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FUNCTIONAL FORM AND
STRUCTURAL CHANGE

Q
7.1 INTRODUCTION

In this chapter, we are concerned with the functional form of the regression model. Many
different types of functions are “linear” by the definition considered in Section 2.3.1. By
using different transformations of the dependent and independent variables, dummy
variables and different arrangements of functions of variables, a wide variety of models
can be constructed that are all estimable by linear least squares. Section 7.2 considers
using binary variables to accommodate nonlinearities in the model. Section 7.3 broadens
the class of models that are linear in the parameters. Sections 7.4 and 7.5 then examine
the issue of specifying and testing for change in the underlying model that generates the
data, under the heading of structural change.

7.2 USING BINARY VARIABLES

One of the most useful devices in regression analysis is the binary, or dummy variable.
A dummy variable takes the value one for some observations to indicate the pres-
ence of an effect or membership in a group and zero for the remaining observations.
Binary variables are a convenient means of building discrete shifts of the function into
a regression model.

7.2.1 BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 4.3, we included a variable Kids
to indicate whether there were children in the household under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 7.1 appear to be consistent with this hypothesis.

Example 7.1 Dummy Variable in an Earnings Equation
Table 7.1 following reproduces the estimated earnings equation in Example 4.3. The variable
Kids is a dummy variable, which equals one if there are children under 18 in the household
and zero otherwise. Since this is a semilog equation, the value of −.35 for the coefficient
is an extremely large effect, that suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects which affect wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive earnings to begin with, it
is unclear whether the sampling mechanism has, itself, induced a bias in this coefficient.
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TABLE 7.1 Estimated Earnings Equation

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε
Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044

R2 based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age2 −0.0023147 0.00098688 −2.345
Education 0.067472 0.025248 2.672
Kids −0.35119 0.14753 −2.380

In recent applications, researchers in many fields have studied the effects of treat-
ment on some kind of response. Examples include the effect of college on, lifetime
income, sex differences in labor supply behavior as in Example 7.1, and in salary struc-
tures in industries, and in pre- versus postregime shifts in macroeconomic models, to
name but a few. These examples can all be formulated in regression models involving a
single dummy variable:

yi = x′
iβ + δdi + εi .

One of the important issues in policy analysis concerns measurement of such treatment
effects when the dummy variable results from an individual participation decision. For
example, in studies of the effect of job training programs on post-training earnings,
the “treatment dummy” might be measuring the latent motivation and initiative of the
participants rather than the effect of the program, itself. We will revisit this subject in
Section 22.4.

It is common for researchers to include a dummy variable in a regression to account
for something that applies only to a single observation. For example, in time-series
analyses, an occasional study includes a dummy variable that is one only in a single
unusual year, such as the year of a major strike or a major policy event. (See, for
example, the application to the German money demand function in Section 20.6.5.) It
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of
deleting that observation from computation of the least squares slopes and variance
estimator (but not R-squared).

7.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting
for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

Ct = β1 + β2xt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + εt ,
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where xt is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy
variables would sum to one at every observation, which would reproduce the constant
term—a case of perfect multicollinearity. This is known as the dummy variable trap.
Thus, to avoid the dummy variable trap, we drop the dummy variable for the fourth
quarter. (Depending on the application, it might be preferable to have four separate
dummy variables and drop the overall constant.)1 Any of the four quarters (or 12
months) can be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative
formulation:

Ct = βxt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + δ4 Dt4 + εt . (7-1)

Using the results from Chapter 3 on partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

7.2.3 SEVERAL GROUPINGS

The case in which several sets of dummy variables are needed is much the same as
those we have already considered, with one important exception. Consider a model of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all n = 50 states for T = 10 years. A
regression model that allows the expected expenditure to change over time as well as
across states would be

yit = α + βxit + δi + θt + εi t . (7-2)

As before, it is necessary to drop one of the variables in each set of dummy variables to
avoid the dummy variable trap. For our example, if a total of 50 state dummies and 10
time dummies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example 7.2 Analysis of Covariance
The data in Appendix Table F7.1 were used in a study of efficiency in production of airline
services in Greene (1997b). The airline industry has been a favorite subject of study [e.g.,
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest in
this rapidly changing market in a period of deregulation and partly because of an abundance
of large, high-quality data sets collected by the (no longer existent) Civil Aeronautics Board.
The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984), a
“balanced panel.” Several of the firms merged during this period and several others experi-
enced strikes, which reduced the number of complete observations substantially. Omitting
these and others because of missing data on some of the variables left a group of 10 full

1See Suits (1984) and Greene and Seaks (1991).
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FIGURE 7.1 Estimated Year Dummy Variable Coefficients.

observations, from which we have selected six for the examples to follow. We will fit a cost
equation of the form

ln Ci ,t = β1 + β2 ln Qi ,t + β3 ln2 Qi ,t + β4 ln Pfuel i,t + β5 Loadfactori ,t

+
14∑

t=1

θt Di ,t +
5∑

i =1

δi Fi ,t + εi ,t .

The dummy variables are Di ,t which is the year variable and Fi ,t which is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

ln Ci ,t = 13.56 + .8866 ln Qi ,t + 0.01261 ln2 Qi ,t + 0.1281 ln Pf i ,t − 0.8855 LFi ,t

+ time effects + firm effects.

The year effects display a revealing pattern, as shown in Figure 7.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table 7.2 presents the sums of squares from the four regressions. The
F statistic for the hypothesis that there are no firm specific effects is 65.94, which is highly
significant. The statistic for the time effects is only 2.61, which is larger than the critical value

TABLE 7.2 F tests for Firm and Year Effects

Model Sum of Squares Parameters F Deg.Fr.

Full Model 0.17257 24 —
Time Effects 1.03470 19 65.94 [5, 66]
Firm Effects 0.26815 10 2.61 [14, 66]
No Effects 1.27492 5 22.19 [19, 66]
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of 1.84, but perhaps less so than Figure 7.1 might have suggested. In the absence of the
year specific dummy variables, the year specific effects are probably largely absorbed by the
price of fuel.

7.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = β1 + β2 age + effect of education + ε.

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is 0 for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = β1 + β2 age + β3E + ε.
The difficulty with this approach is that it assumes that the increment in income at each
threshold is the same; β3 is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write

income = β1 + β2 age + δB B + δM M + δP P + ε.

The correspondence between the coefficients and income for a given age is

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Masters : E [income | age, M] = β1 + β2 age + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δP.

The differences between, say, δP and δM and between δM and δB are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.
Thus, for someone with a Ph.D., all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Masters : E [income | age, M] = β1 + β2 age + δB + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δB + δM + δP.

Instead of the difference between a Ph.D. and the base case, in this model δP is the
marginal value of the Ph.D. How equations with dummy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.
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7.2.5 SPLINE REGRESSION

If one is examining income data for a large cross section of individuals of varying ages
in a population, then certain patterns with regard to some age thresholds will be clearly
evident. In particular, throughout the range of values of age, income will be rising, but the
slope might change at some distinct milestones, for example, at age 18, when the typical
individual graduates from high school, and at age 22, when he or she graduates from
college. The time profile of income for the typical individual in this population might
appear as in Figure 7.2. Based on the discussion in the preceding paragraph, we could
fit such a regression model just by dividing the sample into three subsamples. However,
this would neglect the continuity of the proposed function. The result would appear
more like the dotted figure than the continuous function we had in mind. Restricted
regression and what is known as a spline function can be used to achieve the desired
effect.2

The function we wish to estimate is

E [income | age] = α0 + β0 age if age < 18,

α1 + β1 age if age ≥ 18 and age < 22,

α2 + β2 age if age ≥ 22.

