
EViews 4 Command and
Programming Reference

EViews 4 Command and Programming Reference
Copyright © 1994–2002 Quantitative Micro Software, LLC

All Rights Reserved

Printed in the United States of America

ISBN 1-880411-29-6

Revised for EViews 4.1 - February 2002

This software product, including program code and manual, is copyrighted, and all rights
are reserved by Quantitative Micro Software, LLC. The distribution and sale of this product
are intended for the use of the original purchaser only. Except as permitted under the
United States Copyright Act of 1976, no part of this product may be reproduced or distrib-
uted in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of Quantitative Micro Software.

Disclaimer

The authors and Quantitative Micro Software assume no responsibility for any errors that
may appear in this manual or the EViews program. The user assumes all responsibility for
the selection of the program to achieve intended results, and for the installation, use, and
results obtained from the program.

Trademarks

Windows, Windows 95/98/2000/NT/Me, and Microsoft Excel are trademarks of Microsoft
Corporation. PostScript is a trademark of Adobe Corporation. X11.2 and X12-ARIMA Ver-
sion 0.2.7 are seasonal adjustment programs developed by the U. S. Census Bureau.
Tramo/Seats is copyright by Agustin Maravall and Victor Gomez. All other product names
mentioned in this manual may be trademarks or registered trademarks of their respective
companies.

Quantitative Micro Software, LLC

4521 Campus Drive, #336, Irvine CA, 92612-2699

Telephone: (949) 856-3368

Fax: (949) 856-2044

e-mail: sales@eviews.com

web: www.eviews.com

March 11, 2002

http://www.eviews.com

Table of Contents

CHAPTER 1. INTRODUCTION . 1

Using Commands . 1

Batch Program Use . 2

How to Use this Manual . 2

CHAPTER 2. OBJECT AND COMMAND BASICS . 5

Object Declaration . 5

Object Commands . 6

Object Assignment Statements . 9

More on Declaring Objects . 9

Auxiliary Commands . 10

Managing Workfiles and Databases . 11

Managing Objects . 14

Basic Command Summary . 17

CHAPTER 3. OBJECT, VIEW AND PROCEDURE REFERENCE . 19

Coef . 20

Equation . 21

Graph . 25

Group . 26

Logl . 29

Matrix . 31

Model . 32

Pool . 34

Rowvector . 36

Sample . 37

Scalar . 38

Series . 39

Sspace . 40

Sym . 44

System . 45

Table . 48

Var . 49

Vector . 52

ii— Table of Contents
CHAPTER 4. MATRIX LANGUAGE . 55

Declaring Matrices .55

Assigning Matrix Values .56

Copying Data Between Objects .59

Matrix Expressions .66

Matrix Commands and Functions .69

Matrix Views and Procs .71

Matrix Operations versus Loop Operations .73

Summary of Automatic Resizing of Matrix Objects .74

Matrix Function and Command Summary .76

CHAPTER 5. WORKING WITH TABLES . 79

Declaring a Table .79

Controlling Appearance .79

Filling Cells .80

Table Example .82

Table Summary .84

CHAPTER 6. EVIEWS PROGRAMMING . 85

Program Basics .85

Simple Programs .88

Program Variables .89

Program Arguments .96

Control of Execution .97

Multiple Program Files .106

Subroutines .107

Programming Summary .114

CHAPTER 7. SAMPLE PROGRAMS . 117

Descriptive Statistics by Year .117

Rolling ADF Test .119

Calculating Cumulative Sums .121

Time Series Operations on a Sample .122

Creating Dummy Variables with a Loop .123

Extracting Test Statistics in a Loop .124

Between Group Estimation for Pooled Data .126

Hausman Test for Fixed Versus Random Effects .128

Table of Contents—iii
Regression Output Table . 130

CHAPTER 8. COMMAND REFERENCE . 135

CHAPTER 9. MATRIX AND STRING REFERENCE . 397

CHAPTER 10. PROGRAMMING LANGUAGE REFERENCE . 421

APPENDIX A. OPERATOR AND FUNCTION REFERENCE . 435

Operators . 435

Date and Observation Functions . 436

Basic Mathematical Functions . 437

Time Series Functions . 438

Descriptive Statistics . 439

Additional and Special Functions . 441

Trigonometric Functions . 444

Statistical Distribution Functions . 444

INDEX .449

iv— Table of Contents

Chapter 1. Introduction

EViews provides you with both a Windows and a command line interface for working with
your data. Almost every operation that can be accomplished using menus may also be
entered into the command window, or placed in programs for batch processing. You are
free to choose the mixture of techniques which best fits your particular style of work.

The Command and Programming Reference (CPR) documents the use of commands and
programs to perform various tasks in EViews—the companion User’s Guide describes in
greater detail the general features of EViews, with an emphasis on the interactive Windows
interface.

In addition to providing a basic command reference, the Command and Programming Ref-
erence documents the use of EViews’ powerful batch processing language and advanced
programming features. With EViews, you can create and store commands in programs that
automate repetitive tasks, or generate a record of your research project.

Using Commands

Commands may be used interactively, or executed in batch mode.

Interactive Use

To work interactively, you should type a command into the command window, then press
ENTER to execute the command immediately. If you enter an incomplete command,
EViews will open a dialog box prompting you for additional information.

The command window is located just below the main menu bar at the top of the EViews
window. Unless you are editing an object or have a dialog box open, EViews will assume
that anything you type on the keyboard belongs in the command window. The blinking
vertical insertion bar at the left end of the command window indicates that EViews is
expecting a command.

2—Chapter 1. Introduction
A command that you enter in the window will be executed as soon as you press ENTER.
The insertion point need not be at the end of the command line when you press ENTER.
EViews will execute the entire line containing the insertion point.

As you enter commands, EViews will create a list in the command window. You can scroll
up to an earlier command, edit it, and hit ENTER. The modified command will be executed
again. You may also use standard Windows copy-and-paste between the command win-
dow and any other window.

The contents of the command area may also be saved directly into a text file for later use:
make certain that the command window is active by clicking anywhere in the window, and
then select File/Save As… from the main menu.

You can resize the command window so that a larger number of previously executed com-
mands are visible. Use the mouse to move the cursor to the bottom of the window, hold
down the mouse button, and drag the bottom of the window downwards.

Batch Program Use

You can assemble a number of commands into a program, and then execute the commands
in batch mode. Each command in the program will be executed in the order that it appears
in the program. Using batch programs allows you to make use of advanced capabilities
such as looping and condition branching, and subroutine and macro processing. Programs
also are an excellent way to document a research project since you will have a record of
each step of the project.

One way to create a program file in EViews is to select File/New/Program. EViews will
open an untitled program window into which you may enter your commands. You can
save the program by clicking on the Save or SaveAs button, navigating to the desired
directory, and entering a file name. EViews will append the extension .PRG to the name
you provide.

Alternatively, you can use your favorite text (ASCII) editor to create a program file contain-
ing your commands. The commands in this program may then be executed from within
EViews.

How to Use this Manual

Chapters 2 and 3 constitute the basic EViews command reference:

• Chapter 2, “Object and Command Basics”, on page 5 explains the basics of using
commands to work with EViews objects, and provides a cross-referenced listing of
basic EViews commands associated with various tasks.

How to Use this Manual—3
• Chapter 3, “Object, View and Procedure Reference”, on page 19 provides a listing of
commands, views, and procedures associated with each object.

Chapter 3 will probably be your primary reference for working with EViews since it pro-
vides a convenient outline and summary of the built-in features associated with each
EViews object.

The next sections provide documentation of more advanced EViews features:

• Chapter 4, “Matrix Language”, on page 55 describes the EViews matrix language
and provides a summary of the available matrix operators, functions, and com-
mands.

• Chapter 5, “Working with Tables”, on page 79 documents the table object and
describes the basics of working with strings in EViews.

• Chapter 6, “EViews Programming”, on page 85 describes the basics of using pro-
grams for batch processing and documents the programming language.

• Chapter 7, “Sample Programs”, on page 117 contains annotated sample EViews pro-
grams to perform a variety of common tasks.

The remaining sections contain dictionary-style reference material for all of the EViews
commands, functions, and operators:

• Chapter 8, “Command Reference”, beginning on page 135 provides a full alphabet-
ized listing of basic commands, views and procedures. This material contains the
primary reference material for working with EViews.

• Chapter 9, “Matrix and String Reference”, beginning on page 397 is an alphabetical
listing of the commands and functions associated with the EViews matrix language.

• Chapter 10, “Programming Language Reference”, on page 421 contains an alphabeti-
cal listing of the keywords and functions associated with the EViews programming
language.

While this reference manual is not designed to be read from cover-to-cover, we recommend
that before beginning extensive work using commands, you spend some time reading
through Chapter 2, “Object and Command Basics”, which describes the basics of using
commands to work with objects. A solid understanding of this material is important for
getting the most out of EViews.

If you wish to use programs in EViews, you should, at the very least, examine the first part
of Chapter 6, “EViews Programming”, which describes the basics of creating, loading, and
running a batch program.

4—Chapter 1. Introduction

Chapter 2. Object and Command Basics

This chapter provides an overview of the command method of working with EViews and
EViews objects. If you are new to EViews, you may find it useful to consult the User’s
Guide (especially Chapters 1 and 3) for a more detailed introduction to EViews and a dis-
cussion of objects, their views, and procedures.

The command line interface of EViews is comprised of a set of single line commands, each
of which may be classified as one of the following:

• object declarations.

• object commands.

• object assignment statements.

• auxiliary commands.

An EViews program is composed of a sequence of these commands, and may also contain
the following:

• control variable assignment statements.

• program control statements.

The use of control variables and program control statements is discussed in detail in the
programming guide in Chapter 6, “EViews Programming”, on page 85. The following sec-
tions provide an overview of the first four types of commands.

Object Declaration

The first step is to create or declare an object. A simple declaration has the form:

object_type object_name

where object_name is the name you would like to give to the new object and
object_type is one of the following type identifiers:

coef (coefficient vector)

equation

graph

group (collection of series)

matrix

model

6—Chapter 2. Object and Command Basics
For example, the declaration:

series lgdp

creates a new series called LGDP, while the command

equation eq1

creates a new equation object called EQ1.

Matrix objects are typically declared with their dimension in parentheses after the object
type. For example

matrix(5,5) x

creates a matrix named X, while

coef(10) results

creates a 10 element coefficient vector named RESULTS.

Note that in order to create an object you must have a workfile currently open in EViews.
You can open or create a workfile interactively from the File Menu, or you can use the
load or workfile commands to perform the same operations inside a program. See
“Workfile Basics” on page 33 of the User’s Guide for details.

Object Commands

An object command is a command which accesses an object’s views and procedures
(procs). Object commands have two main parts, a display action followed by a view speci-
fication. The view specification describes the view or procedure of the object to be acted

pool (time series, cross-section)

rowvector

sample

scalar

series

sspace (state space)

sym (symmetric matrix)

system

table

text

var (vector autoregression, error correction)

vector

5 5×

Object Commands—7
upon. The display action determines what is to be done with the output from the view or
procedure.

The complete syntax for an object command has the form:

action(act_opt) object.view_proc(view_proc_opt) arg_list

where

actionis one of four verbs (do, freeze, print, show)

act_optan option that modifies the default behavior of the action

objectthe name of the object to be acted upon

view_procthe object view or procedure to be acted upon

view_proc_optan option that modifies the default behavior of the view or proce-
dure

arg_lista list of view or procedure arguments, generally separated by
spaces

The four possible actions are:

• do executes procedures without opening a window. If the object’s window is not
currently displayed, no output is generated. If the objects window is already open,
do is equivalent to show.

• freeze creates a table or graph from the object view window.

• print prints the object view window.

• show displays the object view in a window.

In most cases, some of the components of the general object command are not necessary
since some views and procs do not require an argument list or options.

Furthermore, you need not explicitly specify an action. If no action is provided, the show
action is assumed for views and the do action is assumed for procedures. For example,
when using the command to display the series view for a line graph:

gdp.line

EViews implicitly adds a show command.

show gdp.line

Alternatively, for the equation procedure ls:

eq1.ls cons c gdp

there is an implicit do action.

8—Chapter 2. Object and Command Basics
do eq1.ls cons c gdp

In some cases, you may wish to modify the default behavior by explicitly describing the
action. For example,

print eq1.ls cons c gdp

both performs the implicit do action and then sends the output from the proc to the
printer.

Examples:

show gdp.line

print(l) group1.stats

freeze(output1) eq1.ls cons c gdp

do eq1.forecast eq1f

The first example opens a window displaying a line graph of the series GDP. The second
example prints (in landscape mode) descriptive statistics for the series in GROUP1. The
third example creates a table named OUTPUT1 from the estimation results of EQ1 for a
least squares regression of CONS on GDP. The final example executes the forecast proce-
dure of EQ1, putting the forecasted values into the series EQ1F and suppressing any proce-
dure output.

Of these four examples, only the first opens a window and displays output on the screen.

Output Control

As discussed above, the display action determines the destination for view and procedure
output. Here we note in passing a few extensions to these general rules.

You may specify that a view be simultaneously printed and displayed on your screen by
the letter “p” as an option to the object command. For example, the expression

gdp.correl(24,p)

is equivalent to the two commands,

show gdp.correl(24)

print gdp.correl(24)

since correl is a series view. The “p” option can be combined with other options, sepa-
rated by commas. So as not to interfere with other option processing, we strongly recom-
mend that the “p” option should always be specified after any required options.

Note that the print command accepts the “l” or “p” option to indicate landscape or por-
trait orientation. For example,

Object Assignment Statements—9
print(l) gdp.correl(24)

Printer output can be redirected to a text file or frozen output. See the output command
in Chapter 8, and the discussion in Appendix A, “Global Options”, beginning on page 651
of the User’s Guide, for details.

The freeze command used without options creates an untitled graph or table from a view
specification:

freeze gdp.line

You also may provide a name for the frozen object in parentheses after the word freeze.
For example,

freeze(figure1) gdp.bar

names the frozen bar graph of GDP as “figure1”.

Object Assignment Statements

Object assignment statements are commands which assign new data to an EViews object.
Object assignment statements have the syntax:

object_name = expression

where object_name identifies the object whose data is to be modified and expression
is an expression which evaluates to an object of an appropriate type.

The nature of the assignment varies depending on what type of object is on the left hand
side of the equal sign. To take a simple example, consider the assignment statement:

x = 5 * log(y) + z

where X, Y and Z are series. This assignment statement will take the log of each element of
Y, multiply each value by 5, add the corresponding element of Z, and, finally, assign the
result into the appropriate element of X.

More on Declaring Objects

Object declarations can often be combined with either object commands or object assign-
ment statements to create and initialize an object in a single line. For example:

series lgdp = log(gdp)

creates a new series called LGDP and initializes its elements with the log of the series GDP.
Similarly, the command

10—Chapter 2. Object and Command Basics
equation eq1.ls y c x1 x2

creates a new equation object called EQ1 and initializes it with the results from regressing
the series Y against a constant term, the series X1 and the series X2.

Additional examples,

scalar elas = 2

series tr58 = @trend(1958)

group nipa gdp cons inv g x

equation cnsfnc2.ls log(cons)=c(1)+c(2)*yd

vector beta = @inverse(x*x)*(x*y)

An object can be declared multiple times so long as it is always declared to be of the same
type. The first declaration will create the object, subsequent declarations will have no
effect unless the subsequent declaration also specifies how the object is to be initialized.
For example,

smpl @first 1979

series dummy = 1

smpl 1980 @last

series dummy=0

creates a series named DUMMY that has the value 1 prior to 1980 and the value 0 thereaf-
ter.

Redeclaration of an object to a different type is not allowed and will generate an error.

Auxiliary Commands

Auxiliary commands are commands which are either unrelated to a particular object (i.e.,
not views or procs), or which act on an object in a way that is generally independent of the
type or contents of the object (often acting symmetrically across objects of all types). Aux-
iliary commands typically follow the syntax:

command(option_list) argument_list

where command is the name of the view or procedure to be executed, option_list is a list of
options separated by commas, and argument_list is a list of arguments generally sepa-
rated by spaces.

An example of an auxiliary command might be:

Managing Workfiles and Databases—11
store(d=c:\newdata\db1) gdp m x

which will store the three objects GDP, M and X in the database named DB1 in the direc-
tory C:\NEWDATA.

There is also a set of auxiliary commands which performs operations that create new unti-
tled or unnamed objects. For example, the command:

ls y c x1 x2

will regress the series Y against a constant term, the series X1 and the series X2, and create
a new untitled equation object to hold the results.

Although this latter set of auxiliary commands can sometimes be useful for carrying out
simple tasks, their overuse will tend to make it difficult to manage your work. Unnamed
objects cannot be referenced by name from within a program, cannot be saved to disk, and
cannot be deleted except through the graphical Windows interface. Wherever possible, you
should favor using named rather than untitled objects for your work. For example, we may
replace the above auxiliary command with:

equation eq1.ls y c x1 x2

to create the named equation object EQ1.

Managing Workfiles and Databases

There are two types of object containers: workfiles and databases. All EViews objects must
be held in an object container, so before you begin working with objects you must create a
workfile or database. Workfiles and databases are described in depth in Chapter 3,
“EViews Basics” and Chapter 6, “EViews Databases” of the User’s Guide.

Managing Workfiles

To declare and create a new workfile, follow the workfile command with a name for the
workfile, an option for the frequency of the workfile, and the start and end dates. The
workfile frequency type options are:

a annual.

s semi-annual.

q quarterly.

m monthly.

w weekly.

12—Chapter 2. Object and Command Basics
For example,

workfile macro1 q 1965:1 1995:4

creates a new quarterly workfile named MACRO1 from the first quarter of 1965 to the
fourth quarter of 1995.

workfile cps88 u 1 1000

creates a new undated workfile named CPS88 with 1000 observations.

Note that if you have multiple workfiles open, the workfile command may be used to
change the active workfile.

To save your workfile, type “save” followed by a workfile name. If any part of the path or
workfile name has spaces, you should enclose the entire expression in quotation marks.
The active workfile will be saved in the default path under the given name. You may
optionally provide a path to save the workfile in a different directory:

save a:\mywork

If necessary, enclose the path name in quotations. To close the workfile, type “close” fol-
lowed by the workfile name. For example,

close mywork

closes the workfile window of MYWORK.

To open a previously saved workfile, follow the load keyword with the name of the work-
file. You can optionally include a path designation to open workfiles that are not saved in
the default path. For example,

load "c:\mywork\proj1"

You may also use the open command to open a previously saved workfile. To use open,
you have to type the full workfile name including the extension .WK1:

open proj2.wk1

Managing Databases

To create a new database, follow the dbcreate keyword with a name for the new data-
base. Alternatively, you could use the db keyword followed by a name for the new data-
base. The two commands differ only when the named database already exists. If you use

d daily (5 day week).

7 daily (7 day week).

u undated.

Managing Workfiles and Databases—13
dbcreate and the named database already exists on disk, EViews will error indicating
that the database already exits. If you use db and the named database already exists on
disk, EViews will simply open the existing database. Note that the newly opened database
(either by dbcreate or db) will become the default database.

For example,

dbcreate mydata1

creates a new database named MYDATA1 in the default path, opens a new database win-
dow, and makes MYDATA1 the default database.

db c:\evdata\usdb

opens the USDB database in the specified directory if it already exists. If it does not,
EViews creates a new database named USDB, opens its window, and makes it the default
database.

You can also use dbopen to open an existing database and to make it the default database.
For example,

dbopen findat

opens the database named FINDAT in the default directory. If the database does not exist,
EViews will error indicating that the specified database cannot be found. You can also use
open to open an existing database. To use open, you must provide the full name of the
database, including the file extension .EDB:

open findat.edb

You may use dbrename to rename an existing database. Follow the dbrename keyword by
the current (old) name and a new name.

dbrename temp1 newmacro

To delete an existing database, use the dbdelete command. Follow dbdelete by the
name of the database to delete.

dbdelete c:\data\usmacro

dbcopy makes a copy of the existing database. Follow dbcopy by the name of the source
file and the name of the destination file.

dbcopy c:\evdata\macro1 a:\macro1

dbpack, dbrepair, and dbrebuild are database maintenance commands. See also
Chapter 6, “EViews Databases”, beginning on page 107 of the User’s Guide for a detailed
description.

14—Chapter 2. Object and Command Basics
Managing Objects

In the course of a program you will often need to manage the objects in a workfile by copy-
ing, renaming, deleting and storing them to disk. EViews provides a number of auxiliary
commands which perform these operations. The following discussion introduces you to
the use of these commands; a full description of each command is provided in Chapter 8,
“Command Reference”, beginning on page 135.

Copying Objects

You can create a duplicate copy of an object using the copy command. The copy com-
mand is an auxiliary command with the format:

copy source_name dest_name

where source_name is the name of the object you wish to duplicate, and dest_name is
the name you want attached to the new copy of the object.

The copy command may also be used to copy objects in databases and to move objects
between workfiles and databases.

Copy with Wildcard Characters

EViews supports the use of wildcard characters (“?” for a single character match and “*”
for a pattern match) in destination specifications when using the copy and rename com-
mands. Using this feature, you can copy or rename a set of objects whose names share a
common pattern in a single operation. This can be useful for managing series produced by
model simulations, series corresponding to pool cross-sections, and any other situation
where you have a set of objects which share a common naming convention.

A destination wildcard pattern can be used only when a wildcard pattern has been pro-
vided for the source, and the destination pattern must always conform to the source pat-
tern in that the number and order of wildcard characters must be exactly the same
between the two. For example, the following patterns

conform to each other, while these patterns do not

Source Pattern Destination Pattern

x* y*

c b

x*12? yz*f?abc

Managing Objects—15
When using wildcards, the destination name is formed by replacing each wildcard in the
destination pattern by the characters from the source name that matched the correspond-
ing wildcard in the source pattern. Some examples should make this principle clear:

Note, as shown in the second example, that a simple asterisk for the destination pattern
does not mean to use the unaltered source name as the destination name. To copy objects
between containers preserving the existing name, either repeat the source pattern as the
destination pattern

copy x* db1::x*

or omit the destination pattern entirely

copy x* db1::

If you use wildcard characters in the source name and give a destination name without a
wildcard character, EViews will keep overwriting all objects which match the source pat-
tern to the name given as destination.

For additional discussion of wildcards, see Appendix C, “Wildcards”, on page 657 of the
User’s Guide.

Renaming Objects

You can give an object a different name using the rename command. The rename com-
mand has the format:

rename source_name dest_name

where source_name is the original name of the object and dest_name is the new name you
would like to give to the object.

Source Pattern Destination Pattern

a* b

*x ?y

x*y* *x*y*

Source Pattern Destination Pattern Source Name Destination Name

*_base *_jan x_base x_jan

us_* * us_gdp gdp

x? x?f x1 x1f

_ **f us_gdp usgdpf

??*f ??_* usgdpf us_gdp

16—Chapter 2. Object and Command Basics
rename can also be used to rename objects in databases.

You may use wildcards when renaming series. The name substitution rules are identical to
those described above for copy.

Deleting Objects

Objects may be removed from the workfile using the delete command. The delete
command has the format:

delete name_pattern

where name_pattern can either be a simple name such as “XYZ”, or a pattern containing
the wildcard characters “?” and “*”, where “?” means to match any one character, and
“*” means to match zero or more characters. When a pattern is provided, all objects in the
workfile with names matching the pattern will be deleted. Appendix C, “Wildcards”, on
page 657 of the User’s Guide describes further the use of wildcards.

delete can also be used to remove objects from databases.

Saving Objects

All named objects will be saved automatically in the workfile when the workfile is saved to
disk. You can store and retrieve the current workfile to and from disk using the save and
load commands. Unnamed objects will not be saved as part of the workfile.

You can also save objects for later use by storing them in a database. The store command
has the format:

store(option_list) object1 object2 …

where object1, object2, ..., are the names of the objects you would like to store in the data-
base. If no options are provided, the series will be stored in the current default database
(see Chapter 6 of the User’s Guide for a discussion of the default database). You can store
objects into a particular database by using the option “d=db_name” or by prepending the
object name with a database name followed by a double colon “::”, such as:

store db1::x db2::x

Fetch Objects

You can retrieve objects from a database using the fetch command. The fetch command
has the same format as the store command:

fetch(option_list) object1 object2 …

To specify a particular database use the “d=” option or the “::” extension as for store.

Basic Command Summary—17
Basic Command Summary

The following list summarizes the EViews basic commands. The full descriptions of these
commands are given in Chapter 8, “Command Reference”, beginning on page 135.

A list of views and procedures available for each object may be found in the next chapter.
Commands for working with matrix objects are listed in Chapter 4, “Matrix Language”, on
page 55, and EViews programming expressions are described in Chapter 6, “EViews Pro-
gramming”, beginning on page 85.

Object Declarations

You may define EViews objects using the following commands/declarations (see the corre-
sponding entries in Chapter 8, “Command Reference”, beginning on page 135 for syntax
details and additional discussion): coef, equation, graph, group, logl, matrix,
model, pool, rowvector, sample, scalar, series, sspace, sym, system, table,
text, var, vector.

Command Actions
do.........................execute procedures (p. 192).

freezecreate view object (p. 216).

printprint view (p. 286).

showdisplay objects (p. 328).

Object Container, Data, and File Commands
ccopy....................copy series from DRI database (p. 156).

cd, chdirchange default directory (p. 156).

cfetchfetch series from DRI database (p. 160).

clabeldisplay DRI series description (p. 162).

closeclose object, program, or workfile (p. 163).

createcreate a new workfile (p. 176).

dataenter data from keyboard (p. 178).

dbopen or create a database (p. 180).

dbcopymake copy of a database (p. 181).

dbcreate................create a new database (p. 181).

dbdelete................delete a database (p. 182).

dbopenopen a database (p. 183).

dbpackpack a database (p. 184).

dbrebuildrebuild a database (p. 184).

dbrenamerename a database (p. 185).

dbrepair................repair a database (p. 185).

18—Chapter 2. Object and Command Basics
driconvert convert the entire DRI database to an EViews database (p. 194).

expand................. expand workfile range (p. 204).

fetch fetch objects from databases or databank files (p. 205).

hconvert convert an entire Haver Analytics database to an EViews database
(p. 226).

load load a workfile (p. 244).

open open a file (p. 275).

range reset the workfile range (p. 290).

read read data from a foreign disk file (p. 291).

save save workfile to disk (p. 308).

sort sort the workfile (p. 336).

workfile create or change active workfile (p. 381).

write.................... write series to a disk file (p. 383).

Object Utility Commands
close close window of an object, program, or workfile (p. 163).

copy copy objects (p. 168).

delete................... delete objects (p. 188).

output.................. redirect printer output (p. 279).

rename rename object (p. 293).

Global Commands
exit exit the EViews program (p. 203).

param set parameter values (p. 281).

rndseed................ set the seed of the random number generator (p. 303).

smpl set current workfile sample (p. 332).

setconvert set default frequency conversion methods (p. 321).

tic reset the timer (p. 363).

toc display elapsed time (since timer reset) in seconds (p. 364).

Table Commands
setcell format and fill in a table cell (p. 319).

setcolwidth set width of a table column (p. 321).

setline.................. place a horizontal line in table (p. 326).

Chapter 3. Object, View and Procedure Reference

The following is a reference guide to the views, procedures, and data members for each of
the objects found in EViews:

To use these views, procedures, and data members you should list the name of the object
followed by a period, and then enter the name of the view, procedure, or data member,
along with any options or arguments:

object_name.view_name(options) arguments

object_name.proc_name(options) arguments

object_name.data_member

For example, to display the line graph view of the series object CONS, you can enter the
command:

cons.line

To perform a dynamic forecast using the estimates in the equation object EQ1, you may
enter:

eq1.forecast y_f

To save the coefficient covariance matrix from EQ1, you can enter:

sym cov1=eq1.@coefcov

Each of the views and procedures is documented more fully in the alphabetical listing
found in Chapter 8, “Command Reference”, on page 135.

 Coef (p. 20) Model (p. 32) Sspace (p. 40)

 Equation (p. 21) Pool (p. 34) Sym (p. 44)

 Graph (p. 25) Rowvector (p. 36) System (p. 45)

 Group (p. 26) Sample (p. 37) Table (p. 48)

Logl (p. 29) Scalar (p. 38) Var (p. 49)

 Matrix (p. 31) Series (p. 39) Vector (p. 52)

20—Chapter 3. Object, View and Procedure Reference
Coef

Coefficient vector. Coefficients are used to represent the parameters of equations and sys-
tems.

There are two ways to create a coef. First, enter the coef keyword, followed by a name to
be given to the coefficient vector. The dimension of the coef may be provided in parenthe-
ses after the keyword:

coef alpha

coef(10) beta

If no dimension is provided, the resulting coef will contain a single element.

You may also combine a declaration with an assignment statement. If you do not provide
an explicit assignment statement, new coefs are initialized to zero.

See also param (p. 281) for information on initializing coefficients, and the entries for each
of the estimation objects (equation, pool, sspace, system, and var) for additional methods
of accessing coefficients.

Coef Views
bar....................... bar graph of coefficient vector plotted against the coefficient index

(p. 150).

label label view (p. 238).

line line graph of coefficient vector plotted against the coefficient index
(p. 241).

sheet.................... spreadsheet (p. 327).

spike.................... spike graph (p. 338).

stats descriptive statistics (p. 344).

Coef Procs
displayname......... set display name (p. 192).

read import data into coefficient vector (p. 291).

write.................... export data from coefficient vector (p. 383).

Coef Data Members
(i)........................ i-th element of the coefficient vector. Simply append “(i)” to the

matrix name (without a “.”).

Coef Examples

The coefficient vector declaration

Equation—21
coef(10) coef1=3

creates a 10 element coefficient vector COEF1, and initializes all values to 3.

Suppose MAT1 is a matrix, and VEC1 is a 20 element vector. Then

coef mycoef1=coef1

coef mycoef2=mat1

coef mycoef3=vec1

create, size, and initialize the coefficient vectors MYCOEF1, MYCOEF2 and MYCOEF3.

Coefficient elements may be referred to by an explicit index. For example:

vector(10) mm=beta(10)

scalar shape=beta(7)

fills the vector MM with the value of the tenth element of BETA, and assigns the seventh
value of BETA to the scalar SHAPE.

Equation

Equation object. Equations are used for single equation estimation, testing, and forecast-
ing.

To declare an equation object, enter the keyword equation, followed by a name:

equation eq01

and an optional specification:

equation r4cst.ls r c r(-1) div

equation wcd.ls q=c(1)*n^c(2)*k^c(3)

Equation Methods
archautoregressive conditional heteroskedasticity (ARCH and GARCH)

(p. 145).

binary...................binary dependent variable models (includes probit, logit, gompit)
models (p. 152).

censoredcensored and truncated regression (includes tobit) models
(p. 158).

countcount data modeling (includes poisson, negative binomial and
quasi-maximum likelihood count models) (p. 173).

gmm.....................generalized method of moments (p. 221).

lslinear and nonlinear least squares regression (includes weighted
least squares and ARMAX) models (p. 245).

10 1×

22—Chapter 3. Object, View and Procedure Reference
ordered ordinal dependent variable models (includes ordered probit,
ordered logit, and ordered extreme value models) (p. 277).

tsls....................... linear and nonlinear two-stage least squares (TSLS) regression
models (includes weighted TSLS, and TSLS with ARMA errors)
(p. 368).

Equation Views
archtest................ LM test for the presence of ARCH in the residuals (p. 147).

auto Breusch-Godfrey serial correlation Lagrange Multiplier (LM) test
(p. 149).

chow Chow breakpoint and forecast tests for structural change (p. 161).

coefcov coefficient covariance matrix (p. 165).

correl correlogram of the residuals (p. 172).

correlsq................ correlogram of the squared residuals (p. 173).

derivs derivatives of the equation specification (p. 189).

garch conditional standard deviation graph (only for equations estimated
using ARCH) (p. 219).

grads examine the gradients of the objective function (p. 223).

hist histogram and descriptive statistics of the residuals (p. 229).

label label information for the equation (p. 238).

means descriptive statistics by category of the dependent variable (only
for binary, ordered, censored and count equations) (p. 266).

predict prediction (fit) evaluation table (only for binary and ordered equa-
tions) (p. 285).

representation text showing specification of the equation (p. 294).

reset Ramsey’s RESET test for functional form (p. 297).

resids display, in tabular form, the actual and fitted values for the depen-
dent variable, along with the residuals (p. 299).

results.................. table of estimation results (p. 300).

rls........................ recursive residuals least squares (only for equations estimated by
ordinary least squares, without ARMA terms) (p. 300).

testadd likelihood ratio test for adding variables to equation (p. 355).

testdrop likelihood ratio test for dropping variables from equation (p. 358).

testfit performs Hosmer and Lemeshow and Andrews goodness-of-fit
tests (only for equations estimated using binary) (p. 360).

wald Wald test for coefficient restrictions (p. 378).

white White test for heteroskedasticity (p. 379).

Equation—23
Equation Procs
displaynameset display name (p. 192).

fitstatic forecast (p. 212).

forecast.................dynamic forecast (p. 214).

makederivsmake group containing derivatives of the equation specification
(p. 251).

makegarchcreate conditional variance series (only for ARCH equations)
(p. 252).

makegradsmake group containing gradients of the objective function
(p. 253).

makelimits............create vector of estimated limit points (only for ordered models)
(p. 257).

makemodelcreate model from estimated equation (p. 257).

makeregsmake group containing the regressors (p. 258).

makeresidsmake series containing residuals from equation (p. 259).

updatecoefs...........update coefficient vector(s) from equation (p. 372).

Equation Data Members

Scalar Values

@aic.....................Akaike information criterion.

@coefcov(i,j)covariance of coefficient estimates i and j.
@coefs(i)..............i-th coefficient value.

@dwDurbin-Watson statistic.

@fF-statistic.

@hqHannan-Quinn information criterion.

@jstat...................J-statistic — value of the GMM objective function (for GMM).

@loglvalue of the log likelihood function.

@meandepmean of the dependent variable.

@ncoef.................number of estimated coefficients.

@r2......................R-squared statistic.

@rbar2adjusted R-squared statistic.

@regobsnumber of observations in regression.

@schwarzSchwarz information criterion.

@sddepstandard deviation of the dependent variable.

@sestandard error of the regression.

@ssr.....................sum of squared residuals.

@stderrs(i)standard error for coefficient i.

24—Chapter 3. Object, View and Procedure Reference
@tstats(i)............. t-statistic value for coefficient i.
c(i) i-th element of default coefficient vector for equation (if applica-

ble).

Vectors and Matrices

@coefcov covariance matrix for coefficient estimates.

@coefs................. coefficient vector.

@stderrs vector of standard errors for coefficients.

@tstats vector of t-statistic values for coefficients.

Equation Examples

To apply an estimation method (proc) to an existing equation object:

equation ifunc

ifunc.ls r c r(-1) div

To declare and estimate an equation in one step, combine the two commands:

equation value.tsls log(p) c d(x) @ x(-1) x(-2)

equation drive.logit ifdr c owncar dist income

equation countmod.count patents c rdd

To estimate equations by list, using ordinary and two-stage least squares:

equation ordinary.ls log(p) c d(x)

equation twostage.tsls log(p) c d(x) @ x(-1) x(-2)

You can create and use other coefficient vectors:

coef(10) a

coef(10) b

equation eq01.ls y=c(10)+b(5)*y(-1)+a(7)*inc

The fitted values from EQ01 may be saved using

series fit = eq01.@coefs(1) + eq01.@coefs(2)*y(-1) +
eq01.@coefs(3)*inc

or by issuing the command

eq01.fit fitted_vals

To perform a Wald test:

eq01.wald a(7)=exp(b(5))

You can save the t-statistics and covariance matrix for your parameter estimates:

vector eqstats=eq01.@tstats

Graph—25
matrix eqcov=eq01.@coefcov

Graph

Graph view object.

Graphs may be created by declaring a graph using one of the graph methods described
below, or by freezing the graphical view of an object. For example:

graph myline.line ser1

graph myscat.scat ser1 ser2

graph myxy.xyline grp1

declare and create the graph objects MYLINE, MYSCAT and MYXY. Alternatively, you can
use the freeze command to create graph objects:

freeze(myline) ser1.line

group grp2 ser1 ser2

freeze(myscat) grp2.scat

freeze(myxy) grp1.xyline

which are equivalent to the declarations above. For details, see freeze (p. 216).

Graph View
labellabel information for the graph (p. 238).

Graph Procs (to set graph type)
barbar graph (p. 150).

errbarerror bar graph (p. 201).

graph....................create a graph or merged graph (p. 224).

hilohigh-low(-open-close) graph (p. 228).

line.......................line-symbol graph (p. 241).

pie........................pie chart (p. 284).

scatscatter plot (p. 311).

spikespike graph (p. 338).

xylineXY line graph with one or more X series plotted against one or
more Y (p. 394).

Graph Procs
addtextplace arbitrary text on the graph (p. 140).

alignalign the placement of multiple graphs (p. 142).

dates.....................controls labeling of the bottom date/time axis in time plots
(p. 178).

26—Chapter 3. Object, View and Procedure Reference
displayname......... set display name (p. 192).

draw draw lines and shaded areas on the graph (p. 193).

label label information for the graph (p. 238).

legend.................. control the appearance and placement of legends (p. 240).

metafile save graph to a Windows metafile (p. 268).

name change the series name for legends or axis labels (p. 271).

options change the option settings of the graph (p. 275).

scale manually scale the axis of the graph (p. 309).

setelem set individual line, bar and legend options for each series in the
graph (p. 323).

template............... use template graph (p. 355).

Graph Examples

You can declare your graph

graph abc.xyline(m) unemp gnp inf

graph bargraph.bar(d,l)unemp gnp

or freeze any graphical view:

freeze(mykernel) ser1.kdensity

You can change the graph type,

graph mygraph.line ser1

mygraph.hist

or combine multiple graphs,

graph xyz.merge graph1 graph2

Group

Group of series. Groups are used for working with collections of series objects.

To declare a group, enter the keyword group, followed by a name, and optionally, a list of
series or expressions:

group salesvrs

group nipa cons(-1) log(inv) g x

Additionally, a number of object procedures will automatically create a group.

Group Views
bar....................... single or multiple bar graph view of all series (p. 150).

Group—27
causepairwise Granger causality tests (p. 154).

cdfplotdistribution (cumulative, survivor, quantile) graphs (p. 157).

cointJohansen cointegration test (p. 166).

cor........................correlation matrix between series (p. 171).

correl....................correlogram of the first series in the group (p. 172).

covcovariance matrix between series (p. 175).

crosscross correlogram of the first two series (p. 177).

dropdrop one or more series from the group (p. 195).

dtabledated data table (p. 196).

errbarerror bar graph view (p. 201).

freqfrequency table -way contingency table (p. 217).

hilohigh-low(-open-close) chart (p. 228).

kerfitscatter of the first series against the second series with kernel fit
(p. 237).

labellabel information for the group (p. 238).

line.......................single or multiple line graph view of all series (p. 241).

linefitscatter of the first series against the second series with regression
line (p. 242).

nnfitscatter of the first series against the second series with nearest
neighbor fit (p. 272).

pie........................pie chart view (p. 284).

pcompprincipal components analysis (p. 281).

qqplotquantile-quantile plots (p. 288).

scatsingle scatter diagram of the series in the group (p. 311).

scatmat.................matrix of all pairwise scatter plots (p. 313).

sheetspreadsheet view of the series in the group (p. 327).

spikespike graph (p. 338).

stats......................descriptive statistics (p. 344).

testbtwtests of equality for mean, median, or variance, between series in
group (p. 356).

xylineXY line graph with one or more X series plotted against one or
more Y (p. 394).

Group Procs
addadd one or more series to the group (p. 137).

displaynameset display name (p. 192).

resampleresample from rows of group (p. 295).

n

28—Chapter 3. Object, View and Procedure Reference
Group Data Members
(i)........................ i-th series in the group. Simply append “(i)” to the group name

(without a “.”).

@comobs............. number of observations in the current sample for which each
series in the group has a non-missing value (observations in the
common sample).

@count................ number of series in the group.

@minobs number of non-missing observations in the current sample for the
shortest series in the group.

@maxobs............. number of non-missing observations in the current sample for the
the longest series in the group.

@seriesname(i).... string containing the name of the i-th series in the group.

Group Examples

To create a group G1, you can enter

group g1 gdp income

To change the contents of an existing group, you can repeat the declaration, or use the add
and drop commands:

group g1 x y

g1.add w z

g1.drop y

The following commands produce a cross-tabulation of the series in the group, display the
covariance matrix, and test for equality of variance:

g1.freq

g1.cov

g1.testbtw(var,c)

You can index selected series in the group:

show g1(2).line

series sum=g1(1)+g1(2)

To create a scalar containing the number of series in the group, use

Logl—29
scalar nsers=g1.@count

Logl

Likelihood object. Used for performing maximum likelihood estimation of user-specified
likelihood functions.

To declare a logl object, use the logl keyword, followed by a name to be given to the
object.

Logl Method
mlmaximum likelihood estimation (p. 269).

Logl Views
appendadd line to the specification (p. 143).

checkderivs...........compare user supplied and numeric derivatives (p. 160).

coefcovcoefficient covariance matrix (p. 165).

gradsexamine the gradients of the log likelihood (p. 223).

labellabel view of likelihood object (p. 238).

resultsestimation results (p. 300).

speclikelihood specification (p. 337).

waldWald coefficient restriction test (p. 378).

Logl Procs
displaynameset display name (p. 192).

makegradsmake group containing gradients of the log likelihood (p. 253).

makemodelmake model (p. 257).

updatecoefs...........update coefficient vector(s) from likelihood (p. 372).

Logl Statements

The following statements can be included in the specification of the likelihood object.
These statements are optional, except for “@logl” which is required. See Chapter 18, “The
Log Likelihood (LogL) Object”, on page 471 of the User’s Guide for further discussion.

@byeqnevaluate specification by equation.

@byobsevaluate specification by observation (default).

@derivspecify an analytic derivative series.

@derivstepset parameters to control step size.

@loglspecify the likelihood contribution series.

@paramset starting values.

@tempremove temporary working series.

30—Chapter 3. Object, View and Procedure Reference
Logl Data Members

Scalar Values (system data)

@aic Akaike information criterion.

@coefcov(i,j) covariance of coefficients i and j.
@coefs(i) coefficient i.
@hq Hannan-Quinn information criterion.

@logl value of the log likelihood function.

@ncoefs............... number of estimated coefficients.

@regobs number of observations used in estimation.

@sc Schwarz information criterion.

@stderrs(i) standard error for coefficient i.
@tstats(i) t-statistic value for coefficient i.
coef_name(i) i-th element of default coefficient vector for likelihood.

Vectors and Matrices

@coefcov covariance matrix of estimated parameters.

@coefs................. coefficient vector.

@stderrs vector of standard errors for coefficients.

@tstats vector of t-statistic values for coefficients.

Logl Examples

To declare a likelihood named LL1:

logl ll1

To define a likelihood function for OLS (not a recommended way to do OLS!):

ll1.append @logl logl1

ll1.append res1 = y-c(1)-c(2)*x

ll1.append logl1 = log(@dnorm(res1/@sqrt(c(3))))-log(c(3))/2

To estimate LL1 by maximum likelihood (the “showstart” option displays the starting val-
ues):

ll1.ml(showstart)

To save the estimated covariance matrix of the parameters from LL1 as a named matrix
COV1:

Matrix—31
matrix cov1=ll1.@coefcov

Matrix

Matrix (two-dimensional array).

There are several ways to create a matrix object. You can enter the matrix keyword (with
an optional row and column dimension) followed by a name:

matrix scalarmat

matrix(10,3) results

Alternatively, you can combine a declaration with an assignment statement, in which case
the new matrix will be sized accordingly.

Lastly, a number of object procedures create matrices.

Matrix Views
barsingle or multiple bar graph of each column against the row index

(p. 150).

cor........................correlation matrix by columns (p. 171).

covcovariance matrix by columns (p. 175).

errbarerror bar graph view (p. 201).

hilohigh-low(-open-close) chart (p. 228).

labellabel information for the matrix (p. 238).

line.......................single or multiple line graph of each column by the row index
(p. 241).

pie........................pie chart view (p. 284).

scatscatter diagrams of the columns of the matrix (p. 311).

sheetspreadsheet view of the matrix (p. 327).

spikespike graph (p. 338).

stats......................descriptive statistics by column (p. 344).

xylineXY line graph with one or more X columns plotted against one or
more Y (p. 394).

Matrix Procs
displaynameset display name (p. 192).

fillfill the elements of the matrix (p. 208).

readimport data from disk (p. 291).

writeexport data to disk (p. 383).

32—Chapter 3. Object, View and Procedure Reference
Matrix Data Members
(i,j)...................... (i,j)-th element of the matrix. Simply append “(i, j)” to the matrix

name (without a “.”).

Matrix Examples

The following assignment statements create and initialize matrix objects:

matrix copymat=results

matrix covmat1=eq1.@coefcov

matrix(5,2) count

count.fill 1,2,3,4,5,6,7,8,9,10

as does the procedure

eq1.makecoefcov covmat2

You can declare and initialize a matrix in one command:

matrix(10,30) results=3

matrix(5,5) other=results1

Graphs and covariances may be generated for the columns of the matrix:

copymat.line

copymat.cov

and statistics computed for the rows of a matrix

matrix rowmat=@transpose(copymat)

rowmat.stats

You can use explicit indices to refer to matrix elements:

scalar diagsum=cov1(1,1)+cov1(2,2)+cov(3,3)

Model

Set of simultaneous equations used for forecasting and simulation.

