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MODELS FOR DISCRETE
CHOICE

Q
21.1 INTRODUCTION

There are many settings in which the economic outcome we seek to model is a discrete
choice among a set of alternatives, rather than a continuous measure of some activity.
Consider, for example, modeling labor force participation, the decision of whether or
not to make a major purchase, or the decision of which candidate to vote for in an
election. For the first of these examples, intuition would suggest that factors such as
age, education, marital status, number of children, and some economic data would be
relevant in explaining whether an individual chooses to seek work or not in a given
period. But something is obviously lacking if this example is treated as the same sort
of regression model we used to analyze consumption or the costs of production or the
movements of exchange rates. In this chapter, we shall examine a variety of what have
come to be known as qualitative response (QR) models. There are numerous different
types that apply in different situations. What they have in common is that they are
models in which the dependent variable is an indicator of a discrete choice, such as a
“yes or no” decision. In general, conventional regression methods are inappropriate in
these cases.

This chapter is a lengthy but far from complete survey of topics in estimating QR
models. Almost none of these models can be consistently estimated with linear regres-
sion methods. Therefore, readers interested in the mechanics of estimation may want to
review the material in Appendices D and E before continuing. In most cases, the method
of estimation is maximum likelihood. The various properties of maximum likelihood
estimators are discussed in Chapter 17. We shall assume throughout this chapter that the
necessary conditions behind the optimality properties of maximum likelihood estima-
tors are met and, therefore, we will not derive or establish these properties specifically
for the QR models. Detailed proofs for most of these models can be found in surveys by
Amemiya (1981), McFadden (1984), Maddala (1983), and Dhrymes (1984). Additional
commentary on some of the issues of interest in the contemporary literature is given by
Maddala and Flores-Lagunes (2001).

21.2 DISCRETE CHOICE MODELS

The general class of models we shall consider are those for which the dependent variable
takes values 0, 1, 2, . . . . In a few cases, the values will themselves be meaningful, as in
the following:

1. Number of patents: y = 0, 1, 2, . . . These are count data.
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In most of the cases we shall study, the values taken by the dependent variables are
merely a coding for some qualitative outcome. Some examples are as follows:

2. Labor force participation: We equate “no” with 0 and “yes” with 1. These
decisions are qualitative choices. The 0/1 coding is a mere convenience.

3. Opinions of a certain type of legislation: Let 0 represent “strongly opposed,”
1 “opposed,” 2 “neutral,” 3 “support,” and 4 “strongly support.” These numbers
are rankings, and the values chosen are not quantitative but merely an ordering.
The difference between the outcomes represented by 1 and 0 is not necessarily
the same as that between 2 and 1.

4. The occupational field chosen by an individual: Let 0 be clerk, 1 engineer,
2 lawyer, 3 politician, and so on. These data are merely categories, giving neither
a ranking nor a count.

5. Consumer choice among alternative shopping areas: This case has the same
characteristics as example 4, but the appropriate model is a bit different. These
two examples will differ in the extent to which the choice is based on
characteristics of the individual, which are probably dominant in the occupational
choice, as opposed to attributes of the choices, which is likely the more important
consideration in the choice of shopping venue.

None of these situations lends themselves readily to our familiar type of regression
analysis. Nonetheless, in each case, we can construct models that link the decision or
outcome to a set of factors, at least in the spirit of regression. Our approach will be to
analyze each of them in the general framework of probability models:

Prob(event j occurs) = Prob(Y = j) = F[relevant effects, parameters]. (21-1)

The study of qualitative choice focuses on appropriate specification, estimation, and
use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of alternatives.

Example 21.1 Labor Force Participation Model
In Example 4.3 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal labor market taken from a full sample of 753 observations.
The semilog earnings equation is of the form

ln earnings = β1 + β2age + β3age2 + β4education + β5kids + ε

where earnings is hourly wage times hours worked, education is measured in years of school-
ing and kids is a binary variable which equals one if there are children under 18 in the house-
hold. What of the other 325 individuals? The underlying labor supply model described a
market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending
on whether it exceeded their own reservation wage. The first of these depends on, among
other things, education, while the second (we assume) depends on such variables as age,
the presence of children in the household, other sources of income (husband’s), and marginal
tax rates on labor income. The sample we used to fit the earnings equation contains data
on all these other variables. The models considered in this chapter would be appropriate for
modeling the outcome yi = 1 if in the labor force, and 0 if not.
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21.3 MODELS FOR BINARY CHOICE

Models for explaining a binary (0/1) dependent variable typically arise in two contexts.
In many cases, the analyst is essentially interested in a regressionlike model of the sort
considered in Chapters 2 to 9. With data on the variable of interest and a set of covariates,
the analyst is interested in specifying a relationship between the former and the latter,
more or less along the lines of the models we have already studied. The relationship
between voting behavior and income is typical. In other cases, the binary choice model
arises in the context of a model in which the nature of the observed data dictate the
special treatment of a binary choice model. For example, in a model of the demand
for tickets for sporting events, in which the variable of interest is number of tickets,
it could happen that the observation consists only of whether the sports facility was
filled to capacity (demand greater than or equal to capacity so Y= 1) or not (Y= 0). It
will generally turn out that the models and techniques used in both cases are the same.
Nonetheless, it is useful to examine both of them.

21.3.1 THE REGRESSION APPROACH

To focus ideas, consider the model of labor force participation suggested in Example
21.1.1 The respondent either works or seeks work (Y= 1) or does not (Y= 0) in the
period in which our survey is taken. We believe that a set of factors, such as age, marital
status, education, and work history, gathered in a vector x explain the decision, so that

Prob(Y = 1 | x) = F(x, β)

Prob(Y = 0 | x) = 1 − F(x, β).
(21-2)

The set of parameters β reflects the impact of changes in x on the probability. For
example, among the factors that might interest us is the marginal effect of marital status
on the probability of labor force participation. The problem at this point is to devise a
suitable model for the right-hand side of the equation.

One possibility is to retain the familiar linear regression,

F(x, β) = x′β.

Since E [y | x] = F(x, β), we can construct the regression model,

y = E [y | x] + (
y − E [y | x]

) = x′β + ε. (21-3)

The linear probability model has a number of shortcomings. A minor complication
arises because ε is heteroscedastic in a way that depends on β. Since x′β + ε must equal
0 or 1, ε equals either −x′β or 1−x′β, with probabilities 1− F and F , respectively. Thus,
you can easily show that

Var[ε | x] = x′β(1 − x′β). (21-4)

We could manage this complication with an FGLS estimator in the fashion of Chapter 11.
A more serious flaw is that without some ad hoc tinkering with the disturbances, we
cannot be assured that the predictions from this model will truly look like probabilities.

1Models for qualitative dependent variables can now be found in most disciplines in economics. A frequent
use is in labor economics in the analysis of microlevel data sets.
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FIGURE 21.1 Model for a Probability.

We cannot constrain x′β to the 0–1 interval. Such a model produces both nonsense
probabilities and negative variances. For these reasons, the linear model is becoming
less frequently used except as a basis for comparison to some other more appropriate
models.2

Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (21-1). For a given regressor vector, we would expect

lim
x′β→+∞

Prob(Y = 1 | x) = 1

lim
x′β→−∞

Prob(Y = 1 | x) = 0.
(21-5)

See Figure 21.1. In principle, any proper, continuous probability distribution defined
over the real line will suffice. The normal distribution has been used in many analyses,
giving rise to the probit model,

Prob(Y = 1 | x) =
∫ x′β

−∞
φ(t) dt = 
(x′β). (21-6)

The function 
(.) is a commonly used notation for the standard normal distribution.

2The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model
at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we
may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting
estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least
squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear
probability model is applied by Caudill (1988), Heckman and MaCurdy (1985), and Heckman and Snyder
(1997).
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Partly because of its mathematical convenience, the logistic distribution,

Prob(Y = 1 | x) = ex′β

1 + ex′β = �(x′β), (21-7)

has also been used in many applications. We shall use the notation �(.) to indicate the
logistic cumulative distribution function. This model is called the logit model for reasons
we shall discuss in the next section. Both of these distributions have the familiar bell
shape of symmetric distributions. Other models which do not assume symmetry, such
as the Weibull model

Prob(Y = 1 | x) = exp[−exp(x′β)]

and complementary log log model,

Prob(Y = 1 | x) = 1 − exp[exp(−x′β)]

have also been employed. Still other distributions have been suggested,3 but the
probit and logit models are still the most common frameworks used in econometric
applications.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a t distribution with seven degrees of freedom.) Therefore, for intermediate
values of x′β (say, between −1.2 and +1.2), the two distributions tend to give similar
probabilities. The logistic distribution tends to give larger probabilities to y = 0 when
x′β is extremely small (and smaller probabilities to Y = 0 when β ′x is very large) than the
normal distribution. It is difficult to provide practical generalities on this basis, however,
since they would require knowledge of β. We should expect different predictions from
the two models, however, if the sample contains (1) very few responses (Ys equal to 1)
or very few nonresponses (Ys equal to 0) and (2) very wide variation in an important
independent variable, particularly if (1) is also true. There are practical reasons for
favoring one or the other in some cases for mathematical convenience, but it is difficult
to justify the choice of one distribution or another on theoretical grounds. Amemiya
(1981) discusses a number of related issues, but as a general proposition, the question
is unresolved. In most applications, the choice between these two seems not to make
much difference. However, as seen in the example below, the symmetric and asymmetric
distributions can give substantively different results, and here, the guidance on how to
choose is unfortunately sparse.

The probability model is a regression:

E [y | x] = 0[1 − F(x′β)] + 1[F(x′β)] = F(x′β). (21-8)

Whatever distribution is used, it is important to note that the parameters of the model,
like those of any nonlinear regression model, are not necessarily the marginal effects
we are accustomed to analyzing. In general,

∂ E [y | x]
∂x

=
{

dF(x′β)

d(x′β)

}
β = f (x′β)β, (21-9)

3See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984) and Greene (2001).
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where f (.) is the density function that corresponds to the cumulative distribution, F(.).
For the normal distribution, this result is

∂ E [y | x]
∂x

= φ(x′β)β, (21-10)

where φ(t) is the standard normal density. For the logistic distribution,

d�(x′β)

d(x′β)
= ex′β

(1 + ex′β)2
= �(x′β)[1 − �(x′β)]. (21-11)

Thus, in the logit model,

∂ E [y | x]
∂x

= �(x′β)[1 − �(x′β)]β. (21-12)

It is obvious that these values will vary with the values of x. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the regressors and,
where necessary, other pertinent values. For convenience, it is worth noting that the
same scale factor applies to all the slopes in the model.

For computing marginal effects, one can evaluate the expressions at the sample
means of the data or evaluate the marginal effects at every observation and use the
sample average of the individual marginal effects. The functions are continuous with
continuous first derivatives, so Theorem D.12 (the Slutsky theorem) and assuming that
the data are “well behaved” a law of large numbers (Theorems D.4 and D.5) apply; in
large samples these will give the same answer. But that is not so in small or moderate-
sized samples. Current practice favors averaging the individual marginal effects when
it is possible to do so.

Another complication for computing marginal effects in a binary choice model
arises because x will often include dummy variables—for example, a labor force par-
ticipation equation will often contain a dummy variable for marital status. Since the
derivative is with respect to a small change, it is not appropriate to apply (21-10) for the
effect of a change in a dummy variable, or change of state. The appropriate marginal
effect for a binary independent variable, say d, would be

Marginal effect = Prob
[
Y = 1

∣∣ x̄(d), d = 1
] − Prob

[
Y = 1

∣∣ x̄(d), d = 0
]
,

where x̄(d), denotes the means of all the other variables in the model. Simply taking
the derivative with respect to the binary variable as if it were continuous provides an
approximation that is often surprisingly accurate. In Example 21.3, the difference in
the two probabilities for the probit model is (0.5702 − 0.1057) = 0.4645, whereas the
derivative approximation reported below is 0.468. Nonetheless, it might be optimistic
to rely on this outcome. We will revisit this computation in the examples and discussion
to follow.

21.3.2 LATENT REGRESSION—INDEX FUNCTION MODELS

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression.
As an often-cited example, consider the decision to make a large purchase. The theory
states that the consumer makes a marginal benefit-marginal cost calculation based on
the utilities achieved by making the purchase and by not making the purchase and by
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using the money for something else. We model the difference between benefit and cost
as an unobserved variable y∗ such that

y∗ = x′β + ε.

We assume that ε has mean zero and has either a standardized logistic with (known) vari-
ance π2/3 [see (21-7)] or a standard normal distribution with variance one [see (21-6)].
We do not observe the net benefit of the purchase, only whether it is made or not.
Therefore, our observation is

y = 1 if y∗ > 0,

y = 0 if y∗ ≤ 0.

In this formulation, x′β is called the index function.
Two aspects of this construction merit our attention. First, the assumption of known

variance of ε is an innocent normalization. Suppose the variance of ε is scaled by an
unrestricted parameter σ 2. The latent regression will be y∗ = x′β + σε. But, (y∗/σ) =
x′(β/σ )+ε is the same model with the same data. The observed data will be unchanged;
y is still 0 or 1, depending only on the sign of y∗ not on its scale. This means that there is
no information about σ in the data so it cannot be estimated. Second, the assumption
of zero for the threshold is likewise innocent if the model contains a constant term (and
not if it does not).4 Let a be the supposed nonzero threshold and α be an unknown
constant term and, for the present, x and β contain the rest of the index not including
the constant term. Then, the probability that y equals one is

Prob(y∗ > a | x) = Prob(α + x′β + ε > a | x) = Prob[(α − a) + x′β + ε > 0 | x].

Since α is unknown, the difference (α − a) remains an unknown parameter. With the
two normalizations,

Prob(y∗ > 0 | x) = Prob(ε > −x′β | x).

If the distribution is symmetric, as are the normal and logistic, then

Prob(y∗ > 0 | x) = Prob(ε < x′β | x) = F(x′β),

which provides an underlying structural model for the probability.

Example 21.2 Structural Equations for a Probit Model
Nakosteen and Zimmer (1980) analyze a model of migration based on the following structure:5

For individual i, the market wage that can be earned at the present location is

y∗
p = x′

pβ + εp.

Variables in the equation include age, sex, race, growth in employment, and growth in
per capita income. If the individual migrates to a new location, then his or her market wage

4Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.
5A number of other studies have also used variants of this basic formulation. Some important examples
are Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in
Example 21.5 is another example. The now standard approach, in which “participation” equals one if wage
offer (x′

wβw +εw) minus reservation wage (x′
r βr +εr ) is positive, is also used in Fernandez and Rodriguez-Poo

(1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior
that give rise to binary choice models.
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would be

y∗
m = x′

mγ + εm.

Migration, however, entails costs that are related both to the individual and to the labor
market:

C∗ = z′α + u.

Costs of moving are related to whether the individual is self-employed and whether that
person recently changed his or her industry of employment. They migrate if the benefit
y∗

m − y∗
p is greater than the cost C∗. The net benefit of moving is

M∗ = y∗
m − y∗

p − C∗

= x′
mγ − x′

pβ − z′α + (εm − εp − u)

= w′δ + ε.

Since M∗ is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only y∗

m if the individual has
moved or y∗

p if he or she has not. But we do observe that M = 1 for a move and M = 0 for no
move. If the disturbances are normally distributed, then the probit model we analyzed earlier
is produced. Logistic disturbances produce the logit model instead.

21.3.3 RANDOM UTILITY MODELS

An alternative interpretation of data on individual choices is provided by the random
utility model. Suppose that in the Nakosteen–Zimmer framework, ym and yp represent
the individual’s utility of two choices, which we might denote Ua and Ub. For another
example, Ua might be the utility of rental housing and Ub that of home ownership. The
observed choice between the two reveals which one provides the greater utility, but not
the unobservable utilities. Hence, the observed indicator equals 1 if Ua > Ub and 0 if
Ua ≤ Ub. A common formulation is the linear random utility model,

Ua = x′βa + εa and Ub = x′βb + εb. (21-13)

Then, if we denote by Y = 1 the consumer’s choice of alternative a, we have

Prob[Y = 1 | x] = Prob[Ua > Ub]

= Prob[x′βa + εa − x′βb − εb > 0 | x]

= Prob[x′(βa − βb) + εa − εb > 0 | x]

= Prob[x′β + ε > 0 | x]

(21-14)

once again.

21.4 ESTIMATION AND INFERENCE IN BINARY
CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models
is usually based on the method of maximum likelihood. Each observation is treated as
a single draw from a Bernoulli distribution (binomial with one draw). The model with
success probability F(x′β) and independent observations leads to the joint probability,
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or likelihood function,

Prob(Y1 = y1, Y2 = y2, . . . , Yn = yn | X) =
∏
yi =0

[1 − F(x′
iβ)]

∏
yi =1

F(x′
iβ), (21-15)

where X denotes [xi ]i=1,...,n. The likelihood function for a sample of n observations can
be conveniently written as

L(β | data) =
n∏

i=1

[F(x′
iβ)]yi [1 − F(x′

iβ)]1−yi . (21-16)

Taking logs, we obtain

ln L =
n∑

i=1

{
yi ln F(x′

iβ) + (1 − yi ) ln[1 − F(x′
iβ)]

}
.6 (21-17)

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

[
yi fi

Fi
+ (1 − yi )

− fi

(1 − Fi )

]
xi = 0 (21-18)

where fi is the density, dFi/d(x′
iβ). [In (21-18) and later, we will use the subscript i to

indicate that the function has an argument x′
iβ.] The choice of a particular form for Fi

leads to the empirical model.
Unless we are using the linear probability model, the likelihood equations in (21-18)

will be nonlinear and require an iterative solution. All of the models we have seen thus
far are relatively straightforward to analyze. For the logit model, by inserting (21-7) and
(21-11) in (21-18), we get, after a bit of manipulation, the likelihood equations

∂ ln L
∂β

=
n∑

i=1

(yi − �i )xi = 0. (21-19)

Note that if xi contains a constant term, the first-order conditions imply that the average
of the predicted probabilities must equal the proportion of ones in the sample.7 This
implication also bears some similarity to the least squares normal equations if we view
the term yi − �i as a residual.8 For the normal distribution, the log-likelihood is

ln L =
∑
yi =0

ln[1 − 
(x′
iβ)] +

∑
yi =1

ln 
(x′
iβ). (21-20)

The first-order conditions for maximizing L are

∂ ln L
∂β

=
∑
yi =0

−φi

1 − 
i
xi +

∑
yi =1

φi


i
xi =

∑
yi =0

λ0
i xi +

∑
yi =1

λ1
i xi .

6If the distribution is symmetric, as the normal and logistic are, then 1− F(x′β) = F(−x′β). There is a further
simplification. Let q = 2y − 1. Then ln L = �i ln F(qi xi β). See (21-21).
7The same result holds for the linear probability model. Although regularly observed in practice, the result
has not been verified for the probit model.
8This sort of construction arises in many models. The first derivative of the log-likelihood with respect to the
constant term produces the generalized residual in many settings. See, for example, Chesher, Lancaster, and
Irish (1985) and the equivalent result for the tobit model in Section 20.3.5.
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Using the device suggested in footnote 6, we can reduce this to

∂ log L
∂β

=
n∑

i=1

[
qiφ(qi x′

iβ)


(qi x′
iβ)

]
xi =

n∑
i=1

λi xi = 0. (21-21)

where qi = 2yi − 1.
The actual second derivatives for the logit model are quite simple:

H = ∂2 ln L
∂β∂β ′ = −

∑
i

�i (1 − �i )xi x′
i . (21-22)

Since the second derivatives do not involve the random variable yi , Newton’s method
is also the method of scoring for the logit model. Note that the Hessian is always
negative definite, so the log-likelihood is globally concave. Newton’s method will usually
converge to the maximum of the log-likelihood in just a few iterations unless the data
are especially badly conditioned. The computation is slightly more involved for the
probit model. A useful simplification is obtained by using the variable λ(yi , β

′xi ) = λi

that is defined in (21-21). The second derivatives can be obtained using the result that
for any z, dφ(z)/dz = −zφ(z). Then, for the probit model,

H = ∂2 ln L
∂β∂β ′ =

n∑
i=1

−λi (λi + x′
iβ)xi x′

i . (21-23)

This matrix is also negative definite for all values of β. The proof is less obvious than for
the logit model.9 It suffices to note that the scalar part in the summation is Var[ε | ε ≤ β ′x]
− 1 when y = 1 and Var[ε | ε ≥ −β ′x] − 1 when y = 0. The unconditional variance is
one. Since truncation always reduces variance—see Theorem 22.3—in both cases, the
variance is between zero and one, so the value is negative.10

The asymptotic covariance matrix for the maximum likelihood estimator can be
estimated by using the inverse of the Hessian evaluated at the maximum likelihood
estimates. There are also two other estimators available. The Berndt, Hall, Hall, and
Hausman estimator [see (17-18) and Example 17.4] would be

B =
n∑

i=1

g2
i xi x′

i ,

where gi = (yi − �i ) for the logit model [see (21-19)] and gi = λi for the probit model
[see (21-21)]. The third estimator would be based on the expected value of the Hessian.
As we saw earlier, the Hessian for the logit model does not involve yi , so H = E [H].
But because λi is a function of yi [see (21-21)], this result is not true for the probit model.
Amemiya (1981) showed that for the probit model,

E
[
∂2 ln L
∂β ∂β ′

]
probit

=
n∑

i=1

λ0iλi1xi x′
i . (21-24)

Once again, the scalar part of the expression is always negative [see (21-23) and note
that λ0i is always negative and λi1 is always positive]. The estimator of the asymptotic

9See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).
10See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 22.
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covariance matrix for the maximum likelihood estimator is then the negative inverse of
whatever matrix is used to estimate the expected Hessian. Since the actual Hessian is
generally used for the iterations, this option is the usual choice. As we shall see below,
though, for certain hypothesis tests, the BHHH estimator is a more convenient choice.

In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of
ones and zeros in the observed sample of the dependent variable is deliberately skewed
in favor of one outcome or the other to achieve a more balanced sample than random
sampling would produce. The sampling is said to be choice based. In the studies noted,
the dependent variable measured the occurrence of loan default, which is a relatively
uncommon occurrence. To enrich the sample, observations with y = 1 (default) were
oversampled. Intuition should suggest (correctly) that the bias in the sample should
be transmitted to the parameter estimates, which will be estimated so as to mimic the
sample, not the population, which is known to be different. Manski and Lerman (1977)
derived the weighted endogenous sampling maximum likelihood (WESML) estimator
for this situation. The estimator requires that the true population proportions, ω1 and
ω0, be known. Let p1 and p0 be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

ln L =
n∑

i=1

wi ln F(qiβ
′xi ),

where wi = yi (ω1/p1) + (1 − yi )(ω0/p0). Note that wi takes only two different values.
The derivatives and the Hessian are likewise weighted. A final correction is needed
after estimation; the appropriate estimator of the asymptotic covariance matrix is the
sandwich estimator discussed in the next section, H−1BH−1 (with weighted B and H),
instead of B or H alone. (The weights are not squared in computing B.)11

21.4.1 ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likeli-
hood estimator (QMLE) in view of the possibility that the normal probability model
might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic
covariance matrix of the QMLE (see Section 17.9 for discussion),

Est.Asy. Var[β̂] = [Ĥ]−1B̂[Ĥ]−1,

has been used in a number of recent studies based on the probit model [e.g., Fernandez
and Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner
(1993)]. If the probit model is correctly specified, then plim(1/n)B̂ = plim(1/n)(−Ĥ)

and either single matrix will suffice, so the robustness issue is moot (of course). On the
other hand, the probit (Q-) maximum likelihood estimator is not consistent in the pres-
ence of any form of heteroscedasticity, unmeasured heterogeneity, omitted variables
(even if they are orthogonal to the included ones), nonlinearity of the functional form
of the index, or an error in the distributional assumption [with some narrow exceptions

11WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which
the biased sampling does, the weighting undoes. It is common for the end result to be very large standard
errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance
the data precisely to avoid this problem.
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as described by Ruud (1986)]. Thus, in almost any case, the sandwich estimator pro-
vides an appropriate asymptotic covariance matrix for an estimator that is biased in an
unknown direction. White raises this issue explicitly, although it seems to receive little
attention in the literature: “it is the consistency of the QMLE for the parameters of
interest in a wide range of situations which insures its usefulness as the basis for robust
estimation techniques” (1982a, p. 4). His very useful result is that if the quasi-maximum
likelihood estimator converges to a probability limit, then the sandwich estimator can,
under certain circumstances, be used to estimate the asymptotic covariance matrix of
that estimator. But there is no guarantee that the QMLE will converge to anything
interesting or useful. Simply computing a robust covariance matrix for an otherwise
inconsistent estimator does not give it redemption. Consequently, the virtue of a robust
covariance matrix in this setting is unclear.

21.4.2 MARGINAL EFFECTS

The predicted probabilities, F(x′β̂) = F̂ and the estimated marginal effects f (x′β̂)×β̂ =
f̂ β̂ are nonlinear functions of the parameter estimates. To compute standard errors, we
can use the linear approximation approach (delta method) discussed in Section 5.2.4.
For the predicted probabilities,

Asy. Var[F̂] = [∂ F̂/∂β̂]′V[∂ F̂/∂β̂],

where

V = Asy. Var[β̂].

The estimated asymptotic covariance matrix of β̂ can be any of the three described
earlier. Let z = x′β̂. Then the derivative vector is

[∂ F̂/∂β̂] = [dF̂/dz][∂z/∂β̂] = f̂ x.

Combining terms gives

Asy. Var[F̂] = f̂ 2x′ Vx,

which depends, of course, on the particular x vector used. This results is useful when a
marginal effect is computed for a dummy variable. In that case, the estimated effect is

�F̂ = F̂ | d = 1 − F̂ | d = 0. (21-25)

The asymptotic variance would be

Asy. Var[�F̂] = [∂�F̂/∂β̂]′V[∂�F̂/∂β̂],

where (21-26)

[∂�F̂/∂β̂] = f̂ 1

(
x̄(d)

1

)
− f̂ 0

(
x̄(d)

0

)
.

For the other marginal effects, let γ̂ = f̂ β̂. Then

Asy. Var[γ̂ ] =
[

∂ γ̂

∂β̂
′

]
V

[
∂ γ̂

∂β̂ ′

]′
.
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TABLE 21.1 Estimated Probability Models

Linear Logistic Probit Weibull

Variable Coefficient Slope Coefficient Slope Coefficient Slope Coefficient Slope

Constant −1.498 — −13.021 — −7.452 — −10.631 —
GPA 0.464 0.464 2.826 0.534 1.626 0.533 2.293 0.477
TUCE 0.010 0.010 0.095 0.018 0.052 0.017 0.041 0.009
PSI 0.379 0.379 2.379 0.499 1.426 0.468 1.562 0.325
f (x̄′β̂) 1.000 0.189 0.328 0.208

The matrix of derivatives is

f̂

(
∂β̂

∂β̂
′

)
+ β̂

(
d f̂
dz

) (
∂z

∂β̂
′

)
= f̂ I +

(
d f̂
dz

)
β̂x′.

For the probit model, df/dz = −zφ, so

Asy. Var[γ̂ ] = φ2[I − (β ′x)βx′]V[I − (β ′x)βx′]′.

For the logit model, f̂ = �̂(1 − �̂), so

d f̂
dz

= (1 − 2�̂)

(
d�̂

dz

)
= (1 − 2�̂)�̂(1 − �̂).

Collecting terms, we obtain

Asy. Var[γ̂ ] = [�(1 − �)]2[I + (1 − 2�)βx′]V[I + (1 − 2�)xβ ′].

As before, the value obtained will depend on the x vector used.

