Greene-50240

book

5.1

June 3, 2002 9:59

5

LARGE-SAMPLE PROPERTIES
OF THE LEAST SOUARES
AND INSTRUMENTAL
VARIABLES ESTIMATORS

INTRODUCTION

The discussion thus far has concerned finite-sample properties of the least squares
estimator. We derived its exact mean and variance and the precise distribution of the
estimator and several test statistics under the assumptions of normally distributed dis-
turbances and independent observations. These results are independent of the sample
size. But the classical regression model with normally distributed disturbances and inde-
pendent observations is a special case that does not include many of the most common
applications, such as panel data and most time series models. This chapter will generalize
the classical regression model by relaxing these two important assumptions.!

The linear model is one of relatively few settings in which any definite statements
can be made about the exact finite sample properties of any estimator. In most cases,
the only known properties of the estimators are those that apply to large samples.
We can only approximate finite-sample behavior by using what we know about large-
sample properties. This chapter will examine the asymptotic properties of the parameter
estimators in the classical regression model. In addition to the least squares estimator,
this chapter will also introduce an alternative technique, the method of instrumental
variables. In this case, only the large sample properties are known.

5.2 ASYMPTOTIC PROPERTIES

OF THE LEAST SQUARES ESTIMATOR

Using only assumptions A1l through A4 of the classical model (as listed in Table 4.1),
we have established that the least squares estimators of the unknown parameters, g and
o2, have the exact, finite-sample properties listed in Table 4.3. For this basic model, it
is straightforward to derive the large-sample properties of the least squares estimator.
The normality assumption, A6, becomes inessential at this point, and will be discarded
save for brief discussions of maximum likelihood estimation in Chapters 10 and 17. This
section will consider various forms of Assumption AS, the data generating mechanism.

IMost of this discussion will use our earlier results on asymptotic distributions. It may be helpful to review
Appendix D before proceeding.
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5.2.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF 8

To begin, we leave the data generating mechanism for X unspecified—X may be any
mixture of constants and random variables generated independently of the process
that generates e. We do make two crucial assumptions. The first is a modification of
Assumption AS in Table 4.1;

ASa. (x;,e7)i =1,...,nisasequence of independent observations.

The second concerns the behavior of the data in large samples;

’

plim

n—0o0

= Q, apositive definite matrix. (5-1)

[We will return to (5-1) shortly.] The least squares estimator may be written

r -1 ’
b=4+ (XnX) (Xne) (5-2)

X’
plimb = g + Q‘lplim< ;)

If Q! exists, then

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem D.14.) We require the probability limit of the last term. Let

1 1< 1<
“Xe=-> Xg=-) W=W. (5-3)
n n i=1 n i=1
Then
plimb = g + Q! plim w.

From the exogeneity Assumption A3, we have E[w;]| = Ex[ E[w; | x;]] = Ex[xi E[&i | Xi]]
=0, so the exact expectation is E[w] = 0. For any element in x; that is nonstochastic,
the zero expectations follow from the marginal distribution of ¢;. We now consider the
variance. By (B-70), Var[w] = E[Var[w|X]] + Var[ E[w | X]]. The second term is zero
because E [¢; | x;] = 0. To obtain the first, we use E[ee’ | X] = o, so

Var[w|X] = E[wW | X] = %X'E[ee' |X]X% = (‘7—2) <X’X>.

n n
Var[w] = <%2> E(X’;X).

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as # increases.
Assumption (5-1) should be sufficient. (Theoretically, the expectation could diverge
while the probability limit does not, but this case would not be relevant for practical
purposes.) It then follows that

lim Var[w]=0-Q = 0.

Therefore,
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Since the mean of w is identically zero and its variance converges to zero, w converges
in mean square to zero, so plim w = (. Therefore,

Xl
plim—s =0, (5-4)
n
SO
plimb=8+Q'.0=8. (5-5)

This result establishes that under Assumptions A1-A4 and the additional assumption
(5-1), b is a consistent estimator of § in the classical regression model.

Time-series settings that involve time trends, polynomial time series, and trending
variables often pose cases in which the preceding assumptions are too restrictive. A
somewhat weaker set of assumptions about X that is broad enough to include most of
these is the Grenander conditions listed in Table 5.1.2 The conditions ensure that the
data matrix is “well behaved” in large samples. The assumptions are very weak and is
likely to be satisfied by almost any data set encountered in practice.®

5.2.2 ASYMPTOTIC NORMALITY OF THE LEAST SQUARES
ESTIMATOR

To derive the asymptotic distribution of the least squares estimator, we shall use the
results of Section D.3. We will make use of some basic central limit theorems, so in
addition to Assumption A3 (uncorrelatedness), we will assume that the observations
are independent. It follows from (5-2) that

XX\ 1N\,
Vnb - ) = (7) (E)Xe. (5-6)

Since the inverse matrix is a continuous function of the original matrix, plim(X’'X/n)~! =
Q. Therefore, if the limiting distribution of the random vector in (5-6) exists, then that
limiting distribution is the same as that of

X'X\'| /1 1
lim( —— — | Xe=Q ' — |X. -7
["lm(n)Mﬁ) e=0 (5 )xe &
Thus, we must establish the limiting distribution of
1

where E[w] = 0. [See (5-3).] We can use the multivariate Lindberg—Feller version of
the central limit theorem (D.19.A) to obtain the limiting distribution of /nw.* Using
that formulation, w is the average of n independent random vectors w; = x;¢;, with
means 0 and variances

Var[x;¢;] = ozE[xix;] =o2Q;. 5-9)

2Judge et al. (1985, p. 162).
3White (2001) continues this line of analysis.

“Note that the Lindberg-Levy variant does not apply because Var[w;] is not necessarily constant.
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TABLE 5.1 Grenander Conditions for Well Behaved Data

G1. For each column of X, xy, if d,zlk = XX, then lim,,_, df,k = +o00. Hence, x; does not
degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.

G2. Lim, . ox%/d? =0foralli = 1,...,n. This condition implies that no single observation
will ever dominate x) X, and as n — oo, individual observations will become less important.
G3. Let R, be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then lim,_.», R, = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

The variance of \/nw is

Uan =0’ (%) [Ql +Q+--+ Qn] (5-10)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (5-1) holds,
lim ¢2Q, = ¢2Q. (5-11)
n—00
Therefore, we may apply the Lindberg—Feller central limit theorem to the vector \/n w,
as we did in Section D.3 for the univariate case /nk. We now have the elements we
need for a formal result. If [x;¢;],i =1, ..., n are independent vectors distributed with
mean 0 and variance 0>Q; < oo, and if (5-1) holds, then

1 ' d 2
(ﬁ>X e — N[0,0°Q]. (5-12)
It then follows that
a1 y, d -1 —1,.2 -1
Q (W>X€ — N[Q0,Q" (c"Q)Q']. (5-13)
Combining terms,
Jab — B) - N[0, o2Q7!]. (5-14)

Using the technique of Section D.3, we obtain the asymptotic distribution of b:

THEOREM 5.1 Asymptotic Distribution of b with Independent
Observations

If {e;} are independently distributed with mean zero and finite variance o> and x;;,

is such that the Grenander conditions are met, then

a 0'2 ]
b~N{ﬂ,7Q } (5-15)

In practice, it is necessary to estimate (1/7)Q~" with (X’X)~! and o> with e’e/(n — K).
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If & is normally distributed, then Result FS7 in (Table 4.3, Section 4.8) holds in every
sample, so it holds asymptotically as well. The important implication of this derivation
is that if the regressors are well behaved and observations are independent, then the
asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other
more general cases in the sections to follow.

