998). However, relatively
little work has been done with dynamic SUR models. The VAR models in Chapter 20 are an important group
of applications, but they come from a different analytical framework.
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system that combined the translog model of Section 14.3.2 with the complete equation
system in 14.3.1. In their application, only the cost equation was specified to include a
heteroscedastic disturbance.

14.3 SYSTEMS OF DEMAND EQUATIONS:
SINGULAR SYSTEMS

Most of the recent applications of the multivariate regression model22 have been in the
context of systems of demand equations, either commodity demands or factor demands
in studies of production.

Example 14.4 Stone’s Expenditure System
Stone’s expenditure system23 based on a set of logarithmic commodity demand equations,
income Y , and commodity prices pn is

log qi = αi + ηi log

(
Y
P

)
+

M∑
j =1

η∗
i j log

(
pj

P

)
,

where P is a generalized (share-weighted) price index, ηi is an income elasticity, and η∗
i j

is a compensated price elasticity. We can interpret this system as the demand equation in
real expenditure and real prices. The resulting set of equations constitutes an econometric
model in the form of a set of seemingly unrelated regressions. In estimation, we must account
for a number of restrictions including homogeneity of degree one in income, �i ηi = 1, and
symmetry of the matrix of compensated price elasticities, η∗

i j = η∗
j i .

Other examples include the system of factor demands and factor cost shares from
production, which we shall consider again later. In principle, each is merely a particular
application of the model of the previous section. But some special problems arise in
these settings. First, the parameters of the systems are generally constrained across
equations. That is, the unconstrained model is inconsistent with the underlying theory.24

The numerous constraints in the system of demand equations presented earlier give an
example. A second intrinsic feature of many of these models is that the disturbance
covariance matrix � is singular.

22Note the distinction between the multivariate or multiple-equation model discussed here and the multiple
regression model.
23A very readable survey of the estimation of systems of commodity demands is Deaton and Muellbauer
(1980). The example discussed here is taken from their Chapter 3 and the references to Stone’s (1954a,b)
work cited therein. A counterpart for production function modeling is Chambers (1988). Recent developments
in the specification of systems of demand equations include Chavez and Segerson (1987), Brown and Walker
(1995), and Fry, Fry, and McLaren (1996).
24This inconsistency does not imply that the theoretical restrictions are not testable or that the unrestricted
model cannot be estimated. Sometimes, the meaning of the model is ambiguous without the restrictions,
however. Statistically rejecting the restrictions implied by the theory, which were used to derive the econo-
metric model in the first place, can put us in a rather uncomfortable position. For example, in a study of
utility functions, Christensen, Jorgenson, and Lau (1975), after rejecting the cross-equation symmetry of a
set of commodity demands, stated, “With this conclusion we can terminate the test sequence, since these
results invalidate the theory of demand” (p. 380). See Silver and Ali (1989) for discussion of testing symmetry
restrictions.
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14.3.1 COBB–DOUGLAS COST FUNCTION
(EXAMPLE 7.3 CONTINUED)

Consider a Cobb–Douglas production function,

Y = α0

M∏
i=1

xαi
i .

Profit maximization with an exogenously determined output price calls for the firm to
maximize output for a given cost level C (or minimize costs for a given output Y). The
Lagrangean for the maximization problem is

� = α0

M∏
i=1

xαi
i + λ(C − p′x),

where p is the vector of M factor prices. The necessary conditions for maximizing this
function are

∂�

∂xi
= αi Y

xi
− λpi = 0 and

∂�

∂λ
= C − p′x = 0.

The joint solution provides xi (Y, p) and λ(Y, p). The total cost of production is

M∑
i=1

pi xi =
M∑

i=1

αi Y
λ

.

The cost share allocated to the ith factor is
pi xi∑M

i=1 pi xi
= αi∑M

i=1 αi
= βi . (14-29)

The full model is25

ln C = β0 + βy ln Y +
M∑

i=1
βi ln pi + εc,

si = βi + εi , i = 1, . . . , M.

(14-30)

By construction,
∑M

i=1 βi = 1 and
∑M

i=1 si = 1. (This is the cost function analysis begun
in Example 7.3. We will return to that application below.) The cost shares will also
sum identically to one in the data. It therefore follows that

∑M
i=1 εi = 0 at every data

point, so the system is singular. For the moment, ignore the cost function. Let the M×1
disturbance vector from the shares be ε = [ε1, ε2, . . . , εM]′. Since ε′i = 0, where i is a
column of 1s, it follows that E [εε′i] = �i = 0, which implies that � is singular. Therefore,
the methods of the previous sections cannot be used here. (You should verify that the
sample covariance matrix of the OLS residuals will also be singular.)