The threshold values, 18 and 22, are called knots. Let

d1 = 1 if age ≥ t∗
1 ,

d2 = 1 if age ≥ t∗
2 ,

2An important reference on this subject is Poirier (1974). An often-cited application appears in Garber and
Poirier (1974).
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where t∗
1 = 18 and t∗

2 = 22. To combine all three equations, we use

income = β1 + β2 age + γ1d1 + δ1d1 age + γ2d2 + δ2d2 age + ε. (7-3)

This relationship is the dashed function in Figure 7.2. The slopes in the three segments
are β2, β2 + δ1, and β2 + δ1 + δ2. To make the function piecewise continuous, we require
that the segments join at the knots—that is,

β1 + β2t∗
1 = (β1 + γ1) + (β2 + δ1)t∗

1

and

(β1 + γ1) + (β2 + δ1)t∗
2 = (β1 + γ1 + γ2) + (β2 + δ1 + δ2)t∗

2 .

These are linear restrictions on the coefficients. Collecting terms, the first one is

γ1 + δ1t∗
1 = 0 or γ1 = −δ1t∗

1 .

Doing likewise for the second and inserting these in (7-3), we obtain

income = β1 + β2 age + δ1d1 (age − t∗
1 ) + δ2d2 (age − t∗

2 ) + ε.

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variables

x1 = age,

x2 = age − 18 if age ≥ 18 and 0 otherwise,

and
x3 = age − 22 if age ≥ 22 and 0 otherwise.

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions δ1 = 0 and δ2 = 0.

7.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let
z = z1, z2, . . . , zL be a set of L independent variables; let f1, f2, . . . , fK be K linearly
independent functions of z; let g(y) be an observable function of y; and retain the usual
assumptions about the disturbance. The linear regression model is

g(y) = β1 f1(z) + β2 f2(z) + · · · + βK fK(z) + ε

= β1x1 + β2x2 + · · · + βKxK + ε

= x′β + ε.

(7-4)

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

7.3.1 FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

ln y = ln α +
∑

k

βk ln Xk + ε = β1 +
∑

k

βkxk + ε.
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In this model, the coefficients are elasticities:(
∂y
∂xk

)(
xk

y

)
= ∂ ln y

∂ ln xk
= βk. (7-5)

In the loglinear equation, measured changes are in proportional or percentage terms;
βk measures the percentage change in y associated with a one percent change in xk.
This removes the units of measurement of the variables from consideration in using
the regression model. An alternative approach sometimes taken is to measure the vari-
ables and associated changes in standard deviation units. If the data are “standardized”
before estimation using x∗

ik = (xik − x̄k)/sk and likewise for y, then the least squares
regression coefficients measure changes in standard deviation units rather than natural
or percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transform the data to produce these results; multiplying each
least squares coefficient bk in the original regression by sy/sk produces the same result.

A hybrid of the linear and loglinear models is the semilog equation

ln y = β1 + β2x + ε. (7-6)

We used this form in the investment equation in Section 6.2,

ln It = β1 + β2 (it − �pt ) + β3�pt + β4 ln Yt + β5t + εt ,

where the log of investment is modeled in the levels of the real interest rate, the
price level, and a time trend. In a semilog equation with a time trend such as this
one, d ln I/dt = β5 is the average rate of growth of I. The estimated value of −.005 in
Table 6.1 suggests that over the full estimation period, after accounting for all other
factors, the average rate of growth of investment was −.5 percent per year.

The coefficients in the semilog model are partial- or semi-elasticities; in (7-6), β2 is
∂ ln y/∂x. This is a natural form for models with dummy variables such as the earnings
equation in Example 7.1. The coefficient on Kids of −.35 suggests that all else equal,
earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 7.1 shows another use of nonlineari-
ties in the variables. Using the results in Example 7.1, we find that for a woman with
12 years of schooling and children in the household, the age-earnings profile appears as
in Figure 7.3. This figure suggests an important question in this framework. It is tempting
to conclude that Figure 7.3 shows the earnings trajectory of a person at different ages,
but that is not what the data provide. The model is based on a cross section, and what it
displays is the earnings of different people of different ages. How this profile relates to
the expected earnings path of one individual is a different, and complicated question.

Another useful formulation of the regression model is one with interaction terms.
For example, a model relating braking distance D to speed S and road wetness W might
be

D = β1 + β2S + β3W + β4SW + ε.

In this model,

∂ E [D | S, W]
∂S

= β2 + β4W
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FIGURE 7.3 Age-Earnings Profile.

which implies that the marginal effect of higher speed on braking distance is increased
when the road is wetter (assuming that β4 is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard
error is computed from

Var
(

∂ Ê [D | S, W]
∂S

)
= Var[β̂2] + W2 Var[β̂4] + 2W Cov[β̂2, β̂4],

and similarly for ∂ E [D | S, W]/∂W. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

7.3.2 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may
help at least to identify any nonlinearity and provide some information about it from the
sample. For example, if the suspected nonlinearity is with respect to a single regressor in
the equation, then fitting a quadratic or cubic polynomial rather than a linear function
may capture some of the nonlinearity. By choosing several ranges for the regressor in
question and allowing the slope of the function to be different in each range, a piecewise
linear approximation to the nonlinear function can be fit.

Example 7.3 Functional Form for a Nonlinear Cost Function
In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electric generating companies. This study



Greene-50240 book June 11, 2002 18:46

CHAPTER 7 ✦ Functional Form and Structural Change 125

produced several innovations in microeconometrics. It was among the first major applications
of statistical cost analysis. The theoretical development in Nerlove’s study was the first to
show how the fundamental theory of duality between production and cost functions could be
used to frame an econometric model. Finally, Nerlove employed several useful techniques
to sharpen his basic model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobb–Douglas function to model output as a function
of capital, K, labor, L, and fuel, F;

Q = α0 K αK LαL F αF eεi

where Q is output and εi embodies the unmeasured differences across firms. The economies
of scale parameter is r = αK + αL + αF . The value one indicates constant returns to scale. In
this study, Nerlove investigated the widely accepted assumption that producers in this indus-
try enjoyed substantial economies of scale. The production model is loglinear, so assuming
that other conditions of the classical regression model are met, the four parameters could be
estimated by least squares. However, he argued that the three factors could not be treated
as exogenous variables. For a firm that optimizes by choosing its factors of production, the
demand for fuel would be F ∗ = F ∗( Q, PK , PL , PF ) and likewise for labor and capital, so
certainly the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well
as the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zellner, Kmenta, and Dreze (1964), Nerlove argued that at equilibrium, the deviation of costs
from the long run optimum would be independent of output. (This has a testable implication
which we will explore in Chapter 14.) Thus, the firm’s objective was cost minimization subject
to the constraint of the production function. This can be formulated as a Lagrangean problem,

MinK ,L ,F PK K + PL L + PF F + λ( Q − α0 K αK LαL F αF ) .

The solution to this minimization problem is the three factor demands and the multiplier
(which measures marginal cost). Inserted back into total costs, this produces an (intrinsically
linear) loglinear cost function,

PK K + PL L + PF F = C( Q, PK , PL , PF ) = r AQ1/r PαK /r
K PαL /r

L PαF /r
F eε i /r

or

ln C = β1 + βq ln Q + βK ln PK + βL ln PL + βF ln PF + ui (7-7)

where βq = 1/(αK + αL + αF ) is now the parameter of interest and β j = α j /r, j = K , L , F .3

Thus, the duality between production and cost functions has been used to derive the esti-
mating equation from first principles.

A complication remains. The cost parameters must sum to one; βK + βL + βF = 1, so
estimation must be done subject to this constraint.4 This restriction can be imposed by
regressing ln(C/PF ) on a constant ln Q, ln( PK /PF ) and ln( PL/PF ) . This first set of results
appears at the top of Table 7.3.

3Readers who attempt to replicate the original study should note that Nerlove used common (base 10) logs
in his calculations, not natural logs. This change creates some numerical differences.
4In the context of the econometric model, the restriction has a testable implication by the definition in
Chapter 6. But, the underlying economics require this restriction—it was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably, if the hypothesis of the restriction
is rejected, the analysis should stop at that point, since without the restriction, the cost function is not a
valid representation of the production function. We will encounter this conundrum again in another form in
Chapter 14. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in Chapter 14.)