5.2.3 CONSISTENCY OF s? AND THE ESTIMATOR OF Asy. Var|[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator
of Asy. Var[b] = (¢%/n)Q 1.5 With (5-1), it is sufficient to restrict attention to s2, so the
purpose here is to assess the consistency of s> as an estimator of o>. Expanding

2 1

§° = &'Me
n—K

produces

1 ’ X\ /XX L/ x
s? = [¢e — & XX'X)"'Xe] = —— |28 _(£2)(22) (28],
n—K n—k| n n n n

The leading constant clearly converges to 1. We can apply (5-1), (5-4) (twice), and the
product rule for probability limits (Theorem D.14) to assert that the second term in the
brackets converges to 0. That leaves

— 1<
82:—2 ez,
n

i=1

This is a narrow case in which the random variables &7 are independent with the same
finite mean o2, so not much is required to get the mean to converge almost surely to
0% = E[¢?]. By the Markov Theorem (D.8), what is needed is for E[| 7 |'*°] to be finite,
so the minimal assumption thus far is that ¢; have finite moments up to slightly greater
than 2. Indeed, if we further assume that every ¢; has the same distribution, then by
the Khinchine Theorem (D.5) or the Corollary to DS, finite moments (of ¢;) up to 2 is
sufficient. Mean square convergence would require E[¢}] = ¢. < oo. Then the terms
in the sum are independent, with mean o2 and variance ¢, — o*. So, under fairly weak
condition, the first term in brackets converges in probability to o2, which gives our
result,

plim s? = 62,

and, by the product rule,
plim s>(X'X/n)~! = ¢2Q 7.

The appropriate estimator of the asymptotic covariance matrix of b is
Est.Asy. Var[b] = s*(X'X) 1.

5See McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the least
squares estimator.
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5.2.4 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be a
set of J continuous, linear or nonlinear and continuously differentiable functions of the
least squares estimator, and let
of(b)

ab’
where Cis the J x K matrix whose jth row is the vector of derivatives of the jth function
with respect to b’. By the Slutsky Theorem (D.12),

plim £(b) = £(8)

Ch) =

and

. of(B)
lim C(b) = =T.
plim C(b) o
Using our usual linear Taylor series approach, we expand this set of functions in the
approximation

f(b) = f(B) + T x (b — B) + higher-order terms.

The higher-order terms become negligible in large samples if plim b = f. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on
the right. Thus, the mean of the asymptotic distribution is plim f(b) = f(8), and the
asymptotic covariance matrix is {F[Asy. Var(b — ﬂ)]r'}, which gives us the following
theorem:

THEOREM 5.2 Asymptotic Distribution of a Function of b
If £(b) is a set of continuous and continuously differentiable functions of b
such that T = 9f(B) /3" and if Theorem 5.1 holds, then
2
fb) L N [f(ﬂ), r <%Q1) r'} : (5-16)
In practice, the estimator of the asymptotic covariance matrix would be

Est.Asy. Var[f(b)] = C[s*(X'X)!]C".

If any of the functions are nonlinear, then the property of unbiasedness that holds
for b may not carry over to f(b). Nonetheless, it follows from (5-4) that f(b) is a consistent
estimator of f(8), and the asymptotic covariance matrix is readily available.

5.2.5 ASYMPTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss-Markov theorem.
That is, it remains to establish whether the large-sample properties of the least squares
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estimator are optimal by any measure. The Gauss-Markov Theorem establishes finite
sample conditions under which least squares is optimal. The requirements that the
estimator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the class of estimators in
the classical model to those which might be biased, but which are consistent. Ultimately,
we shall also be interested in nonlinear estimators. These cases extend beyond the reach
of the Gauss Markov Theorem. To make any progress in this direction, we will require
an alternative estimation criterion.

DEFINITION 5.1 Asymptotic Efficiency

An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed, and has an asymptotic covariance matrix that is not larger than the
asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.

In Chapter 17, we will show that if the disturbances are normally distributed, then
the least squares estimator is also the maximum likelihood estimator. Maximum likeli-
hood estimators are asymptotically efficient among consistent and asymptotically nor-
mally distributed estimators. This gives us a partial result, albeit a somewhat narrow one
since to claim it, we must assume normally distributed disturbances. If some other distri-
bution is specified for e and it emerges that b is not the maximum likelihood estimator,
then least squares may not be efficient.

Example 5.1 The Gamma Regression Model
Greene (1980a) considers estimation in a regression model with an asymmetrically distributed
disturbance,

y=(a—ovVP)+XB— (s —ovP) =a* +XB +¢,
where ¢ has the gamma distribution in Section B.4.5 [see (B-39)] and ¢ = +/P/A is the
standard deviation of the disturbance. In this model, the covariance matrix of the least squares
estimator of the slope coefficients (not including the constant term) is,

Asy. Var[b | X] = ¢2(X'M®X) ",
whereas for the maximum likelihood estimator (which is not the least squares estimator),
Asy.Var[B,, 1~ [1 — (2/P)]o?(XM°X) " 8

But for the asymmetry parameter, this result would be the same as for the least squares

estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically.

9The Matrix M produces data in the form of deviations from sample means. (See Section A.2.8.) In Greene’s
model, P must be greater than 2.
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5.3 MORE GENERAL CASES

The asymptotic properties of the estimators in the classical regression model were
established in Section 5.2 under the following assumptions:

Al. Linearity: y; = x;181 + xnf2+ - -+ + xikBx + &i-

A2. Full rank: The n x K sample data matrix, X has full column rank.

A3. Exogeneity of the independent variables: E[s; | xj1, xj2, ..., xjx] =0,
i,j=1,...,n.

Ad. Homoscedasticity and nonautocorrelation.

AS. Data generating mechanism-independent observations.

The following are the crucial results needed: For consistency of b, we need (5-1) and
(5_4)5

plim(1/7n)X'X = plim Q,=0Q, a positive definite matrix,
plim(1/n)X'e = plim w, = E[w,]| = 0.

(For consistency of s?, we added a fairly weak assumption about the moments of the
disturbances.) To establish asymptotic normality, we will require consistency and (5-12)
which is

Jaw, -5 N[0, 2Q.

With these in place, the desired characteristics are then established by the methods of
Section 5.2. To analyze other cases, we can merely focus on these three results. It is not
necessary to reestablish the consistency or asymptotic normality themselves, since they
follow as a consequence.

5.3.1 HETEROGENEITY IN THE DISTRIBUTIONS OF x;

Exceptions to the assumptions made above are likely to arise in two settings. In a panel
data set, the sample will consist of multiple observations on each of many observational
units. For example, a study might consist of a set of observations made at different
points in time on a large number of families. In this case, the xs will surely be correlated
across observations, at least within observational units. They might even be the same
for all the observations on a single family. They are also likely to be a mixture of random
variables, such as family income, and nonstochastic regressors, such as a fixed “family
effect” represented by a dummy variable. The second case would be a time-series model
in which lagged values of the dependent variable appear on the right-hand side of the
model.

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say 7, on a set of N families, so that the
total number of rows in X is n = NT. The matrix

_ 1<
QHZZEQi
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in which 7 is all the observations in the sample, could be viewed as

_ 1 1 1 X
Q, = N Z T Ohsegmm Qi = N ;in
for family i

where Q; = average Q;; for family i. We might then view the set of observations on the
ith unit as if they were a single observation and apply our convergence arguments to the
number of families increasing without bound. The point is that the conditions that are
needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small.

5.3.2 DEPENDENT OBSERVATIONS

The second difficult case arises when there are lagged dependent variables among the
variables on the right-hand side or, more generally, in time series settings in which the
observations are no longer independent or even uncorrelated. Suppose that the model
may be written

Ve =Z0 + 1Y+ + VpYi—p + &t (5-17)

(Since this model is a time-series setting, we use ¢ instead of i to index the observations.)
We continue to assume that the disturbances are uncorrelated across observations.
Since y,_; is dependent on y;_, and so on, it is clear that although the disturbances are
uncorrelated across observations, the regressor vectors, including the lagged ys, surely
are not. Also, although Cov[x;, &] = 0ifs > 1 (X, = [z, yi—1. ..., Yi—p]), Cov[x, &] # 0
if s <t. Every observation y, is determined by the entire history of the disturbances.
Therefore, we have lost the crucial assumption E[e|X] = 0; E[e, | future xs] is not
equal to 0. The conditions needed for the finite-sample results we had earlier no longer
hold. Without Assumption A3, E [¢ | X] = 0, our earlier proof of unbiasedness dissolves,
and without unbiasedness, the Gauss—Markov theorem no longer applies. We are left
with only asymptotic results for this case.