The solution to the singularity problem appears to be to drop one of the equations,
estimate the remainder, and solve for the last parameter from the other M − 1. The
constraint

∑M
i=1 βi = 1 states that the cost function must be homogeneous of degree one

25We leave as an exercise the derivation of β0, which is a mixture of all the parameters, and βy, which equals
1/�mαm.
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in the prices, a theoretical necessity. If we impose the constraint

βM = 1 − β1 − β2 − · · · − βM−1, (14-31)

then the system is reduced to a nonsingular one:

log
(

C
pM

)
= β0 + βy log Y +

M−1∑
i=1

βi log
(

pi

pM

)
+ εc,

si = βi + εi , i = 1, . . . , M − 1

This system provides estimates of β0, βy, and β1, . . . , βM−1. The last parameter is esti-
mated using (14-31). In principle, it is immaterial which factor is chosen as the numeraire.
Unfortunately, the FGLS parameter estimates in the now nonsingular system will de-
pend on which one is chosen. Invariance is achieved by using maximum likelihood
estimates instead of FGLS,26 which can be obtained by iterating FGLS or by direct
maximum likelihood estimation.27

Nerlove’s (1963) study of the electric power industry that we examined in Exam-
ple 7.3 provides an application of the Cobb–Douglas cost function model. His ordinary
least squares estimates of the parameters were listed in Example 7.3. Among the results
are (unfortunately) a negative capital coefficient in three of the six regressions. Nerlove
also found that the simple Cobb–Douglas model did not adequately account for the
relationship between output and average cost. Christensen and Greene (1976) further
analyzed the Nerlove data and augmented the data set with cost share data to estimate
the complete demand system. Appendix Table F14.2 lists Nerlove’s 145 observations
with Christensen and Greene’s cost share data. Cost is the total cost of generation in
millions of dollars, output is in millions of kilowatt-hours, the capital price is an index of
construction costs, the wage rate is in dollars per hour for production and maintenance,
the fuel price is an index of the cost per Btu of fuel purchased by the firms, and the data
reflect the 1955 costs of production. The regression estimates are given in Table 14.5.

Least squares estimates of the Cobb–Douglas cost function are given in the first
column.28 The coefficient on capital is negative. Because βi = βy∂ ln Y/∂ ln xi —that is,
a positive multiple of the output elasticity of the ith factor—this finding is troubling.
The third column gives the maximum likelihood estimates obtained in the constrained
system. Two things to note are the dramatically smaller standard errors and the now
positive (and reasonable) estimate of the capital coefficient. The estimates of economies
of scale in the basic Cobb–Douglas model are 1/βy = 1.39 (column 1) and 1.25 (col-
umn 3), which suggest some increasing returns to scale. Nerlove, however, had found
evidence that at extremely large firm sizes, economies of scale diminished and even-
tually disappeared. To account for this (essentially a classical U-shaped average cost
curve), he appended a quadratic term in log output in the cost function. The single
equation and maximum likelihood multivariate regression estimates are given in the
second and fourth sets of results.

26The invariance result is proved in Barten (1969).
27Some additional results on the method are given by Revankar (1976).
28Results based on Nerlove’s full data set are given in Example 7.3. We have recomputed the values given in
Table 14.5. Note that Nerlove used base 10 logs while we have used natural logs in our computations.
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TABLE 14.5 Regression Estimates (Standard Errors in Parentheses)

Ordinary Least Squares Multivariate Regression

β0 −4.686 (0.885) −3.764 (0.702) −7.281 (0.104) −5.962 (0.161)
βq 0.721 (0.0174) 0.153 (0.0618) 0.798 (0.0147) 0.303 (0.0570)
βqq — 0.0505 (0.00536) — 0.0414 (0.00493)
βk −0.00847 (0.191) 0.0739 (0.150) 0.424 (0.00945) 0.424 (0.00943)
β1 0.594 (0.205) 0.481 (0.161) 0.106 (0.00380) 0.106 (0.00380)
β f 0.414 (0.0989) 0.445 (0.0777) 0.470 (0.0100) 0.470 (0.0100)
R2 0.9516 0.9581 — —
Log |W| — — −12.6726 −13.02248
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FIGURE 14.3 Predicted and Actual Average Costs.