Declare an object by entering the keyword model, followed by a name:

model mymod

declares an empty model named MYMOD. To fill MYMOD, open the model and edit the
specification view, or use the append view. Note that models are not used for estimation
of unknown parameters.

See also the section on model keywords in “Text View” on page 624 of the User’s Guide.

Model—33
Model Views
blockdisplay model block structure (p. 154).

eqsview of model organized by equation (p. 201).

labelview or set label information for the model (p. 238).

msgdisplay model solution messages (p. 270).

text.......................show text showing equations in the model (p. 363).

traceview of trace output from model solution (p. 365).

varsview of model organized by variable (p. 377).

Model Procs
addassignassign add factors to equations (p. 138).

addinit..................initialize add factors (p. 139)

appendappend a line of text to a model (p. 143).

control..................solve for values of control variable so that target matches trajec-
tory (p. 168).

displaynameset display name (p. 192).

excludespecifies (or merges) excluded series to the active scenario
(p. 203).

makegraph............make graph object showing model series (p. 254).

makegroupmake group out of model series and display dated data table
(p. 255).

mergemerge other objects into the model (p. 267).

overridespecifies (or merges) override series to the active scenario
(p. 280).

scenarioset the active, alternate, or comparison scenario (p. 313).

solve.....................solve the model (p. 334).

solveoptset solve options for model (p. 335).

specDisplays the text specification view (p. 337).

Model Examples

The commands

model mod1

mod1.append y=324.35+x

mod1.append x=-234+7.3*z

mod1.solve(m=100,c=.008)

create, specify, and solve the model MOD1. The command

34—Chapter 3. Object, View and Procedure Reference
mod1(g).makegraph gr1 x y z

plots the endogenous series X, Y, and Z, in the active scenario for model MOD1.

Pool

Pooled time series, cross-section object. Used when working with data with both time
series and cross-section structure.

To declare a pool object, use the pool keyword, followed by a pool name, and optionally,
a list of pool members. Pool members are short text identifiers for the cross section units:

pool mypool

pool g7 _can _fr _ger _ita _jpn _us _uk

Pool Methods
ls estimate linear regression models including cross-section weighted

least squares, and fixed and random effects models (p. 245).

Pool Views
add add cross section members to pool (p. 137).

coefcov coefficient covariance matrix (p. 165).

define define cross section identifiers (p. 188).

describe calculate pool descriptive statistics (p. 190).

drop..................... drop cross section members from pool (p. 195).

label label information for the pool object (p. 238).

representation text showing equations in the model (p. 294).

residcor................ residual correlation matrix (p. 297).

residcov residual covariance matrix (p. 298).

resids table or graph of residuals for each pool member (p. 299).

results.................. table of estimation results (p. 300).

sheet.................... spreadsheet view of series in pool (p. 327).

wald Wald coefficient restriction test (p. 378).

Pool Procs
delete................... delete pool series (p. 188).

displayname......... set display name (p. 192).

fetch fetch series into workfile using a pool (p. 205).

genr generate pool series using the “?” (p. 220).

makegroup........... create a group of series from a pool (p. 255).

makemodel creates a model object from the estimated pool (p. 257).

Pool—35
makeresidsmake series containing residuals from pool (p. 259).

makestatsmake descriptive statistic series (p. 263).

makesystemcreates a system object from the pool for other estimation methods
(p. 264).

readimport pool data from disk (p. 291).

storestore pool series in database/bank files (p. 347).

storeupdate coefficient vector(s) from pool (p. 347).

writeexport pool data to disk (p. 383).

Pool Data Members

String Values

@idname(i)i-th cross-section identifier.

Scalar Values

@aic.....................Akaike information criterion.

@coefcov(i,j)covariance of coefficients i and j.
@coefs(i)..............coefficient i.
@dwDurbin-Watson statistic.

@effects(i)............estimated fixed or random effect for the i-th cross-section member
(only for fixed or random effects).

@fF-statistic.

@logllog likelihood.

@meandepmean of the dependent variable.

@ncoef.................total number of estimated coefficients.

@ncrosstotal number of cross sectional units.

@ncrossestnumber of cross sectional units in last estimated pool equation.

@r2......................R-squared statistic.

@rbar2adjusted R-squared statistic.

@regobstotal number of observations in regression.

@schwarzSchwarz information criterion.

@sddepstandard deviation of the dependent variable.

@sestandard error of the regression.

@ssr.....................sum of squared residuals.

@stderrs(i)standard error for coefficient i.
@totalobs total number of observations in the pool. For a balanced sample

this is “@regobs*@ncrossest”.

@tstats(i)t-statistic value for coefficient i.

36—Chapter 3. Object, View and Procedure Reference
c(i) i-th element of default coefficient vector for the pool.

Vectors and Matrices

@coefcov covariance matrix for coefficients of equation.

@coefs................. coefficient vector.

@effects............... vector of estimated fixed or random effects (only for fixed or ran-
dom effects estimation).

@stderrs vector of standard errors for coefficients.

@tstats vector of t-statistic values for coefficients.

Pool Examples

To read data using the pool object

mypool1.read(b2) data.xls x? y? z?

and to delete and store pool series you may enter

mypool1.delete x? y?

mypool1.store z?

Descriptive statistics may be computed using the command

mypool1.describe(m) z?

To estimate a pool equation using least squares and to access the t-statistics, enter

mypool1.ls y? c z? @ w?

vector mypool1.@tstats

Rowvector

Row vector. (One dimensional array of numbers).

There are several ways to create a rowvector object. First, you can enter the rowvector
keyword (with an optional dimension) followed by a name:

rowvector scalarmat

rowvector(10) results

The resulting rowvector will be initialized with zeros.

Alternatively, you may combine a declaration with an assignment statement. The new vec-
tor will be sized and initialized accordingly:

rowvector(10) y=3

rowvector z=results

Sample—37
Rowvector Views
barbar graph of each column (element) of the data against the row

index (p. 150).

fillfill elements of the vector (p. 208).

labellabel information for the rowvector (p. 238).

line.......................line graph of each column (element) of the data against the row
index (p. 241).

sheetspreadsheet view of the vector (p. 327).

spikespike graph (p. 338).

stats......................descriptive statistics (p. 344).

Rowvector Procs
displaynameset display name (p. 192).

readimport data from disk (p. 291).

writeexport data to disk (p. 383).

Rowvector Data Members
(i)i-th element of the vector. Simply append “(i)” to the matrix name

(without a “.”).

Rowvector Examples

To declare a rowvector and to fill it with data read from an Excel file:

rowvector(10) mydata

mydata.read(b2) thedata.xls

To access a single element of the vector using direct indexing:

scalar result1=mydata(2)

The rowvector may be used in standard matrix expressions:

vector transdata=@transpose(mydata)

scalar inner=@transpose(mydata)*mydata

scalar inner1=@inner(mydata)

Sample

Sample of observations. Description of a set of observations to be used in operations.

To declare a sample object, use the keyword sample, followed by a name and a sample
string:

sample mysample 1960:1 1990:4

38—Chapter 3. Object, View and Procedure Reference
sample altsample 120 170 300 1000 if x>0

Sample Procs
set reset the sample range (p. 319).

Sample Example

To change the observations in a sample object, you can use the set proc:

mysample.set 1960:1 1980:4 if y>0

sample thesamp 1 10 20 30 40 60 if x>0

thesamp.set @all

To set the current sample to use a sample, enter a smpl statement, followed by the name
of the sample object:

smpl mysample

equation eq1.ls y x c

Scalar

Scalar (single number). A scalar holds a single numeric value. Scalar values may be used
in standard EViews expressions in place of numeric values.

To declare a scalar object, use the keyword scalar, followed by a name, an “=” sign and
a scalar expression or value.

Scalar objects have no views or procedures, and do not open windows. The value of the
scalar may be displayed in the status line at the bottom of the EViews window.

Scalar Examples

You can declare a scalar and examine its contents in the status line:

scalar pi=3.14159

scalar shape=beta(7)

show shape

or you can declare a scalar and use it in an expression:

scalar inner=@transpose(mydata)*mydata

series x=1/@sqrt(inner)*y

Series—39
Series

Series of observations. An EViews series contains a set of observations on a variable.

To declare a series, use the keyword series, followed by a name, and optionally, by an
“=” sign and a valid series expression:

series y

series x=3*z

If there is no assignment, the series will be initialized to contain NAs.

Series Views
barbar graph of the series (p. 150).

bdstestBDS independence test (p. 152).

cdfplotdistribution (cumulative, survivor, quantile) functions (p. 157).

correl....................correlogram, autocorrelation and partial autocorrelation functions
(p. 172).

edftestempirical distribution function tests (p. 198).

freqone-way tabulation (p. 217).

hist.......................descriptive statistics and histogram (p. 229).

kdensity................kernel density estimate (p. 236).

labellabel information for the series (p. 238).

line.......................line graph of the series (p. 241).

qqplotquantile-quantile plot (p. 288).

seasplotseasonal line graph (p. 316).

sheetspreadsheet view of the series (p. 327).

spikespike graph (p. 338).

statbystatistics by classification (p. 340).

stats......................descriptive statistics and histogram (p. 229).

testbyequality test by classification (p. 357).

teststatsimple hypothesis tests (p. 362).

urootunit root test (p. 373).

Series Procs
displaynameset display name (p. 192).

hpfHodrick-Prescott filter (p. 231).

seasseasonal adjustment only for quarterly and monthly time series
(p. 315).

resampleresample from the observations in the series (p. 295).

40—Chapter 3. Object, View and Procedure Reference
smooth exponential smoothing (p. 330).

tramoseats seasonal adjustment using Tramo/Seats (p. 365).

x11 seasonal adjustment by Census X11 method only for quarterly and
monthly time series (p. 387).

x12 seasonal adjustment by Census X12 method only for quarterly and
monthly time series (p. 388).

Series Data Members
(i)........................ i-th element of the series from the beginning of the workfile (when

used on the left-hand side of an assignment, or when the element
appears in a matrix, vector, or scalar assignment).

Series Element Functions
@elem(ser, j) function to access the j-th observation of the series SER, where j

identifies the date or observation.

Series Examples

You can declare a series in the usual fashion:

series b=income*@mean(z)

series blag=b(1)

Note that the last example, above, involves a series expression so that B(1) is treated as a
one-period lead of the entire series, not as an element operator. In contrast,

scalar blag1=b(1)

evaluates the first observation on B in the workfile.

Once a series is declared, views and procs are available:

a.qqplot

a.statby(mean, var, std) b

To access individual values:

scalar quarterlyval = @elem(y, "1980:3")

scalar undatedval = @elem(x, 323)

Sspace

State space object. Estimation and evaluation of state space models using the Kalman fil-
ter.

To declare a sspace object, use the sspace keyword, followed by a valid name.

Sspace—41
Sspace Method
mlmaximum likelihood estimation or filter initialization (p. 269).

Sspace Views
appendadd line to the specification (p. 143).

coefcovcoefficient covariance matrix (p. 165).

endogtable or graph of actual signal variables (p. 200).

gradsexamine the gradients of the log likelihood (p. 223).

labellabel information for the state space object (p. 238).

residcorstandardized one-step ahead residual correlation matrix (p. 297).

residcovstandardized one-step ahead residual covariance matrix (p. 298).

resids....................one-step ahead actual, fitted, residual graph (p. 299).

resultstable of estimation and filter results (p. 300).

signalgraphsdisplay graphs of signal variables (p. 329).

spectext representation of state space specification (p. 337).

statefinal...............display the final values of the states or state covariance (p. 343).

stategraphsdisplay graphs of state variables (p. 342).

stateinitdisplay the initial values of the states or state covariance (p. 343).

structureexamine coefficient or variance structure of the specification
(p. 349).

waldWald coefficient restriction test (p. 378).

Sspace Procs
displaynameset display name (p. 192).

forecast.................perform state and signal forecasting (p. 214).

makeendogmake group containing actual values for signal variables (p. 251).

makefiltermake new Kalman Filter(p. 252).

makegradsmake group containing the gradients of the log likelihood (p. 253).

makemodelmake a model object containing equations in sspace (p. 257).

makesignalsmake group containing signal and residual series (p. 260).

makestatesmake group containing state series (p. 262).

sspace...................declare sspace object (p. 339).

updatecoefs...........update coefficient vector(s) from sspace (p. 372).

Sspace Data Members

Scalar Values

@coefcov(i,j)covariance of coefficients i and j.

42—Chapter 3. Object, View and Procedure Reference
@coefs(i) coefficient i.
@eqregobs(k) number of observations in signal equation k.

@sddep(k)........... standard deviation of the signal variable in equation k.

@ssr(k) sum-of-squared standardized one-step ahead residuals for equa-
tion k.

@stderrs(i) standard error for coefficient i.
@tstats(t)............. t-statistic value for coefficient i.

Scalar Values (system level data)

@aic Akaike information criterion for the system.

@hq Hannan-Quinn information criterion for the system.

@logl................... value of the log likelihood function.

@ncoefs............... total number of estimated coefficients in the system.

@neqns number of equations for observable variables.

@regobs number of observations in the system.

@sc Schwarz information criterion for the system.

@totalobs sum of “@eqregobs” from each equation.

Vectors and Matrices

@coefcov covariance matrix for coefficients of equation.

@coefs................. coefficient vector.

@stderrs vector of standard errors for coefficients.

@tstats vector of t-statistic values for coefficients.

State and Signal Results

The following functions allow you to extract the filter and smoother results for the estima-
tion sample and place them in matrix objects. In some cases, the results overlap those
available thorough the sspace procs, while in other cases, the matrix results are the only
way to obtain the results.

Note also that since the computations are only for the estimation sample, the one-step-
ahead predicted state and state standard error values will not match the final values dis-
played in the estimation output. The latter are the predicted values for the first out-of-esti-
mation sample period.

@pred_signal matrix or vector of one-step ahead predicted signals.

@pred_signalcov .. matrix where every row is the @vech of the one-step ahead pre-
dicted signal covariance.

@pred_signalse matrix or vector of the standard errors of the one-step ahead pre-
dicted signals.

@pred_err............ matrix or vector of one-step ahead prediction errors.

Sspace—43
@pred_errcovmatrix where every row is the @vech of the one-step ahead pre-
diction error covariance.

@pred_errcovinv ..matrix where every row is the @vech of the inverse of the one-
step ahead prediction error covariance.

@pred_errsematrix or vector of the standard errors of the one-step ahead pre-
diction errors.

@pred_errstdmatrix or vector of standardized one-step ahead prediction errors.

@pred_state..........matrix or vector of one-step ahead predicted states.

@pred_statecov.....matrix where each row is the @vech of the one-step ahead predi-
cated state covariance.

@pred_statese.......matrix or vector of the standard errors of the one-step ahead pre-
dicted states.

@pred_stateerrmatrix or vector of one-step ahead predicted state errors.

@curr_err.............matrix or vector of filtered error estimates.

@curr_gain...........matrix or vector where each row is the @vec of the Kalman gain.

@curr_statematrix or vector of filtered states.

@curr_statecovmatrix where every row is the @vech of the filtered state covari-
ance.

@curr_statesematrix or vector of the standard errors of the filtered state est-
mates.

@sm_signalmatrix or vector of smoothed signal estimates.

@sm_signalcovmatrix where every row is the @vech of the smoothed signal cova-
riance.

@sm_signalsematrix or vector of the standard errors of the smoothed signals.

@sm_signalerr......matrix or vector of smoothed signal error estimates.

@sm_signalerrcov.matrix where every row is the @vech of the smoothed signal error
covariance.

@sm_signalerrse...matrix or vector of the standard errors of the smoothed signal
error.

@sm_signalerrstd .matrix or vector of the standardized smoothed signal errors.

@sm_statematrix or vector of smoothed states.

@sm_statecovmatrix where each row is the @vech of the smoothed state covari-
ances.

@sm_statesematrix or vector of the standard errors of the smoothed state.

@sm_stateerr........matrix or vector of the smoothed state errors.

@sm_stateerrcov...matrix where each row is the @vech of the smoothed state error
covariance.

44—Chapter 3. Object, View and Procedure Reference
@sm_stateerrse matrix or vector of the standard errors of the smoothed state
errors.

@sm_stateerrstd... matrix or vector of the standardized smoothed state errors .

@sm_crosserrcov . matrix where each row is the @vec of the smoothed error cross-
covariance.

Sspace Examples

The one-step-ahed state values and variances from SS01 may be saved using

vector ss_state=ss01.@pred_state

matrix ss_statecov=ss01.@pred_statecov

Sym

Symmetric matrix (symmetric two-dimensional array).

Declare by providing a name after the sym keyword, with the optionally specified dimen-
sion in parentheses:

sym(10) symmatrix

You may optionally assign a scalar, a square matrix or another sym in the declaration. If
the square matrix is not symmetric, the sym will contain the lower triangle. The sym will
be sized and initialized accordingly.

Sym Views
bar....................... single or multiple bar graph of each column against the row index

(p. 150).

cor correlation matrix by columns (p. 171).

cov covariance matrix by columns (p. 175).

errbar error bar graph view (p. 201).

hilo...................... high-low(-open-close) chart (p. 228).

label label information for the symmetric matrix (p. 238).

line single or multiple line graph of each column against the row index
(p. 241).

pie pie chart view (p. 284).

scat...................... scatter diagrams of the columns of the matrix (p. 311).

sheet.................... spreadsheet view of the matrix (p. 327).

spike.................... spike graph (p. 338).

stats descriptive statistics by column (p. 344).

xyline XY line graph with one or more X columns plotted against one or
more Y (p. 394).

System—45
Sym Procs
displaynameset display name (p. 192).

fillfill the elements of the matrix (p. 208).

readimport data from disk (p. 291).

writeexport data to disk (p. 383).

Sym Data Members
(i,j)(i,j)-th element of the matrix. Simply append “(i,j)” to the matrix

name (without a “.”).

Sym Examples

The declaration

sym results(10)

results=3

creates the 10 × 10 matrix RESULTS and initializes each value to be 3. The following
assignment statements also create and initialize sym objects:

sym copymat=results

sym covmat1=eq1.@coefcov

sym(3,3) count

count.fill 1,2,3,4,5,6,7,8,9,10

Graphs, covariances, and statistics may be generated for the columns of the matrix:

copymat.line

copymat.cov

copymat.stats

You can use explicit indices to refer to matrix elements:

scalar diagsum=cov1(1,1)+cov1(2,2)+cov(3,3)

System

System of equations for estimation.

Declare a system object by entering the keyword system, followed by a name:

system mysys

To fill a system, open the system and edit the specification view, or use append. Note that
systems are not used for simulation. See “Model” (p. 32).

46—Chapter 3. Object, View and Procedure Reference
System Methods
3sls...................... three-stage least squares (p. 136).

fiml full information maximum likelihood (p. 210).

gmm generalized method of moments (p. 221).

ls ordinary least squares (p. 245).

sur....................... seemingly unrelated regression (p. 350).

tsls....................... two-stage least squares (p. 368).

wls weighted least squares (p. 380).

wtsls weighted two-stage least squares (p. 385).

System Views
coefcov coefficient covariance matrix (p. 165).

derivs derivatives of the system equations (p. 189).

endog table or graph of endogenous variables (p. 200).

label label information for the system object (p. 238).

residcor................ residual correlation matrix (p. 297).

residcov residual covariance matrix (p. 298).

resids residual graphs (p. 299).

results.................. table of estimation results (p. 300).

spec text representation of system specification (p. 337).

wald Wald coefficient restriction test (p. 378).

System Procs
append................. add a line of text to the system specification (p. 143).

displayname......... set display name (p. 192).

makeendog make group of endogenous series (p. 251).

makemodel create a model from the estimated system (p. 257).

makeresids........... make series containing residuals from system (p. 259).

updatecoefs update coefficient vector(s) from system (p. 372).

System Data Members

Scalar Values (individual equation data)

@coefcov(i, j) covariance of coefficients i and j.
@coefs(i) coefficient i.
@dw(k) Durbin-Watson statistic for equation k.

@eqncoef(k) number of estimated coefficients in equation k.

@eqregobs(k) number of observations in equation k.

System—47
@meandep(k).......mean of the dependent variable in equation k.

@ncoef(k)total number of estimated coefficients in equation k.

@r2(k)R-squared statistic for equation k.

@rbar2(k)adjusted R-squared statistic for equation k.

@sddep(k)standard deviation of dependent variable in equation k.

@se(k)standard error of the regression in equation k.

@ssr(k)sum of squared residuals in equation k.

@stderrs(i)standard error for coefficient i.
@tstats(i)t-statistic for coefficient i.
c(i)i-th element of default coefficient vector for system (if applicable).

Scalar Values (system level data)

@aic.....................Akaike information criterion for the system (if applicable).

@detresiddeterminant of the residual covariance matrix.

@hqHannan-Quinn information criterion for the system (if applicable).

@jstat...................J-statistic — value of the GMM objective function (for GMM esti-
mation).

@loglvalue of the log likelihood function for the system (if applicable).

@ncoefstotal number of estimated coefficients in system.

@neqnnumber of equations.

@regobs number of observations in the sample range used for estimation
(“@regobs” will differ from “@eqregobs” if the unbalanced sam-
ple is non-overlapping).

@schwarzSchwarz information criterion for the system (if applicable).

@totalobssum of “@eqregobs” from each equation.

Vectors and Matrices

@coefcov..............covariance matrix for coefficients of equation.

@coefscoefficient vector.

@stderrsvector of standard errors for coefficients.

@tstatsvector of t-statistic values for coefficients.

System Examples

To estimate a system using GMM and to create residual series for the estimated system:

sys1.gmm(i,m=7,c=.01,b=v)

sys1.makeresids consres incres saveres

To test coefficients using a Wald test:

48—Chapter 3. Object, View and Procedure Reference
sys1.wald c(1)=c(4)

To save the coefficient covariance matrix:

sym covs=sys1.@coefcov

Table

Table object. Formatted two-dimensional table for output display.

To declare a table object, use the keyword table, followed by an optional row and column
dimension, and then the object name:

table onelement

table(10,5) outtable

If no dimension is provided, the table will contain a single element.

Alternatively, you may declare a table using an assignment statement. The new table will
be sized and initialized, accordingly:

table newtable=outtable

Lastly, you may use the freeze command to create tables from tabular views of other
objects (p. 216).

Table Views
label label information for the table object (p. 238).

sheet.................... view table (p. 327).

Table Procs
displayname......... set display name (p. 192).

Table Data Members
(i,j)...................... the (i,j)-th element of the table, formatted as a string.

Table Commands
setcell format and fill in a table cell (p. 319).

setcolwidth set width of a table column (p. 321).

setline.................. place a horizontal line in table (p. 326).

Table Examples
table(5,5) mytable

%strval = mytable(2,3)

mytable(4,4) = "R2"

Var—49
mytable(4,5) = @str(eq1.@r2)

Var

Vector autoregression and error correction object.

To declare a var use the keyword var, followed by a name and, optionally, by an estima-
tion specification:

var finvar

var empvar.ls 1 4 payroll hhold gdp

var finec.ec(e,2) 1 6 cp div r

Var Methods
ecestimate a vector error correction model (p. 196).

lsestimate an unrestricted VAR (p. 245).

Var Views
arlmserial correlation LM test (p. 148).

arrootsinverse roots of the AR polynomial (p. 148).

cointJohansen cointegration test (p. 166).

correl....................residual autocorrelations (p. 172).

decomp.................variance decomposition (p. 186).

endogtable or graph of endogenous variables (p. 200).

impulseimpulse response functions (p. 232).

jberaresidual normality test (p. 234).

labellabel information for the var object (p. 238).

laglenlag order selection criteria (p. 239).

qstats....................residual portmanteau tests (p. 289).

representationtext describing var specification (p. 294).

residcorresidual correlation matrix (p. 297).

residcovresidual covariance matrix (p. 298).

resids....................residual graphs (p. 299).

resultstable of estimation results (p. 300).

testexogexogeneity (Granger causality) tests (p. 359).

testlagslag exclusion tests (p. 361).

whiteWhite heteroskedasticity test (p. 379).

Var Procs
appendappend restriction text (p. 143).

50—Chapter 3. Object, View and Procedure Reference
cleartext clear restriction text (p. 163).

displayname......... set display name (p. 192).

makecoint make group of cointegrating relations (p. 250).

makeendog make group of endogenous series (p. 251).

makemodel make model from the estimated var (p. 257).

makeresids........... make residual series (p. 259).

makesystem make system from var (p. 264).

svar estimate structural factorization (p. 351).

Var Data Members

Scalar Values (individual level data)

@eqlogl(k) log likelihood for equation k.

@eqncoef(k) number of estimated coefficients in equation k.

@eqregobs(k) number of observations in equation k.

@meandep(k) mean of the dependent variable in equation k.

@r2(k) R-squared statistic for equation k.

@rbar2(k) adjusted R-squared statistic for equation k.

@sddep(k)........... std. dev. of dependent variable in equation k.

@se(k) standard error of the regression in equation k.

@ssr(k) sum of squared residuals in equation k.

a(i,j) adjustment coefficient for the j-th cointegrating equation in the i-
th equation of the VEC (where applicable).

b(i,j) coefficient of the j-th variable in the i-th cointegrating equation
(where applicable).

c(i,j) coefficient of the j-th regressor in the i-th equation of the var, or
the coefficient of the j-th first-difference regressor in the i-th equa-
tion of the VEC.

Scalar Values (system level data)

@aic Akaike information criterion for the system.

@detresid determinant of the residual covariance matrix.

@hq Hannan-Quinn information criterion for the system.

@logl................... log likelihood for system.

@ncoefs............... total number of estimated coefficients in the var.

@neqn................. number of equations.

@regobs number of observations in the var.

@sc Schwarz information criterion for the system.

Var—51
@svarcvgtypeReturns an integer indicating the convergence type of the struc-
tural decomposition estimation: 0 (convergence achieved), 2 (fail-
ure to improve), 3 (maximum iterations reached), 4 (no
convergence—structural decomposition not estimated).

@svaroveridover-identification LR statistic from structural factorization.

@totalobssum of “@eqregobs” from each equation (“@regobs*@neqn”).

Vectors and Matrices

@coefmatcoefficient matrix (as displayed in output table).

@coefse................matrix of coefficient standard errors (corresponding to the output
table).

@cointsestandard errors of cointegrating vectors.

@cointveccointegrating vectors.

@impfact..............factorization matrix used in last impulse response view.

@lrrspaccumulated long-run responses from last impulse response view.

@lrrspsestandard errors of accumulated long-run responses.

@residcov.............(sym) covariance matrix of the residuals.

@svaramatestimated A matrix for structural factorization.

@svarbmatestimated B matrix for structural factorization.

@svarcovabcovariance matrix of stacked A and B matrix for structural factor-
ization.

@svarrcovrestricted residual covariance matrix from structural factorization.

Var Examples

To declare a var estimate a VEC specification and make a residual series:

var finec.ec(e,2) 1 6 cp div r

finec.makeresids

To estimate an ordinary var, to create series containing residuals, and to form a model
based upon the estimated var:

var empvar.ls 1 4 payroll hhold gdp

empvar.makeresids payres hholdres gdpres

empvar.makemodel(inmdl) cp fcp div fdiv r fr

To save coefficients in a scalar:

52—Chapter 3. Object, View and Procedure Reference
scalar coef1=empvar.b(1,2)

Vector

Vector. (One dimensional array of numbers).

There are several ways to create a vector object. Enter the vector keyword (with an
optional dimension) followed by a name:

vector scalarmat

vector(10) results

Alternatively, you may declare a vector using an assignment statement. The vector will be
sized and initialized, accordingly:

vector(10) myvec=3.14159

vector results=vec1

Vector Views
bar....................... bar graph of data against the row index (p. 150).

label label information for the vector object (p. 238).

line line graph of the data against the row index (p. 241).

sheet.................... spreadsheet view of the vector (p. 327).

spike.................... spike graph (p. 338).

stats descriptive statistics (p. 344).

Vector Procs
displayname......... set display name (p. 192).

fill fill elements of the vector (p. 208).

read import data from disk (p. 291).

write.................... export data to disk (p. 383).

Vector Data Members
(i)........................ (i)-th element of the vector. Simply append “(i)” to the matrix

name (without a “.”).

Vector Examples

To declare a vector and to fill it with data read in from an Excel file:

vector(10) mydata

mydata.read(b2) thedata.xls

To access a single element of the vector using direct indexing:

Vector—53
scalar result1=mydata(2)

The vector may be used in standard matrix expressions:

rowvector transdata=@transpose(mydata)

scalar inner=@transpose(mydata)*mydata

54—Chapter 3. Object, View and Procedure Reference

Chapter 4. Matrix Language

EViews provides you with tools for working directly with data contained in matrices and
vectors. You can use the EViews matrix language to perform calculations that are not avail-
able using the built-in views and procedures.

The following objects can be created and manipulated using the matrix command lan-
guage:

• coef: column vector of coefficients to be used by equation, system, pool, logl, and
sspace objects

• matrix: two-dimensional array

• rowvector: row vector

• scalar: scalar

• sym: symmetric matrix (stored in lower triangular form)

• vector: column vector

We term these objects matrix objects (despite the fact that some of these objects are not
matrices).

Declaring Matrices

You must declare matrix objects prior to use. Detailed descriptions of declaration state-
ments for the various matrix objects are provided in Chapter 8, “Command Reference”,
beginning on page 135.

Briefly, a declaration consists of the object keyword, followed either by size information in
parentheses and the name to be given to the object, followed (optionally) by an assign-
ment statement. If no assignment is provided, the object will be initialized to have all zero
values.

The various matrix objects require different sizing information. A matrix requires the num-
ber of rows and the number of columns. A sym requires that you specify a single number
representing both the number of rows and the number of columns. A vector, rowvector, or
coef declaration can include information about the number of elements. A scalar requires
no size information. If size information is not provided, EViews will assume that there is
only one element in the object.

For example:

matrix(3,10) xdata

56—Chapter 4. Matrix Language
sym(9) moments

vector(11) betas

rowvector(5) xob

creates a matrix XDATA, a symmetric matrix MOMENTS, an column
vector BETAS, and a rowvector XOB. All of these objects are initialized to zero.

To change the size of a matrix object, you can repeat the declaration statement. Further-
more, if you use an assignment statement with an existing matrix object, the target will be
resized as necessary. For example:

sym(10) bigz

matrix zdata

matrix(10,2) zdata

zdata = bigz

will first declare ZDATA to be a matrix with a single element, and then redeclare ZDATA to
be a matrix. The assignment statement in the last line will resize ZDATA so that it
contains the contents of the symmetric matrix BIGZ.

Assigning Matrix Values

There are three ways to assign values to the elements of a matrix: you may assign values to
specific matrix elements, you may fill the matrix using a list of values, or you may perform
matrix assignment.

Element assignment

The most basic method of assigning matrix values is to assign a value for a specific row
and column element of the matrix. Simply enter the matrix name, followed by the row and
column indices, in parentheses, and then an assignment to a scalar value.

For example, suppose we declare the matrix A:

matrix(2,2) a

The first command creates and initializes the matrix A so that it contains all zeros.
Then after entering the two commands:

a(1,1) = 1

a(2,1) = 4

we have

. (4.1)

3 10× 9 9× 11 1×
1 5×

10 2×
10 10×

2 2×

2 2×

A 1 0
4 0

=

Assigning Matrix Values—57
You can perform a large number of element assignments by placing them inside of pro-
gramming loops:

vector(10) y

matrix (10,10) x

for !i = 1 to 10

y(!i) = !i

for !j = 1 to 10

x(!i,!j) = !i + !j

next

next

Note that the fill procedure provides an alternative to using loops for assignment.

Fill assignment

The second assignment method is to use the fill procedure to assign a list of numbers to
each element of the matrix in the specified order. By default, the procedure fills the matrix
column by column, but you may override this behavior.

You should enter the name of the matrix object, followed by a period, the fill keyword,
and then a comma delimited list of values. For example, the commands:

vector(3) v

v1.fill 0.1, 0.2, 0.3

matrix(2,4) x

matrix.fill 1, 2, 3, 4, 5, 6, 7, 8

create the matrix objects

(4.2)

If we replace the last line with

matrix.fill(b=r) 1,2,3,4,5,6,7,8

then X is given by

. (4.3)

V
0.1
0.2
0.3

, = X 1 3 5 7
2 4 6 8

=

X 1 2 3 4
5 6 7 8

=

58—Chapter 4. Matrix Language
In some situations, you may wish to repeat the assignment over a list of values. You may
use the “l” option to fill the matrix by repeatedly looping through the listed numbers until
the matrix elements are exhausted. Thus,

matrix(3,3) y

y.fill(l) 1, 0, -1

creates the matrix

 (4.4)

See fill (p. 208) for a complete description of the fill procedure.

Matrix assignment

You can copy data from one matrix object into another using assignment statements. To
perform an assignment, you should enter the name of the target matrix followed by the
equal sign “=”, and then a matrix object expression. The expression on the right-hand
side should either be a numerical constant, a matrix object, or an expression that returns a
matrix object.

There are a variety of rules for how EViews performs the assignment that depend upon the
types of objects involved in the assignment.

Scalar values on the right-hand side

If there is a scalar on the right-hand side of the assignment, every element of the matrix
object is assigned the value of the scalar.

Examples:

matrix(5,8) first

scalar second

vec(10) third

first = 5

second = c(2)

third = first(3,5)

Since declaration statements allow for initialization, you can combine the declaration and
assignment statements. Examples:

matrix(5,8) first = 5

scalar second = c(2)

vec(10) third = first(3,5)

Y
1 1 1
0 0 0
1− 1− 1−

=

Copying Data Between Objects—59
Same object type on right-hand side

If the source object on the right is a matrix or vector, and the target or destination object on
the left is of the same type, the target will be resized to have the same dimension as the
source, and every source element will be copied. For example:

matrix(10,2) zdata = 5

matrix ydata = zdata

matrix(10,10) xdata = ydata

declares that ZDATA is a matrix filled with 5’s. YDATA is automatically resized to
be a matrix and is filled with the contents of ZDATA.

Note that even though the declaration of XDATA calls for a matrix, XDATA is a
 matrix of 5’s. This behavior occurs because the declaration statement above is

equivalent to issuing the two commands,

matrix(10,10) xdata

xdata = ydata

which will first declare the matrix XDATA, and then automatically resize it to
 when you fill it with the values for YDATA.

The next section discusses assignment statements in the more general case, where you are
converting between object types. In some cases, the conversion is automatic; in other
cases, EViews provides you with additional tools to perform the conversion.

Copying Data Between Objects

In addition to the basic assignment statements described in the previous section, EViews
provides you with a large set of tools for copying data to and from matrix objects.

At times, you may wish to move data between different types of matrix objects. For exam-
ple, you may wish to take the data from a vector and put it in a matrix. EViews has a num-
ber of built-in rules which make these conversions automatically.

At other times, you may wish to move data between a matrix object and an EViews series
or group object. There are a separate set of tools which allow you to convert data across a
variety of object types.

Copying data from matrix objects

Data may be moved between different types of matrix objects using assignments. If possi-
ble, EViews will resize the target object so that it contains the same information as the
object on the right side of the equation.

The basic rules governing expressions of the form “Y=X” may be summarized as follows:

10 2×
10 2×

10 10×
10 2×

10 10×
10 2×

60—Chapter 4. Matrix Language
• Object type of Y does not change.

• The target object Y will, if possible, be resized to match the object X; otherwise,
EViews will issue an error. Thus, assigning a vector to a matrix will resize the
matrix, but assigning a matrix to a vector will generate an error if the matrix has
more than one column.

• The data in X will be copied to Y.

Specific exceptions to the rules given above are:

• If X is a scalar, Y will keep its original size and will be filled with the value of X.

• If X and Y are both vector or rowvector objects, Y will be changed to the same type
as X.

“Summary of Automatic Resizing of Matrix Objects” on page 74 contains a complete sum-
mary of the conversion rules for matrix objects.

Here are some simple examples illustrating the rules for matrix assignment:

vector(3) x

x(1) = 1

x(2) = 2

x(3) = 3

vector y = x

matrix z = x

Y is now a 3 element vector because it has the same dimension and values as X. EViews
automatically resizes the Z Matrix to conform to the dimensions of X so that Z is now a

 matrix containing the contents of X: Z(1,1)=1, Z(2,1)=2, Z(3,1)=3.

Here are some further examples where automatic resizing is allowed:

vector(7) y = 2

scalar value = 4

matrix(10,10) w = value

w = y

matrix(2,3) x = 1

rowvector(10) t = 100

x = t

W is declared as a matrix of 4’s, but it is then reset to be a matrix of 2’s. X
is a matrix of 100’s.

Lastly, consider the commands

3 1×

10 10× 7 1×
1 10×

Copying Data Between Objects—61
vector(7) y = 2

rowvector(12) z = 3

coef(20) beta

y = z

z = beta

Y will be a rowvector of length 3, containing the original contents of Z, and Z will be a col-
umn vector of length 20 containing the contents of BETA.

There are some cases where EViews will be unable to perform the specified assignment
because the resize operation is not defined. For example, suppose that X is a matrix.
Then the assignment statement

vector(7) y = x

will result in an error. EViews cannot change Y from a vector to a matrix and there is no
way to assign the 4 elements of the matrix X to the vector Y. Other examples of invalid
assignment statements involve assigning matrix objects to scalars or syms to vector
objects.

Copying data from parts of matrix objects

In addition to the standard rules for conversion of data between objects, EViews provides
functions for extracting and assigning parts of matrix objects. Matrix functions are
described in greater detail later in this chapter. For now, note that some functions take a
matrix object and perhaps other parameters as arguments and return a matrix object.

A comprehensive list of the EViews commands and functions that may be used for matrix
object conversion appears in “Utility Functions and Commands” on page 76. However, a
few examples will provide you with a sense of the type of operations that may be per-
formed.

Suppose first that you are interested in copying data from a matrix into a vector. The fol-
lowing commands will copy data from M1 and SYM1 into the vectors V1, V2, V3, and V4.

matrix(10, 10) m1

sym(10) sym1

vector v1 = @vec(m1)

vector v2 = @columnextract(m1,3)

vector v3 = @rowextract(m1,4)

vector v4 = @columnextract(sym1,5)

The @vec function creates a 100 element vector, V1, from the columns of M1 stacked one
on top of another. V2 will be a 10 element vector containing the contents of the third col-

2 2×

62—Chapter 4. Matrix Language
umn of M1 while V3 will be a 10 element vector containing the fourth row of M1. The
@vec, @rowextract, and @columnextract functions also work with sym objects. V4 is
a 10 element vector containing the fifth column of SYM1.

You can also copy data from one matrix into a smaller matrix using @subextract. For
example:

matrix(20,20) m1=1

matrix m2 = @subextract(m1,5,5,10,7)

matrix m3 = @subextract(m1,5,10)

matrix m4 = m1

M2 is a matrix containing a submatrix of M1 defined by taking the part of the matrix
M1 beginning at row 5 and column 5 and ending at row 10 and column 7. M3 is the

 matrix taken from M1 at row 5 and column 10 to the last element of the matrix
(row 20 and column 20). In contrast, M4 is defined to be an exact copy of the full
matrix.

Data from a matrix may be copied into another matrix object using the commands col-
place, rowplace, and matplace. Consider the commands:

matrix(100,5) m1 = 0

matrix(100,2) m2 = 1

vector(100) v1 = 3

rowvector(100) v2 = 4

matplace(m1,m2,1,3)

colplace(m1,v1,3)

rowplace(m1,v2,80)

The matplace command places M2 in M1 beginning at row 1 and column 3. V1 is placed
in column 3 of M1, while V2 is placed in row 80 of M1.

Copying data between matrix objects and other objects

The previous sections described techniques for copying data between matrix objects such
as vectors, matrices and scalars. In this section, we describe techniques for copying data
between matrix objects and other EViews objects such as series and groups.

Keep in mind that there are two primary differences between the ordinary series or group
objects and the matrix objects. First, operations involving series and groups use informa-
tion about the current workfile sample, while matrix objects do not. Second, there are
important differences in the handling of missing values (NAs) between the two types of
objects.

6 3×

16 11×
20 20×

Copying Data Between Objects—63
Direct Assignment

The easiest method to copy data from series or group objects to a matrix object is to use
direct assignment. Place the destination matrix object on the left side of an equal sign, and
place the series or group to be converted on the right.

If you use a series object on the right, EViews will only include the observations from the
current sample to make the vector. If you place a group object on the right, EViews will
create a rectangular matrix, again only using observations from the current sample.

While very convenient, there are two principal limitations of this approach. First, EViews
will only include observations in the current sample when copying the data. Second,
observations containing missing data (NAs) for a series, or for any series in the group, are
not placed in the matrix. Thus, if the current sample contains 20 observations but the
series or group contains missing data, the dimension of the vector or matrix will be less
than 20. Below, we provide you with methods which allow you to override the current
sample and to retain missing values.

Examples:

smpl 1963:3 1993:6

fetch hsf gmpyq

group mygrp hsf gmpyq

vector xvec = gmpyq

matrix xmat = mygrp

These statements create the vector XVEC and the two column matrix XMAT containing the
non-missing series and group data from 1963:3 to 1993:6. Note that if GMPYQ has a miss-
ing value in 1970:01, and HSF contains a missing value in 1980:01, both observations for
both series will be excluded from XMAT.

When performing matrix assignment, you may refer to an element of a series, just as you
would refer to an element of a vector, by placing an index value in parentheses after the
name. An index value i refers to the i-th element of the series from the beginning of the
workfile range. For example, if the range of the current annual workfile is 1961 to 1980, the
expression GNP(6) refers to the 1966 value of GNP. These series element expressions may
be used in assigning specific series values to matrix elements, or to assign matrix values to
a specific series element. For example:

matrix(5,10) x

series yser = nrnd

x(1,1) = yser(4)

yser(5) = x(2,3)

yser(6) = 4000.2

64—Chapter 4. Matrix Language
assigns the fourth value of the series YSER to X(1,1), and assigns to the fifth and sixth val-
ues of YSER, the X(2,3) value and the scalar value “4000.2”, respectively.

While matrix assignments allow you to refer to elements of series as though they were ele-
ments of vectors, you cannot generally use series in place of vectors. Most vector and
matrix operations will error if you use a series in place of a vector. For example, you cannot
perform a rowplace command using a series name.

Furthermore, note that when you are not performing matrix assignment, a series name fol-
lowed by a number in parentheses will indicate that the lag/lead operator be applied to the
entire series. Thus, when used in generating series or in an equation, system, or model
specification, GNP(6) refers to the sixth lead of the GNP series. To refer to specific ele-
ments of the GNP series in these settings, you should use the @elem function.

Copy using @convert

The @convert function takes a series or group object and, optionally, a sample object,
and returns a vector or rectangular matrix. If no sample is provided, @convert will use
the workfile sample. The sample determines which series elements are included in the
matrix. Example:

smpl 61 90

group groupx inv gdp m1

vector v = @convert(gdp)

matrix x = @convert(groupx)

X is a matrix with the first column containing data from INV, the second column
from GDP, and the third column from M1.

As with direct assignment, the @convert function excludes observations for which the
series or any of the series in the group contain missing data. If, in the example above, INV
contains missing observations in 1970 and 1980, V would be a 29 element vector while X
would be a matrix. This will cause errors in subsequent operations that require V
and X to have a common row dimension.

There are two primary advantages of using @convert over direct assignment. First, since
@convert is a function, it may be used in the middle of a matrix expression. Second, an
optional second argument allows you to specify a sample to be used in conversion. For
example,

sample s1.set 1950 1990

matrix x = @convert(grp,s1)

sym y = @inverse(@inner(@convert(grp,s1)))

performs the conversion using the sample defined in S1.

30 3×

28 3×

Copying Data Between Objects—65
Copy data between Series and Matrices

EViews also provides three useful commands that perform explicit conversions between
series and matrices with control over both the sample, and the handling of NAs.

stom (Series TO Matrix) takes a series or group object and copies its data to a vector or
matrix using either the current workfile sample, or the optionally specified sample. As with
direct assignment, the stom command excludes observations for which the series or any of
the series in the group contain missing data.

Example:

sample smpl_cnvrt.set 1950 1995

smpl 1961 1990

group group1 gnp gdp money

vector(46) vec1

matrix(3,30) mat1

stom(gdp,vec1,smpl_cnvrt)

stom(group1,mat1)

While the operation of stom is similar to @convert, stom is a command and cannot be
included in a matrix expression. Furthermore, unlike @convert, the destination matrix or
vector must already exist and have the proper dimension.

stomna (Series TO Matrix with NAs) works identically to stom, but does not exclude
observations for which there are missing values. The elements of the series for the relevant
sample will map directly into the target vector or matrix. Thus,

smpl 1951 2000

vector(50) gvector

stom(gdp,gvector)

will always create a 50 element vector GVECTOR that contains the values of GDP from
1951 to 2000, including observations with NAs.

mtos (Matrix TO Series) takes a matrix or vector and copies its data into an existing series
or group, using the current workfile sample or a sample that you provide.