This case is considerably more general than the ones we have considered thus far.
The theorems we invoked previously do not apply when the observations in the sums are
correlated. To establish counterparts to the limiting normal distribution of (1//n)X’e
and convergence of (1/n)X’X to a finite positive definite matrix, it is necessary to
make additional assumptions about the regressors. For the disturbances, we replace
Assumption A3 following.

AD3. E[g |x,] =0, foralls>0.

This assumption states that the disturbance in the period “f” is an innovation; it is
new information that enters the process. Thus, it is not correlated with any of the
history. It is not uncorrelated with future data, however, since ¢; will be a part of x;,.
Assumptions A1, A2, and A4 are retained (at least for the present). We will also replace
Assumption A5 and result (5-1) with two assumptions about the right-hand variables.
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First,

1 T
plimT— E xX;_, = Q(s), afinite matrix,s > 0, (5-18)
-5
t=s+1

and Q(0) is nonsingular if 7 > K. [Note that Q = Q(0).] This matrix is the sums of
cross products of the elements of x, with lagged values of x,. Second, we assume that
the roots of the polynomial

l—ypz—nd - —ypz’ =0 (5-19)

are all outside the unit circle. (See Section 20.2 for further details.) Heuristically, these
assumptions imply that the dependence between values of the xs at different points in
time varies only with how far apart in time they are, not specifically with the points in
time at which observations are made, and that the correlation between observations
made at different points in time fades sufficiently rapidly that sample moments such
as Q(s) above will converge in probability to a population counterpart.” Formally, we
obtain these results with

ADS. The series on x; is stationary and ergodic.

This assumption also implies that Q(s) becomes a matrix of zeros as s (the separation
in time) becomes large. These conditions are sufficient to produce (1/n)X’e — 0 and
the consistency of b. Further results are needed to establish the asymptotic normality
of the estimator, however.®

In sum, the important properties of consistency and asymptotic normality of the
least squares estimator are preserved under the different assumptions of stochastic
regressors, provided that additional assumptions are made. In most cases, these as-
sumptions are quite benign, so we conclude that the two asymptotic properties of least
squares considered here, consistency and asymptotic normality, are quite robust to dif-
ferent specifications of the regressors.

INSTRUMENTAL VARIABLE AND TWO STAGE
LEAST SQUARES ESTIMATION

The assumption that x; and ¢; are uncorrelated has been crucial in the development thus
far. But, there are any number of applications in economics in which this assumption is
untenable. Examples include models that contain variables that are measured with error
and most dynamic models involving expectations. Without this assumption, none of the

7We will examine some cases in later chapters in which this does not occur. To consider a simple example,
suppose that x contains a constant. Then the assumption requires sample means to converge to popula-
tion garameters. Suppose that all observations are correlated. Then the variance of X is Var[(1/T)Z/x/] =
(1/T*)%;23Cov[x;, x5]. Since none of the T? terms is assumed to be zero, there is no assurance that the
double sum converges to zero as 7 — oco. But if the correlations diminish sufficiently with distance in time,
then the sum may converge to zero.

8These appear in Mann and Wald (1943), Billingsley (1979) and Dhrymes (1998).
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proofs of consistency given above will hold up, so least squares loses its attractiveness
as an estimator. There is an alternative method of estimation called the method of
instrumental variables (IV). The least squares estimator is a special case, but the IV
method is far more general. The method of instrumental variables is developed around
the following general extension of the estimation strategy in the classical regression
model: Suppose that in the classical model y; = x!f + ¢;, the K variables x; may be
correlated with g;. Suppose as well that there exists a set of L variables z;, where L is at
least as large as K, such that z; is correlated with x; but not with ¢;. We cannot estimate
B consistently by using the familiar least squares estimator. But we can construct a
consistent estimator of § by using the assumed relationships among z;, x;, and ¢;.

Example 5.2 Models in Which Least Squares is Inconsistent
The following models will appear at various points in this book. In general, least squares will
not be a suitable estimator.

Dynamic Panel Data Model In Example 13.6 and Section 18.5, we will examine a model for
municipal expenditure of the form S;; = f(S;;_1,...) + &jt. The disturbances are assumed to
be freely correlated across periods, so both S;; ¢ and ¢, ; are correlated with ;;_1. It follows
that they are correlated with each other, which means that this model, even with a linear
specification, does not satisfy the assumptions of the classical model. The regressors and
disturbances are correlated.

Dynamic Regression In Chapters 19 and 20, we will examine a variety of time series models
which are of the form y; = f(y;_1, ...) +& in which & is (auto-) correlated with its past values.
This case is essentially the same as the one we just considered. Since the disturbances
are autocorrelated, it follows that the dynamic regression implies correlation between the
disturbance and a right hand side variable. Once again, least squares will be inconsistent.

Consumption Function We (and many other authors) have used a macroeconomic version
of the consumption function at various points to illustrate least squares estimation of the
classical regression model. But, by construction, the model violates the assumptions of
the classical regression model. The national income data are assembled around some ba-
sic accounting identities, including “Y = C + investment + government spending + net
exports.” Therefore, although the precise relationship between consumption C, and income
Y,C = f(Y,¢), is ambiguous and is a suitable candidate for modeling, it is clear that con-
sumption (and therefore ¢) is one of the main determinants of Y. The model C; = o + BY; + &;
does not fit our assumptions for the classical model if Cov[Y;, &] # 0. But it is reasonable to
assume (at least for now) that ¢; is uncorrelated with past values of C and Y. Therefore, in
this model, we might consider Y;_; and C;_; as suitable instrumental variables.

Measurement Error  In Section 5.6, we will examine an application in which an earnings equa-
tion y; ¢ = f(Education;, ...) +¢;+ is specified for sibling pairs (twins) t =1, 2 for n individuals.
Since education is a variable that is measured with error, it will emerge (in a way that will be es-
tablished below) that this is, once again, a case in which the disturbance and an independent
variable are correlated.

None of these models can be consistently estimated by least squares—the method of
instrumental variables is the standard approach.

We will now construct an estimator for 8 in this extended model. We will maintain
assumption A5 (independent observations with finite moments), though this is only for
convenience. These results can all be extended to cases with dependent observations.
This will preserve the important result that plim(X'X/n) = Q. (We use the subscript
to differentiate this result from the results given below.) The basic assumptions of the
regression model have changed, however. First, A3 (no correlation between x and ¢) is,
under our new assumptions,

AI3. E[Si |X,‘] =n;.
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We interpret Assumption AI3 to mean that the regressors now provide information
about the expectations of the disturbances. The important implication of AI3 is that the
disturbances and the regressors are now correlated. Assumption AI3 implies that

Elxiei] =y

for some nonzero y. If the data are “well behaved,” then we can apply Theorem D.5
(Khinchine’s theorem) to assert that

plim(1/n)X'e = y.

Notice that the original model results if ; = 0. Finally, we must characterize the instru-
mental variables. We assume the following:

Al7. [xi,zi, &],i =1,...,n,are an i.i.d. sequence of random variables.
Al8a. E[x’] = Qui < 00, a finite constant, k =1, ..., K.

AI8b. E[7}] = Quu < 0o, afinite constant,/ =1, ..., L

Al8c. E[zyxik] = Quuk < 00, afinite constant,/ =1,..., L,k=1,..., K.
Al9. E[S,’ | Z,’] =0.

