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ESTIMATION FRAMEWORKS
IN ECONOMETRICS

—VV =

16.1 INTRODUCTION

This chapter begins our treatment of methods of estimation. Contemporary economet-
rics offers the practitioner a remarkable variety of estimation methods, ranging from
tightly parameterized likelihood based techniques at one end to thinly stated nonpara-
metric methods that assume little more than mere association between variables at
the other, and a rich variety in between. Even the experienced researcher could be
forgiven for wondering how they should choose from this long menu. It is certainly
beyond our scope to answer this question here, but a few principles can be suggested.
Recent research has leaned when possible toward methods that require few (or fewer)
possibly unwarranted or improper assumptions. This explains the ascendance of the
GMM estimator in situations where strong likelihood-based parameterizations can be
avoided and robust estimation can be done in the presence of heteroscedasticity and
serial correlation. (It is intriguing to observe that this is occurring at a time when ad-
vances in computation have helped bring about increased acceptance of very heavily
parameterized Bayesian methods.)

As a general proposition, the progression from full to semi- to non-parametric
estimation relaxes strong assumptions, but at the cost of weakening the conclusions
that can be drawn from the data. As much as anywhere else, this is clear in the anal-
ysis of discrete choice models, which provide one of the most active literatures in the
field. (A sampler appears in Chapter 21.) A formal probit or logit model allows estima-
tion of probabilities, marginal effects, and a host of ancillary results, but at the cost of
imposing the normal or logistic distribution on the data. Semiparametric and nonpara-
metric estimators allow one to relax the restriction, but often provide, in return, only
ranges of probabilities, if that, and in many cases, preclude estimation of probabilities
or useful marginal effects. One does have the virtue of robustness in the conclusions,
however. [See, e.g., the symposium in Angrist (2001) for a spirited discussion on these
points.]

Estimation properties is another arena in which the different approaches can be
compared. Within a class of estimators, one can define “the best” (most efficient) means
of using the data. (See Example 16.2 below for an application.) Sometimes comparisons
can be made across classes as well. For example, when they are estimating the same
parameters—this remains to be established—the best parametric estimator will gener-
ally outperform the best semiparametric estimator. That is the value of the information,
of course. The other side of the comparison, however, is that the semiparametric esti-
mator will carry the day if the parametric model is misspecified in a fashion to which
the semiparametric estimator is robust (and the parametric model is not).
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Schools of thought have entered this conversation for a long time. Proponents of
Bayesian estimation often took an almost theological viewpoint in their criticism of their
classical colleagues. [See, for example, Poirier (1995).] Contemporary practitioners are
usually more pragmatic than this. Bayesian estimation has gained currency as a set of
techniques that can, in very many cases, provide both elegant and tractable solutions
to problems that have heretofore been out of reach. Thus, for example, the simulation-
based estimation advocated in the many papers of Chib and Greenberg (e.g., 1996) have
provided solutions to a variety of computationally challenging problems.! Arguments
as to the methodological virtue of one approach or the other have received much less
attention than before.

Chapters 2 though 9 of this book have focused on the classical regression model
and a particular estimator, least squares (linear and nonlinear). In this and the next
two chapters, we will examine several general estimation strategies that are used in a
wide variety of situations. This chapter will survey a few methods in the three broad
areas we have listed, including Bayesian methods. Chapter 17 presents the method of
maximum likelihood, the broad platform for parametric, classical estimation in econo-
metrics. Chapter 18 discusses the generalized method of moments, which has emerged
as the centerpiece of semiparametric estimation. Sections 16.2.4 and 17.8 will examine
two specific estimation frameworks, one Bayesian and one classical, that are based on
simulation methods. This is a recently developed body of techniques that have been
made feasible by advances in estimation technology and which has made quite straight-
forward many estimators which were previously only scarcely used because of the sheer
difficulty of the computations.

The list of techniques presented here is far from complete. We have chosen a set
that constitute the mainstream of econometrics. Certainly there are others that might
be considered. [See, for example, Mittelhammer, Judge, and Miller (2000) for a lengthy
catalog.] Virtually all of them are the subject of excellent monographs on the subject. In
this chapter we will present several applications, some from the literature, some home
grown, to demonstrate the range of techniques that are current in econometric practice.
We begin in Section 16.2 with parametric approaches, primarily maximum likelihood.
Since this is the subject of much of the remainder of this book, this section is brief.
Section 16.2 also presents Bayesian estimation, which in its traditional form, is as heav-
ily parameterized as maximum likelihood estimation. This section focuses mostly on the
linear model. A few applications of Bayesian techniques to other models are presented
as well. We will also return to what is currently the standard toolkit in Bayesian esti-
mation, Markov Chain Monte Carlo methods in Section 16.2.4. Section 16.2.3 presents
an emerging technique in the classical tradition, latent class modeling, which makes
interesting use of a fundamental result based on Bayes Theorem. Section 16.3 is on
semiparametric estimation. GMM estimation is the subject of all of Chapter 18, so it is

I'The penetration of Bayesian econometrics could be overstated. It is fairly well represented in the current
journals such as the Journal of Econometrics, Journal of Applied Econometrics, Journal of Business and
Economic Statistics, and so on. On the other hand, in the six major general treatments of econometrics
published in 2000, four (Hayashi, Ruud, Patterson, Davidson) do not mention Bayesian methods at all,
a buffet of 32 essays (Baltagi) devotes only one to the subject, and the one that displays any preference
(Mittelhammer et al.) devotes nearly 10 percent (70) of its pages to Bayesian estimation, but all to the broad
metatheory or the linear regression model and none to the more elaborate applications that form the received
applications in the many journals in the field.
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only introduced here. The technique of least absolute deviations is presented here as
well. A range of applications from the recent literature is also surveyed. Section 16.4
describes nonparametric estimation. The fundamental tool, the kernel density estima-
tor is developed, then applied to a problem in regression analysis. Two applications are
presented here as well. Being focused on application, this chapter will say very little
about the statistical theory for of these techniques—such as their asymptotic properties.
(The results are developed at length in the literature, of course.) We will turn to the
subject of the properties of estimators briefly at the end of the chapter, in Section 16.5,
then in greater detail in Chapters 17 and 18.

16.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs from a full statement of the density or probability model
that provides the data generating mechanism for a random variable of interest. For the
sorts of applications we have considered thus far, we might say that the joint density
of a scalar random variable, “y” and a random vector, “x” of interest can be specified
by

f.x) =g(yIx, B) x h(x|0) 16-1)

with unknown parameters § and 6. To continue the application that has occupied us
since Chapter 2, consider the linear regression model with normally distributed distur-
bances. The assumption produces a full statement of the conditional density that is the
population from which an observation is drawn;

Vi |Xl' ~ N[X;ﬂ, 0'2].

All that remains for a full definition of the population is knowledge of the specific
values taken by the unknown but fixed parameters. With those in hand, the conditional
probability distribution for y; is completely defined—mean, variance, probabilities of
certain events, and so on. (The marginal density for the conditioning variables is usually
not of particular interest.) Thus, the signature features of this modeling platform are
specification of both the density and the features (parameters) of that density.

The parameter space for the parametric model is the set of allowable values of
the parameters which satisfy some prior specification of the model. For example, in
the regression model specified previously, the K regression slopes may take any real
value, but the variance must be a positive number. Therefore, the parameter space for
that model is [B, 0%] € RX x R,. “Estimation” in this context consists of specifying
a criterion for ranking the points in the parameter space, then choosing that point (a
point estimate) or a set of points (an interval estimate) that optimizes that criterion,
that is, has the best ranking. Thus, for example, we chose linear least squares as one
estimation criterion for the linear model. “Inference” in this setting is a process by which
some regions of the (already specified) parameter space are deemed not to contain the
unknown parameters, though, in more practical terms, we typically define a criterion
and then, state that, by that criterion, certain regions are unlikely to contain the true
parameters.
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16.2.1 CLASSICAL LIKELIHOOD BASED ESTIMATION

The most common (by far) class of parametric estimators used in econometrics is the
maximum likelihood estimators. The underlying philosophy of this class of estimators
is the idea of “sample information.” When the density of a sample of observations is
completely specified, apart from the unknown parameters, then the joint density of
those observations (assuming they are independent), is the likelihood function,

n
FO e oxixa, ) =[] FGixi18.6). (16-2)
i=1
This function contains all the information available in the sample about the population
from which those observations were drawn. The strategy by which that information is
used in estimation constitutes the estimator.
The maximum likelihood estimator [Fisher (1925)] is that function of the data which
(as its name implies) maximizes the likelihood function (or, because it is usually more
convenient, the log of the likelihood function). The motivation for this approach is
most easily visualized in the setting of a discrete random variable. In this case, the
likelihood function gives the joint probability for the observed sample observations,
and the maximum likelihood estimator is the function of the sample information which
makes the observed data most probable (at least by that criterion). Though the analogy is
most intuitively appealing for a discrete variable, it carries over to continuous variables
as well. Since this estimator is the subject of Chapter 17, which is quite lengthy, we
will defer any formal discussion until then, and consider instead two applications to
illustrate the techniques and underpinnings.

Example 16.1 The Linear Regression Model
Least squares weighs negative and positive deviations equally and gives disproportionate
weight to large deviations in the calculation. This property can be an advantage or a disad-
vantage, depending on the data-generating process. For normally distributed disturbances,
this method is precisely the one needed to use the data most efficiently. If the data are
generated by a normal distribution, then the log of the likelihood function is

InL:—gInZTr—Elnaz— (y—XB)'(y —XB).

1

2 202
You can easily show that least squares is the estimator of choice for this model. Maximizing
the ft.2|nction means minimizing the exponent, which is done by least squares for 8 and e’e/n
for o=.

If the appropriate distribution is deemed to be something other than normal—perhaps on
the basis of an observation that the tails of the disturbance distribution are too thick—see
Example 5.1 and Section 17.6.3—then there are three ways one might proceed. First, as
we have observed, the consistency of least squares is robust to this failure of the specifi-
cation, so long as the conditional mean of the disturbances is still zero. Some correction
to the standard errors is necessary for proper inferences. (See Section 10.3.) Second, one
might want to proceed to an estimator with better finite sample properties. The least absolute
deviations estimator discussed in Section 16.3.2 is a candidate. Finally, one might consider
some other distribution which accommodates the observed discrepancy. For example, Ruud
(2000) examines in some detail a linear regression model with disturbances distributed ac-
cording to the t distribution with v degrees of freedom. As long as v is finite, this random
variable will have a larger variance than the normal. Which way should one proceed? The
third approach is the least appealing. Surely if the normal distribution is inappropriate, then
it would be difficult to come up with a plausible mechanism whereby the t distribution would
not be. The LAD estimator might well be preferable if the sample were small. If not, then least
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squares would probably remain the estimator of choice, with some allowance for the fact
that standard inference tools would probably be misleading. Current practice is generally to
adopt the first strategy.

Example 16.2 The Stochastic Frontier Model
The stochastic frontier model, discussed in detail in Section 17.6.3, is a regression-like
model with a disturbance that is asymmetric and distinctly nonnormal. (See Figure 17.3.) The
conditional density for the dependent variable in this model is

_ v —x'R)2 _ P
f(ylx,ﬁ,a,k)zagexp{ (y 20;2xﬂ) }@( My : xﬂ))

This produces a log-likelihood function for the model,

n 2 1 “ &j 2 . —&iA
InL_—nIna—EIn;—Ez;(;) +Z1:In<l> .
1= =

There are at least two fully parametric estimators for this model. The maximum likelihood
estimator is discussed in Section 17.6.3. Greene (1997b) presents the following method
of moments estimator: For the regression slopes, excluding the constant term, use least
squares. For the parameters «, o, and A, based on the second and third moments of the
least squares residuals and least squares constant, solve

my = av2 +[1 - 2/7'[]6“2
mg = (2/7)"?[1 — 4/x]o,
a=a+(2/7)%0,

where A = o, /0, and 02 = 62 + o2.

Both estimators are fully parametric. The maximum likelihood estimator is for the reasons
discussed earlier. The method of moments estimators (see Section 18.2) are appropriate only
for this distribution. Which is preferable? As we will see in Chapter 17, both estimators are
consistent and asymptotically normally distributed. By virtue of the Cramér-Rao theorem,
the maximum likelihood estimator has a smaller asymptotic variance. Neither has any small
sample optimality properties. Thus, the only virtue of the method of moments estimator is
that one can compute it with any standard regression/statistics computer package and a
hand calculator whereas the maximum likelihood estimator requires specialized software
(only somewhat—it is reasonably common).

16.2.2 BAYESIAN ESTIMATION

Parametric formulations present a bit of a methodological dilemma. They would seem
to straightjacket the researcher into a fixed and immutable specification of the model.
But in any analysis, there is uncertainty as to the magnitudes and even, on occasion,
the signs of coefficients. It is rare that the presentation of a set of empirical results has
not been preceded by at least some exploratory analysis. Proponents of the Bayesian
methodology argue that the process of “estimation” is not one of deducing the values of
fixed parameters, but rather one of continually updating and sharpening our subjective
beliefs about the state of the world.