Examples:

mtos(mat1,group1)

mtos(vec1,resid)

mtos(mat2,group1,smpl1)

As with stom the destination series or group must already exist and the destination dimen-
sion given by the sample must match that of the source vector or matrix.

66—Chapter 4. Matrix Language
Matrix Expressions

A matrix expression is an expression which combines matrix objects using mathematical
operators or relations, functions, and parentheses. While we discuss matrix functions in
great detail below, some examples will demonstrate the relevant issues.

Examples:

@inner(@convert(grp,s1))

mat1*vec1

@inverse(mat1+mat2)*vec1

mat1 > mat2

EViews uses the following rules to determine the order in which the expression will be
evaluated:

• You may nest any number of pairs of parentheses to clarify the order of operations in
a matrix expression.

• If you do not use parentheses, the operations are applied in the following order:

1. Unary negation operator and functions

2. Multiplication and division operators

3. Addition and subtraction operators

4. Comparison operators: “>=”, “>”, “<=”, “<”, “<>”

Examples:

@inverse(mat1+mat2)+@inverse(mat3+mat4)

vec1*@inverse(mat1+mat2)*@transpose(vec1)

In the first example, the matrices MAT1 and MAT2 will be added and then inverted. Simi-
larly the matrices MAT3 and MAT4 are added and then inverted. Finally, the two inverses
will be added together. In the second example, EViews first inverts MAT1+MAT2 and uses
the result to calculate a quadratic form with VEC1.

Matrix Operators

EViews provides standard mathematical operators for matrix objects.

Negation (–)

The unary minus changes the sign of every element of a matrix object, yielding a matrix or
vector of the same dimension. Example:

Matrix Expressions—67
matrix jneg = -jpos

Addition (+)

You can add two matrix objects of the same type and size. The result is a matrix object of
the same type and size. Example:

matrix(3,4) a

matrix(3,4) b

matrix sum = a + b

You can add a square matrix and a sym of the same dimension. The upper triangle of the
sym is taken to be equal to the lower triangle. Adding a scalar to a matrix object adds the
scalar value to each element of the matrix or vector object.

Subtraction (–)

The rules for subtraction are the same as the rules for addition. Example:

matrix(3,4) a

matrix(3,4) b

matrix dif = a - b

Subtracting a scalar object from a matrix object subtracts the scalar value from every ele-
ment of the matrix object.

Multiplication (*)

You can multiply two matrix objects if the number of columns of the first matrix is equal to
the number of rows of the second matrix.

Example:

matrix(5,9) a

matrix(9,22) b

matrix prod = a * b

In this example, PROD will have 5 rows and 22 columns.

One or both of the matrix objects can be a sym. Note that the product of two sym objects
is a matrix, not a sym. The @inner function will produce a sym by multiplying a matrix
by its own transpose.

You can premultiply a matrix or a sym by a vector if the number of columns of the matrix
is the same as the number of elements of the vector. The result is a vector whose dimen-
sion is equal to the number of rows of the matrix.

Example:

68—Chapter 4. Matrix Language
matrix(5,9) mat

vector(9) vec

vector res = mat * vec

In this example, RES will have 5 elements.

You can premultiply a rowvector by a matrix or a sym if the number of elements of the
rowvector is the same as the number of rows of the matrix. The result is a rowvector
whose dimension is equal to the number of columns of the matrix.

Example:

rowvector rres

matrix(5,9) mat

rowvector(5) row

rres = row * mat

In this example, RRES will have 9 elements.

You can multiply a matrix object by a scalar. Each element of the original matrix is multi-
plied by the scalar. The result is a matrix object of the same type and dimensions as the
original matrix. The scalar can come before or after the matrix object. Examples:

matrix prod = 3.14159*orig

matrix xxx = d_mat*7

Division (/)

You can divide a matrix object by a scalar. Example:

matrix z = orig/3

Each element of the object ORIG will be divided by 3.

Comparison Operators (=, >, >=, <, <=, <>)

Two matrix objects of the same type and size may be compared using the comparison
operators. The result is a scalar logical value. Every pair of corresponding elements is
tested, and if any pair fails the test, the value zero or false is returned; otherwise, the value
one or true is returned.

Example:

if result <> value then

run crect

endif

Matrix Commands and Functions—69
It is possible for a vector to be not greater than, not less than, and not equal to a second
vector. For example:

vector(2) v1

vector(2) v2

v1(1) = 1

v1(2) = 2

v2(1) = 2

v2(2) = 1

Since the first element of V1 is smaller than the first element of V2, V1 is not greater than
V2. Since the second element of V1 is larger than the second element of V2, V1 is not less
than V2. The two vectors are not equal.

Matrix Commands and Functions

EViews provides a number of commands and functions that allow you to work with the
contents of your matrix objects. These commands and functions may be divided into
roughly four distinct types:

1. Utility Commands and Functions

2. Matrix Algebra Functions

3. Descriptive Statistics Functions

4. Element Functions

The utility commands and functions provide support for creating, manipulating, and
assigning values to your matrix objects. We have already seen the @convert function and
the stom command, both of which convert data from series and groups into vectors and
matrices.

The matrix algebra functions allow you to perform common matrix algebra manipulations
and computations. Among other things, you can use these routines to compute eigenval-
ues, eigenvectors and determinants of matrices, to invert matrices, to solve linear systems
of equations, and to perform singular value decompositions.

The descriptive statistics functions compute summary statistics for the data in the matrix
object. You can compute statistics such as the mean, median, minimum, maximum, and
variance, over all of the elements in your matrix.

The matrix element functions allow you create a new matrix containing the values of a
function evaluated at each element of another matrix object. Most of the functions that are
available in series expressions may be applied to matrix objects. You can compute the log-

70—Chapter 4. Matrix Language
arithm of every element of a matrix, or the cumulative normal distribution at every ele-
ment of a vector.

A listing of the commands and functions is included in the matrix summary on page 76.
Functions for computing descriptive statistics for data in matrices are discussed in
“Descriptive Statistics” on page 439. Additional details on matrix element computations
are provided in “Matrix Operators” on page 66.

Functions versus Commands

A function generally takes arguments, and always returns a result. Functions are easily
identified by the initial “@” character in the function name.

There are two basic ways that you can use a function. First, you may assign the result to an
EViews object. This object may then be used in other EViews expressions, providing you
access to the result in subsequent calculations. For example,

matrix y = @transpose(x)

stores the transpose of matrix X in the matrix Y. Since Y is a standard EViews matrix, it
may be used in all of the usual expressions.

Second, you may use a function as part of a matrix expression. Since the function result is
used in-line, it will not be assigned to a named object, and will not be available for further
use. For example, the command

scalar z = vec1*@inverse(v1+v2)*@transpose(vec1)

uses the results of the @inverse and @transpose functions in forming the scalar expres-
sion assigned to Z. These function results will not be available for subsequent computa-
tions.

By contrast, a command takes object names and expressions as arguments, and operates
on the named objects. Commands do not return a value.

Commands, which do not have a leading “@” character, must be issued alone on a line,
rather than as part of a matrix expression. For example, to convert a series X to a vector
V1, you would enter

stom(x,v1)

Because the command does not return any values, it may not be used in a matrix expres-
sion.

Matrix Views and Procs—71
NA Handling

As noted above, most of the methods of moving data from series and groups into matrix
objects will automatically drop observations containing missing values. It is still possible,
however, to encounter matrices which contain missing values.

For example, the automatic NA removal may be overridden using the stomna command
(p. 346). Additionally, some of the element operators may generate missing values as a
result of standard matrix operations. For example, taking element-by-element logarithms of
a matrix using @log will generate NAs for all cells containing nonpositive values.

EViews follows two simple rules for handling matrices that contain NAs. For all operators,
commands, and functions, except the descriptive statistics function, EViews works with the
full matrix object, processing NAs as required. For descriptive statistic functions, EViews
automatically drops NAs when performing the calculation. These rules imply the follow-
ing:

• Matrix operators will generate NAs where appropriate. Adding together two matrices
that contain NAs will yield a matrix containing NAs in the corresponding cells. Mul-
tiplying two matrices will result in a matrix containing NAs in the appropriate rows
and columns.

• All matrix algebra functions and commands will generate NAs, since these opera-
tions are undefined. For example, the Cholesky factorization of a matrix that con-
tains NAs will contain NAs.

• All utility functions and commands will work as before, with NAs treated like any
other value. Copying the contents of a vector into a matrix using colplace will
place the contents, including NAs, into the target matrix.

• All of the matrix element functions will propagate NAs when appropriate. Taking the
absolute value of a matrix will yield a matrix containing absolute values for non-
missing cells and NAs for cells that contain NAs.

• The descriptive statistics functions are based upon the non-missing subset of the ele-
ments in the matrix. You can always find out how many values were used in the
computations by using the @OBS function.

Matrix Views and Procs

The object listing in Chapter 3, “Object, View and Procedure Reference”, on page 19 lists
the various views and procs for all of the matrix objects.

72—Chapter 4. Matrix Language
Matrix Graph and Statistics Views

All of the matrix objects, with the exception of the scalar object, have windows and views.
For example, you may display line and bar graphs for each column of the matrix Z:

z.line

z.bar(p)

each column will be plotted against the row number of the matrix.

Additionally, you can compute descriptive statistics for each column of a matrix, as well as
the correlation and covariance matrix between the columns of the matrix:

z.stats

z.cor

z.cov

EViews performs listwise deletion by column, so that each group of column statistics is
computed using the largest possible set of observations.

The full syntax for the commands to display and print these views is listed in the object
reference.

Matrix input and output

EViews provides you with the ability to read and write files directly from matrix objects
using the read and write procedures.

You must supply the name of the source file. If you do not include the optional path speci-
fication, EViews will look for the file in the default directory. The input specification fol-
lows the source file name. Path specifications may point to local or network drives. If the
path specification contains a space, you must enclose the entire expression in double
quotes “”.

In reading from a file, EViews first fills the matrix with NAs, places the first data element in
the “(1,1)” element of the matrix, then continues to read the data by row or by column,
depending upon the options set.

The following command reads data into MAT1 from an Excel file CPS88 in the network
drive specified in the path directory. The data are read by column, and the upper left data
cell is A2.

mat1.read(a2,s=sheet3) "\\net1\dr 1\cps88.xls"

To read the same file by row, you should use the “t” option:

10 5×

Matrix Operations versus Loop Operations—73
mat1.read(a2,t,s=sheet3) "\\net1\dr 1\cps88.xls"

To write data from a matrix, use the write keyword, enter the desired options, then the
name of the output file. For example:

mat1.write mydt.txt

writes the data in MAT1 into the ASCII file MYDT.TXT located in the default directory.

There are many more options for controlling reading and writing of data; Chapter 4, “Basic
Data Handling”, on page 55 of the User’s Guide provides extensive discussion. See also
read (p. 291) and write (p. 383).

Matrix Operations versus Loop Operations

You can perform matrix operations using element operations and loops instead of the built-
in functions and commands. For example, the inner product of two vectors may be com-
puted by evaluating the vectors element-by-element:

scalar inprod1 = 0

for !i = 1 to @rows(vec1)

inprod1 = inprod1 + vec1(!i)*vec2(!i)

next

however, this approach will generally be much slower than using the built-in function:

scalar inprod2 = @inner(vec1,vec2)

You should use the built-in matrix operators rather than loop operators whenever you can.
The matrix operators are always much faster than the equivalent loop operations.

There will be cases when you cannot avoid using loop operations. For example, suppose
you wish to subtract the column mean from each element of a matrix. Such a calculation
might be useful in constructing a fixed effects regression estimator. First, consider a slow
method involving only loops and element operations:

matrix(2000,10) x = @convert(mygrp1)

scalar xsum

for !i = 1 to @columns(x)

xsum = 0

for !j = 1 to @rows(x)

xsum = xsum+x(!j,!i)

next

xsum = xsum/@rows(x)

for !j = 1 to @rows(x)

74—Chapter 4. Matrix Language
x(!j,!i) = x(!j,!i)-xsum

next

next

The loops are used to compute a mean for each column of data in X, and then to subtract
the value of the mean from each element of the column. A better and much faster method
for subtracting column means uses the built-in operators:

matrix x = @convert(mygrp1)

vector(@rows(x)) xmean

for !i = 1 to @columns(x)

xmean = @mean(@columnextract(x,!i))

colplace(x,@columnextract(x,!i)-xmean,!i)

next

This command extracts each column of X, computes the mean, and fills the vector XMEAN
with the column mean. You then subtract the mean from the column and place the result
back into the appropriate column of X. While you still need to loop over the control vari-
able !i, you avoid the need to loop over the elements of the columns.

Summary of Automatic Resizing of Matrix Objects

When you perform a matrix object assignment, EViews will resize, where possible, the
destination object to accommodate the contents of the source matrix. This resizing will
occur if the destination object type can be modified and sized appropriately and if the val-
ues of the destination may be assigned without ambiguity. You can, for example, assign a
matrix to a vector and vice versa, you can assign a scalar to a matrix, but you cannot assign
a matrix to a scalar since the EViews does not allow scalar resizing.

The following table summarizes the rules for resizing of matrix objects as a result of decla-
rations of the form

object_type y = x

where object_type is an EViews object type, or as the result of an assignment statement
for Y after an initial declaration, as in

object_type y

y = x

Each row of the table corresponds to the specified type of the destination object, Y. Each
column represents the type and size of the source object, X. Each cell of the table shows
the type and size of object that results from the declaration or assignment.

Summary of Automatic Resizing of Matrix Objects—75
For example, consider the command

matrix(500,4) y = x

where X is a coef of size 50. The object type is given by examining the table entry corre-
sponding to row “matrix Y” (), and column “coef X” (). The
entry reads “matrix()”, so that the result Y is a matrix.

 Object type and size for source X

Object type for Y coef(p) matrix(p,q)

coef(k) coef(p) Invalid

matrix(n,k) matrix(p,1) matrix(p,q)

rowvector(k) rowvector(p) Invalid

scalar Invalid Invalid

sym(k) Invalid sym(p) if p = q

vector(n) vector(p) Invalid

 Object type and size for source X

Object type for Y rowvector(q) scalar

coef(k) coef(q) coef(k)

matrix(n,k) matrix(1,q) matrix(n,k)

rowvector(k) rowvector(q) rowvector(k)

scalar Invalid scalar

sym(k) Invalid Invalid

vector(n) rowvector(q) vector(n)

 Object type and size for source X

Object type for Y sym(p) vector(p)

coef(k) Invalid coef(p)

matrix(n,k) matrix(p,p) matrix(p,1)

rowvector(k) Invalid vector(p)

scalar Invalid Invalid

sym(k) sym(p) Invalid

vector(n) Invalid vector(p)

n 500 k, 4= = p 50=
p 1, 50 1×

76—Chapter 4. Matrix Language
Similarly, the command

vector(30) y = x

where X is a 10 element rowvector yields the 10 element rowvector Y. In essence, EViews
first creates the 30 element rowvector Y, then resizes it to match the size of X, then finally
assigns the values of X to the corresponding elements of Y.

Matrix Function and Command Summary

Utility Functions and Commands
colplace Places column vector into matrix (p. 397).

@columnextract... Extracts column from matrix (p. 398).

@columns Number of columns in matrix object (p. 398).

@convert Converts series or group to a vector or matrix after removing NAs
(p. 399).

@explode............. Creates square matrix from a sym (p. 402).

@filledmatrix....... Creates matrix filled with scalar value (p. 403).

@filledrowvector.. Creates rowvector filled with scalar value (p. 403).

@filledsym Creates sym filled with scalar value (p. 403).

@filledvector Creates vector filled with scalar value (p. 404).

@getmaindiagonal Extracts main diagonal from matrix (p. 404).

@identity............. Creates identity matrix (p. 404).

@implode Creates sym from lower triangle of square matrix (p. 405).

@makediagonal ... Creates a square matrix with ones down a specified diagonal and
zeros elsewhere (p. 408).

matplace Places matrix object in another matrix object (p. 408).

mtos Converts a matrix object to series or group (p. 409).

@permute............ Permutes the rows of the matrix (p. 412).

@resample........... Randomly draws from the rows of the matrix (p. 412).

@rowextract Extracts rowvector from matrix object (p. 414).

rowplace Places a rowvector in matrix object (p. 414).

@rows Returns the number of rows in matrix object (p. 414).

stom Converts series or group to vector or matrix after removing obser-
vations with NAs (p. 415).

stomna................. Converts series or group to vector or matrix without removing
observations with NAs (p. 416).

@subextract......... Extracts submatrix from matrix object (p. 417).

@transpose Transposes matrix object (p. 419).

Matrix Function and Command Summary—77
@unitvector..........Extracts column from an identity matrix (p. 419).

@vecStacks columns of a matrix object (p. 420).

@vechStacks the lower triangular portion of matrix by column (p. 420).

Matrix Algebra Functions
@cholesky............Computes Cholesky factorization (p. 397).

@cond..................Calculates the condition number of a square matrix or sym
(p. 398).

@detCalculate the determinant of a square matrix or sym (p. 401).

@eigenvaluesReturns a vector containing the eigenvalues of a sym (p. 402).

@eigenvectorsReturns a square matrix whose columns contain the eigenvectors
of a matrix (p. 402).

@innerComputes the inner product of two vectors or series, or the inner
product of a matrix object (p. 405).

@inverseReturns the inverse of a square matrix object or sym (p. 406).

@issingularReturns 1 if the square matrix or sym is singular, and 0 otherwise
(p. 406).

@kroneckerComputes the Kronecker product of two matrix objects (p. 407).

@normComputes the norm of a matrix object or series (p. 410).

@outerComputes the outer product of two vectors or series, or the outer
product of a matrix object (p. 411).

@rankReturns the rank of a matrix object (p. 412).

@solvesystemSolves system of linear equations, , for (p. 415).

@svdPerforms singular value decomposition (p. 418).

@trace..................Computes the trace of a square matrix or sym (p. 418).

Matrix Descriptive Statistics Functions
@corComputes correlation between two vectors, or between the col-

umns of a matrix (p. 400)

@cov....................Computes covariance between two vectors, or between the col-
umns of a matrix (p. 400).

The remaining descriptive statistics functions that may be used with matrices and vectors
are described in “Descriptive Statistics” on page 439.

Matrix Element Functions

EViews supports matrix element versions of the following categories of functions.

Mx v= x

78—Chapter 4. Matrix Language
Category Matrix Element Support

Basic Mathematical Functions (p. 437) All, except for “@inv”

Additional and Special Functions (p. 441) All

Trigonometric Functions (p. 444) All

Statistical Distribution Functions (p. 444) All

Chapter 5. Working with Tables

You can use EViews commands to generate custom tables of formatted output from your
programs. A table is an object made up of rows and columns of cells, each of which can
contain either a number or a string, as well as information used to control formatting for
display or printing. The columns of a table can be set to different widths, and horizontal
lines can be added to visually separate sections of the table.

After you have filled up all of the cells of a table, you can print the table object using the
print command or by pressing the Print button on the table toolbar.

Chapter 10, “Graphs, Tables, and Text Objects”, on page 243 of the User’s Guide describes
table objects in detail.

Declaring a Table

To declare a table, indicate the number of rows and columns and provide a valid name. For
example,

table(10,20) bestres

creates a table with 10 rows and 20 columns named BESTRES. You can change the size of
a table by declaring it again. Redeclaring to a larger size does not destroy the contents of
the table; any cells in the new table that existed in the original table will contain their pre-
vious values.

Tables are automatically resized when you attempt to fill a table cell outside the table’s
current dimensions. This behavior is different from matrices which give an error when an
out of range element is accessed.

Controlling Appearance

By default, each cell of a table will display approximately 10 characters. If a string is longer
than the display width of the cell, part of the string may not be visible.

You can change the width of a column in a table using the setcolwidth command. Fol-
low the setcolwidth keyword by the name of the table, the number of the column you
wish to resize, and the approximate number of characters, all enclosed in parentheses.
EViews measures units in terms of the width of a numeric character. Different characters
have different widths, so the actual number of characters displayed may differ somewhat
from the number which you specify. For example,

80—Chapter 5. Working with Tables
setcolwidth(bestres,2,12)

resizes the second column of table BESTRES to fit strings approximately 12 characters
long.

You may also place horizontal separator (double) lines in the table using the setline
command. Enter the setline keyword, followed by the name of the table, and the row
number, all in parentheses. For example,

setline(bestres,8)

places a separator line in the eighth row of the table BESTRES.

Filling Cells

You can put a value into a cell of a table using an assignment statement. Each cell of the
table can be assigned either a string or a numeric value.

Strings

To place a string value into a table cell, follow the table name by a row and column pair in
parentheses, then an equal sign and a string expression:

bestres(1,6) = "convergence criterion"

%strvar = "lm test"

bestres(2,6) = %strvar

bestres(2,6) = bestres(2,6) + " with 5 df"

Numbers

Numbers can be entered directly into cells, or they can be converted to strings before being
placed in the table. If entered directly, the number will be displayed according to the
numerical format set for that cell; if the format is changed, the number will be redisplayed
according to the new format. If the number is first converted to a string, the number will
be frozen in that form and cannot be reformatted.

By default, the number will be displayed with as many digits as will fit in the cell, with sci-
entific notation used if necessary. If, instead, you use the @str function to first convert the
number into a string, the string will contain the fewest decimal places required to repre-
sent the number. The following are some examples of cell assignments involving numbers:

tab1(3,4) = 15

tab1(4,2) = "R-squared = " + @str(eq1.@r2)

!ev = 10

tab1(5,1) = "There are " + @str(!ev) + " events"

Filling Cells—81
Cell Formatting

The setcell command is similar to cell assignment in that it allows you to set the con-
tents of a cell. However, the setcell command also allows you to set formatting options
for the cell. This is the only way to adjust formatting of a cell from the command line or
within a program. The setcell command takes the following arguments:

• the name of the table,

• the row and the column of the cell,

• the number or string to be placed in the cell, and,

• optionally, a justification code or a numerical format code, or both.

The justification codes are:

• “c” for centered (default)

• “r” for right-justified

• “l” for left-justified

The numerical format code determines the format with which a number in a cell is dis-
played; cells containing strings will be unaffected. The format code can either be a positive
integer, in which case it specifies the number of digits to be displayed after the decimal
point, or a negative integer, in which case it specifies the total number of characters to be
used to display the number. These two cases correspond to the fixed decimal and fixed
character fields in the number format dialog.

Note that when using a negative format code, one character is always reserved at the start
of a number to indicate its sign, and if the number contains a decimal point, that will also
be counted as a character. The remaining characters will be used to display digits. If the
number is too large or too small to display in the available space, EViews will attempt to
use scientific notation. If there is insufficient space for scientific notation (six characters or
less), the cell will contain asterisks to indicate an error.

Some examples of using setcell:

setcell(tabres,9,11,%label)

puts the contents of %label into row 9, column 11 of the table TABRES.

setcell(big_tabl,1,1,%info,"c")

inserts the contents of %info in BIG_TAB1(1,1), and displays the cell with cen-
tered justification.

setcell(tab1,5,5,!data)

puts the number !data into cell (5,5) of table TAB1, with default numerical for-
matting.

82—Chapter 5. Working with Tables
setcell(tab1,5,6,!data,4)

puts the number !data into TAB1, with 4 digits to the right of the decimal
point.

setcell(tab1,3,11,!data,"r",3)

puts the number !data into TAB1, right-justified, with 3 digits to the right of
the decimal point.

setcell(tab1,4,2,!data,-7)

puts the number in !data into TAB1, with 7 characters used for display.

Table Example

Here we provide an extended example that shows how to construct a table using a pro-
gram. The program constructs a table that displays the results of unit root tests applied to
each series in a group.

We first write a subroutine that returns a vector of augmented Dickey-Fuller t-statistics for
each series in the given group (subroutine construction is described in the next chapter).

subroutine local muroot(group g1, vector v1)

' get number of series in group

!n = g1.@count

' declare vector to save results

vector(!n) tstat

' do ADF test for each series in group

for !i=1 to !n

%str = g1.@seriesname(!i)

series temp = {%str}

equation eq_temp.ls d(temp) temp(-1) c

tstat(!i) = eq_temp.@tstat(1)

next

' copy results to global vector

v1 = tstat

endsub

Note that we do not assign the results directly into the elements of the vector passed in as
an argument. If we did this, we would need to know the number of series in the group
before the function was called, so that we could correctly size the vector. Instead, we store
the results in a temporary vector and copy this entire vector in a vector assignment at the
end of the routine. This automatically resizes the vector to the required size.

Table Example—83
The following program constructs a table to display the results of the unit root tests:

include c:\evdata\programs\muroot

load c:\evdata\macro

group grp1 ff tb3 tb10

vector tstat

call muroot(grp1,tstat)

' get number of series in group

scalar n = grp1.@count

' declare table and fill in headers

table(6,n+1) adf

setcell(adf,1,1,"ADF test (no lagged first differences with a
constant)")

setline(adf,2)

setcell(adf,3,1,"series")

setcell(adf,4,1,"t-stat")

setline(adf,5)

setcell(adf,6,1,"5% critical value is -2.86 (Davidson & MacKin-
non, Table 20.1)")

' fill in cells

for !i=1 to n

setcell(adf,3,!i+1,grp1.@seriesname(!i))

setcell(adf,4,!i+1,tstat(!i),3)

next

show adf

The first block (paragraph) of the program loads the workfile, creates a group of series, and
carries out the unit root tests by calling the subroutine given above. The second block
declares the table and fills in the cells that contain header information. The third block
loops through the elements of the group to get the series name and the vector of t-statistics
and places them in the appropriate cells of the table. Note that we display the t-statistics
only up to the third decimal place.

84—Chapter 5. Working with Tables
Table Summary

The following commands are documented in Chapter 8, “Command Reference”.

setcell format and fill in a table cell (p. 319).

setcolwidth set width of a table column (p. 321).

setline.................. place a horizontal line in table (p. 326).

Chapter 6. EViews Programming

EViews’ programming features allow you to create and store commands in programs that
automate repetitive tasks, or generate a record of your research project.

For example, you can write a program with commands that analyze the data from one
industry, and then have the program perform the analysis for a number of other industries.
You can also create a program containing the commands that take you from the creation of
a workfile and reading of raw data, through the calculation of your final results, and con-
struction of presentation graphs and tables.

If you have experience with computer programming, you will find most of the features of
the EViews language to be quite familiar. The main novel feature of the EViews program-
ming language is a macro substitution language which allows you to create object names
by combining variables that contain portions of names.

Program Basics

Creating a Program

A program is not an EViews object within a workfile. It is simply a text file containing
EViews commands. To create a new program, click File/New/Program. You will see a
standard text editing window where you can type in the lines of the program. You may also
open the program window by typing program in the command window, followed by an
optional program name. For example

program firstprg

opens a program window named FIRSTPRG. Program names should follow standard
EViews rules for file names.

A program consists of a one or more lines of text. Since each line of a program corresponds
to a single EViews command, simply enter the text for each command and terminate the
line by pressing the ENTER key.

If a program line is longer than the current program window, EViews will autowrap the
text of the line. Autowrapping alters the appearance of the program line by displaying it on
multiple lines, but does not change the contents of the line. While resizing the window will
change the autowrap position, the text remains unchanged and is still contained in a single
line.

If you wish to have greater control over the appearance of your lines, you can manually
break long lines using the ENTER key, and then use the underscore continuation character

86—Chapter 6. EViews Programming
“_” as the last character on the line to join the multiple lines. For example, the three sepa-
rate lines

equation eq1.ls _

y x c _

ar(1) ar(2)

are actually joined by the continuation character and are equivalent to the single line

equation eq1.ls y x c ar(1) ar(2)

Saving a Program

After you have created and edited your program, you will probably want to save it. Press
the Save or SaveAs button on the program window toolbar. When saved, the program will
have the extension .PRG.

Opening a Program

To load a program previously saved on disk, click on File/Open/Program..., navigate to
the appropriate directory, change the Files of Type combo box to display Program .PRG
files, and click on the desired name. Alternatively, from the command line, you can type
open followed by the full program name, including the file extension .PRG. By default,
EViews will look for the program in the default directory. If appropriate, include the full
path to the file. The entire name should be enclosed in quotations if necessary. For exam-
ple:

open mysp500.prg

open c:\mywork\eviews\myhouse.prg

opens MYSP500.PRG in the default directory, and MYHOUSE.PRG in the directory
C:\MYWORK\EVIEWS.

Executing a Program

When you enter a series of commands in the command window, line by line, we say that
you are working in interactive mode. Alternatively, you can type all of the commands in a
program and execute or run them collectively as a batch of commands. When you execute
or run the commands from a program, we say that you are in program (non-interactive)
mode.

Program Basics—87
There are several ways to execute a program.
The easiest method is to execute your program
by pushing the Run button on a program win-
dow. The Run dialog opens, where you can
enter the program name and supply arguments.
In addition, you can set the maximum number
of errors before halting execution, and choose
between quiet and verbose modes.

In verbose mode, EViews sends messages to the
status line and continuously updates the work-
file window as objects are created and deleted.
Quiet mode suppresses these updates, reducing the time spent writing to the screen.

By default, when EViews encounters an error, it will immediately terminate the program
and display a message. If you enter a number into the Maximum errors before halting
field, EViews will continue to execute the program until the maximum number of errors is
reached. If there is a serious error so that it is impractical for EViews to continue, the pro-
gram will halt even if the maximum number of errors is not reached.

You may also execute a program by entering the run command, followed by the name of
the program file:

run mysp500

or

run c:\eviews\myprog

The use of the .PRG extension is not required since EViews will automatically append one.
All of the run options described above may be set using command options. You may use
the “v” option to run the program in verbose mode, and the “q” option to run the program
in quiet mode. If you include a number as an option, EViews will use that number to indi-
cate the maximum number of errors encountered before execution is halted. Any argu-
ments to the program may be listed after the filename:

run(v, 500) mysp500

or

run(q) progarg arg1 arg2 arg3

See “Handling Execution Errors” on page 105 for discussion of execution errors and “Mul-
tiple Program Files” on page 106 for additional details on program execution.

88—Chapter 6. EViews Programming
You can also have EViews run a program automatically upon startup by choosing File/Run
from the menu bar of the Windows Program Manager or Start/Run in Windows and then
typing “eviews”, followed by the name of the program and the values of any arguments.

Stopping a Program

The F1 key halts execution of a program. It may take a few seconds for EViews to respond
to the halt command.

Programs will also stop when they encounter a stop command, when they read the maxi-
mum number of errors, or when they finish processing a file that has been executed via a
run statement.

If you include the exit keyword in your program, the EViews application will close.

Simple Programs

The simplest program is just a list of commands. Execution of the program is equivalent to
typing the commands one by one into the command window.

While you could execute the commands by typing them in the command window, you
could just as easily open a program window, type in the commands and click on the Run
button. Entering commands in this way has the advantage that you can save the set of
commands for later use, and execute the program repeatedly, making minor modifications
each time.

Let us look at a simple example (the data series are provided in the database PROGDEMO
in your EViews directory so that you can try out the program). Create a new program by
typing

program myprog

in the command window. In the program window that opens for MYPROG, we are going to
enter the commands to create a workfile, fetch a series from an EViews database named
PROGDEMO, run a regression, compute residuals and a forecast, make a plot of the fore-
cast, and save the results.

' housing analysis

workfile myhouse m 1968:3 1997:6

fetch progdemo::hsf

smpl 1968:5 1992:12

equation reg1.ls hsf c hsf(-1)

reg1.makeresid hsfres

smpl 1993:1 1997:6

reg1.forecast hsffit

Program Variables—89
freeze(hsfplot) hsffit.line

save

The first line of the program is a comment, as denoted by the apostrophe “'”. In executing
a program, EViews will ignore all text following the apostrophe until the end of the line.

HSF is total housing units started. We end up with a saved workfile named MYHOUSE con-
taining the HSF series, an equation object REG1, a residual and forecast series, HSFRES
and HSFFIT, and a graph HSFPLOT of the forecasts.

You can run this program by clicking on Run and filling in the dialog box.

Now, suppose you wish to perform the same analysis, but for the S&P 500 stock price
index (FSPCOM). Edit the program, changing MYHOUSE to MYSP500, and change all of
the references of HSF to FSPCOM:

' s&p analysis

workfile mysp500 m 1968:3 1997:6

fetch progdemo::fspcom

smpl 1968:5 1992:12

equation reg1.ls fspcom c fspcom(-1)

reg1.makeresid fspcomres

smpl 1993:1 1997:6

reg1.forecast fspcomfit

freeze(fscomplot) fspcomfit.line

save

Click on Run to execute the new analysis. Click on the Save button to save your program
file as MYPROG.PRG in the EViews directory.

Since most of these two programs are identical, it seems like a lot of typing to make two
separate programs. Below we will show you a way to handle these two forecasting prob-
lems with a single program.

Program Variables

While you can use programs just to edit, run, and re-run collections of EViews commands,
the real power of the programming language comes from the use of program variables and
program control statements.

90—Chapter 6. EViews Programming
Control Variables

Control variables are variables that you can use in place of numerical values in your
EViews programs. Once a control variable is assigned a value, you can use it anywhere in a
program that you would normally use a number.

The name of a control variable starts with an “!” mark. After the “!”, the name should be
a legal EViews name of 15 characters or fewer. Examples of control variable names are:

!x

!1

!counter

You need not declare control variables before your refer to them, though you must assign
them a value before use. Control variables are assigned in the usual way, with the control
variable name on the left of an “=” sign and a numerical value or expression on the right.
For example,

!x=7

!12345=0

!counter= 12

!pi=3.14159

Once assigned a value, a control variable may appear in an expression. For example,

!counter = !counter + 1

genr dnorm = 1/sqr(2*!pi)*exp(-1/2*epsilon^2)

scalar stdx = x/sqr(!varx)

smpl 1950:1+!i 1960:4+!i

Control variables do not exist outside of your program and are automatically erased after a
program finishes. As a result, control variables are not saved when you save the workfile.
You can save the values of control variables by creating new EViews objects which contain
the values of the control variable. For example,

scalar stdx = sqr(!varx)

c(100) = !length

sample years 1960+!z 1990

String Variables

A string is text enclosed in double quotes:

"gross domestic product"

"3.14159"

"ar(1) ar(2) ma(1) ma(2)"

Program Variables—91
A string variable is a variable whose value is a string of text. The name of a string variable
starts with a “%” symbol. String variables are assigned by putting the string variable name
on the left of an = sign and a string expression on the right. For example,

%value="value in millions of u.s. dollars"

%armas="ar(1) ar(2) ma(1) ma(2)"

%mysample=" 83:1 96:12"

%dep=" hs"

%pi=" 3.14159"

Once assigned a value, a string variable may appear in an expression. You can use strings
to help you build up commands and variable names or as headings in tables. For example,

gnp.label %value

smpl %mysample

equation eq1.ls %dep c %dep(-1)

equation eq2.ls %dep c %dep(-1) %armas

EViews has a number of operators and functions for manipulating strings; a complete list
is provided in “Manipulating Strings” on page 92. Here is a quick example:

!repeat = 500

%st1 = " draws from the normal"

%st2 = "Cauchy "

%st3 = @str(!repeat) +@left(%st1,16)+ %st2 +"distribution"

In this example %ST3 is set to the value “500 draws from the Cauchy distribution”. Note
the spaces before draws and after Cauchy in the double quotes.

String variables are like control variables in that they only exist during the time that your
program is executing and are not stored in the workfile. You can save string data in a cell of
a table, as described later in this chapter.

You can convert a string variable containing a number into a number by using the @val
function. For example,

%str = ".05"

!level = @val(%str)

creates a control variable !LEVEL=0.05. If the first character of the string is not a numeric
character (and is not a plus or a minus sign), @val returns the value “NA”. Any characters
to the right of the first non-digit character are ignored. For example,

%date = "04/23/97"

scalar day=@val(@right(%date,5))

92—Chapter 6. EViews Programming
scalar month=@val(%date)

creates scalar objects DAY=23 and MONTH=4.

Manipulating Strings

Strings and string variables may be concatenated using the “+” operator. For example,

%st1 = "The name "

%st2 = "X"

%st3 = %st1 + "is " + %st2

would leave the string “The name is X” in the string variable %ST3.

In addition, EViews provides a number of functions that operate on strings:

• @left: returns a string containing the specified number of characters at the left end
of a string. If there are fewer characters than the number specified, @left will
return the entire string. Put the string and the number of characters in parentheses.

@left("I did not do it",5)

returns the string “I did”.

• @mid: returns the specified number of characters starting from the specified location
in the string and going to the right.

@mid("I doubt I did it",9,5)

returns the string “I did”.

If you omit the number of characters from @mid, or if there are fewer remaining
characters than the number specified, the function will return all of the characters to
the right of the specified location.

@mid("I doubt I did it",9)

returns the string “I did it”.

• @right: returns a string containing the specified number of characters at the right
end of a string. If there are fewer characters than the number specified, @right will
return the entire string. Put the string and the number of characters in parentheses.

@right("I doubt I did it",8)

returns the string “I did it”.

• @str: returns a string representing the given number.

!x=15

@str(!x)

returns the string “15”.

Program Variables—93
• @val: returns a number (scalar) when applied to a string representing a number. If
the string has any non-digits, they are considered to terminate the number. If the
first character is not a digit, the function returns zero.

%date = "02/13/95"

!month = @val(%date)

!year = @val(@right(%date,2))

!day = @val(@mid(%date,4,2))

return the numerical values !MONTH=2, !YEAR=97, and !DAY=13.

• @otod: (Obs TO Date) returns a string representing the date associated with the
observation at the given offset from the start of the workfile range. The first observa-
tion of the workfile has an offset of 1.

create q 50:1 90:4

!x = 16

%date = @otod(!x)

returns the string %DATE=“1953:4”.

• @dtoo: (Date TO Obs) returns the scalar offset from the beginning of the workfile
associated with the observation given by the date string. The string must be a valid
EViews date.

create d 2/1/90 12/31/95

%date = "1/1/93"

!t = @dtoo(%date)

returns the value !T=762.

Combining the string functions listed above and the “+” operator allows you to build up
strings with different meanings. To repeat the example used before,

!repeat = 500

%st1 = " draws from the normal"

%st2 = "Cauchy "

%st3 = @str(!repeat) +@left(%st1,16)+ %st2 +"distribution"

In this example %ST3 is set to “500 draws from the Cauchy distribution”.

Replacement Variables

EViews allows you to construct command lines using the contents of string and control
variables. For example if the string variable %X contains the string “GDP”:

94—Chapter 6. EViews Programming
%x = "gdp"

then the program line

ls %x c %x(-1)

would be interpreted by EViews as

ls gdp c gdp(-1)

Changing the contents of %X to “ML” changes the interpretation of the line to

ls m1 c m1(-1)

In this context we refer to the string variable %X as a replacement variable because it is
replaced in the command line by its contents.

Replacement variables may be combined with letter and digits or with other replacement
variables to form longer words. When you do this, you should use curly braces “{“ and
“}” to delimit the replacement variables. For example,

%type = "Low"

%vname = " Income"

series inc1

inc1.label {%type}{%vname}

%type = "High"

series inc2

inc2.label {%type}{%vname}

will label the series INC1 as “Low Income” and series INC2 as “High Income”. In these
cases, the term “{%type}{%vname}” is a replacement variable since the command is con-
structed by replacing the string variables with their contents.

Control variables may also be used as replacement variables. For example,

!i = 1

series y{!x} = nrnd

!j = 0

series y{!j}{!i} = nrnd

is the same as the commands

series y1 = nrnd

series y01 = nrnd

and will create two series Y1 and Y01 that contain a set of (pseudo-)random draws from a
standard normal distribution.

Program Variables—95
An important use of replacement variables is in constructing object names. For example,

!a = 3

%b = "2"

%c = "temp"

series x{!a}

matrix(2,2) x{%b}

vector(3) x_{%c}1

declares a series named X3, a matrix named X2, and a vector named X_TEMP1.

Replacement variables give you great flexibility in naming objects in your programs. We do
suggest, however, that you avoid using the same base names to refer to different objects.
Consider the following example which shows the potential for confusion:

' possibly confusing commands (avoid)

!a=1

series x{!a}

!a=2

matrix x{!a}

In this small code snippet it is easy to see that X1 is the series and X2 is the matrix. But in
a more complicated program, where the assignment of!A may be separated from the series
declaration by many program lines, it may be difficult to tell at a glance what x{!a} repre-
sents. A better approach would be to use different names for different kinds of variables:

!a=1

series ser{!a}

!a=2

matrix mat{!a}

EViews functions perform type checking so that you need to use braces when you call a
function with a replacement variable. Functions that take string arguments only allow
strings to be passed in and functions that take series arguments only accept series. To pass
a series into a series function via a replacement variable, you must enclose the replace-
ment variable in braces so that EViews knows to use the object referenced by the string,
rather than the string itself. For example, when trying to find the number of valid observa-
tions in a series named INCOME, you can use the @obs function

@obs(income)

If you wish to use the string variable %VAR to refer to the INCOME series, the proper syn-
tax is

%var = "income"

2 2×

96—Chapter 6. EViews Programming
@obs({%var})

The function @obs(%var) will return an error since the @obs function requires a series,
not a string as an argument.

When you pass series names to subroutines via replacement variables, you also need to
use braces. See “Subroutine with arguments” on page 108.

Program Arguments

Program arguments are special string variables that are passed to your program when you
run the program. Arguments allow you to change the value of string variables every time
you run the program. You may use them in any context where a string variable is appropri-
ate. Any number of arguments may be included in a program; they will be named “%0”,
“%1”, “%2”, and so on.

When you run a program that takes arguments, you will also supply the values for the
arguments. If you use the Run button or File/Run, you will see a dialog box where you
can type in the values of the arguments. If you use the run command, you should list the
arguments consecutively after the name of the program.

For example, suppose we have a program named REGPROG:

equation eq1

smpl 1980:3 1994:1

eq1.ls %0 c %1 %1(-1) time

To run REGPROG from the command line with %0="lgdp" and %1="m1", we enter

run regprog lgdp m1

This program performs a regression of the variable LGDP, on C, M1, M1(-1), and TIME, by
executing the command

eq1.ls lgdp c m1 m1(-1) time

Alternatively, you can run this program by clicking on the Run button on the program win-
dow, or selecting File/Run.... In the Run Program dialog box that appears, type the name
of the program in the Program name or path field and enter the values of the arguments in
the Program arguments field. For this example, type “regprog” for the name of the pro-
gram, and “lgdp” and “m1” for the arguments.

Any arguments in your program that are not initialized in the run command or Run Pro-
gram dialog are treated as blanks. For example, suppose you have a one-line program
named REGRESS:

Control of Execution—97
ls y c time %0 %1 %2 %3 %4 %5 %6 %7 %8

The command

run regress x x(-1) x(-2)

executes

ls y c time x x(-1) x(-2)

while the command

run regress

executes

ls y c time

In both cases, EViews ignores arguments that are not included in your run command.

As a last example, we repeat our simple forecasting program from above, but use argu-
ments to simplify our work. Suppose you have the program, MYPROG:

workfile %0 m 1968:3 1997:6

fetch progdemo::%1

smpl 1968:5 1992:12

equation reg1.ls %1 c %1(-1)

reg1.makeresid {%1}res

smpl 93:1 1997:6

reg1.forecast {%1}fit

freeze({%1}plot) {%1}fit.line

save

The results of running the two example programs at the start of this chapter can be dupli-
cated by running MYPROG with arguments:

run myprog myhouse hsf

and

run myprog mysp500 fspcom

Control of Execution

EViews provides you with several ways to control the execution of commands in your pro-
grams. Controlling execution in your program means that you can execute commands
selectively or repeat commands under changing conditions. The methods for controlling
execution will be familiar from other computer languages.

98—Chapter 6. EViews Programming
IF Statements

There are many situations where you want to execute commands only if some condition is
satisfied. EViews uses IF/ENDIF statements to indicate the condition to be met and the
commands to be executed.

An IF statement starts with the if keyword, followed by an expression for the condition,
and then the word then. You may use AND/OR statements in the condition, using paren-
theses to group parts of the statement as necessary.

If the expression is true, all of the commands until the matching endif are executed. If the
expression is false, all of these commands are skipped. The expression may also take a
numerical value. In this case, zero is equivalent to false and any non-zero value is consid-
ered to be true. For example:

if !stand=1 or (!rescale=1 and !redo=1) then

series gnpstd = gnp/sqr(gvar)

series constd = cons/sqr(cvar)

endif

if !a>5 and !a<10 then

smpl 1950:1 1970:1+!a

endif

if !scale then

series newage = age/!scale

endif

Note that all indentation is done for program clarity and has no effect on the execution of
the program lines.