Administrator
change 1964 to 1966
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TABLE 7.3 Cobb–Douglas Cost Functions (Standard Errors in
Parentheses)

log Q log PL − log PF log PK − log PF R2

All firms 0.721 0.594 −0.0085 0.952
(0.0174) (0.205) (0.191)

Group 1 0.398 0.641 −0.093 0.512
Group 2 0.668 0.105 0.364 0.635
Group 3 0.931 0.408 0.249 0.571
Group 4 0.915 0.472 0.133 0.871
Group 5 1.045 0.604 −0.295 0.920

Initial estimates of the parameters of the cost function are shown in the top row of
Table 7.3. The hypothesis of constant returns to scale can be firmly rejected. The t ratio
is (0.721 − 1)/0.0174 = −16.03, so we conclude that this estimate is significantly less than
one or, by implication, r is significantly greater than one. Note that the coefficient on the cap-
ital price is negative. In theory, this should equal αK /r , which (unless the marginal product
of capital is negative), should be positive. Nerlove attributed this to measurement error in
the capital price variable. This seems plausible, but it carries with it the implication that the
other coefficients are mismeasured as well. [See (5-31a,b). Christensen and Greene’s (1976)
estimator of this model with these data produced a positive estimate. See Section 14.3.1.]

The striking pattern of the residuals shown in Figure 7.45 and some thought about the
implied form of the production function suggested that something was missing from the
model.6 In theory, the estimated model implies a continually declining average cost curve,
which in turn implies persistent economies of scale at all levels of output. This conflicts with
the textbook notion of a U-shaped average cost curve and appears implausible for the data.
Note the three clusters of residuals in the figure. Two approaches were used to analyze the
model.

By sorting the sample into five groups on the basis of output and fitting separate regres-
sions to each group, Nerlove fit a piecewise loglinear model. The results are given in the
lower rows of Table 7.3, where the firms in the successive groups are progressively larger.
The results are persuasive that the (log)-linear cost function is inadequate. The output coef-
ficient that rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as
surmised earlier.

A second approach was to expand the cost function to include a quadratic term in log
output. This approach corresponds to a much more general model and produced the result
given in Table 7.4. Again, a simple t test strongly suggests that increased generality is called
for; t = 0.117/0.012 = 9.75. The output elasticity in this quadratic model is βq + 2γqq log Q.7

There are economies of scale when this value is less than one and constant returns to scale
when it equals one. Using the two values given in the table (0.151 and 0.117, respectively), we
find that this function does, indeed, produce a U shaped average cost curve with minimum
at log10 Q = (1 − 0.151)/(2 × 0.117) = 3.628, or Q = 4248, which was roughly in the middle
of the range of outputs for Nerlove’s sample of firms.

5The residuals are created as deviations of predicted total cost from actual, so they do not sum to zero.
6A Durbin–Watson test of correlation among the residuals (see Section 12.5.1) revealed to the author a
substantial autocorrelation. Although normally used with time series data, the Durbin–Watson statistic and
a test for “autocorrelation” can be a useful tool for determining the appropriate functional form in a cross
sectional model. To use this approach, it is necessary to sort the observations based on a variable of interest
(output). Several clusters of residuals of the same sign suggested a need to reexamine the assumed functional
form.
7Nerlove inadvertently measured economies of scale from this function as 1/(βq + δ log Q), where βq and
δ are the coefficients on log Q and log2 Q. The correct expression would have been 1/[∂ log C/∂ log Q] =
1/[βq + 2δ log Q]. This slip was periodically rediscovered in several later papers.
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FIGURE 7.4 Residuals from Predicted Cost.

This study was updated by Christensen and Greene (1976). Using the same data but a
more elaborate (translog) functional form and by simultaneously estimating the factor de-
mands and the cost function, they found results broadly similar to Nerlove’s. Their preferred
functional form did suggest that Nerlove’s generalized model in Table 7.4 did somewhat un-
derestimate the range of outputs in which unit costs of production would continue to decline.
They also redid the study using a sample of 123 firms from 1970, and found similar results.
In the latter sample, however, it appeared that many firms had expanded rapidly enough
to exhaust the available economies of scale. We will revisit the 1970 data set in a study of
efficiency in Section 17.6.4.

The preceding example illustrates three useful tools in identifying and dealing with
unspecified nonlinearity: analysis of residuals, the use of piecewise linear regression,
and the use of polynomials to approximate the unknown regression function.

7.3.3 INTRINSIC LINEARITY AND IDENTIFICATION

The loglinear model illustrates an intermediate case of a nonlinear regression model.
The equation is intrinsically linear by our definition; by taking logs of Yi = αXβ2

i eεi , we
obtain

ln Yi = ln α + β2 ln Xi + εi (7-8)

TABLE 7.4 Log-Quadratic Cost Function (Standard Errors in
Parentheses)

log Q log2 Q log(PL/PF) log(PK/PF) R2

All firms 0.151 0.117 0.498 −0.062 0.95
(0.062) (0.012) (0.161) (0.151)
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or

yi = β1 + β2xi + εi .

Although this equation is linear in most respects, something has changed in that it is no
longer linear in α. Written in terms of β1, we obtain a fully linear model. But that may
not be the form of interest. Nothing is lost, of course, since β1 is just ln α. If β1 can be
estimated, then an obvious estimate of α is suggested.

This fact leads us to a second aspect of intrinsically linear models. Maximum like-
lihood estimators have an “invariance property.” In the classical normal regression
model, the maximum likelihood estimator of σ is the square root of the maximum like-
lihood estimator of σ 2. Under some conditions, least squares estimators have the same
property. By exploiting this, we can broaden the definition of linearity and include some
additional cases that might otherwise be quite complex.

DEFINITION 7.1 Intrinsic Linearity
In the classical linear regression model, if the K parameters β1, β2, . . . , βK can
be written as K one-to-one, possibly nonlinear functions of a set of K underlying
parameters θ1, θ2, . . . , θK, then the model is intrinsically linear in θ .

Example 7.4 Intrinsically Linear Regression
In Section 17.5.4, we will estimate the parameters of the model

f ( y | β, x) = (β + x)−ρ

�(ρ)
yρ−1e−y/(β+x)

by maximum likelihood. In this model, E [y | x] = (βρ) + ρx, which suggests another way
that we might estimate the two parameters. This function is an intrinsically linear regression
model, E [y | x] = β1 +β2x, in which β1 = βρ and β2 = ρ. We can estimate the parameters by
least squares and then retrieve the estimate of β using b1/b2. Since this value is a nonlinear
function of the estimated parameters, we use the delta method to estimate the standard error.
Using the data from that example, the least squares estimates of β1 and β2 (with standard
errors in parentheses) are −4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance
is −36.979. The estimate of β is −4.1431/2.4261 = −1.7077. We estimate the sampling
variance of β̂ with

Est. Var[β̂] =
(

∂β̂

∂b1

)2

V̂ar[b1] +
(

∂β̂

∂b2

)2

V̂ar[b2] + 2

(
∂β̂

∂b1

)(
∂β̂

∂b2

)
Ĉov[b1, b2]

= 8.68892.

Table 7.5 compares the least squares and maximum likelihood estimates of the parameters.
The lower standard errors for the maximum likelihood estimates result from the inefficient
(equal) weighting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were �i yi and �i ln yi . The least squares estimator does not use the
second of these, whereas an efficient estimator will.
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TABLE 7.5 Estimates of the Regression in a Gamma Model: Least Squares
versus Maximum Likelihood

β ρ

Estimate Standard Error Estimate Standard Error

Least squares −1.708 8.689 2.426 1.592
Maximum likelihood −4.719 2.403 3.151 0.663

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions β1, . . . , βK, and the underlying
parameters derived after these are estimated. The one-to-one correspondence is an
identification condition. If the condition is met, then the underlying parameters of the
regression (θ) are said to be exactly identified in terms of the parameters of the linear
model β. An excellent example is provided by Kmenta (1986, p. 515).