The centerpiece of the Bayesian methodology is Bayes theorem: for events A and
B, the conditional probability of event A given that B has occurred is

P(B| A)P(A)

P(A|B) = 5B)
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Paraphrased for our applications here, we would write

P(data | parameters) P(parameters)
P(data) '

In this setting, the data are viewed as constants whose distributions do not involve the
parameters of interest. For the purpose of the study, we treat the data as only a fixed set
of additional information to be used in updating our beliefs about the parameters. [Note
the similarity to the way that the joint density for our parametric model is specified in
(16-1).] Thus, we write

P(parameters | data) =

P(parameters | data) oc P(data | parameters) P(parameters)

= Likelihood function x Prior density.

The symbol o« means “is proportional to.” In the preceding equation, we have dropped
the marginal density of the data, so what remains is not a proper density until it is scaled
by what will be an inessential proportionality constant. The first term on the right is
the joint distribution of the observed random variables y, given the parameters. As we
shall analyze it here, this distribution is the normal distribution we have used in our
previous analysis—see (16-1). The second term is the prior beliefs of the analyst. The
left-hand side is the posterior density of the parameters, given the current body of data,
or our revised beliefs about the distribution of the parameters after “seeing” the data.
The posterior is a mixture of the prior information and the “current information,” that
is, the data. Once obtained, this posterior density is available to be the prior density
function when the next body of data or other usable information becomes available. The
principle involved, which appears nowhere in the classical analysis, is one of continual
accretion of knowledge about the parameters.

Traditional Bayesian estimation is heavily parameterized. The prior density and the
likelihood function are crucial elements of the analysis, and both must be fully specified
for estimation to proceed. The Bayesian “estimator” is the mean of the posterior density
of the parameters, a quantity that is usually obtained either by integration (when closed
forms exist), approximation of integrals by numerical techniques, or by Monte Carlo
methods, which are discussed in Section 16.2.4.

16.2.2.a BAYESIAN ANALYSIS OF THE CLASSICAL
REGRESSION MODEL

The complexity of the algebra involved in Bayesian analysis is often extremely bur-
densome. For the linear regression model, however, many fairly straightforward results
have been obtained. To provide some of the flavor of the techniques, we present the full
derivation only for some simple cases. In the interest of brevity, and to avoid the burden
of excessive algebra, we refer the reader to one of the several sources that present the
full derivation of the more complex cases.?

The classical normal regression model we have analyzed thus far is constructed
around the conditional multivariate normal distribution N[Xg, o%I]. The interpreta-
tion is different here. In the sampling theory setting, this distribution embodies the

These sources include Judge et al. (1982, 1985), Maddala (1977a), Mittelhammer et al. (2000), and the
canonical reference for econometricians, Zellner (1971). Further topics in Bayesian inference are contained
in Zellner (1985). A recent treatment of both Bayesian and sampling theory approaches is Poirier (1995).
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information about the observed sample data given the assumed distribution and the
fixed, albeit unknown, parameters of the model. In the Bayesian setting, this function
summarizes the information that a particular realization of the data provides about the
assumed distribution of the model parameters. To underscore that idea, we rename this
joint density the likelihood for 8 and ¢ given the data, so

L(B, o2 ly, X) = [27[02]—n/Ze—[(l/(2az))(y—Xﬂ)’(y—Xﬂ)]_ (16-3)

For purposes of the results below, some reformulation is useful. Let d = n — K (the
degrees of freedom parameter), and substitute

y-XB=y—Xb—X(f-b)=e—X(B—h)

in the exponent. Expanding this produces

1 o xp— (L) (L) - Lswy(Lxx) s -
() xor 3= (1a) (1) - L vr(Axx)s

After a bit of manipulation (note that n/2 = d/2 + K/2), the likelihood may be written
L(B,o’ |y, X)
[271]—11/2 [02]—d/2€—(d/2)(s2/02)[27.[]—K/2[02]—K/Ze—(1/2)(ﬂ—b)’[vz(X’X)’l]"(ﬂ—b)'

This density embodies all that we have to learn about the parameters from the observed
data. Since the data are taken to be constants in the joint density, we may multiply this
joint density by the (very carefully chosen), inessential (since it does not involve 8 or
%) constant function of the observations,

d d/2)+1
(2)
A= 2d7[27r](d/2) IX'X| ~172,
r{=+1
(3+)
For convenience, let v = d/2. Then, multiplying L(8, o2 |y, X) by A gives

27v+1 1\"?
L(B.0* 1y, X) EZS ]+1) <—z> e N 2] K o2 (XVX) 2
v o

« e~ W/DB=b)[*XX)"]" 1 (B-b) (16-4)

The likelihood function is proportional to the product of a gamma density for z =
1/0? with parameters A = vs? and P = v + 1 [see (B-39); this is an inverted gamma
distribution] and a K-variate normal density for 8 | o> with mean vector b and covariance
matrix o2(X’X)~!. The reason will be clear shortly.

The departure point for the Bayesian analysis of the model is the specification of a
prior distribution. This distribution gives the analyst’s prior beliefs about the parameters
of the model. One of two approaches is generally taken. If no prior information is known
about the parameters, then we can specify a noninformative prior that reflects that. We
do this by specifying a “flat” prior for the parameter in question:?

g(parameter) o« constant.

3That this “improper” density might not integrate to one is only a minor difficulty. Any constant of integration
would ultimately drop out of the final result. See Zellner (1971, pp. 41-53) for a discussion of noninformative
priors.
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There are different ways that one might characterize the lack of prior information. The
implication of a flat prior is that within the range of valid values for the parameter, all
intervals of equal length—hence, in principle, all values—are equally likely. The second
possibility, an informative prior, is treated in the next section. The posterior density is
the result of combining the likelihood function with the prior density. Since it pools
the full set of information available to the analyst, once the data have been drawn, the
posterior density would be interpreted the same way the prior density was before the
data were obtained.

To begin, we analyze the case in which o2 is assumed to be known. This assumption
is obviously unrealistic, and we do so only to establish a point of departure. Using Bayes
Theorem, we construct the posterior density,

LB lo%y. X)g(Blo?)
X, 0%) =
fBly, X, 0% )

assuming that the distribution of X does not depend on B or o2. Since g(B|0?)
a constant, this density is the one in (16-4). For now, write

o« L(B|o?y, X)g(B|0?),

B0y, X) o h(a?)[2r] K2 |02 (X'X) 7! |7 1/2e~12ED T XXTTHE-b) - (16.5)

where

27v+1 v
2y T T eaey i
ho™) = 1o [02] e : (16-6)

For the present, we treat h(c?) simply as a constant that involves o2, not as a proba-
bility density; (16-5) is conditional on o%. Thus, the posterior density f(8]0?,y, X) is
proportional to a multivariate normal distribution with mean b and covariance matrix
a2(X’X)~ L,

This result is familiar, but it is interpreted differently in this setting. First, we have
combined our prior information about g (in this case, no information) and the sample
information to obtain a posterior distribution. Thus, on the basis of the sample data in
hand, we obtain a distribution for 8 with mean b and covariance matrix o>(X’X)~!. The
result is dominated by the sample information, as it should be if there is no prior infor-
mation. In the absence of any prior information, the mean of the posterior distribution,
which is a type of Bayesian point estimate, is the sampling theory estimator.

To generalize the preceding to an unknown o2, we specify a noninformative prior
distribution for Ino over the entire real line.* By the change of variable formula, if
g(Ino) is constant, then g(o?) is proportional to 1/52.5 Assuming that 8 and o2 are
independent, we now have the noninformative joint prior distribution:

1
8(B.0”) = gs(B)gs2(0%) o —.
o

4See Zellner (1971) for justification of this prior distribution.

SMany treatments of this model use o rather than o2 as the parameter of interest. The end results are identical.
We have chosen this parameterization because it makes manipulation of the likelihood function with a gamma
prior distribution especially convenient. See Zellner (1971, pp. 44-45) for discussion.
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We can obtain the joint posterior distribution for g and o> by using

1
fB.0% 1y, X)=L(B|o%y X)g2(c%) o L(B|o?y, X) x ot (16-7)

For the same reason as before, we multiply g,2(c?) by a well-chosen constant, this time
vs’T'(v + 1)/ T(v +2) = vs?/(v + 1). Multiplying (16-5) by this constant times g,2(c?)
and inserting h(0?) gives the joint posterior for 8 and o2, given y and X:

[USZ]u+2 1
Cw+2)

X e*(1/2)(/97’ﬂ)’[0'2(X’X)"l]"1 B=b)

v+1
f(B.0%1y.X) } e 2| K o2 (XX) T

o2

To obtain the marginal posterior distribution for B, it is now necessary to integrate o>
out of the joint distribution (and vice versa to obtain the marginal distribution for o'2).
By collecting the terms, f(B, 02|y, X) can be written as

1 P-1
f(B,0%y, X) o Ax (;> e M1/0Y)

where
[Usz]v+2 —K)2 —1,-1
= —— 2] % (X'X 2,
e B L
P=v+24+K2=mn—-K)24+2+K/2=mn+4)/2,
and

A =vs’+ 1(B—b)X'X(B —b),

so the marginal posterior distribution for g is

o o /1 P!
0 0 o

To do the integration, we have to make a change of variable; d(1/0?) = —(1/0%)*do?,
sodo? = —(1/0%)72d(1/0?). Making the substitution—the sign of the integral changes
twice, once for the Jacobian and back again because the integral from o = 0 to oo is
the negative of the integral from (1/5%) = 0 to co—we obtain

e o s 1\ F3 . 1
/ fB, 0% |y, X)do? o A/ <z> 10N (z)
0 0 o o

rP-2)

= Ax A P2

Reinserting the expressions for A, P, and A produces

[vs?]"F’T (v + K/2)
'(v+2)
[vs2+ 1(B —bYX'X(8 —b)]

[27_[]—](/2 |XIX|—1/2
fBly,X)

v+K/2 (16-8)
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This density is proportional to a multivariate ¢ distribution® and is a generalization of
the familiar univariate distribution we have used at various points. This distribution has
adegrees of freedom parameter,d = n— K, mean b, and covariance matrix (d/(d —2)) x
[s>(X’X)~']. Each element of the K-element vector B has a marginal distribution that
is the univariate ¢ distribution with degrees of freedom n — K, mean by, and variance
equal to the kth diagonal element of the covariance matrix given earlier. Once again,
this is the same as our sampling theory. The difference is a matter of interpretation. In
the current context, the estimated distribution is for 8 and is centered at b.

16.2.2.b POINT ESTIMATION

The posterior density function embodies the prior and the likelihood and therefore
contains all the researcher’s information about the parameters. But for purposes of
presenting results, the density is somewhat imprecise, and one normally prefers a point
or interval estimate. The natural approach would be to use the mean of the posterior
distribution as the estimator. For the noninformative prior, we use b, the sampling
theory estimator.

One might ask at this point, why bother? These Bayesian point estimates are iden-
tical to the sampling theory estimates. All that has changed is our interpretation of
the results. This situation is, however, exactly the way it should be. Remember that
we entered the analysis with noninformative priors for 8 and o2. Therefore, the only
information brought to bear on estimation is the sample data, and it would be peculiar
if anything other than the sampling theory estimates emerged at the end. The results do
change when our prior brings out of sample information into the estimates, as we shall
see below.

The results will also change if we change our motivation for estimating f. The
parameter estimates have been treated thus far as if they were an end in themselves.
But in some settings, parameter estimates are obtained so as to enable the analyst to
make a decision. Consider then, a loss function, H(B, B), which quantifies the cost of
basing a decision on an estimate 8 when the parameter is 8. The expected, or average
loss is

Es[H(B. B)] = /ﬁ H(B. ) F(By. X)dp. (16-9)

where the weighting function is the marginal posterior density. (The joint density for 8
and o> would be used if the loss were defined over both.) The Bayesian point estimate is
the parameter vector that minimizes the expected loss. If the loss function is a quadratic
form in (B — B), then the mean of the posterior distribution is the “minimum expected
loss” (MELO) estimator. The proof is simple. For this case,

E[HB.B)|y.X]=E[;(B—-B'W@B By, X].
To minimize this, we can use the result that
OE[H(B.B) |y, X]/0B = E[9H(B, B)/3B1y. X]
= E[-W(@B-B)ly. X].

%See, for example, Judge et al. (1985) for details. The expression appears in Zellner (1971, p. 67). Note that
the exponent in the denominator is v + K/2 = n/2.
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The minimum is found by equating this derivative to 0, whence, since —W is irrelevant,
B = E[B|y. X]. This kind of loss function would state that errors in the positive and
negative direction are equally bad, and large errors are much worse than small errors.
If the loss function were a linear function instead, then the MELO estimator would be
the median of the posterior distribution. These results are the same in the case of the
noninformative prior that we have just examined.

16.2.2.c INTERVAL ESTIMATION

The counterpart to a confidence interval in this setting is an interval of the posterior
distribution that contains a specified probability. Clearly, it is desirable to have this
interval be as narrow as possible. For a unimodal density, this corresponds to an interval
within which the density function is higher than any points outside it, which justifies the
term highest posterior density (HPD) interval. For the case we have analyzed, which
involves a symmetric distribution, we would form the HPD interval for § around the
least squares estimate b, with terminal values taken from the standard ¢ tables.