In later work in time series models, it will be important to relax assumption Al7. Finite
means of z; follows from AI8b. Using the same analysis as in the preceding section, we
have

plim(1/n)Z'Z = Q,, a finite, positive definite (assumed) matrix,
plim(1/n)Z'X = Q, a finite, L x K matrix with rank K (assumed),
plim(1/n)Z'e = 0.
In our statement of the classical regression model, we have assumed thus far the special
case of n; = 0; y = 0 follows. There is no need to dispense with Assumption AI7—it
may well continue to be true—but in this special case, it becomes irrelevant.

For this more general model, we lose most of the useful results we had for least
squares. The estimator b is no longer unbiased;

E[b|X] =8+ XX)"'X'y # B,

so the Gauss—Markov theorem no longer holds. It is also inconsistent;

. ' X’'X -1 ) X’
phmb=ﬂ+phm< - ) phm< :) =B+ Quy #B.

(The asymptotic distribution is considered in the exercises.)
We now turn to the instrumental variable estimator. Since E [z;¢;] = 0 and all terms
have finite variances, we can state that

0 (22) - i 22 2) o (22
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Suppose that Z has the same number of variables as X. For example, suppose in our
consumption function that x, = [1, ¥;] when z, = [1, ¥;_;]. We have assumed that the
rank of Z'X is K, so now Z'X is a square matrix. It follows that

_(TX\1' [z
(2] n(22) -

which leads us to the instrumental variable estimator,

by = (Z'X)"'Z'y.

We have already proved that byy is consistent. We now turn to the asymptotic distribu-
tion. We will use the same method as in the previous section. First,

X\ 1
«/ﬁ(blv—ﬂ)=< . ) %Z’e,

which has the same limiting distribution as Q.'[(1/+/n)Z'¢]. Our analysis of (1//n)Z’e

is the same as that of (1/,/n)X e in the previous section, so it follows that

1o\
(ﬁz e) ~4 N[0,02Q,,]

and

ZX\'/ 1, _ -
< n ) (ﬁz e) 5 N[0.0°Q,/ 0.0y, ]

This step completes the derivation for the next theorem.

THEOREM 5.3 Asymptotic Distribution of the Instrumental
Variables Estimator

If Assumptions Al, A2, AI3, A4, AS5, AS5a, Al7, AlSa—c and A9 all hold

for [yi, x;, 2;, &;], where z is a valid set of L = K instrumental variables, then the

asymptotic distribution of the instrumental variables estimator bry = (Z'X)"'Z'y

is

2
a o _ _

biv ~ N8, —Q,(Q.Qy, |- (5-20)
where Qg = plim(Z'X/n) and Qg = plim(Z'Z/n).

To estimate the asymptotic covariance matrix, we will require an estimator of o2.
The natural estimator is

A 1 - ’
62 = . E (i — x'by)*.
i=1
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A correction for degrees of freedom, as in the development in the previous section,
is superfluous, as all results here are asymptotic, and 6> would not be unbiased in any
event. (Nonetheless, it is standard practice in most software to make the degrees of
freedom correction.) Write the vector of residuals as

y—Xbyy =y — X(Z'X)"'Zy.

Substitute y = X + & and collect terms to obtain & = [I — X(Z'X)"'Z']e. Now,

®>

PN
" &
O’z—

n

_ge (€2 (XZ (XX (ZXN (Ze\ (XN (ZXN (Ze

n n n n n n n n n )
We found earlier that we could (after a bit of manipulation) apply the product result for
probability limits to obtain the probability limit of an expression such as this. Without
repeating the derivation, we find that 62 is a consistent estimator of o2, by virtue of

the first term. The second and third product terms converge to zero. To complete the
derivation, then, we will estimate Asy. Var[byy] with

Al A e\~ ’ VAR
Est.Asy. Var[byy] = % {(%) (ZHX> <ZnZ) <XnZ> } (5-21)

=62ZX)" ' Z'7)X' 7).

®

There is a remaining detail. If Z contains more variables than X, then much of
the preceding is unusable, because Z'X will be L x K with rank K < L and will thus
not have an inverse. The crucial result in all the preceding is plim(Z’e/n) = 0. That is,
every column of Z is asymptotically uncorrelated with &. That also means that every
linear combination of the columns of Z is also uncorrelated with &, which suggests that
one approach would be to choose K linear combinations of the columns of Z. Which
to choose? One obvious possibility is simply to choose K variables among the L in Z.
But intuition correctly suggests that throwing away the information contained in the
remaining L — K columns is inefficient. A better choice is the projection of the columns
of X in the column space of Z:

X=272Z7)"'7X.

We will return shortly to the virtues of this choice. With this choice of instrumental
variables, X for Z, we have

by = (X’X) 71X'y

(5-22)
= [X'ZZ'Z) X" XZZ'Z)'Zy.
By substituting X in the expression for Est.Asy. Var[byy] and multiplying it out, we see
that the expression is unchanged. The proofs of consistency and asymptotic normality
for this estimator are exactly the same as before, because our proof was generic for any
valid set of instruments, and X qualifies.
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There are two reasons for using this estimator—one practical, one theoretical. If
any column of X also appears in Z, then that column of X is reproduced exactly in
X. This is easy to show. In the expression for X, if the kth column in X is one of the
columns in Z, say the /th, then the kth column in (Z’Z)~'Z’X will be the /th column of
an L x L identity matrix. This result means that the kth column in X =Z2Z7)"'7X
will be the /th column in Z, which is the kth column in X. This result is important and
useful. Consider what is probably the typical application. Suppose that the regression
contains K variables, only one of which, say the kth, is correlated with the disturbances.
We have one or more instrumental variables in hand, as well as the other K —1 variables
that certainly qualify as instrumental variables in their own right. Then what we would
use is Z = [X, Z1, 22, . . .|, where we indicate omission of the kth variable by (k) in
the subscript. Another useful interpretation of X is that each column is the set of fitted
values when the corresponding column of X is regressed on all the columns of Z, which
is obvious from the definition. It also makes clear why each x; that appears in Z is
perfectly replicated. Every x; provides a perfect predictor for itself, without any help
from the remaining variables in Z. In the example, then, every column of X except the
one that is omitted from X, is replicated exactly, whereas the one that is omitted is
replaced in X by the predicted values in the regression of this variable on all the zs.

Of all the different linear combinations of Z that we might choose, X is the most
efficient in the sense that the asymptotic covariance matrix of an I'V estimator based on
a linear combination ZF is smaller when F = (Z'Z)~'Z/X than with any other F that
uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained
by dropping any columns of Z. This important result was proved in a seminal paper by
Brundy and Jorgenson (1971).

We close this section with some practical considerations in the use of the instru-
mental variables estimator. By just multiplying out the matrices in the expression, you
can show that

bIV = (X’X)_1X'y
= X'I-M)X) X' I -M,)y
— (XlX)*lX/y

since I — M, is idempotent. Thus, when (and only when) X is the set of instruments,
the IV estimator is computed by least squares regression of y on X. This conclusion
suggests (only logically; one need not actually do this in two steps), that by can be
computed in two steps, first by computing X, then by the least squares regression. For
this reason, this is called the two-stage least squares (2SLS) estimator. We will revisit this
form of estimator at great length at several points below, particularly in our discussion
of simultaneous equations models, under the rubric of “two-stage least squares.” One
should be careful of this approach, however, in the computation of the asymptotic
covariance matrix; 62 should not be based on X. The estimator

,  (y—Xb) (y — Xbry)
Sy = n

is inconsistent for 2, with or without a correction for degrees of freedom.
An obvious question is where one is likely to find a suitable set of instrumental
variables. In many time-series settings, lagged values of the variables in the model
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provide natural candidates. In other cases, the answer is less than obvious. The asymp-
totic variance matrix of the I'V estimator can be rather large if Z is not highly correlated
with X; the elements of (Z’'X)~! grow large. Unfortunately, there usually is not much
choice in the selection of instrumental variables. The choice of Z is often ad hoc.” There
is a bit of a dilemma in this result. It would seem to suggest that the best choices of
instruments are variables that are highly correlated with X. But the more highly corre-
lated a variable is with the problematic columns of X, the less defensible the claim that
these same variables are uncorrelated with the disturbances.