Example 21.3 Probability Models
The data listed in Appendix Table F21.1 were taken from a study by Spector and Mazzeo
(1980), which examined whether a new method of teaching economics, the Personalized
System of Instruction (PSI), significantly influenced performance in later economics courses.
The “dependent variable” used in our application is GRADE, which indicates the whether
a student’s grade in an intermediate macroeconomics course was higher than that in the
principles course. The other variables are GPA, their grade point average; TUCE, the score
on a pretest that indicates entering knowledge of the material; and PSI, the binary variable
indicator of whether the student was exposed to the new teaching method. (Spector and
Mazzeo’s specific equation was somewhat different from the one estimated here.)

Table 21.1 presents four sets of parameter estimates. The slope parameters and deriva-
tives were computed for four probability models: linear, probit, logit, and Weibull. The last
three sets of estimates are computed by maximizing the appropriate log-likelihood function.
Estimation is discussed in the next section, so standard errors are not presented here. The
scale factor given in the last row is the density function evaluated at the means of the vari-
ables. Also, note that the slope given for PSI is the derivative, not the change in the function
with PSI changed from zero to one with other variables held constant.

If one looked only at the coefficient estimates, then it would be natural to conclude that
the four models had produced radically different estimates. But a comparison of the columns
of slopes shows that this conclusion is clearly wrong. The models are very similar; in fact,
the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between 0s and 1s for
the dependent variable (21 and 11). As such, we might expect similar results for the probit
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and logit models.12 One indicator is a comparison of the coefficients. In view of the different
variances of the distributions, one for the normal and π2/3 for the logistic, we might expect to
obtain comparable estimates by multiplying the probit coefficients by π/

√
3 ≈ 1.8. Amemiya

(1981) found, through trial and error, that scaling by 1.6 instead produced better results. This
proportionality result is frequently cited. The result in (21-9) may help to explain the finding.
The index x′β is not the random variable. (See Section 21.3.2.) The marginal effect in the probit
model for, say, xk is φ (x′β p)βpk, whereas that for the logit is �(1 − �)βl k. (The subscripts p
and l are for probit and logit.) Amemiya suggests that his approximation works best at the
center of the distribution, where F = 0.5, or x′β = 0 for either distribution. Suppose it is. Then
φ (0) = 0.3989 and �(0) [1 − �(0) ] = 0.25. If the marginal effects are to be the same, then
0.3989 βpk = 0.25βl k, or βl k = 1.6βpk, which is the regularity observed by Amemiya. Note,
though, that as we depart from the center of the distribution, the relationship will move away
from 1.6. Since the logistic density descends more slowly than the normal, for unbalanced
samples such as ours, the ratio of the logit coefficients to the probit coefficients will tend to
be larger than 1.6. The ratios for the ones in Table 21.1 are closer to 1.7 than 1.6.

The computation of the derivatives of the conditional mean function is useful when the vari-
able in question is continuous and often produces a reasonable approximation for a dummy
variable. Another way to analyze the effect of a dummy variable on the whole distribution is
to compute Prob(Y = 1) over the range of x′β (using the sample estimates) and with the two
values of the binary variable. Using the coefficients from the probit model in Table 21.1, we
have the following probabilities as a function of GPA, at the mean of TUCE:

PSI = 0: Prob(GRADE = 1) = 
[−7.452 + 1.626GPA + 0.052(21.938) ]

PSI = 1: Prob(GRADE = 1) = 
[−7.452 + 1.626GPA + 0.052(21.938) + 1.426]

Figure 21.2 shows these two functions plotted over the range of GRADE observed in the
sample, 2.0 to 4.0. The marginal effect of PSI is the difference between the two functions,
which ranges from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows
that the probability that a student’s grade will increase after exposure to PSI is far greater
for students with high GPAs than for those with low GPAs. At the sample mean of GPA of
3.117, the effect of PSI on the probability is 0.465. The simple derivative calculation of (21-9)
is given in Table 21.1; the estimate is 0.468. But, of course, this calculation does not show
the wide range of differences displayed in Figure 21.2.

Table 21.2 presents the estimated coefficients and marginal effects for the probit and
logit models in Table 21.1. In both cases, the asymptotic covariance matrix is computed
from the negative inverse of the actual Hessian of the log-likelihood. The standard errors for
the estimated marginal effect of PSI are computed using (21-25) and (21-26) since PSI is a
binary variable. In comparison, the simple derivatives produce estimates and standard errors
of (0.449, 0.181) for the logit model and (0.464, 0.188) for the probit model. These differ only
slightly from the results given in the table.

21.4.3 HYPOTHESIS TESTS

For testing hypotheses about the coefficients, the full menu of procedures is available.
The simplest method for a single restriction would be based on the usual t tests, using
the standard errors from the information matrix. Using the normal distribution of the
estimator, we would use the standard normal table rather than the t table for critical
points. For more involved restrictions, it is possible to use the Wald test. For a set of

12One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Weibull
distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values
of ε, not to the observed sample of values of the dependent variable.
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FIGURE 21.2 Effect of PSI on Predicted Probabilities.

TABLE 21.2 Estimated Coefficients and Standard Errors (Standard Errors
in Parentheses)

Logistic Probit

Variable Coefficient t Ratio Slope t Ratio Coefficient t Ratio Slope t Ratio

Constant −13.021 −2.641 — — −7.452 −2.931 — —
(4.931) (2.542)

GPA 2.826 2.238 0.534 2.252 1.626 2.343 0.533 2.294
(1.263) (0.237) (0.694) (0.232)

TUCE 0.095 0.672 0.018 0.685 0.052 0.617 0.017 0.626
(0.142) (0.026) (0.084) (0.027)

PSI 2.379 2.234 0.456 2.521 1.426 2.397 0.464 2.727
(1.065) (0.181) (0.595) (0.170)

log likelihood −12.890 −12.819

restrictions Rβ = q, the statistic is

W = (Rβ̂ − q)′{R(Est.Asy. Var[β̂])R′}−1(Rβ̂ − q).

For example, for testing the hypothesis that a subset of the coefficients, say the last M,
are zero, the Wald statistic uses R = [0 | IM] and q = 0. Collecting terms, we find that
the test statistic for this hypothesis is

W = β̂ ′
MV−1

M β̂M, (21-27)

where the subscript M indicates the subvector or submatrix corresponding to the M
variables and V is the estimated asymptotic covariance matrix of β̂.
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Likelihood ratio and Lagrange multiplier statistics can also be computed. The like-
lihood ratio statistic is

LR = −2[ln L̂R − ln L̂U],

where L̂R and L̂U are the log-likelihood functions evaluated at the restricted and unre-
stricted estimates, respectively. A common test, which is similar to the F test that all the
slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in
the probit or logit model are zero. For this test, the constant term remains unrestricted.
In this case, the restricted log-likelihood is the same for both probit and logit models,

ln L0 = n[P ln P + (1 − P) ln(1 − P)], (21-28)

where P is the proportion of the observations that have dependent variable equal to 1.
It might be tempting to use the likelihood ratio test to choose between the probit

and logit models. But there is no restriction involved, and the test is not valid for this
purpose. To underscore the point, there is nothing in its construction to prevent the
chi-squared statistic for this “test” from being negative.

The Lagrange multiplier test statistic is LM = g′Vg, where g is the first derivatives
of the unrestricted model evaluated at the restricted parameter vector and V is any of
the three estimators of the asymptotic covariance matrix of the maximum likelihood es-
timator, once again computed using the restricted estimates. Davidson and MacKinnon
(1984) find evidence that E [H] is the best of the three estimators to use, which gives

LM =
(

n∑
i=1

gi xi

)′ [ n∑
i=1

E [−hi ]xi x′
i

]−1 (
n∑

i=1

gi xi

)
, (21-29)

where E [−hi ] is defined in (21-22) for the logit model and in (21-24) for the probit
model.

For the logit model, when the hypothesis is that all the slopes are zero,

LM = nR2,

where R2 is the uncentered coefficient of determination in the regression of (yi − ȳ) on
xi and ȳ is the proportion of 1s in the sample. An alternative formulation based on the
BHHH estimator, which we developed in Section 17.5.3 is also convenient. For any of
the models (probit, logit, Weibull, etc.), the first derivative vector can be written as

∂ ln L
∂β

=
n∑

i=1

gi xi = X′Gi,

where G(n × n) = diag[g1, g2, . . . , gn] and i is an n × 1 column of 1s. The BHHH esti-
mator of the Hessian is (X′G′GX), so the LM statistic based on this estimator is

LM = n
[

1
n

i′(GX)(X′G′GX)−1(X′G′)i
]

= nR2
i , (21-30)

where R2
i is the uncentered coefficient of determination in a regression of a column of

ones on the first derivatives of the logs of the individual probabilities.
All the statistics listed here are asymptotically equivalent and under the null hypoth-

esis of the restricted model have limiting chi-squared distributions with degrees of free-
dom equal to the number of restrictions being tested. We consider some examples below.
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21.4.4 SPECIFICATION TESTS FOR BINARY CHOICE MODELS

In the linear regression model, we considered two important specification problems, the
effect of omitted variables and the effect of heteroscedasticity. In the classical model,
y = X1β1 + X2β2 + ε, when least squares estimates b1 are computed omitting X2,

E [b1] = β1 + [X′
1X1]−1X′

1X2β2.

Unless X1 and X2 are orthogonal or β2 = 0, b1 is biased. If we ignore heteroscedasticity,
then although the least squares estimator is still unbiased and consistent, it is inefficient
and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and
Griliches (1984) have examined these same issues in the setting of the probit and logit
models. Their general results are far more pessimistic. In the context of a binary choice
model, they find the following:

1. If x2 is omitted from a model containing x1 and x2, (i.e. β2 �= 0) then

plim β̂1 = c1β1 + c2β2,

where c1 and c2 are complicated functions of the unknown parameters. The
implication is that even if the omitted variable is uncorrelated with the included
one, the coefficient on the included variable will be inconsistent.

2. If the disturbances in the underlying regression are heteroscedastic, then the
maximum likelihood estimators are inconsistent and the covariance matrix is
inappropriate.

The second result is particularly troubling because the probit model is most often used
with microeconomic data, which are frequently heteroscedastic.

Any of the three methods of hypothesis testing discussed above can be used to
analyze these specification problems. The Lagrange multiplier test has the advantage
that it can be carried out using the estimates from the restricted model, which sometimes
brings a large saving in computational effort. This situation is especially true for the test
for heteroscedasticity.13

To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null
hypothesis, H0, be a specification of the model, and let H1 be the alternative. For example,
H0 might specify that only variables x1 appear in the model, whereas H1 might specify
that x2 appears in the model as well. The statistic is

LM = g′
0V−1

0 g0,

where g0 is the vector of derivatives of the log-likelihood as specified by H1 but evaluated
at the maximum likelihood estimator of the parameters assuming that H0 is true, and
V−1

0 is any of the three consistent estimators of the asymptotic variance matrix of the
maximum likelihood estimator under H1, also computed using the maximum likelihood
estimators based on H0. The statistic is asymptotically distributed as chi-squared with
degrees of freedom equal to the number of restrictions.

13The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium
on the subject of specification tests in discrete choice models is Blundell (1987).



Greene-50240 book June 27, 2002 22:39

680 CHAPTER 21 ✦ Models for Discrete Choice

21.4.4.a Omitted Variables

The hypothesis to be tested is

H0: y∗ = β ′
1x1 +ε,

H1: y∗ = β ′
1x1 + β ′

2x2 +ε,
(21-31)

so the test is of the null hypothesis that β2 = 0. The Lagrange multiplier test would be
carried out as follows:

1. Estimate the model in H0 by maximum likelihood. The restricted coefficient
vector is [β̂1, 0].

2. Let x be the compound vector, [x1, x2].

The statistic is then computed according to (21-29) or (21-30). It is noteworthy that in
this case as in many others, the Lagrange multiplier is the coefficient of determination
in a regression.

21.4.4.b Heteroscedasticity

We use the general formulation analyzed by Harvey (1976),14

Var[ε] = [exp(z′γ )]2.15

This model can be applied equally to the probit and logit models. We will derive the
results specifically for the probit model; the logit model is essentially the same. Thus,

y∗ = x′β + ε,

Var[ε | x, z] = [exp(z′γ )]2.
(21-32)

The presence of heteroscedasticity makes some care necessary in interpreting the
coefficients for a variable wk that could be in x or z or both,

∂ Prob(Y = 1 | x, z)
∂wk

= φ

[
x′β

exp(z′γ )

]
βk − (x′β)γk

exp(z′γ )
.

Only the first (second) term applies if wk appears only in x (z). This implies that the
simple coefficient may differ radically from the effect that is of interest in the estimated
model. This effect is clearly visible in the example below.

The log-likelihood is

ln L =
n∑

i=1

{
yi ln F

(
x′

iβ

exp(z′
iγ )

)
+ (1 − yi ) ln

[
1 − F

(
x′

iβ

exp(z′
iγ )

)]}
. (21-33)

14See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin
(1981), Hausman and Wise (1978), and Horowitz (1993).
15See Section 11.7.1.
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To be able to estimate all the parameters, z cannot have a constant term. The derivatives
are

∂ ln L
∂β

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )xi ,

∂ ln L
∂γ

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )zi (−x′
iβ),

(21-34)

which implies a difficult log-likelihood to maximize. But if the model is estimated
assuming that γ = 0, then we can easily test for homoscedasticity. Let

wi =
[

xi

(−x′
i β̂)zi

]
(21-35)

computed at the maximum likelihood estimator, assuming that γ = 0. Then (21-29) or
(21-30) can be used as usual for the Lagrange multiplier statistic.

Davidson and MacKinnon carried out a Monte Carlo study to examine the true
sizes and power functions of these tests. As might be expected, the test for omitted
variables is relatively powerful. The test for heteroscedasticity may well pick up some
other form of misspecification, however, including perhaps the simple omission of z from
the index function, so its power may be problematic. It is perhaps not surprising that
the same problem arose earlier in our test for heteroscedasticity in the linear regression
model.

Example 21.4 Specification Tests in a Labor Force Participation Model
Using the data described in Example 21.1, we fit a probit model for labor force participation
based on the specification

Prob[LFP = 1] = F (constant, age, age2, family income, education, kids)

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant
term) log-likelihood is 325× ln(325/753) +428× ln(428/753) = −514.8732. The unrestricted
log-likelihood for the probit model is −490.84784. The chi-squared statistic is, therefore,
48.05072. The critical value from the chi-squared distribution with 5 degrees of freedom is
11.07, so the joint hypothesis that the coefficients on age, age2, family income and kids are
all zero is rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on age,
age2, family income and education are the same whether kids equals one or zero, against the
alternative that an altogether different equation applies for the two groups of women, those
with kids = 1 and those with kids = 0. To test this hypothesis, we would use a counterpart to
the Chow test of Section 7.4 and Example 7.6. The restricted model in this instance would
be based on the pooled data set of all 753 observations. The log-likelihood for the pooled
model—which has a constant term, age, age2, family income and education is −496.8663.
The log-likelihoods for this model based on the 428 observations with kids = 1 and the 325
observations with kids = 0 are −347.87441 and −141.60501, respectively. The log-likelihood
for the unrestricted model with separate coefficient vectors is thus the sum, −489.47942.
The chi-squared statistic for testing the five restrictions of the pooled model is twice the
difference, LR = 2[−489.47942− (−496.8663) ] = 14.7738. The 95 percent critical value from
the chi-squared distribution with 5 degrees of freedom is 11.07 is so at this significance level,
the hypothesis that the constant terms and the coefficients on age, age2, family income and
education are the same is rejected. (The 99% critical value is 15.09.)



Greene-50240 book June 27, 2002 22:39

682 CHAPTER 21 ✦ Models for Discrete Choice

TABLE 21.3 Estimated Coefficients

Estimate (Std.Er) Marg. Effect* Estimate (St.Er.) Marg. Effect*

Constant β1 −4.157(1.402) — −6.030(2.498) —
Age β2 0.185(0.0660) −0.0079(0.0027) 0.264(0.118) −0.0088(0.00251)
Age2 β3 −0.0024(0.00077) — −0.0036(0.0014) —
Income β4 0.0458(0.0421) 0.0180(0.0165) 0.424(0.222) 0.0552(0.0240)
Education β5 0.0982(0.0230) 0.0385(0.0090) 0.140(0.0519) 0.0289(0.00869)
Kids β6 −0.449(0.131) −0.171(0.0480) −0.879(0.303) −0.167(0.0779)
Kids γ1 0.000 — −0.141(0.324) —
Income γ2 0.000 — 0.313(0.123) —
Log L −490.8478 −487.6356
Correct Preds. 0s: 106, 1s: 357 0s: 115, 1s: 358

*Marginal effect and estimated standard error include both mean (β) and variance (γ ) effects.

Table 21.3 presents estimates of the probit model now with a correction for heteroscedas-
ticity of the form

Var[εi ] = exp(γ1kids + γ2family income) .

The three tests for homoscedasticity give

LR = 2[−487.6356 − (−490.8478) ] = 6.424,

LM = 2.236 based on the BHHH estimator,

Wald = 6.533 (2 restrictions) .

The 99 percent critical value for two restrictions is 5.99, so the LM statistic conflicts with the
other two.

21.4.4.c A Specification Test for Nonnested
Models—Testing for the Distribution

Whether the logit or probit form, or some third alternative, is the best specification for
a discrete choice model is a perennial question. Since the distributions are not nested
within some higher level model, testing for an answer is always problematic. Building
on the logic of the PE test discussed in Section 9.4.3, Silva (2001) has suggested a score
test which may be useful in this regard. The statistic is intended for a variety of discrete
choice models, but is especially convenient for binary choice models which are based on a
common single index formulation—the probability model is Prob(yi = 1 | xi ) = F(x′

iβ).
Let “1” denote Model 1 based on parameter vector β and “2” denote Model 2 with
parameter vector γ and let Model 1 be the null specification while Model 2 is the
alternative. A “super-model” which combines two alternatives would have likelihood
function

Lρ = [(1 − α)L1(y | X, β)ρ + αL2(y | X, γ )ρ]1/ρ∫
z [(1 − α)L1(z | X, β)ρ + αL2(z | X, γ )ρ]1/ρdz

(Note that integration is used generically here, since y is discrete.) The two mixing
parameters are ρ and α. Silva derives an LM test in this context for the hypothesis
α = 0 for any particular value of ρ. The case when ρ = 0 is of particular interest. As he
notes, it is the nonlinear counterpart to the Cox test we examined in Section 8.3.4. [For
related results, see Pesaran and Pesaran (1993), Davidson and MacKinnon (1984, 1993),
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Orme (1994), and Weeks (1996).] For binary choice models, Silva suggests the following
procedure (as one of three computational strategies): Compute the parameters of the
competing models by maximum likelihood and obtain predicted probabilities for yi = 1,
P̂m

i where “i” denotes the observation and “m” = 1 or 2 for the two models.15 The
individual observations on the density for the null model, f̂ m

i , are also required. The
new variable

zi (0) = P̂1
i

(
1 − P̂1

i

)
f̂ 1

i

ln

[
P̂1

i

(
1 − P̂2

i

)
P̂2

i

(
1 − P̂1

i

)
]

is then computed. Finally, Model 1 is then reestimated with zi (0) added as an additional
independent variable. A test of the hypothesis that its coefficient is zero is equivalent to
a test of the null hypothesis that α = 1, which favors Model 1. Rejection of the hypothesis
favors Model 2. Silva’s preferred procedure is the same as this based on

zi (1) = P̂2
i − P̂1

i

f̂ 1
i

.

As suggested by the citations above, tests of this sort have a long history in this literature.
Silva’s simulation study for the Cox test (ρ = 0) and his score test (ρ = 1) suggest that
the power of the test is quite erratic.

21.4.5 MEASURING GOODNESS OF FIT

There have been many fit measures suggested for QR models.16 At a minimum, one
should report the maximized value of the log-likelihood function, ln L. Since the
hypothesis that all the slopes in the model are zero is often interesting, the log-likelihood
computed with only a constant term, ln L0 [see (21-28)], should also be reported. An
analog to the R2 in a conventional regression is McFadden’s (1974) likelihood ratio
index,

LRI = 1 − ln L
ln L0

.

This measure has an intuitive appeal in that it is bounded by zero and one. If all the
slope coefficients are zero, then it equals zero. There is no way to make LRI equal 1,
although one can come close. If Fi is always one when y equals one and zero when y
equals zero, then ln L equals zero (the log of one) and LRI equals one. It has been
suggested that this finding is indicative of a “perfect fit” and that LRI increases as the
fit of the model improves. To a degree, this point is true (see the analysis in Section
21.6.6). Unfortunately, the values between zero and one have no natural interpretation.
If F(x′

iβ) is a proper pdf, then even with many regressors the model cannot fit perfectly
unless x′

iβ goes to +∞ or −∞. As a practical matter, it does happen. But when it does,
it indicates a flaw in the model, not a good fit. If the range of one of the independent
variables contains a value, say x∗, such that the sign of (x − x∗) predicts y perfectly

15His conjecture about the computational burden is probably overstated given that modern software offers
a variety of binary choice models essentially in push-button fashion.
16See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva
and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975),
Efron (1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995).
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and vice versa, then the model will become a perfect predictor. This result also holds in
general if the sign of x′β gives a perfect predictor for some vector β.17 For example, one
might mistakenly include as a regressor a dummy variables that is identical, or nearly
so, to the dependent variable. In this case, the maximization procedure will break down
precisely because x′β is diverging during the iterations. [See McKenzie (1998) for an
application and discussion.] Of course, this situation is not at all what we had in mind
for a good fit.

Other fit measures have been suggested. Ben-Akiva and Lerman (1985) and Kay
and Little (1986) suggested a fit measure that is keyed to the prediction rule,

R2
BL = 1

n

n∑
i=1

yi F̂ i + (1 − yi )(1 − F̂ i ),

which is the average probability of correct prediction by the prediction rule. The diffi-
culty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted vary badly by the standard procedure, and this measure does not
pick that point up. Cramer (1999) has suggested an alternative measure that directly
measures this failure,

λ = (averageF̂ | yi = 1) − (averageF̂ | yi = 0)

= (average(1 − F̂) | yi = 0) − (average(1 − F̂) | yi = 1).

Cramer’s measure heavily penalizes the incorrect predictions, and because each propor-
tion is taken within the subsample, it is not unduly influenced by the large proportionate
size of the group of more frequent outcomes. Some of the other proposed fit measures
are Efron’s (1978)

R2
Ef = 1 −

∑n
i=1 (yi − p̂i )

2∑n
i=1 (yi − ȳ)2

,

Veall and Zimmermann’s (1992)

R2
VZ =

(
δ − 1

δ − LRI

)
LRI, δ = n

2 log L0
,

and Zavoina and McKelvey’s (1975)

R2
MZ =

∑n
i=1 (β̂ ′xi − β̂ ′x)2

n + ∑n
i=1 (β̂ ′xi − β̂ ′x)2

.

The last of these measures corresponds to the regression variation divided by the total
variation in the latent index function model, where the disturbance variance is σ 2 = 1.
The values of several of these statistics are given with the model results in Example 21.4
for illustration.

A useful summary of the predictive ability of the model is a 2 × 2 table of the hits
and misses of a prediction rule such as

ŷ = 1 if F̂ > F∗ and 0 otherwise. (21-36)

17See McFadden (1984) and Amemiya (1985). If this condition holds, then gradient methods will find that β.



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 685

The usual threshold value is 0.5, on the basis that we should predict a one if the model
says a one is more likely than a zero. It is important not to place too much emphasis on
this measure of goodness of fit, however. Consider, for example, the naive predictor

ŷ = 1 if P > 0.5 and 0 otherwise, (21-37)

where P is the simple proportion of ones in the sample. This rule will always predict
correctly 100P percent of the observations, which means that the naive model does not
have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible to
construct examples in which the second model will generate more correct predictions
than the first! Once again, this flaw is not in the model; it is a flaw in the fit measure.18

The important element to bear in mind is that the coefficients of the estimated model
are not chosen so as to maximize this (or any other) fit measure, as they are in the linear
regression model where b maximizes R2. (The maximum score estimator discussed
below addresses this issue directly.)

Another consideration is that 0.5, although the usual choice, may not be a very good
value to use for the threshold. If the sample is unbalanced—that is, has many more ones
than zeros, or vice versa—then by this prediction rule it might never predict a one (or
zero). To consider an example, suppose that in a sample of 10,000 observations, only
1000 have Y = 1. We know that the average predicted probability in the sample will be
0.10. As such, it may require an extreme configuration of regressors even to produce
an F of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every
time to predict when Y = 1. The obvious adjustment is to reduce F∗. Of course, this
adjustment comes at a cost. If we reduce the threshold F∗ so as to predict y = 1 more
often, then we will increase the number of correct classifications of observations that
do have y = 1, but we will also increase the number of times that we incorrectly classify
as ones observations that have y = 0.19 In general, any prediction rule of the form in
(21-36) will make two types of errors: It will incorrectly classify zeros as ones and ones
as zeros. In practice, these errors need not be symmetric in the costs that result. For
example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad
risk as a good one. Changing F∗ will always reduce the probability of one type of error
while increasing the probability of the other. There is no correct answer as to the best
value to choose. It depends on the setting and on the criterion function upon which the
prediction rule depends.

The likelihood ratio index and Veall and Zimmermann’s modification of it are obvi-
ously related to the likelihood ratio statistic for testing the hypothesis that the coefficient
vector is zero. Efron’s and Cramer’s measures listed above are oriented more toward the
relationship between the fitted probabilities and the actual values. Efron’s and Cramer’s
statistics are usefully tied to the standard prediction rule ŷ = 1[F̂ > 0.5]. The McKelvey
and Zavoina measure is an analog to the regression coefficient of determination, based
on the underlying regression y∗ = β ′x + ε. Whether these have a close relationship to
any type of fit in the familiar sense is a question that needs to be studied. In some cases,

18See Amemiya (1981).
19The technique of discriminant analysis is used to build a procedure around this consideration. In this
setting, we consider not only the number of correct and incorrect classifications, but the cost of each type of
misclassification.
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it appears so. But the maximum likelihood estimator, on which all the fit measures are
based, is not chosen so as to maximize a fitting criterion based on prediction of y as it is in
the classical regression (which maximizes R2). It is chosen to maximize the joint density
of the observed dependent variables. It remains an interesting question for research
whether fitting y well or obtaining good parameter estimates is a preferable estimation
criterion. Evidently, they need not be the same thing.

Example 21.5 Prediction with a Probit Model
Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and
earnings for a large sample of observations of male members of households in Turkey. Among
his results, he reports the summary shown below for a probit model: The estimated model is
highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them)
are zero based on a chi-squared value of 69 with 16 degrees of freedom.20 The model predicts
491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index
is only 0.083. A naive model, which always predicts that y = 0 because P < 0.5, predicts
487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive
of no fit. The maximum likelihood estimator produces several significant influences on the
probability but makes only four more correct predictions than the naive predictor.21

Predicted

D = 0 D = 1 Total

Actual D = 0 471 16 487
D = 1 183 20 203
Total 654 36 690

21.4.6 ANALYSIS OF PROPORTIONS DATA

Data for the analysis of binary responses will be in one of two forms. The data we
have considered thus far are individual; each observation consists of [yi , xi ], the actual
response of an individual and associated regressor vector. Grouped data usually consist
of counts or proportions. Grouped data are obtained by observing the response of ni

individuals, all of whom have the same xi . The observed dependent variable will consist
of the proportion Pi of the ni individuals i j who respond with yi j = 1. An observation
is thus [ni , Pi , xi ], i = 1, . . . , N. Election data are typical.22 In the grouped data setting,
it is possible to use regression methods as well as maximum likelihood procedures
to analyze the relationship between Pi and xi . The observed Pi is an estimate of the
population quantity, πi = F(x′

iβ). If we treat this problem as a simple one of sampling
from a Bernoulli population, then, from basic statistics, we have

Pi = F(β ′xi ) + εi = πi + εi ,

20This view actually understates slightly the significance of his model, because the preceding predictions are
based on a bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model
applies, however.
21It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the
zeros. It hits only 10 percent of the ones in the sample.
22The earliest work on probit modeling involved applications of grouped data in laboratory experiments.
Each observation consisted of ni subjects receiving dosage xi of some treatment, such as an insecticide, and a
proportion Pi “responding” to the treatment, usually by dying. Finney (1971) and Cox (1970) are useful and
early surveys of this literature.
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where

E [εi ] = 0, Var[εi ] = πi (1 − πi )

ni
. (21-38)

This heteroscedastic regression format suggests that the parameters could be estimated
by a nonlinear weighted least squares regression. But there is a simpler way to proceed.
Since the function F(x′

iβ) is strictly monotonic, it has an inverse. (See Figure 21.1.)
Consider, then, a Taylor series approximation to this function around the point εi = 0,
that is, around the point Pi = πi ,

F−1(Pi ) = F−1(πi + εi ) ≈ F−1(πi ) +
[

dF−1(πi )

dπi

]
(Pi − πi ).