16.2.2.d ESTIMATION WITH AN INFORMATIVE PRIOR DENSITY

Once we leave the simple case of noninformative priors, matters become quite compli-
cated, both at a practical level and, methodologically, in terms of just where the prior
comes from. The integration of o out of the posterior in (16-5) is complicated by itself.
It is made much more so if the prior distributions of 8 and o2 are at all involved. Partly
to offset these difficulties, researchers usually use what is called a conjugate prior, which
is one that has the same form as the conditional density and is therefore amenable to
the integration needed to obtain the marginal distributions.’

Suppose that we assume that the prior beliefs about 8 may be summarized in a
K-variate normal distribution with mean B, and variance matrix X,. Once again, it is
illuminating to begin with the case in which o is assumed to be known. Proceeding in
exactly the same fashion as before, we would obtain the following result: The posterior
density of B conditioned on o and the data will be normal with

E[Bl0o%y,X] = {Z;" + [02X'X) 11} {=' By + [02(X'X) 1] b}
=FBy+ I —-Fb,

(16-10)

where

F= {3+ [>X'X)"]'} 5!

= {[prior variance] ! + [conditional variance] ™! }_l[prior variance] !

7Our choice of noninformative prior for In o led to a convenient prior for o2 in our derivation of the posterior
for B. The idea that the prior can be specified arbitrarily in whatever form is mathematically convenient is
very troubling; it is supposed to represent the accumulated prior belief about the parameter. On the other
hand, it could be argued that the conjugate prior is the posterior of a previous analysis, which could justify
its form. The issue of how priors should be specified is one of the focal points of the methodological debate.
“Non-Bayesians” argue that it is disingenuous to claim the methodological high ground and then base the
crucial prior density in a model purely on the basis of mathematical convenience. In a small sample, this
assumed prior is going to dominate the results, whereas in a large one, the sampling theory estimates will
dominate anyway.



Greene-50240

book

June 20, 2002 18:2

436 CHAPTER 16 4 Estimation Frameworks in Econometrics

This vector is a matrix weighted average of the prior and the least squares (sample)
coefficient estimates, where the weights are the inverses of the prior and the conditional
covariance matrices.® The smaller the variance of the estimator, the larger its weight,
which makes sense. Also, still taking o> as known, we can write the variance of the
posterior normal distribution as

Var[By. X, 0%] = {£5" + [0?X'X) 1} (16-11)

Notice that the posterior variance combines the prior and conditional variances on the
basis of their inverses.” We may interpret the noninformative prior as having infinite
elements in X. This assumption would reduce this case to the earlier one.

Once again, it is necessary to account for the unknown o2. If our prior over o2 is to
be informative as well, then the resulting distribution can be extremely cumbersome.
A conjugate prior for g and o2 that can be used is

8B, %) = gpo2(B107)gy2(02), (16-12)

where gg,2(8 | o?) is normal, with mean ,BO and variance o2A and

2 [maoz] A% —mal(1/o?)
g,2(0°) = NCES) (02> e "% . (16-13)
This distribution is an inverted gamma distribution. It implies that 1/0% has a gamma
distribution. The prior mean for o is o¢ and the prior variance is o /(m — 1).!1° The
product in (16-12) produces what is called a normal-gamma prior, which is the natural
conjugate prior for this form of the model. By integrating out o2, we would obtain the
prior marginal for B alone, which would be a multivariate ¢ distribution.!! Combining
(16-12) with (16-13) produces the joint posterior distribution for 8 and o2. Finally, the
marginal posterior distribution for g is obtained by integrating out o2, It has been shown
that this posterior distribution is multivariate ¢ with

E[Bly. X] = {[0°A] + [6>X'X) ']} H{[?A] '8+ [62X'X) ' 'b}  (16-14)

and
valg 1y X] = (15 ) (AT P 1)L aes)

where j is a degrees of freedom parameter and 52 is the Bayesian estimate of 2. The
prior degrees of freedom m is a parameter of the prior distribution for o that would
have been determined at the outset. (See the following example.) Once again, it is clear

8Note that it will not follow that individual elements of the posterior mean vector lie between those of B°
and b. See Judge et al. (1985, pp. 109-110) and Chamberlain and Leamer (1976).

9Precisely this estimator was proposed by Theil and Goldberger (1961) as a way of combining a previously
obtained estimate of a parameter and a current body of new data. They called their result a “mixed estimator.”
The term “mixed estimation” takes an entirely different meaning in the current literature, as we will see in
Chapter 17.

19¥ou can show this result by using gamma integrals. Note that the density is a function of 1/6> = 1/x
in the formula of (B-39), so to obtain E[02], we use the analog of E[1/x] = A/(P — 1) and E[(1/x)?] =
A2/[(P — 1)(P — 2)]. In the density for (1/02), the counterparts to A and P are mao2 and m+ 1.

UFull details of this (lengthy) derivation appear in Judge et al. (1985, pp. 106-110) and Zellner (1971).
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TABLE 16.1 Estimates of the MPC

Years Estimated MPC Variance of b Degrees of Freedom Estimated o
1940-1950 0.6848014 0.061878 9 24.954
1950-2000 0.92481 0.000065865 49 92.244

that as the amount of data increases, the posterior density, and the estimates thereof,
converge to the sampling theory results.

Example 16.3 Bayesian Estimate of the Marginal Propensity
to Consume

In Example 3.2, an estimate of the marginal propensity to consume is obtained using 11 obser-
vations from 1940 to 1950, with the results shown in the top row of Table 16.1. A classical 95
percent confidence interval for 8 based on these estimates is (0.8780, 1.2818). (The very wide
interval probably results from the obviously poor specification of the model.) Based on nonin-
formative priors for g and o2, we would estimate the posterior density for g to be univariate t
with 9 degrees of freedom, with mean 0.6848014 and variance (11/9)0.061878 = 0.075628.
An HPD interval for g would coincide with the confidence interval. Using the fourth quarter
(yearly) values of the 1950-2000 data used in Example 6.3, we obtain the new estimates that
appear in the second row of the table.

We take the first estimate and its estimated distribution as our prior for g and obtain a
posterior density for 8 based on an informative prior instead. We assume for this exercise
that o2 may be taken as known at the sample value of 29.954. Then,

= 0.92455

B 1 n 1 B 0.92481 N 0.6848014
~ 10.000065865 = 0.061878 0.000065865 = 0.061878

The weighted average is overwhelmingly dominated by the far more precise sample es-
timate from the larger sample. The posterior variance is the inverse in brackets, which is
0.000071164. This is close to the variance of the latter estimate. An HPD interval can be
formed in the familiar fashion. It will be slightly narrower than the confidence interval, since
the variance of the posterior distribution is slightly smaller than the variance of the sampling
estimator. This reduction is the value of the prior information. (As we see here, the prior is
not particularly informative.)

16.2.2.e HYPOTHESIS TESTING

The Bayesian methodology treats the classical approach to hypothesis testing with a
large amount of skepticism. Two issues are especially problematic. First, a close ex-
amination of only the work we have done in Chapter 6 will show that because we are
using consistent estimators, with a large enough sample, we will ultimately reject any
(nested) hypothesis unless we adjust the significance level of the test downward as the
sample size increases. Second, the all-or-nothing approach of either rejecting or not
rejecting a hypothesis provides no method of simply sharpening our beliefs. Even the
most committed of analysts might be reluctant to discard a strongly held prior based on
a single sample of data, yet this is what the sampling methodology mandates. (Note, for
example, the uncomfortable dilemma this creates in footnote 24 in Chapter 14.) The
Bayesian approach to hypothesis testing is much more appealing in this regard. Indeed,
the approach might be more appropriately called “comparing hypotheses,” since it es-
sentially involves only making an assessment of which of two hypotheses has a higher
probability of being correct.
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The Bayesian approach to hypothesis testing bears large similarity to Bayesian
estimation.!”> We have formulated two hypotheses, a “null,” denoted Hy, and an alter-
native, denoted H,. These need not be complementary, as in Hy: “statement A is true”
versus Hi: “statement A is not true,” since the intent of the procedure is not to reject
one hypothesis in favor of the other. For simplicity, however, we will confine our at-
tention to hypotheses about the parameters in the regression model, which often are
complementary. Assume that before we begin our experimentation (data gathering,
statistical analysis) we are able to assign prior probabilities P(Hy) and P(H,) to the two
hypotheses. The prior odds ratio is simply the ratio

P(Hy)
P(Hy)
For example, one’s uncertainty about the sign of a parameter might be summarized in

a prior odds over Hp: 8 >0 versus H;: 8 <0 0f0.5/0.5=1. After the sample evidence is
gathered, the prior will be modified, so the posterior is, in general,

Oddsp(}.\'terior = BOI X Oddsprior-

Odds,ipr = (16-16)

The value By is called the Bayes factor for comparing the two hypotheses. It summarizes
the effect of the sample data on the prior odds. The end result, Odds,,sserior, is @ new
odds ratio that can be carried forward as the prior in a subsequent analysis.

The Bayes factor is computed by assessing the likelihoods of the data observed
under the two hypotheses. We return to our first departure point, the likelihood of the
data, given the parameters:

f(ylB, o2, X) = [27102]—n/Ze(—l/(Zaz))(y—Xﬁ)’(y—Xﬁ). (16-17)

Based on our priors for the parameters, the expected, or average likelihood, assuming
that hypothesis j is true (j =0, 1), is

SO IXH) = Epal fy 1802 X ] = [ [ 7v18.0% X, H)g(8. 0 ap o’

(This conditional density is also the predictive density for y.) Therefore, based on the
observed data, we use Bayes theorem to reassess the probability of Hj;; the posterior
probability is

f(yIX, H)j) P(H))

P(H;ly. X) =
i £y
The posterior odds ratio is P(Hy |y, X)/ P(H, |y, X), so the Bayes factor is
Bo — f(yIX, Hy)
0= 7~ -
fiyIX, Hy)

Example 16.4 Posterior Odds for the Classical Regression Model
Zellner (1971) analyzes the setting in which there are two possible explanations for the
variation in a dependent variable y:

Model 0: y = xy8, + €0

and
Model1:y = X8, + &1.

2For extensive discussion, see Zellner and Siow (1980) and Zellner (1985, pp. 275-305).
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We will briefly sketch his results. We form informative priors for [8, 02];, j = 0,1, as spec-
ified in (16-12) and (16-13), that is, multivariate normal and inverted gamma, respectively.
Zellner then derives the Bayes factor for the posterior odds ratio. The derivation is lengthy
and complicated, but for large n, with some simplifying assumptions, a useful formulation
emerges. First, assume that the priors for og and 012 are the same. Second, assume that
IAS1/IAG" + X0 Xo[1/[IAT"1/1AT " 4+ X, X4]] — 1. The first of these would be the usual situation,
in which the uncertainty concerns the covariation between y; and x;, not the amount of resid-
ual variation (lack of fit). The second concerns the relative amounts of information in the prior
(A) versus the likelihood (X'X). These matrices are the inverses of the covariance matrices,
or the precision matrices. [Note how these two matrices form the matrix weights in the
computation of the posterior mean in (16-10).] Zellner (p. 310) discusses this assumption at
some length. With these two assumptions, he shows that as n grows large, '

. Sg —(n+m)/2_ 1—R§ —(n+m) /2
o\ 82 “\1-R '

Therefore, the result favors the model that provides the better fit using R? as the fit measure.
If we stretch Zellner’s analysis a bit by interpreting model 1 as “the model” and model 0 as
“no model” (i.e., the relevant part of 8, = 0, so R5 = 0), then the ratio simplifies to

By = (1-RZ)"".

Thus, the better the fit of the regression, the lower the Bayes factor in favor of model 0 (no
model), which makes intuitive sense.

Zellner and Siow (1980) have continued this analysis with noninformative priors for g and
0/-2. Specifically, they use the flat prior for Ino [see (16-7)] and a multivariate Cauchy prior
(which has infinite variances) for 8. Their main result (3.10) is

1T n—K\"? e
_ 2 _ p2y(n-K-1)/2
501_”(”1)/2]( . > (1 — R?) 2

This result is very much like the previous one, with some slight differences due to degrees of
freedom corrections and the several approximations used to reach the first one.

16.2.3 USING BAYES THEOREM IN A CLASSICAL ESTIMATION
PROBLEM: THE LATENT CLASS MODEL

Latent class modeling can be viewed as a means of modeling heterogeneity across indi-
viduals in a random parameters framework. We first encountered random parameters
models in Section 13.8 in connection with panel data.'* As we shall see, the latent class
model provides an interesting hybrid of classical and Bayesian analysis. To define the
latent class model, we begin with a random parameters formulation of the density of
an observed random variable. We will assume that the data are a panel. Thus, the den-
sity of y;; when the parameter vector is §8; is f(yi | Xit, B;). The parameter vector g; is
randomly distributed over individuals according to

B, =B+ Az; +v; (16-18)

and where B + Az; is the mean of the distribution, which depends on time invariant
individual characteristics as well as parameters yet to be estimated, and the random

I3A ratio of exponentials that appears in Zellner’s result (his equation 10.50) is omitted. To the order
of approximation in the result, this ratio vanishes from the final result. (Personal correspondence from
A. Zellner to the author.)