An IF statement can have an ELSE clause containing commands to be executed if the con-
dition is false. If the condition is true, all of the commands up to the keyword else will be
executed. If the condition is false, all of the commands between else and endif will be
executed. For example,

if !scale>0 then

series newage = age/!scale

else

series newage = age

endif

IF statements can also be applied to string variables and can be nested:

if %0="ca" or %0="in" then

Control of Execution—99
series stateid = 1

else

if %0="ma" then

series stateid=2

else

if %0="id" then

series stateid=3

endif

endif

endif

All string comparisons are case-insensitive. String comparisons are lexicographic and fol-
low the ASCII ordering rules. Strings are considered equal if they are the same length and
every character matches. One string is less than another if the corresponding characters
come earlier in the alphabet. A string is greater than another if the corresponding charac-
ters come later in the alphabet, or if there is no corresponding character. For example, sup-
pose we assign the string values

%1 = "a"

%2 = "b2"

then the following inequalities are true:

%1<"abc" and "abc"<%2 and %2<"d"

"259"<%1 and %1<"aa" and "aa"<%2 and %2<"ba"

" b"<%1 and %1<"a 1" and "a 1"<"b110" and "b110"<%2

The string “A” is less than “ABC” since the first characters of the strings match; the remain-
ing characters "BC" make the string greater. “A” is greater than any digit since digits come
before letters in the ASCII ordering.

In order to test whether a string contains any characters, test whether it is equal to an
empty string. For example, the statement

if %str<>"" then

will execute the following lines if the string variable %STR is not empty.

To test whether a scalar contains a missing value, compare with NA. For example,

if !a <> na then

will execute the following lines if !A is not a missing value.

100—Chapter 6. EViews Programming
Note that inequality comparisons with NA are always evaluated as false in IF statements.
For example,

if 3 > na then

if 3 <= na then

are both false.

You may have noticed that all of the above examples of IF statements involved scalar or
string variable comparisons. You should take care when using the IF statement with series
or matrices to note that the boolean is defined on the entire object and will evaluate to
false unless every element of the element-wise comparison is true. Thus, if X and Y are
series, the IF statement

if x<>y then

[some program lines]

endif

evaluates to false if any element of X is not equal to the corresponding value of Y in the
default sample. If X and Y are identically sized vectors or matrices, the comparison is over
all of the elements X and Y. The behavior is described in greater detail in “Comparison
Operators (=, >, >=, <, <=, <>)” on page 68.

The FOR Loop

The FOR loop allows you to repeat a set of commands for different values of a control or
string variable. The FOR loop begins with a for statement and ends with a next state-
ment. Any number of commands may appear between these two statements.

The syntax of the FOR statement differs depending upon whether it uses control variables
or string variables.

FOR Loops with Control Variables or Scalars

To repeat statements for different values of a control variable, the FOR statement involves
setting a control variable equal to an initial value, followed by the word to, and then an
ending value. After the ending value you may include the word step followed by a num-
ber indicating by how much to change the control variable each time the loop is executed.
If you don’t include step, the step is assumed to be 1. For example,

for !j=1 to 10

series decile{!j} = (income<level{!j})

next

In this example, STEP=1 and the variable J is twice used as a replacement variable, first
for the ten series declarations DECILE1 through DECILE10 and for the ten variables
LEVEL1 through LEVEL10.

Control of Execution—101
for !j=10 to 1 step -1

series rescale{!j}=original/!j

next

In this example, the step is -1, and J is used as a replacement variable to name the ten con-
structed series RESCALE10 through RESCALE1 and as a scalar in dividing the series ORIG-
INAL.

The FOR loop is executed first for the initial value, unless that value is already beyond the
terminal value. After it is executed for the initial value, the control variable is incremented
by step and EViews compares the variable to the limit. If the limit is passed, execution
stops.

One important use of FOR loops with control variables is to change the sample. If you add
a control variable to a date in a smpl command, you will get a new date as many observa-
tions forward as the current value of the control variable. Here is a FOR loop that gradually
increases the size of the sample and estimates a rolling regression:

for !horizon=10 to 72

smpl 1970:1 1970:1+!horizon

equation eq{!horizon}.ls sales c orders

next

One other important case where you will use loops with control variables is in accessing
elements of a series or matrix objects. For example,

!rows = @rows(vec1)

vector cumsum1 = vec1

for !i=2 to !rows

cumsum1(!i) = cumsum1(!i-1) + vec1(!i)

next

computes the cumulative sum of the elements in the vector VEC1 and saves it in the vector
CUMSUM1.

To access an individual element of a series, you will need to use the @elem function and
@otod to get the desired element

for !i=2 to !rows

cumsum1(!i) = @elem(ser1, @otod(!i))

next

The @otod function returns the date associated with the observation index (counting from
the beginning of the workfile), and the @elem function extract the series element associ-
ated with a given date.

102—Chapter 6. EViews Programming
You can nest FOR loops to contain loops within loops. The entire inner FOR loop is exe-
cuted for each successive value of the outer FOR loop. For example,

matrix(25,10) xx

for !i=1 to 25

for !j=1 to 10

xx(!i,!j)=(!i-1)*10+!j

next

next

You should avoid changing the control variable within a FOR loop. For example, consider

' potentially confusing loop (avoid doing this)

for !i=1 to 25

vector a!i

!i=!i+10

next

Here, both the FOR assignment and the assignment statement within the loop change the
value of the control variable I. Loops of this type are difficult to follow and may produce
unintended results. If you find a need to change a control variable inside the loop, consider
using a WHILE loop as explained below.

You may execute FOR loops with scalars instead of control variables. However, you must
first declare the scalar, and you may not use the scalar as a replacement variable. For
example,

scalar i

scalar sum = 0

vector (10) x

for i=1 to 10

x(i) = i

sum = sum + i

next

In this example, the scalars I and SUM remain in the workfile after the program has fin-
ished running, unless they are explicitly deleted.

FOR Loops with String Variables

When you wish to repeat statements for different values of a string variable, you can use
the FOR loop to let a string variable range over a list of string values. Give the name of the
string variable followed by the list of values. For example,

Control of Execution—103
for %y gdp gnp ndp nnp

equation {%y}trend.ls %y c {%y}(-1) time

next

executes the commands

equation gdptrend.ls gdp c gdp(-1) time

equation gnptrend.ls gnp c gnp(-1) time

equation ndptrend.ls ndp c ndp(-1) time

equation nnptrend.ls nnp c nnp(-1) time

You can put multiple string variables in the same FOR statement—EViews will process the
strings in sets. For example,

for %1 %2 %3 1955:1 1960:4 early 1970:2 1980:3 mid 1975:4
1995:1 late

smpl %1 %2

equation {%3}eq.ls sales c orders

next

In this case, the elements of the list are taken in groups of three. The loop is executed three
times for the different sample pairs and equation names:

smpl 1955:1 1960:4

equation earlyeq.ls sales c orders

smpl 1970:2 1980:3

equation mideq.ls sales c orders

smpl 1975:4 1995:1

equation lateeq.ls sales c orders

Note the difference between this construction and nested FOR loops. Here, all string vari-
ables are advanced at the same time, whereas with nested loops, the inner variable is
advanced over all choices, while the outer variable is held constant. For example,

!eqno = 1

for %1 1955:1 1960:4

for %2 1970:2 1980:3 1975:4

smpl %1 %2

'form equation name as eq1 through eq6

equation eq{!eqno}.ls sales c orders

!eqno=!eqno+1

next

104—Chapter 6. EViews Programming
next

Here, the equations are estimated over the samples 1955:1–1970:2 for EQ1, 1955:1–1980:3
for EQ2, 1955:1–1975:4 for EQ3, 1960:4–1970:2 for EQ4, 1960:4–1980:3 for EQ5, and
1960:4–1975:4 for EQ6.

The WHILE Loop

In some cases, we wish to repeat a series of commands several times, but only while one
or more conditions are satisfied. Like the FOR loop, the WHILE loop allows you to repeat
commands, but the WHILE loop provides greater flexibility in specifying the required con-
ditions.

The WHILE loop begins with a while statement and ends with a wend statement. Any
number of commands may appear between the two statements. WHILE loops can be
nested.

The WHILE statement consists of the while keyword followed by an expression involving
a control variable. The expression should have a logical (true/false) value or a numerical
value. In the latter case, zero is considered false and any non-zero value is considered true.

If the expression is true, the subsequent statements, up to the matching wend, will be exe-
cuted, and then the procedure is repeated. If the condition is false, EViews will skip the fol-
lowing commands and continue on with the rest of the program following the wend
statement. For example,

!val = 1

!a = 1

while !val<10000 and !a<10

smpl 1950:1 1970:1+!a

series inc{!val} = income/!val

!val = !val*10

!a = !a+1

wend

There are four parts to this WHILE loop. The first part is the initialization of the control
variables used in the test condition. The second part is the WHILE statement which
includes the test. The third part is the statements updating the control variables. Finally
the end of the loop is marked by the word wend.

Unlike a FOR statement, the WHILE statement does not update the control variable used in
the test condition. You need to explicitly include a statement inside the loop that changes
the control variable, or your loop will never terminate. Use the F1 key to break out of a
program which is in an infinite loop.

Control of Execution—105
In the example above of a FOR loop that changed the control variable, a WHILE loop pro-
vides a much clearer program:

!i = 1

while !i<=25

vector a{!i}

!i = !i + 11

wend

Handling Execution Errors

By default, EViews will stop executing after encountering any errors, but you can instruct
the program to continue running even if errors are encountered (see “Executing a Pro-
gram” on page 86). In the latter case, you may wish to perform different tasks when errors
are encountered. For example, you may wish to skip a set of lines which accumulate esti-
mation results when the estimation procedure generated errors.

To test for and handle execution errors, you should use the @errorcount function to
return the number of errors encountered while executing your program:

!errs = @errorcount

The information about the number of errors may be used by standard program statements
to control the behavior of the program.

For example, to test whether the estimation of a equation generated an error, you should
compare the number of errors before and after the command:

!old_count = @errorcount

equation eq1.ls y x c

!new_count = @errorcount

if !new_count > !old_count then

[various commands]

endif

Here, we perform a set of commands only if the estimation of equation EQ1 incremented
the error count.

Other Tools

Occasionally, you will wish to stop a program or break out of a loop based on some condi-
tions. To stop a program executing in EViews, use the stop command. For example, sup-
pose you write a program that requires the series SER1 to have nonnegative values. The
following commands check whether the series is nonnegative and halt the program if SER1
contains any negative value:

106—Chapter 6. EViews Programming
series test = (ser1<0)

if @sum(test) <> 0 then

stop

endif

Note that if SER1 contains missing values, the corresponding value of TEST will also be
missing. Since the @sum function ignores missing values, the program does not halt for
SER1 that has missing values, as long as there is no negative value.

Sometimes, you do not wish to stop the entire program when a condition is satisfied; you
just wish to exit the current loop. The exitloop command will exit the current for or
while statement and continue running the program.

For example, suppose you computed a sequence of LR test statistics LR11, LR10, LR9, ...,
LR1, say to test the lag length of a VAR. The following program sequentially carries out the
LR test starting from LR11 and tells you the statistic that is first rejected at the 5% level:

!df = 9

for !lag = 11 to 1 step -1

!pval = 1 - @cchisq(lr{!lag},!df)

if !pval<=.05 then

exitloop

endif

next

scalar lag=!lag

Note that the scalar LAG has the value 0 if none of the test statistics are rejected.

Multiple Program Files

When working with long programs, you may wish to organize your code using multiple
files. For example, suppose you have a program file named POWERS.PRG which contains a
set of program lines that you wish to use.

While you may be tempted to string files together using the run command, we caution you
that EViews will stop after executing the commands in the referenced file. Thus, a program
containing the lines

run powers.prg

series x = nrnd

will only execute the commands in the file POWERS, and will stop before generating the
series X. This behavior is probably not what you intended.

Subroutines—107
You should instead use the include keyword to include the contents of a program file in
another program file. For example, you can place the line

include powers

at the top of any other program that needs to use the commands in POWERS. include
also accepts a full path to the program file and you may have more than one include
statement in a program. For example the lines,

include c:\programs\powers.prg

include durbin_h

[more lines]

will first execute all of the commands in C:\PROGRAMS\POWERS.PRG, then will execute
the commands in DURBIN_H.PRG, and then will execute the remaining lines in the pro-
gram file.

Subroutines provide a more general, alternative method of reusing commands and using
arguments.

Subroutines

A subroutine is a collection of commands that allows you to perform a given task repeat-
edly, with minor variations, without actually duplicating the commands. You can also use
subroutines from one program to perform the same task in other programs.

Defining Subroutines

A subroutine starts with the keyword subroutine followed by the name of the routine
and any arguments, and ends with the keyword endsub. Any number of commands can
appear in between. The simplest type of subroutine has the following form:

subroutine z_square

series x = z^2

endsub

where the keyword subroutine is followed only by the name of the routine. This subrou-
tine has no arguments so that it will behave identically every time it is used. It forms the
square of the existing series Z and stores it in the new series X.

You can use the return command to force EViews to exit from the subroutine at any time.
A common use of return is to exit from the subroutine if an unanticipated error is
detected. The following program exits the subroutine if Durbin’s statistic for testing
serial correlation with a lagged dependent variable cannot be computed (for details, see
Greene, 1997, p.596, or Davidson and MacKinnon, 1993, p. 360):

subroutine durbin_h

h

108—Chapter 6. EViews Programming
equation eqn.ls cs c cs(-1) inc

scalar test=1-eqn.@regobs*eqn.@cov(2,2)

' an error is indicated by test being nonpositive

' exit on error

if test<=0 then

return

endif

' compute h statistic if test positive

scalar h=(1-eqn.@dw/2)*sqr(eqn.@regobs/test)

endsub

Subroutine with arguments

The subroutines so far have been written to work with a specific set of variables. More
generally, subroutines can take arguments. If you are familiar with another programming
language, you probably already know how arguments allow you to change the behavior of
the group of commands each time the subroutine is used. Even if you haven’t encountered
subroutines, you are probably familiar with similar concepts from mathematics. You can
define a function, say

(6.1)

where depends upon the argument . The argument is merely a place holder—it’s
there to define the function and it does not really stand for anything. Then if you want to
evaluate the function at a particular numerical value, say 0.7839, you can write

. If you want to evaluate the function at a different value, say 0.50123, you
merely write . By defining the function, you save yourself from writing out the
whole expression every time you wish to evaluate it for a different value.

To define a subroutine with arguments, you start with subroutine, followed by the sub-
routine name, a left parenthesis, the arguments separated by commas, and finally a right
parenthesis. Each argument is specified by listing a type of EViews object, followed by the
name of the argument. Control variables may be passed by the scalar type and string vari-
ables by the string type. For example,

subroutine power(series v, series y, scalar p)

v = y^p

endsub

This subroutine generalizes the example subroutine Z_SQUARE. Calling POWER will fill
the series given by the argument V with the power P of the series specified by the argu-
ment Y. So if you set V equal to X, Y equal to Z, and P equal to 2, you will get the equiva-

f x() x
2=

f x x

f 0.7839()
f 0.50123()

Subroutines—109
lent of the subroutine Z_SQUARE above. See the discussion below on how to call
subroutines.

Subroutine Placement

Your subroutine definitions should be placed, in any order, at the beginning of your pro-
gram. The subroutines will not be executed until they are executed by the program using a
call statement. For example,

subroutine z_square

series x=z^2

endsub

' start of program execution

load mywork

fetch z

call z_square

Execution of this program begins with the load statement; the subroutine definition is
skipped and is executed only at the last line when it is “called.”

The subroutine definitions must not overlap—after the subroutine keyword, there
should be an endsub before the next subroutine declaration. Subroutines may call each
other, or even call themselves.

Alternatively, you may wish to place frequently used subroutines in a separate program file
and use an include statement to insert them at the beginning of your program. If, for
example, you put the subroutine lines in the file POWERS.PRG then you may put the line

include powers

at the top of any other program that needs to call Z_SQUARE or POWER. You can use the
subroutines in these programs as though they were built-in parts of the EViews program-
ming language.

Calling Subroutines

Once a subroutine is defined in your program, you may execute the commands in the sub-
routine by using the call keyword. call should be followed by the name of the subrou-
tine, and a list of any argument values you wish to use, enclosed in parentheses and
separated by commas. If the subroutine takes arguments, they must all be provided in the
same order as in the declaration statement. Here is an example program file that calls sub-
routines:

include powers

load mywork

110—Chapter 6. EViews Programming
fetch z gdp

series x

series gdp2

series gdp3

call z_square

call power(gdp2,gdp,2)

call power(gdp3,gdp,3)

The first calls fills the series X with the value of Z squared. The second call creates the
series GDP2 which is GDP squared. The last call creates the series GDP3 as the cube of
GDP.

When the subroutine argument is a scalar, the subroutine may be called with a scalar
object, a control variable, a simple number (such as “10” or “15.3”), a matrix element
(such as “mat1(1,2)”) or a scalar expression (such as “!y+25”). Subroutines that take
matrix and vector arguments can be called with a matrix name, and if not modified by the
subroutine, may also take a matrix expression. All other arguments must be passed to the
subroutine with a simple object (or string) name referring to a single object of the correct
type.

Global and Local Variables

Subroutines work with variables and objects that are either global or local.

Global variables refer either to objects which exist in the workfile when the subroutine is
called, or to the objects that are created in the workfile by a subroutine. Global variables
remain in the workfile when the subroutine finishes.

A local variable is one that has meaning only within the subroutine. Local variables are
deleted from the workfile once a subroutine finishes. The program that calls the subroutine
will not know anything about a local variable since the local variable will disappear once
the subroutine finishes and returns to the original program.

Global Subroutines

By default, subroutines in EViews are global. Any global subroutine may refer to any glo-
bal object that exists in the workfile at the time the subroutine is called. Thus, if Z is a
series in the workfile, the subroutine may refer to and, if desired, alter the series Z. Simi-
larly, if Y is a global matrix that has been created by another subroutine, the current sub-
routine may use the matrix Y.

The rules for variables in global subroutines are:

• Newly created objects are global and will be included in the workfile when the sub-
routine finishes.

Subroutines—111
• Global objects may be used and updated directly from within the subroutine. If,
however, a global object has the same name as an argument in a subroutine, the
variable name will refer to the argument and not to the global variable.

• The global objects corresponding to arguments may be used and updated by refer-
ring to the arguments.

Here is a simple program that calls a global subroutine:

subroutine z_square

series x = z^2

endsub

load mywork

fetch z

call z_square

Z_SQUARE is a global subroutine which has access to the global series Z. The new global
series X contains the square of the series Z. Both X and Z remain in the workfile when
Z_SQUARE is finished.

If one of the arguments of the subroutine has the same name as a global variable, the argu-
ment name takes precedence. Any reference to the name in the subroutine will refer to the
argument, not to the global variable. For example,

subroutine sqseries(series z,string %name)

series {%name} = z^2

endsub

load mywork

fetch z

fetch y

call sqseries(y,"y2")

In this example, there is a series Z in the original workfile and Z is also an argument of the
subroutine. Calling SQSERIES with the argument set to Y tells EViews to use the argument
rather than the global Z. Upon completion of the routine, a new series Y2 will contain the
square of the series Y, not the square of the series Z.

Global subroutines may call global subroutines. You should make certain to pass along any
required arguments when you call a subroutine from within a subroutine. For example,

subroutine wgtols(series y, series wt)

equation eq1

call ols(eq1, y)

equation eq2

112—Chapter 6. EViews Programming
series temp = y/sqr(wt)

call ols(eq2,temp)

delete temp

endsub

subroutine ols(equation eq, series y)

eq.ls y c y(-1) y(-1)^2 y(-1)^3

endsub

can be run by the program:

load mywork

fetch cpi

fetch cs

call wgtols(cs,cpi)

In this example, the subroutine WGTOLS explicitly passes along the arguments for EQ and
Y to the subroutine OLS; otherwise those arguments would not be recognized by OLS. If
EQ and Y were not passed, OLS would try to find a global series named Y and a global
equation named EQ, instead of using EQ1 and CS or EQ2 and TEMP.

You cannot use a subroutine to change the object type of a global variable. Suppose that
we wish to declare new matrices X and Y by using a subroutine NEWXY. In this example,
the declaration of the matrix Y works, but the declaration of matrix X generates an error
because a series named X already exists:

subroutine newxy

matrix(2,2) x = 0

matrix(2,2) y = 0

endsub

load mywork

series x

call newxy

EViews will return an error indicating that the global series X already exists and is of a dif-
ferent type than a matrix.

Local Subroutines

All objects created by a global subroutine will be global and will remain in the workfile
upon exit from the subroutine. If you include the word local in the definition of the sub-
routine, you create a local subroutine. All objects created by a local subroutine will be local
and will be removed from the workfile upon exit from the subroutine. Local subroutines

Subroutines—113
are most useful when you wish to write a subroutine which creates many temporary
objects that you do not want to keep.

The rules for variables in local subroutines are:

• You may not use or update global objects directly from within the subroutine.

• The global objects corresponding to arguments may be used and updated by refer-
ring to the arguments.

• All other objects in the subroutine are local and will vanish when the subroutine fin-
ishes.

If you want to save results from a local subroutine, you have to explicitly include them in
the arguments. For example,

subroutine local ols(series y, series res, scalar ssr)

equation temp_eq.ls y c y(-1) y(-1)^2 y(-1)^3

temp_eq.makeresid res

ssr = temp_eq.@ssr

endsub

This local subroutine takes the series Y as input and returns the series RES and scalar SSR
as output. The equation object TEMP_EQ is local to the subroutine and will vanish when
the subroutine finishes.

Here is an example program that calls this local subroutine:

load mywork

fetch hsf

equation eq1.ls hsf c hsf(-1)

eq1.makeresid rres

scalar rssr = eq1.@ssr

series ures

scalar ussr

call ols(hsf, ures, ussr)

Note how we first declare the series URES and scalar USSR before calling the local subrou-
tine. These objects are global since they are declared outside the local subroutine. When
we call the local subroutine by passing these global objects as arguments, the subroutine
will update these global variables.

There is one exception to the general inaccessibility of global variables in local subrou-
tines. When a global group is passed as an argument to a local subroutine, any series in
the group is accessible to the local routine.

114—Chapter 6. EViews Programming
Local subroutines can call global subroutines and vice versa. The global subroutine will
only have access to the global variables, and the local subroutine will only have access to
the local variables, unless information is passed between the routines via arguments. For
example, the subroutine

subroutine newols(series y, series res)

include ols

equation eq1.ls y c y(-1)

eq1.makeresid res

scalar rssr=eq1.@ssr

series ures

scalar ussr

call ols(y, ures, ussr)

endsub

and the program

load mywork

fetch hsf

series rres

call newols(hsf, rres)

produce equivalent results. Note that the subroutine NEWOLS still does not have access to
any of the temporary variables in the local routine OLS, even though OLS is called from
within NEWOLS.

Programming Summary

Support Commands
open opens a program file from disk (p. 275).

output.................. redirects print output to objects or files (p. 279).

poff...................... turns off automatic printing in programs (p. 427).

pon turns on automatic printing in programs (p. 427).

program declares a program.

run runs a program (p. 305).

statusline sends message to the status line (p. 428).

Program Statements
call calls a subroutine within a program (p. 421).

else denotes start of alternative clause for IF (p. 422).

endif marks end of conditional commands (p. 422).

Programming Summary—115
endsubmarks end of subroutine definition (p. 422).

exitloopexits from current loop (p. 423).

forstart of FOR execution loop (p. 424).

ifconditional execution statement (p. 424).

includeinclude subroutine in programs (p. 425).

nextend of FOR loop (p. 425).

returnexit subroutine (p. 428).

step(optional) step size of a FOR loop (p. 429).

stophalts execution of program (p. 430).

subroutinedeclares subroutine (p. 430).

then......................part of IF statement (p. 431).

toupper limit of FOR loop (p. 432).

wendend of WHILE loop (p. 433).

whilestart of WHILE loop (p. 433).

Support Functions
@date...................string containing the current date (p. 421).

@errorcountnumber of errors encountered (p. 423).

@evpathstring containing the directory path for the EViews executable
(p. 423).

@isobjectchecks for existence of object (p. 425).

@obsrangereturns number of observations in the current active workfile
range (0 if no workfile in memory).

@obssmplreturns number of observations in the current active workfile sam-
ple (0 if no workfile in memory).

@temppath...........string containing the directory path for EViews temporary files
(p. 430).

@timestring containing the current time (p. 431).

@toccalculates elapsed time (since timer reset) in seconds (p. 432).

String Functions
@dtooconverts date string to observation number (p. 401).

@leftextracts left portion of string (p. 407).

@midextracts middle portion of string (p. 409).

@otodconverts observation number to date string (p. 411).

@right..................extracts right portion of string (p. 413).

@strreturns a string representing a number (p. 416).

@strlenreturns the length of a string (p. 417).

116—Chapter 6. EViews Programming
@val.................... returns the number represented by a string (p. 419).

Chapter 7. Sample Programs

In this chapter, we provide extended examples showing the use of the EViews program-
ming language to perform the following tasks:

• Computing descriptive statistics by year.

• Rolling window unit-root (ADF) tests.

• Calculating cumulative sums.

• Performing time series operations on a sample of observations.

• Creating dummy variables with a loop.

• Extracting test statistics in a loop.

• Between group estimation for pooled data.

• Hausman test for fixed versus random effects.

• Reformatted regression output table.

In addition, there are a number of example files for creating and estimating user defined
likelihood functions. These example files are as described in “Additional Examples” on
page 491.

We have included program and data files for each example in your EViews examples direc-
tory. You may open each file by clicking on File/Open/Program… and selecting the appro-
priate file. To run the program, either click on Run in the program window, or enter the
command run, followed by the program name, in the command window.

Note that there may be additional programs in your EViews directory that were added after
the manual went to press and therefore are not listed here. If you find that the examples
here do not cover an issue of interest, you may wish to browse the contents of your EViews
examples directory.

Descriptive Statistics by Year

(descr1.prg)

Suppose that you wish to compute descriptive statistics (mean, median, etc.) for each year
of your monthly data in the series IP, URATE, M1, and TB10. While EViews does not pro-
vide a built-in procedure to perform this calculation, you can use the statsby view of a
series to compute the relevant statistics in two steps: first create a year identifier series,
and second compute the statistics for each value of the identifier.

' load the basics workfile

118—Chapter 7. Sample Programs
%evworkfile = @evpath + "\example files\basics"

load "{%evworkfile}"

smpl 1990:1 @last

' create a series containing the year identifier

series year = @year

' compute statistics for each year and

' freeze the output from each of the tables

for %var ip urate m1 tb10

%name = "tab" + %var

freeze(%name){%var}.statby(min,max,mean,med) year

next

The results are saved in tables named TABIP, TABURATE, TABM1, and TABTB10. For
example, TABIP contains:

(desc2.prg)

The example above saves the values in a table. You may instead wish to place the annual
values in a vector or matrix so that they can be used in other calculations. The following
program creates a vector to hold the median values for each year, and loops through the
calculation of the median for each year:

' load the basics workfile

%evworkfile = @evpath + "\example files\basics"

load "{%evworkfile}"

smpl 1990:1 @last

' create series with the year and find the maximum

series year = @year

Descriptive Statistics for IP
Categorized by values of YEAR
Date: 08/24/00 Time: 10:40
Sample: 1990:01 1995:04
Included observations: 64

YEAR Mean Median Max Min. Std. Dev. Obs.
1990 106.0696 106.3725 106.8150 104.5380 0.736456 12
1991 104.2815 104.5610 105.7480 102.0980 1.230377 12
1992 107.6821 107.7565 110.4470 104.8810 1.605744 12
1993 112.0888 111.7070 114.7110 110.6500 1.168270 12
1994 118.0779 118.1270 121.7000 114.7440 1.993301 12
1995 121.6750 121.8000 122.0000 121.1000 0.427201 4
All 110.3922 108.1350 122.0000 102.0980 5.805422 64

Rolling ADF Test—119
!lastyear = @max(year)

' loop over the series names

for %var ip urate m1 tb10

' create matrix to hold the results

!numrows = (!lastyear - 1990 + 1) + 1

matrix(!numrows, 7) mat%var

' loop over each year and compute values

for !i = 1990 to !lastyear

!row = !i - 1990 + 1

smpl if (year = !i)

mat%var(!row,1) = !i

mat%var(!row,2) = @mean({%var})

mat%var(!row,3) = @med({%var})

mat%var(!row,4) = @min({%var})

mat%var(!row,5) = @max({%var})

mat%var(!row,6) = @std({%var})

mat%var(!row,7) = @obs({%var})

next

' compute the total values

mat%var(!numrows,1) = !i

mat%var(!numrows,2) = @mean({%var})

mat%var(!numrows,3) = @med({%var})

mat%var(!numrows,4) = @min({%var})

mat%var(!numrows,5) = @max({%var})

mat%var(!numrows,6) = @std({%var})

mat%var(!numrows,7) = @obs({%var})

next

Rolling ADF Test

(rollreg.prg)

The following program runs a set of rolling ADF tests on the series M1 using a moving
sample of fixed size. The basic techniques for working with rolling samples may be used in
a variety of settings. The program stores and displays the t-statistics together with the
asymptotic critical value (C2):

120—Chapter 7. Sample Programs
' load the data

%evworkfile = @evpath + "\example files\basics"

load "{%evworkfile}"

smpl @all

' find size of workfile

series _temp = 1

!length = @obs(_temp)

delete _temp

' set fixed sample size

!ssize = 50

' initialize matrix to store results

matrix(!length-!ssize+1,2) adftstat

' run test regression for each subsample and store

' each ar(1) coefficient test includes a constant

' with no lagged first difference

for !i = 1 to !length-!ssize+1

smpl @first+!i-1 @first+!i+!ssize-2

equation temp.ls d(m1) c m1(-1)

adftstat(!i,1) = temp.@tstat(2)

' 5% critical value from Davidson and MacKinnon,

' Table 20.1, page 708

adftstat(!i,2) = -2.86

next

freeze(graph1) adftstat.line

graph1.name(1) ADF t-statistic

graph1.name(2) asymptotic 5% critical value

graph1.addtext(t) ADF t-statistic for window of 50 obs for M1

show graph1

Calculating Cumulative Sums—121
Calculating Cumulative Sums

(cum_sum.prg)

EViews does not have a built-in function for calculating cumulative sums. You can easily
calculate such sums with a few lines of commands.

Say we have a series X for which we would like to calculate the cumulative sum. If the
series does not contain NAs, you can use:

smpl @first @first

series sum0 = x

smpl @first+1 @last

sum0 = sum0(-1) + x

If the series does contain NAs, you have two options, depending on how you would like
the NAs to be treated. If you would like to continue accumulating the sum, ignoring the
NA observations, you can use:

smpl @first @first

series sum1 = @nan(x, 0)

smpl @first+1 @last

sum1 = sum1(-1) + @nan(x, 0)

smpl @all if x = na

sum1 = na

If you would like to reset the sum to zero whenever an NA appears in the series you can
use:

smpl @all

series sum2 = x

smpl if sum2(-1)<>na and x<>na

-6

-4

-2

0

2

4

6

8

10

50 100 150 200 250 300 350

ADF t-statistic asymptotic 5% critical value

ADF t-statistic for window of 50 obs for M1

122—Chapter 7. Sample Programs
sum2 = sum2(-1) + x

The following sample output shows the differences between the three methods:

Time Series Operations on a Sample

(subset.prg)

Many operations in EViews can be performed on a subset of the workfile observations
using the smpl command. To estimate an equation using only observations which have a
positive value of X, you could simply use:

smpl if x>=0

eq1.ls y c x

Time series operations often rely on observations being adjacent, so that this method may
not work as expected. In this example we demonstrate a general technique for working
with a subset of observations from the workfile as though they were adjacent. There are
three steps to using the method:

• create a “short version” of the data which contains only the subset of observations.

• use the “short version” of the data to get whatever results you need.

• create a “long version” of the results which match the observations in the original
data.

Consider the simple case of creating a series which contains the differences between con-
secutive positive values of the series X, ignoring any intervening negative values.

The commands

smpl if x>=0

series dxp = d(x)

Creating Dummy Variables with a Loop—123
will not compute the desired values, since the d function computes differences between
adjacent values, not between successive values in the sample.

The SUBSET.PRG program solves this problem using the general technique outlined above.
The solution is stored in the series DX. The series X_S and DX_S are left in the workfile so
you can follow the intermediate calculations.

' create sample

sample ss if x<>NA and x>=0

' create short x series

smpl @all

vector temp

stomna(x, temp, ss)

series x_s

mtos(temp, x_s)

!rows = @rows(temp) 'save number of elements

delete temp

' difference short x series

series dx_s = d(x_s)

' map back into long series dx

vector temp

stomna(dx_s, temp)

vector(!rows) temp 'trim to number of elements

series dx

mtos(temp, dx, ss)

delete temp

' display results

show x dx x_s dx_s

Creating Dummy Variables with a Loop

(make_dum.prg)

It is sometimes useful to create a set of dummy variables for a range of observations in a
workfile. You can then include one or more of these dummies in an estimation simply by
adding their names to the list of exogenous variables. It is easy to create these series by
hand, though somewhat tedious.

124—Chapter 7. Sample Programs
The program MAKE_DUM.PRG automates this task. It should be run from the command
line with arguments for the first and the last observation for which to create dummies. For
example, to create dummies in a quarterly workfile from the first quarter of 1982 to the last
quarter of 1983, the command would be:

run make_dum 1982:1 1983:4

As is, the program should work for annual, semiannual, quarterly, monthly and undated
workfiles. It should be modified for weekly and daily workfiles.

'Set up start and end dates

%start = %0 'the first observation to dummy

%end = %1 'the last observation to dummy

'Generate dummy variables from 'start' to 'end'

for !i = @dtoo(%start) to @dtoo(%end)

%obsstr = @otod(!i)

if (@mid(%obsstr, 5, 1) = ":") then

%name = "d_" + @left(%obsstr, 4) + "_" + @mid(%obsstr, 6)

else

%name = "d_" + %obsstr

endif

smpl @all

series %name = 0

smpl %obsstr %obsstr

series %name = 1

next

Extracting Test Statistics in a Loop

(omitted.prg)

Most of the output from equation or system estimation can be accessed directly using
EViews regression statistics functions (see Chapter 3, “Object, View and Procedure Refer-
ence”, beginning on page 19). This is not true of all of the output from EViews’ diagnostic
tests.

If you would like to work with statistics from these views in a program, you should use the
following general method that allows you to extract and store output from any object view.
The basic steps in each step through the loop are:

• freeze the view into a temporary table.

• extract the cell containing the statistic and assign its contents to an element of a
table or vector.

Extracting Test Statistics in a Loop—125
• delete the temporary table.

The following subroutine uses this approach to capture the F-statistic and probability
value from an omitted variables test. The subroutine OMIT_TEST cycles through the series
contained in a group, testing whether the first four lags of each series are jointly significant
when added to the chosen equation. The output is stored in a table.

' test whether the first four lags of an omitted variable

' are jointly significant (eq1: the equation to test;

' g: a list of the series to include; results: output)

subroutine omit_test(equation eq1, group g, table results)

!n = g.@count

table(3, !n) results

setcolwidth(results, 1, 12)

setcell(results, 1, 1, "Four lag F-test for omitted
variables:", "l")

results(2,2) = "F-stat"

results(2,3) = "Probability"

for !i = 1 to !n

%name = g.@seriesname(!i)

series temp_s = %name

freeze(temp_t) eq1.testadd temp_s(-1) temp_s(-2) temp_s(-3)
temp_s(-4)

results(!i+2, 1) = %name

results(!i+2, 2) = temp_t(3, 2)

results(!i+2, 3) = temp_t(3, 5)

delete temp_t

delete temp_s

next

endsub

The following program uses this subroutine to carry out some tests on the data from the
demo in Chapter 2, “A Demonstration”, on page 15 of the User’s Guide. Both the subrou-
tine and the program can be found in the file OMITTED.PRG.

open demo.wf1

smpl @all

equation eq1.ls dlog(m1) c dlog(m1(-1)) dlog(m1(-2)) dlog(m1(-3))
dlog(m1(-4))

group g1 dlog(gdp) dlog(rs) dlog(pr)

table tab1

call omit_test(eq1, g1, tab1)

show tab1

126—Chapter 7. Sample Programs
The program produces the following output:

Between Group Estimation for Pooled Data

(between.prg)

Consider a pooled regression specification:

, (7.1)

where is the cross-section index and represents the time period. EViews provides
built-in procedures to perform fixed effects (within-groups) estimation of :

, (7.2)

where a bar over a variable name represents the average over time for the cross-section.
Alternatively, you may wish to estimate the between groups model:

(7.3)

A quick way to obtain the between groups estimate is to use auto series in a pooled regres-
sion. If we run the pool regression

pool1.ls(c) @mean(log(ivm?)) @mean(log(mm?))

in the workfile POOL.WF1, we obtain:

Four lag F-test for omitted variables:
 F-stat Probability

DLOG(GDP) 1.316803 0.265802
DLOG(RS) 6.642363 0.000055
DLOG(PR) 1.054600 0.380818

yit()log αi β xit()log εit+ +=

i t
β

yit()log yit()log− βW xit()log xit()log−() εit εit−()+=

yit()log αi βB xit()log εit+ +=

Dependent Variable: @MEAN(LOG(IVM?))
Method: Pooled Least Squares
Date: 08/24/00 Time: 10:56
Sample: 1968:01 1995:12
Included observations: 336
Number of cross-sections used: 8
Total panel (balanced) observations: 2688

Variable Coefficient Std. Error t-Statistic Prob.

C 0.855345 0.092523 9.244701 0.0000
@MEAN(LOG(MM?)) 0.959626 0.009793 97.99203 0.0000

R-squared 0.781421 Mean dependent var 9.890818
Adjusted R-squared 0.781339 S.D. dependent var 0.847896
S.E. of regression 0.396486 Sum squared resid 422.2431
Log likelihood -1326.401 F-statistic 9602.439
Prob(F-statistic) 0.000000

Between Group Estimation for Pooled Data—127
Although the point estimates are correct, the standard errors are not since EViews uses
multiple observations for each cross-section unit.

We can, however, use a program to obtain the between estimator. The following program
stores the cross-section specific means of each series in a matrix, creates a new workfile,
converts the matrix to series, and runs the between groups regression:

' set number of cross-sections

%evworkfile = @evpath + "\example files\pool1"

load "{%evworkfile}"

smpl @all

!ncross = pool1.@ncross

' create group with variables

pool1.makegroup(tempgrp) log(ivm?) log(mm?)

' store means of two series in matrix

matrix(!ncross,2) means

series tempser

for !i = 1 to !ncross

tempser = tempgrp(!i)

means(!i,1) = @mean(tempser)

tempser = tempgrp(!ncross+!i)

means(!i,2) = @mean(tempser)

next

store(i) means

' create new workfile and fetch means matrix

workfile between u 1 !ncross

fetch(i) means

' convert matrix to series

series lc_mean

series ly_mean

group g1 lc_mean ly_mean

mtos(means,g1)

' run between groups regression and cleanup

equation eq_bet.ls lc_mean c ly_mean

delete tempgrp tempser

show eq_bet

The equation results for the between estimator are given by:

128—Chapter 7. Sample Programs
Note that the temporary group TEMPGRP and temporary series TEMPSER are deleted at
the end of the program.

Hausman Test for Fixed Versus Random Effects

(hausman.prg)

The following program computes the Hausman test statistic for testing the null hypothesis
of random effects against the alternative of fixed effects. The program estimates a fixed and
random effects model with two slope regressors and stores the estimated coefficients and
its covariance matrix. (The Grunfeld data used in the program is transcribed from Greene
(1997), Table 15.1.).

' load the data

%evworkfile = @evpath + "\example files\grunfeld"

load "{%evworkfile}"

smpl @all

' estimate fixed effects and store results

pool1.ls(f) log(inv?) log(val?) log(cap?)

vector beta = pool1.@coefs

matrix covar = pool1.@cov

' keep only slope coefficients

vector b_fixed = @subextract(beta,1,1,2,1)

matrix cov_fixed = @subextract(covar,1,1,2,2)

' estimate random effects and store results

pool1.ls(r) log(inv?) log(val?) log(cap?)

beta = pool1.@coefs

Dependent Variable: LC_MEAN
Method: Least Squares
Date: 08/24/00 Time: 10:55
Sample: 1 8
Included observations: 8

Variable Coefficient Std. Error t-Statistic Prob.

C 0.855345 1.957609 0.436934 0.6774
LY_MEAN 0.959626 0.207199 4.631412 0.0036

R-squared 0.781421 Mean dependent var 9.890818
Adjusted R-squared 0.744991 S.D. dependent var 0.906271
S.E. of regression 0.457653 Akaike info criterion 1.486906
Sum squared resid 1.256676 Schwarz criterion 1.506766
Log likelihood -3.947623 F-statistic 21.44997
Durbin-Watson stat 1.352621 Prob(F-statistic) 0.003572

Hausman Test for Fixed Versus Random Effects—129
covar = pool1.@cov

' keep only slope coefficients

vector b_gls = @subextract(beta,2,1,3,1)

matrix cov_gls = @subextract(covar,2,2,3,3)

' compute Hausman test stat

matrix b_diff = b_fixed - b_gls

matrix v_diff = cov_fixed - cov_gls

matrix qform = @transpose(b_diff)*@inverse(v_diff)*b_diff

if qform(1,1)>=0 then

' set table to store results

table(4,2) result

setcolwidth(result, 1, 17)

setcell(result,1,1,"Hausman test","l")

setcell(result,2,1,"(fixed versus random effects)","l")

setline(result,3)

!df = @rows(b_diff)

setcell(result,4,1,"Chi-square ("+@str(!df)+" d.f.)","l")

setcell(result,4,2,qform(1,1))

setcell(result,5,1,"p-value","l")

setcell(result,5,2,1-@cchisq(qform(1,1),!df))

show result

else

statusline "Quadratic form is negative"

endif

Note that the program stops if the computed test statistic is negative, which can happen in
finite samples. Running this program yields the table

Hausman test
(fixed versus random effects)

Chi-square (2 d.f.) 8.2380468
p-value 0.0162604

130—Chapter 7. Sample Programs
Regression Output Table

(regrun.prg / regtab.prg)

EViews presents regression output in tabular form, with separate columns for the coeffi-
cient values and the standard errors. For example, the output view from the equation EQ1
in the workfile BASICS.WF1 is given by:

A commonly used alternative display format places the standard errors or t-statistics,
enclosed in parentheses, below the coefficient estimates. The program file REGTAB.PRG
contains a subroutine which takes an equation object and creates a table with this alterna-
tive output:

' subroutine to reformat regresion output

subroutine regtab(equation eq1, table tab1, scalar format)

' assign useful values

!ncoef =eq1.@ncoef

!obs=eq1.@regobs

' create a temporary table with the results of the estimation

' and declare a new table

table(1,4) tab1

freeze(temp_table) eq1.results

setcolwidth(tab1, 1, 19)

setcolwidth(tab1, 2, format+4)

setcolwidth(tab1, 3, 19)

setcolwidth(tab1, 4, format+4)

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 08/18/97 Time: 14:02
Sample: 1959:01 1989:12
Included observations: 372

Variable Coefficient Std. Error t-Statistic Prob.