But F−1(πi ) = x′
iβ and

dF−1(πi )

dπi
= 1

F ′(F−1(πi ))
= 1

f (πi )
,

so

F−1(Pi ) ≈ x′
iβ + εi

f (πi )
.

This equation produces a heteroscedastic linear regression,

F−1(Pi ) = zi = x′
iβ + ui ,

where

E [ui | xi ] = 0 and Var[ui | xi ] = F(πi )[(1 − F(πi )]
ni [ f (πi )]2

. (21-39)

The inverse function for the logistic model is particularly easy to obtain. If

πi = exp(x′
iβ)

1 + exp(x′
iβ)

,

then

ln
(

πi

1 − πi

)
= x′

iβ.

This function is called the logit of πi , hence the name “logit” model. For the normal
distribution, the inverse function
−1(πi ), called the normit ofπi , must be approximated.
The usual approach is a ratio of polynomials.23

Weighted least squares regression based on (21-39) produces the minimum chi-
squared estimator (MCSE) of β. Since the weights are functions of the unknown pa-
rameters, a two-step procedure is called for. As always, simple least squares at the first
step produces consistent but inefficient estimates. Then the estimated variances

wi = 
̂i (1 − 
̂i )

ni φ̂
2
i

23See Abramovitz and Stegun (1971) and Section E.5.2. The function normit +5 is called the probit of Pi . The
term dates from the early days of this analysis, when the avoidance of negative numbers was a simplification
with considerable payoff.
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for the probit model or

wi = 1

ni �̂i (1 − �̂i )

for the logit model based on the first-step estimates can be used for weighted least
squares.24 An iteration can then be set up,

β̂(k+1) =
[

n∑
i=1

1

ŵ(k)
i

xi x′
i

]−1 [
n∑

i=1

1

ŵ(k)
i

xi F−1(π̂ (k)
i

)]

where “(k)” indicates the kth iteration and “∧” indicates computation of the quantity at
the current (kth) estimate of β. The MCSE has the same asymptotic properties as the
maximum likelihood estimator at every step after the first, so, in fact, iteration is not
necessary. Although they have the same probability limit, the MCSE is not algebraically
the same as the MLE, and in a finite sample, they will differ numerically.

The log-likelihood function for a binary choice model with grouped data is

ln L =
n∑

i=1

ni
{

Pi ln F(x′
iβ) + (1 − Pi ) ln[1 − F(x′

iβ)]
}
.

The likelihood equation that defines the maximum likelihood estimator is

∂ ln L
∂β

=
n∑

i=1

ni

[
Pi

f (x′
iβ)

F(x′
iβ)

− (1 − Pi )
f (x′

iβ)

1 − F(x′
iβ)

]
xi = 0.

This equation closely resembles the solution for the individual data case, which makes
sense if we view the grouped observation as ni replications of an individual obser-
vation. On the other hand, it is clear on inspection that the solution to this set of
equations will not be the same as the generalized (weighted) least squares estimator
suggested in the previous paragraph. For convenience, define Fi = F(x′

iβ), fi = f (x′
iβ),

and f ′
i = [ f ′(z) | z= x′

iβ] = [df (z)/dz] | z= x′
iβ. The Hessian of the log-likelihood is

∂2 ln L
∂β∂β ′ =

n∑
i=1

ni

{
Pi

[(
f ′
i

Fi

)
−

(
fi

Fi

)2
]

− (1 − Pi )

[(
f ′
i

1 − Fi

)
+

(
fi

(1 − Fi )

)2
]}

xi x′
i .

To evaluate the expectation of the Hessian, we need only insert the expectation of the
only stochastic element, Pi , which is E [Pi | xi ] = Fi . Then

E
[
∂2 log L
∂β ∂β ′

]
=

n∑
i=1

ni

[
f ′
i − f 2

i

Fi
− f ′

i − f 2
i

1 − Fi

]
xi x′

i = −
n∑

i=1

[
ni f 2

i

Fi (1 − Fi )

]
xi x′

i .

The asymptotic covariance matrix for the maximum likelihood estimator is the negative
inverse of this matrix. From (21-39), we see that it is exactly equal to

Asy. Var[minimum χ2 estimator] = [X′	−1X]−1

24Simply using pi and f [F−1(Pi )] might seem to be a simple expedient in computing the weights. But this
method would be analogous to using y2

i instead of an estimate of σ 2
i in a heteroscedastic regression. Fitted

probabilities and, for the probit model, densities should be based on a consistent estimator of the parameters.
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since the diagonal elements of 	−1 are precisely the values in brackets in the expression
for the expected Hessian above. We conclude that although the MCSE and the MLE
for this model are numerically different, they have the same asymptotic properties,
consistent and asymptotically normal (the MCS estimator by virtue of the results of
Chapter 10, the MLE by those in Chapter 17), and with asymptotic covariance matrix
as previously given.

There is a complication in using the MCS estimator. The FGLS estimator breaks
down if any of the sample proportions equals one or zero. A number of ad hoc patches
have been suggested; the one that seems to be most widely used is to add or subtract
a small constant, say 0.001, to or from the observed proportion when it is zero or one.
The familiar results in (21-38) also suggest that when the proportion is based on a
large population, the variance of the estimator can be exceedingly low. This issue will
resurface in surprisingly low standard errors and high t ratios in the weighted regression.
Unfortunately, that is a consequence of the model.25 The same result will emerge in
maximum likelihood estimation with grouped data.

21.5 EXTENSIONS OF THE BINARY CHOICE MODEL

Qualitative response models have been a growth industry in econometrics. The recent
literature, particularly in the area of panel data analysis, has produced a number of new
techniques.

21.5.1 RANDOM AND FIXED EFFECTS MODELS FOR PANEL DATA

The availability of high quality panel data sets on microeconomic behavior has main-
tained an interest in extending the models of Chapter 13 to binary (and other discrete
choice) models. In this section, we will survey a few results from this rapidly growing
literature.

The structural model for a possibly unbalanced panel of data would be written

y∗
i t = x′

i tβ + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise.

The second line of this definition is often written

yit = 1(x′
i tβ + εi t > 0)

to indicate a variable which equals one when the condition in parentheses is true and
zero when it is not. Ideally, we would like to specify that εi t and εis are freely correlated
within a group, but uncorrelated across groups. But doing so will involve computing

25Whether the proportion should, in fact, be considered as a single observation from a distribution of pro-
portions is a question that arises in all these cases. It is unambiguous in the bioassay cases noted earlier. But
the issue is less clear with election data, especially since in these cases, the ni will represent most of if not all
the potential respondents in location i rather than a random sample of respondents.
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joint probabilities from a Ti variate distribution, which is generally problematic.26 (We
will return to this issue below.) A more promising approach is an effects model,

y∗
i t = x′

i tβ + vi t + ui , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where, as before (see Section 13.4), ui is the unobserved, individual specific hetero-
geneity. Once again, we distinguish between “random” and “fixed” effects models by
the relationship between ui and xi t . The assumption that ui is unrelated to xi t , so that
the conditional distribution f (ui | xi t ) is not dependent on xi t , produces the random
effects model. Note that this places a restriction on the distribution of the heterogene-
ity. If that distribution is unrestricted, so that ui and xi t may be correlated, then we have
what is called the fixed effects model. The distinction does not relate to any intrinsic
characteristic of the effect, itself.

As we shall see shortly, this is a modeling framework that is fraught with difficul-
ties and unconventional estimation problems. Among them are: estimation of the ran-
dom effects model requires very strong assumptions about the heterogeneity; the fixed
effects model encounters an incidental parameters problem that renders the maximum
likelihood estimator inconsistent.

We begin with the random effects specification, then consider fixed effects and some
semiparametric approaches that do not require the distinction. We conclude with a brief
look at dynamic models of state dependence.27

21.5.1.a Random Effects Models

A specification which has the same structure as the random effects model of Section 13.4,
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to
suggest how random effects can be handled in discrete and limited dependent variable
models such as this one. Full details on estimation and inference may be found in Butler
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the
Butler and Moffitt model.

The random effects model specifies

εi t = vi t + ui

where vi t and ui are independent random variables with

E [vi t | X] = 0; Cov[vi t , v js | X] = Var[vi t | X] = 1 if i = j and t = s; 0 otherwise

E [ui | X] = 0; Cov[ui , u j | X] = Var[ui | X] = σ 2
u if i = j; 0 otherwise

Cov[vi t , u j | X] = 0 for all i, t, j

26A “limited information” approach based on the GMM estimation method has been suggested by Avery,
Hansen, and Hotz (1983). With recent advances in simulation-based computation of multinormal integrals
(see Section E.5.6), some work on such a panel data estimator has appeared in the literature. See, for example,
Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994) [see also,
Liang and Zeger (1980) and Stata (2001)] seems to be another possibility. However, in all these cases, it must
be remembered that the procedure specifies estimation of a correlation matrix for a Ti vector of unobserved
variables based on a dependent variable which takes only two values. We should not be too optimistic about
this if Ti is even moderately large.
27A survey of some of these results is given by Hsiao (1996). Most of Hsiao (1996) is devoted to the linear
regression model. A number of studies specifically focused on discrete choice models and panel data have
appeared recently, including Beck, Epstein, Jackman, and O’Halloran (2001), Arellano (2001) and Greene
(2001).
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and X indicates all the exogenous data in the sample, xi t for all i and t.28 Then,

E [εi t | X] = 0

Var[εi t | X] = σ 2
v + σ 2

u = 1 + σ 2
u

and

Corr[εi t , εis | X] = ρ = σ 2
u

1 + σ 2
u
.

The new free parameter is σ 2
u = ρ/(1 − ρ).

Recall that in the cross-section case, the probability associated with an observation
is

P(yi | xi ) =
∫ Ui

Li

f (εi )dεi , (Li , Ui ) = (−∞, −x′
iβ) if yi = 0 and (−x′

iβ, +∞) if yi = 1.

This simplifies to 
[(2yi −1)x′
iβ] for the normal distribution and �[(2yi −1)x′

iβ] for the
logit model. In the fully general case with an unrestricted covariance matrix, the contri-
bution of group i to the likelihood would be the joint probability for all Ti observations;

Li = P(yi1, . . . , yiTi | X) =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

f (εi1, εi2, . . . , εiTi )dεi1dεi2 . . . dεiTi . (21-40)

The integration of the joint density, as it stands, is impractical in most cases. The special
nature of the random effects model allows a simplification, however. We can obtain the
joint density of the vi t ’s by integrating ui out of the joint density of (εi1, . . . , εiTi , ui )

which is

f (εi1, . . . , εiTi , ui ) = f (εi1, . . . , εiTi | ui ) f (ui ).

So,

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞
f (εi1, εi2, . . . , εiTi | ui ) f (ui ) dui .

The advantage of this form is that conditioned on ui , the εi ’s are independent, so

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞

Ti∏
t=1

f (εi t | ui ) f (ui ) dui .

Inserting this result in (21-40) produces

Li = P[yi1, . . . , yiTi | X] =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

∫ +∞

−∞

Ti∏
t=1

f (εi t | ui ) f (ui ) dui dεi1 dεi2 . . . dεiTi .

This may not look like much simplification, but in fact, it is. Since the ranges of integra-
tion are independent, we may change the order of integration;

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[∫ UiTi

LiTi

. . .

∫ Ui1

Li1

Ti∏
t=1

f (εi t | ui ) dεi1 dεi2 . . . dεiTi

]
f (ui ) dui .

28See Wooldridge (1999) for discussion of this assumption.
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Conditioned on the common ui , the ε’s are independent, so the term in square brackets
is just the product of the individual probabilities. We can write this as

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

(∫ Uit

Lit

f (εi t | ui ) dεi t

)]
f (ui ) dui .

Now, consider the individual densities in the product. Conditioned on ui , these are the
now familiar probabilities for the individual observations, computed now at x′

i tβ + ui .
This produces a general model for random effects for the binary choice model. Collecting
all the terms, we have reduced it to

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
f (ui ) dui .

It remains to specify the distributions, but the important result thus far is that the
entire computation requires only one dimensional integration. The inner probabilities
may be any of the models we have considered so far, such as probit, logit, Weibull, and so
on. The intricate part remaining is to determine how to do the outer integration. Butler
and Moffitt’s method assuming that ui is normally distributed is fairly straightforward,
so we will consider it first. We will then consider some other possibilities. For the probit
model, the individual probabilities inside the product would be 
[qit (x′

i tβ + ui )], where

[.] is the standard normal CDF and qit = 2yit − 1. For the logit model, 
[.] would be
replaced with the logistic probability, �[.]. For the present, treat the entire function as
a function of ui , g(ui ). The integral is, then

Li =
∫ ∞

−∞

1

σu
√

2π
e
− u2

i
2σ2

u g(ui ) dui .

Let ri = ui/(σu
√

2). Then, ui = (σu
√

2)ri = θri and dui = θdri . Making the change of
variable produces

Li = 1√
π

∫ ∞

−∞
e−r2

i g(θri ) dri .

(Several constants cancel out of the fractions.) Returning to our probit (or logit model),
we now have

Li = 1√
π

∫ +∞

−∞
e−r2

i

[
Ti∏

t=1


(qit (x′
i tβ + θri )

]
dri .

The payoff to all this manipulation is that this likelihood function involves only one-
dimensional integrals. The inner integrals are the CDF of the standard normal distri-
bution or the logistic or extreme value distributions, which are simple to obtain. The
function is amenable to Gauss–Hermite quadrature for computation. (Gauss–Hermite
quadrature is discussed in Section E.5.4.) Assembling all the pieces, we obtain the ap-
proximation to the log-likelihood;

ln LH =
n∑

i=1

{
ln

[
1√
π

H∑
h=1

Ti∏
t=1

wh
(qit (x′
i tβ + θzh))

]}
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where H is the number of points for the quadrature, and wh and zh are the weights
and nodes for the quadrature. Maximizing this function remains a complex problem.
But, it is made quite feasible by the transformations which reduce the integration to
one dimension. This technique for the probit model has been incorporated in most
contemporary econometric software and can be easily extended to other models.

The first and second derivatives are likewise complex but still computable by
quadrature. An estimate of σu is obtained from the result σu = θ/

√
2 and a standard

error can be obtained by dividing that for θ̂ by
√

2. The model may be adapted to the
logit or any other formulation just by changing the CDF in the preceding equation from

[.] to the logistic CDF, �[.] or the other appropriate CDF.

The hypothesis of no cross-period correlation can be tested, in principle, using any
of the three classical testing procedures we have discussed to examine the statistical
significance of the estimated σu.

A number of authors have found the Butler and Moffitt formulation to be a satis-
factory compromise between a fully unrestricted model and the cross-sectional variant
that ignores the correlation altogether. A recent application that includes both group
and time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal
behavior. The Butler and Moffitt approach has been criticized for the restriction of
equal correlation across periods. But it does have a compelling virtue that the model
can be efficiently estimated even with fairly large Ti using conventional computational
methods. [See Greene (1995a, pp. 425–431).]

A remaining problem with the Butler and Moffitt specification is its assumption of
normality. In general, other distributions are problematic because of the difficulty of
finding either a closed form for the integral or a satisfactory method of approximating
the integral. An alternative approach which allows some flexibility is the method of
maximum simulated likelihood (MSL) which was discussed in Section 17.8. The trans-
formed likelihood we derived above is an expectation;

Li =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
f (ui ) dui

= Eui

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
.

This expectation can be approximated by simulation rather than quadrature. First, let θ

now denote the scale parameter in the distribution of ui . This would be σu for a normal
distribution, for example, or some other scaling for the logistic or uniform distribution.
Then, write the term in the likelihood function as

Li = Eui

[
Ti∏

t=1

F(yit , x′
i tβ + θui )

]
= Eui [h(ui )].

The function is smooth, continuous, and continuously differentiable. If this expectation
is finite, then the conditions of the law of large numbers should apply, which would
mean that for a sample of observations ui1, . . . , ui R,

plim
1
R

R∑
r=1

h(uir ) = Eu[h(ui )].
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This suggests, based on the results in Chapter 17, an alternative method of maximizing
the log-likelihood for the random effects model. A sample of person specific draws from
the population ui can be generated with a random number generator. For the Butler
and Moffitt model with normally distributed ui , the simulated log-likelihood function is

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F [qit (x′
i tβ + σuuir )]

]}
.

This function is maximized with respect β and σu. Note that in the preceding, as in
the quadrature approximated log-likelihood, the model can be based on a probit, logit,
or any other functional form desired. There is an additional degree of flexibility in this
approach. The Hermite quadrature approach is essentially limited by its functional form
to the normal distribution. But, in the simulation approach, uir can come from some
other distribution. For example, it might be believed that the dispersion of the hetero-
geneity is greater than implied by a normal distribution. The logistic distribution might
be preferable. A random sample from the logistic distribution can be created by sampling
(wi1, . . . , wi R) from the standard uniform [0, 1] distribution, then uir = ln(wir/(1−wir )).
Other distributions, such as the uniform itself, are also possible.

We have examined two approaches to estimation of a probit model with random ef-
fects. GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek
and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer
some comparison with the quadrature and simulation based estimators considered here.
(Our applications in the following Examples 16.5, 17.10, and 21.6 use the Bertschek and
Lechner data.)

The preceding opens another possibility. The random effects model can be cast as
a model with a random constant term;

y∗
i t = αi + x′

(1),i tβ(1) + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where αi = α+σuui . This is simply a reinterpretation of the model we just analyzed. We
might, however, now extend this formulation to the full parameter vector. The resulting
structure is

y∗
i t = x′

i tβ i + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where β i = β + �ui where � is a nonnegative definite diagonal matrix—some of its
diagonal elements could be zero for nonrandom parameters. The method of estimation
is essentially the same as before. The simulated log likelihood is now

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F[qit (x′
i t (β + �uir ))]

]}
.

The simulation now involves R draws from the multivariate distribution of u. Since the
draws are uncorrelated—� is diagonal—this is essentially the same estimation problem
as the random effects model considered previously. This model is estimated in Exam-
ple 17.10. Example 16.5 presents a similar model that assumes that the distribution of
β i is discrete rather than continuous.
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21.5.1.b Fixed Effects Models

The fixed effects model is

y∗
i t = αi dit + x′

i tβ + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where dit is a dummy variable which takes the value one for individual i and zero
otherwise. For convenience, we have redefined xi t to be the nonconstant variables in
the model. The parameters to be estimated are the K elements of β and the n individual
constant terms. Before we consider the several virtues and shortcomings of this model,
we consider the practical aspects of estimation of what are possibly a huge number of
parameters (n + K) − n is not limited here, and could be in the thousands in a typical
application. The log likelihood function for the fixed effects model is

ln L =
n∑

i=1

Ti∑
t=1

ln P(yit | αi + x′
i tβ)

where P(.) is the probability of the observed outcome, for example, 
[qit (αi + x′
i tβ)]

for the probit model or �[qit (αi + x′
i tβ)] for the logit model. What follows can be

extended to any index function model, but for the present, we’ll confine our attention
to symmetric distributions such as the normal and logistic, so that the probability can
be conveniently written as Prob(Yit = yit | xi t ) = P[qit (αi + x′

i tβ)]. It will be convenient
to let zit = αi + x′

i tβ so Prob(Yit = yit | xi t ) = P(qit zit ).
In our previous application of this model, in the linear regression case, we found

that estimation of the parameters was made possible by a transformation of the data
to deviations from group means which eliminated the person specific constants from
the estimator. (See Section 13.3.2.) Save for the special case discussed below, that will
not be possible here, so that if one desires to estimate the parameters of this model, it
will be necessary actually to compute the possibly huge number of constant terms at
the same time. This has been widely viewed as a practical obstacle to estimation of this
model because of the need to invert a potentially large second derivatives matrix, but
this is a misconception. [See, e.g., Maddala (1987), p. 317.] The likelihood equations for
this model are

∂ ln L
∂αi

=
Ti∑

t=1

qit f (qit zit )

P(qit zit )
=

Ti∑
t=1

git = gii = 0

and

∂ ln L
∂β

=
n∑

i=1

Ti∑
t=1

qit f (qit zit )

P(qit zit )
xi t =

Ti∑
t=1

git xi t = 0

where f (.) is the density that corresponds to P(.). For our two familiar models, git =
qitφ(qit zit )/
(qit zit ) for the normal and qit [1 − �(qit zit )] for the logistic. Note that for
these distributions, git is always negative when yit is zero and always positive when yit

equals one. (The use of qit as in the preceding assumes the distribution is symmetric. For
asymmetric distributions such as the Weibull, git and hit would be more complicated,
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but the central results would be the same.) The second derivatives matrix is

∂2 ln L

∂α2
i

=
Ti∑

t=1

[
f ′(qit zit )

P(qit zit )
−

(
f (qit zit )

P(qit zit )

)2
]

=
Ti∑

t=1

hit = hii < 0,

∂2 ln L
∂β∂αi

=
Ti∑

t=1

hit xi t

∂2 ln L
∂β∂β ′ =

n∑
i=1

Ti∑
t=1

hit xi t x′
i t = Hββ ′ , a negative semidefinite matrix.

Note that the leading qit falls out of the second derivatives since in each appear-
ance, since q2

i t = 1. The derivatives of the densities with respect to their arguments
are −(qit zit )φ(qit zit ) for the normal distribution and [1 − 2�(qit zit )] f (qit zit ) for the
logistic. In both cases, hit is negative for all values of qit zit . The likelihood equations
are a large system, but the solution turns out to be surprisingly straightforward. [See
Greene (2001).]

By using the formula for the partitioned inverse, we find that the K × K submatrix
of the inverse of the Hessian that corresponds to β, which would provide the asymptotic
covariance matrix for the MLE, is

Hββ ′ =
{

n∑
i=1

[
Ti∑

t=1

hit xi t x′
i t − 1

hii

(
Ti∑

t=1

hit xi t

) (
Ti∑

t=1

hit x′
i t

)]}−1

=
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i ) (xi t − x̄i )
′
]}−1

where x̄i =
∑Ti

t=1 hit xi t

hii
.

Note the striking similarity to the result we had for the fixed effects model in the linear
case. By assembling the Hessian as a partitioned matrix for β and the full vector of
constant terms, then using (A-66b) and the definitions above to isolate one diagonal
element, we find

Hαi αi = 1
hii

+ x̄′
i H

ββ ′
x̄i

Once again, the result has the same format as its counterpart in the linear model. In prin-
ciple, the negatives of these would be the estimators of the asymptotic variances of the
maximum likelihood estimators. (Asymptotic properties in this model are problematic,
as we consider below.)

All of these can be computed quite easily once the parameter estimates are in hand,
so that in fact, practical estimation of the model is not really the obstacle. (This must be
qualified, however. Looking at the likelihood equation for a constant term, it is clear
that if yit is the same in every period then there is no solution. For example, if yit = 1
in every period, then ∂ ln L/∂αi must be positive, so it cannot be equated to zero with
finite coefficients. Such groups would have to be removed from the sample in order to
fit this model.) It is shown in Greene (2001) in spite of the potentially large number
of parameters in the model, Newton’s method can be used with the following iteration
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which uses only the K × K matrix computed above and a few K × 1 vectors:

β̂(s+1) = β̂(s) −
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i )(xi t − x̄i )
′
]}−1 {

n∑
i=1

[
Ti∑

t=1

git (xi t − x̄i )

]}

= β̂(s) + �
(s)
β

and

α̂(s+1)
ı = α̂(s)

ı − [
(gii/hii ) + x̄′

i�
(s)
β

]
.29

This is a large amount of computation involving many summations, but it is linear in
the number of parameters and does not involve any n × n matrices.

The problems with the fixed effects estimator are statistical, not practical.30 The
estimator relies on Ti increasing for the constant terms to be consistent—in essence,
each αi is estimated with Ti observations. But, in this setting, not only is Ti fixed, it is
likely to be quite small. As such, the estimators of the constant terms are not consistent
(not because they converge to something other than what they are trying to estimate, but
because they do not converge at all). The estimator of β is a function of the estimators
of α, which means that the MLE of β is not consistent either. This is the incidental
parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] There is, as
well, a small sample (small Ti ) bias in the estimators. How serious this bias is remains
a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) results
for a binary logit model and Heckman and MaCurdy’s (1980) results for the probit
model. Hsiao found that for Ti = 2, the bias in the MLE of β is 100 percent, which is
extremely pessimistic. Heckman and MaCurdy found in a Monte Carlo study that in
samples of n = 100 and T = 8, the bias appeared to be on the order of 10 percent,
which is substantive, but certainly less severe than Hsiao’s results suggest. The fixed
effects approach does have some appeal in that it does not require an assumption of
orthogonality of the independent variables and the heterogeneity. An ongoing pursuit
in the literature is concerned with the severity of the tradeoff of this virtue against the
incidental parameters problem. Some commentary on this issue appears in Arellano
(2001).

Why did the incidental parameters problem arise here and not in the linear regres-
sion model? Recall that estimation in the regression model was based on the deviations
from group means, not the original data as it is here. The result we exploited there was
that although f (yit | Xi ) is a function of αi , f (yit | Xi , ȳi ) is not a function of αi , and we
used the latter in estimation of β. In that setting, ȳi is a minimal sufficient statistic for
αi . Sufficient statistics are available for a few distributions that we will examine, but not
for the probit model. They are available for the logit model, as we now examine.

29Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973), and Chamberlain
(1983).
30See Vytlacil, Aakvik and Heckman (2002), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano
(1997) and Chen (1998) for some extensions of parametric forms of the binary choice models with fixed
effects.
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A fixed effects binary logit model is

Prob(yit = 1 | xi t ) = eαi +x′
i t β

1 + eαi +x′
i t β

.

The unconditional likelihood for the nT independent observations is

L =
∏

i

∏
t

(Fit )
yit (1 − Fit )

1−yit .

Chamberlain (1980) [following Rasch (1960) and Anderson (1970)] observed that the
conditional likelihood function,

Lc =
n∏

i=1

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
,

is free of the incidental parameters, αi . The joint likelihood for each set of Ti observations
conditioned on the number of ones in the set is

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit , data

)

=
exp

(∑Ti
t=1 yit x′

i tβ
)

∑
�t dit =Si

exp
(∑Ti

t=1 dit x′
i tβ

) .

The function in the denominator is summed over the set of all
(Ti

Si

)
different sequences

of Ti zeros and ones that have the same sum as Si = ∑Ti
t=1 yit .31

Consider the example of Ti = 2. The unconditional likelihood is

L =
∏

i

Prob(Yi1 = yi1)Prob(Yi2 = yi2).

For each pair of observations, we have these possibilities:

1. yi1 = 0 and yi2 = 0. Prob(0, 0 | sum = 0) = 1.
2. yi1 = 1 and yi2 = 1. Prob(1, 1 | sum = 2) = 1.

The ith term in Lc for either of these is just one, so they contribute nothing to the con-
ditional likelihood function.32 When we take logs, these terms (and these observations)
will drop out. But suppose that yi1 = 0 and yi2 = 1. Then

3. Prob(0, 1 | sum = 1) = Prob(0, 1 and sum = 1)

Prob(sum = 1)
= Prob(0, 1)

Prob(0, 1) + Prob(1, 0)
.