Example 7.5 CES Production Function
The constant elasticity of substitution production function may be written

ln y = ln γ − ν

ρ
ln[δK −ρ + (1 − δ) L−ρ ] + ε. (7-9)

A Taylor series approximation to this function around the point ρ = 0 is

ln y = ln γ + νδ ln K + ν(1 − δ) ln L + ρνδ(1 − δ)
{− 1

2 [ln K − ln L ]2
} + ε′

= β1x1 + β2x2 + β3x3 + β4x4 + ε′, (7-10)

where x1 = 1, x2 = ln K , x3 = ln L , x4 = − 1
2 ln2( K/L ) , and the transformations are

β1 = ln γ , β2 = νδ, β3 = ν(1 − δ) , β4 = ρνδ(1 − δ) ,

γ = eβ1 , δ = β2/(β2 + β3) , ν = β2 + β3, ρ = β4(β2 + β3)/(β2β3) .
(7-11)

Estimates of β1, β2, β3, and β4 can be computed by least squares. The estimates of γ , δ, ν,
and ρ obtained by the second row of (7-11) are the same as those we would obtain had we
found the nonlinear least squares estimates of (7-10) directly. As Kmenta shows, however,
they are not the same as the nonlinear least squares estimates of (7-9) due to the use of the
Taylor series approximation to get to (7-10). We would use the delta method to construct the
estimated asymptotic covariance matrix for the estimates of θ ′ = [γ , δ, ν, ρ]. The derivatives
matrix is

C = ∂θ

∂β ′ =


eβ1 0 0 0

0 β2/(β2 + β3) 2 −β2/(β2 + β3) 2 0
0 1 1 0

0 −β3β4

/(
β2

2β3

) −β2β4

/(
β2β

2
3

)
(β2 + β3)/(β2β3)

 .

The estimated covariance matrix for θ̂ is Ĉ [s2(X′X)−1]Ĉ′.

Not all models of the form

yi = β1(θ)xi1 + β2(θ)xi2 + · · · + βK(θ)xik + εi (7-12)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

yi = α + βxi1 + γ xi2 + βγ xi3 + εi

Administrator

Administrator
change beta2 tobeta sub 3
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is nonlinear. The reason is that if we write it in the form of (7-12), we fail to account
for the condition that β4 equals β2β3, which is a nonlinear restriction. In this model,
the three parameters α, β, and γ are overidentified in terms of the four parameters
β1, β2, β3, and β4. Unrestricted least squares estimates of β2, β3, and β4 can be used to
obtain two estimates of each of the underlying parameters, and there is no assurance
that these will be the same.

7.4 MODELING AND TESTING
FOR A STRUCTURAL BREAK

One of the more common applications of the F test is in tests of structural change.8 In
specifying a regression model, we assume that its assumptions apply to all the obser-
vations in our sample. It is straightforward, however, to test the hypothesis that some
of or all the regression coefficients are different in different subsets of the data. To
analyze a number of examples, we will revisit the data on the U.S. gasoline market9 that
we examined in Example 2.3. As Figure 7.5 following suggests, this market behaved in
predictable, unremarkable fashion prior to the oil shock of 1973 and was quite volatile
thereafter. The large jumps in price in 1973 and 1980 are clearly visible, as is the much
greater variability in consumption. It seems unlikely that the same regression model
would apply to both periods.

7.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was
plentiful and world prices for gasoline had been stable or falling for at least two decades.
The embargo of 1973 marked a transition in this market (at least for a decade or so),
marked by shortages, rising prices, and intermittent turmoil. It is possible that the en-
tire relationship described by our regression model changed in 1974. To test this as a
hypothesis, we could proceed as follows: Denote the first 14 years of the data in y and
X as y1 and X1 and the remaining years as y2 and X2. An unrestricted regression that
allows the coefficients to be different in the two periods is[

y1

y2

]
=

[
X1 0
0 X2

][
β1
β2

]
+

[
ε1

ε2

]
. (7-13)

Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is

b = (X′X)−1X′y =
[

X′
1X1 0
0 X′

2X2

]−1[X′
1y1

X′
2y2

]
=

[
b1

b2

]
, (7-14)

which is least squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of

8This test is often labeled a Chow test, in reference to Chow (1960).
9The data are listed in Appendix Table A6.1.
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FIGURE 7.5 Gasoline Price and Per Capita Consumption,
1960–1995.

squares from the two separate regressions:

e′e = e′
1e1 + e′

2e2.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction
β1 = β2 is Rβ = q, where R = [I : −I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (7-13) may be written[

y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
,

and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, e′

∗e∗
then forms the basis for the test. The test statistic is then given in (6-6), where J , the
number of restrictions, is the number of columns in X2 and the denominator degrees of
freedom is n1 + n2 − 2k.

7.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Since
there are six coefficients to estimate but only four observations, it is not possible to fit
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the two separate models. Fisher (1970) has shown that in such a circumstance, a valid
way to proceed is as follows:

1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, e′

∗e∗.
2. Use the longer (adequate) subperiod (n1 observations) to estimate the regression,

and compute the unrestricted sum of squares, e′
1e1. This latter computation is

done assuming that with only n2 < K observations, we could obtain a perfect fit
and thus contribute zero to the sum of squares.

3. The F statistic is then computed, using

F [n2, n1 − K] = (e′
∗e∗ − e′

1e1)/n2

e′
1e1/(n1 − K)

. (7-15)

Note that the numerator degrees of freedom is n2, not K.10 This test has been labeled
the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this
latter period. We will have a closer look at that result in Section 7.5.3.

7.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proportion,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the log-linear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the
form

(unrestricted) XU =
[

i 0 Wpre73 0

0 i 0 Wpost73

]
and

(restricted) XR =
[

i 0 Wpre73

0 i Wpost73

]
.

The first two columns of X are dummy variables that indicate the subperiod in which
the observation falls.

Another possibility is that the constant and one or more of the slope coefficients
changed, but the remaining parameters remained the same. The results in Table 7.6
suggest that the constant term and the price and income elasticities changed much
more than the cross-price elasticities and the time trend. The Chow test for this type
of restriction looks very much like the one for the change in the constant term alone.
Let Z denote the variables whose coefficients are believed to have changed, and let W

10One way to view this is that only n2 < K coefficients are needed to obtain this perfect fit.
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denote the variables whose coefficients are thought to have remained constant. Then,
the regressor matrix in the constrained regression would appear as

X =
[

ipre Zpre 0 0 Wpre

0 0 ipost Zpost Wpost

]
. (7-16)

As before, the unrestricted coefficient vector is the combination of the two separate
regressions.

7.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance
is the same in both (or all) regressions. In the restricted model, if this is not true, the
first n1 elements of ε have variance σ 2

1 , whereas the next n2 have variance σ 2
2 , and so

on. The restricted model is, therefore, heteroscedastic, and our results for the classical
regression model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani
and Toyoda (1985), and Toyoda and Ohtani (1986), it is quite likely that the actual
probability of a type I error will be smaller than the significance level we have chosen.
(That is, we shall regard as large an F statistic that is actually less than the appropriate
but unknown critical value.) Precisely how severe this effect is going to be will depend
on the data and the extent to which the variances differ, in ways that are not likely to
be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that θ̂1 and θ̂2 are two consistent
and asymptotically normally distributed estimators of a parameter based on indepen-
dent samples,11 with asymptotic covariance matrices V1 and V2. Then, under the null
hypothesis that the true parameters are the same,

θ̂1 − θ̂2 has mean 0 and asymptotic covariance matrix V1 + V2.

Under the null hypothesis, the Wald statistic,

W = (θ̂1 − θ̂2)
′(V̂1 + V̂2)

−1(θ̂1 − θ̂2), (7-17)

has a limiting chi-squared distribution with K degrees of freedom. A test that the differ-
ence between the parameters is zero can be based on this statistic.12 It is straightforward
to apply this to our test of common parameter vectors in our regressions. Large values
of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. (That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.

11Without the required independence, this test and several similar ones will fail completely. The problem
becomes a variant of the famous Behrens–Fisher problem.
12See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.
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Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy
for the problem.13

It has been observed that the size of the Wald test may differ from what we have
assumed, and that the deviation would be a function of the alternative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations — such as the labor supply equations for men versus
women — not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined. We will return to this analysis of structural
breaks in time-series models in Section 7.5.4.