C -1.699912 0.164954 -10.30539 0.0000
LOG(IP) 1.765866 0.043546 40.55199 0.0000

TB3 -0.011895 0.004628 -2.570016 0.0106

R-squared 0.886416 Mean dependent var 5.663717
Adjusted R-squared 0.885800 S.D. dependent var 0.553903
S.E. of regression 0.187183 Akaike info criterion -0.505429
Sum squared resid 12.92882 Schwarz criterion -0.473825
Log likelihood 97.00980 F-statistic 1439.848
Durbin-Watson stat 0.008687 Prob(F-statistic) 0.000000

Regression Output Table—131
' get the original header information

!line = 1

while temp_table(!line, 2) <> "Coefficient"

setcell(tab1, !line, 1, temp_table(!line, 1), "l")

!line = !line +1

wend

setline(tab1, !line-1)

setcell(tab1, !line, 1, "Variable", "c")

setcell(tab1, !line, 2, "Estimate", "r")

setcell(tab1, !line, 3, "Estimate", "r")

setcell(tab1,!line+1, 2, "(s.e.)", "r")

setcell(tab1,!line+1, 3, "(t-stat)", "r")

!line = !line + 2

setline(tab1, !line)

!line = !line + 1

!vline = !line

' fill all of the coefficients and standard errors

' (or t-statistics)

for !i = 1 to !ncoef

%variable = temp_table(!vline-1, 1)

' write coefficients

setcell(tab1, !line, 1, %variable, "c")

!vline = !vline + 1

' write coefficients

!est=eq1.@coefs(!i)

setcell(tab1, !line, 2, !est, "r", format)

setcell(tab1, !line, 3, !est, "r", format)

!line = !line + 1

' compute statistics

!se = sqr(eq1.@covariance(!i, !i))

!tstat = !est/!se

!tprob = @tdist(!tstat, !obs-!ncoef)

' write standard error output

setcell(tab1, !line, 2, !se, "r", format)

%str_se = tab1(!line, 2)

%str_se = "(" + %str_se + ")"

tab1(!line, 2) = %str_se

132—Chapter 7. Sample Programs
' write t-statistic output

setcell(tab1, !line, 3, !tstat, "r", format)

%str_t = "(" + tab1(!line, 3) + ")"

if !tprob < .01 then

%str_t = "**" + %str_t

else

if !tprob < .05 then

%str_t = "*" + %str_t

endif

endif

tab1(!line, 3) = %str_t

!line = !line + 1

next

setline(tab1, !line)

!line = !line + 1

' original results at bottom of table

setcell(tab1, !line, 1, "R-squared", "l")

setcell(tab1, !line, 2, eq1.@r2, "r", format)

setcell(tab1, !line, 3, " Mean dependent var", "l")

setcell(tab1, !line, 4, eq1.@meandep, "r", format)

!line = !line + 1

setcell(tab1, !line, 1, "Adjusted R-squared", "l")

setcell(tab1, !line, 2, eq1.@rbar2, "r", format)

setcell(tab1, !line, 3, " S.D. dependent var", "l")

setcell(tab1, !line, 4, eq1.@sddep, "r", format)

!line = !line + 1

setcell(tab1, !line, 1, "S.E. of regression", "l")

setcell(tab1, !line, 2, eq1.@se, "r", format)

setcell(tab1, !line, 3, " Akaike info criterion", "l")

setcell(tab1, !line, 4, eq1.@aic, "r", format)

!line = !line + 1

setcell(tab1, !line, 1, "Sum squared resid", "l")

setcell(tab1, !line, 2, eq1.@ssr, "r", format)

setcell(tab1, !line, 3, " Schwarz criterion", "l")

setcell(tab1, !line, 4, eq1.@schwarz, "r", format)

Regression Output Table—133
!line = !line + 1

setcell(tab1, !line, 1, "Log likelihood", "l")

setcell(tab1, !line, 2, eq1.@logl, "r", format)

setcell(tab1, !line, 3, " F-statistic", "l")

setcell(tab1, !line, 4, eq1.@f, "r", format)

!line = !line + 1

setcell(tab1, !line, 1, "Durbin-Watson stat", "l")

setcell(tab1, !line, 2, eq1.@dw, "r", format)

setcell(tab1, !line, 3, " Prob(F-statistic)", "l")

setcell(tab1, !line, 4, @fdist(eq1.@f,(!ncoef-1),(!obs-!ncoef)),
"r", format)

!line = !line + 1

setline(tab1, !line)

endsub

To call the subroutine, you can open the program REGRUN.PRG, which contains the fol-
lowing commands:

include regtab.prg

%evworkfile = @evpath + "\example files\basics"

load "{%evworkfile}"

table tab1

call regtab(eq1, tab1, 3)

show tab1

The first argument to the REGTAB subroutine is the equation object, the second is the table
into which you wish to place the results, and the third argument is a numeric format code.
Here we indicate that we wish to display three digits after the decimal. Table TAB1 will
contain the reformatted output:

134—Chapter 7. Sample Programs
Dependent Variable: LOG(M1)
Method: Least Squares
Date: 08/18/97 Time: 14:02
Sample: 1959:01 1989:12
Included observations: 372

Variable Estimate Estimate
 (s.e.) (t-stat)

C -1.700 -1.700
 (0.165) **(-10.305)

LOG(IP) 1.766 1.766
 (0.044) **(40.552)

TB3 -0.012 -0.012
 (0.005) *(-2.570)

R-squared 0.886 Mean dependent var 5.664
Adjusted R-squared 0.886 S.D. dependent var 0.554
S.E. of regression 0.187 Akaike info criterion -0.505
Sum squared resid 12.929 Schwarz criterion -0.474
Log likelihood 97.010 F-statistic 1439.848
Durbin-Watson stat 0.009 Prob(F-statistic) 0.000

Chapter 8. Command Reference

This chapter provides a complete alphabetical listing of the commands, views, and procedures
in EViews.

Each entry is comprised of a keyword, followed by a listing of the ways in which the keyword
may be used. The entry also provides a summary of behavior, as well as a description of the
syntax. If appropriate, we also provide a listing of additional arguments, short examples, and
cross-references.

For example, the listing for correl is given by:

Note that the keyword correl may be used in three distinct ways: as a command to compute
the correlogram of a specified series, as a series view to display the correlogram for a series
object, and as an equation view to display the correlogram of the residuals from the estimated
equation. The syntax for each of these uses is documented separately.

In addition to the dictionary-style alphabetical listing provided here, there are several other
places in the Command and Programming Reference that contain reference material:

• “Basic Command Summary” beginning on page 17, provides a listing of commands com-
monly used when managing objects in workfiles and databases.

136—Chapter 8. Command Reference
• Chapter 3, “Object, View and Procedure Reference”, beginning on page 19, lists all
of the views and procedures classified by object, making it easy to see which views
and procedures are available for a given object.

• In “Matrix Function and Command Summary” on page 76, we list the basic func-
tions and commands used when working with matrix objects.

• In “Programming Summary” on page 114, we list the commands, functions and key-
words used in the EViews programming and string processing.

• Chapter 9, “Matrix and String Reference”, beginning on page 397 documents the
matrix, vector, scalar, and string functions and commands.

• Chapter 10, “Programming Language Reference”, beginning on page 421 contains
the primary documentation for the commands and keywords used in the program-
ming language. These entries may only used in batch programs.

• Appendix A, “Operator and Function Reference”, on page 435 contains a complete
listing of the functions and mathematical operators used in forming series expres-
sions, and in performing matrix element operations.

Estimate a system of equations by three-stage least squares.

Syntax

System Method: system_name.3sls(options)

Options

3sls System Method

i Iterate simultaneously over the weighting matrix and coeffi-
cient vector.

s Iterate sequentially over the weighting matrix and coeffi-
cient vector.

o (default) Iterate the coefficient vector to convergence following one-
iteration of the weighting matrix.

c One step (iteration) of the coefficient vector following one-
iteration of the weighting matrix.

m=integer Maximum number of iterations.

add—137
Examples

sys1.3sls(i)

Estimates SYS1 by the 3SLS method, iterating simultaneously on the weighting matrix and
the coefficient vector.

nlsys.3sls(showopts,m=500)

Estimates NLSYS by 3SLS with up to 500 iterations. The “showopts” option displays the
starting values and other estimation options.

Cross-references

See Chapter 19 of the User’s Guide for discussion of system estimation.

Add series to a group or add cross section members to a pool.

Syntax

Group Proc: group_name.add ser1 [ser2 ser3 ...]

Group Proc. group_name.add grp1 [grp2 ...]

Pool Proc: pool_name.add id1 [id2 id3 ...]

List the names of series or group of series to add to the group, or list the cross-section iden-
tifiers to add to the pool.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

l=number Set maximum number of iterations on the first-stage coeffi-
cient estimation to get the one-step weighting matrix.

showopts /
-showopts

[Do / do not] display the starting coefficient values and esti-
mation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should be a
one- or two-letter string. The first letter should either be “f”
or “a” corresponding to fast or accurate numeric derivatives
(if used). The second letter should be either “n” (always use
numeric) or “a” (use analytic if possible). If omitted, EViews
will use the global defaults.

p Print estimation results.

add Group Proc | Pool View

138—Chapter 8. Command Reference
Examples

dummy.add d11 d12

Adds the two series D11 and D12 to the group DUMMY.

countries.add us gr

Adds US and GR as cross-section members of the pool object COUNTRIES.

Cross-references

See also drop (p. 195).

Assign add factors to equations.

Syntax

Model Proc: model_name.addassign(options) equation_spec

where equation_spec identifies the equations for which you wish to assign add factors. You
may either provide a list of endogenous variables, or you can use one of the following
shorthand keywords:

The options identify the type of add factor to be used, and control the assignment behavior
for equations where you have previously assigned add factors. addassign may be called
multiple times to add different types of add factors to different equations. addassign may
also be called to remove existing add factors.

Options

addassign Model Proc

@all All equations.

@stochastic All stochastic equations (no identities).

@identity All identities.

i Intercept shifts (default).

v Variable shift.

n None—remove add factors.

c Change existing add factors to the specified type—if the “c”
option is not used, only newly assigned add factors will be
given the specified type.

addinit—139
Examples

m1.addassign(v) @all

assigns a variable shift to all equations in the model while

m1.addassign(c, i) @stochastic

changes the stochastic equation add factors to intercept shifts.

m1.addassign(v) @stochastic

m1.addassign(v) y1 y2 y2

m1.addassign(i) @identity

assigns variable shifts to the stochastic equations and the equations for Y1, Y2, and Y3,
and assigns intercept shifts to the identities.

Cross-references

See “Using Add Factors” on page 626 of the User’s Guide. See also Chapter 23, “Models”,
beginning on page 601 of the User’s Guide for a general discussion of models.

See addinit (p. 139).

Initialize add factors.

Syntax

Model Proc: model_name.addinit(options) equation_spec

where equation_spec identifies the equations for which you wish to initialize the add fac-
tors. You may either provide a list of endogenous variables, or you may use one of the fol-
lowing shorthand keywords:

The options control the type of initialization and the scenario for which you want to per-
form the initialization. addinit may be called multiple times to initialize various types of
add factors in the different scenarios.

addinit Model Proc

@all All equations

@stochastic All stochastic equations (no identities)

@identity All identities

140—Chapter 8. Command Reference
Options

Examples

m1.addinit(v=b) @all

sets all of the add factors in the active scenario to the values of the baseline.

m1.addinit(v=z) @stochastic

m1.addinit(v=n) y1 y1 y2

first sets the active scenario stochastic equation add factors to zero, and then sets the Y1,
Y2, and Y3 equation residuals to zero (evaluated at actuals).

m1.addinit(s=b, v=z) @stochastic

sets the baseline scenario add factors to zero.

Cross-references

See “Using Add Factors” on page 626 of the User’s Guide. See also Chapter 23 of the User’s
Guide for a general discussion of models.

See also addassign (p. 138).

Place text in graphs.

Syntax

Graph Proc: graph_name.addtext(options) text

Follow the addtext keyword with the text to be placed in the graph.

v=z (default) Set add factor values to zero

v=n Set add factor values so that the equation has no residual
when evaluated at actuals

v=b Set add factors to the values of the baseline (over-
ride=actual)

s=a (default) Set active scenario add factors

s=b Set baseline scenario (actuals) add factors

s=o Set active scenario override add factors

addtext Graph Proc

addtext—141
Options

The following options control the position of the text.

To place text within a graph, you can use explicit coordinates to specify the position of the
upper left corner of the text.

Coordinates are set by a
pair of numbers h, v in vir-
tual inches. Individual
graphs are always
virtual inches (scatter dia-
grams are virtual
inches) regardless of their
current display size.

The origin of the coordi-
nate is the upper left hand
corner of the graph. The
first number h specifies
how many virtual inches
to offset to the right from
the origin. The second
number v specifies how many virtual inches to offset below the origin. The upper left hand
corner of the text will be placed at the specified coordinate.

Coordinates may be used with other options, but they must be in the first two positions of
the options list. Coordinates are overridden by other options that specify location.

When addtext is used with a multiple graph, the text is applied to the whole graph, not
to each individual graph.

Examples

freeze(g1) gdp.line

font=n Set the size of the font.

t Top (above the graph and centered).

l Left rotated.

r Right rotated.

b Below and centered.

x Enclose text in box.

4 3×

3 3×

142—Chapter 8. Command Reference
g1.addtext(t) Fig 1: Monthly GDP (78.1-95.12)

Places the text “Fig1: Monthly GDP (78.1-95.12)” centered above the graph G1.

g1.addtext(.2,.2,X) Seasonally Adjusted

Places the text “Seasonally Adjusted” in a box within the graph, slightly indented from the
upper left corner.

Cross-references

See also legend (p. 240).

Align placement of multiple graphs.

Syntax

Graph Proc: graph_name.align(n,h,v)

Options

You must specify three numbers (each separated by a comma) in parentheses in the fol-
lowing order: the first number n is the number of columns in which to place the graphs,
the second number h is the horizontal space between graphs, and the third number v is the
vertical space between graphs. Spacing is specified in virtual inches.

Examples

mygraph.align(3,1.5,1)

Aligns MYGRAPH with graphs placed in three columns, horizontal spacing 1.5 inches, and
vertical spacing 1 inch.

var var1.ls 1 4 m1 gdp

freeze(impgra) var1.impulse(m,24) gdp @ gdp m1

impgra.align(2,1,1)

Estimates a VAR, freezes the impulse response functions as multiple graphs, and realigns
the graphs. By default, the graphs are stacked in one column, and the realignment places
the graphs in two columns.

Cross-references

For a detailed discussion of customizing graphs, see Chapter 10, “Graphs, Tables, and Text
Objects”, on page 243 of the User’s Guide.

align Graph Proc

append—143
See also graph (p. 224).

Append a specification line to a model, system, sspace, or var.

Syntax

Object Proc: object_name.append text

Var Proc: var_name.append(options) text

Type the text to be added after the append keyword. For vars, you must specify the text
type in the options argument.

Options for Vars

One of the following options is required when using append as a var proc:

Examples

model macro2

macro2.merge eq_m1

macro2.merge eq_gdp

macro2.append assign @all f

macro1.append @trace gdp

macro2.solve

The first line declares a model object. The second and third lines merge existing equations
into the model. The fourth and fifth line appends an assign statement and a trace of GDP
to the model. The last line solves the model.

system macro1

macro1.append cons=c(1)+c(2)*gdp+c(3)*cons(-1)

macro1.append inv=c(4)+c(5)*tb3+c(6)*d(gdp)

macro1.append gdp=cons+inv+gov

macro1.append inst tb3 gov cons(-1) gdp(-1)

macro1.gmm

show macro1.results

append Logl Proc | Model Proc | Sspace Proc | System Proc | Var Proc

svar Text for identifying restrictions for structural VAR.

coint Text for restrictions on the cointegration relations and/or
adjustment coefficients.

144—Chapter 8. Command Reference
The first line declares a system. The next three lines appends the specification of each
endogenous variable in the system. The fifth line appends the list of instruments to be
used in estimation. The last two lines estimate the model by GMM and display the estima-
tion results.

vector(2) svec0=0

sspace1.append @mprior svec0

This command appends a line in the state space object SSPACE1 to use the zero vector
SVEC0 as initial values for the state vector.

Cross-references

See also cleartext (p. 163). See Chapters 19 and 23 of the User’s Guide for a discussion
of systems and models, respectively.

Autoregressive error specification.

The AR specification can appear in an ls or tsls command to indicate an autoregressive
component. ar(1) indicates the first order component, ar(2) indicates the second order
component, and so on.

Examples

The command

ls m1 c tb3 tb3(-1) ar(1) ar(4)

regresses M1 on a constant, TB3, and TB3 lagged once with a first order and fourth order
autoregressive component. The command

tsls sale c adv ar(1) ar(2) ar(3) ar(4) @ c gdp

performs two-stage least squares of SALE on a constant and ADV with up to fourth order
autoregressive components using a constant and GDP as instruments.

Cross-references

See Chapter 13, “Time Series Regression”, on page 303 of the User’s Guide for details on
ARMA and seasonal ARMA modeling.

See also sar (p. 307), ma (p. 249), and sma (p. 330).

ar Expression

arch—145
Estimate generalized autoregressive conditional heteroskedasticity (GARCH) models.

Syntax

Command: arch(p,q,options) y x1 x2 x3 [@ p1 p2 @ t1 t2]

Equation Method: eq_name.arch(p,q,options) y x1 x2 x3 [@ p1 p2 @ t1 t2]

ARCH estimates a GARCH(p, q) model with p ARCH terms and q GARCH terms. If you do
not specify (p, q), then GARCH(1,1) is assumed by default. After the “arch” keyword, spec-
ify the dependent variable followed by a list of regressors in the mean equation.

By default, no exogenous variables (except for the intercept) are included in the condi-
tional variance equation. If you want to include variance regressors in addition to the
GARCH terms, list them after the mean equation regressors using an “@”-sign to separate
the two lists.

If you choose the option for component ARCH models, you may specify exogenous vari-
ables for the permanent and transitory components separately. After the mean equation
regressors, first list the regressors for the permanent component, followed by an “@”-sign,
then the regressors for the transitory component. A constant term is always included in the
permanent component.

Options

arch Command || Equation Method

e, egarch Exponential GARCH.

t, tarch Threshold (asymmetric) ARCH.

c Component (permanent and transitory) ARCH.

a Asymmetric component (permanent and transitory)
ARCH.

v ARCH-M (ARCH in mean) with conditional variance in
the mean equation.

m ARCH-M (ARCH in mean) with conditional standard
deviation in the mean equation.

h Bollerslev-Wooldridge robust quasi-maximum likelihood
(QML) covariance/standard errors.

z Turn of backcasting for both initial MA innovations and
initial variances.

146—Chapter 8. Command Reference
Saved results

Most of the results saved for the ls command are also available after ARCH estimation;
see ls (p. 245) for details.

Examples

The command

arch(4,0,m=1000,h) sp500 c

estimates an ARCH(4) model with a mean equation consisting of SP500 regressed on a
constant. The procedure will perform up to 1000 iterations and, upon convergence, will
report Bollerslev-Wooldridge robust QML standard errors.

The commands

c=.1

equation arc1.arch(s,v) nys c @ r

estimate a GARCH(1,1)-in-mean specification, with the mean equation for NYS depending
upon a constant and a conditional variance (GARCH) term. The conditional variance equa-
tion is the default GARCH(1,1) specification, with exogenous regressors R and a constant.

b Use Berndt-Hall-Hall-Hausman (BHHH) algorithm for
maximization. The default is Marquardt.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

s Use the current coefficient values in C as starting values
(see param).

s=number Specify a number between zero and one to determine
starting values as a fraction of preliminary LS estimates
(out of range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should be
a one-letter string (“f” or “a” corresponding to fast or
accurate numeric derivatives).

p Print estimation results.

archtest—147
The first line sets the default coefficient vector to 0.1 and the “s” option uses these ele-
ments of the C coefficient vector as starting values.

Following estimation, we can save the estimated conditional variance as a series named
GARCH1.

arc1.makegarch garch1

Cross-references

See Chapter 16 of the User’s Guide for a discussion of ARCH models.

See also garch (p. 219) and makegarch (p. 252).

Test for autoregressive conditional heteroskedasticity (ARCH).

Carries out Lagrange Multiplier (LM) tests for ARCH in the residuals.

Syntax

Command: archtest(options)

Equation View: eq_name.archtest(options)

Options

You must specify the order of ARCH to test for. The number of lags to include should be
provided in parentheses after the arch keyword.

Other Options:

Examples

ls output c labor capital

archtest(4)

Regresses OUTPUT on a constant, LABOR, and CAPITAL and tests for ARCH up to order 4.

equation eq1.arch sp500 c

eq1.archtest(4)

Estimates a GARCH(1,1) model with mean equation of SP500 on a constant and tests for
additional ARCH up to order 4. Note that performing an archtest after an arch estima-
tion uses the standardized residuals (the residual of the mean equation divided by the esti-
mated conditional standard deviation).

archtest Command || Equation View

p Print output from the test.

148—Chapter 8. Command Reference
Cross-references

See “ARCH LM Test” on page 377 of the User’s Guide for further discussion of testing ARCH
and Chapter 16 of the User’s Guide for a general discussion of working with ARCH models
in EViews.

Multivariate residual serial correlation LM test.

Syntax

Var View: var_name.arlm(h, options)

You must specify the highest order of lag h to test for serial correlation.

Options

Examples

var var1.ls 1 6 lgdp lm1 lcpi

show var1.arlm(12,name=lmout)

The first line declares and estimates a VAR with 6 lags. The second line displays the serial
correlation LM tests for lags up to 12 and stores the statistics in a matrix named LMOUT.

Cross-references

See “Diagnostic Views” on page 522 of the User’s Guide for other VAR diagnostics.

See also qstats (p. 289) for related multivariate residual autocorrelation portmanteau
tests.

Inverse roots of the characteristic AR polynomial.

Syntax

Var View: var_name.arroots(options)

arlm Var View

name=arg Save LM statistics in named matrix object. The matrix
has h rows and one column.

p Print test output.

arroots Var View

auto—149
Options

Examples

var var1.ls 1 6 lgdp lm1 lcpi

var1.arroots(graph)

The first line declares and estimates a VAR with 6 lags. The second line plots the AR roots
of the estimated VAR.

var var1.ls 1 6 lgdp lm1 lcpi

’store roots

freeze(tab1) var1.arroots(name=roots)

The first line declares and estimates a VAR with 6 lags. The second line stores the roots in
a matrix named ROOTS and the table view as a table named TAB1.

Cross-references

See “Diagnostic Views” on page 522 of the User’s Guide for other VAR diagnostics.

Serial correlation LM (Lagrange multiplier) test.

Carries out Breusch-Godfrey Lagrange Multiplier (LM) tests for serial correlation in the
estimation residuals.

Syntax

Command: auto(options)

Equation View: eq_name.auto(options)

In command form, auto tests the residuals from the default equation.

name=arg Save roots in named matrix object. The matrix has two
columns, where the first column is the real and the sec-
ond column is the imaginary part of each root in the
rows.

graph Plots the roots together with a unit circle. The VAR is
stable if all roots are inside the unit circle.

p Print table of AR roots.

auto Command || Equation View

150—Chapter 8. Command Reference
Options

You must specify the order of serial correlation to test for. You should specify the number
of lags in parentheses after the auto keyword, followed by any additional options.

Other Options:

Examples

To regress OUTPUT on a constant, LABOR, and CAPITAL and test for serial correlation of
up to order four:

ls output c labor capital

auto(4)

The commands

output(t) c:\result\artest.txt

equation eq1.ls cons c y y(-1)

eq1.auto(12, p)

perform a regression of CONS on a constant, Y and lagged Y and test for serial correlation
of up to order twelve. The first line redirects printed tables/text to the ARTEST.TXT file.

Cross-references

See “Serial Correlation LM Test” on page 305 of the User’s Guide for further discussion of
the Breusch-Godfrey test.

Bar graph of series or each column of a vector/matrix.

Syntax

Command: bar(options) ser1 ser2 ser3 ...

Object View: object_name.bar(options)

Graph Proc: graph_name.bar(options)

p Print output from the test.

bar Command || Coef View | Graph Proc | Group View | Matrix View |
Series View | Sym View | Vector View

bar—151
Options

Template and printing options

Scale options

Examples

Plot a bar graph of POP together with line graphs of GDP and CONS:

bar(x,o=mybar1) pop gdp cons

The bar graph is scaled on the left, while the line graphs are scaled on the right. The graph
uses options from graph MYBAR1 as a template.

group mygrp oldsales newsales

mygrp.bar(s)

The first line defines a group of series and the second line graphs a stacked bar graph of
the series in the group.

Cross-references

See “Graph Templates” on page 249 of the User’s Guide for a discussion of graph tem-
plates.

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the bar graph.

a (default) Automatic scaling. The series are graphed in their original
units and the range of the graph is chosen to accommo-
date the highest and lowest values of the series.

d Dual scaling. The first series is scaled on the left and all
other series are scaled on the right.

s Stacked bar graph. Each bar represents the cumulative
total of the series listed (may not be used with the “l”
option).

l Bar graph for the first series listed and a line graph for all
subsequent series (may not be used with the “s” option).

x Same as the “d” option (dual scaling).

m Plot bars in multiple graphs.

152—Chapter 8. Command Reference
See also freeze (p. 216) and graph (p. 224).

Perform BDS test for independence.

The BDS test is a portmanteau test for time based dependence in a series. It can be used
for testing against a variety of possible deviations from independence including linear
dependence, non-linear dependence, or chaos.

Syntax

Series View: series_name.bds(options)

Options

Cross-references

See “BDS Test” on page 170 of the User’s Guide for additional discussion.

Estimate binary dependent variable models.

Estimates models where the binary dependent variable Y is either zero or one (probit,
logit, gompit).

bdstest Series View

m=method Method for calculating .

m=p Fraction of pairs.

m=v Fixed value.

m=s Standard deviations.

m=r Fraction of range.

e Value for calculating .

d Maximum dimension.

b Number of repetitions for bootstrap p-values. If option
is omitted, no bootstraping is performed.

o=arg Name of output vector for final BDS z-statistics.

p Print output.

binary Command || Equation Method

ε

ε

binary—153
Syntax

Command: binary(options) y x1 x2 x3

Equation Method: eq_name.binary(options) y x1 x2 x3

Options

Examples

To estimate a logit model of Y on a constant, WAGE, EDU, and KIDS with QML standard
errors:

binary(d=l,h) y c wage edu kids

This command uses the default quadratic hill climbing algorithm. The commands

param c(1) .1 c(2) .1 c(3) .1

d=n (default) Maximize using normal likelihood function (probit).

d=l Maximize using logistic likelihood function (logit).

d=x Maximize using (Type I) extreme value likelihood func-
tion (Gompit).

q (default) Use quadratic hill climbing for maximization algorithm.

r Use Newton-Raphson for maximization algorithm.

b Use Berndt-Hall-Hall-Hausman (BHHH) for maximiza-
tion algorithm.

h Quasi-maximum likelihood (QML) standard errors.

g GLM standard errors.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

s Use the current coefficient values in C as starting val-
ues.

s=number Specify a number between zero and one to determine
starting values as a fraction of EViews default values
(out of range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

p Print results.

154—Chapter 8. Command Reference
equation probit1.binary(s) y c x2 x3

estimate a probit model of Y on a constant, X2, and X3, using the specified starting values.
The commands

coef beta_probit = probit1.@coefs

matrix cov_probit = probit1.@coefcov

store the estimated coefficients and coefficient covariances in the coefficient vector
BETA_PROBIT, and matrix COV_PROBIT.

Cross-references

See “Binary Dependent Variable Models” on page 421 of the User’s Guide for additional
discussion.

Display the model block structure view.

Show the block structure of the model identifying which blocks are recursive and which
blocks are simultaneous.

Syntax

Model View: model_name.block(options)

Options

Cross-references

See “Block Structure View” on page 623 of the User’s Guide for details. See the remainder
of Chapter 23 of the User’s Guide for a general discussion of models.

See also eqs (p. 201), text (p. 363) and vars (p. 377) for alternative representations of
the model.

Granger causality test.

Performs pairwise Granger causality tests between (all possible) pairs of the listed series or
group of series.

block Model View

p Print the block structure view.

cause Command || Group View

cause—155
Syntax

Command: cause(n, options) ser1 ser2 ser3

Group View: group_name.cause(n, options)

In command form, you should list the series or group of series in which to test Granger
causality.

Options

You must specify the number of lags n to use for the test; specify an integer in parentheses
after the cause keyword. Note that the regressors of the test equation are a constant and
the specified lags of the pair of series under test.

Other options:

Examples

Compute Granger causality tests of whether GDP Granger causes M1 and whether M1
Granger causes GDP.

cause(4) gdp m1

The regressors of each test are a constant and four lags of GDP and M1. The commands

group macro m1 gdp r

macro.cause(12,p)

print the result of six pairwise Granger causality tests for the three series in the MACRO
group. The regressors of each test are a constant and twelve lags of the two series under
test (and do not include lagged values of the third series in the group).

Cross-references

See “Granger Causality” on page 222 of the User’s Guide for a discussion of Granger’s
approach to testing hypotheses about causality.

See also var (p. 376).

p Print output of the test.

156—Chapter 8. Command Reference
Copy series from the DRI Basic Economics database to the data bank.

Copies one or more series from the DRI Basic Economics Database to the EViews data
bank (.DB) files. You must have the DRI database installed on your computer to use this fea-
ture.

Syntax

Command: ccopy series_name

Type the name of the series you want to copy after the ccopy keyword. The data bank file
will be stored in the default directory with the same name as the series name in the DRI
database. You can supply path information to indicate the directory for the data bank file.

Examples

The command

ccopy lhur

copies the DRI series LHUR to LHUR.DB file in the default path directory, while

ccopy b:gdp c:\nipadata\gnet

copies the GDP series to GDP.DB file in the B drive and the GNET series to the GNET.DB
file in C:\NIPADATA.

Cross-references

See also cfetch (p. 160), clabel (p. 162), store (p. 347), fetch (p. 205).

Change default directory.

The cd command changes the current default working directory. The current working
directory is displayed as “Path=...” at the bottom right of the EViews window.

Syntax

Command: cd path_name

ccopy Command

cd, chdir Command

cdfplot—157
Examples

To change the default directory to “SAMPLE DATA” in the A drive:

cd "a:\sample data"

Notice that the quotes surround the entire directory name. If your name does not contain
spaces, you may omit the quotes:

cd a:\test

changes the default directory to A:TEST.

Everything you save will be saved to the default directory, unless you specify a different
directory in the save command.

Cross-references

See Chapter 3, “EViews Basics”, on page 33 of the User’s Guide for further discussion of
basic operations in EViews.

Empirical distribution functions.

Displays empirical cumulative distribution functions, survivor functions, and quantiles
with standard errors.

Syntax

Object View: series_name.cdfplot(options)

Note: due to the potential for very long computation times, standard errors will only be
computed if there are fewer than 2500 observations.

Options

cdfplot Group View | Series View

c (default) Plot the empirical CDF.

s Plot the empirical survivor function.

q Plot the empirical quantiles.

a Plot all CDF, survivor, and quantiles.

n Do not include standard errors.

158—Chapter 8. Command Reference
Examples

To plot the empirical cumulative distribution function of the series LWAGE:

lwage.cdfplot

Cross References

See Chapter 9 of the User’s Guide for a discussion of empirical distribution graphs.

See qqplot (p. 288).

Estimation of censored and truncated models.

Estimates models where the dependent variable is either censored or truncated. The allow-
able specifications include the standard Tobit model.

Syntax

Command: censored(options) y x1 x2 x3

Equation Method: eq_name.censored(options) y x1 x2 x3

q=arg (default=“r”) Compute quantiles using the definition: “b”
(Blom), “r” (Rankit-Cleveland), “o” (simple frac-
tion), “t” (Tukey), “v” (van der Waerden).

o=arg Output matrix to store results. Each column of the
results matrix corresponds to one of the values
used in plotting: (in order) evaluation points, the
value, standard errors. If there are multiple graphs,
all of the columns for the first graph are presented
prior to the columns for the subsequent graph.

p Print the distribution function(s).

censored Command || Equation Method

censored—159
Options

l=number
(default=0)

Set value for the left censoring limit.

r=number
(default=none)

Set value for the right censoring limit.

l=series_name, i Set series name of the indicator variable for the left
censoring limit.

r=series_name, i Set series name of the indicator variable for the right
censoring limit.

t Estimate truncated model.

d=n (default) Maximize using normal likelihood function.

d=l Maximize using logistic likelihood function.

d=x Maximize using (Type I) extreme value likelihood
function.

q (default) Use quadratic hill climbing for maximization algo-
rithm.

r Use Newton-Raphson for maximization algorithm.

b Use Berndt-Hall-Hall-Hausman for maximization algo-
rithm.

h Quasi-maximum likelihood (QML) standard errors.

g GLM standard errors.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

s Use the current coefficient values in C as starting val-
ues.

s=number Specify a number between zero and one to determine
starting values as a fraction of EViews default values
(out of range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values
and estimation options in the estimation output.

p Print results.

160—Chapter 8. Command Reference
Examples

The command

censored(h) hours c wage edu kids

estimates a censored regression model of HOURS on a constant, WAGE, EDU, and KIDS
with QML standard errors. This command uses the default normal likelihood, with left-
censoring at HOURS=0 and no right censoring, and the quadratic hill climbing algorithm.

Cross-references

See Chapter 17 of the User’s Guide for discussion of censored and truncated regression
models.

Fetch a series from the DRI Basic Economics database into a workfile.

cfetch reads one or more series from the DRI Basic Economics Database into the active
workfile. You must have the DRI database installed on your computer to use this feature.

Syntax

Command: cfetch series_name

Examples

cfetch lhur gdp gnet

reads the DRI series LHUR, GDP, and GNET into the current active workfile, performing
frequency conversions if necessary.

Cross-references

EViews’ automatic frequency conversion is described in “Frequency Conversion” begin-
ning on page 72 of the User’s Guide.

See also ccopy (p. 156), clabel (p. 162), store (p. 347), fetch (p. 205).

Check derivatives of likelihood object.

Displays a table containing information on the numeric derivatives and user-supplied ana-
lytic derivatives (if available).

cfetch Command

checkderivs Logl View

chow—161
Syntax

Logl View: logl_name.checkderiv(options)

Options

Examples

ll1.ml

ll1.checkderiv

estimates a likelihood object named LL1 and displays a table that evaluates the numeric
derivatives.

Cross-references

See Chapter 18, “The Log Likelihood (LogL) Object”, on page 471 for a general discussion
of the likelihood object and the “@deriv” statement.

See also grads (p. 223) and makegrads (p. 253).

Chow test for stability.

Carries out Chow breakpoint and Chow forecast tests for parameter constancy.

Syntax

Command: chow(options) obs1 obs2 obs3

Equation View: eq_name.chow(options) obs1 obs2 obs3

You must provide the breakpoint (dates or observation numbers) to be tested. To specify
more than one breakpoint, separate the breakpoints by a space.

Options

p Print the table of results.

chow Command || Equation View

f Chow forecast test. For this option, you must specify a
single breakpoint to test (default performs breakpoint
test).

p Print the result of test.

162—Chapter 8. Command Reference
Examples

The commands

ls m1 c gdp cpi ar(1)

chow 1970:1 1980:1

perform a regression of M1 on a constant, GDP, and CPI with first order autoregressive
errors, and test whether the parameters before the 1970’s, during the 1970’s, and after the
1970’s are “stable” using the Chow breakpoint test.

To regress the log of SPOT on a constant, log of P_US, and log of P_UK and carry out the
Chow forecast test starting from 1973, enter the commands:

equation ppp.ls log(spot) c log(p_us) log(p_uk)

ppp.chow(f) 1973

You may also perform Chow tests on cross-section data. Suppose GENDER is a zero-one
dummy variable and, when sorted, observations up to 533 have GENDER=0 and for
observations from 534 on GENDER=1. Then the chow command tests whether the
LWAGE equation has the same coefficients for observations with GENDER=0 and GEN-
DER=1.

sort gender

ls lwage c edu edu^2 union

chow 534

Cross-references

See “Chow's Breakpoint Test” on page 380 of the User’s Guide for further discussion.

See also rls (p. 300).

Display a DRI Basic Economics database series description.

clabel reads the description of a series from the DRI Basic Economics Database and dis-
plays it in the status line at the bottom of the EViews window.

Use this command to verify the contents of a given DRI database series name. You must
have the DRI database installed on your computer to use this feature.

Syntax

Command: clabel series_name

clabel Command

close—163
Examples

clabel lhur

displays the description of the DRI series LHUR on the status line.

Cross-references

See also ccopy (p. 156), cfetch (p. 160), read (p. 291), fetch (p. 205).

Clear restriction text of var object.

Syntax

Var Proc: var_name.cleartext(arg)

You must specify the text type you wish to clear as an argument.

Options

One of the following arguments is required:

Examples

var1.cleartext(svar)

var1.append(svar) @lr2(@u1)=0

The first line clears the structural VAR identifying restrictions in VAR1. The next line speci-
fies a new long-run restriction for a structural factorization.

Cross-references

See also append (p. 143).

Close object, program, or workfile.

Closing an object eliminates its window. If the object is named, it is still displayed in the
workfile as an icon, otherwise it is deleted. Closing a program or workfile eliminates its

cleartext Var Proc

svar Clear text for identifying restrictions for a structural VAR.

coint Clear text for restrictions on the cointegration relations and/or
adjustment coefficients.

close Command

164—Chapter 8. Command Reference
window and removes it from memory. If a workfile has changed since you activated it, you
will see a dialog box asking if you want to save it to disk.

Syntax

Command: close object_name

Examples

close gdp graph1 table2

closes the three objects GDP, GRAPH1, and TABLE2.

lwage.hist

close lwage

opens the LWAGE window and displays the histogram view of LWAGE, then closes the win-
dow.

Cross-references

See Chapter 1 of the User’s Guide for a discussion of basic control of EViews.

Declare a coefficient (column) vector.

Note: vector and coefficient objects are both column vectors. However, only coef elements
are allowed in specifications of models or for sspace estimation.

Syntax

Command: coef(n) coef_name

Follow the coef keyword with the number of coefficients in parentheses and a name for
the object. If you omit the number of coefficients, EViews will create a vector of length 1.

Examples

coef(2) slope

ls lwage=c(1)+slope(1)*edu+slope(2)*edu^2

The first line declares a coef object of length 2 named SLOPE. The second line runs a least
squares regression and stores the estimated slope coefficients in SLOPE.

arch(2,2) sp500 c

coef beta=c

coef(6) beta

coef Object Declaration

coefcov—165
The first line estimates a GARCH(2,2) model using the default coef vector C. (The “C” in
an equation specification refers to the constant term, a series of ones.) The second line
declares a coef object named BETA and copies the contents of C to BETA. (The “C” in the
assignment statement refers to the default coef vector). The third line resizes BETA to
“chop off” all elements except the first six, which are the estimated parameters from the
GARCH(2,2) model. Note that since EViews stores coefficients with equations for later use,
you will generally not need to perform this operation to save your coefficient vectors.

Cross-references

See “Coef” on page 20 for a full description of the coef object.

See also vector (p. 377).

Coefficient covariance matrix.

Displays the covariances of the coefficient estimates for objects containing an estimated
equation or equations.

Syntax

Object View: object_name.coefcov(options)

Options

Examples

The set of commands

equation eq1.ls lwage c edu edu^2 union

eq1.coefcov

declares and estimates an equation and displays the coefficient covariance matrix in a win-
dow. To store the coefficient covariance matrix as a (symmetric) matrix object, use
“@coefcov”:

sym eqcov = eq1.@coefcov

Cross-references

See also coef (p. 164) and spec (p. 337).

coefcov Equation View | Logl View | Pool View | Sspace View | System View

p Print the coefficient covariance matrix.

166—Chapter 8. Command Reference
Johansen’s cointegration test.

Syntax

Command: coint(test_option,n,option) y1 y2 y3

Command: coint(test_option,n,option) y1 y2 y3 @ x1 x2 x3

Group View: group_name.coint(test_option,n,option)

Var View: var_name.coint(test_option,n,option)

In command form, you should enter the coint keyword followed by a list of series or
group names within which you wish to test for cointegration. Each name should be sepa-
rated by a space. To use exogenous variables, such as seasonal dummy variables in the
test, list the names after an “@”-sign.

Note: the reported critical values assume no exogenous variables other than an intercept and
trend.

When used as a group or var view, coint tests for cointegration among the series in the
group or var. If the var object contains exogenous variables, the cointegration test will use
those exogenous variables. However, if you explicitly list the exogenous variables with an
“@”-sign, then only those that are listed will be used in the test.

Options

You must specify the test option followed by the number of lags n in parentheses separated
by a comma. You must choose one of the following six test options:

coint Command || Group View | Var View

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.

b No deterministic trend in the data, and an intercept but
no trend in the cointegrating equation.

c Linear trend in the data, and an intercept but no trend
in the cointegrating equation.

d Linear trend in the data, and both an intercept and a
trend in the cointegrating equation.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.

s Summarize the results of all 5 options (a-e).

coint—167
Other Options:

Examples

coint(s,4) gdp m1 tb3

summarizes the results of the Johansen cointegration test among the three series GDP, M1,
and TB3 for all five specifications of trend. The test equation uses lags of up to order four.

var1.coint(c,12) @

carries out the Johansen test for the series in the var object named VAR1. The “@”-sign
without a list of exogenous variables ensures that the test does not include any exogenous
variables in VAR1.

Cross-references

See “Cointegration Test” on page 537 of the User’s Guide for details on the Johansen test.

restrict Impose restrictions as specified by the append (coint)
proc.

m = integer Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar Convergence criterion for restricted estimation. (only
valid if you choose the restrict option).

save = mat_name Stores test statistics as a named matrix object. The
save= option stores a matrix, where is
the number of endogenous variables in the VAR. The
first column contains the eigenvalues, the second col-
umn contains the maximum eigenvalue statistics, the
third column contains the trace statistics, and the fourth
column contains the log likelihood values. The i-th row
of columns 2 and 3 are the test statistics for rank .
The last row is filled with NAs, except the last column
which contains the log likelihood value of the unre-
stricted (full rank) model.

p Print output of the test.

k 1+() 4× k

i 1−

168—Chapter 8. Command Reference
Solve for values of control variable so that target series matches trajectory.

Syntax

Model Proc: model_name.control control_var target_var trajectory

Specify the name of the control variable, followed by the target variable, and then the tra-
jectory you wish to achieve for the target variable. EViews will solve for the values of the
control so that the target equals the trajectory over the current workfile sample.

Examples

m1.control myvar targetvar trajvar

will put into MYVAR the values that lead the solution of the model for TARGETVAR to
match TRAJVAR for the workfile sample.

Cross-references

See “Solve Control for Target” on page 640 of the User’s Guide. See Chapter 23 of the
User’s Guide for a general discussion of models.

Copy an object. Duplicate objects within and across workfiles and databases.

Syntax

Command: copy(options) source_object_name destination_object_name

To make copies of the object within the active workfile, list the name of the original object
followed by the name for the copy.

To make copies of objects within a database, you can precede the name of the object with
the database name and a double colon “::”.

You can also copy objects between a workfile and a database, or between two databases.
Simply prefix the object name with the database name and double colon “::”.

You can copy several objects with one command by using the wild card characters “?” (to
match any single character) and “*” (to match zero or more characters).

control Model Proc

copy Command

copy—169
Options

When copying a group object from a workfile to a database

When copying a group object from a database to a workfile:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from low to high frequency:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from high to low frequency:

g=s Copy group definition and series (as separate objects).

g=t Copy group definition and series (as one object).

g=d Copy only the series (as separate objects).

g=l Copy only the group definition.

g=b Copy both group definition and series.

g=d Copy only the series.

g=l Copy only the group definition.

c=r Conversion by constant match average.

c=d Conversion by constant match sum.

c=q Conversion by quadratic match average.

c=t Conversion by quadratic match sum.

c=i Conversion by linear match last.

c=c Conversion by cubic match last.

c=a Conversion by taking the average of the nonmissing
observations.

c=s Conversion by taking the sum of the nonmissing obser-
vations.

c=f Conversion by taking the first nonmissing observation.

c=l Conversion by taking the last nonmissing observation.

c=x Conversion by taking the maximum nonmissing obser-
vation.

c=m Conversion by taking the minimum nonmissing obser-
vation.

170—Chapter 8. Command Reference
Note that if no method is specified, the global or series specific default conversion method
will be employed.

Examples

copy good_equation best_equation

makes a duplicate copy of GOOD_EQUATION named BEST_EQUATION in the current
workfile.

copy gdp usdat::gdp

copies GDP in the current workfile to the database named USDAT with the name GDP. To
copy GDP in the default database to the database named MACRO1 with the new name
GDP_US, use the command

copy ::gdp macro1::gdp_us

The command

copy ::gdp ::gdp2

makes a backup copy of GDP in the default database with a different name GDP2.

copy gd* findat::

makes a duplicate of all objects in the current workfile with name starting with GD to the
database named FINDAT.

c=an, c=na Conversion by taking the average, propagating missing
values.

c=sn, c=ns Conversion by taking the sum, propagating missing val-
ues.

c=fn, c=nf Conversion by taking the first observation, propagating
missing values.

c=ln, c=nl Conversion by taking the last observation, propagating
missing values.

c=xn, c=nx Conversion by taking the maximum observation, propa-
gating missing values.

c=mn, c=nm Conversion by taking the minimum observation, propa-
gating missing values.

cor—171
Cross-references

See “Copying Objects” on page 115 of the User’s Guide for a discussion of copying and
moving objects.

See also fetch (p. 205), setconvert (p. 321), and store (p. 347).

Correlation matrix.

Syntax

Command: cor(options) ser1 ser2 ser3

Group View: group_name.cor(options)

Matrix View: matrix_name.cor(options)

In command form, EViews will create an untitled group from the listed series, and then
display the correlation matrix view for that group.

When used as a matrix view, cor displays the correlation among the columns of the
matrix.

Options

Examples

cor height weight age

displays a 3 by 3 correlation matrix for the three series HEIGHT, WEIGHT, and AGE.

group mygroup height weight age

mygroup.cor

displays the equivalent view using the group MYGROUP.

Cross-references

See also cov (p. 175), @cor (p. 400), and @cov (p. 400).

cor Command || Group View | Matrix View | Sym View

i Compute correlations using pairwise samples (default is
to use the common sample).

p Print the correlation matrix.

172—Chapter 8. Command Reference
Correlogram.

Displays the autocorrelation and partial correlation functions of the specified series
together with the Q-statistics and p-values associated with each lag.

When used with equation objects, correl displays the correlogram of the residuals of the
equation.

Syntax

Object View: object_name.correl(n, options)

You must specify the largest lag n to compute the autocorrelations.

Options

Var View Options:

Examples

m1.correl(24)

Displays the correlograms of the M1 series for up to 24 lags.

Cross-references

See Chapter 7 of the User’s Guide for a discussion of autocorrelation (p. 167) and partial
correlation (p. 168) functions.

See also correlsq (p. 173).

correl Equation View | Group View | Series View | Var View

p Print the correlograms.

graph Display correlograms (graphs).

byser Display autocorrelations in tabular form by series.

bylag Display autocorrelations in tabular form by lag.

count—173
Correlogram of squared residuals.

Displays the autocorrelation and partial correlation functions of the squared residuals from
an estimated equation, together with the Q-statistics and p-values associated with each
lag.

Syntax

View: equation_name.correl(n, options)

Options

Examples

eq1.correl(24)

displays the correlograms of the squared residuals for up to 24 lags, for equation EQ1.