31The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or
Baltagi (1995, p. 180) who [citing Greene (1993)] suggests that Ti > 10 would be excessive. In fact, using a
recursion suggested by Krailo and Pike (1984), the computation even with Ti up to 100 is routine.
32Recall in the probit model when we encountered this situation, the individual constant term could not be
estimated and the group was removed from the sample. The same effect is at work here.
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Therefore, for this pair of observations, the conditional probability is

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

+ eαi +x′
i1β

1 + eαi +x′
i1β

1

1 + eαi +x′
i2β

= ex′
i2β

ex′
i1β + ex′

i2β
.

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these
terms for the pairs of observations for which the two observations are (0, 1). Pairs of
observations with one and zero are included analogously. The product of the terms such
as the preceding, for those observation sets for which the sum is not zero or Ti , constitutes
the conditional likelihood. Maximization of the resulting function is straightforward and
may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is
indeed heterogeneity. With homogeneity (αi = α), there is no unusual problem, and the
model can be estimated, as usual, as a logit model. It is not possible to test the hypothesis
using the likelihood ratio test, however, because the two likelihoods are not compara-
ble. (The conditional likelihood is based on a restricted data set.) None of the usual tests
of restrictions can be used because the individual effects are never actually estimated.33

Hausman’s (1978) specification test is a natural one to use here, however. Under the
null hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood
estimator (CMLE) and the usual maximum likelihood estimator are consistent, but
Chamberlain’s is inefficient. (It fails to use the information that αi = α, and it may not
use all the data.) Under the alternative hypothesis, the unconditional maximum like-
lihood estimator is inconsistent,34 whereas Chamberlain’s estimator is consistent and
efficient. The Hausman test can be based on the chi-squared statistic

χ2 = (β̂CML − β̂ML)′(Var[CML] − Var[ML])−1(β̂CML − β̂ML).

The estimated covariance matrices are those computed for the two maximum likelihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible
that the covariance matrix for the maximum likelihood estimator will be larger than
that for the conditional maximum likelihood estimator. If so, then the difference matrix
in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore
zero.

33This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in the
next section. Since the fixed effects are not estimated, it is not possible to compute probabilities or marginal
effects with these estimated coefficients, and it is a bit ambiguous what one can do with the results of the
computations. The brute force estimator that actually computes the individual effects might be preferable.
34Hsaio (1996) derives the result explicitly for some particular cases.
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Example 21.6 Individual Effects in a Binary Choice Model
To illustrate the fixed and random effects estimators, we continue the analyses of Exam-
ples 16.5 and 17.10.35 The binary dependent variable is

yi t = 1 if firm i realized a product innovation in year t and 0 if not.

The sample consists of 1,270 German firms observed for 5 years, 1984–1988. Independent
variables in the model that we formulated were

xi t1 = constant,

xi t2 = log of sales,

xi t3 = relative size = ratio of employment in business unit to employment in the industry,

xi t4 = ratio of industry imports to (industry sales + imports),

xi t5 = ratio of industry foreign direct investment to (industry sales + imports),

xi t6 = productivity = ratio of industry value added to industry industry employment,

Latent class and random parameters models were fit to these data in Examples 16.5 and
17.10. (For this example, we have dropped the two sector dummy variables as they are
constant across periods. This precludes estimation of the fixed effects models.) Table 21.4
presents estimates of the probit and logit models with individual effects. The differences
across the models are quite large. Note, for example, that the signs of the sales and FDI
variables, both of which are highly significant in the base case, change sign in the fixed
effects model. (The random effects logit model is estimated by appending a normally dis-
tributed individual effect to the model and using the Butler and Moffitt method described
earlier.)

The evidence of heterogeneity in the data is quite substantial. The simple likelihood ratio
tests of either panel data form against the base case leads to rejection of the restricted
model. (The fixed effects logit model cannot be used for this test because it is based on the
conditional log likelihood whereas the other two forms are based on unconditional likelihoods.
It was not possible to fit the logit model with the full set of fixed effects. The relative size
variable has some, but not enough within group variation, and the model became unstable
after only a few iterations.) The Hausman statistic based on the logit estimates equals 19.59.
The 95 percent critical value from the chi-squared distribution with 5 degrees of freedom is
11.07, so based on the logit estimates, we would reject the homogeneity restriction. In this
setting, unlike in the linear model (see Section 13.4.4), neither the probit nor the logit model
provides a means of testing for whether the random or fixed effects model is preferred.

21.5.2 SEMIPARAMETRIC ANALYSIS

In his survey of qualitative response models, Amemiya (1981) reports the following
widely cited approximations for the linear probability (LP) model: Over the range of
probabilities of 30 to 70 percent,

β̂LP ≈ 0.4βprobit for the slopes,

β̂LP ≈ 0.25β logit for the slopes.36

35The data are from by Bertschek and Lechner (1998). Description of the data appears in Example 16.5 and
in the original paper.
36An additional 0.5 is added for the constant term in both models.
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TABLE 21.4 Estimated Panel Data Models. (Standard Errors in Parentheses;
Marginal Effects in Brackets.)

Probit Logit

Base Random Fixed Base Random Fixed

Constant −2.35 −3.51 — −3.83 −0.751 —
(0.214) (0.502) (0.351) (0.611)

InSales 0.243 0.353 −0.650 0.408 0.429 −0.863
(0.194) (0.448) (0.355) (0.0323) (0.547) (0.530)
[0.094] [0.088] [−0.255] [0.097] [0.103]

RelSize 1.17 1.59 0.278 2.16 1.36 0.340
(0.141) (0.241) (0.734) (0.272) (0.296) (1.06)
[0.450] [0.398] [0.110] [0.517] [0.328]

Imports 0.909 1.40 3.50 1.49 0.858 4.69
(0.143) (0.343) (2.92) (0.232) (0.418) (4.34)
[0.350] [0.351] [1.38] [0.356] [0.207]

FDI 3.39 4.55 −8.13 5.75 1.98 −10.44
(0.394) (0.828) (3.38) (0.705) (1.01) (5.01)
[1.31] [1.14] [−3.20] [1.37] [0.477]

Prod −4.71 −5.62 5.30 −9.33 −1.76 6.64
(0.553) (0.753) (4.03) (1.13) (0.927) (5.93)
[−1.82] [−1.41] [2.09] [−2.29] [−0.424]

ρ — 0.582 — 0.252 —
(0.019) (0.081)

Ln L −4134.86 −3546.01 −2086.26 −4128.98 −3545.84 −1388.51

Aside from confirming our intuition that least squares approximates the nonlinear
model and providing a quick comparison for the three models involved, the practical
usefulness of the formula is somewhat limited. Still, it is a striking result.37 A series of
studies has focused on reasons why the least squares estimates should be proportional
to the probit and logit estimates. A related question concerns the problems associated
with assuming that a probit model applies when, in fact, a logit model is appropriate or
vice versa.38 The approximation would seem to suggest that with this type of misspeci-
fication, we would once again obtain a scaled version of the correct coefficient vector.
(Amemiya also reports the widely observed relationship β̂ logit = 1.6β̂probit, which fol-
lows from the results above.)

Greene (1983), building on Goldberger (1981), finds that if the probit model is
correctly specified and if the regressors are themselves joint normally distributed, then
the probability limit of the least squares estimator is a multiple of the true coefficient

37This result does not imply that it is useful to report 2.5 times the linear probability estimates with the probit
estimates for comparability. The linear probability estimates are already in the form of marginal effects,
whereas the probit coefficients must be scaled downward. If the sample proportion happens to be close to
0.5, then the right scale factor will be roughly φ[
−1(0.5)] = 0.3989. But the density falls rapidly as P moves
away from 0.5.
38See Ruud (1986) and Gourieroux et al. (1987).
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vector.39 Greene’s result is useful only for the same purpose as Amemiya’s quick
correction of OLS. Multivariate normality is obviously inconsistent with most appli-
cations. For example, nearly all applications include at least one dummy variable. Ruud
(1982) and Cheung and Goldberger (1984), however, have shown that much weaker
conditions than joint normality will produce the same proportionality result. For a pro-
bit model, Cheung and Goldberger require only that E [x | y∗] be linear in y∗. Several
authors have built on these observations to pursue the issue of what circumstances will
lead to proportionality results such as these. Ruud (1986) and Stoker (1986) have ex-
tended them to a very wide class of models that goes well beyond those of Cheung and
Goldberger. Curiously enough, Stoker’s results rule out dummy variables, but it is those
for which the proportionality result seems to be most robust.40

21.5.3 THE MAXIMUM SCORE ESTIMATOR (MSCORE)

In Section 21.4.5, we discussed the issue of prediction rules for the probit and logit
models. In contrast to the linear regression model, estimation of these binary choice
models is not based on a fitting rule, such as the sum of squared residuals, which is
related to the fit of the model to the data. The maximum score estimator is based on a
fitting rule,

Maximizeβ Snα(β) = 1
n

n∑
i=1

[zi − (1 − 2α)]sgn(x′
iβ).41

The parameter α is a preset quantile, and zi = 2yi − 1. (So z = −1 if y = 0.) If α is
set to 1

2 , then the maximum score estimator chooses the β to maximize the number of
times that the prediction has the same sign as z. This result matches our prediction rule
in (21-36) with F∗ = 0.5. So for α = 0.5, maximum score attempts to maximize the
number of correct predictions. Since the sign of x′β is the same for all positive multiples
of β, the estimator is computed subject to the constraint that β ′β = 1.

Since there is no log-likelihood function underlying the fitting criterion, there is no
information matrix to provide a method of obtaining standard errors for the estimates.
Bootstrapping can used to provide at least some idea of the sampling variability of
the estimator. (See Section E.4.) The method proceeds as follows. After the set of
coefficients bn is computed, R randomly drawn samples of m observations are drawn
from the original data set with replacement. The bootstrap sample size m may be less
than or equal to n, the sample size. With each such sample, the maximum score estimator
is recomputed, giving bm(r). Then the mean-squared deviation matrix

MSD(b) = 1
R

R∑
b=1

[bm(r) − bn][bm(r) − bn]′

39The scale factor is estimable with the sample data, so under these assumptions, a method of moments
estimator is available.
40See Greene (1983).
41See Manski (1975, 1985, 1986) and Manski and Thompson (1986). For extensions of this model, see Horowitz
(1992), Charlier, Melenberg and van Soest (1995), Kyriazidou (1997) and Lee (1996).
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TABLE 21.5 Maximum Score Estimator

Maximum Score Probit

Estimate Mean Square Dev. Estimate Standard Error

Constant β1 −0.9317 0.1066 −7.4522 2.5420
GPA β2 0.3582 0.2152 1.6260 0.6939
TUCE β3 −0.01513 0.02800 0.05173 0.08389
PSI β4 0.05902 0.2749 1.4264 0.5950

Fitted Fitted

Actual
0 1

0 21 0
1 4 7

Actual
0 1

0 18 3
1 3 8

is computed. The authors of the technique emphasize that this matrix is not a covariance
matrix.42

Example 21.7 The Maximum Score Estimator
Table 21.5 presents maximum score estimates for Spector and Mazzeo’s GRADE model
using α = 0.5. Note that they are quite far removed from the probit estimates. (The estimates
are extremely sensitive to the choice of α.) Of course, there is no meaningful comparison
of the coefficients, since the maximum score estimates are not the slopes of a conditional
mean function. The prediction performance of the model is also quite sensitive to α, but that
is to be expected.43 As expected, the maximum score estimator performs better than the
probit estimator. The score is precisely the number of correct predictions in the 2 × 2 table,
so the best that the probit model could possibly do is obtain the “maximum score.” In this
example, it does not quite attain that maximum. [The literature awaits a comparison of the
prediction performance of the probit/logit (parametric) approaches and this semiparametric
model.] The relevant scores for the two estimators are also given in the table.

Semiparametric approaches such as this one have the virtue that they do not make a
possibly erroneous assumption about the underlying distribution. On the other hand, as
seen in the example, there is no guarantee that the estimator will outperform the fully
parametric estimator. One additional practical consideration is that semiparametric
estimators such as this one are very computation intensive. At present, the maximum
score estimator is not usable for more than roughly 15 coefficients and perhaps 1,500 to
2,000 observations.44 A third shortcoming of the approach is, unfortunately, inherent in

42Note that we are not yet agreed that bn even converges to a meaningful vector, since no underlying proba-
bility distribution as such has been assumed. Once it is agreed that there is an underlying regression function
at work, then a meaningful set of asymptotic results, including consistency, can be developed. Manski and
Thompson (1986) and Kim and Pollard (1990) present a number of results. Even so, it has been shown that
the bootstrap MSD matrix is useful for little more than descriptive purposes. Horowitz’s (1993) smoothed
maximum score estimator replaces the discontinuous sgn (β ′xi ) in the MSCORE criterion with a continuous
weighting function, 
(β ′xi /h), where h is a bandwidth proportional to n−1/5. He argues that this estimator
is an improvement over Manski’s MSCORE estimator. (“Its asymptotic distribution is very complicated and
not useful for making inferences in applications.” Later in the same paragraph he argues, “There has been no
theoretical investigation of the properties of the bootstrap in maximum score estimation.”)
43The criterion function for choosing b is not continuous, and it has more than one optimum. M. E. Bissey
reported finding that the score function varies significantly between the local optima as well. [Personal
correspondence to the author, University of York (1995).]
44Communication from C. Manski to the author. The maximum score estimator has been implemented by
Manski and Thompson (1986) and Greene (1995a).
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its design. The parametric assumptions of the probit or logit produce a large amount of
information about the relationship between the response variable and the covariates.
In the final analysis, the marginal effects discussed earlier might well have been the
primary objective of the study. That information is lost here.

21.5.4 SEMIPARAMETRIC ESTIMATION

The fully parametric probit and logit models remain by far the mainstays of empirical
research on binary choice. Fully nonparametric discrete choice models are fairly exotic
and have made only limited inroads in the literature, and much of that literature is
theoretical [e.g., Matzkin (1993)]. The primary obstacle to application is their paucity
of interpretable results. (See Example 21.9.) Of course, one could argue on this basis
that the firm results produced by the fully parametric models are merely fragile artifacts
of the detailed specification, not genuine reflections of some underlying truth. [In this
connection, see Manski (1995).] But that orthodox view raises the question of what
motivates the study to begin with and what one hopes to learn by embarking upon it.
The intent of model building to approximate reality so as to draw useful conclusions is
hardly limited to the analysis of binary choices. Semiparametric estimators represent
a middle ground between these extreme views.45 The single index model of Klein and
Spady (1993) has been used in several applications, including Gerfin (1996), Horowitz
(1993), and Fernandez and Rodriguez-Poo (1997).46

The single index formulation departs from a linear “regression” formulation,

E [yi | xi ] = E [yi | x′
iβ].

Then

Prob(yi = 1 | xi ) = F(x′
iβ | xi ) = G(x′

iβ),

where G is an unknown continuous distribution function whose range is [0, 1]. The
function G is not specified a priori; it is estimated along with the parameters. (Since G
as well as β is to be estimated, a constant term is not identified; essentially, G provides
the location for the index that would otherwise be provided by a constant.) The criterion
function for estimation, in which subscripts n denote estimators of their unsubscripted
counterparts, is

ln Ln = 1
n

n∑
i=1

{
yi ln Gn(x′

iβn) + (1 − yi ) ln[1 − Gn(x′
iβn)]

}
.

The estimator of the probability function, Gn, is computed at each iteration using
a nonparametric kernel estimator of the density of x′βn; we did this calculation in
Section 16.4. For the Klein and Spady estimator, the nonparametric regression

45Recent proposals for semiparametric estimators in addition to the one developed here include Lewbel
(1997, 2000), Lewbel and Honore (2001), and Altonji and Matzkin (2001). In spite of nearly 10 years of
development, this is a nascent literature. The theoretical development tends to focus on root-n consistent
coefficient estimation in models which provide no means of computation of probabilities or marginal effects.
46A symposium on the subject is Hardle and Manski (1993).
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estimator is

Gn(zi ) = ȳgn(zi | yi = 1)

ȳgn(zi | yi = 1) + (1 − ȳ) gn(zi | yi = 0)
,

where gn(zi | yi ) is the kernel estimate of the density of zi = β ′
nxi . This result is

gn(zi | yi = 1) = 1
nȳhn

n∑
j=1

yj K
(

zi − β ′
nx j

hn

)
;

gn(zi | yi = 0) is obtained by replacing ȳ with 1− ȳ in the leading scalar and yj with 1− yj

in the summation. As before, hn is the bandwidth. There is no firm theory for choosing
the kernel function or the bandwidth. Both Horowitz and Gerfin used the standard
normal density. Two different methods for choosing the bandwidth are suggested by
them.47 Klein and Spady provide theoretical background for computing asymptotic
standard errors.

Example 21.8 A Comparison of Binary Choice Estimators
Gerfin (1996) did an extensive analysis of several binary choice estimators, the probit model,
Klein and Spady’s single index model, and Horowitz’s smoothed maximum score estimator.
(A fourth “seminonparametric” estimator was also examined, but in the interest of brevity, we
confine our attention to the three more widely used procedures.) The several models were all
fit to two data sets on labor force participation of married women, one from Switzerland and
one from Germany. Variables included in the equation were (our notation), x1 = a constant,
x2 = age, x3 = age2, x4 = education, x5 = number of young children, x6 = number of older
children, x7 = log of yearly nonlabor income, and x8 = a dummy variable for permanent for-
eign resident (Swiss data only). Coefficient estimates for the models are not directly compa-
rable. We suggested in Example 21.3 that they could be made comparable by transforming
them to marginal effects. Neither MSCORE nor the single index model, however, produces a
marginal effect (which does suggest a question of interpretation). The author obtained com-
parability by dividing all coefficients by the absolute value of the coefficient on x7. The set of
normalized coefficients estimated for the Swiss data appears in Table 21.6, with estimated
standard errors (from Gerfin’s Table III) shown in parentheses.

Given the very large differences in the models, the agreement of the estimates is impres-
sive. [A similar comparison of the same estimators with comparable concordance may be
found in Horowitz (1993, p. 56).] In every case, the standard error of the probit estimator is
smaller than that of the others. It is tempting to conclude that it is a more efficient estimator,
but that is true only if the normal distribution assumed for the model is correct. In any event,
the smaller standard error is the payoff to the sharper specification of the distribution. This
payoff could be viewed in much the same way that parametric restrictions in the classical
regression make the asymptotic covariance matrix of the restricted least squares estimator
smaller than its unrestricted counterpart, even if the restrictions are incorrect.

Gerfin then produced plots of F (z) for z in the range of the sample values of b′x. Once
again, the functions are surprisingly close. In the German data, however, the Klein–Spady
estimator is nonmonotonic over a sizeable range, which would cause some difficult problems
of interpretation. The maximum score estimator does not produce an estimate of the proba-
bility, so it is excluded from this comparison. Another comparison is based on the predictions
of the observed response. Two approaches are tried, first counting the number of cases in
which the predicted probability exceeds 0.5. (b′x > 0 for MSCORE) and second by summing
the sample values of F (b′x) . (Once again, MSCORE is excluded.) By the second approach,

47The function Gn(z) involves an enormous amount of computation, on the order of n2, in principle. As Gerfin
(1996) observes, however, computation of the kernel estimator can be cast as a Fourier transform, for which
the fast Fourier transform reduces the amount of computation to the order of n log2 n. This value is only
slightly larger than linear in n. See Press et al. (1986) and Gerfin (1996).
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TABLE 21.6 Estimated Parameters for Semiparametric Models

x1 x2 x3 x4 x5 x6 x7 x8 h

Probit 5.62 3.11 −0.44 0.03 −1.07 −0.22 −1.00 1.07 —
(1.35) (0.77) (0.10) (0.03) (0.26) (0.09) — (0.29)

Single — 2.98 −0.44 0.02 −1.32 −0.25 −1.00 1.06 0.40
index — (0.90) (0.12) (0.03) (0.33) (0.11) — (0.32)
MSCORE 5.83 2.84 −0.40 0.03 −0.80 −0.16 −1.00 0.91 0.70

(1.78) (0.98) (0.13) (0.05) (0.43) (0.20) — (0.57)

the estimators are almost indistinguishable, but the results for the first differ widely. Of 401
ones (out of 873 observations), the counts of predicted ones are 389 for probit, 382 for
Klein/Spady, and 355 for MSCORE. (The results do not indicate how many of these counts
are correct predictions.)

21.5.5 A KERNEL ESTIMATOR FOR A NONPARAMETRIC
REGRESSION FUNCTION

As noted, one unsatisfactory aspect of semiparametric formulations such as MSCORE
is that the amount of information that the procedure provides about the population
is limited; this aspect is, after all, the purpose of dispensing with the firm (parametric)
assumptions of the probit and logit models. Thus, in the preceding example, there is little
that one can say about the population that generated the data based on the MSCORE
“estimates” in the table. The estimates do allow predictions of the response variable.
But there is little information about any relationship between the response and the inde-
pendent variables based on the “estimation” results. Even the mean-squared deviation
matrix is suspect as an estimator of the asymptotic covariance matrix of the MSCORE
coefficients.

The authors of the technique have proposed a secondary analysis of the results. Let

Fβ(zi ) = E [yi | x′
iβ = zi ]

denote a smooth regression function for the response variable. Based on a parameter
vector β, the authors propose to estimate the regression by the method of kernels
as follows. For the n observations in the sample and for the given β (e.g., bn from
MSCORE), let

zi = x′
iβ,

s =
[

1
n

n∑
i=1

(zi − z̄)2

]1/2

.

For a particular value z∗, we compute a set of n weights using the kernel function,

wi (z∗) = K[(z∗ − zi )/(λs)],

where

K(ri ) = P(ri )[1 − P(ri )]
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and

P(ri ) = [1 + exp(−cri )]−1.

The constant c = (π/
√

3)−1 ≈ 0.55133 is used to standardize the logistic distribution that
is used for the kernel function. (See Section 16.4.1.) The parameter λ is the smoothing
(bandwidth) parameter. Large values will flatten the estimated function through ȳ,
whereas values close to zero will allow greater variation in the function but might cause
it to be unstable. There is no good theory for the choice, but some suggestions have been
made based on descriptive statistics. [See Wong (1983) and Manski (1986).] Finally, the
function value is estimated with

F(z∗) ≈
∑n

i=1 wi (z∗)yi∑n
i=1 wi (z∗)

.

Example 21.9 Nonparametric Regression
Figure 21.3 shows a plot of two estimates of the regression function for E [GRADE | z]. The
coefficients are the MSCORE estimates given in Table 21.5. The plot is produced by com-
puting fitted values for 100 equally spaced points in the range of x′bn, which for these data
and coefficients is [−0.66229, 0.05505]. The function is estimated with two values of the
smoothing parameter, 1.0 and 0.3. As expected, the function based on λ = 1.0 is much
flatter than that based on λ = 0.3. Clearly, the results of the analysis are crucially dependent
on the value assumed.

The nonparametric estimator displays a relationship between x′β and E [yi ]. At first
blush, this relationship might suggest that we could deduce the marginal effects, but
unfortunately, that is not the case. The coefficients in this setting are not meaningful,
so all we can deduce is an estimate of the density, f (z), by using first differences of the
estimated regression function. It might seem, therefore, that the analysis has produced

FIGURE 21.3 Nonparametric Regression.
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relatively little payoff for the effort. But that should come as no surprise if we reconsider
the assumptions we have made to reach this point. The only assumptions made thus
far are that for a given vector of covariates xi and coefficient vector β (that is, any β),
there exists a smooth function F(x′β) = E [yi | zi ]. We have also assumed, at least im-
plicitly, that the coefficients carry some information about the covariation of x′β and
the response variable. The technique will approximate any such function [see Manski
(1986)].

There is a large and burgeoning literature on kernel estimation and nonparametric
estimation in econometrics. [A recent application is Melenberg and van Soest (1996).]
As this simple example suggests, with the radically different forms of the specified model,
the information that is culled from the data changes radically as well. The general prin-
ciple now made evident is that the fewer assumptions one makes about the population,
the less precise the information that can be deduced by statistical techniques. That
tradeoff is inherent in the methodology.

21.5.6 DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model which explicitly allows for lagged effects would be

yit = 1(x′
itβ + αi + γ yi,t−1 + εi t > 0).

Lagged effects, or persistence, in a binary choice setting can arise from three sources,
serial correlation in εi t , the heterogeneity, αi , or true state dependence through the
term γ yi,t−1. Chiappori (1998) [and see Arellano (2001)] suggests an application to
the French automobile insurance market in which the incentives built into the pricing
system are such that having an accident in one period should lower the probability of
having one in the next (state dependence), but, some drivers remain more likely to have
accidents than others in every period, which would reflect the heterogeneity instead.
State dependence is likely to be particularly important in the typical panel which has
only a few observations for each individual. Heckman (1981a) examined this issue at
length. Among his findings were that the somewhat muted small sample bias in fixed
effects models with T = 8 was made much worse when there was state dependence.
A related problem is that with a relatively short panel, the initial conditions, yi0, have
a crucial impact on the entire path of outcomes. Modeling dynamic effects and initial
conditions in binary choice models is more complex than in the linear model, and by
comparison there are relatively fewer firm results in the applied literature.

Much of the contemporary literature has focused on methods of avoiding the strong
parametric assumptions of the probit and logit models. Manski (1987) and Honore and
Kyriadizou (2000) show that Manski’s (1986) maximum score estimator can be applied
to the differences of unequal pairs of observations in a two period panel with fixed
effects. However, the limitations of the maximum score estimator noted earlier have
motivated research on other approaches. An extension of lagged effects to a parametric
model is Chamberlain (1985), Jones and Landwehr (1988) and Magnac (1997) who
added state dependence to Chamberlain’s fixed effects logit estimator. Unfortunately,
once the identification issues are settled, the model is only operational if there are
no other exogenous variables in it, which limits is usefulness for practical application.
Lewbel (2000) has extended his fixed effects estimator to dynamic models as well. In
this framework, the narrow assumptions about the independent variables somewhat
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limit its practical applicability. Honore and Kyriazidou (2000) have combined the logic
of the conditional logit model and Manski’s maximum score estimator. They specify

Prob(yi0 = 1 | xi , αi ) = p0(xi , αi ) where xi = (xi1, xi2, . . . , xiT)

Prob(yit = 1 | xi , αi , yi0, yi1, . . . , yi,t−1) = F(x′
i tβ + αi + γ yi,t−1) t = 1, . . . , T

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting
estimator resembles Chamberlain’s but relies on observations for which xi t = xi,t−1

which rules out direct time effects as well as, for practical purposes, any continuous
variable. The restriction to a single regressor limits the generality of the technique as
well. The need for observations with equal values of xit is a considerable restriction, and
the authors propose a kernel density estimator for the difference, xi t − xi,t−1, instead
which does relax that restriction a bit. The end result is an estimator which converges
(they conjecture) but to a nonnormal distribution and at a rate slower than n−1/3.

Semiparametric estimators for dynamic models at this point in the development
are still primarily of theoretical interest. Models that extend the parametric formulations
to include state dependence have a much longer history, including Heckman (1978,
1981a, 1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993) and
Beck et al. (2001) to name a few.48 In general, even without heterogeneity, dynamic
models ultimately involve modeling the joint outcome (yi0, . . . , yiT) which necessitates
some treatment involving multivariate integration. Example 21.10 describes a recent
application.

Example 21.10 An Intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women. The focus
of the study is the high degree of persistence in the participation decision. Data used in
the study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of
1812 continuously married couples were studied. Exogenous variables which appeared in
the model were measures of permanent and transitory income and fertility captured in yearly
counts of the number of children from 0–2, 3–5 and 6–17 years old. Hyslop’s formulation, in
general terms, is

(initial condition) yi 0 = 1(x′
i 0β0 + vi 0 > 0) ,

(dynamic model) yi t = 1(x′
i tβ + γ yi ,t−1 + αi + vi t > 0)

(heterogeneity correlated with participation) αi = z′
i δ + ηi ,

(Stochastic specification)

ηi | Xi ∼ N
[
0, σ 2

η

]
,

vi 0 | Xi ∼ N
[
0, σ 2

0

]
,

wi t | Xi ∼ N
[
0, σ 2

w

]
,

vi t = ρvi ,t−1 + wi t , σ 2
η + σ 2

w = 1.