The quadratic output term gives the cost function the expected U-shape. We can
determine the point where average cost reaches its minimum by equating ∂ ln C/∂ ln q
to 1. This is q∗ = exp[(1 − βq)/(2βqq)]. For the multivariate regression, this value is
q∗ = 4527. About 85 percent of the firms in the sample had output less than this, so by
these estimates, most firms in the sample had not yet exhausted the available economies
of scale. Figure 14.3 shows predicted and actual average costs for the sample. (In order
to obtain a reasonable scale, the smallest one third of the firms are omitted from the
figure. Predicted average costs are computed at the sample averages of the input prices.
The figure does reveal that that beyond a quite small scale, the economies of scale, while
perhaps statistically significant, are economically quite small.
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14.3.2 FLEXIBLE FUNCTIONAL FORMS: THE TRANSLOG
COST FUNCTION

The literatures on production and cost and on utility and demand have evolved in several
directions. In the area of models of producer behavior, the classic paper by Arrow et al.
(1961) called into question the inherent restriction of the Cobb–Douglas model that
all elasticities of factor substitution are equal to 1. Researchers have since developed
numerous flexible functions that allow substitution to be unrestricted (i.e., not even
constant).29 Similar strands of literature have appeared in the analysis of commodity
demands.30 In this section, we examine in detail a model of production.

Suppose that production is characterized by a production function, Y = f (x). The
solution to the problem of minimizing the cost of producing a specified output rate given
a set of factor prices produces the cost-minimizing set of factor demands xi = xi (Y, p).
The total cost of production is given by the cost function,

C =
M∑

i=1

pi xi (Y, p) = C(Y, p). (14-32)

If there are constant returns to scale, then it can be shown that C = Yc(p) or

C/Y = c(p),

where c(p) is the unit or average cost function.31 The cost-minimizing factor demands
are obtained by applying Shephard’s (1970) lemma, which states that if C(Y, p) gives
the minimum total cost of production, then the cost-minimizing set of factor demands
is given by

x∗
i = ∂C(Y, p)

∂pi
= Y∂c(p)

∂pi
. (14-33)

Alternatively, by differentiating logarithmically, we obtain the cost-minimizing factor
cost shares:

si = ∂ log C(Y, p)

∂ log pi
= pi xi

C
. (14-34)

With constant returns to scale, ln C(Y, p) = log Y + log c(p), so

si = ∂ log c(p)

∂ log pi
. (14-35)

29See, in particular, Berndt and Christensen (1973). Two useful surveys of the topic are Jorgenson (1983) and
Diewert (1974).
30See, for example, Christensen, Jorgenson, and Lau (1975) and two surveys, Deaton and Muellbauer (1980)
and Deaton (1983). Berndt (1990) contains many useful results.
31The Cobb–Douglas function of the previous section gives an illustration. The restriction of constant returns
to scale is βy = 1, which is equivalent to C = Yc(p). Nerlove’s more general version of the cost function
allows nonconstant returns to scale. See Christensen and Greene (1976) and Diewert (1974) for some of the
formalities of the cost function and its relationship to the structure of production.
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In many empirical studies, the objects of estimation are the elasticities of factor substi-
tution and the own price elasticities of demand, which are given by

θi j = c(∂2c/∂pi∂pj )

(∂c/∂pi )(∂c/∂pj )

and

ηi i = siθi i .

By suitably parameterizing the cost function (14-32) and the cost shares (14-33), we
obtain an M or M+ 1 equation econometric model that can be used to estimate these
quantities.32

The transcendental logarithmic, or translog, function is the most frequently used
flexible function in empirical work.33 By expanding log c(p) in a second-order Taylor
series about the point log p = 0, we obtain

log c ≈ β0 +
M∑

i=1

(
∂ log c
∂ log pi

)
log pi + 1

2

M∑
i=1

M∑
j=1

(
∂2 log c

∂ log pi ∂ log pj

)
log pi log pj ,

(14-36)

where all derivatives are evaluated at the expansion point. If we identify these deriva-
tives as coefficients and impose the symmetry of the cross-price derivatives, then the
cost function becomes

log c = β0 + β1 log p1 + · · · + βM log pM + δ11
( 1

2 log2 p1
) + δ12 log p1 log p2

+ δ22
( 1

2 log2 p2
) + · · · + δMM

( 1
2 log2 pM

)
. (14-37)

This is the translog cost function. If δi j equals zero, then it reduces to the Cobb–Douglas
function we looked at earlier. The cost shares are given by

s1 = ∂ log c
∂ log p1

= β1 + δ11 log p1 + δ12 log p2 + · · · + δ1M log pM,

s2 = ∂ log c
∂ log p2

= β2 + δ12 log p1 + δ22 log p2 + · · · + δ2M log pM,

...

sM = ∂ log c
∂ log pM

= βM + δ1M log p1 + δ2M log p2 + · · · + δMM log pM.