14In principle, the latent class model does not require panel data, but practical experience suggests that it
does work best when individuals are observed more than once and is difficult to implement in a cross section.
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variation comes from the individual heterogeneity, v;. This random vector is assumed
tohave mean zero and covariance matrix, . The conditional density of the parameters is

g(ﬂl |zia ﬂv A’ Z) :g(vi +ﬂ+AZ[, Z),

where g(.) is the underlying marginal density of the heterogeneity. The unconditional
density for yj, is obtained by integrating over v;,

Fie I Xie, 2, B, A, X) = Egi[ f(yie I Xie, B)] = / T i | X, BE(Vi + B + Az;, X)dv;.

This result would provide the density that would enter the likelihood function for esti-
mation of the model parameters. We will return to this model formulation in Chapter 17.

The preceding has assumed $; has a continuous distribution. Suppose that g; is
generated from a discrete distribution with J values, or classes, so that the distribution
of B is over these J vectors."> Thus, the model states that an individual belongs to one of
the J latent classes, butitis unknown from the sample data exactly which one. We will use
the sample data to estimate the probabilities of class membership. The corresponding
model formulation is now

7
FOu | X2, ) =Y pij(A,z:) f (i | X, B )
j=1
where it remains to parameterize the class probabilities, p;; and the structural model,
fie 1 xir, B i) The matrix A contains the parameters of the discrete distribution. It has
J rows (one for each class) and M columns for the M variables in z;. (The structural
mean and variance parameters  and X are no longer necessary.) At a minimum, M =1
and z; contains a constant, if the class probabilities are fixed parameters. Finally, in
order to accommodate the panel data nature of the sampling situation, we suppose
that conditioned on i observations y;,,t = 1,..., T are independent. Therefore, for
a group of T observations, the joint density is

T
FOi Yas - it | B Xt Xige - oxir) = [ [ f e 1% B))-
=1
(We will consider models that provide correlation across observations in Chapters 17
and 21.) Inserting this result in the earlier density produces the likelihood function for
a panel of data,

n M T
InL=>"In| > pijAz)[[etulxu B8]
i1 Lj= =1

The class probabilities must be constrained to sum to 1. A simple approach is to
reparameterize them as a set of logit probabilities,

eli
Sjar e’
(See Section 21.8 for development of this model for a set of probabilities.) Note the re-
striction on 6;;. This is an identification restriction. Without it, the same set of

Dij = j=1,...,], 9{]20, 09,‘]‘25,]1,‘, (5/20) (16-19)

150ne can view this as a discrete approximation to the continuous distribution. This is also an extension of
Heckman and Singer’s (1984b) model of latent heterogeneity, but the interpretation is a bit different here.
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probabilities will arise if an arbitrary vector is added to every §;. The resulting log
likelihood is a continuous function of the parameters B, ..., 8, and é4,...,d;. For
all its apparent complexity, estimation of this model by direct maximization of the log
likelihood is not especially difficult. [See Section E.5 and Greene (2001).] The number
of classes that can be identified is likely to be relatively small (on the order of five or
less), however, which is viewed as a drawback of this approach, and, in general, (as
might be expected), the less rich is the panel data set in terms of cross group variation,
the more difficult it is to estimate this model.

Estimation produces values for the structural parameters, (8 i §),j=1,...,J.
With these in hand, we can compute the prior class probabilities, p;; using (16-20).
For prediction purposes, one might be more interested in the posterior (on the data)
class probabilities, which we can compute using Bayes theorem as

b tioni | class j) Prob(class j
Prob(class j | observationi) = f(observation | class j) Prob(class /)

Z;:] f(observationi | class j) Prob(class j)
 fOin i, - i1 Xi X, o X, B i (AL 24)
S Fite Yioe - T | X1 Xige - Xir B) pij (AL 77)

= Wi/‘.

This set of probabilities, w; = (w;1, wia, ..., w;;) gives the posterior density over the
distribution of values of B, that is, [B;, B,, ..., B;]- The Bayesian estimator of the
(individual specific) parameter vector would be the posterior mean

7
B! = Ej[ﬂj | observationi] = Zwijﬁj'
j=1

Example 16.5 Applications of the Latent Class Model

The latent class formulation has provided an attractive platform for modeling latent hetero-
geneity. (See Greene (2001) for a survey.) For two examples, Nagin and Land (1993) employed
the model to study age transitions through stages of criminal careers and Wang et al. (1998)
and Wedel et al. (1993) and used the Poisson regression model to study counts of patents. To
illustrate the estimator, we will apply the latent class model to the panel data binary choice
application of firm product innovations studied by Bertschek and Lechner (1998).'¢ They
analyzed the dependent variable

yit = 1iffirm/ realized a product innovation in year t and 0O if not.

Thus, this is a binary choice model. (See Section 21.2 for analysis of binary choice models.)
The sample consists of 1270 German manufacturing firms observed for five years, 1984—
1988. Independent variables in the model that we formulated were

Xjt1 = constant,

Xt = log of sales,

Xit3 = relative size =ratio of employment in business unit to employment in the industry,
Xjt4 = ratio of industry imports to (industry sales + imports),

Xits = ratio of industry foreign direct investment to (industry sales + imports),

16We are grateful to the authors of this study who have generously loaned us their data for this analysis. The
data are proprietary and cannot be made publicly available as are the other data sets used in our examples.
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TABLE 16.2 Estimated Latent Class Model

Probit Class 1 Class 2 Class 3 Posterior

Constant —1.96 —2.32 —2.71 —8.97 —3.38
(0.23) (0.59) (0.69) (2.20) (2.14)

InSales 0.18 0.32 0.23 0.57 0.34
(0.022) (0.061) (0.072) (0.18) (0.09)

Rel. Size 1.07 4.38 0.72 1.42 2.58
(0.14) (0.89) (0.37) (0.76) (1.30)

Import 1.13 0.94 2.26 3.12 1.81
(0.15) (0.37) (0.53) (1.38) (0.74)

FDI 2.85 2.20 2.81 8.37 3.63
(0.40) (1.16) (1.11) (1.93) (1.98)

Prod. —2.34 —5.86 —-7.70 —-0.91 —5.48
(0.72) (2.70) (4.69) (6.76) (1.78)

RawMtls —0.28 -0.11 —0.60 0.86 —0.08
(0.081) (0.24) (0.42) (0.70) (0.37)

Invest. 0.19 0.13 0.41 0.47 0.29
(0.039) (0.11) (0.12) (0.26) (0.13)

In L —4114.05 —3503.55

Class Prob. 0.469 0.331 0.200

(Prior) (0.0352) (0.0333) (0.0246)

Class Prob. 0.469 0.331 0.200

(Posterior) (0.394) (0.289) (0.325)

Pred. Count 649 366 255

Xits = productivity =ratio of industry value added to industry employment,
Xjr7 = dummy variable indicating firm is in the raw materials sector,
Xits = dummy variable indicating firm is in the investment goods sector.

Discussion of the data set may be found in the article (pp. 331-332 and 370). Our central
model for the binary outcome is a probit model,

f(Yit | Xit, B;) = Prob[y;t | X[;8;] = ®[(2yit — 1)x}, 8,1,

This is the specification used by the authors. We have retained it so we can compare the
results of the various models. We also fit a model with year specific dummy variables instead
of a single constant and with the industry sector dummy variables moved to the latent class
probability equation. See Greene (2002) for analysis of the different specifications.
Estimates of the model parameters are presented in Table 16.2. The “probit” coefficients in
the first column are those presented by Bertschek and Lechner.'” The class specific param-
eter estimates cannot be compared directly, as the models are quite different. The estimated
posterior mean shown, which is comparable to the one class results is the sample average
and standard deviation of the 1,270 firm specific posterior mean parameter vectors. They
differ considerably from the probit model, but in each case, a confidence interval around the
posterior mean contains the probit estimator. Finally, the (identical) prior and average of the
sample posterior class probabilities are shown at the bottom of the table. The much larger
empirical standard deviations reflect that the posterior estimates are based on aggregating
the sample data and involve, as well, complicated functions of all the model parameters. The
estimated numbers of class members are computed by assigning to each firm the predicted

yjt=0,1.

7The authors used the robust “sandwich” estimator for the standard errors—see Section 17.9—rather than
the conventional negative inverse of the Hessian.
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class associated with the highest posterior class probability. Finally, to explore the difference
between the probit model and the latent class model, we have computed the probability of
a product innovation at the five-year mean of the independent variables for each firm using
the probit estimates and the firm specific posterior mean estimated coefficient vector. The
two kernel density estimates shown in Figures 16.1 and 16.2 (see Section 16.4.1) show the
effect of allowing the greater between firm variation in the coefficient vectors.

FIGURE 16.1 Probit Probabilities.
Kernel Density Estimate for PPR
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FIGURE 16.2 Latent Class Probabilities.
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16.2.4 HIERARCHICAL BAYES ESTIMATION OF A RANDOM
PARAMETERS MODEL BY MARKOV CHAIN MONTE
CARLO SIMULATION

We now consider a Bayesian approach to estimation of the random parameters model
in (16-19). For an individual i, the conditional density for the dependent variable in
period tis f(yi/ | i, B;) where B; is the individual specific K x 1 parameter vector and
x;; is individual specific data that enter the probability density.'® For the sequence of
T observations, assuming conditional (on f;) independence, person i’s contribution to
the likelihood for the sample is

T
Fi 1%, B =[] £ 1%, B2). (16-20)

t=1

wherey; = (yi1, ..., yir) and X; = [x;1, ..., X;7]. We will suppose that 8, is distributed
normally with mean 8 and covariance matrix X. (This is the “hierarchical” aspect of
the model.) The unconditional density would be the expected value over the possible
values of B;;

T
£i1Xi 8. %) = [ T FOulx. B)0x18;18. Z1 a8, (16-21)

Bi =1

where ¢k[B; | B, ] denotes the K variate normal prior density for 8; given g and X.
Maximum likelihood estimation of this model, which entails estimation of the “deep”
parameters, 8, X, then estimation of the individual specific parameters, ; using the
same method we used for the latent class model, is considered in Section 17.8. For now,
we consider the Bayesian approach to estimation of the parameters of this model.

To approach this from a Bayesian viewpoint, we will assign noninformative prior
densities to § and X. As is conventional, we assign a flat (noninformative) prior to
B. The variance parameters are more involved. If it is assumed that the elements of
B, are conditionally independent, then each element of the (now) diagonal matrix X
may be assigned the inverted gamma prior that we used in (16-14). A full matrix X is
handled by assigning to ¥ an inverted Wishart prior density with parameters scalar K
and matrix K x I. [The Wishart density is a multivariate counterpart to the Chi-squared
distribution. Discussion may be found in Zellner (1971, pp. 389-394).] This produces
the joint posterior density,

n

T
ABy,.... By, B, T all data) = {HH f i 1 %ie, BPk[Bi | B, E]} x p(B.%).

i=11t=1
(16-22)
This gives the joint density of all the unknown parameters conditioned on the observed
data. Our Bayesian estimators of the parameters will be the posterior means for these
(n+ 1)K + K(K + 1)/2 parameters. In principle, this requires integration of (16-23)
with respect to the components. As one might guess at this point, that integration
is hopelessly complex and not remotely feasible. It is at this point that the recently

181n order to avoid a layer of complication, we will embed the time invariant effect Az; inx/, 8. A full treatment
in the same fashion as the latent class model would be substantially more complicated in this setting (though
it is quite straightforward in the maximum simulated likelihood approach discussed in Section 17.8).
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developed techniques of Markov Chain Monte Carlo (MCMC) simulation estimation
and the Metropolis Hastings algorithm enter and enable us to do the estimation in a
remarkably simple fashion.

The MCMC procedure makes use of a result that we have employed at many
points in the preceding chapters. The joint density in (16-23) is exceedingly complex,
and brute force integration is not feasible. Suppose, however, that we could draw ran-
dom samples of [B, ..., B,, B, X] from this population. Then, sample statistics such
as means computed from these random draws would converge to the moments of the
underlying population. The laws of large numbers discussed in Appendix D would
apply. That partially solves the problem. The distribution remains as complex as be-
fore, however, so how to draw the sample remains to be solved. The Gibbs sampler
and the Metropolis—Hastings algorithm can be used for sampling from the (hopelessly
complex) joint density, A(B1, ..., B,, B, X | all data). The basic principle of the Gibbs
sampler is described in Section E2.6. The core result is as follows: For a two-variable
case, f(x,y) in which f(x|y) and f(y|x) are known. A “Gibbs sequence” of draws,
Y0, X0, V1, X1, V2, - - -» YM, Xp, 1S generated as follows. First, yy is specified “manually.”
Then xj is obtained as a random draw from the population f(x | yp). Then y; is drawn
from f(y|xp), and so on. The iteration is, generically, as follows.

1. Draw x; from f(x|y;).
2. Draw y; from f(y|x;).
3. Exit or return to step 1.

If this process is repeated enough times, then at the last step, (x;, y;) together are a
draw from the joint distribution.

Train (2001 and 2002, Chapter 12) describes how to use these results for this random
parameters model.!” The usefulness of this result for our current problem is that it is,
indeed, possible to partition the joint distribution, and we can easily sample from the
conditional distributions. We begin by partitioning the parameters into y = (8, X) and
d = (By, ..., B,). Train proposes the following strategy: To obtain a draw from y | §, we
will use the Gibbs sampler to obtain a draw from the distribution of (8 | X, §) then one
from the distribution of (X | 8, §). We will lay this out first, then turn to sampling from
3B, x.