Corr[vi 0, vi t ] = ρt , t = 1, . . . , T − 1.

48Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they
observe a large sample of countries (147) observed over a fairly large number of years, 40. As such, they
are able to formulate their models in a way that makes the asymptotics with respect to T appropriate. They
can analyze the data essentially in a time series framework. Sepanski (2000) is another application which
combines state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).

wgreene
do not capitalize stochastic
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The presence of the autocorrelation and state dependence in the model invalidate the sim-
ple maximum likelihood procedures we have examined earlier. The appropriate likelihood
function is constructed by formulating the probabilities as

Prob( yi 0, yi 1, . . .) = Prob( yi 0) × Prob( yi 1 | yi 0) × · · · × Prob( yi T | yi ,T−1)

This still involves a T = 7 order normal integration, which is approximated in the study using
a simulator similar to the GHK simulator discussed in E.4.2e. Among Hyslop’s results are a
comparison of the model fit by the simulator for the multivariate normal probabilities with the
same model fit using the maximum simulated likelihood technique described in Section 17.8.

21.6 BIVARIATE AND MULTIVARIATE
PROBIT MODELS

In Chapter 14, we analyzed a number of different multiple-equation extensions of the
classical and generalized regression model. A natural extension of the probit model
would be to allow more than one equation, with correlated disturbances, in the same
spirit as the seemingly unrelated regressions model. The general specification for a
two-equation model would be

y∗
1 = x′

1β1 + ε1, y1 = 1 if y∗
1 > 0, 0 otherwise,

y∗
2 = x′

2β2 + ε2, y2 = 1 if y∗
2 > 0, 0 otherwise,

E [ε1 | x1, x2] = E [ε2 | x1, x2] = 0,

Var[ε1 | x1, x2] = Var[ε2 | x1, x2] = 1,

Cov[ε1, ε2 | x1, x2] = ρ.

(21-41)

21.6.1 MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

Prob(X1 < x1, X2 < x2) =
∫ x2

−∞

∫ x1

−∞
φ2(z1, z2, ρ) dz1dz2,

which we denote 
2(x1, x2, ρ). The density is

φ2(x1, x2, ρ) = e−(1/2)(x2
1 +x2

2 −2ρx1x2)/(1−ρ2)

2π(1 − ρ2)1/2
.49

To construct the log-likelihood, let qi1 = 2yi1 − 1 and qi2 = 2yi2 − 1. Thus, qi j = 1 if
yi j = 1 and −1 if yi j = 0 for j = 1 and 2. Now let

zi j = x′
i jβ j and wi j = qi j zi j , j = 1, 2,

and

ρi∗ = qi1qi2ρ.

Note the national convention. The subscript 2 is used to indicate the bivariate normal
distribution in the density φ2 and cdf 
2. In all other cases, the subscript 2 indicates

49See Section B.9.
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the variables in the second equation above. As before, φ(.) and 
(.) without subscripts
denote the univariate standard normal density and cdf.

The probabilities that enter the likelihood function are

Prob(Y1 = yi1, Y2 = yi2 | x1, x2) = 
2(wi1, wi2, ρt∗),

which accounts for all the necessary sign changes needed to compute probabilities for
ys equal to zero and one. Thus,

log L =
n∑

i=1

ln 
2(wi1, wi2, ρi∗).50

The derivatives of the log-likelihood then reduce to

∂ ln L
∂β j

=
n∑

i=1

(
qi j gi j


2

)
xi j , j = 1, 2,

∂ ln L
∂ρ

=
n∑

i=1

qi1qi2φ2


2
,

(21-42)

where

gi1 = φ(wi1)


[
wi2 − ρi∗wi1√

1 − ρ2
i∗

]
(21-43)

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. Before considering the
Hessian, it is useful to note what becomes of the preceding if ρ = 0. For ∂ ln L/∂β1, if ρ =
ρi∗ = 0, then gi1 reduces to φ(wi1)
(wi2), φ2 is φ(wi1)φ(wi2), and 
2 is 
(wi1)
(wi2).
Inserting these results in (21-42) with qi1 and qi2 produces (21-21). Since both functions
in ∂ ln L/∂ρ factor into the product of the univariate functions, ∂ ln L/∂ρ reduces to∑n

i=1 λi1λi2 where λi j , j = 1, 2, is defined in (21-21). (This result will reappear in the
LM statistic below.)

The maximum likelihood estimates are obtained by simultaneously setting the three
derivatives to zero. The second derivatives are relatively straightforward but tedious.
Some simplifications are useful. Let

δi = 1√
1 − ρ2

i∗
,

vi1 = δi (wi2 − ρi∗wi1), so gi1 = φ(wi1)
(vi1),

vi2 = δi (wi1 − ρi∗wi2), so gi2 = φ(wi2)
(vi2).

By multiplying it out, you can show that

δiφ(wi1)φ(vi1) = δiφ(wi2)φ(vi2) = φ2.

50To avoid further ambiguity, and for convenience, the observation subscript will be omitted from

2 = 
2(wi1, wi2, ρi∗ ) and from φ2 = φ2(wi1, wi2, ρi∗ ).
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Then

∂2 log L
∂β1∂β ′

1
=

n∑
i=1

xi1x′
i1

[−wi1gi1


2
− ρi∗φ2


2
− g2

i1


2
2

]
,

∂2 log L
∂β1∂β ′

2
=

n∑
i=1

qi1qi2xi1x′
i2

[
φ2


2
− gi1gi2


2
2

]
,

∂2 log L
∂β1∂ρ

=
n∑

i=1

qi2xi1
φ2


2

[
ρi∗δivi1 − wi1 − gi1


2

]
,

∂2 log L
∂ρ2

=
n∑

i=1

φ2


2

[
δ2

i ρi∗(1 − w′
i R

−1
i wi ) + δ2

i wi1wi2 − φ2


2

]
,

where w′
i R

−1
i wi = δ2

i (w
2
i1 + w2

i2 − 2ρi∗wi1wi2). (For β2, change the subscripts in ∂2 ln L/

∂β1∂β ′
1 and ∂2 ln L/∂β1∂ρ accordingly.) The complexity of the second derivatives for

this model makes it an excellent candidate for the Berndt et al. estimator of the variance
matrix of the maximum likelihood estimator.

21.6.2 TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence
of correlation in this model. Under the null hypothesis that ρ equals zero, the model
consists of independent probit equations, which can be estimated separately. Moreover,
in the multivariate model, all the bivariate (or multivariate) densities and probabilities
factor into the products of the marginals if the correlations are zero, which makes
construction of the test statistic a simple matter of manipulating the results of the
independent probits. The Lagrange multiplier statistic for testing H0: ρ = 0 in a bivariate
probit model is51

LM =

[∑n
i=1 qi1qi2

φ(wi1)φ(wi2)


(wi1)
(wi2)

]2

∑n
i=1

[φ(wi1)φ(wi2)]2


(wi1)
(−wi1)
(wi2)
(−wi2)

.

As usual, the advantage of the LM statistic is that it obviates computing the bivariate
probit model. But, the full unrestricted model is now fairly common in commercial
software, so that advantage is minor. The likelihood ratio or Wald test can often be used
with equal ease.

21.6.3 MARGINAL EFFECTS

There are several “marginal effects” one might want to evaluate in a bivariate probit
model.52 For convenience in evaluating them, we will define a vector x = x1 ∪ x2 and let

51This is derived in Kiefer (1982).
52See Greene (1996b).
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x′
1β1 = x′γ 1. Thus, γ 1 contains all the nonzero elements of β1 and possibly some zeros

in the positions of variables in x that appear only in the other equation; γ 2 is defined
likewise. The bivariate probability is

Prob[y1 = 1, y2 = 1 | x] = 
2[x′γ 1, x′γ 2, ρ].

Signs are changed appropriately if the probability of the zero outcome is desired in
either case. (See 21-41.) The marginal effects of changes in x on this probability are
given by

∂
2

∂x
= g1γ 1 + g2γ 2,

where g1 and g2 are defined in (21-43). The familiar univariate cases will arise if ρ = 0,
and effects specific to one equation or the other will be produced by zeros in the corre-
sponding position in one or the other parameter vector. There are also some conditional
mean functions to consider. The unconditional mean functions are given by the univari-
ate probabilities:

E [yj | x] = 
(x′γ j ), j = 1, 2,

so the analysis of (21-9) and (21-10) applies. One pair of conditional mean functions
that might be of interest are

E [y1 | y2 = 1, x] = Prob[y1 = 1 | y2 = 1, x] = Prob[y1 = 1, y2 = 1 | x]
Prob[y2 = 1 | x]

= 
2(x′γ 1, x′γ 2, ρ)


(x′γ 2)

and similarly for E [y2 | y1 = 1, x]. The marginal effects for this function are given by

∂ E [y1 | y2 = 1, x]
∂x

=
(

1

(x′γ 2)

) [
g1γ 1 +

(
g2 − 
2

φ(x′γ 2)


(x′γ 2)

)
γ 2

]
.

Finally, one might construct the nonlinear conditional mean function

E [y1 | y2, x] = 
2[x′γ 1, (2y2 − 1)x′γ 2, (2y2 − 1)ρ]

[(2y2 − 1)x′γ 2]

.

The derivatives of this function are the same as those above, with sign changes in several
places if y2 = 0 is the argument.

21.6.4 SAMPLE SELECTION

There are situations in which the observed variables in the bivariate probit model are
censored in one way or another. For example, in an evaluation of credit scoring models,
Boyes, Hoffman, and Low (1989) analyzed data generated by the following rule:

y1 = 1 if individual i defaults on a loan, 0 otherwise,

y2 = 2 if the individual is granted a loan, 0 otherwise.

Greene (1992) applied the same model to y1 = default on credit card loans, in which y2

denotes whether an application for the card was accepted or not. For a given individual,



Greene-50240 book June 27, 2002 22:39

714 CHAPTER 21 ✦ Models for Discrete Choice

y1 is not observed unless y2 equals one. Thus, there are three types of observations in
the sample, with unconditional probabilities:53

y2 = 0: Prob(y2 = 0 | x1, x2) = 1 − 
(x′
2β2),

y1 = 0, y2 = 1: Prob(y1 = 0, y2 = 1 | x1, x2) = 
2[−x′
1β1, x′

2β2, −ρ],

y1 = 1, y2 = 1: Prob(y1 = 1, y2 = 1 | x1, x2) = 
2[x′
1β1, x′

2β2, ρ].

The log-likelihood function is based on these probabilities.54

21.6.5 A MULTIVARIATE PROBIT MODEL

In principle, a multivariate model would extend (21-41) to more than two outcome
variables just by adding equations. The practical obstacle to such an extension is pri-
marily the evaluation of higher-order multivariate normal integrals. Some progress has
been made on using quadrature for trivariate integration, but existing results are not
sufficient to allow accurate and efficient evaluation for more than two variables in a sam-
ple of even moderate size. An altogether different approach has been used in recent
applications. Lerman and Manski (1981) suggested that one might approximate multi-
variate normal probabilities by random sampling. For example, to approximate
Prob(y1 > 1, y2 < 3, y3 < −1) | x1, x2, ρ12, ρ13, ρ23), we would simply draw random ob-
servations from this trivariate normal distribution (see Section E.5.6.) and count the
number of observations that satisfy the inequality. To obtain an accurate estimate of the
probability, quite a large number of draws is required. Also, the substantive possibility
of getting zero such draws in a finite number of draws is problematic. Nonetheless, the
logic of the Lerman–Manski approach is sound. As discussed in Section E.5.6 recent
developments have produced methods of producing quite accurate estimates of multi-
variate normal integrals based on this principle. The evaluation of multivariate normal
integral is generally a much less formidable obstacle to the estimation of models based
on the multivariate normal distribution.55

McFadden (1989) pointed out that for purposes of maximum likelihood estimation,
accurate evaluation of probabilities is not necessarily the problem that needs to be
solved. One can view the computation of the log-likelihood and its derivatives as a
problem of estimating a mean. That is, in (21-41) and (21-42), the same problem arises
if we divide by n. The idea is that even though the individual terms in the average
might be in error, if the error has mean zero, then it will average out in the summation.
The important insight, then, is that if we can obtain probability estimates that only err
randomly both positively and negatively, then it may be possible to obtain an estimate
of the log-likelihood and its derivatives that is reasonably close to the one that would

53The model was first proposed by Wynand and van Praag (1981).
54Extensions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and
Abowd and Farber (1982).
55Papers that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and
especially Börsch-Supan and Hajivassilou (1990), Geweke (1989), and Keane (1994). A symposium in the
November 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in speci-
fication and estimation of models based on simulation of probabilities. Applications that employ simulation
techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for example, Hyslop
(1999) (Example 21.10) who applies the technique to a panel data application with T = 7.
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result from actually computing the integral. From a practical standpoint, it does not
take inordinately large numbers of random draws to achieve this result, which with the
progress that has been made on Monte Carlo integration, has made feasible multivariate
models that previously were intractable.

The multivariate probit model in another form presents a useful extension of the
probit model to panel data. The structural equation for the model would be

y∗
i t = x′

i tβ + εi t , yit = 1 if y∗
i t > 0, 0 otherwise, i = 1, . . . , n; t = 1, . . . , T.

The Butler and Moffitt approach for this model has proved useful in numerous applica-
tions. But, the underlying assumption that Cov[εi t , εis] = ρ is a substantive restriction.
By treating this structure as a multivariate probit model with a restriction that the coef-
ficient vector be the same in every period, one can obtain a model with free correlations
across periods. Hyslop (1999) and Greene (2002) are two applications.

21.6.6 APPLICATION: GENDER ECONOMICS COURSES
IN LIBERAL ARTS COLLEGES

Burnett (1997) proposed the following bivariate probit model for the presence of a
gender economics course in the curriculum of a liberal arts college:

Prob[y1 = 1, y2 = 1 | x1, x2] = 
2(x′
1β1 + γ y2, x′

2β2, ρ).

The dependent variables in the model are

y1 = presence of a gender economics course,

y2 = presence of a women’s studies program on the campus.

The independent variables in the model are

z1 = constant term;

z2 = academic reputation of the college, coded 1 (best), 2, . . . to 141;

z3 = size of the full time economics faculty, a count;

z4 = percentage of the economics faculty that are women, proportion (0 to 1);

z5 = religious affiliation of the college, 0 = no, 1 = yes;

z6 = percentage of the college faculty that are women, proportion (0 to 1);

z7–z10 = regional dummy variables, south, midwest, northeast, west.

The regressor vectors are

x1 = z1, z2, z3, z4, z5, x2 = z2, z6, z5, z7–z10.

Burnett’s model illustrates a number of interesting aspects of the bivariate probit model.
Note that this model is qualitatively different from the bivariate probit model in (21-41);
the second dependent variable, y2, appears on the right-hand side of the first equation.
This model is a recursive, simultaneous-equations model. Surprisingly, the endogenous
nature of one of the variables on the right-hand side of the first equation can be ignored
in formulating the log-likelihood. [The model appears in Maddala (1983, p. 123).] We
can establish this fact with the following (admittedly trivial) argument: The term that
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enters the log-likelihood is P(y1 = 1, y2 = 1) = P(y1 = 1 | y2 = 1)P(y2 = 1). Given the
model as stated, the marginal probability for y2 is just 
(x′

2β2), whereas the conditional
probability is 
2(. . .)/
(x′

2β2). The product returns the probability we had earlier. The
other three terms in the log-likelihood are derived similarly, which produces (Maddala’s
results with some sign changes):

P11 = 
2(x′
1β1 + γ y2, x′

2β2, ρ), P10 = 
2(x′
1β1, −x′

2β2, −ρ)

P01 = 
2[−(x′
1β1 + γ y2), β

′
2x2, −ρ], P00 = 
2(−x′

1β1, −x′
2β2, ρ).

These terms are exactly those of (21-41) that we obtain just by carrying y2 in the first
equation with no special attention to its endogenous nature. We can ignore the simul-
taneity in this model and we cannot in the linear regression model because, in this
instance, we are maximizing the log-likelihood, whereas in the linear regression case,
we are manipulating certain sample moments that do not converge to the necessary
population parameters in the presence of simultaneity. Note that the same result is at
work in Section 15.6.2, where the FIML estimator of the simultaneous equations model
is obtained with the endogenous variables on the right-hand sides of the equations, but
not by using ordinary least squares.

The marginal effects in this model are fairly involved, and as before, we can consider
several different types. Consider, for example, z2, academic reputation. There is a direct
effect produced by its presence in the first equation, but there is also an indirect effect.
Academic reputation enters the women’s studies equation and, therefore, influences
the probability that y2 equals one. Since y2 appears in the first equation, this effect is
transmitted back to y1. The total effect of academic reputation and, likewise, religious
affiliation is the sum of these two parts. Consider first the gender economics variable,
y1. The conditional mean is

E [y1 | x1, x2] = Prob[y2 = 1]E [y1 | y2 = 1, x1, x2] + Prob[y2 = 0]E [y1 | y2 = 0, x1, x2]

= 
2(x′
1β1 + γ y2, x′

2β2, ρ) + 
2(x′
1β1, −x′

2β2, −ρ).

Derivatives can be computed using our earlier results. We are also interested in the effect
of religious affiliation. Since this variable is binary, simply differentiating the conditional
mean function may not produce an accurate result. Instead, we would compute the
conditional mean function with this variable set to one and then zero, and take the
difference. Finally, what is the effect of the presence of a women’s studies program on
the probability that the college will offer a gender economics course? To compute this
effect, we would compute Prob[y1 = 1 | y2 = 1, x1, x2] − Prob[y1 = 1 | y2 = 0, x1, x2]. In
all cases, standard errors for the estimated marginal effects can be computed using the
delta method.

Maximum likelihood estimates of the parameters of Burnett’s model were com-
puted by Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools
offer gender economics, 58 have women’s studies, and 29 have both. The estimated pa-
rameters are given in Table 21.7. Both bivariate probit and the single-equation estimates
are given. The estimate of ρ is only 0.1359, with a standard error of 1.2359. The Wald
statistic for the test of the hypothesis that ρ equals zero is (0.1359/1.2539)2 = 0.011753.
For a single restriction, the critical value from the chi-squared table is 3.84, so the hy-
pothesis cannot be rejected. The likelihood ratio statistic for the same hypothesis is
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TABLE 21.7 Estimates of a Recursive Simultaneous Bivariate Probit Model
(Estimated Standard Errors in Parentheses)

Single Equation Bivariate Probit
Variable Coefficient Standard Error Coefficient Standard Error

Gender Economics Equation
Constant −1.4176 (0.8069) −1.1911 (2.2155)
AcRep −0.01143 (0.004081) −0.01233 (0.007937)
WomStud 1.1095 (0.5674) 0.8835 (2.2603)
EconFac 0.06730 (0.06874) 0.06769 (0.06952)
PctWecon 2.5391 (0.9869) 2.5636 (1.0144)
Relig −0.3482 (0.4984) −0.3741 (0.5265)

Women’s Studies Equation
AcRep −0.01957 (0.005524) −0.01939 (0.005704)
PctWfac 1.9429 (0.8435) 1.8914 (0.8714)
Relig −0.4494 (0.3331) −0.4584 (0.3403)
South 1.3597 (0.6594) 1.3471 (0.6897)
West 2.3386 (0.8104) 2.3376 (0.8611)
North 1.8867 (0.8204) 1.9009 (0.8495)
Midwest 1.8248 (0.8723) 1.8070 (0.8952)

ρ 0.0000 (0.0000) 0.1359 (1.2539)
Log L −85.6458 −85.6317

2[−85.6317 − (−85.6458)] = 0.0282, which leads to the same conclusion. The Lagrange
multiplier statistic is 0.003807, which is consistent. This result might seem counterintu-
itive, given the setting. Surely “gender economics” and “women’s studies” are highly
correlated, but this finding does not contradict that proposition. The correlation coeffi-
cient measures the correlation between the disturbances in the equations, the omitted
factors. That is, ρ measures (roughly) the correlation between the outcomes after the
influence of the included factors is accounted for. Thus, the value 0.13 measures the
effect after the influence of women’s studies is already accounted for. As discussed in
the next paragraph, the proposition turns out to be right. The single most important
determinant (at least within this model) of whether a gender economics course will be
offered is indeed whether the college offers a women’s studies program.

Table 21.8 presents the estimates of the marginal effects and some descriptive statis-
tics for the data. The calculations were simplified slightly by using the restricted model
with ρ = 0. Computations of the marginal effects still require the decomposition above,
but they are simplified slightly by the result that if ρ equals zero, then the bivariate
probabilities factor into the products of the marginals. Numerically, the strongest effect
appears to be exerted by the representation of women on the faculty; its coefficient
of +0.4491 is by far the largest. This variable, however, cannot change by a full unit
because it is a proportion. An increase of 1 percent in the presence of women on the
faculty raises the probability by only +0.004, which is comparable in scale to the effect
of academic reputation. The effect of women on the faculty is likewise fairly small, only
0.0013 per 1 percent change. As might have been expected, the single most important
influence is the presence of a women’s studies program, which increases the likelihood
of a gender economics course by a full 0.1863. Of course, the raw data would have
anticipated this result; of the 31 schools that offer a gender economics course, 29 also
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TABLE 21.8 Marginal Effects in Gender Economics Model

Direct Indirect Total (Std. Error) (Type of Variable, Mean)

Gender Economics Equation
AcRep −0.002022 −0.001453 −0.003476 (0.00126) (Continuous, 119.242)
PctWecon +0.4491 +0.4491 (0.1568) (Continuous, 0.24787)
EconFac +0.01190 +0.1190 (0.01292) (Continuous, 6.74242)
Relig −0.07049 −0.03227 −0.1028 (0.1055) (Binary, 0.57576)
WomStud +0.1863 +0.1863 (0.0868) (Endogenous, 0.43939)
PctWfac +0.13951 +0.13951 (0.08916) (Continuous, 0.35772)

Women’s Studies Equation
AcRep −0.00754 −0.00754 (0.002187) (Continuous, 119.242)
PctWfac +0.13789 +0.13789 (0.01002) (Continuous, 0.35772)
Relig −0.13265 −0.13266 (0.18803) (Binary, 0.57576)

have a women’s studies program and only two do not. Note finally that the effect of
religious affiliation (whatever it is) is mostly direct.

Before closing this application, we can use this opportunity to examine the fit mea-
sures listed in Section 21.4.5. We computed the various fit measures using seven different
specifications of the gender economics equation:

1. Single-equation probit estimates, z1, z2, z3, z4, z5, y2

2. Bivariate probit model estimates, z1, z2, z3, z4, z5, y2

3. Single-equation probit estimates, z1, z2, z3, z4, z5

4. Single-equation probit estimates, z1, z3, z5, y2

5. Single-equation probit estimates, z1, z3, z5

6. Single-equation probit estimates, z1, z5

7. Single-equation probit estimates z1 (constant only).

The specifications are in descending “quality” because we removed the most statistically
significant variables from the model at each step. The values are listed in Table 21.9.
The matrix below each column is the table of “hits” and “misses” of the prediction rule
ŷ = 1 if P̂ > 0.5, 0 otherwise. [Note that by construction, model (7) must predict all
ones or all zeros.] The column is the actual count and the row is the prediction. Thus,
for model (1), 92 of 101 zeros were predicted correctly, whereas five of 31 ones were
predicted incorrectly. As one would hope, the fit measures decline as the more significant

TABLE 21.9 Binary Choice Fit Measures

Measure (1) (2) (3) (4) (5) (6) (7)

LRI 0.573 0.535 0.495 0.407 0.279 0.206 0.000
R2

BL 0.844 0.844 0.823 0.797 0.754 0.718 0.641
λ 0.565 0.560 0.526 0.444 0.319 0.216 0.000
R2

EF 0.561 0.558 0.530 0.475 0.343 0.216 0.000
R2

VZ 0.708 0.707 0.672 0.589 0.447 0.352 0.000
R2

MZ 0.687 0.679 0.628 0.567 0.545 0.329 0.000

Predictions

[
92 9
5 26

] [
93 8
5 26

] [
92 9
8 23

] [
94 7
8 23

] [
98 3
16 15

] [
101 0
31 0

] [
101 0
31 0

]
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variables are removed from the model. The Ben-Akiva measure has an obvious flaw
in that with only a constant term, the model still obtains a “fit” of 0.641. From the
prediction matrices, it is clear that the explanatory power of the model, such as it is,
comes from its ability to predict the ones correctly. The poorer is the model, the greater
the number of correct predictions of y = 0. But as this number rises, the number of
incorrect predictions rises and the number of correct predictions of y = 1 declines. All
the fit measures appear to react to this feature to some degree. The Efron and Cramer
measures, which are nearly identical, and McFadden’s LRI appear to be most sensitive
to this, with the remaining two only slightly less consistent.

21.7 LOGIT MODELS FOR MULTIPLE CHOICES

Some studies of multiple-choice settings include the following:

1. Hensher (1986), McFadden (1974), and many others have analyzed the travel
mode of urban commuters.

2. Schmidt and Strauss (1975a,b) and Boskin (1974) have analyzed occupational
choice among multiple alternatives.

3. Terza (1985) has studied the assignment of bond ratings to corporate bonds as a
choice among multiple alternatives.

These are all distinct from the multivariate probit model we examined earlier. In that
setting, there were several decisions, each between two alternatives. Here there is a
single decision among two or more alternatives. We will examine two broad types of
choice sets, ordered and unordered. The choice among means of getting to work—by
car, bus, train, or bicycle—is clearly unordered. A bond rating is, by design, a ranking;
that is its purpose. As we shall see, quite different techniques are used for the two types
of models. Models for unordered choice sets are considered in this section. A model for
ordered choices is described in Section 21.8.

Unordered-choice models can be motivated by a random utility model. For the ith
consumer faced with J choices, suppose that the utility of choice j is

Ui j = z′
i jβ + εi j .

If the consumer makes choice j in particular, then we assume that Ui j is the maximum
among the J utilities. Hence, the statistical model is driven by the probability that choice
j is made, which is

Prob(Ui j > Uik) for all other k �= j.

The model is made operational by a particular choice of distribution for the disturbances.
As before, two models have been considered, logit and probit. Because of the need to
evaluate multiple integrals of the normal distribution, the probit model has found rather
limited use in this setting. The logit model, in contrast, has been widely used in many
fields, including economics, market research, and transportation engineering. Let Yi be
a random variable that indicates the choice made. McFadden (1973) has shown that
if (and only if) the J disturbances are independent and identically distributed with
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type I extreme value (Gumbel) distribution,

F(εi j ) = exp(−e−εi j ),

then

Prob(Yi = j) = ez′
i j β∑J

j=1 ez′
i j β

, (21-44)

which leads to what is called the conditional logit model.56

Utility depends on xi j , which includes aspects specific to the individual as well as to
the choices. It is useful to distinguish them. Let zi j = [xi j , wi ]. Then xi j varies across the
choices and possibly across the individuals as well. The components of xi j are typically
called the attributes of the choices. But wi contains the characteristics of the individual
and is, therefore, the same for all choices. If we incorporate this fact in the model, then
(21-44) becomes

Prob(Yi = j) = eβ ′xi j +α′wi∑J
j=1 eβ ′xi j +α′wi

= eβ ′xi j eα′
i wi∑J

j=1 eβ ′xi j eα′
i wi

.