(14-38)

32The cost function is only one of several approaches to this study. See Jorgenson (1983) for a discussion.
33See Example 2.4. The function was developed by Kmenta (1967) as a means of approximating the CES
production function and was introduced formally in a series of papers by Berndt, Christensen, Jorgenson,
and Lau, including Berndt and Christensen (1973) and Christensen et al. (1975). The literature has produced
something of a competition in the development of exotic functional forms. The translog function has remained
the most popular, however, and by one account, Guilkey, Lovell, and Sickles (1983) is the most reliable of
several available alternatives. See also Example 6.2.
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The cost shares must sum to 1, which requires, in addition to the symmetry restrictions
already imposed,

β1 + β2 + · · · + βM = 1,

M∑
i=1

δi j = 0 (column sums equal zero), (14-39)

M∑
j=1

δi j = 0 (row sums equal zero).

The system of share equations provides a seemingly unrelated regressions model
that can be used to estimate the parameters of the model.34 To make the model opera-
tional, we must impose the restrictions in (14-39) and solve the problem of singularity
of the disturbance covariance matrix of the share equations. The first is accomplished
by dividing the first M− 1 prices by the Mth, thus eliminating the last term in each row
and column of the parameter matrix. As in the Cobb–Douglas model, we obtain a non-
singular system by dropping the Mth share equation. We compute maximum likelihood
estimates of the parameters to ensure invariance with respect to the choice of which
share equation we drop. For the translog cost function, the elasticities of substitution
are particularly simple to compute once the parameters have been estimated:

θi j = δi j + si s j

si s j
, θi i = δi i + si (si − 1)

s2
i

. (14-40)

These elasticities will differ at every data point. It is common to compute them at some
central point such as the means of the data.35

Example 14.5 A Cost Function for U.S. Manufacturing
A number of recent studies using the translog methodology have used a four-factor model,
with capital K , labor L, energy E , and materials M, the factors of production. Among the first
studies to employ this methodology was Berndt and Wood’s (1975) estimation of a translog
cost function for the U.S. manufacturing sector. The three factor shares used to estimate the
model are

sK = βK + δK K log

(
pK

pM

)
+ δK L log

(
pL

pM

)
+ δK E log

(
pE

pM

)
,

sL = βL + δK L log

(
pK

pM

)
+ δLL log

(
pL

pM

)
+ δL E log

(
pE

pM

)
,

sE = βE + δK E log

(
pK

pM

)
+ δL E log

(
pL

pM

)
+ δE E log

(
pE

pM

)
.

34The cost function may be included, if desired, which will provide an estimate ofβ0 but is otherwise inessential.
Absent the assumption of constant returns to scale, however, the cost function will contain parameters of
interest that do not appear in the share equations. As such, one would want to include it in the model. See
Christensen and Greene (1976) for an example.
35They will also be highly nonlinear functions of the parameters and the data. A method of computing
asymptotic standard errors for the estimated elasticities is presented in Anderson and Thursby (1986).
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TABLE 14.6 Parameter Estimates (Standard Errors
in Parentheses)

βK 0.05690 (0.00134) δKM −0.0189 (0.00971)
βL 0.2534 (0.00210) δLL 0.07542 (0.00676)
βE 0.0444 (0.00085) δLE −0.00476 (0.00234)
βM 0.6542 (0.00330) δLM −0.07061 (0.01059)
δKK 0.02951 (0.00580) δEE 0.01838 (0.00499)
δKL −0.000055 (0.00385) δEM −0.00299 (0.00799)
δKE −0.01066 (0.00339) δMM 0.09237 (0.02247)

TABLE 14.7 Estimated Elasticities

Capital Labor Energy Materials

Cost Shares for 1959
Fitted share 0.05643 0.27451 0.04391 0.62515
Actual share 0.06185 0.27303 0.04563 0.61948

Implied Elasticities of Substitution
Capital −7.783
Labor 0.9908 −1.643
Energy −3.230 0.6021 −12.19
Materials 0.4581 0.5896 0.8834 −0.3623

Implied Own Price Elasticities (smθmm)

−0.4392 −0.4510 −0.5353 −0.2265

Berndt and Wood’s data are reproduced in Appendix Table F14.1. Maximum likelihood esti-
mates of the full set of parameters are given in Table 14.6.36

The implied estimates of the elasticities of substitution and demand for 1959 (the central
year in the data) are derived in Table 14.7 using the fitted cost shares. The departure from the
Cobb–Douglas model with unit elasticities is substantial. For example, the results suggest
almost no substitutability between energy and labor37 and some complementarity between
capital and energy.