5.5 HAUSMAN’S SPECIFICATION TEST AND

AN APPLICATION TO INSTRUMENTAL
VARIABLE ESTIMATION

It might not be obvious that the regressors in the model are correlated with the dis-
turbances or that the regressors are measured with error. If not, there would be some
benefit to using the least squares estimator rather than the IV estimator. Consider a
comparison of the two covariance matrices under the hypothesis that both are consistent,
that is, assuming plim(1/n)X’e = 0. The difference between the asymptotic covariance
matrices of the two estimators is

2 XZZZ)'ZX\ ' 52 XX\ !
Asy. Var[bry] — Asy. Var[bs] = %plim(%) - %plim( )

2
% plim n[(X'Z(Z'Z)"'Z/X)"" — (X'X)~].

To compare the two matrices in the brackets, we can compare their inverses. The in-
verse of the first is X'Z(Z'Z)~'Z'X = X'A — Mz)X = X’X — X’MzX. Since Mz is a
nonnegative definite matrix, it follows that X’MzX is also. So, X'Z(Z/Z)~'Z'X equals
X’X minus a nonnegative definite matrix. Since X'Z(Z/Z)~'Z'X is smaller, in the matrix
sense, than X'X, its inverse is larger. Under the hypothesis, the asymptotic covariance
matrix of the LS estimator is never larger than that of the IV estimator, and it will
actually be smaller unless all the columns of X are perfectly predicted by regressions on
Z.. Thus, we have established that if plim(1/n)X’e = 0—that is, if LS is consistent—then
it is a preferred estimator. (Of course, we knew that from all our earlier results on the
virtues of least squares.)

Our interest in the difference between these two estimators goes beyond the ques-
tion of efficiency. The null hypothesis of interest will usually be specifically whether
plim(1/n)X’e = 0. Seeking the covariance between X and e through (1/7)X’e is fruit-
less, of course, since the normal equations produce (1/7)X’e = 0. In a seminal paper,
Hausman (1978) suggested an alternative testing strategy. [Earlier work by Wu (1973)
and Durbin (1954) produced what turns out to be the same test.] The logic of Hausman’s
approach is as follows. Under the null hypothesis, we have two consistent estimators of

9Results on “optimal instruments” appear in White (2001) and Hansen (1982). In the other direction, there
is a contemporary literature on “weak” instruments, such as Staiger and Stock (1997).
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B, brs and bry. Under the alternative hypothesis, only one of these, by, is consistent.
The suggestion, then, is to examine d = byy —bs. Under the null hypothesis, plimd = 0,
whereas under the alternative, plim d # 0. Using a strategy we have used at various
points before, we might test this hypothesis with a Wald statistic,

H = d'{Est.Asy. Var[d]} 'd.
The asymptotic covariance matrix we need for the test is
Asy. Var[bry — brs] = Asy. Var[byy] + Asy. Var[brs]
— Asy. Cov[byy, brs] — Asy. Cov[bys, brv].

At this point, the test is straightforward, save for the considerable complication that
we do not have an expression for the covariance term. Hausman gives a fundamental
result that allows us to proceed. Paraphrased slightly,

the covariance between an efficient estimator, bg, of a parameter vector, §8, and its
difference from an inefficient estimator, by, of the same parameter vector, bg—by,
is zero.

For our case, bg is by s and b; is byy. By Hausman’s result we have
Cov[bg,bg —b;] = Var[bg] — Cov[bg, b;] =0
or
Cov[bg, b;] = Var[bg],
SO,
Asy.Var[byy — brs] = Asy. Var[byy] — Asy. Var[bs].

Inserting this useful result into our Wald statistic and reverting to our empirical estimates
of these quantities, we have

H = (bIV — bLs),{ESt.ASY. Var[bw] — Est.Asy. Var[bLs]}A (bIV — bLS)-

Under the null hypothesis, we are using two different, but consistent, estimators of o2.
If we use s2 as the common estimator, then the statistic will be

Mmvrwy-1 rwy—11-1
H:d[(XX) SZ(XX) ] d‘

(5-23)

It is tempting to invoke our results for the full rank quadratic form in a normal
vector and conclude the degrees of freedom for this chi-squared statistic is K. But that
method will usually be incorrect, and worse yet, unless X and Z have no variables in
common, the rank of the matrix in this statistic is less than K, and the ordinary inverse
will not even exist. In most cases, at least some of the variables in X will also appear
in Z. (In almost any application, X and Z will both contain the constant term.) That
is, some of the variables in X are known to be uncorrelated with the disturbances. For
example, the usual case will involve a single variable that is thought to be problematic
or that is measured with error. In this case, our hypothesis, plim(1/n)X'e = 0, does not
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really involve all K variables, since a subset of the elements in this vector, say K, are
known to be zero. As such, the quadratic form in the Wald test is being used to test only
K* = K — Kj hypotheses. It is easy (and useful) to show that, in fact, H is a rank K*
quadratic form. Since Z(Z'Z)"'Z’ is an idempotent matrix, X'X) = X'X. Using this
result and expanding d, we find

d=X'X)" Xy - X'X)"'X'y
= XXXy - XX)XX)"'XYy]
= X'X) X' (y - X(X'X)'X'y)
= X'X)'Xe,

where e is the vector of least squares residuals. Recall that K; of the columns in X are
the original variables in X. Suppose that these variables are the first K. Thus, the first
K, rows of X’e are the same as the first K, rows of X’e, which are, of course 0. (This
statement does not mean that the first K elements of d are zero.) So, we can write d as

N 0 DN 0
_ ’ -1 R — ! -1
d= XX [X*,e] XX) M :
Finally, denote the entire matrix in H by W. (Since that ordinary inverse may not exist,

this matrix will have to be a generalized inverse; see Section A.7.12.) Then, denoting
the whole matrix product by P, we obtain

r K NN — /N — 0 Y 0 *! *

where P, is the lower right K* x K* submatrix of P. We now have the end result.
Algebraically, H is actually a quadratic form in a K* vector, so K* is the degrees of
freedom for the test.

Since the preceding Wald test requires a generalized inverse [see Hausman and
Taylor (1981)], it is going to be a bit cumbersome. In fact, one need not actually
approach the test in this form, and it can be carried out with any regression program.
The alternative approach devised by Wu (1973) is simpler. An F statistic with K* and
n— K — K* degrees of freedom can be used to test the joint significance of the elements
of y in the augmented regression

y=XB+X'y +¢", (5-24)

where X* are the fitted values in regressions of the variables in X* on Z. This result is
equivalent to the Hausman test for this model. [Algebraic derivations of this result can
be found in the articles and in Davidson and MacKinnon (1993).]

Although most of the results above are specific to this test of correlation between
some of the columns of X and the disturbances, &, the Hausman test is general. To
reiterate, when we have a situation in which we have a pair of estimators, 6p and 6,
such that under Hy: 0 z and @ are both consistent and 6  is efficient relative to § ;, while
under H: 6; remains consistent while 6 £ is inconsistent, then we can form a test of the
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hypothesis by referring the “Hausman statistic,”
H=(f; —05) {Est.Asy. Var[f ] — Est.Asy. Var[0£]} '@, — ) - x2[J],

to the appropriate critical value for the chi-squared distribution. The appropriate
degrees of freedom for the test, J, will depend on the context. Moreover, some sort
of generalized inverse matrix may be needed for the matrix, although in at least one
common case, the random effects regression model (see Chapter 13), the appropriate
approach is to extract some rows and columns from the matrix instead. The short rank
issue is not general. Many applications can be handled directly in this form with a full
rank quadratic form. Moreover, the Wu approach is specific to this application. The
other applications that we will consider, fixed and random effects for panel data and the
independence from irrelevant alternatives test for the multinomial logit model, do not
lend themselves to the regression approach and are typically handled using the Wald
statistic and the full rank quadratic form. As a final note, observe that the short rank
of the matrix in the Wald statistic is an algebraic result. The failure of the matrix in the
Wald statistic to be positive definite, however, is sometimes a finite sample problem that
is not part of the model structure. In such a case, forcing a solution by using a general-
ized inverse may be misleading. Hausman suggests that in this instance, the appropriate
conclusion might be simply to take the result as zero and, by implication, not reject the
null hypothesis.