Terms that do not vary across alternatives—that is, those specific to the individual—fall
out of the probability. Evidently, if the model is to allow individual specific effects, then
it must be modified. One method is to create a set of dummy variables for the choices
and multiply each of them by the common w. We then allow the coefficient to vary
across the choices instead of the characteristics. Analogously to the linear model, a
complete set of interaction terms creates a singularity, so one of them must be dropped.
For example, a model of a shopping center choice by individuals might specify that
the choice depends on attributes of the shopping centers such as number of stores and
distance from the central business district, both of which are the same for all individuals,
and income, which varies across individuals. Suppose that there were three choices. The
three regressor vectors would be as follows:

Choice 1: Stores Distance Income 0

Choice 2: Stores Distance 0 Income

Choice 3: Stores Distance 0 0

The data sets typically analyzed by economists do not contain mixtures of individual-
and choice-specific attributes. Such data would be far too costly to gather for most
purposes. When they do, the preceding framework can be used. For the present, it is
useful to examine the two types of data separately and consider aspects of the model
that are specific to the two types of applications.

21.7.1 THE MULTINOMIAL LOGIT MODEL

To set up the model that applies when data are individual specific, it will help to con-
sider an example. Schmidt and Strauss (1975a,b) estimated a model of occupational

56It is occasionally labeled the multinomial logit model, but this wording conflicts with the usual name for
the model discussed in the next section, which differs slightly. Although the distinction turns out to be purely
artificial, we will maintain it for the present.
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choice based on a sample of 1000 observations drawn from the Public Use Sample for
three years, 1960, 1967, and 1970. For each sample, the data for each individual in the
sample consist of the following:

1. Occupation: 0 = menial, 1 = blue collar, 2 = craft, 3 = white collar,
4 = professional.

2. Regressors: constant, education, experience, race, sex.

The model for occupational choice is

Prob(Yi = j) = eβ ′
j xi∑4

k=0 eβ ′
kxi

, j = 0, 1, . . . , 4. (21-45)

(The binomial logit of Sections 21.3 and 21.4 is conveniently produced as the special
case of J = 1.)

The model in (21-45) is a multinomial logit model.57 The estimated equations pro-
vide a set of probabilities for the J + 1 choices for a decision maker with characteristics
xi . Before proceeding, we must remove an indeterminacy in the model. If we define
β∗

j = β j + q for any vector q, then recomputing the probabilities defined below using
β∗

j instead of β j produces the identical set of probabilities because all the terms involv-
ing q drop out. A convenient normalization that solves the problem is β0 = 0. (This
arises because the probabilities sum to one, so only J parameter vectors are needed to
determine the J + 1 probabilities.) Therefore, the probabilities are

Prob(Yi = j | xi ) = eβ ′
j xi

1 + ∑J
k=1 eβ ′

kxi
for j = 0, 2, . . . , J, β0 = 0. (21-46)

The form of the binomial model examined in Section 21.4 results if J = 1. The model
implies that we can compute J log-odds ratios

ln
[

Pi j

Pik

]
= x′

i (β j − βk) = x′
iβ j if k = 0.

From the point of view of estimation, it is useful that the odds ratio, Pj/Pk, does not
depend on the other choices, which follows from the independence of disturbances in
the original model. From a behavioral viewpoint, this fact is not very attractive. We shall
return to this problem in Section 21.7.3.

The log-likelihood can be derived by defining, for each individual, di j = 1 if alter-
native j is chosen by individual i , and 0 if not, for the J − 1 possible outcomes. Then,
for each i , one and only one of the di j ’s is 1. The log-likelihood is a generalization of
that for the binomial probit or logit model:

ln L =
n∑

i=1

J∑
j=0

di j ln Prob(Yi = j).

The derivatives have the characteristically simple form

∂ ln L
∂β j

=
∑

i

(di j − Pi j )xi for j = 1, . . . , J.

57Nerlove and Press (1973).
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The exact second derivatives matrix has J 2 K × K blocks,

∂2 ln L
∂β j∂β ′

l
= −

n∑
i=1

Pi j [1( j = l) − Pil]xi x′
i ,

58

where 1( j = l) equals 1 if j equals l and 0 if not. Since the Hessian does not involve
di j , these are the expected values, and Newton’s method is equivalent to the method of
scoring. It is worth noting that the number of parameters in this model proliferates with
the number of choices, which is unfortunate because the typical cross section sometimes
involves a fairly large number of regressors.

The coefficients in this model are difficult to interpret. It is tempting to associate
β j with the jth outcome, but that would be misleading. By differentiating (21-46), we
find that the marginal effects of the characteristics on the probabilities are

δ j = ∂ Pj

∂xi
= Pj

[
β j −

J∑
k=0

Pkβk

]
= Pj [β j − β̄]. (21-47)

Therefore, every subvector of β enters every marginal effect, both through the prob-
abilities and through the weighted average that appears in δ j . These values can be
computed from the parameter estimates. Although the usual focus is on the coefficient
estimates, equation (21-47) suggests that there is at least some potential for confusion.
Note, for example, that for any particular xk, ∂ Pj/∂xk need not have the same sign as
β jk. Standard errors can be estimated using the delta method. (See Section 5.2.4.) For
purposes of the computation, let β = [0, β ′

1, β
′
2, . . . ,β

′
j ]

′. We include the fixed 0 vector
for outcome 0 because although β0 = 0, γ 0 = −P0β̄, which is not 0. Note as well that
Asy. Cov[β̂0, β̂ j ] = 0 for j = 0, . . . , J . Then

Asy. Var[δ̂ j ] =
J∑

l=0

J∑
m=0

(
∂δ j

∂β ′
l

)
Asy. Cov[β̂l , β̂m]

(
∂δ′

j

∂βm

)
,

∂δ j

∂βl
= [1( j = l) − Pl][Pj I + δ j x′] + Pj [δlx′].

Finding adequate fit measures in this setting presents the same difficulties as in
the binomial models. As before, it is useful to report the log-likelihood. If the model
contains no covariates and no constant term, then the log-likelihood will be

ln Lc =
J∑

j=0

nj ln
(

1
J + 1

)
.

where nj is the number of individuals who choose outcome j . If the regressor vector
includes only a constant term, then the restricted log-likelihood is

ln L0 =
J∑

j=0

nj ln
(

nj

n

)
=

J∑
j=0

nj ln pj ,

58If the data were in the form of proportions, such as market shares, then the appropriate log-likelihood
and derivatives are

∑
i

∑
j ni pi j and

∑
i

∑
j ni (pi j − Pi j )xi , respectively. The terms in the Hessian are

multiplied by ni .
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where pj is the sample proportion of observations that make choice j . If desired, the
likelihood ratio index can also be reported. A useful table will give a listing of hits and
misses of the prediction rule “predict Yi = j if P̂ j is the maximum of the predicted
probabilities.”59

21.7.2 THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of individual-specific char-
acteristics, the appropriate model is

Prob(Yi = j | zi1, zi2, . . . , zi J ) = eβ ′zi j∑J
j=1 eβ ′zi j

. (21-48)

Here, in accordance with the convention in the literature, we let j = 1, 2, . . . , J for a
total of J alternatives. The model is otherwise essentially the same as the multinomial
logit. Even more care will be required in interpreting the parameters, however. Once
again, an example will help to focus ideas.

In this model, the coefficients are not directly tied to the marginal effects. The
marginal effects for continuous variables can be obtained by differentiating (21-48)
with respect to x to obtain

∂ Pj

∂xk
= [Pj (1( j = k) − Pk)]β, k = 1, . . . , J.

(To avoid cluttering the notation, we have dropped the observation subscript.) It is clear
that through its presence in Pj and Pk, every attribute set x j affects all the probabilities.
Hensher suggests that one might prefer to report elasticities of the probabilities. The
effect of attribute m of choice k on Pj would be

∂ log Pj

∂ log xkm
= xkm[1( j = k) − Pk]βm.

Since there is no ambiguity about the scale of the probability itself, whether one should
report the derivatives or the elasticities is largely a matter of taste. Some of Hensher’s
elasticity estimates are given in Table 21.16 later on in this chapter.

Estimation of the conditional logit model is simplest by Newton’s method or the
method of scoring. The log-likelihood is the same as for the multinomial logit model.
Once again, we define di j = 1 if Yi = j and 0 otherwise. Then

log L =
n∑

i=1

J∑
j=1

di j log Prob(Yi = j).

Market share and frequency data are common in this setting. If the data are in this form,
then the only change needed is, once again, to define di j as the proportion or frequency.

59Unfortunately, it is common for this rule to predict all observation with the same value in an unbalanced
sample or a model with little explanatory power.
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Because of the simple form of L, the gradient and Hessian have particularly convenient
forms: Let x̄i = ∑J

j=1 Pi j xi j . Then,

∂ log L
∂β

=
n∑

i=1

J∑
j=1

di j (xi j − x̄i ),

∂2 log L
∂β∂β ′ = −

n∑
i=1

J∑
j=1

Pi j (xi j − x̄i )(xi j − x̄i )
′,

The usual problems of fit measures appear here. The log-likelihood ratio and tabula-
tion of actual versus predicted choices will be useful. There are two possible constrained
log-likelihoods. Since the model cannot contain a constant term, the constraint β = 0
renders all probabilities equal to 1/J . The constrained log-likelihood for this constraint
is then Lc = −n ln J . Of course, it is unlikely that this hypothesis would fail to be re-
jected. Alternatively, we could fit the model with only the J −1 choice-specific constants,
which makes the constrained log-likelihood the same as in the multinomial logit model,
ln L∗

0 = ∑
j n j ln pj where, as before, nj is the number of individuals who choose

alternative j .

21.7.3 THE INDEPENDENCE FROM IRRELEVANT ALTERNATIVES

We noted earlier that the odds ratios in the multinomial logit or conditional logit mod-
els are independent of the other alternatives. This property is convenient as regards
estimation, but it is not a particularly appealing restriction to place on consumer be-
havior. The property of the logit model whereby Pj/Pk is independent of the remaining
probabilities is called the independence from irrelevant alternatives (IIA).

The independence assumption follows from the initial assumption that the distur-
bances are independent and homoscedastic. Later we will discuss several models that
have been developed to relax this assumption. Before doing so, we consider a test that
has been developed for testing the validity of the assumption. Hausman and McFadden
(1984) suggest that if a subset of the choice set truly is irrelevant, omitting it from the
model altogether will not change parameter estimates systematically. Exclusion of these
choices will be inefficient but will not lead to inconsistency. But if the remaining odds
ratios are not truly independent from these alternatives, then the parameter estimates
obtained when these choices are included will be inconsistent. This observation is the
usual basis for Hausman’s specification test. The statistic is

χ2 = (β̂s − β̂ f )
′[V̂s − V̂ f ]−1(β̂s − β̂ f ),

where s indicates the estimators based on the restricted subset, f indicates the estimator
based on the full set of choices, and V̂s and V̂ f are the respective estimates of the
asymptotic covariance matrices. The statistic has a limiting chi-squared distribution
with K degrees of freedom.60

60McFadden (1987) shows how this hypothesis can also be tested using a Lagrange multiplier test.
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21.7.4 NESTED LOGIT MODELS

If the independence from irrelevant alternatives test fails, then an alternative to the
multinomial logit model will be needed. A natural alternative is a multivariate probit
model:

Uj = β ′x j + ε j , j = 1, . . . , J, [ε1, ε2, . . . , εJ ] ∼ N[0, 
].

We had considered this model earlier but found that as a general model of consumer
choice, its failings were the practical difficulty of computing the multinormal integral
and estimation of an unrestricted correlation matrix. Hausman and Wise (1978) point
out that for a model of consumer choice, the probit model may not be as impractical
as it might seem. First, for J choices, the comparisons implicit in Uj > Uk for k �= j
involve the J − 1 differences, ε j − εk. Thus, starting with a J -dimensional problem,
we need only consider derivatives of (J − 1)-order probabilities. Therefore, to come
to a concrete example, a model with four choices requires only the evaluation of bi-
variate normal integrals, which, albeit still complicated to estimate, is well within the
received technology. For larger models, however, other specifications have proved more
useful.

One way to relax the homoscedasticity assumption in the conditional logit model
that also provides an intuitively appealing structure is to group the alternatives into
subgroups that allow the variance to differ across the groups while maintaining the IIA
assumption within the groups. This specification defines a nested logit model. To fix
ideas, it is useful to think of this specification as a two-(or more) level choice problem
(although, once again, the model arises as a modification of the stochastic specification
in the original conditional logit model, not as a model of behavior). Suppose, then,
that the J alternatives can be divided into L subgroups such that the choice set can be
written [c1, . . . , cJ ] = (c1 | 1, . . . , cJ1 | 1), . . . , (c1 | L, . . . , cJ L| L). Logically, we may think
of the choice process as that of choosing among the L choice sets and then making the
specific choice within the chosen set. This method produces a tree structure, which for
two branches and, say, five choices might look as follows:

Choice

Branch2Branch1

c1 | 1 c2 | 1 c1 | 2 c3 | 2c2 | 2

Suppose as well that the data consist of observations on the attributes of the choices
x j | l and attributes of the choice sets zl .

To derive the mathematical form of the model, we begin with the unconditional
probability

Prob[twig j , branchl] = Pjl = ex′
j | lβ+z′

lγ∑L
l=1

∑Jl
j=1 ex′

j | lβ+z′
lγ

.
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Now write this probability as

Pjl = Pj |l Pl =
(

ex′
j | lβ∑Jl

j=1 ex′
j | lβ

) (
ez′

lγ∑L
l=1 ez′

lγ

) (∑Jl
j=1 ex′

j | lβ
) (∑L

l=1 ez′
lγ

)
(∑L

l=1

∑Jl
j=1 ex′

j | lβ+z′
lγ

) .

Define the inclusive value for the lth branch as

Il = ln
Jl∑

j=1

ex′
j | lβ .

Then, after canceling terms and using this result, we find

Pj |l = ex′
j | lβ∑Jl

j=1 ex′
j | lβ

and Pl = ez′
lγ+τl Il∑L

l=1 ez′
lγ+τl Il

,

where the new parameters τl must equal 1 to produce the original model. Therefore,
we use the restriction τl = 1 to recover the conditional logit model, and the preceding
equation just writes this model in another form. The nested logit model arises if this
restriction is relaxed. The inclusive value coefficients, unrestricted in this fashion, allow
the model to incorporate some degree of heteroscedasticity. Within each branch, the
IIA restriction continues to hold. The equal variance of the disturbances within the jth
branch are now

σ 2
j = π2

6τ j
.61

With τ j = 1, this reverts to the basic result for the multinomial logit model.
As usual, the coefficients in the model are not directly interpretable. The derivatives

that describe covariation of the attributes and probabilities are

∂ ln Prob[choicec, branchb]
∂x(k) in choice C and branch B

= {
1(b = B)[1(c = C) − PC|B]

+ τB[1(b = B) − PB]PC | B
}
βk.

The nested logit model has been extended to three and higher levels. The complexity
of the model increases geometrically with the number of levels. But the model has been
found to be extremely flexible and is widely used for modeling consumer choice and in
the marketing and transportation literatures, to name a few.

There are two ways to estimate the parameters of the nested logit model. A limited
information, two-step maximum likelihood approach can be done as follows:

1. Estimate β by treating the choice within branches as a simple conditional logit
model.

2. Compute the inclusive values for all the branches in the model. Estimate γ and
the τ parameters by treating the choice among branches as a conditional logit
model with attributes zl and Il .

61See Hensher, Louviere, and Swaite (2000).
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Since this approach is a two-step estimator, the estimate of the asymptotic covariance
matrix of the estimates at the second step must be corrected. [See Section 4.6, McFadden
(1984), and Greene (1995a, Chapter 25).] For full information maximum likelihood
(FIML) estimation of the model, the log-likelihood is

ln L =
n∑

i=1

ln[Prob(twig | branch)] × Prob(branch)]i .

The information matrix is not block diagonal in β and (γ , τ ), so FIML estimation will
be more efficient than two-step estimation.

To specify the nested logit model, it is necessary to partition the choice set into
branches. Sometimes there will be a natural partition, such as in the example given
by Maddala (1983) when the choice of residence is made first by community, then by
dwelling type within the community. In other instances, however, the partitioning of the
choice set is ad hoc and leads to the troubling possibility that the results might be depen-
dent on the branches so defined. (Many studies in this literature present several sets of
results based on different specifications of the tree structure.) There is no well-defined
testing procedure for discriminating among tree structures, which is a problematic as-
pect of the model.

21.7.5 A HETEROSCEDASTIC LOGIT MODEL

Bhat (1995) and Allenby and Ginter (1995) have developed an extension of the con-
ditional logit model that works around the difficulty of specifying the tree for a nested
model. Their model is based on the same random utility structure as before,

Ui j = β ′xi j + εi j .

The logit model arises from the assumption that εi j has a homoscedastic extreme value
(HEV) distribution with common variance π2/6. The authors’ proposed model simply
relaxes the assumption of equal variances. Since the comparisons are all pairwise, one
of the variances is set to 1.0; the same comparisons of utilities will result if all equations
are multiplied by the same constant, so the indeterminacy is removed by setting one
of the variances to one. The model that remains, then, is exactly as before, with the
additional assumption that Var[εi j ] = σ j , with σJ = 1.0.

21.7.6 MULTINOMIAL MODELS BASED ON
THE NORMAL DISTRIBUTION

A natural alternative model that relaxes the independence restrictions built into the
multinomial logit (MNL) model is the multinomial probit (MNP) model. The structural
equations of the MNP model are

Uj = x′
jβ j + ε j , j = 1, . . . , J, [ε1, ε2, . . . , εJ ] ∼ N[0, 
].

The term in the log-likelihood that corresponds to the choice of alternative q is

Prob[choice q] = Prob[Uq > Uj , j = 1, . . . , J, j �= q].

The probability for this occurrence is

Prob[choice q] = Prob[ε1 − εq > (xq − x1)
′β, . . . , εJ − εq > (xq − xJ )

′β]
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for the J − 1 other choices, which is a cumulative probability from a (J − 1)-variate
normal distribution. As in the HEV model, since we are only making comparisons, one
of the variances in this J − 1 variate structure—that is, one of the diagonal elements in
the reduced 
—must be normalized to 1.0. Since only comparisons are ever observable
in this model, for identification, J − 1 of the covariances must also be normalized, to
zero. The MNP model allows an unrestricted (J − 1)× (J − 1) correlation structure and
J − 2 free standard deviations for the disturbances in the model. (Thus, a two choice
model returns to the univariate probit model of Section 21.2.) For more than two choices,
this specification is far more general than the MNL model, which assumes that 
 = I.
(The scaling is absorbed in the coefficient vector in the MNL model.)

The main obstacle to implementation of the MNP model has been the difficulty in
computing the multivariate normal probabilities for any dimensionality higher than 2.
Recent results on accurate simulation of multinormal integrals, however, have made
estimation of the MNP model feasible. (See Section E.5.6 and a symposium in the
November 1994 issue of the Review of Economics and Statistics.) Yet some practical
problems remain. Computation is exceedingly time consuming. It is also necessary to
ensure that 
 remain a positive definite matrix. One way often suggested is to construct
the Cholesky decomposition of 
, LL′, where L is a lower triangular matrix, and esti-
mate the elements of L. Maintaining the normalizations and zero restrictions will still
be cumbersome, however. An alternative is estimate the correlations, R, and a diagonal
matrix of standard deviations, S = diag(σ1, . . . , σJ−2, 1, 1) separately. The normaliza-
tions, R j j = 1, and exclusions, RJl = 0, are simple to impose, and 
 is just SRS. R is
otherwise restricted only in that −1 < R jl < +1. The resulting matrix must be positive
definite. Identification appears to be a serious problem with the MNP model. Although
the unrestricted MNP model is fully identified in principle, convergence to satisfactory
results in applications with more than three choices appears to require many additional
restrictions on the standard deviations and correlations, such as zero restrictions or
equality restrictions in the case of the standard deviations.

21.7.7 A RANDOM PARAMETERS MODEL

Another variant of the multinomial logit model is the random parameters logit (RPL)
model (also called the “mixed logit model”). [See Revelt and Train (1996); Bhat (1996);
Berry, Levinsohn, and Pakes (1995); and Jain, Vilcassim, and Chintagunta (1994).]
Train’s formulation of the RPL model (which encompasses the others) is a modification
of the MNL model. The model is a random coefficients formulation. The change to the
basic MNL model is the parameter specification in the distribution of the parameters
across individuals, i ;

βik = βk + z′
iθk + σkuik,

where uik is normally distributed with correlation matrix R, σk is the standard deviation
of the distribution, βk + z′

iθk is the mean of the distribution, and zi is a vector of person
specific characteristics (such as age and income) that do not vary across choices. This
formulation contains all the earlier models. For example, if θk = 0 for all the coefficients
and σk = 0 for all the coefficients except for choice specific constants, then the original
MNL model with a normal-logistic mixture for the random part of the MNL model
arises (hence the name).
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The authors propose estimation of the model by simulating the log-likelihood func-
tion rather than direct integration to compute the probabilities, which would be infea-
sible because the mixture distribution composed of the original εi j and the random part
of the coefficient is unknown. For any individual,

Prob[choice q | ui ] = MNL probability | β i (ui ),

with all restrictions imposed on the coefficients. The appropriate probability is

Eu[Prob(choice q | u)] =
∫

u1,...,uk

Prob[choice q | u] f (u) du,

which can be estimated by simulation, using

Est.Eu[Prob(choice q | u)] = 1
R

R∑
r=1

Prob[choice q | β̂ i (eir )]

where eir is the r th of R draws for observation i . (There are nkR draws in total. The
draws for observation i must be the same from one computation to the next, which
can be accomplished by assigning to each individual their own seed for the random
number generator and restarting it each time the probability is to be computed.) By this
method, the log-likelihood and its derivatives with respect to (βk, θk, σk), k = 1, . . . , K
and R are simulated to find the values that maximize the simulated log-likelihood. This
is precisely the approach we used in Example 17.10.

The RPL model enjoys a considerable advantage not available in any of the other
forms suggested. In a panel data setting, one can formulate a random effects model
simply by making the variation in the coefficients time invariant. Thus, the model is
changed to

Ui jt = x′
i j tβ i j t + εi j t , i = 1, . . . , n, j = 1, . . . , J, t = 1, . . . T

βi j t,k = βk + z′
i tθ ik + σkuik,

The time variation in the coefficients is provided by the choice invariant variables which
may change through time. Habit persistence is carried by the time invariant random
effect, uik. If only the constant terms vary and they are assumed to be uncorrelated,
then this is logically equivalent to the familiar random effects model. But, much greater
generality can be achieved by allowing the other coefficients to vary randomly across
individuals and by allowing correlation of these effects.62

21.7.8 APPLICATION: CONDITIONAL LOGIT MODEL
FOR TRAVEL MODE CHOICE

Hensher and Greene [Greene (1995a)] report estimates of a model of travel mode
choice for travel between Sydney and Melbourne, Australia. The data set contains
210 observations on choice among four travel modes, air, train, bus, and car. (See Ap-
pendix Table F21.2.) The attributes used for their example were: choice-specific con-
stants; two choice-specific continuous measures; GC, a measure of the generalized cost
of the travel that is equal to the sum of in-vehicle cost, INVC and a wagelike measure

62See Hensher (2001) for an application to transportation mode choice in which each individual is observed
in several choice situations.
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TABLE 21.10 Summary Statistics for Travel Mode Choice Data

Number True
GC TTME INVC INVT HINC Choosing p prop.

Air 102.648 61.010 85.522 133.710 34.548 58 0.28 0.14
113.522 46.534 97.569 124.828 41.274

Train 130.200 35.690 51.338 608.286 34.548 63 0.30 0.13
106.619 28.524 37.460 532.667 23.063

Bus 115.257 41.650 33.457 629.462 34.548 30 0.14 0.09
108.133 25.200 33.733 618.833 29.700

Car 94.414 0 20.995 573.205 34.548 59 0.28 0.64
89.095 0 15.694 527.373 42.220

Note: The upper figure is the average for all 210 observations. The lower figure is the mean for the observations
that made that choice.

times INVT, the amount of time spent traveling; and TTME, the terminal time (zero for
car); and for the choice between air and the other modes, HINC, the household income.
A summary of the sample data is given in Table 21.10. The sample is choice based so as
to balance it among the four choices—the true population allocation, as shown in the
last column of Table 21.10, is dominated by drivers.

The model specified is

Ui j = αairdi,air + αtraindi,train + αbusdi,bus + βGGCi j + βTTTMEi j + γHdi,airHINCi + εi j .

where for each j, εi j has the same independent, type 1 extreme value distribution,

Fε(εi j ) = exp(−exp(−εi j ))

which has standard deviation π2/6. The mean is absorbed in the constants. Estimates of
the conditional logit model are shown in Table 21.11. The model was fit with and without
the corrections for choice based sampling. Since the sample shares do not differ radically
from the population proportions, the effect on the estimated parameters is fairly modest.
Nonetheless, it is apparent that the choice based sampling is not completely innocent.
A cross tabulation of the predicted versus actual outcomes is given in Table 21.12.
The predictions are generated by tabulating the integer parts of mjk = ∑210

i=1 p̂i j dik,

TABLE 21.11 Parameter Estimates (t Values in Parentheses)

Unweighted Sample Choice Based Weighting

Estimate t Ratio Estimate t Ratio

βG −0.15501 −3.517 −0.01333 −2.724
βT −0.19612 −9.207 −0.13405 −7.164
γH 0.01329 1.295 −0.00108 −0.087
αair 5.2074 6.684 6.5940 5.906
αtrain 3.8690 8.731 3.6190 7.447
αbus 3.1632 7.025 3.3218 5.698
Log likelihood at β = 0 −291.1218 −291.1218
Log likelihood (sample shares) −283.7588 −223.0578
Log likelihood at convergence −199.1284 −147.5896
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TABLE 21.12 Predicted Choices Based on Model Probabilities (Predictions
Based on Choice Based Sampling are in Parentheses.)

Air Train Bus Car Total (Actual)

Air 32 (30) 8 (3) 5 (3) 13 (23) 58
Train 7 (3) 37 (30) 5 (3) 14 (27) 63
Bus 3 (1) 5 (2) 15 (4) 6 (12) 30
Car 16 (5) 13 (5) 6 (3) 25 (45) 59
Total (Predicted) 58 (39) 63 (40) 30 (23) 59 (108) 210

j, k= air, train, bus, car, where p̂i j is the predicted probability of outcome j for obser-
vation i and dik is the binary variable which indicates if individual i made choice k.

Are the odds ratios train/bus and car/bus really independent from the presence of
the air alternative? To use the Hausman test, we would eliminate choice air, from the
choice set and estimate a three-choice model. Since 58 respondents chose this mode,
we would lose 58 observations. In addition, for every data vector left in the sample,
the air specific constant and the interaction, di,air × HINCi would be zero for every
remaining individual. Thus, these parameters could not be estimated in the restricted
model. We would drop these variables. The test would be based on the two estimators
of the remaining four coefficients in the model, [βG, βT, αtrain, αbus]. The results for the
test are as shown in Table 21.13.

The hypothesis that the odds ratios for the other three choices are independent
from air would be rejected based on these results, as the chi-squared statistic exceeds
the critical value.