Conditioned on § and X, g has a K-variate normal distribution with mean B =
(1/n) >"7, B; and covariance matrix (1/n)X. To sample from this distribution we will
first obtain the Cholesky factorization of ¥ = LL’ where L is a lower triangular matrix.
[See Section A.7.11.] Let v be a vector of K draws from the standard normal distribution.
Then, B + Lv has mean vector 8 + L x 0 = 8 and covariance matrix LIL' = ¥ which
is exactly what we need. So, this shows how to sample a draw from the conditional
distribution of .

To obtain a random draw from the distribution of X | 8, §, we will require a random
draw from the inverted Wishart distribution. The marginal posterior distribution of
¥ | B, 8 is inverted Wishart with parameters scalar K + n and matrix W = (KI + nV)

9Train describes use of this method for “mixed logit” models. By writing the densities in generic form, we
have extended his result to any general setting that involves a parameter vector in the fashion described
above. In Section 17.8, we will apply this model to the probit model considered in the latent class model in
Example 16.5.
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where V. = (1/n)>°"_(B; — B)(B; — B)'. Train (2001) suggests the following strategy
for sampling a matrix from this distribution: Let M be the lower triangular Cholesky
factor of W1, so MM’ = W—1. Obtain K + n draws of v, = K standard normal variates.
Then, obtain S = M(ij]” viv,)M'. Then, ¥/ = S~1isadraw from the inverted Wishart
distribution. [This is fairly straightforward, as it involves only random sampling from the
standard normal distribution. For a diagonal ¥ matrix, that is, uncorrelated parameters
in B;, it simplifies a bit further. A draw for the nonzero kth diagonal element can be
obtained using (1 +nVy)/ S5 v,

The difficult step is sampling B;. For this step, we use the Metropolis—Hastings
(M-H) algorithm suggested by Chib and Greenberg (1996) and Gelman et al. (1995).
The procedure involves the following steps:

1. Given f and ¥ and “tuning constant” t (to be described below), compute

d = tLv where L is the Cholesky factorization of ¥ and v is a vector of K

independent standard normal draws.

Create a trial value f;; = B, + d where B, is the previous value.

3. The posterior distribution for g; is the likelihood that appears in (16-21) times the
joint normal prior density, ¢x[B; | B, £]. Evaluate this posterior density at the trial
value B;; and the previous value §;,. Let

_ il Xi, BiDox(Bi1 1 B, X)
f(yl |Xi’ ﬂiO)‘pK(ﬁi(} | ﬁ’ E)

4. Draw one observation, u, from the standard uniform distribution, U[0, 1].
5. Ifu < Ry, then accept the trial (new) draw. Otherwise, reuse the old one.

N

10

This M-H iteration converges to a sequence of draws from the desired density. Overall,
then, the algorithm uses the Gibbs sampler and the Metropolis—Hastings algorithm
to produce the sequence of draws for all the parameters in the model. The sequence
is repeated a large number of times to produce each draw from the joint posterior
distribution. The entire sequence must then be repeated N times to produce the sample
of N draws, which can then be analyzed, for example, by computing the posterior mean.

Some practical details remain. The tuning constant, t is used to control the iteration.
A smaller 7 increases the acceptance rate. But at the same time, a smaller t makes new
draws look more like old draws so this slows slows down the process. Gelman et al.
(1995) suggest t = 0.4 for K = 1 and smaller values down to about 0.23 for higher
dimensions, as will be typical. Each multivariate draw takes many runs of the MCMC
sampler. The process must be started somewhere, though it does not matter much where.
Nonetheless, a “burn-in” period is required to eliminate the influence of the starting
value. Typical applications use several draws for this burn in period for each run of
the sampler. How many sample observations are needed for accurate estimation is not
certain, though several hundred would be a minimum. This means that there is a huge
amount of computation done by this estimator. However, the computations are fairly
simple. The only complicated step is computation of the acceptance criterion at Step 3
of the M-H iteration. Depending on the model, this may, like the rest of the calculations,
be quite simple.

Uses of this methodology can be found in many places in the literature. It has
been particularly productive in marketing research, for example, in analyzing discrete
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choice such as brand choice. The cost is in the amount of computation, which is large.
Some important qualifications: As we have hinted before, in Bayesian estimation, as the
amount of sample information increases, it eventually dominates the prior density, even
if it is informative, so long as it is proper and has finite moments. The Bernstein—von
Mises Theorem [Train (p. 5)] gives formal statements of this result, but we can summarize
it with Bickel and Doksum’s (2000) version, which observes that the asymptotic sam-
pling distribution of the posterior mean is the same as the asymptotic distribution of
the maximum likelihood estimator. The practical implication of this for us is that if the
sample size is large, the Bayesian estimator of the parameters described here and the
maximum likelihood estimator described in Section 17.9 will give the same answer.?’

16.3 SEMIPARAMETRIC ESTIMATION

Semiparametric estimation is based on fewer assumptions than parametric estimation.
In general, the distributional assumption is removed, and an estimator is devised from
certain more general characteristics of the population. Intuition suggests two (correct)
conclusions. First, the semiparametric estimator will be more robust than the parametric
estimator—it will retain its properties, notably consistency) across a greater range of
specifications. Consider our most familiar example. The least squares slope estimator is
consistent whenever the data are well behaved and the disturbances and the regressors
are uncorrelated. This is even true for the frontier function in Example 16.2, which has
an asymmetric, nonnormal disturbance. But, second, this robustness comes at a cost.
The distributional assumption usually makes the preferred estimator more efficient
than a robust one. The best robust estimator in its class will usually be inferior to the
parametric estimator when the assumption of the distribution is correct. Once again,
in the frontier function setting, least squares may be robust for the slopes, and it is the
most efficient estimator that uses only the orthogonality of the disturbances and the
regressors, but it will be inferior to the maximum likelihood estimator when the two
part normal distribution is the correct assumption.

16.3.1 GMM ESTIMATION IN ECONOMETRICS

Recent applications in economics include many that base estimation on the method of
moments. The generalized method of moments departs from a set of model based mo-
ment equations, E [m(y;, x;, 8)] = 0, where the set of equations specifies a relationship
known to hold in the population. We used one of these in the preceding paragraph.
The least squares estimator can be motivated by noting that the essential assumption is
that E[x;(y; — x!B)] = 0. The estimator is obtained by seeking a parameter estimator,
b, which mimics the population result; (1/n)%;[x; (y; — x'b)] = 0. This is, of course, the

20Practitioners might note, recent developments in commercial software have produced a wide choice of
“mixed” estimators which are various implementations of the maximum likelihood procedures and hierar-
chical Bayes procedures (such as the Sawtooth program (1999)). Unless one is dealing with a small sample,
the choice between these can be based on convenience. There is little methodological difference. This returns
us to the practical point noted earlier. The choice between the Bayesian approach and the sampling theory
method in this application would not be based on a fundamental methodological criterion, but on purely
practical considerations—the end result is the same.
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normal equations for least squares. Note that the estimator is specified without benefit
of any distributional assumption. Method of moments estimation is the subject of Chap-
ter 18, so we will defer further analysis until then.

16.3.2 LEAST ABSOLUTE DEVIATIONS ESTIMATION

Least squares can be severely distorted by outlying observations. Recent applications
in microeconomics and financial economics involving thick-tailed disturbance distri-
butions, for example, are particularly likely to be affected by precisely these sorts of
observations. (Of course, in those applications in finance involving hundreds of thou-
sands of observations, which are becoming commonplace, all this discussion is moot.)
These applications have led to the proposal of “robust” estimators that are unaffected by
outlying observations.?! In this section, we will examine one of these, the least absolute
deviations, or LAD estimator.

That least squares gives such large weight to large deviations from the regression
causes the results to be particularly sensitive to small numbers of atypical data points
when the sample size is small or moderate. The least absolute deviations (LAD) esti-
mator has been suggested as an alternative that remedies (at least to some degree) the
problem. The LAD estimator is the solution to the optimization problem,

n
Min, Z lvi — xibol.
i=1
The LAD estimator’s history predates least squares (which itself was proposed over
200 years ago). It has seen little use in econometrics, primarily for the same reason that
Gauss’s method (LS) supplanted LAD at its origination; LS is vastly easier to compute.
Moreover, in a more modern vein, its statistical properties are more firmly established
than LAD’s and samples are usually large enough that the small sample advantage of
LAD is not needed.
The LAD estimator is a special case of the quantile regression:

Probly; < x/8] = q.
The LAD estimator estimates the median regression. That is, it is the solution to the
quantile regression when g = 0.5. Koenker and Bassett (1978, 1982), Huber (1967), and

Rogers (1993) have analyzed this regression.?? Their results suggest an estimator for
the asymptotic covariance matrix of the quantile regression estimator,

Est.Asy. Var[b,] = (X'X) ' X'DX(X'X) ",
where D is a diagonal matrix containing weights

q
di= |
{f(O)

2l For some applications, see Taylor (1974), Amemiya (1985, pp. 70-80), Andrews (1974), Koenker and Bassett
(1978), and a survey written at a very accessible level by Birkes and Dodge (1993). A somewhat more rigorous
treatment is given by Hardle (1990).

2 2
. . .. 1-— q} .
if y; — x;B is positive and | ——| otherwise,
} ioxbIsp { 0)

22Powell (1984) has extended the LAD estimator to produce a robust estimator for the case in which data
on the dependent variable are censored, that is, when negative values of y; are recorded as zero. See Sec-
tion 22.3.4c for discussion and Melenberg and van Soest (1996) for an application. For some related results
on other semiparametric approaches to regression, see Butler, McDonald, Nelson, and White (1990) and
McDonald and White (1993).
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and f(0) is the true density of the disturbances evaluated at 0.% [It remains to ob-
tain an estimate of f(0).] There is one useful symmetry in this result. Suppose that
the true density were normal with variance 2. Then the preceding would reduce to
o2(m/2)(X’X)~!, which is the result we used in Example E.1 to compare estimates of
the median and the mean in a simple situation of random sampling. For more general
cases, some other empirical estimate of f(0) is going to be required. Nonparametric
methods of density estimation are available [see Section 16.4 and, e.g., Johnston and
DiNardo (1997, pp. 370-375)]. But for the small sample situations in which techniques
such as this are most desirable (our application below involves 25 observations), non-
parametric kernel density estimation of a single ordinate is optimistic; these are, after
all, asymptotic results. But asymptotically, as suggested by Example E.1, the results be-
gin overwhelmingly to favor least squares. For better or worse, a convenient estimator
would be a kernel density estimator as described in Section 16.4.1. Looking ahead, the
computation would be

fo=1y 1Km
T n P h | h
where £ is the bandwidth (to be discussed below), K[.] is a weighting, or kernel function
ande;, i =1,...,nis the set of residuals. There are no hard and fast rules for choosing
h; one popular choice is that used by Stata, & = .9s/n'/>. The kernel function is likewise
discretionary, though it rarely matters much which one chooses; the logit kernel (see
Table 16.4) is a common choice.

The bootstrap method of inferring statistical properties is well suited for this ap-
plication. Since the efficacy of the bootstrap has been established for this purpose, the
search for a formula for standard errors of the LAD estimator is not really necessary. The
bootstrap estimator for the asymptotic covariance matrix can be computed as follows:

R

1
Est. Var[brap] = R Z(bLAD(r) —brap)(rap(r) —brap),

r=1

where by 4p is the LAD estimator and b; 4p(r) is the rth LAD estimate of 8 based on
a sample of n observations, drawn with replacement, from the original data set.

Example 16.6 LAD Estimation of a Cobb—Douglas Production Function
Zellner and Revankar (1970) proposed a generalization of the Cobb-Douglas production func-
tion which allows economies of scale to vary with output. Their statewide data on Y =value
added (output), K = capital, L =labor, and N =the number of establishments in the trans-
portation industry are given in Appendix Table F9.2. The generalized model is estimated in
Example 17.9. For this application, estimates of the Cobb-Douglas production function,

In(Y;/N;) = By + B2 In(K; /N;) + B3 In(Li /N;) + &,

are obtained by least squares and LAD. The standardized least squares residuals (see
Section 4.9.3) suggest that two observations (Florida and Kentucky) are outliers by the usual

23See Stata (2001). Koenker suggests that for independent and identically distributed observations, one
should replace d; with the constant a = g(1 — q)/[ f(F~(q))]> =[.25/f(0)]? for the median (LAD) estimator.
This reduces the expression to the true asymptotic covariance matrix, a(X’X)~"'. The one given is a sample
estimator which will behave the same in large samples. (Personal communication to the author.)
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TABLE 16.3 LS and LAD Estimates of a Production Function

Least Squares LAD
Standard Bootstrap Kernel Density

Coefficient Estimate Error t Ratio Estimate Std. Error t Ratio Std. Error t Ratio
Constant 1.844 0.234 7.896 1.806 0.344 5.244 0.320 5.639
Br 0.245 0.107 2.297 0.205 0.128 1.597 0.147 1.398
B 0.805 0.126 6.373 0.849 0.163 5.201 0.173 4.903
>e? 1.2222 1.2407

Ylel 4.0008 3.9927

construction. The least squares coefficient vectors with and without these two observations
are (1.844, 0.245, 0.805) and (1.764, 0.209, 0.852), respectively, which bears out the sug-
gestion that these two points do exert considerable influence. Table 16.3 presents the LAD
estimates of the same parameters, with standard errors based on 500 bootstrap replica-
tions. The LAD estimates with and without these two observations are identical, so only
the former are presented. Using the simple approximation of multiplying the corresponding
OLS standard error by (7/2)'/? = 1.2533 produces a surprisingly close estimate of the boot-
strap estimated standard errors for the two slope parameters (0.134, 0.158) compared with
the bootstrap estimates of (0.128, 0.163). The second set of estimated standard errors are
based on Koenker’s suggested estimator, .25/f2(0) = .25/1.5467% = 0.104502. The band-
width and kernel function are those suggested earlier. The results are surprisingly consistent
given the small sample size.