7.5 TESTS OF MODEL STABILITY

The tests of structural change described in Section 7.4 assume that the process underlying
the data is stable up to a known transition point, where it makes a discrete change to a
new, but thereafter stable, structure. In our gasoline market, that might be a reasonable
assumption. In many other settings, however, the change to a new regime might be
more gradual and less obvious. In this section, we will examine two tests that are based
on the idea that a regime change might take place slowly, and at an unknown point
in time, or that the regime underlying the observed data might simply not be stable
at all.

7.5.1 HANSEN’S TEST

Hansen’s (1992) test of model stability is based on a cumulative sum of the least squares
residuals. From the least squares normal equations, we have

T∑
t=1

xt et = 0 and
T∑

t=1

(
e2

t − e′e
n

)
= 0.

Let the vector ft be the (K+1)×1 tth observation in this pair of sums. Then,
∑T

t=1 ft = 0.
Let the sequence of partial sums be st = ∑t

r=1 fr , so sT = 0. Finally, let F = T
∑T

t=1 ft f ′
t

and S = ∑T
t=1 st s′

t . Hansen’s test statistic can be computed simply as H = tr(F−1S).
Large values of H give evidence against the hypothesis of model stability. The logic of
Hansen’s test is that if the model is stable through the T periods, then the cumulative
sums in S will not differ greatly from those in F. Note that the statistic involves both the
regression and the variance. The distribution theory underlying this nonstandard test
statistic is much more complicated than the computation. Hansen provides asymptotic
critical values for the test of model constancy which vary with the number of coefficients
in the model. A few values for the 95 percent significance level are 1.01 for K = 2, 1.90
for K = 6, 3.75 for K = 15, and 4.52 for K = 19.

13See also Kobayashi (1986). An alternative, somewhat more cumbersome test is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982).
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7.5.2 RECURSIVE RESIDUALS AND THE CUSUMS TEST

Example 7.6 shows a test of structural change based essentially on the model’s ability
to predict correctly outside the range of the observations used to estimate it. A similar
logic underlies an alternative test of model stability proposed by Brown, Durbin, and
Evans (1975) based on recursive residuals. The technique is appropriate for time-series
data and might be used if one is uncertain about when a structural change might have
taken place. The null hypothesis is that the coefficient vector β is the same in every
period; the alternative is simply that it (or the disturbance variance) is not. The test
is quite general in that it does not require a prior specification of when the structural
change takes place. The cost, however, is that the power of the test is rather limited
compared with that of the Chow test.14

Suppose that the sample contains a total of T observations.15 The tth recursive
residual is the ex post prediction error for yt when the regression is estimated using
only the first t − 1 observations. Since it is computed for the next observation beyond
the sample period, it is also labeled a one step ahead prediction error;

et = yt − x′
t bt−1,

where xt is the vector of regressors associated with observation yt and bt−1 is the least
squares coefficients computed using the first t − 1 observations. The forecast variance
of this residual is

σ 2
f t = σ 2[1 + x′

t (X
′
t−1Xt−1)

−1xt
]
. (7-18)

Let the r th scaled residual be

wr = er√
1 + x′

r (X
′
r−1Xr−1)−1xr

. (7-19)

Under the hypothesis that the coefficients remain constant during the full sample period,
wr ∼ N[0, σ 2] and is independent of ws for all s �= r . Evidence that the distribution of
wr is changing over time weighs against the hypothesis of model stability.

One way to examine the residuals for evidence of instability is to plot wr/σ̂ (see
below) simply against the date. Under the hypothesis of the model, these residuals are
uncorrelated and are approximately normally distributed with mean zero and standard
deviation 1. Evidence that these residuals persistently stray outside the error bounds −2
and +2 would suggest model instability. (Some authors and some computer packages
plot er instead, in which case the error bounds are ±2σ̂

√
1 + x′

r (X
′
r−1Xr−1)

−1xr .

The CUSUM test is based on the cumulated sum of the residuals:

Wt =
r=t∑

r=K+1

wr

σ̂
, (7-20)

where σ̂ 2 = (T − K − 1)−1 ∑T
r=K+1(wr − w̄)2 and w̄ = (T − K)−1 ∑T

r=K+1 wr . Under

14The test is frequently criticized on this basis. The Chow test, however, is based on a rather definite piece of
information, namely, when the structural change takes place. If this is not known or must be estimated, then
the advantage of the Chow test diminishes considerably.
15Since we are dealing explicitly with time-series data at this point, it is convenient to use T instead of n for
the sample size and t instead of i to index observations.
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the null hypothesis, Wt has a mean of zero and a variance approximately equal to the
number of residuals being summed (because each term has variance 1 and they are
independent). The test is performed by plotting Wt against t . Confidence bounds for the
sum are obtained by plotting the two lines that connect the points [K, ±a(T − K)1/2]
and [T, ±3a(T − K)1/2]. Values of a that correspond to various significance levels can
be found in their paper. Those corresponding to 95 percent and 99 percent are 0.948
and 1.143, respectively. The hypothesis is rejected if Wt strays outside the boundaries.

Example 7.6 Structural Break in the Gasoline Market
The previous Figure 7.5 shows a plot of prices and quantities in the U.S. gasoline market
from 1960 to 1995. The first 13 points are the layer at the bottom of the figure and suggest
an orderly market. The remainder clearly reflect the subsequent turmoil in this market.

We will use the Chow tests described to examine this market. The model we will examine
is the one suggested in Example 2.3, with the addition of a time trend:

ln(G/pop) t = β1 + β2 ln( I /pop) + β3 ln PGt + β4 ln PNCt + β5 ln PUCt + β6t + εt .

The three prices in the equation are for G, new cars, and used cars. I /pop is per capita
income, and G/pop is per capita gasoline consumption. Regression results for four functional
forms are shown in Table 7.6. Using the data for the entire sample, 1960 to 1995, and for the
two subperiods, 1960 to 1973 and 1974 to 1995, we obtain the three estimated regressions
in the first and last two columns. The F statistic for testing the restriction that the coefficients
in the two equations are the same is

F [6, 24] = (0.02521877 − 0.000652271 − 0.004662163)/6
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 14.958.

The tabled critical value is 2.51, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods.

Using the full set of 36 observations to fit the model, the sum of squares is e′
∗e∗ =

0.02521877. When the n1 = 4 observations for 1974, 1975, 1980 and 1981 are removed
from the sample, the sum of squares falls to e′e = 0.01968599. The F statistic is 1.817.
Since the tabled critical value for F [4, 32 − 6] is 2.72, we would not reject the hypothesis of
stability. The conclusion to this point would be that although something has surely changed
in the market, the hypothesis of a temporary disequilibrium seems not to be an adequate
explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 36 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981. Each of these takes the value one in the single

TABLE 7.6 Gasoline Consumption Equations

Coefficients 1960–1995 Pooled Preshock Postshock

Constant 24.6718 21.2630 −51.1812
Constant 21.3403 20.4464
ln I/pop 1.95463 1.83817 0.423995 1.01408
ln PG −0.115530 −0.178004 0.0945467 −0.242374
ln PNC 0.205282 0.209842 0.583896 0.330168
ln PUC −0.129274 −0.128132 −0.334619 −0.0553742
Year −0.019118 −0.168618 0.0263665 −0.0126170

R2 0.968275 0.978142 0.998033 0.920642
Standard error 0.02897572 0.02463767 0.00902961 0.017000
Sum of squares 0.02521877 0.0176034 0.000652271 0.004662163
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year indicated and zero in all 35 remaining years. We then compute the regression with the
original six variables and these four additional dummy variables. The sum of squared residuals
in this regression is 0.01968599, so the F statistic for testing the joint hypothesis that the
four coefficients are zero is F [4, 36 − 10] = {

[(0.02518777 − 0.01968599)/4]/[0.01968599/

(36 − 10) ]
} = 1.817, once again. (See Section 7.4.2 for discussion of this test.)

The F statistic for testing the restriction that the coefficients in the two equations are the
same apart from the constant term is based on the last three sets of results in the table;

F [5, 24] = (0.0176034 − 0.000652271 − 0.004662163)/5
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 11.099.