Example 5.3 Hausman Test for a Consumption Function

Quarterly data for 1950.1 to 2000.4 on a number of macroeconomic variables appear in
Table F5.1. A consumption function of the form C; = o + BY; + &; is estimated using the 204
observations on aggregate U.S. consumption and disposable personal income. In Exam-
ple 5.2, this model is suggested as a candidate for the possibility of bias due to correlation
between Y; and &;. Consider instrumental variables estimation using Y;_y and C;_; as the
instruments for Y;, and, of course, the constant term is its own instrument. One observation
is lost because of the lagged values, so the results are based on 203 quarterly observations.
The Hausman statistic can be computed in two ways:

1. Use the Wald statistic in (5-23) with the Moore—Penrose generalized inverse. The
common s? is the one computed by least squares under the null hypothesis of no
correlation. With this computation, H = 22.111. There is K* = 1 degree of freedom. The
95 percent critical value from the chi-squared table is 3.84. Therefore, we reject the null
hypothesis of no correlation between Y; and «;.

2. Using the Wu statistic based on (5-24), we regress C; on a constant, Y;, and the
predicted value in a regression of Y; on a constant, Y;_; and C;_+. The t ratio on the
prediction is 4.945, so the F statistic with 1 and 201 degrees of freedom is 24.453. The
critical value for this F distribution is 4.15, so, again, the null hypothesis is rejected.

5.6 MEASUREMENT ERROR

Thus far, it has been assumed (at least implicitly) that the data used to estimate the
parameters of our models are true measurements on their theoretical counterparts. In
practice, this situation happens only in the best of circumstances. All sorts of measure-
ment problems creep into the data that must be used in our analyses. Even carefully
constructed survey data do not always conform exactly to the variables the analysts
have in mind for their regressions. Aggregate statistics such as GDP are only estimates
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of their theoretical counterparts, and some variables, such as depreciation, the services
of capital, and “the interest rate,” do not even exist in an agreed-upon theory. At worst,
there may be no physical measure corresponding to the variable in our model; intelli-
gence, education, and permanent income are but a few examples. Nonetheless, they all
have appeared in very precisely defined regression models.

5.6.1 LEAST SQUARES ATTENUATION

In this section, we examine some of the received results on regression analysis with badly
measured data. The general assessment of the problem is not particularly optimistic.
The biases introduced by measurement error can be rather severe. There are almost no
known finite-sample results for the models of measurement error; nearly all the results
that have been developed are asymptotic.!” The following presentation will use a few
simple asymptotic results for the classical regression model.

The simplest case to analyze is that of a regression model with a single regressor and
no constant term. Although this case is admittedly unrealistic, it illustrates the essential
concepts, and we shall generalize it presently. Assume that the model

V= pat e (5-25)

conforms to all the assumptions of the classical normal regression model. If data on y*
and x* were available, then 8 would be estimable by least squares. Suppose, however,
that the observed data are only imperfectly measured versions of y* and x*. In the
context of an example, suppose that y* is In(output/labor) and x* is In(capital/labor).
Neither factor input can be measured with precision, so the observed y and x contain
errors of measurement. We assume that

y=y"+v withv~ N[0,07], (5-26a)
x=x"+u withu~ N[0,07]. (5-26b)

Assume, as well, that # and v are independent of each other and of y* and x*. (As we
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

As a first step, insert (5-26a) into (5-25), assuming for the moment that only y* is
measured with error:

y=Bx"+e+v=p8px"+¢.

This result conforms to the assumptions of the classical regression model. As long as the
regressor is measured properly, measurement error on the dependent variable can be
absorbed in the disturbance of the regression and ignored. To save some cumbersome
notation, therefore, we shall henceforth assume that the measurement error problems
concern only the independent variables in the model.

Consider, then, the regression of y on the observed x. By substituting (5-26b) into
(5-25), we obtain

y=pBx+[e—Bu]l=Bx+w. (5-27)

108ee, for example, Imbens and Hyslop (2001).



Greene-50240

book

June 3, 2002 9:59

CHAPTER 5 4 Large-Sample Properties 85

Since x equals x* + u, the regressor in (5-27) is correlated with the disturbance:

Cov[x, w] = Cov[x* 4+ u, ¢ — fu] = —Bo?. (5-28)

u

This result violates one of the central assumptions of the classical model, so we can
expect the least squares estimator

b (1/m) 370 xiyi
A/ S L2
A/m) 3o x;
to be inconsistent. To find the probability limits, insert (5-25) and (5-26b) and use the
Slutsky theorem:

_oplim(1/n) 377 (O 4 w) (Bx; 4 &)
- plim(1/n) S0 (F + u;)?

Since x*, ¢, and u are mutually independent, this equation reduces to

. BO* B
plimb = O +ol " 1102/0" (5-29)
where O* = plim(1/n) }_; x;%. Aslongaso? is positive, b is inconsistent, with a persistent
bias toward zero. Clearly, the greater the variability in the measurement error, the worse
the bias. The effect of biasing the coefficient toward zero is called attenuation.
In a multiple regression model, matters only get worse. Suppose, to begin, we assume
thaty = X*B + ¢ and X = X* 4+ U, allowing every observation on every variable to be
measured with error. The extension of the earlier result is

plimb

2

X'X X
plim( ) =Q*+X,, and plim( y) = Q*B.
n n

Hence,
thb = [Q* + Zuu]ilo*ﬂ = ﬂ - [Q* + Zuu]ilzuuﬂ- (5'30)

This probability limit is a mixture of all the parameters in the model. In the same fashion
as before, bringing in outside information could lead to identification. The amount of
information necessary is extremely large, however, and this approach is not particularly
promising.

It is common for only a single variable to be measured with error. One might
speculate that the problems would be isolated to the single coefficient. Unfortunately,
this situation is not the case. For a single bad variable —assume that it is the first—the
matrix X, is of the form

auz 0 0

0 0 0
2;uu =

0 0 0

It can be shown that for this special case,

B

plim b; = THo2gh

(5-31a)
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(note the similarity of this result to the earlier one), and, for k # 1,

2wkl
o.q* }
9

L+ o5q*" (5-31b)

plim by = B — B {
where g*! is the (k, 1)th element in (Q*)~'.!! This result depends on several unknowns
and cannot be estimated. The coefficient on the badly measured variable is still biased
toward zero. The other coefficients are all biased as well, although in unknown direc-
tions. A badly measured variable contaminates all the least squares estimates.'? If more
than one variable is measured with error, there is very little that can be said.!* Although
expressions can be derived for the biases in a few of these cases, they generally depend
on numerous parameters whose signs and magnitudes are unknown and, presumably,
unknowable.

5.6.2 INSTRUMENTAL VARIABLES ESTIMATION

An alternative set of results for estimation in this model (and numerous others) is built
around the method of instrumental variables. Consider once again the errorsin variables
model in (5-25) and (5-26a,b). The parameters, 8, o2, ¢*, and o are not identified in
terms of the moments of x and y. Suppose, however, that there exists a variable z such
that z is correlated with x* but not with u. For example, in surveys of families, income
is notoriously badly reported, partly deliberately and partly because respondents often
neglect some minor sources. Suppose, however, that one could determine the total
amount of checks written by the head(s) of the household. It is quite likely that this z
would be highly correlated with income, but perhaps not significantly correlated with
the errors of measurement. If Cov[x*, z] is not zero, then the parameters of the model
become estimable, as

/)Y yiz B Covlx*,z] _
(/m) > xizi Cov[x*,z] B (5-32)

In a multiple regression framework, if only a single variable is measured with error,
then the preceding can be applied to that variable and the remaining variables can serve
as their own instruments. If more than one variable is measured with error, then the
first preceding proposal will be cumbersome at best, whereas the second can be applied
to each.