16.3.3 PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification issue.
We examined this in detail in Chapter 7. Some approaches, including the use of dummy
variables, logs, quadratics, and so on were considered as means of capturing nonlinearity.
The translog model in particular (Example 2.4.) is a well-known approach to approx-
imating an unknown nonlinear function. Even with these approaches, the researcher
might still be interested in relaxing the assumption of functional form in the model. The
partially linear model [analyzed in detail by Yatchew (1998, 2000)] is another approach.
Consider a regression model in which one variable, x, is of particular interest, and the
functional form with respect to x is problematic. Write the model as

yi= f(x) +Z B+ &,

where the data are assumed to be well behaved and, save for the functional form, the
assumptions of the classical model are met. The function f(x;) remains unspecified. As
stated, estimation by least squares is not feasible until f(x;) is specified. Suppose the
data were such that they consisted of pairs of observations (y;1, yj2), j =1,...,n/2in
which x;; = x;, within every pair. If so, then estimation of 8 could be based on the
simple transformed model

Vio—yin=@Zjp—zj1)B+(p—¢ej1), j=1,...,n/2

As long as observations are independent, the constructed disturbances, v; still have zero
mean, variance now 202, and remain uncorrelated across pairs, so a classical model
applies and least squares is actually optimal. Indeed, with the estimate of §, say, 8, in
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hand, a noisy estimate of f(x;) could be estimated with y; —z] 8, (the estimate contains
the estimation error as well as v;).%*

The problem, of course, is that the enabling assumption is heroic. Data would not
behave in that fashion unless they were generated experimentally. The logic of the
partially linear regression estimator is based on this observation nonetheless. Suppose
that the observations are sorted so that x; < x, < --- < x,,. Suppose, as well, that this
variable is well behaved in the sense that as the sample size increases, this sorted data
vector more tightly and uniformly fills the space within which x; is assumed to vary.
Then, intuitively, the difference is “almost” right, and becomes better as the sample size
grows. [Yatchew (1997, 1998) goes more deeply into the underlying theory.] A theory
is also developed for a better differencing of groups of two or more observations. The
transformed observation is y;; = M d,y;_n where "M d,, =0and M a2 =1.
(The data are not separated into nonoverlapping groups for this transformation—we
merely used that device to motivate the technique.) The pair of weights for M = 1 is
obviously #+/.5—this is just a scaling of the simple difference, 1, —1. Yatchew [1998,
p. 697)] tabulates “optimal” differencing weights for M=1,...,10. The values for
M =2 are (0.8090, —0.500, —0.3090) and for M = 3 are (0.8582, —0.3832, —0.2809,
—0.1942). This estimator is shown to be consistent, asymptotically normally distributed,
and have asymptotic covariance matrix

A 1 \o? 25
Asy. Var[B,] = (1 + m) WEX[Var[z [ x]].

The matrix can be estimated using the sums of squares and cross products of the differ-
enced data. The residual variance is likewise computed with

n A \2
52 — i1 Vi — 2 Ba)
v n—M '

Yatchew suggests that the partial residuals, ys; — zj;; B, be smoothed with a kernel
density estimator to provide an improved estimator of f(x;).

Example 16.7 Partially Linear Translog Cost Function

Yatchew (1998, 2000) applied this technique to an analysis of scale effects in the costs of
electricity supply. The cost function, following Nerlove (1963) and Christensen and Greene
(1976) was specified to be a translog model (see Example 2.4 and Section 14.3.2) involving
labor and capital input prices, other characteristics of the utiity and the variable of interest, the
number of customers in the system, C. We will carry out a similar analysis using Christenen
and Greene’s 1970 electricity supply data. The data are given in Appendix Table F5.2. (See
Section 14.3.1 for description of the data.) There are 158 observations in the data set, but
the last 35 are holding companies which are comprised of combinations of the others. In
addition, there are several extremely small New England utilities whose costs are clearly
unrepresentative of the best practice in the industry. We have done the analysis using firms
6-123 in the data set. Variables in the data set include Q = output, C =total cost and PK, PL,
and PF = unit cost measures for capital, labor and fuel, respectively. The parametric model
specified is a restricted version of the Christensen and Greene model,

Inc = Bk + Bol + Baq + Ba(@)?/2 + Bs + &.

24See Estes and Honore (1995) who suggest this approach (with simple differencing of the data).
25Yatchew (2000, p. 191) denotes this covariance matrix E[Cov[z | x]].
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Nonparametric Regression for Fitted Cost
14
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FIGURE 16.3 Smoothed Estimator for Costs.

where ¢ = InC/(Q x PF),k = In(PK/PF),| = In(PL/PF) and g = In Q. The partially linear
model substitutes f(Q) for the last three terms. The division by PF ensures that average
cost is homogeneous of degree one in the prices, a theoretical necessity. The estimated
equations, with estimated standard errors are shown below.

(parametric) ¢ = —6.83 + 0.168k + 0.146/ —0.590q + 0.061G%/2 + &,
(0.353) (0.042) (0.048) (0.075) (0.010) s=0.13383

(partial linear) ¢y = 0.170ky + 0.127/, + f(Q) + Vv
(0.049)  (0.057) s = 0.14044

Yatchew’s suggested smoothed kernel density estimator for the relationship between average
cost and output is shown in Figure 16.3 with the unsmoothed partial residuals. We find (as
did Christensen and Greene in the earlier study) that in the relatively low ranges of output,
there is a fairly strong relationship between scale and average cost.

16.3.4 Kernel Density Methods

The kernel density estimator is an inherently nonparametric tool, so it fits more ap-
propriately into the next section. But some models which use kernel methods are not
completely nonparametric. The partially linear model in the preceding example is a
case in point. Many models retain an index function formulation, that is, build the spec-
ification around a linear function, X', which makes them at least semiparametric, but
nonetheless still avoid distributional assumptions by using kernel methods. Lewbel’s
(2000) estimator for the binary choice model is another example.

Example 16.8 Semiparametric Estimator for Binary Choice Models
The core binary choice model analyzed in Example 16.5, the probit model, is a fully parametric
specification. Under the assumptions of the model, maximum likelihood is the efficient (and
appropriate) estimator. However, as documented in a voluminous literature, the estimator
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of B is fragile with respect to failures of the distributional assumption. We will examine a
few semiparametric and nonparametric estimators in Section 21.5. To illustrate the nature of
the modeling process, we consider an estimator recently suggested by Lewbel (2000). The
probit model is based on the normal distribution, with Prob[y; = 1] = Prob[x] 8 +¢; > 0] where
& ~ N[0, 1]. The estimator of 8 under this specification will be inconsistent if the distribution is
not normal or if ¢; is heteroscedastic. Lewbel suggests the following: If (a) it can be assumed
that x; contains a “special” variable, v;, whose coefficient has a known sign—a method is
developed for determining the sign and (b) the density of ¢; is independent of this variable,
then a consistent estimator of 8 can be obtained by linear regression of [y; — s(v;)]/f(vi | X;)
on x; where s(v;) = 1if v; > 0 and 0 otherwise and f(v; | x;) is a kernel density estimator of
the density of v; | x;. Lewbel’s estimator is robust to heteroscedasticity and distribution. A
method is also suggested for estimating the distribution of ¢;. Note that Lewbel’s estimator is
semiparametric. His underlying model is a function of the parameters B, but the distribution
is unspecified.

16.4 NONPARAMETRIC ESTIMATION

Researchers have long held reservations about the strong assumptions made in para-
metric models fit by maximum likelihood. The linear regression model with normal
disturbances is a leading example. Splines, translog models, and polynomials all repre-
sent attempts to generalize the functional form. Nonetheless, questions remain about
how much generality can be obtained with such approximations. The techniques of non-
parametric estimation discard essentially all fixed assumptions about functional form
and distribution. Given their very limited structure, it follows that nonparametric spec-
ifications rarely provide very precise inferences. The benefit is that what information
is provided is extremely robust. The centerpiece of this set of techniques is the kernel
density estimator that we have used in the preceding examples. We will examine some
examples, then examine an application to a bivariate regression.

16.4.1 KERNEL DENSITY ESTIMATION

Sample statistics such as a mean, variance, and range give summary information about
the values that a random variable may take. But, they do not suffice to show the distribu-
tion of values that the random variable takes, and these may be of interest as well. The
density of the variable is used for this purpose. A fully parametric approach to density
estimation begins with an assumption about the form of a distribution. Estimation of
the density is accomplished by estimation of the parameters of the distribution. To take
the canonical example, if we decide that a variable is generated by a normal distribution
with mean ;1 and variance o2, then the density is fully characterized by these parameters.
It follows that

6 2

One may be unwilling to make a narrow distributional assumption about the density. The
usual approach in this case is to begin with a histogram as a descriptive device. Consider

N
fo) = fx 6t =1 L exp [—1("?“) ]
2 o

20There is a large and rapidly growing literature in this area of econometrics. Two major references which
provide an applied and theoretical foundation are Hérdle (1990) and Pagan and Ullah (1999).
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Histogram for Variable BSALES
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FIGURE 16.4 Histogram for Estimated Coefficients.

an example. In Example 16.5, we estimated a model that produced a posterior estimator
of a slope vector for each of the 1,270 firms in our sample. We might be interested in
the distribution of these estimators across firms. In particular, the posterior estimates
of the estimated slope on Insales for the 1,270 firms have a sample mean of 0.3428, a
standard deviation of 0.08919, a minimum of 0.2361 and a maximum of 0.5664. This tells
us little about the distribution of values, though the fact that the mean is well below
the midrange of .4013 might suggest some skewness. The histogram in Figure 16.4 is
much more revealing. Based on what we see thus far, an assumption of normality might
not be appropriate. The distribution seems to be bimodal, but certainly no particular
functional form seems natural.

The histogram is a crude density estimator. The rectangles in the figure are called
bins. By construction, they are of equal width. (The parameters of the histogram are the
number of bins, the bin width and the leftmost starting point. Each is important in the
shape of the end result.) Since the frequency count in the bins sums to the sample size, by
dividing each by n, we have a density estimator that satisfies an obvious requirement for
a density; it sums (integrates) to one. We can formalize this by laying out the method by
which the frequencies are obtained. Let x; be the midpoint of the kth bin and let / be the
width of the bin—we will shortly rename 4 to be the bandwidth for the density estimator.
The distance to the left and right boundaries of the bins are 4/2. The frequency count
in each bin is the number of observations in the sample which fall in the range x; +4/2.
Collecting terms, we have our “estimator”

A 1 frequencyinbin, 1 =1 h h
= — R — -1 — — i —
J = = idth of bin, n;h (x 2 =% <x+2)
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where 1(statement) denotes an indicator function which equals 1 if the statement is true
and O if it is false and bin, denotes the bin which has x as its midpoint. We see, then, that
the histogram is an estimator, at least in some respects, like other estimators we have
encountered. The event in the indicator can be rearranged to produce an equivalent
form

, 1 G1, /1 x—-x 1
X) = — -1l —= < <= .
fo=a3 (-3 <" <)
This form of the estimator simply counts the number of points that are within /2 bin
width of x;.
Albeit rather crude, this “naive” (its formal name in the literature) estimator is in
the form of kernel density estimators that we have met at various points;

" 11 X, — X
foy = 2:1: hK{ - ] where K[z] =1[-1/2 < z < 1/2].
The naive estimator has several shortcomings. It is neither smooth nor continuous.
Its shape is partly determined by where the leftmost and rightmost terminals of the
histogram are set. (In constructing a histogram, one often chooses the bin width to be
a specified fraction of the sample range. If so, then the terminals of the lowest and
highest bins will equal the minimum and maximum values in the sample, and this will
partly determine the shape of the histogram. If, instead, the bin width is set irrespective
of the sample values, then this problem is resolved.) More importantly, the shape of
the histogram will be crucially dependent on the bandwidth, itself. (Unfortunately, this
problem remains even with more sophisticated specifications.)

The crudeness of the weighting function in the estimator is easy to remedy.
Rosenblatt’s (1956) suggestion was to substitute for the naive estimator some other
weighting function which is continuous and which also integrates to one. A number of
candidates have been suggested, including the (long) list in Table 16.4. Each of these is
smooth, continuous, symmetric, and equally attractive. The Parzen, logit, and normal
kernels are defined so that the weight only asymptotically falls to zero whereas the
others fall to zero at specific points. It has been observed that in constructing density
estimator, the choice of kernel function is rarely crucial, and is usually minor in impor-
tance compared to the more difficult problem of choosing the bandwidth. (The logit
and normal kernels appear to be the default choice in many applications.)