The tabled critical value is 2.62, so this hypothesis is rejected as well. The data suggest
that the models for the two periods are systematically different, beyond a simple shift in the
constant term.

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

F [3, 24] = (0.00802099 − 0.000652271 − 0.004662163)/3
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 4.086.

( The restricted regression is not shown.) The critical value from the F table is 3.01, so this
hypothesis is rejected as well. Note, however, that this value is far smaller than those we
obtained previously. The P-value for this value is 0.981, so, in fact, at the 99 percent signifi-
cance level, we would not have rejected the hypothesis. This fact suggests that the bulk of
the difference in the models across the two periods is, indeed, explained by the changes in
the constant and the price and income elasticities.

The test statistic in (7-17) for the regression results in Table 7.6 gives a value of 128.6673.
The 5 percent critical value from the chi-squared table for 6 degrees of freedom is 12.59.
So, on the basis of the Wald test, we would reject the hypothesis that the same coefficient
vector applies in the two subperiods 1960 to 1973 and 1974 to 1995. We should note that
the Wald statistic is valid only in large samples, and our samples of 14 and 22 observations
hardly meet that standard.

We have tested the hypothesis that the regression model for the gasoline market changed
in 1973, and on the basis of the F test (Chow test) we strongly rejected the hypothesis of
model stability. Hansen’s test is not consistent with this result; using the computations out-
lined earlier, we obtain a value of H = 1.7249. Since the critical value is 1.90, the hypothesis
of model stability is now not rejected.

Figure 7.6 shows the CUSUM test for the gasoline market. The results here are more or
less consistent with the preceding results. The figure does suggest a structural break, though
at 1984, not at 1974 or 1980 when we might have expected it.

7.5.3 PREDICTIVE TEST

The hypothesis test defined in (7-15) in Section 7.4.2 is equivalent to H0 : β2 = β1 in the
“model”

yt = x′
tβ1 + εt , t = 1, . . . , T1

yt = x′
tβ2 + εt , t = T1 + 1, . . . , T1 + T2.

(Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is[

y1

y2

]
=

[
X1 0
X2 I

](
β

γ

)
+

[
ε1

ε2

]
.
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FIGURE 7.6 CUSUM Test.

This formulation states that

yt = x′
tβ1 + εt , t= 1, . . . , T1

yt = x′
tβ2 + γt + εt , t= T1 + 1, . . . , T1 + T2.

Since each γt is unrestricted, this alternative formulation states that the regression
model of the first T1 periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis γ = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix;(

b
c

)
=

[
X′

1X1 + X′
2X2 X′

2

X2 I

]−1 [
X′

1y1 + X′
2y2

y2

]

=
[

(X′
1X1)

−1 −(X′
1X1)

−1X′
2

−X2(X′
1X1)

−1 I + X2(X′
1X1)

−1X′
2

] [
X′

1y1 + X′
2y2

y2

]

=
(

b1

c2

)
where b1 is the least squares slopes based on the first T1 observations and c2 is y2 −X2b1.
The covariance matrix for the full set of estimates is s2 times the bracketed matrix.
The two subvectors of residuals in this regression are e1 = y1 − X1b1 and e2 = y2 −
(X2b1 + Ic2) = 0, so the sum of squared residuals in this least squares regression is just
e′

1e1. This is the same sum of squares as appears in (7-15). The degrees of freedom for
the denominator is [T1 +T2 − (K+T2)] = T1 − K as well, and the degrees of freedom for
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the numerator is the number of elements in γ which is T2. The restricted regression with
γ = 0 is the pooled model, which is likewise the same as appears in (7-15). This implies
that the F statistic for testing the null hypothesis in this model is precisely that which
appeared earlier in (7-15), which suggests why the test is labeled the “predictive test.”

7.5.4 UNKNOWN TIMING OF THE STRUCTURAL BREAK16

The testing procedures described in this section all assume that the point of the structural
break is known. When this corresponds to a discrete historical event, this is a reasonable
assumption. But, in some applications, the timing of the break may be unknown. The
Chow and Wald tests become useless at this point. The CUSUMS test is a step in the
right direction for this situation, but, as noted by a number of authors [e.g., Andrews
(1993)] it has serious power problems. Recent research has provided several strategies
for testing for structural change when the change point is unknown.

In Section 7.4 we considered a test of parameter equality in two populations. The
natural approach suggested there was a comparison of two separately estimated param-
eter vectors based on the Wald criterion,

W = (θ̂1 − θ̂2)
′(V1 + V2)

−1(θ̂1 − θ̂2),

where 1 and 2 denote the two populations. An alternative approach to the testing
procedure is based on a likelihood ratio-like statistic,

λ = h[(L1 + L2), L]

where L1 + L2 is the log likelihood function (or other estimation criterion) under the
alternative hypothesis of model instability (structural break) and L is the log likelihood
for the pooled estimator based on the null hypothesis of stability and h is the appropriate
function of the values, such as h(a, b) = −2(b − a) for maximum likelihood estimation.
A third approach, based on the Lagrange multiplier principle, will be developed below.
There is a major problem with this approach; the split between the two subsamples must
be known in advance. In the time series application we will examine in this section, the
problem to be analyzed is that of determining whether a model can be claimed to
be stable through a sample period t = 1, . . . , T against the alternative hypothesis that
the structure changed at some unknown time t∗. Knowledge of the sample split is crucial
for the tests suggested above, so some new results are called for.

We suppose that the model E [m(yt , xt | β)] = 0 is to be estimated by GMM using
T observations. The model is stated in terms of a moment condition, but we intend for
this to include estimation by maximum likelihood, or linear or nonlinear least squares.
As noted earlier, all these cases are included. Assuming GMM just provides us a con-
venient way to analyze all the cases at the same time. The hypothesis to be investigated
is as follows: Let [πT] = T1 denote the integer part of πT where 0 < π < 1. Thus, this
is a proportion π of the sample observations, and defines subperiod 1, t = 1, . . . , T1.
Under the null hypothesis, the model E [m(yt , xt | β)] = 0 is stable for the entire sample
period. Under the alternative hypothesis, the model E [m(yt , xt | β1)] = 0 applies to

16The material in this section is more advanced than that in the discussion thus far. It may be skipped at this
point with no loss in continuity. Since this section relies heavily on GMM estimation methods, you may wish
to read Chapter 18 before continuing.
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observations 1, . . . , [πT] and model E [m(yt , xt | β2)] = 0 applies to the remaining
T − [πT] observations.17 This describes a nonstandard sort of hypothesis test since
under the null hypothesis, the ‘parameter’ of interest, π , is not even part of the model.
Andrews and Ploberger (1994) denote this a “nuisance parameter [that] is present only
under the alternative.”

Suppose π were known. Then, the optimal GMM estimator for the first subsample
would be obtained by minimizing with respect to the parametersβ1 the criterion function

q1(π) = m̄′
1(π | β1)[Est.Asy. Var

√
[πT]m̄′

1(π | β1)]
−1m̄1(π | β1)

= m̄′
1(π | β1)[W1(π)]−1m̄1(π | β1)

where

m̄1(π | β1) = 1
[πT]

[πT]∑
t=1

mt (yt , xt | β1).

The asymptotic covariance (weighting) matrix will generally be computed using a first
round estimator in

Ŵ1(π) = 1
[πT]

[πT]∑
t=1

mt
(
π

∣∣ β̂
0
1

)
m′

t

(
π

∣∣ β̂
0
1

)
. (7-21)

(In this time-series setting, it would be natural to accommodate serial correlation in the
estimator. Following Hall and Sen (1999), the counterpart to the Newey-West (1987a)
estimator (see Section 11.3) would be

Ŵ1(π) = Ŵ1,0(π) +
B(T)∑
j=1

w j,T
[
Ŵ1, j (π) + Ŵ′

1, j (π)
]

where Ŵ1,0(π) is given in (7-21) and

Ŵ1, j (π) = 1
[πT]

[πT]∑
t= j+1

mt
(
π

∣∣ β̂
0
1

)
m′

t− j

(
π

∣∣ β̂
0
1

)
.