Cross-references

See Chapter 7 of the User’s Guide for a discussion of autocorrelation (p. 167) and partial
correlation (p. 168) functions.

See also correl (p. 172).

Estimates models where the dependent variable is a nonnegative integer count.

Syntax

Command: count(options) y x1 x2 x3

Equation Method: eq_name.count(options) y x1 x2 x3

Follow the count keyword by the name of the dependent variable and a list of regressors,
each separated by a space.

correlsq Equation View

n Specify the number of lags of the correlograms to dis-
play.

p Print the correlograms.

count Command || Equation Method

174—Chapter 8. Command Reference
Options

Examples

The command

count(d=n,v=2,g) y c x1 x2

estimates a normal QML count model of Y on a constant, X1, and X2 with fixed variance
parameter 2 and GLM standard errors.

equation eq1.count arrest c job police

eq1.makeresid(g) res_g

d=p (default) Maximize using Poisson likelihood function.

d=n Maximize using normal quasi-likelihood function.

d=e Maximize using exponential quasi-likelihood function.

d=b Maximize using negative binomial likelihood or quasi-
likelihood function.

v=positive num-
ber (default=1)

Specify fixed QML parameter for normal and negative
binomial distributions.

q (default) Use quadratic hill-climbing as the maximization algo-
rithm.

r Use Newton-Raphson as the maximization algorithm.

b Use Berndt-Hall-Hall-Hausman as the maximization
algorithm.

h Quasi-maximum likelihood (QML) standard errors.

g GLM standard errors.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

s Use the current coefficient values in C as starting val-
ues.

s=number Specify a number between zero and one to determine
starting values as a fraction of the EViews default val-
ues (out of range values are set to “s=1”).

cov—175
estimates a Poisson count model of ARREST on a constant, JOB, and POLICE and stores
the generalized residuals as RES_G.

equation eq1.count(d=p) y c x1

eq1.fit yhat

estimates a Poisson count model of Y on a constant and X1, and saves the fitted values
(conditional mean) in the series YHAT.

equation eq1.count(d=p, h) y c x1

estimates the same model with QML standard errors and covariances.

Cross-references

See “Count Models” on page 458 of the User’s Guide for additional discussion.

Covariance matrix.

Syntax

Command: cov(options) ser1 ser2 ser3

Group View: group_name.cov(options)

Matrix View: matrix_name.cov(options)

In command form, EViews will create an untitled group from the listed series, and then
display the covariance matrix view for that group.

When used as a matrix view, cov displays the covariance among the columns of the
matrix.

Options

Examples

group grp1 height weight age

grp1.cov

displays a covariance matrix for the three series in GRP1.

cov Command || Group View | Matrix View | Sym View

i Compute covariances using pairwise samples (default is
to use the common sample).

p Print the correlation matrix.

3 3×

176—Chapter 8. Command Reference
Cross-references

See also cor (p. 171), @cor (p. 400), and @cov (p. 400).

Create a new workfile.

Syntax

Command: create optional_name frequency start end

You may provide an optional name for your workfile. If you do not, EViews will create an
untitled workfile.

You must specify the frequency, and the starting and ending dates of your data. For
undated data, you should specify the starting and ending observation numbers.

Options

You must choose one of the following options to specify the frequency of your workfile:

Examples

create a 1880 90

Creates an annual workfile from 1880 to 1990.

create m 1990:1 2010:12

Creates a monthly workfile from January 1990 to December 2010.

create Command

a Annual

s Semi-annual

q Quarterly

m Monthly

w Weekly

d Daily (5 day week)

7 Daily (7 day week)

u Undated or irregular

cross—177
create w 2/10/1951 3/17/1994

Creates a weekly workfile from the week starting February 10, 1951 to the week starting
March 17, 1994.

create u 1 5000

Creates an undated workfile with 5000 observations.

Cross-references

See “Creating a Workfile” on page 34 of the User’s Guide and Appendix B of the User’s
Guide for a discussion of frequencies and rules for composing dates in EViews.

See workfile (p. 381) for a more general command which allows you to either create a
workfile or change the active workfile.

Cross correlations.

Displays cross correlations (correlograms) for a pair of series.

Syntax

Command: cross(n,options) ser1 ser2

Group View: group_name.cross(n,options)

You must specify, as an option, the number of lags n to compute the cross correlations as
an option. In command form, EViews will create an untitled group and display the cross
correlation view for the group. When used as a group view, cross correlations will be com-
puted for the first two series in the group.

Options

The number of lags n for which to compute the cross correlations must be specified as the
first option. The following options may be specified inside the parentheses after the num-
ber of lags:

Examples

cross(36) log(m1) dlog(cpi)

displays the cross correlogram between the log of M1 and the first difference of the log of
CPI up to 36 leads and lags.

cross Command || Group View

p Print the cross correlogram.

178—Chapter 8. Command Reference
equation eq1.arch sp500 c

eq1.makeresid(s) res_std

cross(24) res_std^2 res_std

The first line estimates a GARCH(1,1) model and the second line retrieves the standardized
residuals. The third line plots the cross correlogram up to 24 leads and lags between the
squared standardized residual and the standardized residual. This correlogram provides a
rough check of asymmetry in ARCH effects.

Cross-references

See “Cross Correlations and Correlograms” on page 221 of the User’s Guide for discussion.

Enter data from keyboard.

Opens an unnamed group window to edit one or more series.

Syntax

Command: data ser1 ser2 group1 group2

Follow the data keyword by a list of series names and/or a list of group names. You can
list existing names or new names. Unrecognized names will cause new series to be added
to the workfile. These series will be initialized with the value “NA”.

Examples

data group1 newx newy

opens a group window containing the series in group GROUP1 and the series NEWX and
NEWY.

Cross-references

See “Entering Data” on page 64 of the User’s Guide for a discussion of the process of enter-
ing data from the keyboard.

Control labeling of the bottom date/time axis in time plots.

dates sets options that are specific to appearance of time/date labeling. Many of the
options that also affect the appearance of the date axis are set by the scale (p. 309) com-

data Command

dates Graph Proc

dates—179
mand with the “b” option. These options include most tick control, label and font options,
and grid lines.

Syntax

Graph Proc: graph_name.dates option list

Options

format(dateformat
[,delimiter])

dateformat=“auto” or dateformat=“string”, where
the string argument is one of the supported for-
mats: “yy”, “yyyy:mm”, “yyyy:q”, “yy:q”,
“mm:dd:yyyy”, “mm:dd:yy”. Each letter repre-
sents a single display digit representing year (“y”),
quarter (“q”), month (“m”), and day (“d”). The
optional delimiter argument allows you to control
the date separator.

interval(step size
[,steps][,align date])

where step size takes one of the following values:
“auto” (steps and align date are ignored), “ends”
(only label endpoints; steps and align date are
ignored), “all” (label every point; the steps and
align_date options are ignored), “obs” (steps are
one month), “year” (steps are one year), “m”
(steps are one month), “q” (steps are one quarter).

steps is a number (default=1) indicating the num-
ber of steps between labels.

align_date is a date specified to receive a label.

Note, the align date should be in the units of the
data being graphed, but may lie outside the current
sample or workfile range.

minor/–minor [Allow/Do not allow] minor tick marks.

span/–span [Allow/Do not allow] date labels to span an inter-
val.

Consider the case of a yearly label with monthly
ticks. If span is on, the label is centered on the 12
monthly ticks. If the span option is off, year labels
are put on the first quarter or month of the year.

p Print graph object.

180—Chapter 8. Command Reference
Examples

graph1.dates format(yyyy:mm)

will display dates with four-digit years followed by the default delimiter “:” and a two-digit
month (e.g. – “1974:04”).

graph1.dates format(yy:mm, q)

will display a two-digit year followed by a “q” separator and then a two-digit month (e.g. –
“74:04”)

graph1.interval(y, 2, 1951)

specifies labels every two years on odd numbered years.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph options.

See also scale (p. 309).

Open or create a database.

If the specified database does not exist, a new (empty) database will be created and
opened. The opened database will become the default database.

Syntax

Command: db db_name

Follow the db command by the name of the database to be opened or to be created (if it
does not already exist). You can include a path name to work with a database not in the
default path.

Options

See dbopen (p. 183) for a list of available options for working with foreign format data-
bases.

Examples

db findat

opens the database FINDAT in the default path and makes it the default database from
which to store and fetch objects. If the database FINDAT does not already exist, an empty
database named FINDAT will be created and opened.

db Command

dbcreate—181
Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also dbcreate (p. 181) and dbopen (p. 183).

Make a copy of an existing database.

Syntax

Command: dbcopy source_name copy_name

Follow the dbcopy command by the name of the existing database and a name for the
copy. You should include a path name to copy a database that is not in the default direc-
tory. All files associated with the database will be copied.

Examples

dbcopy usdat c:\backup\usdat

makes a copy of all files associated with the database USDAT in the default path and stores
it in the C:\BACKUP directory under the name USDAT.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also dbrename (p. 185) and dbdelete (p. 182).

Create a new database.

Syntax

Command: dbcreate db_name

Follow the dbcreate keyword by a name for the new database. You can include a path
name to create a database not in the default directory. The new database will become the
default database.

dbcopy Command

dbcreate Command

182—Chapter 8. Command Reference
Examples

dbcreate macrodat

creates a new database named MACRODAT in the default path and makes it the default
database from which to store and fetch objects. This command will issue an error message
if a database named MACRODAT already exists. To open an existing database, use
“dbopen” or “db”.

Options

See dbopen (p. 183) for available options for working with foreign format databases.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also db (p. 180) and dbopen (p. 183).

Delete an existing database.

dbdelete deletes all files associated with the specified database.

Syntax

Command: dbdelete db_name

Follow the dbdelete keyword by the name of the database to be deleted. You can include
a path name to delete a database not in the default path.

Options

See dbopen (p. 183) for available options for working with foreign format databases.

Examples

dbdelete c:\temp\testdat

deletes all files associated with the TESTDAT database in the specified directory.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also dbcopy (p. 181) and dbdelete (p. 182).

dbdelete Command

dbopen—183
Open an existing database.

Syntax

Command: dbopen db_name

Follow the dbopen keyword with the name of a database. You should include a path name
to open a database not in the default path. The opened database will become the default
database.

Examples

dbopen c:\data\us1

opens a database named US1 in the C:\DATA directory. The command

dbopen us1

opens a database in the default path.

If the specified database does not exist, EViews will issue an error message. You should use
db or dbcreate to create a new database.

Options

To read a foreign format database, you must specify one of the following database types:

The following options may be required when connecting to a remote server:

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also db (p. 180) and dbcreate (p. 181)

dbopen Command

t =database_type
(default “t=e”)

Specify the database type: “a” (AREMOS–tsd), “b”
(DRIBase), “e” (EViews), “f” (FAME), “g” (GiveWin/
PcGive), “h” (Haver Analytics), “l” (RATS portable), “r”
(RATS 4.x), “t” (TSP portable)

s=server_ id

u=username

p=password

184—Chapter 8. Command Reference
Pack an existing database.

Syntax

Command: dbpack db_name

Follow the dbpack keyword by a database name. You can include a path name to pack a
database not in the default path.

Examples

dbpack findat

Packs the database named FINDAT in the default path.

Cross-references

See “Packing the Database” on page 134 of the User’s Guide for additional discussion.

See also dbrebuild (p. 184) and dbrepair (p. 185)

Rebuild an existing database.

Rebuild a seriously damaged database into a new database file.

Syntax

Command: dbrebuild source_name dest_name

Follow the dbrebuild keyword by the name of the database to be rebuilt, and then a new
database name.

Examples

If you issue the command

dbrebuild testdat fixed_testdat

EViews will attempt to rebuild the database TESTDAT into the database FIXED_TESTDAT
in the default directory.

dbpack Command

dbrebuild Command

dbrepair—185
Cross-references

Note that dbrepair may be able to repair the existing database if the damage is not par-
ticularly serious. You should attempt to repair the database before rebuilding. See “Main-
taining the Database” on page 133 of the User’s Guide for a discussion.

See also dbpack (p. 184) and dbrepair (p. 185).

Rename an existing database.

dbrename renames all files associated with the specified database.

Syntax

Command: dbrename old_name new_name

Follow the dbrename keyword with the current name of an existing database and the new
name for the database.

Options

See dbopen (p. 183) for available options for working with foreign format databases.

Examples

dbrename testdat mydat

Renames all files associated with the TESTDAT database in the specified directory to
MYDAT in the default directory.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also db (p. 180) and dbcreate (p. 181). See also dbcopy (p. 181) and dbdelete
(p. 182).

Repair an existing database.

This command is used to repair a damaged database.

dbrename Command

dbrepair Command

186—Chapter 8. Command Reference
Syntax

Command: dbrepair db_name

Follow the dbrepair keyword by the name of the database to repair. You should include a
path name to repair a database not in the default path.

Examples

dbrepair testdat

EViews will attempt to repair the database TESTDAT in the default directory.

Cross-references

If the database is severely damaged, you may have to rebuild it into a new database using
the dbrebuild command. See “Maintaining the Database” on page 133 of the User’s
Guide for a discussion of EViews database maintenance.

See also dbpack (p. 184) and dbrebuild (p. 184).

Variance decomposition in VARs.

Syntax

Var View: var_name.decomp(n, options) series_list @ @ ordering

List the series names in the VAR whose variance decomposition you would like to com-
pute. You may optionally specify the ordering for the factorization after two “@”-signs.

You must specify the number of periods over which to compute the variance decompo-
sitions.

Options

In addition, there are the following options:

decomp Var View

g (default) Display combined graphs, with the decompositions for
each variable shown in a graph.

m Display multiple graphs, with each response-shock pair
shown in a separate graph.

t Show numerical results in table.

n

decomp—187
If you use the “matbys=” or “matbyr=” options to store the results in a matrix, two matri-
ces will be returned. The matrix with the specified name contains the variance decomposi-
tions, while the matrix with “ _FSE” appended to the name contains the forecast standard
errors for each response variable. If you have requested Monte Carlo standard errors, there
will be a third matrix with “_SE” appended to the name which contains the variance
decomposition standard errors.

Examples

var var1.ls 1 4 m1 gdp cpi

var1.decomp(10,t) gdp

imp=arg (default
“imp=chol”

Type of factorization for the decomposition: Cholesky
with d.f. correction (“imp=chol”), Cholesky without
d.f. correction (“imp=mlechol”), or structural
(“imp=struct”).

The structural factorization is based on the estimated
structural VAR. To use this option, you must first esti-
mate the structural decomposition; see svar (p. 351).

The option “imp=mlechol” is provided for backward
compatibility with EViews 3.x and earlier.

se=mc Monte Carlo standard errors. Must specify the number
of replications with the “rep=” option.

Currently available only when you have specified the
Cholesky factorization (using the “imp=chol” option).

rep=integer Number of Monte Carlo replications to be used in com-
puting the standard errors. Must be used with the
“se=mc” option.

matbys=name Save responses by shocks (impulses) in named matrix.
The first column is the response of the first variable to
the first shock, the second column is the response of
the second variable to the first shock, and so on.

matbyr=name Save responses by response series in named matrix.
The first column is the response of the first variable to
the first shock, the second column is the response of
the first variable to the second shock, and so on.

p Print results.

188—Chapter 8. Command Reference
The first line declares and estimates a VAR with three variables and lags from 1 to 4. The
second line tabulates the variance decompositions of GDP up to 10 periods using the order-
ing as specified in VAR1.

var1.decomp(10,t) gdp @ @ cpi gdp m1

performs the same variance decomposition as above using a different ordering.

Cross-references

See “Variance Decomposition” on page 529 of the User’s Guide for additional details.

See also impulse (p. 232).

Define cross section members (identifiers) in a pool.

Syntax

Pool View: pool_name.define id1 id2 id3

List the cross section identifiers after the define keyword.

Examples

pool spot uk japn ger can

spot.def uk ger ita fra

The first line declares a pool object named SPOT with cross section identifiers UK, JAPN,
GER, and CAN. The second line redefines the identifiers to be UK, GER, ITA, and FRA.

Cross-references

See Chapter 21 of the User’s Guide for a discussion of cross-section identifiers.

See also add (p. 137), drop (p. 195) and pool (p. 285).

Deletes objects from a workfile or a database, or removes identifiers from a pool.

Syntax

Command: delete name1 name2

Pool Proc: pool_name.delete ser1? ser2?

define Pool View

delete Command || Pool Proc

derivs—189
Follow the delete keyword by a list of the names of any objects you wish to remove from
the current workfile. delete does not remove objects that have been stored on disk in
EViews database files.

You can delete an object from a database by prefixing the name with the database name
and a double colon. You can use a pattern to delete all objects from a workfile or database
with names that match the pattern. Use the “?” to match any one character and the “*” to
match zero or more characters.

When used as a pool procedure, delete allows you to delete series from the workfile using
the pool operator “?”.

If you use delete in a program file, EViews will delete the listed objects without prompt-
ing you to confirm each deletion.

Examples

To delete all objects in the workfile with names beginning with “temp”:

delete temp*

To delete the objects CONS and INVEST from the database MACRO1:

delete macro1::cons macro1::invest

To delete all series in the workfile with names beginning with CPI that are followed by
identifiers in the pool object MYPOOL.

mypool.delete cpi?

Cross-references

See “Object Basics” on page 41 of the User’s Guide for a discussion of working with
objects, and Chapter 6 of the User’s Guide for a discussion of EViews databases.

Examine derivatives of the equation specification.

Display information about the derivatives of the equation specification in tabular, graphical
or summary form.

The (default) summary form shows information about how the derivative of the equation
specification was computed, and will display the analytic expression for the derivative, or
a note indicating that the derivative was computed numerically. The tabular form shows a
spreadsheet view of the derivatives of the regression specification with respect to each

derivs Equation View | System View

190—Chapter 8. Command Reference
coefficient for each observation. The graphical form shows this information in a multiple
line graph.

Syntax

Equation View: equation_name.derivs(options)

Options

Note that the “g” and “t” options may not be used at the same time.

Examples

To show a table view of the derivatives:

eq1.derivs(t)

To display and print the summary view

eq1.derivs(p)

Cross-references

See “Derivative Computation Options” on page 670 of the User’s Guide for details on the
computation of derivatives.

See also makederivs (p. 251) for additional routines for examining derivatives, and
grads (p. 223), and makegrads (p. 253) for corresponding routines for gradients.

Computes and displays descriptive statistics for the pooled data.

Syntax

Pool View: pool_name.describe(options) ser1? ser2

g Display multiple graph showing the derivatives of the
equation specification with respect to the coefficients,
evaluated at each observation.

t Display spreadsheet view of the values of the derivatives
with respect to the coefficients evaluated at each observa-
tion.

p Print results.

describe Pool View

describe—191
List the name of pool series for which to compute the descriptive statistics. You may use
the cross-section identifier “?” in the series names.

By default, statistics are computed for each pool series, on the stacked data, using only
observations where all of the listed series have nonmissing data. A missing observation in
any one series causes that observation to be dropped for all series. You may change this
default treatment of NAs using the “i” and “b” options.

EViews also allows you to compute statistics with the cross-section means removed, statis-
tics for each cross-sectional series in a pool series, and statistics for each period, taken
across all cross-section units.

Options

Examples

pool1.describe(m) gdp? inv? cpi?

displays the “within” descriptive statistics of the three series GDP, INV, CPI for the POOL1
cross-section members.

pool1.describe(t) gdp?

computes the statistics for GDP for each period, taken across each of the cross-section
identifiers.

m Stack data and subtract cross-section specific means
from each variable—this option provides the within
estimators.

c Do not stack data—compute statistics individually for
each cross-sectional unit.

t Time period specific—compute statistics for each
period, taken over all cross-section identifiers.

i Individual sample—includes every valid observation for
the series even if data are missing from other series in
the list.

b Balanced sample—constrains each cross-section to have
the same observations. If an observation is missing for
any series, in any cross-section, it will be dropped for
all cross-sections.

p Print the descriptive statistics.

192—Chapter 8. Command Reference
Cross-references

See Chapter 21 of the User’s Guide for a discussion of the computation of these statistics,
and a description of individual and balanced samples.

Display names for objects.

Attaches a display name to an object which may be used in tables and graphs in place of
the standard object name.

Syntax

Object Proc: object_name.displayname display_name

Display names are case-sensitive, and may contain a variety of characters, such as spaces,
that are not allowed in object names.

Examples

hrs.displayname Hours Worked

hrs.label

The first line attaches a display name “Hours Worked” to the object HRS and the second
line displays the label view of HRS, including its display name.

gdp.displayname US Gross Domestic Product

plot gdp

The first line attaches a display name “US Gross Domestic Product” to the series GDP. The
line graph view of GDP from the second line will use the display name as the legend.

Cross-references

See “Labeling Objects” on page 50 of the User’s Guide for a discussion of labels and dis-
play names.

See also label (p. 238) and legend (p. 240)

Execute without opening window.

Syntax

Command: do procedure

displayname Object Proc

do Command

draw—193
do is most useful in EViews programs where you wish to run a series of commands with-
out opening windows in the workfile area.

Examples

output(t) c:\result\junk1

do gdp.adf(c,4,p)

The first line redirects table output to a file on disk. The second line carries out a unit root
test of GDP and prints the results to the disk file.

Cross-references

See also show (p. 328).

Place horizontal or vertical lines and shaded areas on the graph.

Syntax

Graph Proc: graph_name.draw(object_type, axis_id [,options]) position1
[position2]

where object_type may be one of the following:

and where axis_id may take the values:

If drawing a line, the drawing position is taken from position1. If drawing a shaded area,
you must provide a position1 and position2 to define the vertical or horizontal boundaries
of the shaded region.

draw Graph Proc

line, l A solid line

dashline, d A dashed line

shade A shaded area

left, l Draw a horizontal line or shade using the left axis to
define the drawing position

right, r Draw a horizontal line or shade using the right axis to
define the drawing position

bottom, b Draw a vertical line or shade using the bottom axis to
define the drawing position

194—Chapter 8. Command Reference
Options

Examples

The command

graph1.draw(line, left, rgb(0,0,127)) 5.25

draws a horizontal blue line at the value “5.25” as measured on the left axis while

graph1.draw(shade, right) 7.1 9.7

draws a shaded horizontal region bounded by the right axis values “7.1” and “9.7”. You
can also draw vertical regions by using the “bottom” axis_id:

graph1.draw(shade, bottom) 1980:1 1990:2

draws a shaded vertical region bounded by the dates “1980:1” and “1990:2”.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph options.

See also “Graph” (p. 25) for a summary of the graph object command language.

Convert the entire DRI Basic Economics database into an existing EViews database.

You must create an EViews database to store the converted DRI data before you use this
command. This command may be very time-consuming.

Syntax

Command: driconvert db_name

rgb(n1,n2,n3) where n1, n2, and n3, are integers from 0 to 255 repre-
senting the RGB values of the line or shade. The default
is black for lines and gray for shades. RGB values may
be examined by calling up the color palette in the Graph
Options dialog.

width(n1) where n1 is the line width in points (used only if
object_type is “line” or “dashline”). The default is 0.5
points

p Print the graph object

driconvert Command

drop—195
Follow the command by listing the name of an existing EViews database into which you
would like to copy the DRI data. You can include a path name to specify a database not in
the default path.

Examples

dbcreate dribasic

driconvert dribasic

driconvert c:\mydata\dridbase

The first line creates a new (empty) database named DRIBASIC in the default directory.
The second line reads all the data in the DRI Basic Economics database and copies them
into in the DRIBASIC database. The last example copies the DRI data into the database
DRIDBASE that is located in the C:\MYDATA directory.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews databases.

See also dbcreate (p. 181) and db (p. 180).

Drops series from a group or drop cross-section members from a pool.

Syntax

Group Proc: group_name.drop ser1 ser2 ser3

Pool Proc: pool_name.drop id1 id2 id3

List the series or cross-section members to be dropped from the group or pool.

Examples

group gdplags gdp(-1 to -4)

gdplags.drop gdp(-4) gdp(-3)

drops the two series GDP(-4) and GDP(-3) from the group GDPLAGS.

To drop the cross-section members JPN, KOR, and HK from the pool CROSSSC

crossc.drop jpn kor hk

Cross-references

See also add (p. 137).

drop Group Proc | Pool Proc

196—Chapter 8. Command Reference
Dated data report table.

This group view is designed to make tables for reporting and presenting data, forecasts,
and simulation results. You can display various transformations and various frequencies of
the data in the same table.

The dtable view is currently available only for annual, semi-annual, quarterly, or
monthly workfiles.

Syntax

Group View: group_name.dtable(options)

Options

Examples

freeze(report) group1.table

freezes the default table view of GROUP1 and saves it as a table object named REPORT.

Cross-references

See “Creating and Specifying a Dated Data Table” on page 201 of the User’s Guide for a
description of dated data tables and formatting options. Note that most of the options for
formatting the table are only available interactively from the window.

Estimate a vector error correction model (VEC).

Syntax

Var Method: var_name.ec(trend, n) lag_pairs y1 y2

var_name.ec(trend, n) lag_pairs y1 y2 @ x1 x2

var_name.ec(trend, n) lag_pairs y1 y2

Specify the order of the VEC by entering one or more pairs of lag intervals, then list the
endogenous variables. Note that the lag orders are those of the first differences, not the lev-

dtable Group View

p Print the report table.

ec Var Method

ec—197
els. If you are comparing results to another software program, you should be certain that
the specifications for the lag orders are comparable.

You may include exogenous variables, such as seasonal dummies, in the VEC by including
an “@”-sign followed by the list of series. Do not include an intercept or trend in the VEC
specification, these terms should be specified using options, as described below.

You must specify the trend option and the number of cointegrating equations n to use
(default is n=1) in parentheses, separated by a comma. You must choose the trend from
the following five alternatives:

Options

Examples

var macro1.ec 1 4 m1 gdp tb3

declares a var object MACRO1 and estimates a VEC with four lagged first differences, three
endogenous variables and one cointegrating equation using the default trend option “c”.

a No deterministic trend in the data, and no intercept or
trend in the cointegrating equation.

b No deterministic trend in the data, and an intercept but no
trend in the cointegrating equation.

c (default) Linear trend in the data, and an intercept but no trend in
the cointegrating equation.

d Linear trend in the data, and both an intercept and a trend
in the cointegrating equation.

e Quadratic trend in the data, and both an intercept and a
trend in the cointegrating equation.

restrict Impose restrictions as specified by the append (coint)
proc

m= integer Maximum number of iterations for restricted estimation
(only valid if you choose the restrict option).

c = scalar Convergence criterion for restricted estimation. (only valid
if you choose the restrict option).

p Print the results view.

198—Chapter 8. Command Reference
var term.ec(b,2) 1 2 4 4 tb1 tb3 tb6 @ d2 d3 d4

declares a var object TERM and estimates a VEC with lagged first differences of order 1, 2,
4, three endogenous variables, three exogenous variables, and two cointegrating equations
using trend option “b”.

Cross-references

See “Vector Error Correction (VEC) Models” on page 547 of the User’s Guide for a discus-
sion of VECs.

See also var (p. 376) and coint (p. 166).

Computes goodness-of-fit tests based on the empirical distribution function.

Syntax

Series View: series_name.edftest(options)

Options

General Options

edftest Series View

type=arg Normal distribution (“type=normal”, default)

Chi-square distribution (“type=chisq”)

Exponential (“type=exp”)

Extreme Value – Type I maximum (“type=xmax”)

Extreme Value – Type I minimum (“type=xmin”)

Gamma (“type=gamma”)

Logistic (“type=logit”)

Pareto (“type=pareto”)

Uniform (“type=uniform”)

p1=number Specify the value of the first parameter (as it appears in
the dialog). If this option is not specified, the first
parameter will be estimated

edftest—199
Estimation Options

The following options apply if iterative estimation of parameters is required:

Examples

x.edftest

uses the default settings to test whether the series X comes from a normal distribution.
Both the location and scale parameters are estimated from the data in X.

freeze(tab1) x.edftest(type=chisq, p1=5)

tests whether the series x comes from a distribution with 5 degrees of freedom. The
output is stored as a table object TAB1.

Cross-references

See “Empirical Distribution Tests” on page 164 of the User’s Guide for a description of the
goodness-of-fit tests.

See also qqplot (p. 288).

p2=number Specify the value of the second parameter (as it appears
in the dialog). If this option is not specified, the first
parameter will be estimated

p3=number Specify the value of the third parameter (as it appears
in the dialog). If this option is not specified, the first
parameter will be estimated

p Print test results.

b Berndt-Hall-Hall-Hausman (BHHH) algorithm. Default
is Marquardt.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

s Take starting values from the C coefficient vector. By
default, EViews uses distribution specific starting val-
ues that typically are based on the method of the
moments.

χ
2

200—Chapter 8. Command Reference
Displays a spreadsheet or graph view of the endogenous variables.

Syntax

Object View: object_name.endog(options)

Note that in EViews 4, endog and makeendog are no longer supported for model objects.
See instead, makegroup (p. 255).

Options

Examples

sys1.endog(g,p)

prints the graphs of the solved endogenous series.

Cross-references

See also makeendog (p. 251), system (p. 354), sspace (p. 339) and var (p. 376).

Declare an equation object.

Syntax

Command: equation eq_name

Command: equation eq_name.method(options) specification

Follow the equation keyword with a name and an optional specification. If you wish to
enter the specification, you should follow the new equation name with a period, an esti-
mation method, and then the equation specification. Valid estimation methods are arch,
binary, censored, count, gmm, ls, ordered, and tsls.

Examples

equation cobdoug.ls log(y) c log(k) log(l)

declares and estimates an equation object named COBDOUG.

endog Sspace View | System View | Var View

g Multiple line graphs of the solved endogenous series.

p Print the table of solved endogenous series.

equation Object Declaration

errbar—201
The command

equation ces.ls log(y)=c(1)*log(k^c(2)+l^c(3))

declares an equation object named CES containing a nonlinear least squares specification.

equation demand.tsls q c p x @ x p(-1) gov

creates an equation object named DEMAND and estimates DEMAND using two-stage least
squares with instruments X, lagged P, and GOV.

Cross-references

See the object reference entry for “Equation” (p. 21) for a summary of the equation object.
Chapter 11 of the User’s Guide provides basic information on estimation and equation
objects. Additional estimation methods are described in the User’s Guide.

View of model organized by equation.

Lists the equations in the model allowing you to access the equation specifications. This
view also allows you to identify which equations are entered by text, or by link.

Syntax

Model View: model_name.eqs

Cross-references

See “Equation View” on page 620 of the User’s Guide for details. See Chapter 23 of the
User’s Guide for a general discussion of models.

See also block (p. 154), text (p. 363), and vars (p. 377) for alternative representations
of the model.

Display error bar graph.

Sets the graph type to error bar or displays an error bar view of the group. If there are two
series in the graph or group, the error bar will show the high and low values in the bar.
The optional third series will be plotted as a symbol. When used as a matrix view, the col-
umns of the matrix replace the series.

eqs Model View

errbar Coef View | Graph Proc | Group View | Matrix View | Sym View

202—Chapter 8. Command Reference
Syntax

Graph Proc: graph_name.errbar(options)

Object View: object_name.errbar(options)

Options

Template and printing options

Examples

The following set of commands

group g1 x y

g1.errbar

displays the error bar view of G1 using the X series as the high value of the bar and the Y
series as the low value.

group g2 plus2se minus2se estimate

g2.errbar

displays the error bar view of G2 with the PLUS2SE series as the high value of the bar, the
MINUS2SE series as the low value, and ESTIMATE as a symbol.

group g1 x y

freeze(graph1) g1.line

graph1.errbar

first creates a graph object GRAPH1 containing a line graph of the series in G1, then
changes the graph type to an error bar.

Cross-references

See “High-Low (Open-Close)” on page 210 of the User’s Guide. See Chapter 10 for details
on graph objects and types.

See also graph (p. 224) for additional graph types.

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the error bar graph.

exclude—203
Exit from EViews. Closes the EViews application.

You will be prompted to save objects and workfiles which have changed since the last time
they were saved to disk. Be sure to save your workfile, if desired, since all changes that you
do not save to a disk file will be lost.

Syntax

Command: exit

Cross-references

See also close (p. 163) and save (p. 308).

Specifies (or merges) excluded endogenous variables in the active scenario.

Syntax

Model Proc: model_name.exclude(options) ser1(smpl) ser2(smpl) ...

Follow the exclude keyword with the argument list containing the endogenous variables
you wish to exclude from the solution along with an optional sample for exclusion. If a
sample is not provided, the variable will be excluded for the entire solution sample.

Options

Examples

mod1.exclude fedfunds govexp("1990:01 1995:02")

will create an exclude list containing the variables FEDFUNDS and GOVEXP. FEDFUNDS
will be excluded for the entire solution sample, while GOVEXP will only be excluded for
the specified sample.

If you then issue the command

mod1.exclude govexp

EViews will replace the original exclude list with one containing only GOVEXP. To add
excludes to an existing list, use the “m” option:

exit Command

exclude Model Proc

m Merge into instead of replace the existing exclude list.

204—Chapter 8. Command Reference
mod1.exclude(m) fedfunds

The excluded list now contains both GOVEXP and FEDFUNDS.

Cross-references

See the discussion in “Specifying Scenarios” on page 625 of the User’s Guide.

See also model (p. 269), override (p. 280) and solveopt (p. 335).

Expands the current workfile (range) by setting new start and end dates or number of
observations.

Syntax

Command: expand start end

Follow the expand keyword with the new starting and ending dates or observations. The
new starting point cannot be later than the current starting point and the new ending point
cannot be earlier than the current ending point.

The range (p. 290) command may be used for more general workfile resizing which also
allows for contracting.

Examples

workfile mywork m 1957:1 1995:12

expand 1945:1 2020:12

The first line creates a monthly workfile from January 1957 to December 1995. The second
line expands the workfile to start from January 1945 and to end at December 2020.

workfile cps88 u 1 5000

expand 1 50000

Creates an undated workfile with 5000 observations and then expands it to 50000 observa-
tions.

smpl 1945 1995

equation eq1.ls y c y(-1) ma(1)

expand 1945 2010

smpl 1996 2010

expand Command

fetch—205
eq1.forecast yhat

The first two lines estimate a model of Y over the period 1945 to 1995. The third line
expands the workfile to 2010. We then generate dynamic forecasts of Y for the period 1996
to 2010, using the estimated model.

Cross-references

See “Workfile Basics” on page 33 of the User’s Guide for a discussion of workfiles.

See also range (p. 290), workfile (p. 381), smpl (p. 332).

Fetch objects from databases or databank files into the workfile.

fetch reads one or more objects from EViews databases or databank files into the active
workfile. The objects are loaded into the workfile under the same name as in the database
or with the databank file name.

When used as a pool proc, EViews will first expand the list of series using the pool opera-
tor, and then perform the fetch.

If you fetch a series into a workfile with a different frequency, EViews will automatically
apply the frequency conversion method attached to the series by setconvert. If the
series does not have a conversion method set by setconvert, EViews will use the
method set by Options/Date-Frequency in the main menu. You can override the conver-
sion method by explicitly specifying a conversion method option in the fetch command.

Syntax

Command: fetch(options) object_name_list

Pool Proc: pool_name.fetch(options) ser1? ser2?

The fetch command keyword is followed by a list of object names separated by spaces.
The default behavior is to fetch the objects from the default database. (This is a change
from versions of EViews prior to EViews 3.x where the default was to fetch from individual
databank files).

You can precede the object name with a database name and the double colon “::” to indi-
cate a specific database source. If you specify the database name as an option in parenthe-
ses (see below), all objects without an explicit database prefix will be fetched from the
specified database.

fetch Command || Pool Proc

206—Chapter 8. Command Reference
You may use wild card characters, “?” (to match a single character) or “*” (to match zero
or more characters), in the object name list. All objects with names matching the pattern
will be fetched.

You can optionally fetch from individual databank files or search among registered data-
bases. To fetch from individual databank files that are not in the default path, you should
include an explicit path. If you have more than one object with the same file name (for
example, an equation and a series named CONS), then you should supply the full object
file name.

Options

The following options are available for fetch of group objects:

The database specified by the double colon “::” takes precedence over the database speci-
fied by the “d=” option.

In addition, there are a number of additional options for controlling automatic frequency
conversion when performing a fetch. The following options control the frequency conver-
sion method when copying series and group objects to a workfile, converting from low to
high frequency:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from high to low frequency:

d=db_name Fetch from specified database.

d Fetch all registered databases in registry order.

i Fetch from individual databank files.

g=b Fetch both group definition and series.

g=d Fetch only the series in the group.

g=l Fetch only the group definition.

c=r Conversion by constant match average.

c=d Conversion by constant match sum.

c=q Conversion by quadratic match average.

c=t Conversion by quadratic match sum.

c=i Conversion by linear match last.

c=c Conversion by cubic match last.

fetch—207
Note that if no method is specified, the global or series specific default conversion method
will be employed.

Examples

To fetch M1, GDP, UNEMP from the default database, use:

fetch m1 gdp unemp

To fetch M1 and GDP from the US1 database and UNEMP from the MACRO database, use
the command:

fetch(d=us1) m1 gdp macro::unemp

You can fetch all objects with names starting with SP by searching all registered databases
in the search order. The “c=f” option uses the first (nonmissing) observation to convert
the frequency of any matching series with a higher frequency than the workfile frequency:

c=a Conversion by taking the average of the nonmissing
observations.

c=s Conversion by taking the sum of the nonmissing obser-
vations.

c=f Conversion by taking the first nonmissing observation.

c=l Conversion by taking the last nonmissing observation.

c=x Conversion by taking the maximum nonmissing obser-
vation.

c=m Conversion by taking the minimum nonmissing obser-
vation.

c=an, c=na Conversion by taking the average, propagating missing
values.

c=sn, c=ns Conversion by taking the sum, propagating missing val-
ues.

c=fn, c=nf Conversion by taking the first observation, propagating
missing values.

c=ln, c=nl Conversion by taking the last observation, propagating
missing values.

c=xn, c=nx Conversion by taking the maximum observation, propa-
gating missing values.

c=mn, c=nm Conversion by taking the minimum observation, propa-
gating missing values.

208—Chapter 8. Command Reference
fetch(d,c=f) sp*

You can fetch M1 and UNEMP from individual databank files using:

fetch(i) m1 c:\data\unemp

To fetch all objects with names starting with CONS from the two databases USDAT and
UKDAT:

fetch usdat::cons* ukdat::cons*

The command

fetch a?income

will fetch all series beginning with the letter “a”, followed by any single character, and
ending with the string “income”.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of databases, databank files, and fre-
quency conversion. Chapter 4 of the User’s Guide discusses importing data. Appendix C of
the User’s Guide describes the use of wildcard characters.

See also setconvert (p. 321), store (p. 347), and copy (p. 168).

Fill object with specified values.

fill can be used to set values of series, vectors and matrices in programs.

Syntax

Series Proc: series_name.fill(options) n1, n2, n3 …

Coef, Vector Proc: vector_name.fill(options) n1, n2, n3 …

Matrix, Sym Proc: matrix_name.fill(options) n1, n2, n3 …

Follow the fill keyword with a list of values to place in the specified object. Each value
should be separated by a comma. By default, series fill ignores the current sample and
fills the series from the beginning of the workfile range. You may specify sample informa-
tion using options.

Running out of values before the object is completely filled is not an error; the remaining
cells or observations will be unaffected. If, however, you list more values than the object
can hold, EViews will not modify any of the observations and will return an error message.

fill Coef Proc | Matrix Proc | Series Proc | Sym Proc | Vector Proc

fill—209
Options

Options for series fill

Options for coef/vector/matrix fill

Examples

To generate a series D70 that takes the value 1, 2, and 3 for all observations from 1970:1:

series d70=0

d70.fill(o=1970:1,l) 1,2,3

Note that the last argument in the fill command above is the letter “l”. The next three lines
generate a dummy series D70S that takes the value one and two for observations from
1970:1 to 1979:4:

series d70s=0

smpl 1970:1 1979:4

d70s.fill(s,l) 1,2

smpl @all

Assuming a quarterly workfile, the following generates a dummy variable for observations
in either the third and fourth quarter:

series d34

l Loop repeatedly over the list of values as many times
as it takes to fill the series.

o=date, obs Set starting date or observation from which to start fill-
ing the series. Default is the beginning of the workfile
range.

s Fill the series only for the current workfile sample. The
“s” option overrides the “o” option.

s=sample_name fill the series only for the specified subsample. The “s”
option overrides the “o” option.

l Loop repeatedly over the list of values as many times
as it takes to fill the object.

o=integer
(default=1)

Fill the object from the specified element. Default is the
first element.

b=c (default) Fill the matrix by column.

b=r Fill the matrix by row.

210—Chapter 8. Command Reference
d34.fill(l) 0, 0, 1, 1

Note that this series could more easily be generated using @seas.

The following example declares a four element coefficient vector MC, initially filled with
zeros. The second line fills MC with the specified values and the third line replaces from
row 3 to the last row with –1.

coef(4) mc

mc.fill 0.1, 0.2, 0.5, 0.5

mc.fill(o=3,l) -1

The commands

matrix(2,2) m1

matrix(2,2) m2

m1.fill 1, 0, 1, 2

m2.fill(b=r) 1, 0, 1, 2

create the matrices

(8.1)

Cross-references

See Chapter 4, “Matrix Language”, on page 55 of the Command and Programming Refer-
ence for a detailed discussion of vector and matrix manipulation in EViews.

Estimation by full information maximum likelihood.

fiml estimates a system of equations by full information maximum likelihood (assuming
a multivariate normal distribution).

Syntax

System Method: system_name.fiml(options)

fiml System Method

m1 1 1
0 2

,= m2 1 0
1 2

=

fiml—211
Options

Examples

sys1.fiml

estimates SYS1 by FIML using the default settings. The command

sys1.fiml(d, s)

sequentially iterates over the coefficients and the covariance matrix.

Cross-references

See Chapter 19 of the User’s Guide for a discussion of systems in EViews.

i Iterate simultaneously over the covariance matrix and
coefficient vector.

s (default) Iterate sequentially over the covariance matrix and coeffi-
cient vector.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

b Berndt-Hall-Hall-Hausman (BHHH) algorithm. Default
method is Marquardt.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should be
a one- or two-letter string. The first letter should either be
“f” or “a” corresponding to fast or accurate numeric
derivatives (if used). The second letter should be either
“n” (always use numeric) or “a” (use analytic if possi-
ble). If omitted, EViews will use the global defaults.

p Print estimation results.

212—Chapter 8. Command Reference
Static forecasts. Computes fitted values from an estimated equation.

When the regressor contains lagged dependent values or ARMA terms, fit uses the actual
values of the dependent variable instead of the lagged fitted values. You may instruct fit
to compare the forecasted data to actual data, and to compute forecast summary statistics.

Not available for equations estimated using ordered methods—use model instead.

Syntax

Command: fit(options) yhat y_se

Equation Proc: eq_name.fit(options) yhat y_se

ARCH Proc: eq_name.fit(options) yhat y_se y_var

Following the fit keyword you should type a name for the forecast series and, optionally,
a name for the series containing the standard errors and, for ARCH specifications, a name
for the conditional variance series.

Forecast standard errors are currently not available for binary, censored, and count models.

Options

Examples

equation eq1.ls cons c cons(-1) inc inc(-1)

fit Command || Equation Proc

g Graph the fitted values together with the ±2 standard
error bands.

e Produce the forecast evaluation table.

s Ignore ARMA terms and use only the structural part of
the equation to compute the fitted values.

i Compute the fitted values of the index. Only for binary,
censored and count models.

d Forecast the dependent variable without normalizing
the formula.

f = actual
(default)

Fill observations outside the fit sample with actual val-
ues for the fitted variable.

f = na Fill observations outside the fit sample with missing
values (NAs)

fit—213
eq1.fit c_hat c_se

genr c_up=c_hat+2*c_se

genr c_low=c_hat-2*c_se

line cons c_up c_low

The first line estimates a linear regression of CONS on a constant, CONS lagged once, INC,
and INC lagged once. The second line stores the static forecasts and their standard errors
as C_HAT and C_SE. The third and fourth lines compute the upper and lower bounds of
the 95% forecast interval (assuming a normal distribution). The fifth line plots the actual
series together with the 95% forecast interval.

equation eq2.binary(d=l) y c wage edu

eq2.fit yf

eq2.fit(I) xbeta

genr yhat=1-@clogit(-xbeta)

The first line estimates a logit of Y on a constant, WAGE, and EDU. The second line com-
putes the fitted probabilities, and the third line computes the fitted values of the index. The
fourth line computes the probabilities from the fitted index using the cumulative distribu-
tion function of the logistic distribution. Note that YF and YHAT should be identical.

Note that you cannot fit values from an ordered model. You must instead solve the values
from a model. The following lines generate fitted probabilities from an ordered model:

equation eq3.ordered y c x z

eq3.model(oprob1)

solve oprob1

The first line estimates an ordered probit of Y on a constant, X, and Z. The second line
makes a model from the estimated equation with a name OPROB1. The third line solves
the model and computes the fitted probabilities that each observation falls in each cate-
gory.

Cross-references

See Chapter 14 of the User’s Guide for a discussion of forecasting in EViews. See
Chapter 17 of the User’s Guide for forecasting from binary, censored, truncated, and count
models. See “Forecasting” on page 580 of the User’s Guide for a discussion of forecasting
from sspace models.