Since IIA was rejected, they estimated a nested logit model of the following type:

Travel Determinants

(Income)FLY GROUND

TRAIN BUS CAR (G cost, T time)AIR

TABLE 21.13 Results for IIA Test

Full Choice Set Restricted Choice Set

βG βT αtrain αbus βG βT αtrain αbus

Estimate −0.0155 −0.0961 3.869 3.163 −0.0639 −0.0699 4.464 3.105

Estimated Asymptotic Covariance Matrix Estimated Asymptotic Covariance Matrix

βG 0.194e-5 0.000101
βT −0.46e-7 0.000110 −0.0000013 0.000221
αtrain −0.00060 −0.0038 0.196 −0.000244 −0.00759 0.410
αbus −0.00026 −0.0037 0.161 0.203 −0.000113 −0.00753 0.336 0.371

Note: 0.nnne-p indicates times 10 to the negative p power.
H = 33.3363. Critical chi-squared[4] = 9.488.
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TABLE 21.14 Estimates of a Mode Choice Model (Standard Errors
in Parentheses)

Parameter FIML Estimate LIML Estimate Unconditional

αair 6.042 (1.199) −0.0647 (2.1485) 5.207 (0.779)
αbus 4.096 (0.615) 3.105 (0.609) 3.163 (0.450)
αtrain 5.065 (0.662) 4.464 (0.641) 3.869 (0.443)
βGC −0.03159 (0.00816) −0.06368 (0.0100) −0.1550 (0.00441)
βTTME −0.1126 (0.0141) −0.0699 (0.0149) −0.09612 (0.0104)
γH 0.01533 (0.00938) 0.02079 (0.01128) 0.01329 (0.0103)
τflyu 0.5860 (0.141) 0.2266 (0.296) 1.0000 (0.000)
τground 0.3890 (0.124) 0.1587 (0.262) 1.0000 (0.000)
σfly 2.1886 (0.525) 5.675 (2.350) 1.2825 (0.000)
σground 3.2974 (1.048) 8.081 (4.219) 1.2825 (0.000)
log L −193.6561 −115.3354 + (−87.9382) −199.1284

Note that one of the branches has only a single choice, so the conditional probabil-
ity, Pj |fly = Pair |fly = 1. The model is fit by both FIML and LIML methods. Three sets of
estimates are shown in Table 21.14. The set marked “unconditional” are the simple con-
ditional (multinomial) logit (MNL) model for choice among the four alternatives that
was reported earlier. Both inclusive value parameters are constrained (by construction)
to equal 1.0000. The FIML estimates are obtained by maximizing the full log likelihood
for the nested logit model. In this model,

Prob(choice | branch) = P(αairdair + αtraindtrain + αbusdbus + βGGC + βTTTME),

Prob(branch) = P(γ dairHINC + τfly IVfly + τground IVground),

Prob(choice, branch) = Prob(choice | branch) × Prob(branch).

Finally, the limited information estimator is estimated in two steps. At the first step, a
choice model is estimated for the three choices in the ground branch:

Prob(choice | ground) = P(αtraindtrain + αbusdbus + βGGC + βTTTME)

This model uses only the observations that chose one of the three ground modes; for
these data, this subset was 152 of the 210 observations. Using the estimates from this
model, we compute, for all 210 observations, IVfly = log[exp(z′

airβ)] for air and 0 for
ground, and IVground = log[

∑
j=ground exp(z′

jβ)] for ground modes and 0 for air. Then,
the choice model

Prob(branch) = P(αairdair + γHdairHINC + τfly IVfly + τground IVground)

is fit separately. Since the Hessian is not block diagonal, the FIML estimator is more
efficient. To obtain appropriate standard errors, we must make the Murphy and Topel
correction for two-step estimation; see Section 17.7 and Theorem 17.8. It is simplified
a bit here because different samples are used for the two steps. As such, the matrix R
in the theorem is not computed. To compute C, we require the matrix of derivatives of
log Prob(branch) with respect to the direct parameters, αair, γH, τfly, τground, and with
respect to the choice parameters, β. Since this model is a simple binomial (two choice)
logit model, these are easy to compute, using (21-19). Then the corrected asymptotic
covariance matrix is computed using Theorem 17.8 with R = 0.
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TABLE 21.15 Estimates of a Heteroscedastic Extreme Value Model (Standard Errors
in Parentheses)

Parameter HEV Estimate Nested Logit Estimate Restricted HEV

αair 7.8326 (10.951) 6.062 (1.199) 2.973 (0.995)
αbus 7.1718 (9.135) 4.096 (0.615) 4.050 (0.494)
αtrain 6.8655 (8.829) 5.065 (0.662) 3.042 (0.429)
βGC −0.05156 (0.0694) −0.03159 (0.00816) −0.0289 (0.00580)
βTTME −0.1968 (0.288) −0.1126 (0.0141) −0.0828 (0.00576)
γ 0.04024 (0.0607) 0.01533 (0.00938) 0.0238 (0.0186)
τfly — 0.5860 (0.141) —
τground — 0.3890 (0.124) —
θair 0.2485 (0.369) 0.4959 (0.124)
θtrain 0.2595 (0.418) 1.0000 (0.000)
θbus 0.6065 (1.040) 1.0000 (0.000)
θcar 1.0000 (0.000) 1.0000 (0.000)

Implied Standard Deviations

σair 5.161 (7.667)
σtrain 4.942 (7.978)
σbus 2.115 (3.623)
σcar 1.283 (0.000)
ln L −195.6605 −193.6561 −200.3791

The likelihood ratio statistic for the nesting (heteroscedasticity) against the null hy-
pothesis of homoscedasticity is −2[−199.1284− (−193.6561)] = 10.945. The 95 percent
critical value from the chi-squared distribution with two degrees of freedom is 5.99, so
the hypothesis is rejected. We can also carry out a Wald test. The asymptotic covariance
matrix for the two inclusive value parameters is [0.01977/0.009621, 0.01529]. The Wald
statistic for the joint test of the hypothesis that τfly = τground = 1, is

W = (0.586 − 1.0 0.389 − 1.0)

[
0.1977 0.009621

0.009621 0.01529

]−1 (
0.586 − 1.0
0.389 − 1.0

)
= 24.475

The hypothesis is rejected, once again.
The nested logit model was reestimated under assumptions of the heteroscedastic

extreme value model. The results are shown in Table 21.15. This model is less restrictive
than the nested logit model. To make them comparable, we note that we found that
σair = π/(τair

√
6) = 2.1886 and σtrain = σbus = σcar = π/(τground

√
6) = 3.2974. The het-

eroscedastic extreme value (HEV) model thus relaxes one variance restriction, because
it has three free variance parameters instead of two. On the other hand, the important
degree of freedom here is that the HEV model does not impose the IIA assumption
anywhere in the choice set, whereas the nested logit does, within each branch.

A primary virtue of the HEV model, the nested logit model, and other alternative
models is that they relax the IIA assumption. This assumption has implications for
the cross elasticities between attributes in the different probabilities. Table 21.16 lists
the estimated elasticities of the estimated probabilities with respect to changes in the
generalized cost variable. Elasticities are computed by averaging the individual sample
values rather than computing them once at the sample means. The implication of the IIA
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TABLE 21.16 Estimated Elasticities with Respect
to Generalized Cost

Cost Is That of Alternative

Effect on Air Train Bus Car

Multinomial Logit
Air −1.136 0.498 0.238 0.418
Train 0.456 −1.520 0.238 0.418
Bus 0.456 0.498 −1.549 0.418
Car 0.456 0.498 0.238 −1.061

Nested Logit
Air −0.858 0.332 0.179 0.308
Train 0.314 −4.075 0.887 1.657
Bus 0.314 1.595 −4.132 1.657
Car 0.314 1.595 0.887 −2.498

Heteroscedastic Extreme Value
Air −1.040 0.367 0.221 0.441
Train 0.272 −1.495 0.250 0.553
Bus 0.688 0.858 −6.562 3.384
Car 0.690 0.930 1.254 −2.717

assumption can be seen in the table entries. Thus, in the estimates for the multinomial
logit (MNL) model, the cross elasticities for each attribute are all equal. In the nested
logit model, the IIA property only holds within the branch. Thus, in the first column, the
effect of GC of air affects all ground modes equally, whereas the effect of GC for train
is the same for bus and car but different from these two for air. All these elasticities
vary freely in the HEV model.

Table 21.17 lists the estimates of the parameters of the multinomial probit and
random parameters logit models. For the multinomial probit model, we fit three spec-
ifications: (1) free correlations among the choices, which implies an unrestricted 3 × 3
correlation matrix and two free standard deviations; (2) uncorrelated disturbances,
but free standard deviations, a model that parallels the heteroscedastic extreme value
model; and (3) uncorrelated disturbances and equal standard deviations, a model that
is the same as the original conditional logit model save for the normal distribution of
the disturbances instead of the extreme value assumed in the logit model. In this case,
the scaling of the utility functions is different by a factor of (π2/6)1/2 = 1.283, as the
probit model assumes ε j has a standard deviation of 1.0.

We also fit three variants of the random parameters logit. In these cases, the choice
specific variance for each utility function is σ 2

j + θ2
j where σ 2

j is the contribution of
the logit model, which is π2/6 = 1.645, and θ2

j is the estimated constant specific vari-
ance estimated in the random parameters model. The combined estimated standard
deviations are given in the table. The estimates of the specific parameters, θ j are given
in the footnotes. The estimated models are: (1) unrestricted variation and correlation
among the three intercept parameters—this parallels the general specification of the
multinomial probit model; (2) only the constant terms randomly distributed but uncor-
related, a model that is parallel to the multinomial probit model with no cross equa-
tion correlation and to the heteroscedastic extreme value model shown in Table 21.15;
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TABLE 21.17 Parameter Estimates for Normal Based Multinomial Choice Models

Multinomial Probit Random Parameters Logit

Parameter Unrestricted Homoscedastic Uncorrelated Unrestricted Constants Uncorrelated

αair 1.358 3.005 3.171 5.519 4.807 12.603
σair 4.940 1.000a 3.629 4.009d 3.225b 2.803c

αtrain 4.298 2.409 4.277 5.776 5.035 13.504
σtrain 1.899 1.000a 1.581 1.904 1.290b 1.373
αbus 3.609 1.834 3.533 4.813 4.062 11.962
σbus 1.000a 1.000a 1.000a 1.424 3.147b 1.287
αcar 0.000a 0.000a 0.000a 0.000a 0.000a 0.000
σcar 1.000a 1.000 1.000a 1.283a 1.283a 1.283a

βG −0.0351 −0.0113 −0.0325 −0.0326 −0.0317 −0.0544
σβG — — — 0.000a 0.000a 0.00561
βT −0.0769 −0.0563 −0.0918 −0.126 −0.112 −0.2822
σβT — — — 0.000a 0.000a 0.182
γH 0.0593 0.0126 0.0370 0.0334 0.0319 0.0846
σγ — — — 0.000a 0.000a 0.0768
ρAT 0.581 0.000a 0.000a 0.543 0.000a 0.000a

ρAB 0.576 0.000a 0.000a 0.532 0.000a 0.000a

ρBT 0.718 0.000a 0.000a 0.993 0.000a 0.000a

log L −196.9244 −208.9181 −199.7623 −193.7160 −199.0073 −175.5333

aRestricted to this fixed value.
bComputed as the square root of (π2/6 + θ2

j ), θair = 2.959, θtrain = 0.136, θbus = 0.183, θcar = 0.000.
cθair = 2.492, θtrain = 0.489, θbus = 0.108, θcar = 0.000.
dDerived standard deviations for the random constants are θair = 3.798, θtrain = 1.182, θbus = 0.0712, θcar = 0.000.

(3) random but uncorrelated parameters. This model is more general than the others,
but is somewhat restricted as the parameters are assumed to be uncorrelated. Identi-
fication of the correlation model is weak in this model—after all, we are attempting
to estimate a 6 × 6 correlation matrix for all unobserved variables. Only the estimated
parameters are shown in Table 21.17. Estimated standard errors are similar to (although
generally somewhat larger than) those for the basic multinomial logit model.

The standard deviations and correlations shown for the multinomial probit model
are parameters of the distribution of εi j , the overall randomness in the model. The
counterparts in the random parameters model apply to the distributions of the param-
eters. Thus, the full disturbance in the model in which only the constants are random
is εiair + uair for air, and likewise for train and bus. Likewise, the correlations shown
for the first two models are directly comparable, though it should be noted that in the
random parameters model, the disturbances have a distribution that is that of a sum
of an extreme value and a normal variable, while in the probit model, the disturbances
are normally distributed. With these considerations, the “unrestricted” models in each
case are comparable and are, in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The
likelihood values are not comparable, so a direct test is precluded. Both relax the IIA
assumption, which is a crucial consideration. The random parameters model enjoys
a significant practical advantage, as discussed earlier, and also allows a much richer
specification of the utility function itself. But, he question still warrants additional study.
Both models are making their way into the applied literature.
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21.8 ORDERED DATA

Some multinomial-choice variables are inherently ordered. Examples that have ap-
peared in the literature include the following:

1. Bond ratings
2. Results of taste tests
3. Opinion surveys
4. The assignment of military personnel to job classifications by skill level
5. Voting outcomes on certain programs
6. The level of insurance coverage taken by a consumer: none, part, or full
7. Employment: unemployed, part time, or full time

In each of these cases, although the outcome is discrete, the multinomial logit or probit
model would fail to account for the ordinal nature of the dependent variable.63 Ordinary
regression analysis would err in the opposite direction, however. Take the outcome of
an opinion survey. If the responses are coded 0, 1, 2, 3, or 4, then linear regression would
treat the difference between a 4 and a 3 the same as that between a 3 and a 2, whereas
in fact they are only a ranking.

The ordered probit and logit models have come into fairly wide use as a framework
for analyzing such responses (Zavoina and McElvey, 1975). The model is built around
a latent regression in the same manner as the binomial probit model. We begin with

y∗ = x′β + ε.

As usual, y∗ is unobserved. What we do observe is

y = 0 if y∗ ≤ 0,

= 1 if 0 < y∗ ≤ µ1,

= 2 if µ1 < y∗ ≤ µ2,

...

= J if µJ−1 ≤ y∗,

which is a form of censoring. The µs are unknown parameters to be estimated with β.
Consider, for example, an opinion survey. The respondents have their own intensity
of feelings, which depends on certain measurable factors x and certain unobservable
factors ε. In principle, they could respond to the questionnaire with their own y∗ if asked
to do so. Given only, say, five possible answers, they choose the cell that most closely
represents their own feelings on the question.

63In two papers, Beggs, Cardell, and Hausman (1981) and Hausman and Ruud (1986), the authors analyze a
richer specification of the logit model when respondents provide their rankings of the full set of alternatives in
addition to the identity of the most preferred choice. This application falls somewhere between the conditional
logit model and the ones we shall discuss here in that, rather than provide a single choice among J either
unordered or ordered alternatives, the consumer chooses one of the J! possible orderings of the set of
unordered alternatives.
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FIGURE 21.4 Probabilities in the Ordered Probit Model.

As before, we assume that ε is normally distributed across observations.64 For the
same reasons as in the binomial probit model (which is the special case of J = 1), we
normalize the mean and variance of ε to zero and one. We then have the following
probabilities:

Prob(y = 0 | x) = 
(−x′β),

Prob(y = 1 | x) = 
(µ1 − x′β) − 
(−x′β),

Prob(y = 2 | x) = 
(µ2 − x′β) − 
(µ1 − x′β),

...

Prob(y = J | x) = 1 − 
(µJ−1 − x′β).

For all the probabilities to be positive, we must have

0 < µ1 < µ2 < · · · < µJ−1.

Figure 21.4 shows the implications of the structure. This is an extension of the univariate
probit model we examined earlier. The log-likelihood function and its derivatives can
be obtained readily, and optimization can be done by the usual means.

As usual, the marginal effects of the regressors x on the probabilities are not equal
to the coefficients. It is helpful to consider a simple example. Suppose there are three
categories. The model thus has only one unknown threshold parameter. The three

64Other distributions, particularly the logistic, could be used just as easily. We assume the normal purely for
convenience. The logistic and normal distributions generally give similar results in practice.
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probabilities are

Prob(y = 0 | x) = 1 − 
(x′β),

Prob(y = 1 | x) = 
(µ − x′β) − 
(−x′β),

Prob(y = 2 | x) = 1 − 
(µ − x′β).

For the three probabilities, the marginal effects of changes in the regressors are

∂ Prob(y = 0 | x)

∂x
= −φ(x′β)β,

∂ Prob(y = 1 | x)

∂x
= [φ(−x′β) − φ(µ − x′β)]β,

∂ Prob(y = 2 | x)

∂x
= φ(µ − x′β)β.

Figure 21.5 illustrates the effect. The probability distributions of y and y∗ are shown in
the solid curve. Increasing one of the x’s while holding β and µ constant is equivalent
to shifting the distribution slightly to the right, which is shown as the dashed curve.
The effect of the shift is unambiguously to shift some mass out of the leftmost cell.
Assuming that β is positive (for this x), Prob(y = 0 | x) must decline. Alternatively,
from the previous expression, it is obvious that the derivative of Prob(y = 0 | x) has the
opposite sign from β. By a similar logic, the change in Prob(y = 2 | x) [or Prob(y = J | x)

in the general case] must have the same sign as β. Assuming that the particular β is
positive, we are shifting some probability into the rightmost cell. But what happens
to the middle cell is ambiguous. It depends on the two densities. In the general case,
relative to the signs of the coefficients, only the signs of the changes in Prob(y = 0 | x)

and Prob(y = J | x) are unambiguous! The upshot is that we must be very careful

FIGURE 21.5 Effects of Change in x on Predicted Probabilities.

0
10 2

0.1

0.2

0.3

0.4



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 739

TABLE 21.18 Estimated Rating
Assignment Equation

Mean of
Variable Estimate t Ratio Variable

Constant −4.34 — —
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 12.1
AFQT 0.039 39.9 71.2
EDYRS 0.190 8.7 12.1
MARR −0.48 −9.0 0.08
AGEAT 0.0015 0.1 18.8
µ 1.79 80.8 —

in interpreting the coefficients in this model. Indeed, without a fair amount of extra
calculation, it is quite unclear how the coefficients in the ordered probit model should
be interpreted.65

Example 21.11 Rating Assignments
Marcus and Greene (1985) estimated an ordered probit model for the job assignments of
new Navy recruits. The Navy attempts to direct recruits into job classifications in which
they will be most productive. The broad classifications the authors analyzed were technical
jobs with three clearly ranked skill ratings: “medium skilled,” “highly skilled,” and “nuclear
qualified/highly skilled.” Since the assignment is partly based on the Navy’s own assessment
and needs and partly on factors specific to the individual, an ordered probit model was used
with the following determinants: (1) ENSPE = a dummy variable indicating that the individual
entered the Navy with an “A school” (technical training) guarantee, (2) EDMA = educational
level of the entrant’s mother, (3) AFQT = score on the Air Force Qualifying Test, (4) EDYRS =
years of education completed by the trainee, (5) MARR = a dummy variable indicating that
the individual was married at the time of enlistment, and (6) AGEAT = trainee’s age at the
time of enlistment. The sample size was 5,641. The results are reported in Table 21.18. The
extremely large t ratio on the AFQT score is to be expected, since it is a primary sorting
device used to assign job classifications.

To obtain the marginal effects of the continuous variables, we require the standard normal
density evaluated at −x̄′β̂ = −0.8479 and µ̂ − x̄′β̂ = 0.9421. The predicted probabilities are

(−0.8479) = 0.198, 
(0.9421) − 
(−0.8479) = 0.628, and 1 − 
(0.9421) = 0.174. (The
actual frequencies were 0.25, 0.52, and 0.23.) The two densities are φ (−0.8479) = 0.278 and
φ (0.9421) = 0.255. Therefore, the derivatives of the three probabilities with respect to AFQT,
for example, are

∂ P0

∂AFQT
= (−0.278)0.039 = −0.01084,

∂ P1

∂AFQT
= (0.278 − 0.255)0.039 = 0.0009,

∂ P2

∂AFQT
= 0.255(0.039) = 0.00995.

65This point seems uniformly to be overlooked in the received literature. Authors often report coefficients
and t ratios, occasionally with some commentary about significant effects, but rarely suggest upon what or in
what direction those effects are exerted.
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TABLE 21.19 Marginal Effect of a Binary Variable

−β̂ ′x µ̂ − β̂ ′x Prob[ y = 0] Prob[ y = 1] Prob[ y = 2]

MARR = 0 −0.8863 0.9037 0.187 0.629 0.184
MARR = 1 −0.4063 1.3837 0.342 0.574 0.084
Change 0.155 −0.055 −0.100

Note that the marginal effects sum to zero, which follows from the requirement that the
probabilities add to one. This approach is not appropriate for evaluating the effect of a dummy
variable. We can analyze a dummy variable by comparing the probabilities that result when
the variable takes its two different values with those that occur with the other variables held
at their sample means. For example, for the MARR variable, we have the results given in
Table 21.19.

21.9 MODELS FOR COUNT DATA

Data on patents suggested in Section 21.2 are typical of count data. In principle, we
could analyze these data using multiple linear regression. But the preponderance of
zeros and the small values and clearly discrete nature of the dependent variable suggest
that we can improve on least squares and the linear model with a specification that
accounts for these characteristics. The Poisson regression model has been widely used
to study such data.66

The Poisson regression model specifies that each yi is drawn from a Poisson distri-
bution with parameter λi , which is related to the regressors xi . The primary equation of
the model is

Prob(Yi = yi | xi ) = e−λi λ
yi
i

yi !
, yi = 0, 1, 2, . . . .

The most common formulation for λi is the loglinear model,

ln λi = x′
iβ.

It is easily shown that the expected number of events per period is given by

E [yi | xi ] = Var[yi | xi ] = λi = ex′
i β,

so
∂ E [yi | xi ]

∂xi
= λiβ.

With the parameter estimates in hand, this vector can be computed using any data vector
desired.

In principle, the Poisson model is simply a nonlinear regression.67 But it is far easier
to estimate the parameters with maximum likelihood techniques. The log-likelihood

66There are several recent surveys of specification and estimation of models for counts. Among them are
Cameron and Trivedi (1998), Greene (1996a), Winkelmann (2000), and Wooldridge (1997).
67We have estimated a Poisson regression model using two-step nonlinear least squares in Example 17.9.
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function is

ln L =
n∑

i=1

[−λi + yi x′
iβ − ln yi !].

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

(yi − λi )xi = 0.

The Hessian is

∂2 ln L
∂β∂β ′ = −

n∑
i=1

λi xi x′
i .

The Hessian is negative definite for all x and β. Newton’s method is a simple algorithm
for this model and will usually converge rapidly. At convergence, [

∑n
i=1 λ̂i xi x′

i ]
−1 pro-

vides an estimator of the asymptotic covariance matrix for the parameter estimates.
Given the estimates, the prediction for observation i is λ̂i = exp(x′β̂). A standard error
for the prediction interval can be formed by using a linear Taylor series approximation.
The estimated variance of the prediction will be λ̂

2
i x′

i Vxi , where V is the estimated
asymptotic covariance matrix for β̂.

For testing hypotheses, the three standard tests are very convenient in this model.
The Wald statistic is computed as usual. As in any discrete choice model, the likelihood
ratio test has the intuitive form

LR = 2
n∑

i=1

ln
(

P̂i

P̂restricted,i

)
,

where the probabilities in the denominator are computed with using the restricted
model. Using the BHHH estimator for the asymptotic covariance matrix, the LM
statistic is simply

LM =
[

n∑
i=1

x′
i (yi − λ̂i )

]′ [ n∑
i=1

xi x′
i (yi − λ̂i )

2

]−1 [
n∑

i=1

xi (yi − λ̂i )

]
= i′G(G′G)−1G′i,

where each row of G is simply the corresponding row of X multiplied by ei = (yi − λ̂i ), λ̂i

is computed using the restricted coefficient vector, and i is a column of ones.

21.9.1 MEASURING GOODNESS OF FIT

The Poisson model produces no natural counterpart to the R2 in a linear regression
model, as usual, because the conditional mean function is nonlinear and, moreover,
because the regression is heteroscedastic. But many alternatives have been suggested.68

68See the surveys by Cameron and Windmeijer (1993), Gurmu and Trivedi (1994), and Greene (1995b).
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A measure based on the standardized residuals is

R2
p = 1 −

∑n
i=1

[
yi −λ̂i√

λ̂i

]2

∑n
i=1

[
yi −ȳ√

ȳ

]2 .

This measure has the virtue that it compares the fit of the model with that provided by a
model with only a constant term. But it can be negative, and it can fall when a variable
is dropped from the model. For an individual observation, the deviance is

di = 2[yi ln(yi/λ̂i ) − (yi − λ̂i )] = 2[yi ln(yi/λ̂i ) − ei ],

where, by convention, 0 ln(0) = 0. If the model contains a constant term, then
∑n

i=1 ei = 0.

The sum of the deviances,

G2 =
n∑

i=1

di = 2
n∑

i=1

yi ln(yi/λ̂i ),

is reported as an alternative fit measure by some computer programs. This statistic will
equal 0.0 for a model that produces a perfect fit. (Note that since yi is an integer while
the prediction is continuous, it could not happen.) Cameron and Windmeijer (1993)
suggest that the fit measure based on the deviances,

R2
d = 1 −

∑n
i=1

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i )

]
∑n

i=1

[
yi log

(
yi

ȳ

)] ,

has a number of desirable properties. First, denote the log-likelihood function for the
model in which ψi is used as the prediction (e.g., the mean) of yi as  (ψi , yi ). The Poisson
model fit by MLE is, then,  (λ̂i , yi ), the model with only a constant term is  (ȳ, yi ), and
a model that achieves a perfect fit (by predicting yi with itself) is l(yi , yi ). Then

R2
d =  (λ̂, yi ) −  (ȳ, yi )

 (yi , yi ) −  (ȳ, yi )
.

Both numerator and denominator measure the improvement of the model over one
with only a constant term. The denominator measures the maximum improvement,
since one cannot improve on a perfect fit. Hence, the measure is bounded by zero and
one and increases as regressors are added to the model.69 We note, finally, the passing
resemblance of R2

d to the “pseudo-R2,” or “likelihood ratio index” reported by some
statistical packages (e.g., Stata),

R2
LRI = 1 −  (λ̂i , yi )

 (ȳ, yi )
.

69Note that multiplying both numerator and denominator by 2 produces the ratio of two likelihood ratio
statistics, each of which is distributed as chi-squared.
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Many modifications of the Poisson model have been analyzed by economists.70 In this
and the next few sections, we briefly examine a few of them.

21.9.2 TESTING FOR OVERDISPERSION

The Poisson model has been criticized because of its implicit assumption that the
variance of yi equals its mean. Many extensions of the Poisson model that relax this
assumption have been proposed by Hausman, Hall, and Griliches (1984), McCullagh
and Nelder (1983), and Cameron and Trivedi (1986), to name but a few.

The first step in this extended analysis is usually a test for overdispersion in the
context of the simple model. A number of authors have devised tests for “overdisper-
sion” within the context of the Poisson model. [See Cameron and Trivedi (1990), Gurmu
(1991), and Lee (1986).] We will consider three of the common tests, one based on a
regression approach, one a conditional moment test, and a third, a Lagrange multi-
plier test, based on an alternative model. Conditional moment tests are developed in
Section 17.6.4.

Cameron and Trivedi (1990) offer several different tests for overdispersion. A
simple regression based procedure used for testing the hypothesis

H0: Var[yi ] = E [yi ],

H1: Var[yi ] = E [yi ] + αg(E [yi ])

is carried out by regressing

zi = (yi − λ̂i )
2 − yi

λ̂i
√

2
,

where λ̂i is the predicted value from the regression, on either a constant term or λ̂i with-
out a constant term. A simple t test of whether the coefficient is significantly different
from zero tests H0 versus H1.

Cameron and Trivedi’s regression based test for overdispersion is formulated
around the alternative Var[yi ] = E [yi ]+g(E [yi ]). This is a very specific type of overdis-
persion. Consider the more general hypothesis that Var[yi ] is completely given by E [yi ].
The alternative is that the variance is systematically related to the regressors in a way
that is not completely accounted for by E [yi ]. Formally, we have E [yi ] = exp(β ′xi ) = λi .
The null hypothesis is that Var[yi ] = λi as well. We can test the hypothesis using the
conditional moment test described in Section 17.6.4. The expected first derivatives and
the moment restriction are

E [xi (yi − λi )] = 0 and E
{

zi [(yi − λi )
2 − λi ]

} = 0.

To carry out the test, we do the following. Let ei = yi − λ̂i and zi = xi without the constant
term.

1. Compute the Poisson regression by maximum likelihood.
2. Compute r = ∑n

i=1 zi [e2
i − λ̂i ] = ∑n

i=1 zvi based on the maximum likelihood
estimates.