B(T ) is the bandwidth, chosen to be O(T1/4)—this is the L in (10-16) and (12-17)—
and w j,T is the kernel. Newey and West’s value for this is the Bartlett kernel,
[1− j/(1+ B(T))]. (See, also, Andrews (1991), Hayashi (2000, pp. 408–409) and the end
of Section C.3.) The asymptotic covariance matrix for the GMM estimator would then
be computed using

Est.Asy. Var[β̂1] = 1
[πT]

[ ¯̂G′
1(π)Ŵ−1

1 (π)
¯̂G1(π)

]−1 = V̂1

17Andrews (1993), on which this discussion draws heavily, allows for some of the parameters to be assumed to
be constant throughout the sample period. This adds some complication to the algebra involved in obtaining
the estimator, since with this assumption, efficient estimation requires joint estimation of the parameter
vectors, whereas our formulation allows GMM estimation to proceed with separate subsamples when needed.
The essential results are the same.
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where

¯̂G1(π) = 1
[πT]

[πT]∑
t=1

∂mt (π | β̂1)

∂β̂
′
1

.

Estimators for the second sample are found by changing the summations to [πT] +
1, . . . T and for the full sample by summing from 1 to T.

Still assuming that π is known, the three standard test statistics for testing the null
hypothesis of model constancy against the alternative of structural break at [πT] would
be as follows: The Wald statistic is

WT(π) = [β̂1(π) − β̂2(π)]′
{

V̂1(π) + V̂2(π)
}−1[β̂1(π) − β̂2(π)],

[See Andrews and Fair (1988).] There is a small complication with this result in this
time-series context. The two subsamples are generally not independent so the additive
result above is not quite appropriate. Asymptotically, the number of observations close
to the switch point, if there is one, becomes small, so this is only a finite sample problem.
The likelihood ratio-like statistic would be

LRT(π) = −[q1(π | β̂1) + q2(π | β̂2)][q1(π | β̂) + q2(π | β̂)]

where β̂ is based on the full sample. (This result makes use of our assumption that there
are no common parameters so that the criterion for the full sample is the sum of those
for the subsamples. With common parameters, it becomes slightly more complicated.)
The Lagrange multiplier statistic is the most convenient of the three. All matrices with
subscript “T” are based on the full sample GMM estimator. The weighting and deriva-
tive matrices are computed using the full sample. The moment equation is computed
at the first subsample [though the sum is divided by T not [πT]—see Andrews (1993,
eqn. (4.4)];

LMT(π) = T
π(1 − π)

m̄1(π | β̂T)′V̂−1
T

¯̂GT
[ ¯̂GT

′ V̂−1
T

¯̂GT
]−1 ¯̂GT

′ V̂−1
T m̄1(π | β̂T).

The LM statistic is simpler, as it requires the model only to be estimated once, using the
full sample. (Of course, this is a minor virtue. The computations for the full sample and
the subsamples are the same, so the same amount of setup is required either way.) In
each case, the statistic has a limiting chi-squared distribution with K degrees of freedom
where K is the number of parameters in the model.

Since π is unknown, the preceding does not solve the problem posed at the outset.
The CUSUMS and Hansen tests discussed in Section 7.5 were proposed for that pur-
pose, but lack power and are generally for linear regression models. Andrews (1993) has
derived the behavior of the test statistic obtained by computing the statistics suggested
previously at the range of candidate values, that is the different partitionings of the
sample say π0 = .15 to .85, then retaining the maximum value obtained. These are
the Sup WT(π), Sup LRT(π) and Sup LMT(π), respectively. Although for a given π ,
the statistics have limiting chi-squared distributions, obviously, the maximum does not.
Tables of critical values obtained by Monte Carlo methods are provided in Andrews
(1993). An interesting side calculation in the process is to plot the values of the test
statistics. (See the following application.) Two alternatives to the supremum test are
suggested by Andrews and Ploberger (1994) and Sowell (1996). The average statistics,
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Avg WT(π), Avg LRT(π) and Avg LMT(π) are computed by taking the sample average
of the sequence of values over the R partitions of the sample from π = π0 to π = 1−π0.
The exponential statistics are computed as

Exp WT(π) = ln

[
1
R

R∑
r=1

exp[.5WT(πr )]

]
and likewise for the LM and LR statistics. Tables of critical values for a range of values
of π0 and K are provided by the authors.18

Not including the Hall and Sen approaches, the preceding provides nine differ-
ent statistics for testing the hypothesis of parameter constancy—though Andrews and
Ploberger (1994) suggest that the Exp LR and Avg LR versions are less than optimal.
As the authors note, all are based on statistics which converge to chi-squared statistics.
Andrews and Ploberger present some results to suggest that the exponential form may
be preferable based on its power characteristics.

In principle the preceding suggests a maximum likelihood estimator of π (or T1) if
ML is used as the estimation method. Properties of the estimator are difficult to obtain,
as shown in Bai (1997). Moreover, Bai’s (1997) study based on least squares estimation
of a linear model includes some surprising results that suggest that in the presence of
multiple change points in a sample, the outcome of the Andrews and Ploberger tests
may depend crucially on what time interval is examined.19

Example 7.7 Instability of the Demand for Money
We will examine the demand for money in some detail in Chapters 19 and 20. At this point,
we will take a cursory look at a simple (and questionable) model

(m− p) t = α + βyt + γ i t + εt

where m, p, and y are the logs of the money supply (M1), the price level (CPI U) and GDP,
respectively, and i is the interest rate (90-day T -bill rate) in our data set. Quarterly data
on these and several other macroeconomic variables are given in Appendix F5.1 for the
quarters 1950.1 to 2000.4. We will apply the techniques described above to this money
demand equation. The data span 204 quarters. We chose a window from 1957.3 (quarter
30) to 1993.3 (quarter 175), which correspond roughly to π = .15 to π = .85. The function
is estimated by GMM using as instruments zt = [1, i t , i t−1, yt−1 yt−2]. We will use a Newey–
West estimator for the weighting matrix with L = 2041/4 ≈ 4, so we will lose 4 additional

18An extension of the Andrews and Ploberger methods based on the overidentifying restrictions in the GMM
estimator is developed in Hall and Sen (1999). Approximations to the critical values are given by Hansen
(1997). Further results are given in Hansen (2000).
19Bai (1991), Bai, Lumsdaine and Stock (1999), Bai and Perron (1998a,b) and Bai (1997). “Estimation” of π

or T1 raises a peculiarity of this strand of literature. In many applications, the notion of a change point is tied to
an historical event, such as a war or a major policy shift. For example, in Bai (1997, p. 557), a structural change
in an estimated model of the relationship between T-bill rates and the Fed’s discount rate is associated with a
specific date, October 9, 1979, a date which marked the beginning of a change in Fed operating procedures. A
second change date in his sample was associated with the end of that Fed policy regime while a third between
these two had no obvious identity. In such a case, the idea of a fixed π requires some careful thought as
to what is meant by T → ∞. If the sampling process is defined to have a true origin in a physical history,
wherever it is, then π cannot be fixed. As T increases, π must decline to zero and “estimation” of π makes no
sense. Alternatively, if π really is meant to denote a specific proportion of the sample, but remains tied to an
actual date, then presumably, increasing the sample size means shifting both origin and terminal in opposite
directions, at the same rate. Otherwise, insisting that the regime switch occur at time πT has an implausible
economic implication. Changing the orientation of the search to the change date, T1, itself, does not remove
the ambiguities. We leave the philosophical resolution of either interpretation to the reader. Andrews’ (1993,
p. 845) assessment of the situation is blunt: “[n]o optimality properties are known for the ML estimator of π .”
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TABLE 7.7 Results of Model Stability Tests

Statistic Maximum Average Average exp

LM 10.43 4.42 3.31
Wald 11.85 4.57 3.67
LR 15.69 — —
Critical Value 14.15a 4.22b 6.07c

aAndrews (1993), Table I, p = 3, π0 = 0.15.
bAndrews and Ploberger (1994), Table II, p = 3, π0 = 0.15.
cAndrews and Ploberger (1994), Table I, p = 3, π0 = 0.15.

observations after the two lagged values in the instruments. Thus, the estimation sample is
1951.3 to 2000.4, a total of 197 observations.