For the general case, y = X*B + &, X = X* 4+ U, suppose that there exists a matrix
of variables Z that is not correlated with the disturbances or the measurement error but
is correlated with regressors, X. Then the instrumental variables estimator based on Z,
brv = (Z’X)~'Z'y, is consistent and asymptotically normally distributed with asymptotic
covariance matrix that is estimated with

Est.Asy. Var[byy] = 62[Z’X] [Z'Z][X'Z] . (5-33)

For more general cases, Theorem 5.3 and the results in Section 5.4 apply.

Nyse (A-66) to invert [Q* + X,,] = [Q* + (0,e1)(0ye1)'], Where e is the first column of a K x K identity
matrix. The remaining results are then straightforward.

12This point is important to remember when the presence of measurement error is suspected.

13Some firm analytic results have been obtained by Levi (1973), Theil (1961), Klepper and Leamer (1983),
Garber and Klepper (1980), and Griliches (1986) and Cragg (1997).
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5.6.3 PROXY VARIABLES

In some situations, a variable in a model simply has no observable counterpart. Edu-
cation, intelligence, ability, and like factors are perhaps the most common examples.
In this instance, unless there is some observable indicator for the variable, the model
will have to be treated in the framework of missing variables. Usually, however, such an
indicator can be obtained; for the factors just given, years of schooling and test scores
of various sorts are familiar examples. The usual treatment of such variables is in the
measurement error framework. If, for example,

income = By + B, education + ¢
and
years of schooling = education + u,

then the model of Section 5.6.1 applies. The only difference here is that the true variable
in the modelis “latent.” No amount of improvement in reporting or measurement would
bring the proxy closer to the variable for which it is proxying.

The preceding is a pessimistic assessment, perhaps more so than necessary. Consider
a structural model,

Earnings = By + B, Experience + B3 Industry + B4 Ability + ¢

Ability is unobserved, but suppose that an indicator, say /Q is. If we suppose that IQ is
related to Ability through a relationship such as

10 = o + ap Ability + v

then we may solve the second equation for Ability and insert it in the first to obtain the
reduced form equation

Earnings = (1 — a1/a2) + By Experience + B3 Industry + (B4/a2)I0 + (¢ — v/a).

This equation is intrinsically linear and can be estimated by least squares. We do not
have a consistent estimator of B; or 84, but we do have one of the coefficients of interest.
This would appear to “solve” the problem. We should note the essential ingredients;
we require that the indicator, /Q, not be related to the other variables in the model, and
we also require that v not be correlated with any of the variables. In this instance, some
of the parameters of the structural model are identified in terms of observable data.
Note, though, that /Q is not a proxy variable, it is an indicator of the latent variable,
Ability. This form of modeling has figured prominently in the education and educational
psychology literature. Consider, in the preceding small model how one might proceed
with not just a single indicator, but say with a battery of test scores, all of which are
indicators of the same latent ability variable.

It is to be emphasized that a proxy variable is not an instrument (or the reverse).
Thus, in the instrumental variables framework, it is implied that we do not regress y on
Z to obtain the estimates. To take an extreme example, suppose that the full model was

y=XB+e,
X=X*+ U,
7Z=X*+ W.
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That is, we happen to have two badly measured estimates of X*. The parameters of this
model can be estimated without difficulty if W is uncorrelated with U and X*, but not
by regressing y on Z. The instrumental variables technique is called for.

When the model contains a variable such as education or ability, the question that
naturally arises is, If interest centers on the other coefficients in the model, why not
just discard the problem variable?'# This method produces the familiar problem of an
omitted variable, compounded by the least squares estimator in the full model being
inconsistent anyway. Which estimator is worse? McCallum (1972) and Wickens (1972)
show that the asymptotic bias (actually, degree of inconsistency) is worse if the proxy
is omitted, even if it is a bad one (has a high proportion of measurement error). This
proposition neglects, however, the precision of the estimates. Aigner (1974) analyzed
this aspect of the problem and found, as might be expected, that it could go either way.
He concluded, however, that “there is evidence to broadly support use of the proxy.”

5.6.4 APPLICATION: INCOME AND EDUCATION AND
A STUDY OF TWINS

The traditional model used in labor economics to study the effect of education on
income is an equation of the form

yi = P1 + B2 age; + B3 agei2 + B4 education; + x5 + &,

where y; is typically a wage or yearly income (perhaps in log form) and x; contains other
variables, such as an indicator for sex, region of the country, and industry. The literature
contains discussion of many possible problems in estimation of such an equation by
least squares using measured data. Two of them are of interest here:

1. Although “education” is the variable that appears in the equation, the data
available to researchers usually include only “years of schooling.” This variable is
a proxy for education, so an equation fit in this form will be tainted by this
problem of measurement error. Perhaps surprisingly so, researchers also find that
reported data on years of schooling are themselves subject to error, so there is a
second source of measurement error. For the present, we will not consider the first
(much more difficult) problem.

2. Other variables, such as “ability” —we denote these wu; —will also affect income
and are surely correlated with education. If the earnings equation is estimated in
the form shown above, then the estimates will be further biased by the absence of
this “omitted variable.” For reasons we will explore in Chapter 22, this bias has
been called the selectivity effect in recent studies.

Simple cross-section studies will be considerably hampered by these problems. But, in
a recent study, Ashenfelter and Krueger (1994) analyzed a data set that allowed them,
with a few simple assumptions, to ameliorate these problems.

Annual “twins festivals” are held at many places in the United States. The largest
is held in Twinsburg, Ohio. The authors interviewed about 500 individuals over the
age of 18 at the August 1991 festival. Using pairs of twins as their observations enabled
them to modify their model as follows: Let (y;;, A;;) denote the earnings and age for

14This discussion applies to the measurement error and latent variable problems equally.
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twin j, j =1, 2, for pair i. For the education variable, only self-reported “schooling”
data, S;;, are available. The authors approached the measurement problem in the
schooling variable, S;;, by asking each twin how much schooling they had and how
much schooling their sibling had. Denote schooling reported by sibling m of sibling j
by S;;(m). So, the self-reported years of schooling of twin 1 is S;;(1). When asked how
much schooling twin 1 has, twin 2 reports S;1(2). The measurement error model for the
schooling variable is

Sij(m) = Sij +u;j(m), j,m=1,2, where S;; = “true” schooling for twin jof pair i.

We assume that the two sources of measurement error, u;;(m), are uncorrelated and
have zero means. Now, consider a simple bivariate model such as the one in (5-25):

Yij = BSij + ¢€ij.
Aswesaw earlier, aleast squares estimate of 8 using the reported data will be attenuated:

B x Var[§;/] .y
Var[S;] + Varlu; ()] 00

(Since there is no natural distinction between twin 1 and twin 2, the assumption that
the variances of the two measurement errors are equal is innocuous.) The factor ¢ is
sometimes called the reliability ratio. In this simple model, if the reliability ratio were
known, then B could be consistently estimated. In fact, this construction of this model

allows just that. Since the two measurement errors are uncorrelated,
Cort[$:1(1), $12)] = Corr[sizéC), 5] [F)
_ Var[Si]
a {{Var[S$;1] + Var[u;s (D]} x {Var[S;1] + Var[u;1(2)]} }

In words, the correlation between the two reported education attainments measures
the reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of
identical twins and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick
assessment of the extent of measurement error in their schooling data.