To perform dynamic forecasting, use forecast (p. 214). See model (p. 269) and solve
(p. 334) for forecasting from systems of equations or ordered equations.

214—Chapter 8. Command Reference
Dynamic forecast.

Computes (n-period ahead) dynamic forecasts of an estimated equation or forecasts of the
signals and states for an estimated state space.

forecast computes the forecast for all observations in a specified sample. In some set-
tings, you may instruct forecast to compare the forecasted data to actual data, and to
compute summary statistics.

Syntax

Command: forecast(options) yhat y_se

Equation Proc: eq_name.forecast(options) yhat y_se

ARCH Proc: eq_name.forecast(options) yhat y_se y_var

Sspace Proc: ss_name.forecast(options) keyword1 names1 [keyword2 names2]
[keyword3 names3] ...

When used with an equation, you should type a name for the forecast series and, option-
ally, a name for the series containing the standard errors and, for ARCH specifications, a
name for the conditional variance series. Forecast standard errors are currently not avail-
able for binary or censored models. forecast is not available for models estimated using
ordered methods.

When used with a sspace, you should enter a type-keyword followed by a list of names for
the target series or a wildcard expression, and if desired, additional type-keyword/target
pairs. The following are valid keywords: “@state”, “@statese”, “@signal”, “@signalse”.
The first two instruct EViews to forecast the state series and the values of the state stan-
dard error series. The latter two instruct EViews to forecast the signal series and the values
of the signal standard error series.

If a list is used to identify the targets in sspace forecasting, the number of target series
must match the number of names implied by the keyword. Note that wildcard expressions
may not be used for forecasting signal variables that contain expressions. The “*” wildcard
expression may not be used for forecasting signal variables since this would overwrite the
original data.

forecast Command || Equation Proc | Sspace Proc

forecast—215
Options

Options for Equation forecasting

Options for Sspace forecasting

Examples

The following lines

smpl 1970:1 1990:4

equation eq1.ls con c con(-1) inc

smpl 1991:1 1995:4

d In models with implicit dependent variables, forecast
the entire expression rather than the normalized vari-
able.

e Produce the forecast evaluation table.

g Graph the forecasts together with the ±2 standard error
bands.

i Compute the forecasts of the index. Only for binary,
censored and count models.

s Ignore ARMA terms and use only the structural part of
the equation to compute the forecasts.

f = actual
(default)

Fill observations outside the forecast sample with
actual values for the fitted variable.

f = na Fill observations outside the forecast sample with miss-
ing values (NAs)

i = arg

(default=”o”)

State initialization options: “o” (one-step), “e” (dif-
fuse), “u” (user-specified), “s” (smoothed).

m = arg

(default = “d”)

Basic forecasting method: “n” (n-step ahead forecast-
ing), “s” (smoothed forecasting), “d” (dynamic fore-
casting.

mprior =
vector_name

Name of state initialization (used if option “i=u”).

n = arg
(default=1)

Number of n-step forecast periods (only relevant if n-
step forecasting is specified using the method option).

vprior =
sym_name

Name of state covariance initialization (used if option
“i=u”).

216—Chapter 8. Command Reference
eq1.fit con_s

eq1.forecast con_d

plot con_s con_d

estimate a linear regression over the period 1970:1–1990:4, compute static and dynamic
forecasts for the period 1991:1–1995:4, and plots the two forecasts in the same graph

equation eq1.ls m1 gdp ar(1) ma(1)

eq1.forecast m1_bj bj_se

eq1.forecast(s) m1_s s_se

plot bj_se s_se

Estimates an ARMA(1,1) model, computes the forecasts and standard errors with and
without the ARMA terms, and plots the two forecast standard errors.

The following command performs n-step forecasting of the signals and states from the
sspace object, SS1:

ss1.forecast(method=n,n=4) @state * @signal y1f y2f

Here we save the state forecasts in the names specified in the sspace object, and we save
the two signal forecasts in the series Y1F and Y2F.

Cross-references

For more information on equation forecasting in EViews, see Chapter 14 of the User’s
Guide. Details on forecasting for specialized techniques are provided in the corresponding
chapters of the User’s Guide. For additional discussion of wildcards, see Appendix C,
“Wildcards”, on page 657 of the User’s Guide.

To perform static forecasting with equation objects see fit (p. 212). For multiple equation
forecasting, see model (p. 269), and solve (p. 334).

Creates graph, table, or text objects from a view.

Syntax

Command: freeze(name) object.view

If you follow the keyword freeze with an object name but no view of the object, freeze
will use the default view for the object. You can provide a name for the object containing
the frozen view in parentheses.

freeze Command

freq—217
Examples

The command

freeze gdp.uroot(4,t)

creates an untitled table that contains the results of the unit root test of the series GDP.

group rates tb1 tb3 tb6

freeze(gra1) rates.line(m)

show gra1.align(2,1,1)

freezes a graph named GRA1 that contains multiple line graphs of the series in the group
RATES, realigns the individual graphs, and displays the resulting graph.

freeze(mygra) gra1 gra3 gra4

show mygra.align(2,1,1)

creates a graph object named MYGRA that combines three graph objects GRA1, GRA2, and
GRA3, and displays MYGRA in two columns.

Cross-references

See “Object Commands” on page 6, and “Object Basics” on page 41 of the User’s Guide for
further discussion of objects and views of objects. Freezing views is also described in
Chapter 10 of the User’s Guide.

Compute frequency tables.

When used as a series view (or for a group containing a single series), freq performs a
one-way frequency tabulation. The options allow you to control binning (grouping) of
observations.

When used with a group containing multiple series, freq produces an N-way frequency
tabulation for all of the series in the group.

Syntax

Object View: object_name.freq(options)

freq Group View | Series View

218—Chapter 8. Command Reference
Options

Options common to both one-way and N-way frequency tables

Options for one-way tables

Options for N-way tables

dropna (default) / keepna [Drop/Keep] NA as a category.

v=integer (default=100) Make bins if the number of distinct values or
categories exceeds the specified number.

nov Do not make bins on the basis of number of dis-
tinct values; ignored if you set “v=integer.”

a=number (default=2) Make bins if average count per distinct value is
less than the specified number.

noa Do not make bins on the basis of average count;
ignored if you set “a=number.”

b=integer (default=5) Maximum number of categories to bin into.

n, obs, count (default) Display frequency counts.

nocount Do not display frequency counts.

p Print the table.

total (default) / nototal (Display/Do not display) totals.

pct (default) / nopct (Display/Do not display) percent frequencies.

cum (default) / nocum (Display/Do not) display cumulative frequency
counts/percentages.

table (default) Display in table mode.

list Display in list mode.

rowm (default) / norowm (Display/Do not display) row marginals.

colm (default) / nocolm (Display/Do not display) column marginals.

tabm (default) / notabm (Display/Do not display) table marginals—only
for more than two series.

subm (default) / nosubm (Display/Do not display) sub marginals—only
for “l” option with more than two series.

full (default) / sparse (Full/Sparse) tabulation in list display.

garch—219
Examples

hrs.freq(nov,noa)

tabulates each value (no binning) of HRS in ascending order with counts, percentages, and
cumulatives.

inc.freq(v=20,b=10,noa)

tabulates INC excluding NAs. The observations will be binned if INC has more than 20 dis-
tinct values; EViews will create at most 10 equal width bins. The number of bins may be
smaller than specified.

group labor lwage gender race

labor.freq(v=10,norowm,nocolm)

displays tables of LWAGE against GENDER for each bin/value of RACE.

Cross-references

See Chapters 7 and 8 of the User’s Guide for a discussion of frequency tables.

Conditional standard deviation graph.

Displays the conditional standard deviation graph of an equation estimated by ARCH.

totpct / nototpct (default) (Display/Do not display) percentages of total
observations.

tabpct / notabpct (default) (Display/Do not display) percentages of table
observations—only for more than two series.

rowpct / norowpct (default) (Display/Do not display) percentages of row
total.

colpct / nocolpct (default) (Display/Do not display) percentages of column
total.

exp / noexp (default) (Display/Do not display) expected counts under
full independence.

tabexp / notabexp (default) (Display/Do not display) expected counts under
table independence—only for more than two
series.

test (default) / notest (Display/Do not display) tests of independence.

garch Equation View

220—Chapter 8. Command Reference
Syntax

Equation View: eq_name.garch(options)

Options

Examples

equation eq1.arch sp500 c

eq1.garch

estimates a GARCH(1,1) model and displays the estimated conditional standard deviation
graph.

Cross-references

ARCH estimation is described in Chapter 16 of the User’s Guide.

See also arch (p. 145), makegarch (p. 252).

Generate series using pool objects.

This procedure allows you to generate multiple series using the cross-section identifiers in
a pool. To generate values for a single series, see series (p. 317).

Syntax

Pool Proc: pool_name.genr ser_name = expression

You may use the cross section identifier “?” in the series name and/or in the expression on
the right-hand side.

Examples

The commands

pool pool1

pool1.add 1 2 3

pool1.genr y? = x? - @mean(x?)

are equivalent to generating separate series for each cross-section:

series y1 = x1 - @mean(x1)

series y2 = x2 - @mean(x2)

p Print the graph

genr Pool Proc

gmm—221
series y3 = x3 - @mean(x3)

Similarly,

pool pool2

pool2.add us uk can

pool2.genr y_? = log(x_?)-log(x_us)

generates three series Y_US, Y_UK, Y_CAN that are the log differences from X_US. Note
that Y_US=0.

The pool genr command simply loops across the cross-section identifiers, performing the
appropriate substitution. Thus, the command

pool2.genr z=y_?

is equivalent to entering

series z=y_us

series z=y_uk

series z=y_can

so that the ordinary series Z will contain Y_CAN, the last series associated with the “Y_?”.

Cross-references

See Chapter 21 of the User’s Guide for a discussion of the computation of pools, and a
description of individual and balanced samples.

See series (p. 317) for a discussion of the expressions allowed in genr.

Estimation by generalized method of moments (GMM).

The equation or system object must be specified with a list of instruments.

Syntax

Command: gmm(options) y x1 x2 @ z1 z2 z3

gmm(options) formula @ z1 z2 z3

Equation Method: eq_name.gmm(options) y x1 x2 @ z1 z2 z3

eq_name.gmm(options) formula @ z1 z2 z3

System Method: system_name.gmm(options)

gmm Command || Equation Method | System Method

222—Chapter 8. Command Reference
To use gmm as a command or equation method, follow the name of the dependent variable
by a list of regressors, an “@-sign”, and a list of instrumental variables which are orthogo-
nal to the residuals. Alternatively, you can specify a (nonlinear) formula using coefficients,
an “@-sign”, and a list of instrumental variables which are orthogonal to the formula.
There must be at least as many instrumental variables as there are coefficients to estimate.

Options

w Use diagonal White’s weighting matrix for cross section
data.

b=arg
(default=“nw”)

Specify the bandwidth: “nw” (Newey-West fixed band-
width based on the number of observations), “number”
(user specified bandwidth), “v” (Newey-West automatic
variable bandwidth selection), “a” (Andrews automatic
selection).

q Use the quadratic kernel. Default is to use the Bartlett
kernel.

n Prewhiten by a first order VAR before estimation.

i Iterate simultaneously over the weighting matrix and the
coefficient vector.

s Iterate sequentially over the weighting matrix and coeffi-
cient vector.

o (default) Iterate only on the coefficient vector with one step of the
weighting matrix.

c One step (iteration) of the coefficient vector following
one step of the weighting matrix.

e TSLS estimates with GMM standard errors.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

l=number Set maximum number of iterations on the first-stage iter-
ation to get the one-step weighting matrix.

grads—223
Examples

sys1.gmm(b=a,q,i)

estimates SYS1 by GMM with a quadratic kernel, Andrews automatic bandwidth selection,
and iterates until convergence.

Cross-references

See Chapters 12 and 19 of the User’s Guide for discussion of GMM estimation.

Gradients of the objective function.

Displays the gradients of the objective function (where available) for objects containing an
estimated equation or equations.

The (default) summary form shows the value of the gradient vector at the estimated
parameter values (if valid estimates exist) or at the current coefficient values. This latter
usage makes grads useful in examining the behavior of the objective function at starting
values. The tabular form shows a spreadsheet view of the gradients for each observation.
The graphical form shows this information in a multiple line graph.

Syntax

Object View: object_name.grads(options)

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should be
a one- or two-letter string. The first letter should either be
“f” or “a” corresponding to fast or accurate numeric
derivatives (if used). The second letter should be either
“n” (always use numeric) or “a” (use analytic if possi-
ble). If omitted, EViews will use the global defaults.

p Print results.

grads Equation View | Logl View | Sspace View | System View

224—Chapter 8. Command Reference
Options

Examples

To show a summary view of the gradients:

eq1.grads

To display and print the table view

eq1.grads(t, p)

Cross-references

See also derivs (p. 189), makederivs (p. 251), and makegrads (p. 253).

Creates named graph objects of the named series or group of series.

May also be used to merge multiple graphs into a single graph object using the merge
proc.

Syntax

Command: graph name.type(options) ser1 ser2 ser3

Command: graph name.merge graph1 graph2 graph3

Follow the graph keyword with a name for the graph, a period, a type of the graph, and a
list of series or group names to graph.

The second form of the graph command combines two or more existing graph objects into
a named multiple graph object. Follow the graph keyword with a name for the graph, a
period, the merge keyword, and a list of named graph objects to be merged.

Options

The valid types of a graph object are:

g Display multiple graph showing the gradients of the
objective function with respect to the coefficients evalu-
ated at each observation (not available for systems).

t (default) Display spreadsheet view of the values of the gradients of
the objective function with respect to the coefficients
evaluated at each observation (not available for systems).

p Print results.

graph Object Declaration || Graph Proc

graph—225
Additional options will depend on the type of graph chosen. See the entry for each graph
type for a list of the available options (e.g. see bar (p. 150) for details on bar graphs).

Additional Options

Examples

graph gra1.line(m) gdp m1 inf

creates a multiple line graph object named GRA1.

graph mygra.combine gr_line gr_scat gr_pie

creates a multiple graph object named MYGRA that combines three graph objects named
GR_LINE, GR_SCAT, and GR_PIE.

Cross-references

The graph object is described in greater detail in “Graph” (p. 25). See Chapter 10 of the
User’s Guide for a general discussion of graphs.

See also freeze (p. 216), merge (p. 267).

bar Bar graph.

errbar Error bar graph.

hilo High-low(-open-close) graph.

line Line graph.

pie Pie graph.

scat Scatterplot (same as XY, but lines are initially turned
off, symbols turned on, and a 3x3 frame is used).

spike Spike graph.

xy XY line-symbol graph with one X plotted against one or
more Y’s using existing line-symbol settings.

xyline Same as XY but sets settings to display lines.

xypair XY line-symbol graph with pairs of X and Y plotted
against each other.

p Print the graph.

226—Chapter 8. Command Reference
Declare a group object containing a group of series.

Syntax

Command: group group_name ser1 ser2 ser3

Follow the group name with a list of series to be included in the group.

Examples

group g1 gdp cpi inv

group g1 tb3 m1 gov

g1.add gdp cpi

The first line creates a group named G1 that contains three series GDP, CPI, and INV. The
second line redeclares group G1 to contain the three series TB3, M1, and GOV. The third
line adds two series GDP and CPI to group G1 to make a total of five series. See add
(p. 137).

group rhs d1 d2 d3 d4 gdp(0 to -4)

ls cons rhs

ls cons c rhs(6)

The first line creates a group named RHS that contains nine series. The second line runs a
linear regression of CONS on the nine series in RHS. The third line runs a linear regression
of CONS on C and only the sixth series GDP(-1) of RHS.

Cross-references

See “Group” on page 26 for a complete description of the group object. See also Chapter 8
of the User’s Guide for additional discussion.

Convert an entire Haver Analytics Database into an EViews database.

Syntax

Command: hconvert path_haver db_name

You must have a Haver Analytics database installed on your computer to use this feature.
You must also create an EViews database to store the converted Haver data before you use
this command.

group Object Declaration

hconvert Command

hfetch—227
Be aware that this command may be very time-consuming.

Follow the command by a full path name to the Haver database and the name of an exist-
ing EViews database to store the Haver database. You can include a path name to the
EViews database not in the default path.

Examples

dbcreate hdata

hconvert d:\haver\haver hdata

The first line creates a new (empty) database named HDATA in the default directory. The
second line converts all the data in the Haver database and stores it in the HDATA data-
base.

Cross-references

See Chapter 6, “EViews Databases”, on page 107 of the User’s Guide for a discussion of
EViews and Haver databases.

See also dbcreate (p. 181), db (p. 180), hfetch (p. 227) and hlabel (p. 230).

Fetch a series from a Haver Analytics database into a workfile.

hfetch reads one or more series from a Haver Analytics Database into the active workfile.
You must have a Haver Analytics database installed on your computer to use this feature.

Syntax

Command: hfetch(database_name) series_name

hfetch, if issued alone on a command line, will bring up a Haver dialog box which has
fields for entering both the database name and the series names to be fetched. If you pro-
vide the database name (including the full path) in parentheses after the hfetch command,
EViews will read the database and copy the series requested into the current workfile. It
will also display information about the series on the statusline. The database name is
optional if a default database has been specified.

hfetch can read multiple series with a single command. List the series names, each sepa-
rated by a space.

hfetch Command

228—Chapter 8. Command Reference
Examples

hfetch(c:\data\us1) pop gdp xyz

reads the series POP, GDP, and XYZ from the US1 database into the current active workfile,
performing frequency conversions if necessary.

Cross-references

Additional information on EViews frequency conversion is provided in “Frequency Conver-
sion” on page 72 of the User’s Guide. See also Chapter 6 of the User’s Guide for a discus-
sion of EViews and Haver databases.

See also dbcreate (p. 181), db (p. 180), hconvert (p. 226) and hlabel (p. 230).

Hi-low(-open-close) graph. Plot high-low, high-low-close, or high-low-open-close graph.

Syntax

Command: hilo(options) high_ser low_ser [close_ser]

hilo(options) high_ser low_ser open_ser close_ser

Graph Proc: graph_name.hilo(options)

Object View: object_name.hilo(options)

For a high-low, or a high-low-close graph, follow the command name with the name of the
high series, followed by the low series, and an optional close series. If four series names
are provided, EViews will use them in the following order: high-low-open-close.

When used with a matrix or group or an existing graph, EViews will use the first series as
the high series, the second series as the low series, and if present, the third series as the
close. If there are four or more series, EViews will use them in the following order: high-
low-open-close. When used as a matrix view, the columns of the matrix are used in place
of the series.

Note that if you wish to display a high-low-open graph, you should use an “NA”-series for
the close values.

hilo Command || Graph Proc | Group View | Matrix View | Sym View

hist—229
Options

Template and printing options

Examples

hilo mshigh mslow

displays a high-low graph using the series MSHIGH and MSLOW.

The command

hilo(p) mshigh mslow msopen msclose

plots and prints the high-low-open-close graph of the four series.

group stockprice mshigh mslow msclose

stockprice.hilo

displays the high-low-close view of the group STOCKPRICE.

The command

hilo NA NA msopen msclose

displays an open-close graph.

Cross-references

See Chapter 10 of the User’s Guide for additional details on using graphs in EViews.

See also graph (p. 224).

Histogram and descriptive statistics of a series.

When used as a command or a series view, hist computes descriptive statistics and dis-
plays a histogram for the series. When used as an equation view, hist displays a histo-
gram and descriptive statistics of the residual series.

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the bar graph.

hist Command || Equation View | Series View

230—Chapter 8. Command Reference
Syntax

Command: hist(options) series_name

Object View: object_name.hist(options)

Options

Examples

lwage.hist

Displays the histogram and descriptive statistics of LWAGE.

Cross-references

See “Histogram and Stats” on page 152 of the User’s Guide for a discussion of the descrip-
tive statistics reported in the histogram view.

Display a Haver Analytics database series description.

hlabel reads the description of a series from a Haver Analytics Database and displays it
on the status line at the bottom of the EViews window. Use this command to verify the
contents of a Haver database series name.

You must have a Haver Analytics database installed on your computer to use this feature.

Syntax

Command: hlabel(database_name) series_name

hlabel, if issued alone on a command line, will bring up a Haver dialog box which has
fields for entering both the database name and the series names to be examined. If you
provide the database name in parentheses after the hlabel command, EViews will read the
database and find the key information about the series in question, such as the start date,
end date, frequency, and description. This information is displayed in the status line at the
bottom of the EViews window. Note that the database_name should refer to the full path
to the Haver database but need not be specified if a default database has been specified in
HAVERDIR.INI.

If several series names are placed on the line, hlabel will gather the information about
each of them, but the information display may scroll by so fast that only the last will be
visible.

p Print the histogram.

hlabel Command

hpf—231
Examples

hlabel(c:\data\us1) pop

displays the description of the series POP in the US1 database.

Cross-references

See Chapter 6 of the User’s Guide for a discussion of EViews and Haver databases.

See also hfetch (p. 227) and hconvert (p. 226).

Hodrick-Prescott filter. hpf smooths a series using the Hodrick-Prescott filter.

Syntax

Command: hpf(n, options) series_name filtered_name

Series Proc: series_name.hpf(n, options) filtered_name

Follow the hpf keyword with the name of the series you want to filter and a name for the
filtered series.

When used as a series procedure, hpf smooths the series without displaying the graph of
the smoothed series.

Options

Examples

The command

hpf(1000) gdp gdp_hp

smooths the GDP series with a smoothing parameter “1000” and saves the smoothed series
as GDP_HP.

hpf Command || Series Proc

n You may specify the smoothing parameter; a larger
number results in more smoothing. The default is “100”
for annual, “1600” for quarterly, and “14400” for
monthly data.

p Print the graph of the smoothed series and the original
series.

232—Chapter 8. Command Reference
Cross-references

See “Hodrick-Prescott Filter” on page 195 of the User’s Guide for details.

Display impulse response functions of a VAR.

Syntax

Var View: var_name.impulse(n, options) responses @ shocks @ ordering

List the series names in the var whose responses you would like to compute. You may
optionally specify the sources of shocks. To specify the shocks, list the series after an “@”.
By default, EViews computes the responses to all possible sources of shocks using the
ordering in the Var.

If you are using impulses from the Cholesky factor, you may change the Cholesky ordering
by listing the order of the series after a second “@”.

You must specify the number of periods for which you wish to compute the impulse
responses.

Options

impulse Var View

g (default) Display combined graphs, with impulse responses of
one variable to all shocks shown in one graph. If you
choose this option, standard error bands will not be dis-
played.

m Display multiple graphs, with impulse response to each
shock shown in separate graphs.

t Tabulate the impulse responses.

a Accumulate the impulse responses.

n

impulse—233
imp=arg
(default
“imp=chol”

Type of factorization for the decomposition: unit
impulses, ignoring correlations among the residuals
(“imp=unit”), non-orthogonal, ignoring correlations
among the residuals (“imp=nonort”), Cholesky with
d.f. correction (“imp=chol”), Cholesky without d.f.
correction (“imp=mlechol”), Generalized
(“imp=gen”), structural (“imp=struct”), or user speci-
fied (“imp=user”).

The structural factorization is based on the estimated
structural VAR. To use this option, you must first esti-
mate the structural decomposition; see svar (p. 351).

For user specified impulses, you must specify the name
of the vector/matrix containing the impulses using the
“fname=” option.

The option “imp=mlechol” is provided for backward
compatibility with EViews 3.x and earlier.

fname=name Specify name of vector/matrix containing the impulses.
The vector/matrix must have rows and 1 or col-
umns, where is the number of endogenous variables.

se=arg Standard error calculations: “se=a” (analytic),
“se=mc” (Monte Carlo).

If selecting Monte Carlo, you must specify the number
of replications with the “rep=” option.

Note the following:

(1) Analytic standard errors are currently not available
for (a) VECs and (b) structural decompositions identi-
fied by long-run restrictions. The “se=a” option will be
ignored for these cases.

(2) Monte Carlo standard errors are currently not avail-
able for (a) VECs and (b) structural decompositions.
The “se=mc” option will be ignored for these cases.

rep=integer Number of Monte Carlo replications to be used in com-
puting the standard errors. Must be used with the
“se=mc” option.

k k
k

234—Chapter 8. Command Reference
Examples

var var1.ls 1 4 m1 gdp cpi

var1.impulse(10,m) gdp @ m1 gdp cpi

The first line declares and estimates a VAR with three variables. The second line displays
multiple graphs of the impulse responses of GDP to shocks to the three series in the VAR
using the ordering as specified in VAR1.

var1.impulse(10,m) gdp @ m1 @ cpi gdp m1

displays the impulse response of GDP to a one standard deviation shock in M1 using a dif-
ferent ordering.

Cross-references

See Chapter 20 of the User’s Guide for a discussion of variance decompositions in VARs.

See also decomp (p. 186).

Multivariate residual normality test.

Syntax

Var View: var_name.jbera(options)

You must specify a factorization method by the “factor=” option.

matbys=name Save responses by shocks (impulses) in named matrix.
The first column is the response of the first variable to
the first shock, the second column is the response of
the second variable to the first shock, and so on.

matbyr=name Save responses by response series in named matrix.
The first column is the response of the first variable to
the first shock, the second column is the response of
the first variable to the second shock, and so on.

p Print the results.

jbera Var View

jbera—235
Options

The “name=” option stores the following matrix. Let the VAR have endogenous vari-
ables. Then the stored matrix will have dimension . The first rows contain
statistics for each orthogonal component, where the 1st column is the third moments, the
second column is the one-degree of freedom chi-square statistics for the third moments,
the third column is the fourth moments, and the fourth column is the one-degree of free-
dom statistics for the fourth moments. The sum of the second and fourth columns are
the Jarque-Bera statistics reported in the last output table.

The row contains statistics for the joint test. The second and fourth column of the
 row is simply the sum of all the rows above in the corresponding column and are

the statistics for the joint skewness and kurtosis tests, respectively. These joint
skewness and kurtosis statistics add up to the joint Jarque-Bera statistic reported in the
output table, except for the “factor=cov” option. When this option is set, the joint Jarque-
Bera statistic includes all cross moments (in addition to the pure third and fourth
moments). The overall Jarque-Bera statistic for this option is stored in the first column of
the row (which will be a missing value for all other options).

Examples

var var1.ls 1 6 lgdp lm1 lcpi

show var1.jbera(factor=cor,name=jb)

The first line declares and estimates a VAR. The second line carries out the residual multi-
variate normality test using the inverse square root of the residual correlation matrix as the
factorization matrix and stores the results in a matrix named JB.

factor=chol Factorization by the inverse of the Cholesky factor of
the residual covariance matrix.

factor=cor Factorization by the inverse square root of the residual
correlation matrix (Doornik and Hansen 1994).

factor=cov Factorization by the inverse square root of the residual
covariance matrix (Urzua 1997).

factor=svar Factorization matrix from structural VAR. You must first
estimate the structural factorization to use this option;
see svar (p. 351).

name= Save the test statistics in a named matrix object. See
below for a description of the statistics contained in the
stored matrix.

p Print the test results.

k
k 1+() 4× k

χ
2

k 1+()
k 1+()

χ
2
k()

k 1+()

236—Chapter 8. Command Reference
Cross-references

See Chapter 20 of the User’s Guide for a discussion of the test and other VAR diagnostics.

Kernel density plots. Displays nonparametric kernel density estimates of the specified
series.

Syntax

Series View: series_name.kdensity(options)

Options

Examples

lwage.kdensity(k=n)

plots the kernel density estimate of LWAGE using a normal kernel and the automatic band-
width selection.

Cross-references

See “Kernel Density” on page 229 of the User’s Guide for a discussion of kernel density
estimation.

kdensity Series View

k=arg (default
“k=e”)

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”
(Uniform), “n” (Normal–Gaussian), “b” (Biweight–
Quartic), “t” (Triweight), “c” (Cosinus).

s (default) Automatic bandwidth (Silverman).

b=number Specify a number for the bandwidth.

b Bracket bandwidth.

n (default=100) Number of points to evaluate.

x Exact evaluation of kernel density.

o=arg Name of matrix to hold results of kernel density compu-
tation. The first column of the matrix contains the eval-
uation points and the remaining columns contain the
kernel estimates.

p Print the kernel density plot.

kerfit—237
Fits a kernel regression of the second series in the group (vertical axis) against the first
series in the group (horizontal axis).

Syntax

Group View: group_name.kerfit(options)

Options

Examples

group gg weight height

gg.kerfit(s=w_fit, 200)

Fits a kernel regression of HEIGHT on WEIGHT using 200 points and saves the fitted series
as W_FIT.

Cross-references

See “Scatter with Kernel Fit” on page 238 of the User’s Guide for a discussion of kernel
regression.

See also linefit (p. 242), nnfit (p. 272).

kerfit Group View

k=arg (default
“k=e”)

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”
(Uniform), “n” (Normal–Gaussian), “b” (Biweight–
Quartic), “t” (Triweight), “c” (Cosinus).

b=number Specify a number for the bandwidth.

b Bracket bandwidth.

integer
(default=100)

Number of grid points to evaluate.

x Exact evaluation of the polynomial fit.

d=integer
(default=1)

Degree of polynomial to fit. Set “d=0” for Nadaraya-
Watson regression.

s=name Save fitted series.

p Print the kernel fit plot.

238—Chapter 8. Command Reference
Display or change the label view of the object, including the last modified date and dis-
play name (if any).

As a procedure, label changes the fields in the object label.

Syntax

Object View: object_name.label

Object Proc: object_name.label(options) text

Options

To modify the label, you should specify one of the following options along with optional
text. If there is no text provided, the specified field will be cleared:

Examples

The following lines replace the remarks field of LWAGE with “Data from CPS 1988 March
File”:

lwage.label(r)

lwage.label(r) Data from CPS 1988 March File

To append additional remarks to LWAGE, and then to print the label view:

lwage.label(r) Log of hourly wage

lwage.label(p)

To clear and then set the units field, use:

lwage.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 50 of the User’s Guide for a discussion of labels.

label Object View | Object Proc

c Clears all text fields in the label.

d Sets the description field to text.

s Sets the source field to text.

u Sets the units field to text.

r Appends text to the remarks field as an additional line.

p Print the label view.

laglen—239
See also displayname (p. 192).

VAR lag order selection criteria.

Syntax

Var View: var_name.laglen(m, options)

You must specify the maximum lag order m to test for.

Options

The “vname=” option stores a vector with 5 rows containing the selected lags from the
following criteria: sequential modified LR test (row 1), final prediction error (row 2),
Akaike information criterion (row 3), Schwarz information criterion (row 4), Hannan-
Quinn information criterion (row 5).

The “mname=” option stores a matrix, where if there are no exoge-
nous variables in the VAR, otherwise . The first rows contain the
information displayed in the table view following the same order. In addition, the saved
matrix has an additional row which contains the lag order selected from each column crite-
rion. The first column (corresponding to the log likelihood values) of the last row is always
an NA.

Examples

var var1.ls 1 6 lgdp lm1 lcpi

show var1.laglen(12,vname=v1)

The first line declares and estimates a VAR. The second line computes the lag length crite-
ria up to a maximum of 12 lags and stores the selected lag orders in a vector named V1.

Cross-references

See Chapter 20 of the User’s Guide for a discussion of the various criteria and other VAR
diagnostics.

laglen Var View

vname=arg Save selected lag orders in named vector. See below for
a description of the stored vector.

mname=arg Save lag order criteria in named matrix. See below for a
description of the stored matrix.

p Print table of lag order criteria.

q 6× q m 1+=
q m 2+= q 1−()

240—Chapter 8. Command Reference
See also testlags (p. 361).

Set legend appearance and placement in graphs.

When legend is used with a multiple graph, the legend settings apply to all graphs. See
setelem (p. 323) for setting legends for individual graphs in a multiple graph.

Syntax

Graph Proc: graph_name.legend option_list

Note: the syntax of the legend proc has changed considerably from version 3.1 of EViews.
While not documented here, the EViews 3 options are still (for the most part) supported.
However, we do not recommend using the old options as future support is not guaranteed.

Options

legend Graph Proc

columns(arg) arg=“auto” — automatically choose number of col-
umns for legend (default).

arg=“n1”— put legend in n1 columns.

display/–display Display/do not display the legend.

font(n1) Size of font for legend.

inbox/–inbox Put legend in box/remove box around legend.

position(arg) arg=“left”, ”l” — place legend on left side of graph.

arg=“right”, “r” — place legend on right side of graph.

arg=“botleft”, “bl” — place left-justified legend below
graph.

arg=“botcenter”, “bc” — place centered legend below
graph.

arg=“botright”, “br”— place right-justified legend
below graph.

arg=“(h, v)” — The first number h specifies how many
virtual inches to offset to the right from the origin. The
second number v specifies how many virtual inches to
offset below the origin. The origin is the upper left hand
corner of the graph.

p Print the graph.

line—241
Examples

mygra1.legend display position(l) inbox

places the legend of MYGRA1 in a box to the left of the graph.

mygra1.legend position(.2,.2) -inbox

places the legend of MYGRA1 within the graph, indented slightly from the upper left cor-
ner with no box surrounding the legend text.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph objects in EViews.

See also setelem (p. 323).

Line graph. Displays a line graph of the specified object.

The line graph view of a group plots all series in the group in a single graph. The line
graph view of a matrix plots each column in the matrix in a single graph.

Syntax

Command: line(options) object_name

Object View: object_name.line(options)

Graph Proc: graph_name.line(options)

Options

Template and printing options

line Command || Coef View | Graph Proc | Group View | Matrix View |
Series View | Sym View | Vector View

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the line graph.

242—Chapter 8. Command Reference
Scale options (for multiple line views of group and matrix objects)

Examples

group g1 gdp cons m1

g1.line(d)

plots line graphs of the three series in group G1 with dual scaling (no crossing). The latter
two series will share the same scale.

matrix1.line(t=mygra)

displays line graphs of the columns of MATRIX1 using the graph object MYGRA as a tem-
plate.

line(m) gdp cons m1

creates an untitled graph object that contains three line graphs of GDP, CONS, and M1,
with each plotted separately.

Cross-references

See Chapter 10 of the User’s Guide for a detailed discussion of graphs in EViews.

See also graph (p. 224) for additional graph types.

Scatter plot with bivariate fit.

Displays the scatter plot of the second series (horizontal axis) and the first series (vertical
axis) with a regression fit line. You can specify various transformation methods and
weighting for the bivariate fit.

a (default) Automatic single scale.

n Normalized scale (zero mean and unit standard devia-
tion).

d Dual scaling with no crossing.

x Dual scaling with possible crossing.

s Stack so that the difference between lines corresponds
to the value of a series.

m Display multiple graphs.

linefit Group View

linefit—243
Syntax

Group View: group_name.linefit(options)

Options

If the polynomial degree of leads to singularities in the regression, EViews will automat-
ically drop the high order terms to avoid collinearity.

Examples

group g1 inf unemp

g1.linefit(yl,xl,s=yfit)

displays a scatter plot of log UNEMP against log INF together with the fitted values from a
regression of log UNEMP on the log INF. The fitted values are saved in a series named
YFIT. Note that the saved fitted values are for the original UNEMP, not the log transform.

g1.linefit(yb=0.5,m=10)

The Box-Cox transformation of UNEMP with parameter 0.5 is regressed on INF with 10
iterations of bisquare weights.

Cross-references

See “Scatter with Regression” on page 234 of the User’s Guide for a discussion of scatter
plot with regression fit.

yl Take the natural log of first series, .

yi Take the inverse of .

yp=number Take y to the power of the specified number.

yb=number Take the Box-Cox transformation of with the speci-
fied parameter.

xl Take the natural log of .

xi Take the inverse of .

xp=number Take to the power of the specified number.

xb=number Take the Box-Cox transformation of with the speci-
fied parameter.

xd=integer Fit a polynomial of up to the specified power.

m=integer Set number of robustness iterations.

s=name Save the fitted series.

p Print the scatter plot.

y

y

y

x

x

x

x

x

y

x

244—Chapter 8. Command Reference
See also nnfit (p. 272) and kerfit (p. 237).

Load a workfile. load reads in a previously saved workfile.

The workfile becomes the active workfile; existing workfiles in memory remain on the
desktop but become inactive.

Syntax

Command: load(options) workfile_name

Options

Examples

load c:\data\marco

loads a previously saved EViews workfile MACRO.WF1 from the DATA directory in the C
drive.

load c:\tsp\nipa.wf

loads a MicroTSP workfile NIPA.WF. If you do not use the workfile type option, you should
add the extension .WF to the workfile name when loading a DOS MicroTSP workfile. An
alternative method uses the type “d” option:

load(d) nipa

Cross-references

See “Workfile Basics” on page 33 of the User’s Guide for a discussion of workfile opera-
tions. Chapter 4 of the User’s Guide describes various methods of moving data into
EViews.

See also open (p. 275), save (p. 308), read (p. 291) and fetch (p. 205)

Estimate binary models with logistic errors.

Equivalent to issuing the command, binary with the option “(d=l)”.

load Command

d Load a DOS MicroTSP workfile.

m Load a Macintosh MicroTSP workfile.

logit Command

ls—245
See binary (p. 152).

Declare likelihood object.

Syntax

Command: logl logl_name

Options

Examples

logl ll1

declares a likelihood object named LL1.

ll1.append @logl logl1

ll1.append res1 = y-c(1)-c(2)*x

ll1.append logl1 = log(@dnorm(res1/@sqrt(c(3))))-log(c(3))/2

specifies the likelihood function for LL1 and estimates the parameters by maximum likeli-
hood.

Cross-references

See Chapter 18 of the User’s Guide for further examples of the use of the likelihood object.

See also ml (p. 269).

Estimation by linear or nonlinear least squares regression.

When used as a pool proc, ls estimates linear cross-section weighed least squares, and
fixed and random effects models.

logl Object Declaration

p Print the table of results.

ls Command || Equation Method | Pool Method | System Method | Var
Method

246—Chapter 8. Command Reference
Syntax

Command: ls(options) y x1 x2 x3

ls(options) y=c(1)*x1+c(2)*x2+c(3)*x3

Equation Method: eq_name.ls(options) [specification]

System Method: system_name.ls(options)

VAR Method: var_name.ls(options)

Pool Method: pool_name.ls(options) y x1 x2 @ z1 z2

For linear specifications, list the dependent variable first, followed by a list of the indepen-
dent variables. Use a “C” if you wish to include a constant or intercept term; unlike some
other programs, EViews does not automatically include a constant in the regression. You
may add AR, MA, SAR and SMA error specifications and PDL specifications for polynomial
distributed lags. If you include lagged variables, EViews will adjust the sample automati-
cally, if necessary.

Both dependent and independent variables may be created from existing series using stan-
dard EViews functions and transformations. EViews treats the equation as linear in each of
the variables and assigns coefficients C(1), C(2), and so forth to each variable in the list.

Linear or nonlinear single equations can also be specified by explicit equation. You should
specify the equation as a formula. The parameters to be estimated should be called “C(1)”,
“C(2)”, and so forth (assuming that you wish to use the default coefficient vector “C”).
You may also declare an alternative coefficient vector using coef and use these coeffi-
cients in your expressions.

For equation and var objects, you can declare and estimate the object in a single com-
mand. Follow the declaration of the object type with the name of the new object, then the
ls keyword, separated by a period.

When used as a pool method, ls carries out panel data estimation. Type the name of the
dependent variable followed by one or two lists of regressors. The first list should contain
ordinary and pool series that are restricted to have the same coefficient across all members
of the pool. The second list, if provided, should contain variables that have different coeffi-
cients for each member of the pool. If there is a second list, the two lists must be separated
by an “@”-sign.

For pool estimation, you may include AR terms as regressors (except when estimating ran-
dom effects models using the “r” option) but not MA terms.

ls—247
Options

Options for Equation, System, and Var estimation

Note: not all options are available for all methods. See the User’s Guide for details on each
estimation method.

w=series_name Weighted Least Squares. Each observation will be
weighted by multiplying by the specified series.

h White’s heteroskedasticity consistent standard errors.

n Newey-West heteroskedasticity and autocorrelation
consistent (HAC) standard errors.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

s Use the current coefficient values in C as starting values
for equations with AR or MA terms (see PARAM).

s=number Specify a number between zero and one to determine
starting values for equations with AR or MA terms as a
fraction of the preliminary LS or TSLS estimates made
without AR or MA terms (out of range values are set to
“s=1”).

z Turn off backcasting in ARMA models.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should
be a one or two letter string. The first letter should
either be “f” or “a” corresponding to fast or accurate
numeric derivatives (if used). The second letter should
be either “n” (always use numeric) or “a” (use analytic
if possible). If omitted, EViews will use the global
defaults.

p Print basic estimation results.

248—Chapter 8. Command Reference
Options for pool estimation

Examples

equation eq1.ls m1 c uemp inf(0 to -4) @trend(1960:1)

estimates a linear regression of M1 on a constant, UEMP, INF (from current up to four
lags), and a linear trend.

equation eq2.ls(z) d(tbill) c inf @seas(1) @seas(1)*inf ma(2)

regresses the first difference of TBILL on a constant, INF, a seasonal dummy, and an inter-
action of the dummy and INF with an MA(2) error term. The “z” option turns off backcast-
ing.

coef(2) beta

param beta(1) .2 beta(2) .5 c(1) 0.1

equation eq3.ls(h) q = beta(1)+beta(2)*(l^c(1) + k^(1-c(1)))

estimates the nonlinear regression starting from the specified initial values. The “h” option
reports heteroskedasticity consistent standard errors.

equation eq4.ls r=c(1)+c(2)*r(-1)+div(-1)^c(3)

sym betacov=eq4.@cov

n No intercept.

f Fixed effect estimation (separate intercept for each
cross section member).

r Random effects estimation.

w Weighted least squares, with weights estimated in pre-
liminary regression using equal weights. Not available
with the “r” option.

s SUR (seemingly unrelated regression), with covariance
matrix of pool members estimated in preliminary
regression and then applied in generalized least squares
in a second round. Not available with the “r” option.

i Iterate to convergence (default if AR terms are
included).

h White heteroskedasticity consistent standard errors.

b Estimate using a balanced sample.

p Print estimation results.

ma—249
declares and estimates a nonlinear equation and stores the coefficient covariance matrix in
a symmetric matrix called BETACOV.

pool1.ls dy? inv? edu? year

estimates pooled OLS of DY on a constant, INV, EDU, and YEAR.

pool1.ls(f) dy? @ inv? edu? year ar(1)

estimates a fixed effects model without restricting any of the coefficients to be the same
across pool members.

group rhs c dum1 dum2 dum3 dum4

ls cons rhs ar(1)

uses the group definition for RHS to regress CONS on C, DUM1, DUM2, DUM3, and DUM4
with an AR(1) correction.

Cross-references

Chapters 11 and 12 of the User’s Guide discuss the various regression methods in greater
depth. See Chapter 21 of the User’s Guide for a discussion of pool estimation.

See “Equation” (p. 21), “Pool” (p. 34), “System” (p. 45), and “Var” (p. 49) for a complete
description of these objects, including a list of saved results.

See ar (p. 144), ma (p. 249), sar (p. 307), sma (p. 330), and pdl (p. 282) for terms that
may be used in ls specifications.

Moving average error specification.

The ma specification may be added in an “ls” or “tsls” specification to indicate a moving
average error component. ma(1) indicates the first order component, ma(2) indicates the
second order component, and so on.

Examples

ls(z) m1 c tb3 tb3(-1) ma(1) ma(2)

regresses M1 on a constant, TB3, and TB3 lagged once with first order and second order
moving average error components. The “z” option turns off backcasting in estimation.

Cross-references

See Appendix , “”, on page 303 of the User’s Guide for details on ARMA and seasonal
ARMA modeling.

ma Expression

250—Chapter 8. Command Reference
See also sma (p. 330), ar (p. 144), and sar (p. 307).

Create group containing the estimated cointegrating relations from a VEC.

Syntax

Var Proc: var_name.makecoint

Var Proc: var_name.makecoint group_name

From the command window, the first form creates an untitled group object containing the
estimated cointegrating relations in the VEC. The second form allows you to name the
group object by following the makecoint proc with a name to be given to the group. The
series contained in the group are named COINTEQ01, COINTEQ02, and so on. In batch
mode (program files), the first form simply creates the series COINTEQ01, COINTEQ02,
and so on.

This proc will return an error message unless you have estimated an error correction
model with the var object.

Examples

var vec1.ec(b,2) 1 4 y1 y2 y3

vec1.makecoint gcoint

The first line estimates a VEC with 2 cointegrating relations. The second line creates a
group named GCOINT which contains the two estimated cointegrating relations. The two
cointegrating relations will be stored as series named COINTEQ01 and COINTEQ02 if these
names have not yet been used in the workfile. If these names are already used, the next
unused number will be appended to the prefix “COINTEQ” and will be used to name the
series.

Cross-references

See Chapter 20 of the User’s Guide for details.

See also coint (p. 166).

makecoint Var Proc

makeendog—251
Make a group containing individual series which hold the derivatives of the equation
specification.

Syntax

Equation Proc: equation_name.makederivs(options) [names]

If desired, enclose the name of the group object to contain the series in parentheses follow-
ing the command name.