The GMM estimator is precisely the instrumental variables estimator shown in Chapter 5.
The estimated equation (with standard errors shown in parentheses) is

(m− p) t = −1.824 (0.166) + 0.306 (0.0216) yt − 0.0218 (0.00252) i t + et .

The Lagrange multiplier form of the test is particularly easy to carry out in this framework.
The sample moment equations are

E [m̄T ] = E

[
1
T

T∑
t=1

zt ( yt − x′
tβ)

]
= 0.

The derivative matrix is likewise simple; Ḡ = −(1/T )Z′X. The results of the various testing
procedures are shown in Table 7.7.

The results are mixed; some of the statistics reject the hypothesis while others do not.
Figure 7.7 shows the sequence of test statistics. The three are quite consistent. If there is a
structural break in these data, it occurs in the late 1970s. These results coincide with Bai’s
findings discussed in the preceding footnote.

FIGURE 7.7 Structural Change Test Statistics.
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7.6 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nonlinear model could be recovered from estimates obtained for a linear regression.
The final sections of the chapter described hypothesis tests designed to reveal whether
the assumed model had changed during the sample period, or was different for different
groups of observations. These tests rely on information about when (or how) the sample
is to be partitioned for the test. In many time series cases, this is unknown. Tests designed
for this more complex case were considered in Section 7.5.4.

Key Terms and Concepts

• Binary variable
• Chow test
• CUSUM test
• Dummy variable
• Dummy variable trap
• Exactly identified
• Hansen’s test
• Identification condition
• Interaction term
• Intrinsically linear

• Knots
• Loglinear model
• Marginal effect
• Nonlinear restriction
• One step ahead prediction

error
• Overidentified
• Piecewise continuous
• Predictive test
• Qualification indices

• Recursive residual
• Response
• Semilog model
• Spline
• Structural change
• Threshold effect
• Time profile
• Treatment
• Wald test

Exercises

1. In Solow’s classic (1957) study of technical change in the U.S. economy, he suggests
the following aggregate production function: q(t) = A(t) f [k(t)], where q(t) is ag-
gregate output per work hour, k(t) is the aggregate capital labor ratio, and A(t) is
the technology index. Solow considered four static models, q/A= α+β ln k, q/A=
α − β/k, ln(q/A) = α + β ln k, and ln(q/A) = α + β/k. Solow’s data for the years
1909 to 1949 are listed in Appendix Table F7.2. Use these data to estimate the α

and β of the four functions listed above. [Note: Your results will not quite match
Solow’s. See the next exercise for resolution of the discrepancy.]

2. In the aforementioned study, Solow states:

A scatter of q/A against k is shown in Chart 4. Considering the amount of a
priori doctoring which the raw figures have undergone, the fit is remarkably
tight. Except, that is, for the layer of points which are obviously too high. These
maverick observations relate to the seven last years of the period, 1943–1949.
From the way they lie almost exactly parallel to the main scatter, one is tempted
to conclude that in 1943 the aggregate production function simply shifted.

a. Compute a scatter diagram of q/Aagainst k.
b. Estimate the four models you estimated in the previous problem including a

dummy variable for the years 1943 to 1949. How do your results change? [Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.]
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c. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of k appears in the regression. Use
an F test to test the hypothesis.

3. A regression model with K = 16 independent variables is fit using a panel of seven
years of data. The sums of squares for the seven separate regressions and the pooled
regression are shown below. The model with the pooled data allows a separate
constant for each year. Test the hypothesis that the same coefficients apply in every
year.

1954 1955 1956 1957 1958 1959 1960 All

Observations 65 55 87 95 103 87 78 570
e′e 104 88 206 144 199 308 211 1425

4. Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y = α + x′β + γ d + ε, (1)

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypothesis
of interest is H0 : γ ≥ 0 versus H1 : γ < 0. The regression seeks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordinary least squares. Denote the estimates a, b, and c.
2. Compute the set of qualification indices,

q = ai + Xb. (2)

Note the omission of cd from the fitted value.
3. Regress q on a constant, y and d. The equation is

q = α∗ + β∗y + γ∗d + ε∗. (3)

The analysis suggests that if γ < 0, γ∗ > 0.
a. Prove that the theory notwithstanding, the least squares estimates c and c∗ are

related by

c∗ = (ȳ1 − ȳ)(1 − R2)

(1 − P)
(
1 − r2

yd

) − c, (4)
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where

ȳ1 = mean of y for observations with d = 1,

ȳ = mean of y for all observations,
P = mean of d,

R2 = coefficient of determination for (1),

r2
yd = squared correlation between y and d.

[Hint: The model contains a constant term. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a partitioned regression to compute the coefficients in (3). Second, in (2),
use the result that based on the least squares results y = ai + Xb + cd + e, so
q = y − cd − e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y − cd − e] on y and d.

b. Will the sample evidence necessarily be consistent with the theory? [Hint: Sup-
pose that c = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of Business
and Economic Statistics in April 1983.

5. Reverse regression continued. This and the next exercise continue the analysis of
Exercise 4. In Exercise 4, interest centered on a particular dummy variable in which
the regressors were accurately measured. Here we consider the case in which the
crucial regressor in the model is measured with error. The paper by Kamlich and
Polachek (1982) is directed toward this issue.

Consider the simple errors in the variables model,

y = α + βx∗ + ε, x = x∗ + u,

where u and ε are uncorrelated and x is the erroneously measured, observed coun-
terpart to x∗.
a. Assume that x∗, u, and ε are all normally distributed with means µ∗, 0, and 0,

variances σ 2
∗ , σ 2

u , and σ 2
ε , and zero covariances. Obtain the probability limits of

the least squares estimators of α and β.
b. As an alternative, consider regressing x on a constant and y, and then computing

the reciprocal of the estimate. Obtain the probability limit of this estimator.
c. Do the “direct” and “reverse” estimators bound the true coefficient?

6. Reverse regression continued. Suppose that the model in Exercise 5 is extended to
y = βx∗ +γ d +ε, x = x∗ +u. For convenience, we drop the constant term. Assume
that x∗, ε and u are independent normally distributed with zero means. Suppose
that d is a random variable that takes the values one and zero with probabilities π

and 1 − π in the population and is independent of all other variables in the model.
To put this formulation in context, the preceding model (and variants of it) have
appeared in the literature on discrimination. We view y as a “wage” variable, x∗ as
“qualifications,” and x as some imperfect measure such as education. The dummy
variable d is membership (d = 1) or nonmembership (d = 0) in some protected class.
The hypothesis of discrimination turns on γ < 0 versus γ ≥ = 0.
a. What is the probability limit of c, the least squares estimator of γ , in the least

squares regression of y on x and d? [Hints: The independence of x∗ and d is
important. Also, plim d′d/n = Var[d] + E2[d] = π(1 − π) + π2 = π . This minor
modification does not affect the model substantively, but it greatly simplifies the
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TABLE 7.8 Ship Damage Incidents

Period Constructed

Ship Type 1960–1964 1965–1969 1970–1974 1975–1979

A 0 4 18 11
B 29 53 44 18
C 1 1 2 1
D 0 0 11 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).

algebra.] Now suppose that x∗ and d are not independent. In particular, suppose
that E [x∗ | d = 1] = µ1 and E [x∗ | d = 0] = µ0. Repeat the derivation with this
assumption.

b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on d in this regression? Assume that x∗ and d are independent.

c. Suppose that x∗ and d are not independent, but γ is, in fact, less than zero.
Assuming that both preceding equations still hold, what is estimated by
(ȳ | d = 1) − (ȳ | d = 0)? What does this quantity estimate if γ does equal zero?

7. Data on the number of incidents of damage to a sample of ships, with the type
of ship and the period when it was constructed, are given in the Table 7.8. There
are five types of ships and four different periods of construction. Use F tests and
dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”