70There have been numerous surveys of models for count data, including Cameron and Trivedi (1986) and
Gurmu and Trivedi (1994).
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3. Compute M′M = ∑n
i=1 zi z′

iv
2
i , D′D = ∑n

i=1 xi x′
i e

2
i , and M′D = ∑n

i=1 zi x′
ivi ei .

4. Compute S = M′M − M′D(D′D)−1D′M.
5. C = r′S−1r is the chi-squared statistic. It has K degrees of freedom.

The next section presents the negative binomial model. This model relaxes the
Poisson assumption that the mean equals the variance. The Poisson model is obtained
as a parametric restriction on the negative binomial model, so a Lagrange multiplier
test can be computed. In general, if an alternative distribution for which the Poisson
model is obtained as a parametric restriction, such as the negative binomial model, can
be specified, then a Lagrange multiplier statistic can be computed. [See Cameron and
Trivedi (1986, p. 41).] The LM statistic is

LM =
[∑n

i=1 ŵi [(yi − λ̂i )
2 − yi ]√

2
∑n

i=1 ŵi λ̂
2
i

]2

.

The weight, ŵi , depends on the assumed alternative distribution. For the negative
binomial model discussed later, ŵi equals 1.0. Thus, under this alternative, the statistic
is particularly simple to compute:

LM = (e′e − nȳ)2

2 λ̂
′
λ̂

.

The main advantage of this test statistic is that one need only estimate the Poisson model
to compute it. Under the hypothesis of the Poisson model, the limiting distribution of
the LM statistic is chi-squared with one degree of freedom.

21.9.3 HETEROGENEITY AND THE NEGATIVE BINOMIAL
REGRESSION MODEL

The assumed equality of the conditional mean and variance functions is typically taken
to be the major shortcoming of the Poisson regression model. Many alternatives have
been suggested [see Hausman, Hall, and Griliches (1984), Cameron and Trivedi (1986,
1998), Gurmu and Trivedi (1994), Johnson and Kotz (1993), and Winkelmann (1997)
for discussion.] The most common is the negative binomial model, which arises from
a natural formulation of cross-section heterogeneity. We generalize the Poisson model
by introducing an individual, unobserved effect into the conditional mean,

ln µi = x′
iβ + εi = ln λi + ln ui ,

where the disturbance εi reflects either specification error as in the classical regression
model or the kind of cross-sectional heterogeneity that normally characterizes microe-
conomic data. Then, the distribution of yi conditioned on xi and ui (i.e., εi ) remains
Poisson with conditional mean and variance µi :

f (yi | xi , ui ) = e−λi ui (λi ui )
yi

yi !
.

The unconditional distribution f (yi | xi ) is the expected value (over ui ) of f (yi | xi , ui ),

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
g(ui ) dui .
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The choice of a density for ui defines the unconditional distribution. For mathematical
convenience, a gamma distribution is usually assumed for ui = exp(εi ).71 As in other
models of heterogeneity, the mean of the distribution is unidentified if the model con-
tains a constant term (because the disturbance enters multiplicatively) so E [exp(εi )] is
assumed to be 1.0. With this normalization,

g(ui ) = θθ

!(θ)
e−θui uθ−1

i .

The density for yi is then

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
θθuθ−1

i e−θui

!(θ)
dui

= θθλ
yi
i

!(yi + 1)!(θ)

∫ ∞

0
e−(λi +θ)ui uθ+yi −1

i dui

= θθλ
yi
i !(θ + yi )

!(yi + 1)!(θ)(λi + θ)θ+yi

= !(θ + yi )

!(yi + 1)!(θ)
r yi

i (1 − ri )
θ , where ri = λi

λi + θ
,

which is one form of the negative binomial distribution. The distribution has conditional
mean λi and conditional variance λi (1 + (1/θ)λi ). [This model is Negbin II in Cameron
and Trivedi’s (1986) presentation.] The negative binomial model can be estimated by
maximum likelihood without much difficulty. A test of the Poisson distribution is often
carried out by testing the hypothesis θ = 0 using the Wald or likelihood ratio test.

21.9.4 APPLICATION: THE POISSON REGRESSION MODEL

The number of accidents per service month for a sample of ship types is listed in
Appendix Table F21.3. The ships are of five types constructed in one of four peri-
ods. The observation is over two periods. Since ships constructed from 1975 to 1979
could not have operated from 1960 to 1974, there is one missing observation in each
group. The second observation for group E is also missing, for reasons unexplained
by the authors.72 The substantive variables in the model are number of accidents in
the observation period and aggregate number of service months for the ship type by
construction year for the period of operation.

Estimates of the parameters of a Poisson regression model are shown in Table 21.20.
The model is

ln E [accident per month] = x′β.

71An alternative approach based on the normal distribution is suggested in Terza (1998), Greene (1995a,
1997a), and Winkelmann (1997). The normal-Poisson mixture is also easily extended to the random effects
model discussed in the next section. There is no closed form for the normal-Poisson mixture model, but it can
be easily approximated by using Hermite quadrature.
72Data are from McCullagh and Nelder (1983). See Exercise 8 in Chapter 7 for details.
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TABLE 21.20 Estimated Poisson Regressions (Standard Errors in Parentheses)

Mean Dependent Variable 10.47

Variable Full Model No Ship Type Effect No Period Effect

Constant −6.4029 (0.2175) −6.9470 (0.1269) −5.7999 (0.1784)
Type = A
Type = B −0.5447 (0.1776) −0.7437 (0.1692)
Type = C −0.6888 (0.3290) −0.7549 (0.3276)
Type = D −0.0743 (0.2906) −0.1843 (0.2876)
Type = E 0.3205 (0.2358) 0.3842 (0.2348)
60–64
65–69 0.6959 (0.1497) 0.7536 (0.1488)
70–74 0.8175 (0.1698) 1.0503 (0.1576)
75–79 0.4450 (0.2332) 0.6999 (0.2203)
Period = 60–74
Period = 75–79 0.3839 (0.1183) 0.3875 (0.1181) 0.5001 (0.1116)
Log service 1.0000 1.0000 1.0000
Log L −68.41455 −80.20123 −84.11514
G2 38.96262 62.53596 70.34967
R2

p 0.94560 0.89384 0.90001
R2

d 0.93661 0.89822 0.88556

The model therefore contains the ship type, construction period, and operation period
effects, and the aggregate number of months with a coefficient of 1.0.73 The model
is shown in Table 21.20, with sets of estimates for the full model and with the model
omitting the type and construction period effects. Predictions from the estimated full
model are shown in the last column of Appendix Table F21.3.

The hypothesis that the year of construction is not a significant factor in explaining
the number of accidents is strongly rejected by the likelihood ratio test:

χ2 = 2[84.11514 − 68.41455] = 31.40118.

The critical chi-squared value for three degrees of freedom is 7.82. The ship type effect
is likewise significant,

χ2 = 2[80.20123 − 68.41455] = 23.57336,

against a critical value for four degrees of freedom of 9.49. The LM tests for the two
restrictions give the same conclusions, but much less strongly. The value is 28.526 for
the ship type effect and 31.418 for the period effects.

In their analysis of these data, McCullagh and Nelder assert, without evidence, that
there is overdispersion in the data. Some of their analysis follows on an assumption that
the standard deviation of yi is 1.3 times the mean. The t statistics for the two regressions
in Cameron and Trivedi’s regression based tests are 0.934 and −0.613, respectively, so
based on these tests, we do not reject H0: no overdispersion. The LM statistic for the same

73When the length of the period of observation varies by observation by Ti and the model is of the rate of
occurrence of events per unit of time, then the mean of the observed distribution is Ti λi . This assumption
produces the coefficient of 1.0 on the number of periods of service in the model.
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hypothesis is 0.75044 with one degree of freedom. The critical value from the table is 3.84,
so again, the hypothesis of the Poisson model is not rejected. However, the conditional
moment test is contradictory; C = r′S−1r = 26.555. There are eight degrees of freedom.
The 5 percent critical value from the chi-squared table is 15.507, so the hypothesis is
now rejected. This test is much more general, since the form of overdispersion is not
specified, which may explain the difference. Note that this result affirms McCullagh and
Nelder’s conjecture.

21.9.5 POISSON MODELS FOR PANEL DATA

The familiar approaches to accommodating heterogeneity in panel data have fairly
straightforward extensions in the count data setting. [Hausman, Hall, and Griliches
(1984) give full details for these models.] We will examine them for the Poisson model.
The authors [and Allison (2000)] also give results for the negative binomial model.

Consider first a fixed effects approach. The Poisson distribution is assumed to have
conditional mean

log λi t = β ′xi t + αi .

where now, xi t has been redefined to exclude the constant term. The approach used
in the linear model of transforming yit to group mean deviations does not remove the
heterogeneity, nor does it leave a Poisson distribution for the transformed variable.
However, the Poisson model with fixed effects can be fit using the methods described
for the probit model in Section 21.5.1b. The extension to the Poisson model requires
only the minor modifications, git = (yit − λi t ) and hit = − λi t . Everything else in that
derivation applies with only a simple change in the notation. The first order conditions
for maximizing the log-likelihood function for the Poisson model will include

∂ ln L
∂αi

=
T∑

t=1

(yit − eαi µi t ) = 0 where µi t = ex′
i t β .

This implies an explicit solution for αi in terms of β in this model,

α̂i = ln
(

(1/n)
∑T

t=1 yit

(1/n)
∑T

t=1 µ̂i t

)
= ln

(
ȳi

¯̂µi

)

Unlike the regression or the probit model, this does not require that there be within
group variation in yit —all the values can be the same. It does require that at least one
observation for individual i be nonzero, however. The rest of the solution for the fixed
effects estimator follows the same lines as that for the probit model. An alternative
approach, albeit with little practical gain, would be to concentrate the log likelihood
function by inserting this solution for αi back into the original log likelihood, then
maximizing the resulting function of β. While logically this makes sense, the approach
suggested earlier for the probit model is simpler to implement.

An estimator that is not a function of the fixed effects is found by obtaining the
joint distribution of (yi1, . . . , yiTi ) conditional on their sum. For the Poisson model, a
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close cousin to the logit model discussed earlier is produced:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

i=1

yit

)
=

(∑Ti
t=1 yit

)
!(∏Ti

t=1 yit !
) Ti∏

t=1

pyit
i t ,

where

pit = ex′
i t β+αi∑Ti

t=1 ex′
i t β+αi

= ex′
i t β∑Ti

t=1 ex′
i t β

.

The contribution of group i to the conditional log-likelihood is

ln Li =
Ti∑

t=1

yit ln pit .

Note, once again, that the contribution to ln L of a group in which yit = 0 in every
period is zero. Cameron and Trivedi (1998) have shown that these two approaches give
identical results.

The fixed effects approach has the same flaws and virtues in this setting as in the
probit case. It is not necessary to assume that the heterogeneity is uncorrelated with the
included, exogenous variables. If the uncorrelatedness of the regressors and the hetero-
geneity can be maintained, then the random effects model is an attractive alternative
model. Once again, the approach used in the linear regression model, partial deviations
from the group means followed by generalized least squares (see Chapter 13), is not
usable here. The approach used is to formulate the joint probability conditioned upon
the heterogeneity, then integrate it out of the joint distribution. Thus, we form

p(yi1, . . . , yiTi | ui ) =
Ti∏

t=1

p(yit | ui ).

Then the random effect is swept out by obtaining

p(yi1, . . . , yiTi ) =
∫

ui

p(yi1, . . . , yiTi , ui ) dui

=
∫

ui

p(yi1, . . . , yiTi | ui )g(ui ) dui

= Eui [p(yi1, . . . , yiTi | ui )].

This is exactly the approach used earlier to condition the heterogeneity out of the
Poisson model to produce the negative binomial model. If, as before, we take p(yit | ui )

to be Poisson with mean λi t = exp(x′
i tβ + ui ) in which exp(ui ) is distributed as gamma

with mean 1.0 and variance 1/α, then the preceding steps produce the negative binomial
distribution,

p(yi1, . . . , yiTi ) =
[∏Ti

t=1 λ
yit
i t

]
!

(
θ + ∑Ti

t=1 yit

)
[
!(θ)

∏Ti
t=1 yit !

] [(∑Ti
t=1 λi t

)∑Ti
t=1

yit

] Qθ
i (1 − Qi )

∑Ti
t=1

yit ,
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where

Qi = θ

θ + ∑Ti
t=1 λi t

.

For estimation purposes, we have a negative binomial distribution for Yi = ∑
t yit with

mean �i = ∑
t λi t .

There is a mild preference in the received literature for the fixed effects estimators
over the random effects estimators. The virtue of dispensing with the assumption of
uncorrelatedness of the regressors and the group specific effects is substantial. On the
other hand, the assumption does come at a cost. In order to compute the probabilities
or the marginal effects it is necessarily to estimate the constants, αi . The unscaled
coefficients in these models are of limited usefulness because of the nonlinearity of the
conditional mean functions.

Other approaches to the random effects model have been proposed. Greene (1994,
1995a) and Terza (1995) specify a normally distributed heterogeneity, on the assumption
that this is a more natural distribution for the aggregate of small independent effects.
Brannas and Johanssen (1994) have suggested a semiparametric approach based on
the GMM estimator by superimposing a very general form of heterogeneity on the
Poisson model. They assume that conditioned on a random effect εi t , yit is distributed
as Poisson with mean εi tλi t . The covariance structure of εi t is allowed to be fully gen-
eral. For t, s = 1, . . . , T, Var[εi t ] = σ 2

i , Cov[εi t , ε js] = γi j (|t − s|). For long time series,
this model is likely to have far too many parameters to be identified without some re-
strictions, such as first-order homogeneity (β i = β ∀ i), uncorrelatedness across groups,
[γi j (.) = 0 for i �= j], groupwise homoscedasticity (σ 2

i = σ 2 ∀ i), and nonautocorrelated-
ness [γ (r) = 0 ∀ r �= 0]. With these assumptions, the estimation procedure they propose
is similar to the procedures suggested earlier. If the model imposes enough restrictions,
then the parameters can be estimated by the method of moments. The authors discuss
estimation of the model in its full generality. Finally, the latent class model discussed in
Section 16.2.3 and the random parameters model in Section 17.8 extend naturally to the
Poisson model. Indeed, most of the received applications of the latent class structure
have been in the Poisson regression framework. [See Greene (2001) for a survey.]

21.9.6 HURDLE AND ZERO-ALTERED POISSON MODELS

In some settings, the zero outcome of the data generating process is qualitatively differ-
ent from the positive ones. Mullahy (1986) argues that this fact constitutes a shortcoming
of the Poisson (or negative binomial) model and suggests a “hurdle” model as an alter-
native.74 In his formulation, a binary probability model determines whether a zero or
a nonzero outcome occurs, then, in the latter case, a (truncated) Poisson distribution
describes the positive outcomes. The model is

Prob(yi = 0 | xi ) = e−θ

Prob(yi = j | xi ) = (1 − e−θ ) e−λi λ
j
i

j!(1 − e−λi )
, j = 1, 2, . . . .

74For a similar treatment in a continuous data application, see Cragg (1971).
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This formulation changes the probability of the zero outcome and scales the remaining
probabilities so that the sum to one. It adds a new restriction that Prob(yi = 0 | xi )

no longer depends on the covariates, however. Therefore, a natural next step is to
parameterize this probability. Mullahey suggests some formulations and applies the
model to a sample of observations on daily beverage consumption.

Mullahey (1986), Heilbron (1989), Lambert (1992), Johnson and Kotz (1993), and
Greene (1994) have analyzed an extension of the hurdle model in which the zero out-
come can arise from one of two regimes.75 In one regime, the outcome is always zero.
In the other, the usual Poisson process is at work, which can produce the zero outcome
or some other. In Lambert’s application, she analyzes the number of defective items
produced by a manufacturing process in a given time interval. If the process is under
control, then the outcome is always zero (by definition). If it is not under control, then
the number of defective items is distributed as Poisson and may be zero or positive in
any period. The model at work is therefore

Prob(yi = 0 | xi ) = Prob(regime 1) + Prob(yi = 0 | xi , regime 2)Prob(regime 2),

Prob(yi = j | xi ) = Prob(yi = j | xi , regime 2)Prob(regime 2), j = 1, 2, . . . .

Let z denote a binary indicator of regime 1 (z = 0) or regime 2 (z = 1), and let y∗ denote
the outcome of the Poisson process in regime 2. Then the observed y is z× y∗. A natural
extension of the splitting model is to allow z to be determined by a set of covariates. These
covariates need not be the same as those that determine the conditional probabilities
in the Poisson process. Thus, the model is

Prob(zi = 1 | wi ) = F(wi , γ ),

Prob(yi = j | xi , zi = 1) = e−λi λ
j
i

j!
.

The mean in this distribution is

E [yi | xi ] = F × 0 + (1 − F) × E [y∗
i | xi , y∗

i > 0] = (1 − F) × λi

1 − e−λi
.

Lambert (1992) and Greene (1994) consider a number of alternative formulations,
including logit and probit models discussed in Sections 21.3 and 21.4, for the probability
of the two regimes.

Both of these modifications substantially alter the Poisson formulation. First, note
that the equality of the mean and variance of the distribution no longer follows; both
modifications induce overdispersion. On the other hand, the overdispersion does not
arise from heterogeneity; it arises from the nature of the process generating the zeros.
As such, an interesting identification problem arises in this model. If the data do appear
to be characterized by overdispersion, then it seems less than obvious whether it should
be attributed to heterogeneity or to the regime splitting mechanism. Mullahy (1986)
argues the point more strongly. He demonstrates that overdispersion will always induce
excess zeros. As such, in a splitting model, we are likely to misinterpret the excess zeros
as due to the splitting process instead of the heterogeneity.

75The model is variously labeled the “With Zeros,” or WZ, model [Mullahy (1986)], the “Zero Inflated
Poisson,” or ZIP, model [Lambert (1992)], and “Zero-Altered Poisson,” or ZAP, model [Greene (1994)].
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It might be of interest to test simply whether there is a regime splitting mechanism at
work or not. Unfortunately, the basic model and the zero-inflated model are not nested.
Setting the parameters of the splitting model to zero, for example, does not produce
Prob[z = 0] = 0. In the probit case, this probability becomes 0.5, which maintains the
regime split. The preceding tests for over- or underdispersion would be rather indirect.
What is desired is a test of non-Poissonness. An alternative distribution may (but need
not) produce a systematically different proportion of zeros than the Poisson. Testing
for a different distribution, as opposed to a different set of parameters, is a difficult
procedure. Since the hypotheses are necessarily nonnested, the power of any test is a
function of the alternative hypothesis and may, under some, be small. Vuong (1989) has
proposed a test statistic for nonnested models that is well suited for this setting when the
alternative distribution can be specified. Let f j (yi | xi ) denote the predicted probability
that the random variable Y equals yi under the assumption that the distribution is
f j (yi | xi ), for j = 1, 2, and let

mi = log
(

f1(yi | xi )

f2(yi | xi )

)
.

Then Vuong’s statistic for testing the nonnested hypothesis of Model 1 versus Model 2
is

v =
√

n
[ 1

n

∑n
i=1 mi

]
√

1
n

∑n
i=1(mi − m̄)2

.

This is the standard statistic for testing the hypothesis that E [mi ] equals zero. Vuong
shows that v has a limiting standard normal distribution. As he notes, the statistic is
bidirectional. If |v| is less than two, then the test does not favor one model or the other.
Otherwise, large values favor Model 1 whereas small (negative) values favor Model 2.
Carrying out the test requires estimation of both models and computation of both sets
of predicted probabilities.

In Greene (1994), it is shown that the Vuong test has some power to discern this
phenomenon. The logic of the testing procedure is to allow for overdispersion by spec-
ifying a negative binomial count data process, then examine whether, even allowing for
the overdispersion, there still appear to be excess zeros. In his application, that appears
to be the case.

Example 21.12 A Split Population Model for Major Derogatory Reports
Greene (1995c) estimated a model of consumer behavior in which the dependent variable
of interest was the number of major derogatory reports recorded in the credit history for a
sample of applicants for a type of credit card. The basic model predicts yi , the number of
major derogatory credit reports, as a function of xi = [1, age, income, average expenditure].
The data for the model appear in Appendix Table F21.4. There are 1,319 observations in
the sample (10% of the original data set.) Inspection of the data reveals a preponderance of
zeros. Indeed, of 1,319 observations, 1060 have yi = 0, whereas of the remaining 259, 137
have 1, 50 have 2, 24 have 3, 17 have 4, and 11 have 5—the remaining 20 range from 6 to
14. Thus, for a Poisson distribution, these data are actually a bit extreme. We propose to use
Lambert’s zero inflated Poisson model instead, with the Poisson distribution built around

ln λi = β1 + β2 age + β3 income + β4 expenditure.

For the splitting model, we use a logit model, with covariates z = [1, age, income, own/rent].
The estimates are shown in Table 21.21. Vuong’s diagnostic statistic appears to confirm
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TABLE 21.21 Estimates of a Split Population Model

Poisson and Logit Models Split Population Model
Variable Poisson for y Logit for y > 0 Poisson for y Logit for y > 0

Constant −0.8196 −2.2442 1.0010 2.1540
(0.1453) (0.2515) (0.1267) (0.2900)

Age 0.007181 0.02245 −0.005073 −0.02469
(0.003978) (0.007313) (0.003218) (0.008451)

Income 0.07790 0.06931 0.01332 −0.1167
(0.02394) (0.04198) (0.02249) (0.04941)

Expend −0.004102 −0.002359
(0.0003740) (0.0001948)

Own/Rent −0.3766 0.3865
(0.1578) (0.1709)

Log L −1396.719 −645.5649 −1093.0280
nP̂ (0 | x̂) 938.6 1061.5

intuition that the Poisson model does not adequately describe the data; the value is 6.9788.
Using the model parameters to compute a prediction of the number of zeros, it is clear that
the splitting model does perform better than the basic Poisson regression.

21.10 SUMMARY AND CONCLUSIONS

This chapter has surveyed techniques for modeling discrete choice. We examined four
classes of models: binary choice, ordered choice, multinomial choice, and models for
counts. The first three of these are quite far removed from the regression models (lin-
ear and nonlinear) that have been the focus of the preceding 20 chapters. The most
important difference concerns the modeling approach. Up to this point, we have been
primarily interested in modeling the conditional mean function for outcomes that vary
continuously. In this chapter, we have shifted our approach to one of modeling the
conditional probabilities of events.

Modeling binary choice—the decision between two alternatives—is a growth area
in the applied econometrics literature. Maximum likelihood estimation of fully parame-
terized models remains the mainstay of the literature. But, we also considered semipara-
metric and nonparametric forms of the model and examined models for time series and
panel data. The ordered choice model is a natural extension of the binary choice setting
and also a convenient bridge between models of choice between two alternatives and
more complex models of choice among multiple alternatives. Multinomial choice mod-
eling is likewise a large field, both within economics and, especially, in many other fields,
such as marketing, transportation, political science, and so on. The multinomial logit
model and many variations of it provide an especially rich framework within which
modelers have carefully matched behavioral modeling to empirical specification and
estimation. Finally, models of count data are closer to regression models than the other
three fields. The Poisson regression model is essentially a nonlinear regression, but, as
in the other cases, it is more fruitful to do the modeling in terms of the probabilities of
discrete choice rather than as a form of regression analysis.
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Key Terms and Concepts

• Attributes
• Binary choice model
• Bivariate probit
• Bootstrapping
• Butler and Moffitt method
• Choice based sampling
• Chow test
• Conditional likelihood

function
• Conditional logit
• Count data
• Fixed effects model
• Full information ML
• Generalized residual
• Goodness of fit measure
• Grouped data
• Heterogeneity
• Heteroscedasticity
• Incidental parameters

problem
• Inclusive value
• Independence from

irrelevant alternatives
• Index function model
• Individual data
• Initial conditions

• Kernel density estimator
• Kernel function
• Lagrange multiplier test
• Latent regression
• Likelihood equations
• Likelihood ratio test
• Limited information ML
• Linear probability model
• Logit
• Marginal effects
• Maximum likelihood
• Maximum score estimator
• Maximum simulated

likelihood
• Mean-squared deviation
• Minimal sufficient statistic
• Minimum chi-squared

estimator
• Multinomial logit
• Multinomial probit
• Multivariate probit
• Negative binomial model
• Nested logit
• Nonnested models
• Normit
• Ordered choice model

• Overdispersion
• Persistence
• Poisson model
• Probit
• Proportions data
• Quadrature
• Qualitative choice
• Qualitative response
• Quasi-MLE
• Random coefficients
• Random effects model
• Random parameters model
• Random utility model
• Ranking
• Recursive model
• Robust covariance

estimation
• Sample selection
• Scoring method
• Semiparametric estimation
• State dependence
• Unbalanced sample
• Unordered
• Weibull model

Exercises

1. A binomial probability model is to be based on the following index function model:

y∗ = α + βd + ε,

y = 1, if y∗ > 0,

y = 0 otherwise.

The only regressor, d, is a dummy variable. The data consist of 100 observations
that have the following:

y

0 1
0 24 28

d
1 32 16

Obtain the maximum likelihood estimators of α and β, and estimate the asymptotic
standard errors of your estimates. Test the hypothesis that β equals zero by using a
Wald test (asymptotic t test) and a likelihood ratio test. Use the probit model and
then repeat, using the logit model. Do your results change? [Hint: Formulate the
log-likelihood in terms of α and δ = α + β.]
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2. Suppose that a linear probability model is to be fit to a set of observations on a
dependent variable y that takes values zero and one, and a single regressor x that
varies continuously across observations. Obtain the exact expressions for the least
squares slope in the regression in terms of the mean(s) and variance of x, and
interpret the result.

3. Given the data set

y 1 0 0 1 1 0 0 1 1 1
x 9 2 5 4 6 7 3 5 2 6

,

estimate a probit model and test the hypothesis that x is not influential in determin-
ing the probability that y equals one.

4. Construct the Lagrange multiplier statistic for testing the hypothesis that all the
slopes (but not the constant term) equal zero in the binomial logit model. Prove
that the Lagrange multiplier statistic is nR2 in the regression of (yi = p) on the xs,
where P is the sample proportion of 1s.

5. We are interested in the ordered probit model. Our data consist of 250 observations,
of which the response are

y 0 1 2 3 4
n 50 40 45 80 35

.

Using the preceding data, obtain maximum likelihood estimates of the unknown pa-
rameters of the model. [Hint: Consider the probabilities as the unknown
parameters.]

6. The following hypothetical data give the participation rates in a particular type of
recycling program and the number of trucks purchased for collection by 10 towns
in a small mid-Atlantic state:

Town 1 2 3 4 5 6 7 8 9 10

Trucks 160 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to
achieve a 95 percent rate of participation. Using a probit model for your analysis,
a. How many trucks would the town expect to have to purchase in order to achieve

their goal? [Hint: See Section 21.4.6.] Note that you will use ni = 1.
b. If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget

of $6.5 million? (That is, should they expect to reach the goal?)
c. According to your model, what is the marginal value of the 301st truck in terms

of the increase in the percentage participation?
7. A data set consists of n = n1 + n2 + n3 observations on y and x. For the first n1

observations, y = 1 and x = 1. For the next n2 observations, y = 0 and x = 1. For the
last n3 observations, y = 0 and x = 0. Prove that neither (21-19) nor (21-21) has a
solution.



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 755

8. Data on t = strike duration and x = unanticipated industrial production for a
number of strikes in each of 9 years are given in Appendix Table F22.1. Use the
Poisson regression model discussed in Section 21.9 to determine whether x is a
significant determinant of the number of strikes in a given year.

9. Asymptotics. Explore whether averaging individual marginal effects gives the same
answer as computing the marginal effect at the mean.

10. Prove (21-28).
11. In the panel data models estimated in Example 21.5.1, neither the logit nor the probit

model provides a framework for applying a Hausman test to determine whether
fixed or random effects is preferred. Explain. (Hint: Unlike our application in the
linear model, the incidental parameters problem persists here.)