14.4 NONLINEAR SYSTEMS AND GMM
ESTIMATION

We now consider estimation of nonlinear systems of equations. The underlying theory
is essentially the same as that for linear systems. We briefly consider two cases in this
section, maximum likelihood (or FGLS) estimation and GMM estimation. Since the

36These estimates are not the same as those reported by Berndt and Wood. To purge their data of possible
correlation with the disturbances, they first regressed the prices on 10 exogenous macroeconomic variables,
such as U.S. population, government purchases of labor services, real exports of durable goods, and U.S.
tangible capital stock, and then based their analysis on the fitted values. The estimates given here are, in
general, quite close to those given by Berndt and Wood. For example, their estimates of the first five parameters
are 0.0564, 0.2539, 0.0442, 0.6455, and 0.0254.
37Berndt and Wood’s estimate of θEL for 1959 is 0.64.
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theory is essentially that of Section 14.2.4, most of the following will describe practical
aspects of estimation.

Consider estimation of the parameters of the equation system

y1 = h1(β, X) + ε1,

y2 = h2(β, X) + ε2,
...

yM = hM(β, X) + εM.

(14-41)

There are M equations in total, to be estimated with t = 1, . . . , T observations. There
are K parameters in the model. No assumption is made that each equation has “its
own” parameter vector; we simply use some of or all the K elements in β in each
equation. Likewise, there is a set of T observations on each of P independent variables
xp, p = 1, . . . , P, some of or all that appear in each equation. For convenience, the
equations are written generically in terms of the full β and X. The disturbances are
assumed to have zero means and contemporaneous covariance matrix �. We will leave
the extension to autocorrelation for more advanced treatments.

14.4.1 GLS ESTIMATION

In the multivariate regression model, if � is known, then the generalized least squares
estimator of β is the vector that minimizes the generalized sum of squares

ε(β)′�−1ε(β) =
M∑

i=1

M∑
j=1

σ i j [yi − hi (β, X)]′[y j − h j (β, X)], (14-42)

where ε(β) is an MT × 1 vector of disturbances obtained by stacking the equations
and � = � ⊗ I. [See (14-3).] As we did in Chapter 9, define the pseudoregressors as
the derivatives of the h(β, X) functions with respect to β. That is, linearize each of the
equations. Then the first-order condition for minimizing this sum of squares is

∂ε(β)′�−1ε(β)

∂β
=

M∑
i=1

M∑
j=1

σ i j[2X0′
i (β)ε j (β)

] = 0, (14-43)

where σ i j is the i jth element of �−1 and X0
i (β) is a T × K matrix of pseudoregressors

from the linearization of the ith equation. (See Section 9.2.3.) If any of the parameters
in β do not appear in the ith equation, then the corresponding column of X0

i (β) will be
a column of zeros.

This problem of estimation is doubly complex. In almost any circumstance, solution
will require an iteration using one of the methods discussed in Appendix E. Second, of
course, is that� is not known and must be estimated. Remember that efficient estimation
in the multivariate regression model does not require an efficient estimator of �, only
a consistent one. Therefore, one approach would be to estimate the parameters of each
equation separately using nonlinear least squares. This method will be inefficient if any
of the equations share parameters, since that information will be ignored. But at this
step, consistency is the objective, not efficiency. The resulting residuals can then be used
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to compute

S = 1
T

E′E. (14-44)

The second step of FGLS is the solution of (14-43), which will require an iterative
procedure once again and can be based on S instead of �. With well-behaved pseudore-
gressors, this second-step estimator is fully efficient. Once again, the same theory used
for FGLS in the linear, single-equation case applies here.38 Once the FGLS estimator
is obtained, the appropriate asymptotic covariance matrix is estimated with

Est.Asy. Var[β̂] =
[

M∑
i=1

M∑
j=1

si j X0
i (β)′X0

j (β)

]−1

.

There is a possible flaw in the strategy outlined above. It may not be possible to fit all
the equations individually by nonlinear least squares. It is conceivable that identification
of some of the parameters requires joint estimation of more than one equation. But as
long as the full system identifies all parameters, there is a simple way out of this problem.
Recall that all we need for our first step is a consistent set of estimators of the elements
of β. It is easy to show that the preceding defines a GMM estimator (see Chapter 18.) We
can use this result to devise an alternative, simple strategy. The weighting of the sums
of squares and cross products in (14-42) by σ i j produces an efficient estimator of β.
Any other weighting based on some positive definite A would produce consistent,
although inefficient, estimates. At this step, though, efficiency is secondary, so the choice
of A = I is a convenient candidate. Thus, for our first step, we can find β to minimize

ε(β)′ε(β) =
M∑

i=1

[yi − hi (β, X)]′[yi − hi (β, X)] =
M∑

i=1

T∑
t=1

[yit − hi (β, xi t )]2.