TABLE 16.4 Kernels for Density Estimation

Kernel Formula K[7]

Epanechnikov 7501 — 27%)/2.236if |z] <5, 0 else
Normal ¢(z) (normal density),

Logit A(2)[1 — A(2)] (logistic density)
Uniform Sif |z <1,0else

Beta (1 -2+ 2)/24if |z <1,0else
Cosine 1+ cos2mz)if |z] <.5,0¢lse
Triangle 1—|z,if |z] <1,0else

Parzen 4/3 — 82> + 81z} if |z <.5,8(1 — |z])3/3 else
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The kernel density function is an estimator. For any specific x, f(x) is a sample
statistic,

. 1<
f) = ;;g(xi |z, h).

Since g(x; | z, h) is nonlinear, we should expect a bias in a finite sample. It is tempting
to apply our usual results for sample moments, but the analysis is more complicated
because the bandwidth is a function of n. Pagan and Ullah (1999) have examined the
properties of kernel estimators in detail, and found that under certain assumptions
the estimator is consistent and asymptotically normally distributed but biased in finite
samples. The bias is a function of the bandwidth but for an appropriate choice of 4,
does vanish asymptotically. As intuition might suggest, the larger is the bandwidth, the
greater is the bias, but at the same time, the smaller is the variance. This might suggest
a search for an optimal bandwidth. After a lengthy analysis of the subject, however,
the authors’ conclusion provides little guidance for finding one. One consideration does
seem useful. In order for the proportion of observations captured in the bin to converge
to the corresponding area under the density, the width itself must shrink more slowly
than 1/n. Common applications typically use a bandwidth equal to some multiple of
n~1/3 for this reason. Thus, the one we used eatlier is & = 0.9 x s/n'/>. To conclude the
illustration begun earlier, Figure 16.5 is a logit based kernel density estimator for the dis-
tribution of slope estimates for the model estimated earlier. The resemblance to the
histogram is to be expected.

FIGURE 16.5 Kernel Density for Coefficients.
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16.4.2 NONPARAMETRIC REGRESSION

The regression function of a variable y on a single variable x is specified as

y = pnx) +e.

No assumptions about distribution, homoscedasticity, serial correlation. or, most im-
portantly, functional form are made at the outset; ;.(x) may be quite nonlinear. Since
this is the conditional mean, the only substantive restriction would be that deviations
from the conditional mean function are not a function of (correlated with) x. We have
already considered several possible strategies for allowing the conditional mean to be
nonlinear, including spline functions, polynomials, logs, dummy variables, and so on.
But, each of these is a “global” specification. The functional form is still the same for
all values of x. Here, we are interested in methods that do not assume any particular
functional form.

The simplest case to analyze would be one in which several (different) observations
on y; were made with each specific value of x;. Then, the conditional mean function
could be estimated naturally using the simple group means. The approach has two
shortcomings, however. Simply connecting the points of means, (x;, y|x;) does not
produce a smooth function. The method would still be assuming something specific
about the function between the points, which we seek to avoid. Second, this sort of data
arrangement is unlikely to arise except in an experimental situation. Given that data
are not likely to be grouped, another possibility is a piecewise regression in which we
define “neighborhoods” of points around each x of interest and fit a separate linear or
quadratic regression in each neighborhood. This returns us to the problem of continuity
that we noted earlier, but the method of splines is actually designed specifically for this
purpose. Still, unless the number of neighborhoods is quite large, such a function is still
likely to be crude.

Smoothing techniques are designed to allow construction of an estimator of the
conditional mean function without making strong assumptions about the behavior of
the function between the points. They retain the usefulness of the “nearest neighbor”
concept, but use more elaborate schemes to produce smooth, well behaved functions.
The general class may be defined by a conditional mean estimating function

RT) =) wi (XX, LX)y = > wilx | X)y;
i=1

i=1
where the weights sum to 1. The linear least squares regression line is such an estimator.
The predictor is
a(x*) =a+ bx*
where a and b are the least squares constant and slope. For this function, you can show
that
xX*(x; — X)
ZL] (x; — 3_5)2 -
The problem with this particular weighting function, which we seek to avoid here, is

that it allows every x; to be in the neighborhood of x*, but it does not reduce the weight
of any x; when it is far from x*. A number of smoothing functions have been suggested

1
Wi %) = — +
n
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which are designed to produce a better behaved regression function. [See Cleveland
(1979) and Schimek (2000).] We will consider two.

The locally weighted smoothed regression estimator (“loess” or “lowess” depending
on your source) is based on explicitly defining a neighborhood of points that is close to
x*. This requires the choice of a bandwidth, 4. The neighborhood is the set of points for
which |x* — x;| is small. For example, the set of points that are within the range x* + //2
(as in our original histogram) might constitute the neighborhood. A suitable weight is
then required. Cleveland (1979) recommends the tricube weight,

Lot xohy = |1 (=X il
i(x"|x, h) = 7

Combining terms, then the weight for the loess smoother is
w; (x* | x, h) = 1(x; in the neighborhood) x 7; (x* | x).

As always, the bandwidth is crucial. A wider neighborhood will produce a smoother
function. But the wider neighborhood will track the data less closely than a narrower
one. A second possibility, similar to the first, is to allow the neighborhood to be all
points, but make the weighting function decline smoothly with the distance between x*
and any x;. Any of the kernel functions suggested earlier will serve this purpose. This
produces the kernel weighted regression estimator,

. 1 [x—x*
Zi:l EK[T} Yi
S 1K[x,~ —Xx }

ax*x, h) =

i=1 E h
which has become a standard tool in nonparametric analysis.

Example 16.9 A Nonparametric Average Cost Function

In Example 16.7, we fit a partially linear regression for the relationship between average
cost and output for electricity supply. Figures 16.6 and Figure 16.7 show the less ambitious
nonparametric regressions of average cost on output. The overall picture is the same as in
the earlier example. The kernel function is the logit density in both cases. The function in
Figure 16.6 uses a bandwidth of 2,000. Since this is a fairly large proportion of the range
of variation of output, the function is quite smooth. The regression in Figure 16.7 uses a
bandwidth of only 200. The function tracks the data better, but at an obvious cost. The
example demonstrates what we and others have noted often; the choice of bandwidth in this
exercise is crucial.

Data smoothing is essentially data driven. As with most nonparametric techniques,
inference is not part of the analysis—this body of results is largely descriptive. As can
be seen in the example, nonparametric regression can reveal interesting characteristics
of the data set. For the econometrician, however, there are a few drawbacks. Most
relationships are more complicated than simple conditional mean of one variable. In the
example just given, some of the variation in average cost relates to differences in factor
prices (particularly fuel) and in load factors. Extensions of the fully nonparametric
regression to more than one variable is feasible, but very cumbersome. [See Hardle
(1990).] A promising approach is the partially linear model considered earlier.
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Nonparametric Regression for AVGCOST
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FIGURE 16.6 Nonparametric Cost Function.

FIGURE 16.7 Nonparametric Cost Function.
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16.5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with methods of estimation. We have surveyed a
variety of techniques that have appeared in the applied literature. We have not yet
examined the statistical properties of these estimators. Although, as noted earlier, we
will leave extensive analysis of the asymptotic theory for more advanced treatments,
it is appropriate to spend at least some time on the fundamental theoretical platform
which underlies these techniques.

16.5.1 STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

Unbiasedness: This is a finite sample property that can be established in only a very
small number of cases. Strict unbiasedness is rarely of central importance outside
the linear regression model. However, “asymptotic unbiasedness” (whereby the
expectation of an estimator converges to the true parameter as the sample size
grows), might be of interest. [See, e.g., Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density estimator).] In most cases, however, discussions of
asymptotic unbiasedness are actually directed toward consistency, which is a more
desirable property.

Consistency: This is a much more important property. Econometricians are rarely
willing to place much credence in an estimator for which consistency cannot be
established.

Asymptotic normality: This property forms the platform for most of the statisti-
cal inference that is done with common estimators. When asymptotic normality
cannot be established, for example, for the maximum score estimator discussed
in Section 21.5.3, it sometimes becomes difficult to find a method of progressing
beyond simple presentation of the numerical values of estimates (with caveats).
However, most of the contemporary literature in macroeconomics and time series
analysis is strongly focused on estimators which are decidedly not asymptotically
normally distributed. The implication is that this property takes its importance only
in context, not as an absolute virtue.

Asymptotic efficiency: Efficiency can rarely be established in absolute terms.
Efficiency within a class often can, however. Thus, for example, a great deal can be
said about the relatively efficiency of maximum likelihood and GMM estimators
in the class of CAN estimators. There are two important practical considerations
in this setting. First, the researcher will want to know that they have not made
demonstrably suboptimal use of their data. (The literature contains discussions of
GMM estimation of fully specified parametric probit models—GMM estimation in
this context is unambiguously inferior to maximum likelihood.) Thus, when possi-
ble, one would want to avoid obviously inefficient estimators. On the other hand,
it will usually be the case that the researcher is not choosing from a list of avail-
able estimators; they have one at hand, and questions of relative efficiency are
moot.
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16.5.2 EXTREMUM ESTIMATORS

An extremum estimator is one which is obtained as the optimizer of a criterion function
q(0 | data). Three that have occupied much of our effort thus far are

e Leastsquares: 0,5 = Argmax|[—(1/n) >0, (vi — h(x;, 015))?],
e  Maximum likelihood: 8, = Argmax|[(1/n) >0 In f(yi |xi, 0m)],
o GMM:bgym = Argmax[—m(data, 0 ;) Wim(data, 0 Gyn) |-

(We have changed the signs of the first and third only for convenience so that all three
may be cast as the same type of optimization problem.) The least squares and maximum
likelihood estimators are examples of M estimators, which are defined by optimizing
over a sum of terms. Most of the familiar theoretical results developed here and in
other treatises concern the behavior of extremum estimators. Several of the estimators
considered in this chapter are extremum estimators, but a few, including the Bayesian
estimators, some of the semiparametric estimators and all of the nonparametric estima-
tors are not. Nonetheless. we are interested in establishing the properties of estimators
in all these cases, whenever possible. The end result for the practitioner will be the set
of statistical properties that will allow them to draw with confidence conclusions about
the data generating process(es) that have motivated the analysis in the first place.

Derivations of the behavior of extremum estimators are pursued at various levels
in the literature. (See, e.g., any of the sources mentioned in Footnote 1 of this chapter.)
Amemiya (1985) and Davidson and MacKinnon (1993) are very accessible treatments.
Newey and McFadden (1994) is a recent, rigorous analysis that provides a current, stan-
dard source. Our discussion at this point will only suggest the elements of the analysis.
The reader is referred to one of these sources for detailed proofs and derivations.

16.5.3 ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES
OF EXTREMUM ESTIMATORS

Some broad results are needed in order to establish the asymptotic properties of the
classical (not Bayesian) conventional extremum estimators noted above.

(a) The parameter space (sce Section 16.2) must be convex and the parameter vector
that is the object of estimation must be a point in its interior. The first requirement
rules out ill defined estimation problems such as estimating a parameter which
can only take one of a finite discrete set of values. Thus, searching for the date of
a structural break in a time series model as if it were a conventional parameter
leads to a nonconvexity. Some proofs in this context are simplified by assuming
that the parameter space is compact. (A compact set is closed and bounded.)
However, assuming compactness is usually restrictive, so we will opt for the weaker
requirement.

(b) The criterion function must be concave in the parameters. (See Section A.8.2.)
This assumption implies that with a given data set, the objective function has
an interior optimum and that we can locate it. Criterion functions need not be
“globally concave;” they may have multiple optima. But, if they are not at least
“locally concave” then we cannot speak meaningfully about optimization. One
would normally only encounter this problem in a badly structured model, but it is
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(©

possible to formulate a model in which the estimation criterion is monotonically
increasing or decreasing in a parameter. Such a model would produce a noncon-
cave criterion function.?” The distinction between compactness and concavity in
the preceding condition is relevant at this point. If the criterion function is strictly
continuous in a compact parameter space, then it has a maximum in that set and
assuming concavity is not necessary. The problem for estimation, however, is that
this does not rule out having that maximum occur on the (assumed) boundary of
the parameter space. This case interferes with proofs of consistency and asymptotic
normality. The overall problem is solved by assuming that the criterion function
is concave in the neighborhood of the true parameter vector.

Identifiability of the parameters. Any statement that begins with “the true param-
eters of the model, 8 are identified if . . .” is problematic because if the parameters
are “not identified” then arguably, they are not the parameters of the (any) model.
(For example, there is no “true” parameter vector in the unidentified model of
Example 2.5.) A useful way to approach this question that avoids the ambiguity
of trying to define the true parameter vector first and then asking if it is identified
(estimable) is as follows, where we borrow from Davidson and MacKinnon (1993,
p-591): Consider the parameterized model, M and the set of allowable data gener-
ating processes for the model, ;. Under a particular parameterization pu, let there
be an assumed “true” parameter vector, 6 (r). Consider any parameter vector
in the parameter space, ®. Define

qu(, 0) = plim, g, (6 | data).