Since the earnings equation is a multiple regression, this result is useful for an
overall assessment of the problem, but the numerical values are not sufficient to undo
the overall biases in the least squares regression coefficients. An instrumental variables
estimator was used for that purpose. The estimating equation for y;; = In Wage,; with
the least squares (LS) and instrumental variable (IV) estimates is as follows:

vij = B1 + B2 age; + Bs age? + BaSij () + BsSim(m) + Po sex; + B7 race; + &;
LS (0.088) (—0.087) (0.084) (0.204) (—0.410)
1A% (0.088) (—0.087) (0.116) (0.037) (0.206) (—0.428)

In the equation, §;;(j) is the person’s report of his or her own years of schooling and
Sim(m) is the sibling’s report of the sibling’s own years of schooling. The problem vari-
able is schooling. To obtain consistent estimates, the method of instrumental variables
was used, using each sibling’s report of the other sibling’s years of schooling as a pair
of instrumental variables. The estimates reported by the authors are shown below the
equation. (The constant term was not reported, and for reasons not given, the sec-
ond schooling variable was not included in the equation when estimated by LS.) This

plim b =

172 —
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preliminary set of results is presented to give a comparison to other results in the litera-
ture. The age, schooling, and gender effects are comparable with other received results,
whereas the effect of race is vastly different, —40 percent here compared with a typical
value of +9 percent in other studies. The effect of using the instrumental variable es-
timator on the estimates of B4 is of particular interest. Recall that the reliability ratio
was estimated at about 0.9, which suggests that the IV estimate would be roughly 11
percent higher (1/0.9). Since this result is a multiple regression, that estimate is only a
crude guide. The estimated effect shown above is closer to 38 percent.

The authors also used a different estimation approach. Recall the issue of selection
bias caused by unmeasured effects. The authors reformulated their model as

vij = B + B age; + B3 age? + BaSi; (j) + Bs sex; + B race; + i + &)

Unmeasured latent effects, such as “ability,” are contained in y;. Since y; is not ob-
servable but is, it is assumed, correlated with other variables in the equation, the least
squares regression of y;; on the other variables produces a biased set of coefficient
estimates. The difference between the two earnings equations is

yit — Yi2 = Ba[Sit(D) — Sin(@)] + i1 — €in.

This equation removes the latent effect but, it turns out, worsens the measurement
error problem. As before, 84 can be estimated by instrumental variables. There are two
instrumental variables available, S;;(1) and S;;(2). (It is not clear in the paper whether
the authors used the two separately or the difference of the two.) The least squares
estimate is 0.092, which is comparable to the earlier estimate. The instrumental variable
estimate is 0.167, which is nearly 82 percent higher. The two reported standard errors
are 0.024 and 0.043, respectively. With these figures, it is possible to carry out Hausman’s
test;

(0.167 — 0.092)?
0.0432 — 0.0242

The 95 percent critical value from the chi-squared distribution with one degree of free-
dom is 3.84, so the hypothesis that the LS estimator is consistent would be rejected.
(The square root of H,2.102, would be treated as a value from the standard normal dis-
tribution, from which the critical value would be 1.96. The authors reported a ¢ statistic
for this regression of 1.97. The source of the difference is unclear.)

H= =4.418.

5.7 SUMMARY AND CONCLUSIONS

This chapter has completed the description begun in Chapter 4 by obtaining the large
sample properties of the least squares estimator. The main result is that in large samples,
the estimator behaves according to a normal distribution and converges in probability to
the true coefficient vector. We examined several data types, with one of the end results
being that consistency and asymptotic normality would persist under a variety of broad
assumptions about the data. We then considered a class of estimators, the instrumental
variable estimators, which will retain the important large sample properties we found
earlier, consistency and asymptotic normality, in cases in which the least squares estima-
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tor is inconsistent. Two common applications include dynamic models, including panel
data models, and models of measurement error.

Key Terms and Concepts

e Asymptotic distribution ¢ Finite sample properties e Measurement error
e Asymptotic efficiency ¢ Grenander conditions ¢ Panel data
e Asymptotic normality e Hausman’s specification test e Probability limit
e Asymptotic covariance o Identification ¢ Reduced form equation
matrix e Indicator ¢ Reliability ratio
e Asymptotic properties e Instrumental variable e Specification test
¢ Attenuation ¢ Lindberg—Feller central o Stationary process
¢ Consistency limit theorem o Stochastic regressors
e Dynamic regression e Maximum likelihood e Structural model
o Efficient scale estimator ¢ Two stage least squares
¢ Ergodic e Mean square convergence
Exercises

1. For the classical normal regression model y = XB + ¢ with no constant term and
K regressors, what is plim F[K,n — K] = plim m, assuming that the true
value of B is zero?

2. Let ¢; be the ith residual in the ordinary least squares regression of y on X in the
classical regression model, and let ¢; be the corresponding true disturbance. Prove
that plim(e; — ¢;) = 0.

3. For the simple regression model y; = u + &;, & ~ N[0, o?], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the

alternative estimator ft = Y, w;y;, w; = m = i Note that >, w; = 1.
i

Prove that this is a consistent estimator of x and obtain its asymptotic variance.
[Hint: >, i = n(n + 1)(2n +1)/6.]

4. In the discussion of the instrumental variables estimator we showed that the least
squares estimator b is biased and inconsistent. Nonetheless, b does estimate some-
thing: plimb = @ = B + Q~!y. Derive the asymptotic covariance matrix of b, and
show that b is asymptotically normally distributed.

5. For the model in (5-25) and (5-26), prove that when only x* is measured with error,
the squared correlation between y and x is less than that between y* and x*. (Note
the assumption that y* = y.) Does the same hold true if y* is also measured with
error?

6. Christensen and Greene (1976) estimated a generalized Cobb-Douglas cost func-
tion of the form

In(C/Pf) = a + B1In Q+ y(In* Q)/2 + 8 In(P/ Py) + 8 In(P/ Py) + e.

Py, P and Py indicate unit prices of capital, labor, and fuel, respectively, Q is
output and C is total cost. The purpose of the generalization was to produce a
U-shaped average total cost curve. (See Example 7.3 for discussion of Nerlove’s
(1963) predecessor to this study.) We are interested in the output at which the cost
curve reaches its minimum. That is the point at which (0InC/d1In Q) p-p- = 1
or O* = exp[(l1 — B)/y]. The estimated regression model using the Christensen
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and Greene 1970 data are as follows, where estimated standard errors are given in
parentheses:

In(C/Py) = —7.294 4 0.39091 In Q + 0.062413(In* Q) /2
(0.34427) (0.036988) (0.0051548)

+0.07479 In(P/ Py) + 0.2608In( P/ Pf) + e.
(0.061645) (0.068109)

The estimated asymptotic covariance of the estimators of g and y is —0.000187067,
R? = 0.991538 and e’e = 2.443509. Using the estimates given above, compute the
estimate of this efficient scale. Compute an estimate of the asymptotic standard
error for this estimate, then form a confidence interval for the estimated efficient
scale. The data for this study are given in Table F5.2. Examine the raw data and
determine where in the sample the efficient scale lies. That is, how many firms in
the sample have reached this scale, and is this scale large in relation to the sizes of
firms in the sample?

The consumption function used in Example 5.3 is a very simple specification. One
might wonder if the meager specification of the model could help explain the finding
in the Hausman test. The data set used for the example are given in Table F5.1. Use
these data to carry out the test in a more elaborate specification

¢ = PB1+ By + Bair + Paci—1 + &

where ¢, is the log of real consumption, y, is the log of real disposable income, and
i, is the interest rate (90-day T bill rate).

Suppose we change the assumptions of the model to ASS: (x;, ¢) are an independent
and identically distributed sequence of random vectors such that x; has a finite
mean vector, iy, finite positive definite covariance matrix Xy, and finite fourth
moments E [x;XxX;Xy] = ¢jum for all variables. How does the proof of consistency
and asymptotic normality of b change? Are these assumptions weaker or stronger
than the ones made in Section 5.27

Now, assume only finite second moments of x; E [x7] is finite. Is this sufficient to
establish consistency of b? (Hint: the Cauchy—Schwartz inequality (Theorem D.13),
E[lxy|] < {E[xz]}l/2 {E [yz]}l/2 will be helpful.) Is this assumption sufficient to
establish asymptotic normality?
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