(This estimator is just pooled nonlinear least squares, where the regression function
varies across the sets of observations.) This step will produce the β̂ we need to compute S.

14.4.2 MAXIMUM LIKELIHOOD ESTIMATION

With normally distributed disturbances, the log-likelihood function for this model is
still given by (14-18). Therefore, estimation of � is done exactly as before, using the S in
(14-44). Likewise, the concentrated log-likelihood in (14-22) and the criterion function
in (14-23) are unchanged. Therefore, one approach to maximum likelihood estimation
is iterated FGLS, based on the results in Section 14.2.3. This method will require two
levels of iteration, however, since for each estimated �(βl), written as a function of
the estimates of β obtained at iteration l, a nonlinear, iterative solution is required to
obtain βl+1. The iteration then returns to S. Convergence is based either on S or β̂; if
one stabilizes, then the other will also.

The advantage of direct maximum likelihood estimation that was discussed in
Section 14.2.4 is lost here because of the nonlinearity of the regressions; there is no

38Neither the nonlinearity nor the multiple equation aspect of this model brings any new statistical issues
to the fore. By stacking the equations, we see that this model is simply a variant of the nonlinear regression
model that we treated in Chapter 9 with the added complication of a nonscalar disturbance covariance matrix,
which we analyzed in Chapter 10. The new complications are primarily practical.
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convenient arrangement of parameters into a matrix �. But a few practical aspects to
formulating the criterion function and its derivatives that may be useful do remain.
Estimation of the model in (14-41) might be slightly more convenient if each equation
did have its own coefficient vector. Suppose then that there is one underlying parameter
vector β and that we formulate each equation as

hit = hi [γ i (β), xi t ] + εi t .

Then the derivatives of the log-likelihood function are built up from

∂ ln|S(γ )|
∂γ i

= di = − 1
T

T∑
t=1

 M∑
j=1

si j x0
i t (γ i )e jt (γ j )

, i = 1, . . . , M. (14-45)

It remains to impose the equality constraints that have been built into the model. Since
each γ i is built up just by extracting elements from β, the relevant derivative with
respect to β is just a sum of those with respect to γ .

∂ ln Lc

∂βk
=

n∑
i=1

 Ki∑
g=1

∂ ln Lc

∂γig
1(γig = βk)

,

where 1(γig = βk) equals 1 if γig equals βk and 0 if not. This derivative can be formulated
fairly simply as follows. There are a total of G = ∑n

i=1 Ki parameters in γ , but only
K < G underlying parameters in β. Define the matrix F with G rows and K columns.
Then let Fg j = 1 if γg = β j and 0 otherwise. Thus, there is exactly one 1 and K − 1 0s
in each row of F. Let d be the G × 1 vector of derivatives obtained by stacking di from
(14-77). Then

∂ ln Lc

∂β
= F′d.

The Hessian is likewise computed as a simple sum of terms. We can construct it in blocks
using

Hi j = ∂2 ln Lc

∂γ i ∂γ ′
j

= −
T∑

t=1

si j x0
i t (γ i )x

0
j t (γ j )

′.

The asymptotic covariance matrix for β̂ is once again a sum of terms:

Est.Asy. Var[β̂] = V = [−F′ĤF]−1.

14.4.3 GMM ESTIMATION

All the preceding estimation techniques (including the linear models in the earlier
sections of this chapter) can be obtained as GMM estimators. Suppose that in the general
formulation of the model in (14-41), we allow for nonzero correlation between x0

i t and
εis . (It will not always be present, but we generalize the model to allow this correlation
as a possibility.) Suppose as well that there are a set of instrumental variables zt such
that

E [ztεi t ] = 0, t = 1, . . . , T and i = 1, . . . , M. (14-46)
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(We could allow a separate set of instrumental variables for each equation, but it would
needlessly complicate the presentation.)

Under these assumptions, the nonlinear FGLS and ML estimators above will be
inconsistent. But a relatively minor extension of the instrumental variables technique
developed for the single equation case in Section 10.4 can be used instead. The sample
analog to (14-46) is

1
T

T∑
t=1

zt [yit − hi (β, xt )] = 0, i = 1, . . . , M.