This function is the probability limit of the objective function under the assumed
parameterization p. If this probability limit exists (is a finite constant) and more-
over, if

qu(u, 0(p) > qu (i1, 0) if 6 #0(n),

then if the parameter space is compact, the parameter vector is identified by the
criterion function. We have not assumed compactness. For a convex parameter
space, we would require the additional condition that there exist no sequences
without limit points 8 such that g(u, 8"") converges to q(u, 0 (1)).

The approach taken here is to assume first that the model has some set of
parameters. The identifiability criterion states that assuming this is the case, the
probability limit of the criterion is maximized at these parameters. This result rests
on convergence of the criterion function to a finite value at any point in the interior
of the parameter space. Since the criterion function is a function of the data, this
convergence requires a statement of the properties of the data—e.g., well behaved
in some sense. Leaving that aside for the moment, interestingly, the results to this

27n their Exercise 23.6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggest a
probit model for statewide voting outcomes that includes dummy variables for region, Northeast, Southeast,
West, and Mountain. One would normally include three of the four dummy variables in the model, but
Griffiths et al. carefully dropped two of them because in addition to the dummy variable trap, the Southeast
variable is always zero when the dependent variable is zero. Inclusion of this variable produces a nonconcave
likelihood function—the parameter on this variable diverges. Analysis of a closely related case appears as a
caveat on page 272 of Amemiya (1985).
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point already establish the consistency of the M estimator. In what might seem to
be an extremely terse fashion, Amemiya (1985) defined identifiability simply as
“existence of a consistent estimator.” We see that identification and the conditions
for consistency of the M estimator are substantively the same.

This form of identification is necessary, in theory, to establish the consistency
arguments. In any but the simplest cases, however, it will be extremely difficult to verify
in practice. Fortunately, there are simpler ways to secure identification that will appeal
more to the intuition:

e For the least squares estimator, a sufficient condition for identification is that any
two different parameter vectors, # and 8, must be able to produce different values
of the conditional mean function. This means that for any two different parameter
vectors, there must be an x; which produces different values of the conditional
mean function. You should verify that for the linear model, this is the full rank
assumption A.2. For the model in example 2.5, we have a regression in which
Xp = x3+x4. In this case, any parameter vector of the form (81, f, —a, Bz +a, Bs+a)
produces the same conditional mean as (81, B2, B3, B4) regardless of x;, so this model
is not identified. The full rank assumption is needed to preclude this problem. For
nonlinear regressions, the problem is much more complicated, and there is no simple
generality. Example 9.2 shows a nonlinear regression model that is not identified
and how the lack of identification is remedied.

e  For the maximum likelihood estimator, a condition similar to that for the regression
model is needed. For any two parameter vectors, @ 6, it must be possible to
produce different values of the density f(y; | x;, #) for some data vector (y;, X;).
Many econometric models that are fit by maximum likelihood are “index function”
models that involve densities of the form f(y; | x;, 8) = f(y; | x;0). When this is the
case, the same full rank assumption that applies to the regression model may be
sufficient. (If there are no other parameters in the model, then it will be sufficient.)

e For the GMM estimator, not much simplicity can be gained. A sufficient condition
for identification is that E[m(data, )] # 0if 6 # 6,.

(d) Behavior of the data has been discussed at various points in the preceding text.
The estimators are based on means of functions of observations. (You can see this
in all three of the definitions above. Derivatives of these criterion functions will
likewise be means of functions of observations.) Analysis of their large sample
behaviors will turn on determining conditions under which certain sample means
of functions of observations will be subject to laws of large numbers such as the
Khinchine (D.5.) or Chebychev (D.6) theorems, and what must be assumed in
order to assert that “root-n” times sample means of functions will obey central limit
theorems such as the Lindberg—Feller (D.19) or Lyapounov (D.20) theorems for
cross sections or the Martingale Difference Central Limit Theorem for dependent
observations. Ultimately, this is the issue in establishing the statistical properties.
The convergence property claimed above must occur in the context of the data.
These conditions have been discussed in Section 5.2 and in Section 10.2.2 under
the heading of “well behaved data.” At this point, we will assume that the data
are well behaved.
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16.5.4 ASYMPTOTIC PROPERTIES OF ESTIMATORS

With all this apparatus in place, the following are the standard results on asymptotic
properties of M estimators:

THEOREM 16.1 Consistency of M Estimators

If (a) the parameter space is convex and the true parameter vector is a point in
its interior; (b) the criterion function is concave; (c) the parameters are identified
by the criterion function; (d) the data are well behaved, then the M estimator
converges in probability to the true parameter vector.

Proofs of consistency of M estimators rely on a fundamental convergence result that,
itself, rests on assumptions (a) through (d) above. We have assumed identification. The
fundamental device is the following: Because of its dependence on the data, g (0 | data)
is a random variable. We assumed in (c) that plim ¢(6 | data) = go(#) for any point in
the parameter space. Assumption (c) states that the maximum of gy () occurs at gy(0),
50 6 is the maximizer of the probability limit. By its definition, the estimator 0, is the
maximizer of ¢ (0 | data). Therefore, consistency requires the limit of the maximizer, 0 be
equal to the maximizer of the limit, 6. Our identification condition establishes this. We
will use this approach in somewhat greater detail in Section 17.4.5a where we establish
consistency of the maximum likelihood estimator.

THEOREM 16.2 Asymptotic Normality of M Estimators

If
(i) 0 is a consistent estimator of 0, where 0, is a point in the interior of the
parameter space;
(ii)) q(0 |data) is concave and twice continuously differentiable in 6 in a neigh-
borhood of 0;

(i) /n[dq(0, | data)/30,]-> N[0, ®];
(iv) forany6in ®©, lim Pr[|(8%q(0 | data)/36,36,,) — hin(0)| > e] =0V e > 0
where hy,,(0) isna Zcontinuous finite valued function of 0;
(v) the matrix of elements H(0) is nonsingular at 0, then

S0 — 00)-5 N{0, [H™'(8)®H ' (80)]}

The proof of asymptoticnormality is based on the mean value theorem from calculus
and a Taylor series expansion of the derivatives of the maximized criterion function
around the true parameter vector;
dq(0 | data dq(0o | data)  3%q(@ | data

g@|datw) 96| data) | 97q(@ | data

n = p—
Vn a0 90, 3000’

Vn(é —6y).
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The second derivative is evaluated at a point @ that is between 6 and 6, that is, 6 =
wé + (1 —w)8, for some 0 < w < 1. Since we have assumed plimé = 0, we see that the
matrix in the second term on the right must be converging to H(f). The assumptions
in the theorem can be combined to produce the claimed normal distribution. Formal
proof of this set of results appears in Newey and McFadden (1994). A somewhat more
detailed analysis based on this theorem appears in Section 17.4.5b where we establish
the asymptotic normality of the maximum likelihood estimator.

The preceding was restricted to M estimators, so it remains to establish counterparts
for the important GMM estimator. Consistency follows along the same lines used earlier,
but asymptotic normality is a bit more difficult to establish. We will return to this issue
in Chapter 18, where, once again, we will sketch the formal results and refer the reader
to a source such as Newey and McFadden (1994) for rigorous derivation.

The preceding results are not straightforward in all estimation problems. For exam-
ple, the least absolute deviations (LAD) is not among the estimators noted earlier, but
it is an M estimator and it shares the results given here. The analysis is complicated be-
cause the criterion function is not continuously differentiable. Nonetheless, consistency
and asymptotic normality have been established. [See Koenker and Bassett (1982) and
Amemiya (1985, pp. 152-154).] Some of the semiparametric and all of the nonparamet-
ric estimators noted require somewhat more intricate treatments. For example, Pagan
and Ullah (Section 2.5 and 2.6) are able to establish the familiar desirable properties for
the kernel density estimator f(x*), but it requires a somewhat more involved analysis
of the function and the data than is necessary, say, for the linear regression or bino-
mial logit model. The interested reader can find many lengthy and detailed analyses
of asymptotic properties of estimators in, for example, Amemiya (1985), Newey and
McFadden (1994), Davidson and MacKinnon (1993) and Hayashi (2000). In practical
terms, it is rarely possible to verify the conditions for an estimation problem at hand,
and they are usually simply assumed. However, finding violations of the conditions
is sometimes more straightforward, and this is worth pursuing. For example, lack of
parametric identification can often be detected by analyzing the model, itself.

16.5.5 TESTING HYPOTHESES

The preceding describes a set of results that (more or less) unifies the theoretical un-
derpinnings of three of the major classes of estimators in econometrics, least squares,
maximum likelihood, and GMM. A similar body of theory has been produced for the
familiar test statistics, Wald, likelihood ratio (LR), and Lagrange multiplier (LM). [See
Newey and McFadden (1994).] All of these have been laid out in practical terms else-
where in this text, so in the interest of brevity, we will refer the interested reader to the
background sources listed for the technical details. Table 16.5 lists the locations in this
text for various presentations of the testing procedures.

TABLE 16.5 Text References for Testing Procedures

Modeling Framework Wald LR LM
Least Squares 6.3.1,6.4 17.6.1 Exercise 6.7
Nonlinear LS 9.4.1 9.4.1 9.4.2
Maximum Likelihood 17.5.2 17.5.1 17.5.3

GMM 18.4.2 18.4.2 18.4.2
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16.6 SUMMARY AND CONCLUSIONS

This chapter has presented a short overview of estimation in econometrics. There are
various ways to approach such a survey. The current literature can be broadly grouped
by three major types of estimators—parametric, semiparametric, and nonparametric.
It has been suggested that the overall drift in the literature is from the first toward the
third of these, but on a closer look, we see that this is probably not the case. Maximum
likelihood is still the estimator of choice in many settings. New applications have been
found for the GMM estimator, but at the same time, new Bayesian and simulation
estimators, all fully parametric, are emerging at a rapid pace. Certainly, the range of

tools that can be applied in any setting is growing steadily.

Key Terms and Concepts

e Bandwidth

¢ Bayesian estimation

¢ Bayes factor

¢ Bayes Theorem

¢ Conditional density

¢ Conjugate prior

e Criterion function

e Data generating mechanism

¢ Density

¢ Estimation criterion

e Extremum estimator

e Generalized method of
moments

e Gibbs sampler

¢ Hierarchical Bayes

e Highest posterior density
interval

e Histogram

e Informative prior

e Inverted gamma distribution

e Joint posterior distribution

¢ Kernel density estimator

e Latent class model

e east absolute deviations

e Likelihood function

e Linear model

e Loss function

e M estimator

e Markov Chain Monte Carlo
method

e Maximum likelihood
estimator

e Method of moments

e Metropolis Hastings
algorithm

e Multivariate ¢ distribution

Exercises and Questions

e Nearest neighbor

¢ Noninformative prior

¢ Nonparametric estimators
e Normal-gamma

e Parameter space

e Parametric estimation

e Partially linear model

¢ Posterior density

e Precision matrices

e Prior belief

e Prior distribution

e Prior odds ratio

e Prior probabilities

¢ Quantile regression

e Semiparametric estimation
¢ Simulation-based estimation
e Smoothing function

1.

Compare the fully parametric and semiparametric approaches to estimation of a
discrete choice model such as the multinomial logit model discussed in Chapter 21.
What are the benefits and costs of the semiparametric approach?

Asymptotics take on a different meaning in the Bayesian estimation context, since
parameters do not “converge” to a population quantity. Nonetheless, in a Bayesian
estimation setting, as the sample size increases, the likelihood function will dominate
the posterior density. What does this imply about the Bayesian “estimator” when
this occurs.

Referring to the situation in Question 2, one might think that an informative prior
would outweigh the effect of the increasing sample size. With respect to the Bayesian
analysis of the linear regression, analyze the way in which the likelihood and an
informative prior will compete for dominance in the posterior mean.
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The following exercises require specific software. The relevant techniques are avail-
able in several packages that might be in use, such as SAS, Stata, or LIMDEP. The
exercises are suggested as departure points for explorations using a few of the many
estimation techniques listed in this chapter.

Using the gasoline market data in Appendix Table F2.2, use the partially linear
regression method in Section 16.3.3 to fit an equation of the form

IH(G/POP) = ,31111(]}’1601’1’16) + ﬂZln Pnew cars T /33111 Pused cars + g(ln Pgasoline) + &

To continue the analysis in Question 4, consider a nonparametric regression of
G/Pop on the price. Using the nonparametric estimation method in Section 16.4.2,
fit the nonparametric estimator using a range of bandwidth values to explore the
effect of bandwidth.

(‘You might find it useful to read the early sections of Chapter 21 for this exercise.)
The extramarital affairs data analyzed in Section 22.3.7 can be reinterpreted in the
context of a binary choice model. The dependent variable in the analysis is a count
of events. Using these data, first recode the dependent variable 0 for none and 1 for
more than zero. Now, first using the binary probit estimator, fit a binary choice model
using the same independent variables as in the example discussed in Section 22.3.7.
Then using a semiparametric or nonparametric estimator, estimate the same binary
choice model. A model for binary choice can be fit for at least two purposes, for
estimation of interesting coefficients or for prediction of the dependent variable.
Use your estimated models for these two purposes and compare the two models.