If we use this result for each equation in the system, one at a time, then we obtain exactly
the GMM estimator discussed in Section 10.4. But in addition to the efficiency loss that
results from not imposing the cross-equation constraints in γ i , we would also neglect
the correlation between the disturbances. Let

1
T

Z′�i j Z = E
[

Z′εiε
′
j Z

T

]
. (14-47)

The GMM criterion for estimation in this setting is

q =
M∑

i=1

M∑
j=1

[(yi − hi (β, X))′Z/T][Z′�i j Z/T]i j [Z′(y j − h j (β, X))/T]

(14-48)

=
M∑

i=1

M∑
j=1

[εi (β)′Z/T][Z′�i j Z/T]i j [Z′ε j (β)/T],

where [Z′�i j Z/T]i j denotes the ijth block of the inverse of the matrix with the ijth
block equal to Z′�i j Z/T. (This matrix is laid out in full in Section 15.6.3.)

GMM estimation would proceed in several passes. To compute any of the variance
parameters, we will require an initial consistent estimator ofβ. This step can be done with
equation-by-equation nonlinear instrumental variables—see Section 10.2.4—although
if equations have parameters in common, then a choice must be made as to which to
use. At the next step, the familiar White or Newey–West technique is used to compute,
block by block, the matrix in (14-47). Since it is based on a consistent estimator of β (we
assume), this matrix need not be recomputed. Now, with this result in hand, an iterative
solution to the maximization problem in (14-48) can be sought, for example, using the
methods of Appendix E. The first-order conditions are

∂q
∂β

=
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j [Z′ε j (β)/T] = 0. (14-49)

Note again that the blocks of the inverse matrix in the center are extracted from the
larger constructed matrix after inversion. [This brief discussion might understate the
complexity of the optimization problem in (14-48), but that is inherent in the procedure.]
At completion, the asymptotic covariance matrix for the GMM estimator is estimated
with

VGMM = 1
T

[
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j[Z′X0

j (β)/T
]]−1

.
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14.5 SUMMARY AND CONCLUSIONS

This chapter has surveyed use of the seemingly unrelated regressions model. The SUR
model is an application of the generalized regression model introduced in Chapter
10. The advantage of the SUR formulation is the rich variety of behavioral models
that fit into this framework. We began with estimation and inference with the SUR
model, treating it essentially as a generalized regression. The major difference between
this set of results and the single equation model in Chapter 10 is practical. While the
SUR model is, in principle a single equation GR model with an elaborate covariance
structure, special problems arise when we explicitly recognize its intrinsic nature as a set
of equations linked by their disturbances. The major result for estimation at this step is
the feasible GLS estimator. In spite of its apparent complexity, we can estimate the SUR
model by a straightforward two step GLS approach that is similar to the one we used
for models with heteroscedasticity in Chapter 11. We also extended the SUR model to
autocorrelation and heteroscedasticity, as in Chapters 11 and 12 for the single equation.
Once again, the multiple equation nature of the model complicates these applications.
Maximum likelihood is an alternative method that is useful for systems of demand
equations. This chapter examined a number of applications of the SUR model. Much of
the empirical literature in finance focuses on the capital asset pricing model, which we
considered in Section 14.2.5. Section 14.2.6 developed an important result on estimating
systems in which some equations are derived from the set by excluding some of the
variables. The block of zeros case is useful in the VAR models used in causality testing in
Section 19.6.5. Section 14.3 presented one of the most common recent applications of the
seemingly unrelated regressions model, the estimation of demand systems. One of the
signature features of this literature is the seamless transition from the theoretical models
of optimization of consumers and producers to the sets of empirical demand equations
derived from Roy’s identity for consumers and Shephard’s lemma for producers.

Key Terms and Concepts

• Autocorrelation
• Capital asset pricing model
• Concentrated log-likelihood
• Demand system
• Exclusion restriction
• Expenditure system
• Feasible GLS
• Flexible functional form

• Generalized least squares
• GMM estimator
• Heteroscedasticity
• Homogeneity restriction
• Identical regressors
• Invariance of MLE
• Kronecker product
• Lagrange multiplier statistic

• Likelihood ratio statistic
• Maximum likelihood
• Multivariate regression
• Seemingly unrelated

regressions
• Wald statistic

Exercises

1. A sample of 100 observations produces the following sample data:

ȳ1 = 1, ȳ2 = 2,

y′
1y1 = 150,

y′
2y2 = 550,

y′
1y2 = 260.
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The underlying bivariate regression model is

y1 = µ + ε1,

y2 = µ + ε2.

a. Compute the OLS estimate of µ, and estimate the sampling variance of this
estimator.

b. Compute the FGLS estimate of µ and the sampling variance of the estimator.
2. Consider estimation of the following two equation model:

y1 = β1 + ε1,

y2 = β2x + ε2.

A sample of 50 observations produces the following moment matrix:

1 y1 y2 x

1
y1

y2

x


50

150 500
50 40 90

100 60 50 100

.

a. Write the explicit formula for the GLS estimator of [β1, β2]. What is the asymp-
totic covariance matrix of the estimator?

b. Derive the OLS estimator and its sampling variance in this model.
c. Obtain the OLS estimates of β1 and β2, and estimate the sampling covariance

matrix of the two estimates. Use n instead of (n − 1) as the divisor to compute
the estimates of the disturbance variances.

d. Compute the FGLS estimates of β1 and β2 and the estimated sampling covariance
matrix.

e. Test the hypothesis that β2 = 1.
3. The model

y1 = β1x1 + ε1,

y2 = β2x2 + ε2

satisfies all the assumptions of the classical multivariate regression model. All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2


20 6 4 3

6 10 3 6
4 3 5 2
3 6 2 10

.

a. Compute the FGLS estimates of β1 and β2.
b. Test the hypothesis that β1 = β2.
c. Compute the maximum likelihood estimates of the model parameters.
d. Use the likelihood ratio test to test the hypothesis in part b.
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4. Prove that in the model

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

generalized least squares is equivalent to equation-by-equation ordinary least
squares if X1 = X2. Does your result hold if it is also known that β1 = β2?

5. Consider the two-equation system

y1 = β1x1 + ε1,

y2 = β2x2 + β3x3 + ε2.

Assume that the disturbance variances and covariance are known. Now suppose
that the analyst of this model applies GLS but erroneously omits x3 from the second
equation. What effect does this specification error have on the consistency of the
estimator of β1?

6. Consider the system

y1 = α1 + βx + ε1,

y2 = α2 + ε2.

The disturbances are freely correlated. Prove that GLS applied to the system leads
to the OLS estimates of α1 and α2 but to a mixture of the least squares slopes in the
regressions of y1 and y2 on x as the estimator of β. What is the mixture? To simplify
the algebra, assume (with no loss of generality) that x̄ = 0.

7. For the model

y1 = α1 + βx + ε1,

y2 = α2 + ε2,

y3 = α3 + ε3,

assume that yi2 + yi3 = 1 at every observation. Prove that the sample covariance
matrix of the least squares residuals from the three equations will be singular,
thereby precluding computation of the FGLS estimator. How could you proceed
in this case?

8. Continuing the analysis of Section 14.3.2, we find that a translog cost function for
one output and three factor inputs that does not impose constant returns to scale is

ln C = α + β1 ln p1 + β2 ln p2 + β3 ln p3 + δ11
1
2 ln2 p1 + δ12 ln p1 ln p2

+ δ13 ln p1 ln p3 + δ22
1
2 ln2 p2 + δ23 ln p2 ln p3 + δ33

1
2 ln2 p3

+ γy1 ln Y ln p1 + γy2 ln Y ln p2 + γy3 ln Y ln p3

+ βy ln Y + βyy
1
2 ln2 Y + εc.

The factor share equations are

S1 = β1 + δ11 ln p1 + δ12 ln p2 + δ13 ln p3 + γy1 ln Y + ε1,

S2 = β2 + δ12 ln p1 + δ22 ln p2 + δ23 ln p3 + γy2 ln Y + ε2,

S3 = β3 + δ13 ln p1 + δ23 ln p2 + δ33 ln p3 + γy3 ln Y + ε3.
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[See Christensen and Greene (1976) for analysis of this model.]
a. The three factor shares must add identically to 1. What restrictions does this

requirement place on the model parameters?
b. Show that the adding-up condition in (14-39) can be imposed directly on the

model by specifying the translog model in (C/p3), (p1/p3), and (p2/p3) and
dropping the third share equation. (See Example 14.5.) Notice that this reduces
the number of free parameters in the model to 10.

c. Continuing Part b, the model as specified with the symmetry and equality restric-
tions has 15 parameters. By imposing the constraints, you reduce this number to
10 in the estimating equations. How would you obtain estimates of the parame-
ters not estimated directly?

The remaining parts of this exercise will require specialized software. The E-Views,
TSP, Stata or LIMDEP, programs noted in the preface are four that could be used.
All estimation is to be done using the data used in Section 14.3.1.
d. Estimate each of the three equations you obtained in Part b by ordinary least

squares. Do the estimates appear to satisfy the cross-equation equality and sym-
metry restrictions implied by the theory?

e. Using the data in Section 14.3.1, estimate the full system of three equations (cost
and the two independent shares), imposing the symmetry and cross-equation
equality constraints.

f. Using your parameter estimates, compute the estimates of the elasticities in
(14-40) at the means of the variables.

g. Use a likelihood ratio statistic to test the joint hypothesis that γyi = 0,

i = 1, 2, 3. [Hint: Just drop the relevant variables from the model.]