The argument specifying the names of the series is also optional. If not provided, EViews
will name the series “DERIV##” where ## is a number such that “DERIV##” is the next
available unused name. If the names are provided, the number of names must match the
number of target series.

Cross-references

See Chapter 22 of the User’s Guide for details on state space estimation.

See also derivs (p. 189), grads (p. 223), makegrads (p. 253).

Make a group out of the endogenous series.

Syntax

Object Proc: object_name.makeendog name

Following the keyword makeendog, you should provide a name for the group to hold the
endogenous series. If you do not provide a name, EViews will create an untitled group.

Note that in EViews 4, endog and makeendog are no longer supported for model objects.
See instead, makegroup (p. 255).

Examples

var1.makeendog grp_v1

creates a group named GRP_V1 that contains the endogenous series in VAR1.

Cross-references

See also endog (p. 200) and makegroup (p. 255).

makederivs Equation Proc

makeendog Sspace Proc | System Proc | Var Proc

252—Chapter 8. Command Reference
Create a “Kalman filter” sspace object.

Creates a new sspace object with all estimated parameter values substituted out of the
specification. This procedure allows you to use the structure of the sspace without refer-
ence to estimated coefficients or the estimation sample.

Syntax

Sspace Proc: sspace_name.makefilter [filter_name]

If you provide a name for the model in parentheses after the keyword, EViews will quietly
create the named model in the workfile. If you do not provide a name, EViews will open an
untitled model window if the command is executed from the command line.

Examples

ss1.makefilter(kfilter)

creates a new sspace object named KFILTER, containing the specification in SS1 with esti-
mated parameter values substituted for coef elements.

Cross-references

See Chapter 22 of the User’s Guide for details on state space models.

See also makesignals (p. 260) and makestates (p. 262).

Generate conditional variance series.

makegarch saves the estimated conditional variance (from an equation estimated using
ARCH) as a named series.

Syntax

Equation Proc: eq_name.makegarch name

Following the makegarch keyword you should provide a name for the saved series. If you
do not provide a name, EViews will name the series GARCH01 (if GARCH01 already exists,
it will be named GARCH02, and so on).

makefilter Sspace Proc

makegarch Equation Proc

makegrads—253
Examples

equation eq1.arch sp c

eq1.makegarch cvar

plot cvar^.5

estimates a GARCH(1,1) model, saves the conditional variance as a series named CVAR,
and plots the conditional standard deviation. If you only want to view a plot of the condi-
tional standard deviation use the garch view.

Cross-references

See Chapter 16 of the User’s Guide for a discussion of GARCH models.

See also arch (p. 145) archtest (p. 147) and garch (p. 219).

Make a group containing individual series which hold the gradients of the objective func-
tion.

Syntax

Object Proc: object_name.makegrads(options) [names]

The argument specifying the names of the series is also optional. If the argument is not
provided, EViews will name the series “GRAD##” where ## is a number such that
“GRAD##” is the next available unused name. If the names are provided, the number of
names must match the number of target series.

Options

Examples

eq1.grads(n=out)

creates a group named OUT containing series named GRAD1, GRAD2, and GRAD3.

eq1.grads(n=out) g1 g2 g3

creates the same group, but names the series G1, G2 and G3.

Cross-references

See also derivs (p. 189), makederivs (p. 251), grads (p. 223).

makegrads Equation Proc | Logl Proc | Sspace Proc | System Proc

n=arg Name of group to object to contain the series.

254—Chapter 8. Command Reference
Make graph object showing model series.

Syntax

Model Proc: model_name.makegraph(options) graph_name model_vars

where graph_name is the name of the resulting graph object, and models_vars are the
names of the series. The list of model_vars may include the following special keywords:

Options

makegraph Model Proc

@all All model variables.

@endog All endogenous model variables.

@exog All exogenous model variables

@addfactor All add factor variables in the model

a Include actuals.

c Include comparison scenarios.

d Include deviations.

n Do not include active scenario (by default the
active scenario is included).

t= transform_type “t=level”—display levels in graph (default).

“t=pch”—display percent change in graph.

“t=pcha”—display percent change (annual rates)
in graph.

“t=pchy”—display 1-year percent change in graph.

“t=dif—display 1-period differences in graph.

“t=dify”—display 1-year differences in graph.

s=solution_type “s=d”—deterministic.

“s=m”—mean of stochastic.

“s=s”—mean and ±2 std. dev. of stochastic.

“s=b”—mean and confidence bounds of stochas-
tic.

makegroup—255
Examples

mod1.makegraph(a) gr1 y1 y2 y3

creates a graph containing the model series Y1, Y2, and Y3 in the active scenario and the
actual Y1, Y2, and Y3.

mod1.makegraph(a,t=pchy) gr1 y1 y2 y3

plots the same graph, but with data displayed as 1-year percent changes.

Cross-references

See “Displaying Data” on page 642 of the User’s Guide for details. See Chapter 23 of the
User’s Guide for a general discussion of models.

See makegroup (p. 255).

Make group out of pool and ordinary series using a pool object or make group out of
model series and display dated data table.

Syntax

Pool Proc: pool_name.makegroup(group_name) name1 name2 …

Model Proc: model_name.makegroup(options) group_name model_vars

When used as a pool proc, following the makegroup keyword, you should provide a name
for the new group, and then list the ordinary and pool series to be placed in the group.

When used as a model proc, the makegroup keyword should be followed by any options,
the name of the destination group, and the list of model variables to be created. The
options control the choice of model series, and transformation and grouping features of the
resulting dated data table view. The list of model_vars may include the following special
keywords:

g=grouping “g=v“—group series in graph by model variable
(default).

“g=s”—group series in graph by scenario.

“g=u”—ungrouped (each series in its own graph).

makegroup Model Proc | Pool Proc

256—Chapter 8. Command Reference
Options

For Model Proc

Examples

pool1.makegroup(g1) x? z y?

places the ordinary series Z, and all of the series represented by the pool series X? and Y?,
in the group G1.

@all All model variables.

@endog All endogenous model variables.

@exog All exogenous model variables

@addfactor All add factor variables in the model

a Include actuals

c Include comparison scenarios

d Include deviations

n Do not include active scenario (by default the
active scenario is included)

t= transform_type “t=level”—display levels (default)

“t=pch”—display percent change

“t=pcha”—display percent change (annual rates)

“t=pchy”—display 1-year percent change

“t=dif—display 1-period differences

“t=dify”—display 1-year differences

s=solution_type “s=d”—deterministic

“s=m”—mean of stochastic

“s=s”—mean and std. dev. of stochastic

“s=b”—mean and confidence bounds of stochastic

g=grouping “g=v“—group series in table by model variable
(default)

“g=s”—group series in table by scenario

makemodel—257
model1.makegroup(a,n) group1 @endog

places all of the actual endogenous series in the group GROUP1.

Cross-references

See “Displaying Data” on page 642 of the User’s Guide for details. See Chapter 23 of the
User’s Guide for a general discussion of models.

See makegraph (p. 254).

Create vector of limit points from ordered models.

makelimits creates a vector of the estimated limit points from equations estimated by
ordered.

Syntax

Equation Proc: eq_name.makelimits name

Provide a name for the vector after the makelimits keyword. If you do not provide a
name, EViews will name the vector LIMITS1 (if LIMITS1 already exists, it will be named
LIMITS2, and so on).

Examples

equation eq1.ordered edu c age race gender

eq1.makelimit cutoff

Estimates an ordered probit and saves the estimated limit points in a vector named CUT-
OFF.

Cross-references

See “Ordered Dependent Variable Models” on page 438 of the User’s Guide for a discussion
of ordered models.

Make a model from an estimation object.

Syntax

Object Proc: object_name.makemodel(name) assign_statement

makelimits Equation Proc

makemodel Equation Proc | Logl Proc | Pool Proc | Sspace Proc | System Proc |
Var Proc

258—Chapter 8. Command Reference
You should enter the name of the object, followed by a dot and the keyword makemodel.
If you provide a name for the model in parentheses after the keyword, EViews will quietly
create the named model in the workfile. If you do not provide a name, EViews will open an
untitled model window if the command is executed from the command line.

Examples

var var3.ls 1 4 m1 gdp tb3

var3.makemodel(varmod) @prefix s_

estimates a VAR and makes a model named VARMOD from the estimated var object. VAR-
MOD includes an assignment statement “assign @prefix s_”. Use the command “show var-
mod” or “varmod.spec” to open the VARMOD window.

Cross-references

See Chapter 23 of the User’s Guide for a discussion of specifying and solving models in
EViews.

See also append (p. 143), merge (p. 267) and solve (p. 334). For sspace objects, see
makefilter (p. 252).

Make regressor group.

Creates a group containing the dependent and independent variables from an equation
specification.

Syntax

Equation Proc: equation_name.makeregs name

Follow the keyword makeregs with the name of the group.

Examples

equation eq1.ls y c x1 x2 x3 z

eq1.makeregs reggroup

creates a group REGGROUP containing the series Y X1 X2 X3 and Z.

Cross-references

See also group (p. 226) and equation (p. 200).

makeregs Equation Proc

makeresids—259
Create residual series.

Creates and saves residuals in the workfile from an object with estimated equation or
equations.

Syntax

Equation Proc: equation_name.makeresids(options) res1

Object Proc: object_name.makeresids res1 res2 res3

Pool Proc: pool_name.makeresids poolser

Follow the object name with a period and the makeresid keyword and a list of names to
be given to the stored residuals. For pool residuals, you may use a cross section identifier
“?”.

For multiple equation objects, make sure to provide as many names as there are equations.
If there are fewer names than equations, EViews creates the extra residual series with
names RESID01, RESID02, and so on. If you do not provide any names, EViews will also
name the residuals RESID01, RESID02, and so on.

[NOTE: makeresids is no longer supported for the sspace object— see makesignals
(p. 260) for relevant replacement routines]

Options

The following options are available only for the residuals from single equation objects:

Examples

equation eq1.ls y c m1 inf unemp

eq1.makeresids res_eq1

makeresids Equation Proc | Pool Proc | System Proc | Var Proc

o (default) Ordinary residuals.

s Standardized residuals (available only after
weighted estimation and GARCH, binary, ordered,
censored, and count models).

g (default for ordered
models)

Generalized residuals (available only for binary,
ordered, censored, and count models).

n=arg Create group object to hold the residual series.

260—Chapter 8. Command Reference
estimates a linear regression of Y on a constant, M1, INF, UNEMP and saves the residuals
as a series named RES_EQ1.

var macro_var.ls 1 4 y m1 r

macro_var.makeresids resay res_m1 riser

estimates an unrestricted VAR with four lags and endogenous variables Y, M1, R and stores
the residuals as RES_Y, RES_M1, RES_R.

equation probit1.binary y c x z

probit1.makeresids(g) res_g

series score1=res_g

series score2=res_g*x

series score3=res_g*z

estimates a probit model of Y on a constant, X, Z and stores the generalized residuals as
RES_G. Then the vector of scores are computed as SCORE1, SCORE2, SCORE3.

pool1.makeresids res1_?

The residuals of each pool member will have a name starting with “RES1_” and the cross-
section identifier substituted for the “?”.

Cross-references

See “Weighted Least Squares” on page 279 of the User’s Guide for a discussion of standard-
ized residuals after weighted least squares and Chapter 17 of the User’s Guide for a discus-
sion of standardized and generalized residuals in binary, ordered, censored, and count
models.

For state space models, see makesignals (p. 260).

Generate signal series or signal standard error series from an estimated sspace object.

Options allow you to choose to generate one-step ahead and smoothed values for the sig-
nals, and the signal standard errors.

Syntax

Sspace Proc: name.makesignals(options) [names]

Follow the object name with a period and the makesignal keyword, options to determine
the output type, and a list of names or wildcard expression identifying the series to hold
the output. If a list is used to identify the targets, the number of target series must match

makesignals Sspace Proc

makesignals—261
the number of states implied in the sspace. If any signal variable contain expressions, you
may not use wildcard expressions in the destination names.

Options

Examples

ss1.makesignals(t=smooth) sm*

produces smoothed signals in the series with names beginning with “sm”, and ending with
the name of the signal dependent variable.

ss2.makesignals(t=pred, n=pred_sigs) sig1 sig2 sig3

creates a group named PRED_SIGS which contains the one-step ahead signal predictions in
series SIG1, SIG2, and SIG3.

Cross-references

See Chapter 22 of the User’s Guide for details on state space models. For additional discus-
sion of wildcards, see Appendix C, “Wildcards”, on page 657 of the User’s Guide.

See also forecast (p. 214), makefilter (p. 252) and makestates (p. 262).

t=output_type Defines output type:

“pred” (one-step ahead signal predictions) (default).

“predse” (RMSE of the one-step ahead signal predic-
tions).

“resid” (error in one-step ahead signal predictions).

“residse” (RMSE of the one-step ahead signal prediction;
same as predse).

“stdresid” (standardized one-step ahead prediction resid-
ual).

“smooth” (smoothed signals).

“smoothse” (RMSE of the smoothed signals).

“disturb” (estimate of the disturbances).

“disturbse” (RMSE of the estimate of the disturbances).

“stddisturb” (standardized estimate of the disturbances).

n=group_name Name of group to hold newly created series.

262—Chapter 8. Command Reference
Generate state series or state standard error series from an estimated sspace object.

Options allow you to choose to generate one-step ahead, filtered, and smoothed values for
the states, and the state standard errors.

Syntax

Sspace Proc: name.makestates(options) [names]

Follow the object name with a period and the makestate keyword, options to determine
the output type, and a list of names or wildcard expression identifying the series to hold
the output. If a list is used to identify the targets, the number of target series must match
the number of names implied by the keyword.

Options

makestates Sspace Proc

t=output_type Defines output type:

“pred” (one-step ahead state predictions) (default).

“predse” (RMSE of the one-step ahead state predictions).

“resid” (error in one-step ahead state predictions).

“residse” (RMSE of the one-step ahead state prediction;
same as predse).

“filt” (filtered states).

“filtse” (RMSE of the filtered states).

“stdresid” (standardized one-step ahead prediction resid-
ual).

“smooth” (smoothed states).

“smoothse” (RMSE of the smoothed states).

“disturb” (estimate of the disturbances).

“disturbse” (RMSE of the estimate of the disturbances).

“stddisturb” (standardized estimate of the disturbances).

n=group_name Name of group to hold newly created series.

makestats—263
Examples

ss1.makestates(t=smooth) sm*

produces smoothed states in the series with names beginning with “sm”, and ending with
the name of the state dependent variable.

ss2.makestates(t=pred, n=pred_states) sig1 sig2 sig3

creates a group named PRED_STATES which contains the one-step ahead state predictions
in series SIG1, SIG2, and SIG3.

Cross-references

See Chapter 22 of the User’s Guide for details on state space models. For additional discus-
sion of wildcards, see Appendix C, “Wildcards”, on page 657 of the User’s Guide.

See also forecast (p. 214), makefilter (p. 252) and makesignals (p. 260).

Creates and saves series of descriptive statistics computed from a pool object.

Syntax

Pool Proc: pool_name.makestats(options) ser1? ser2? @ stat_name

Follow the object name with a period, the makestat command, a list of series names, the
“@”-sign, and a list of command names for the statistics to compute. The statistics series
will have a name with the cross-section identifier “?” replaced by the statistic command.

Options

Options in parentheses specify the sample to use to compute the statistics

Command names for the statistics to be computed

makestats Pool Proc

i Use individual sample.

c (default) Use common sample.

b Use balanced sample.

obs Number of observations.

mean Mean.

med Median.

var Variance.

264—Chapter 8. Command Reference
Examples

pool1.makestats gdp_? edu_? @ mean sd

computes the mean and standard deviation of the GDP_? and EDU_? series in each period
across the cross-section members using the default common sample. The mean and stan-
dard deviation series will be named GDP_MEAN, EDU_MEAN, GDP_SD, EDU_SD.

pool1.makestats(b) gdp_? @ max min

Computes the maximum and minimum values of the GDP_? series in each period using the
balanced sample. The max and min series will be named GDP_MAX and GDP_MIN.

Cross-references

See Chapter 21 of the User’s Guide for details on the computation of these statistics and a
discussion of the use of individual, common, and balanced samples in pool.

See also describe (p. 190).

Create system from a pool object or var.

Syntax

Pool Proc: pool_name.makesystem(options) ser1? ser2? @ ser3? @ ser4?

Var Proc: var_name.makesystem(options)

The first usage creates a system out of the pool specification. You can specify the treatment
of the constant term and the name of the system as options in parentheses. Follow the
dependent variable with a list of regressors; first list the regressors with common coeffi-
cients, then list the regressors with cross-section specific coefficients, separating the two
lists with an “@”- sign. You can use the cross-section identifier “?” in the series name. You
may also list a set of instrumental variables after a second “@”-sign. Note that you can
always modify the specification in the system specification window.

sd Standard deviation.

skew Skewness.

kurt Kurtosis.

jarq Jarque-Bera test statistic.

min Minimum value.

max Maximum value.

makesystem Pool Proc | Var Proc

matrix—265
The second form is used to create a system out of the current var specification. You may
specify to order by series (default) or by lags.

Options

Options for Pools:

Options for VARs

Examples

pool1.makesystem(sys1) inv? cap? @ val?

creates a system named SYS1 with INV? as the dependent variable and a common intercept
for each cross-section member. The regressor CAP? is restricted to have the same coeffi-
cient in each equation, while the VAL? regressor has a different coefficient in each equa-
tion.

pool1.makesystem(sys2,f) inv? @ cap? @ @trend inv?(-1)

This command creates a system named SYS2 with INV? as the dependent variable and a
different intercept for each cross-section member equation. The regressor CAP? enters each
equation with a different coefficient and each equation has two instrumental variables
@TREND and INV? lagged.

Cross-references

See Chapter 19 of the User’s Guide for a discussion of system objects in EViews.

Declare and optionally initializes a matrix object.

Syntax

Command: matrix(r, c) matrix_name

Command: matrix(r, c) matrix_name=assignment

n No intercept.

c (default) Common intercept term.

f Cross-section specific intercepts (fixed effects).

name Name for the system object.

n=name Specify name for the system object.

bylag Specify system by lags (default is to order by variables).

matrix Object Declaration

266—Chapter 8. Command Reference
The matrix keyword is followed by the name you wish to give the matrix. matrix also
takes an optional argument specifying the row r and column c dimension of the matrix.

You can combine matrix declaration and assignment. If there is no assignment statement,
the matrix will initially be filled with zeros.

Once declared, matrices may be resized by repeating the matrix command using the orig-
inal name.

You should use sym for symmetric matrices.

Examples

matrix mom

declares a matrix named MOM with one element, initialized to zero.

matrix(3,6) coefs

declares a 3 by 6 matrix named COEFS, filled with zeros.

Cross-references

See Chapter 4, “Matrix Language”, beginning on page 55 of the Command and Program-
ming Reference for further discussion.

See “Matrix” (p. 31), “Rowvector” (p. 36) and “Vector” (p. 52) and “Sym” (p. 44) for full
descriptions of the various matrix objects.

Descriptive statistics by category of dependent variable.

Computes and displays descriptive statistics of the explanatory variables (regressors) of an
equation by categories/values of the dependent variable. means is currently available only
for equations estimated by binary.

Syntax

Equation View: eq_name.means(options)

Options

Examples

equation eq1.binary(d=l) work c edu faminc

means Equation View

p Print the descriptive statistics table.

merge—267
eq1.means

estimates a logit and displays the descriptive statistics of the regressors C, EDU, FAMINC
for WORK=0 and WORK=1.

Cross-references

See Chapter 17 of the User’s Guide for a discussion of binary dependent variable models.

Merge objects.

When used as a model procedure, merges equations from an estimated equation, model,
pool, system, or var object. When used as a graph procedure, merges graph objects.

If you supply only the object's name, EViews first searches the current workfile for the
object containing the equation. If it is not there, EViews looks in the default directory for
an equation or pool file (.DBE). If you want to merge the equations from a system file
(.DBS), a var file (.DBV), or a model file (.DBL), include the extension in the command.
You may include a path when merging files. You must merge objects to a model one at a
time; merge appends the object to the equations already existing in the model.

When used as a graph procedure, merge combines graph objects into a single graph
object. The graph objects to merge must exist in the current workfile.

Syntax

Model Proc: model_name.merge(options) object_name

Graph Proc: graph name.merge graph1 graph2

For merge as a model procedure, follow the merge keyword with a name of an object con-
taining estimated equation(s) to merge.

For merge as a graph procedure, follow the graph command with a name for the new
merged graph, the merge keyword, and a list of existing graph object names to merge.

Options

Examples

eq1.makemodel(mod1)

mod1.merge eq2

mod1.merge(t) c:\data\test.txt

merge Graph Proc | Model Proc

t Merge an ASCII text file (only for model merge).

268—Chapter 8. Command Reference
The first line makes a model named MOD1 from EQ1. The second line merges (appends)
EQ2 to MOD1 and the third line further merges (appends) the text file TEST from the spec-
ified directory.

graph mygra.merge gra1 gra2 gra3 gra4

show mygra.align(4,1,1)

The first line merges the four graphs GRA1, GRA2, GRA3, GRA4 into a graph named
MYGRA. The second line displays the four graphs in MYGRA in a single row.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graphs.

Save graph to disk as an enhanced or ordinary Windows metafile.

Syntax

Graph Proc: graph_name.metafile(options) name

Follow the metafile keyword with a name for the metafile. The graph will be saved with
a .WMF or a .EMF extension.

Options

Examples

mygra1.metafile c:\report\chap1_1

saves MYGRA1 as an enhanced Windows metafile CHAP1_1.EMF in the designated direc-
tory.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of using graphs in other Windows pro-
grams.

metafile Graph Proc

o Save the graph as an ordinary Windows metafile
(.WMF). Enhanced Windows metafiles (.EMF) are the
default.

c Save the graph in color. The default is in black and
white.

model—269
Maximum likelihood estimation of logl and state space models.

Syntax

Object Method: object_name.ml(options)

Options

Examples

bvar.ml

estimates the sspace object BVAR by maximum likelihood.

Cross-references

See Chapters 18 and 22 of the User’s Guide for a discussion of user specified likelihood and
state space models.

Declare or create a model.

Syntax

Command: model model_name

Object Proc: object_name.model(name) assign_statement

The keyword model should be followed by a name for the model. To fill the model, you
can use the append command.

ml Logl Method | Sspace Method

b Berndt-Hall-Hall-Hausman (BHHH) algorithm (default is Mar-
quardt).

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coefficients.

showopts /
-showopts

[Do / do not] display the starting coefficient values and esti-
mation options in the estimation output.

p Print basic estimation results.

model Object Declaration || Object Proc

270—Chapter 8. Command Reference
Examples

model macro

macro.append cs=10+0.8*y(-1)

macro.append i=0.7*(y(-1)-y(-2))

macro.append y=cs+i+g

declares an empty model named MACRO and adds three lines to MACRO.

Cross-references

See Chapter 23 of the User’s Guide for a discussion of specifying and solving models in
EViews.

See also append (p. 143), merge (p. 267) and solve (p. 334).

Display model solution messages.

Show view containing messages generated by the most recent model solution.

Syntax

Model View: model_name.msg(options)

Options

Cross-references

See Chapter 23 of the User’s Guide for a discussion of specifying and solving models in
EViews.

See also solve (p. 334) and solveopt (p. 335).

Not available code. “NA” is used to represent missing observations.

Examples

smpl if y >= 0

series z = y

msg Model View

p Print the model solution messages.

na Expression

name—271
smpl if y < 0

z = na

generates a series Z containing the contents of Y, but with all negative values of Y set to
“NA”.

NA values will also be generated by mathematical operations that are undefined:

series y = nrnd

y = log(y)

will replace all positive value of Y with log(Y) and all negative values with “NA”.

series test = (yt <> na)

creates the series TEST which takes the value one for nonmissing observations of the
series YT. A zero value of TEST indicates missing values of the series YT.

Note that the behavior of missing values has changed since EViews Version 2. Previously,
NA values were coded as 1e-37. This implied that in EViews 2 you could use the expres-
sion

series z = (y>=0)*x + (y<0)*na

to return the value of Y for non-negative values of Y and “NA” for negative values of Y.
This expression will now generate the value “NA” for all values of Y, since mathematical
expressions involving missing values always return “NA”. You must now use the smpl
statement as in the first example above, or the @recode function.

Cross-references

See “Missing Data” on page 92 of the User’s Guide for a discussion of working with miss-
ing values in EViews.

Change the series name for legends or axis labels.

name allows you to provide an alternative to the series name for legends or axis labels. The
name command is available only for single graphs and will be ignored in multiple graphs.

Syntax

Graph Proc: graph_name.name(n) text_for_legend

name Graph Proc

272—Chapter 8. Command Reference
Provide a series number in parentheses and text for legend (or axis label) after the name
keyword. If you do not provide text, the series name will be removed from the legend/axis
label.

 Examples

graph g1.line(d) unemp gdp

g1.name(1) Civilian unemployment rate

g1.name(2) Gross National Product

The first line creates a line graph named G1 with dual scale, no crossing. The second line
replaces the legend of the first series UNEMP, and the third line replaces the legend of the
second series GDP.

graph g2.scat id w h

g2.name(1)

g2.name(2) weight

g2.name(3) height

g2.legend(l)

The first line creates a scatter diagram named G2. The second line removes the legend of
the horizontal axis, and the third and fourth lines replace the legends of the variables on
the vertical axis. The last line moves the legend to the left side of the graph.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of working with graphs.

See also displayname (p. 192).

Nearest neighbor fit.

Displays the fit of the second series (vertical axis) on the first series (horizontal axis) in the
group.

Syntax

Group View: group_name.nnfit(options)

nnfit Group View

nnfit—273
Options

Examples

group gr1 gdp90 gdp50

gr1.nnfit(x,m=3)

displays the nearest neighbor fit of GDP50 on GDP90 with exact (full) sampling and 3
robustness iterations. Each local regression fits the default linear regression with tricube
weighting using a bandwidth of span 0.3.

group gro1 weight height

gro1.nnfit(50,d=2,m=3)

displays the nearest neighbor fit of HEIGHT on WEIGHT by fitting approximately 50 data
points. Each local regression fits a quadratic using tricube robustness weights with 3 itera-
tions.

Cross-references

See “Scatter with Nearest Neighbor Fit” on page 235 of the User’s Guide for a discussion of
nearest neighbor regressions.

See also linefit (p. 242) and kerfit (p. 237).

b=fraction
(default=0.3)

Bandwidth as a fraction of the total sample. The larger
the fraction, the smoother the fit.

d=integer
(default=1)

Degree of polynomial to fit.

b Bracket bandwidth span.

integer
(default=100)

Approximate number of data points at which to com-
pute the fit (if performing subsampling).

x Exact (full) sampling. Default is Cleveland subsam-
pling.

u No local weighting. Default is local weighting with
tricube weights.

m=integer Set number of robustness iterations.

s Symmetric neighbors. Default is nearest neighbors.

s=name Save fitted series.

p Print the Loess fit.

274—Chapter 8. Command Reference
Normal random number generator.

When used in a series expression, nrnd generates (pseudo) random draws from a normal
distribution with zero mean and unit variance.

Examples

smpl @first @first

series y = 0

smpl @first+1 @last

series y = .6*y(-1)+.5*nrnd

generates a Y series that follows an AR(1) process with initial value zero. The innovations
are normally distributed with mean zero and standard deviation 0.5.

series u = 10+@sqr(3)*nrnd

series z = u+.5*u(-1)

generates a Z series that follows an MA(1) process. The innovations are normally distrib-
uted with mean 10 and variance 3.

series x = nrnd^2+nrnd^2+nrnd^2

generates an X series as the sum of squares of three independent standard normal random
variables, which has a distribution. Note that adding the sum of the three series is
not the same as issuing the command

series x=3*nrnd^2

since the latter involves the generation of a single random variable.

The command

series x=@qchisq(rnd,3)

provides an alternative method of simulating random draws from a distribution.

Cross-references

See “Statistical Distribution Functions” on page 444 for a list of other random number gen-
erating functions from various distributions.

See also rnd (p. 302), rndint (p. 302) and rndseed (p. 303).

nrnd Expression

χ
2 3()

χ
2 3()

options—275
Opens a workfile, database, program file, or ASCII text file.

You should provide the file name including its extension. File names with the extensions
.WF and .WF1 are processed as workfiles, .PRG files are treated as program files, and any-
thing else is considered a text file. By default, open will look in the current directory
unless an explicit path is provided.

Syntax

Command: open file_name

Examples

open finfile.wf1

opens a workfile named FINFILE from the default directory.

open c:\prog\test1.prg

opens a program file named TEST1 from the specified directory.

open a:\mymemo.tex

opens a text file named MYMEMO.TEX from the A drive.

open f:\mydata\dbase.edb

opens and EViews database file named DBASE from F:\MYDATA.

Cross-references

See Chapter 4 of the User’s Guide for a discussion of basic file operations.

See also load (p. 244), fetch (p. 205), read (p. 291).

Set options for a graph object.

Allows you to change the option settings of an existing graph object. When options is
used with a multiple graph, the options are applied to all graphs.

Syntax

Graph Proc: graph_name.options option_list

open Command

options Graph Proc

276—Chapter 8. Command Reference
Note: the syntax of the options proc has changed considerably from version 3.1 of
EViews. While not documented here, the EViews 3.x options are still (for the most part)
supported. However, we do not recommend using the old options, as future support is not
guaranteed.

Options

The options which support the “-” may be proceeded by a “+” or “-” indicating whether
to turn on or off the option. The “+” is optional.

Examples

graph1.option size(4,4) +inbox color

sets GRAPH1 to use a 4 × 4 frame enclosed in a box. The graph will use color.

size(h, w) Specifies the size of the plotting frame

inbox / -inbox [Enclose / Do not enclose] the plotting frame in a box.

indent / -indent [Indent / Do not indent] lines/bars/spikes in the plot-
ting frame.

color / -color Specifies that lines/bars [use / do not use] color—solid
lines will be used if “lineauto” is set. If color is turned
off (see setelem (p. 323)) gray scales will be used for
bars and pies and line patterns will be used if “lin-
eauto” is set.

linesolid Do not use line patterns (all lines will be solid).

linepat Use line patterns.

lineauto Use solid lines when drawing in color and use patterns
when drawing in black and white.

barlabelabove /
-barlabelabove

[Place / Do not place] text value of data above bar in
bar graph.

barlabelinside /
-barlabelinside

[Place / Do not place] text value of data inside bar in
bar graph.

barspace /
-barspace

[Put / Do not put] space between bars in bar graph.

pielabel / -piela-
bel

[Place / Do not place] text value of data in pie chart.

ordered—277
graph1.option linepat -color size(2,8) -inbox

sets GRAPH1 to use a frame with no box. The graph does not use color, with the
lines instead being displayed using patterns.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph options in EViews.

See also scale (p. 309) and setelem (p. 323).

Estimation of ordered dependent variable models.

Syntax

Command: ordered(options) y x1 x2 x3

Equation Method: equation name.ordered(options) y x1 x2 x3

When used as an equation procedure, ordered estimates the model and saves the results
as an equation object with the given name.

Options

ordered Command || Equation Method

d=n (default) Maximize using standard normal likelihood (ordered pro-
bit).

d=l Maximize using logistic likelihood (ordered logit).

d=x Maximize using (Type I) extreme value likelihood
(ordered Gompit).

q (default) Use quadratic hill climbing as maximization algorithm.

r Use Newton-Raphson as maximization algorithm.

b Use Berndt-Hall-Hall-Hausman as maximization algo-
rithm.

h Quasi-maximum likelihood (QML) standard errors.

g GLM standard errors.

m=integer Set maximum number of iterations.

c=scalar Set convergence criterion. The criterion is based upon the
maximum of the percentage changes in the scaled coeffi-
cients.

2 8×

278—Chapter 8. Command Reference
If you choose to employ user specified starting values, the parameters corresponding to the
limit points must be in ascending order.

Examples

ordered(d=l,h) y c wage edu kids

estimates an ordered logit model of Y on a constant, WAGE, EDU, and KIDS with QML
standard errors. This command uses the default quadratic hill climbing algorithm.

param c(1) .1 c(2) .2 c(3) .3 c(4) .4 c(5).5

equation eq1.binary(s) y c x z

coef betahat=eq1.@coefs

eq1.makelimit gamma

estimates an ordered probit model of Y on a constant, X, and Z from the specified starting
values. The estimated coefficients are then stored in the coefficient vector BETAHAT, and
the estimated limit points are stored in the vector GAMMA.

Cross-references

See “Ordered Dependent Variable Models” on page 438 of the User’s Guide for additional
discussion.

See binary (p. 152) for the estimation of binary dependent variable models. See also
makelimits (p. 257).

s Use the current coefficient values in C as starting values.

s=number Specify a number between zero and one to determine
starting values as a fraction of preliminary EViews
default values (out of range values are set to “s=1”).

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should be
a one- or two-letter string. The first letter should either be
“f” or “a” corresponding to fast or accurate numeric
derivatives (if used). The second letter should be either
“n” (always use numeric) or “a” (use analytic if possi-
ble). If omitted, EViews will use the global defaults.

p Print results.

output—279
Redirect printer output or display estimation output.

When used as a command, output redirects printer output. You may specify that any pro-
cedure that would normally send output to the printer instead keep the output as a frozen
table or graph, or put the output in an ASCII text file.

Syntax

Command: output(options) base_name

Command: output off

By default, the output command redirects the output into frozen objects. You should sup-
ply a base name after the output keyword. Each subsequent print command will create a
new table or graph object in the current workfile, using the base name and an identifying
number. For example, if you supply the base name of “OUT”, the first print command will
generate a table or graph named OUT1, the second print command will generate OUT2,
and so on.

You can also use the optional settings, described below, to redirect table and text output to
an ascii test file.

When followed by the optional keyword off, the output command turns off output redi-
rection. Subsequent print commands will be directed to the printer.

Options

Options for output command

Options for output view

Examples

output print_

causes the first print command to generate a table or graph object named PRINT_1, the
second print command to generate an object named PRINT_2, and so on.

output Command || Equation View | Logl View | Pool View | Sspace View |
System View | Var View

t Redirect table and text output to an ascii file in the
default directory. Graphic output will continue to be
sent to the printer.

p Print estimation output.

280—Chapter 8. Command Reference
output(t) c:\data\results

equation eq1.ls(p) log(gdp) c log(k) log(l)

eq1.resids(g,p)

output off

The second line redirects printing to the RESULTS.TXT file, while the print option of the
third line sends the graph output to the printer. The last line turns output redirection off
and restores normal printer use.

Cross-references

See “Output Redirection” beginning on page 651 of the User’s Guide for further discussion.

See also pon (p. 427), poff (p. 427).

Specifies (or merges) overridden exogenous variables and add factors in the active sce-
nario.

Syntax

Model Proc: model_name.override(options) ser1 ser2 ...

Follow the override keyword with the argument list containing the exogenous variables
or add factors you wish to override.

Options

Examples

mod1.override fed1 add1

creates an override list containing the variables FED1 and ADD1.

If you then issue the command

mod1.override fed1

EViews will replace the original exclude list with one containing only FED1. To add over-
rides to an existing list, use the “m” option:

modl.override(m) add1

The override list now contains both series.

override Model Proc

m Merge into (instead of replace) the existing override list.

pcomp—281
Cross-references

See the discussion in “Specifying Scenarios” on page 625 of the User’s Guide. See also
Chapter 23 of the User’s Guide for a general discussion of models.

See also model (p. 269), exclude (p. 203) and solveopt (p. 335).

Set parameter values.

Allows you to set the current values of coefficient vectors. The command may be used to
provide starting values for the parameters in nonlinear least squares, nonlinear system esti-
mation, and (optionally) ARMA estimation.

Syntax

Command: param coef_name(1) n1 coef_name(2) n2 …

Simply list, in pairs, the names of the coefficient vector and its element number followed
by the corresponding starting values. You can use param to change the starting value of
all, or just a subset, of the parameters in your equation.

Examples

param c(1) .2 c(2) .1 c(3) .5

resets the first three values of the coefficient vector C.

coef(3) beta

param beta(2) .1 beta(3) .5

The first line declares a coefficient vector BETA of length 3 filled with zeros. The second
line resets the second and third elements of BETA to 0.1 and 0.5, respectively.

Cross-references

See “Starting Values” on page 297 of the User’s Guide for a discussion of setting initial val-
ues in nonlinear estimation.

Principal components analysis.

Syntax

Group View: group_name.pcomp(options) ser_name1 ser_name2 ...

param Command

pcomp Group View

282—Chapter 8. Command Reference
Enter the name of the group followed by a period, the keyword pcomp and optionally a list
of names to store the first principal components. Separate each name in the list with
a space and do not list more names than the number of series in the group.

Options

Examples

group g1 x1 x2 x3 x4

freeze(tab1) g1.pcomp(cor, eigval=v1, eigvec=m1) pc1 pc2

The first line creates a group named G1 with four series X1, X2, X3, X4. The second line
stores the first two principal components in series named PC1 and PC2 using the sample
correlation matrix. The output view is stored in a table named TAB1, the eigenvalues in a
vector named V1, and the eigenvectors in a matrix named M1.

Cross-references

See “Principal Components” on page 219 of the User’s Guide for further discussion.

Polynomial distributed lag specification.

This expression allows you to estimate polynomial distributed lag specifications in ls or
tsls estimation. pdl forces the coefficients of a distributed lag to lie on a polynomial. The
expression can only be used in estimation by list.

cor (default) Use sample correlation matrix.

cov Use sample covariance matrix.

dof Degrees of freedom adjustment if cov option used.
Default is no adjustment (which divides by rather
than).

eigval=vec_name Specify name of vector to save the eigenvalues in work-
file.

eigvec=mat_name Specify name of matrix to save the eigenvectors in
workfile.

p Print results.

pdl Expression

k k

n

n 1−

pdl—283
Syntax

Expression: ls y x1 x2 pdl(series_name, lags, order[,options])

Expression: tsls y x1 x2 pdl(series_name, lags, order[,options]) @ z1 z2

Options

The PDL specification must be provided in parentheses after the keyword pdl in the fol-
lowing order: the name of the series to which to fit a polynomial lag, the number of lags to
include, the order (degree) of polynomial to fit, and an option number to constrain the
PDL. By default, EViews does not constrain the endpoints of the PDL.

The constraint options are:

Examples

ls sale c pdl(order,8,3) ar(1) ar(2)

fits a third degree polynomial to the coefficients of eight lags of the regressor ORDER.

tsls sale c pdl(order,12,3,2) @ c pdl(rain,12,6)

fits a third degree polynomial to the coefficients of twelve lags of ORDER, constraining the
far end to be zero. Estimation is by two-stage least squares, using a constant and a sixth
degree polynomial fit to twelve lags of RAIN.

tsls y c x1 x2 pdl(z,12,3,2) @ c pdl(*) z2 z3 z4

When the PDL variable is exogenous in 2SLS, you may use “pdl(*)” in the instrument list
instead of repeating the full PDL specification.

Cross-references

See “Polynomial Distributed Lags (PDLs)” on page 323 of the User’s Guide for further dis-
cussion.

1 Constrain the near end of the distribution to zero.

2 Constrain the far end of the distribution to zero.

3 Constrain both the near and far end of the distribution
to zero.

284—Chapter 8. Command Reference
Pie graph.

The pie command creates an untitled graph object containing pie charts for any number
of series. There will be one pie for each date or observation number, provided the values of
the series are positive. Each series is shown as a wedge in a different color/pattern, where
the width of the wedge equals the percentage contribution of the series to the total of all
listed series.

Syntax

Command: pie(options) ser1 ser2 ser3

Object View: object_name.pie(options)

Graph Proc: graph_name.pie(options)

To use pie as a command, simply list the name of the series to include in the pie chart.
You may also change the graph type by using pie as a method. Simply list the graph
name, followed by a period, and the “pie” keyword.

Options

Examples

smpl 1990 1995

pie cons inv gov

shows six pie charts, each divided into CONS, INV, and GOV.

graph gr1.line cons inv gov

gr1.pie

creates a line graph GR1 and then changes the graph to a pie chart.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graphs and templates.

See also graph (p. 224).

pie Command || Graph Proc | Group View | Matrix View | Sym View

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the pie chart.

predict—285
Line graph.

See line (p. 241).

Declare pool object.

Syntax

Command: pool name id1 id2 id3 …

Follow the pool keyword with a name for the pool object. You may optionally provide the
identifiers for the cross-section members of the pool object. Pool identifiers may be added
or removed at any time using the add and drop views of a pool.

Examples

pool zoo1 dog cat pig owl ant

Declares a pool object named ZOO1 with the listed cross-section identifiers.

Cross-references

“Pool” on page 34 contains a a complete description of the pool object. See Chapter 21 of
the User’s Guide for a discussion of working with pools in EViews.

See ls (p. 245) for details on estimation using a pool object.

Prediction table for binary and ordered dependent variable models.

The prediction table displays the actual and estimated frequencies of each value of the dis-
crete dependent variable.

Syntax

Equation Proc: eq_name.predict(options)

plot Command

pool Object Declaration

predict Equation Proc

286—Chapter 8. Command Reference
For binary models, you may optionally specify how large the estimated probability must be
to be considered as a success (). Specify the cutoff level as an option in parenthe-
ses after the keyword predict.

Options

Examples

equation eq1.binary(d=l) work c edu age race

eq1.predict(0.7)

Estimates a logit and displays the expectation-prediction table using a cutoff probability of
0.7.

Cross-references

See “Binary Dependent Variable Models” on page 421 of the User’s Guide for a discussion
of binary models, and “Expectation-Prediction (Classification) Table” on page 429 of the
User’s Guide for examples of prediction tables.

The print command sends views of objects to the default printer.

Syntax

Command: print(options) name1 name2 name3 …

Command: print(options) name1.view

print should be followed by a list of object names or a view of an object to be printed.
The list of names must be of the same object type. If you do not specify the view of the
object, print will print the default view for each object.

Options

n (probability)
(default=.5)

Cutoff probability for success prediction in binary mod-
els.

p Print the prediction table.

print Command

p Override the default output orientation (set by Print
Setup) and print in portrait.

l Override the default output orientation (set by Print
Setup) and print in landscape.

y 1=

program—287
Examples

print gdp log(gdp) d(gdp) @pch(gdp)

sends a table of GDP, log of GDP, first difference of GDP, and percentage change of GDP to
the printer.

print graph1 graph2 graph3

prints three graphs on a single page.

To merge the three graphs, realign them in one row, and print in landscape:

graph mygra.merge graph1 graph2 graph3

mygra.align(3,1,1)

print(l) mygra

To estimate the equation EQ1 and send the output view to the printer.

print eq1.ls gdp c gdp(-1)

Cross-references

See “Print Setup” beginning on page 651 of the User’s Guide for a discussion of print
options and the Print Setup dialog.

Estimation of binary dependent variable models with normal errors.

Equivalent to “binary(d=n)”.

See binary (p. 152).

Declare a program.

Syntax

Command: program prog_name

Enter a name for the program after the program keyword. If you do not provide a name,
EViews will open an untitled program window. Programs are text files, not objects.

probit Command

program Command

288—Chapter 8. Command Reference
Examples

program runreg

opens a program window named RUNREG which is ready for program editing.

Cross-references

See Chapter 6, “EViews Programming”, on page 85 of the Command and Programming
Reference for further details and examples of writing EViews programs.

Quantile-quantile plots.

qqplot plots the (empirical) quantiles of a series against the quantiles of a theoretical dis-
tribution or the quantiles of another series. You may specify the theoretical distribution
and/or the method used to compute the empirical quantiles as options.

Syntax

Object View: object_name.qqplot(options)

Options

Examples

equation eq1.binary(d=l) work c edu age race

qqplot Group View | Series View

n Plot against the quantiles of a normal distribution.

u Plot against the quantiles of a uniform distribution.

e Plot against the quantiles of an exponential distribu-
tion.

l Plot against the quantiles of a logistic distribution.

x Plot against the quantiles of an extreme value distribu-
tion.

s=series_name Plot against the (empirical) quantiles of the specified
series.

q=arg
(default=“r”)

Compute quantiles using the definition: “b” (Blom), “r”
(Rankit-Cleveland), “o” (simple fraction), “t” (Tukey),
“v” (van der Waerden).

p Print the QQ-plot.

qstats—289
eq1.makeresid(o) res1

res1.qqplot(l)

estimates a logit, retrieves the residuals, and plots the quantiles of the residuals against
those from the logistic distribution. If the error distribution is correctly specified, the QQ-
plot should lie on a straight line.

Cross-references

See “Quantile-Quantile” on page 227 of the User’s Guide for a discussion of QQ-plots.

See also cdfplot (p. 157).

Multivariate residual autocorrelation portmanteau tests.

Syntax

Var View: var_name.qstats(h,options)

You must specify the highest order of lag h to test for serial correlation. h must be larger
than the VAR lag order.

Options

Examples

var var1.ls 1 6 lgdp lm1 lcpi

show var1.qstats(l2,name=q)

The first line declares and estimates a VAR. The second line displays the portmanteau tests
for lags up to 12 and stores the Q-statistics in a matrix named Q.

Cross-references

See “Diagnostic Views” on page 522 of the User’s Guide for a discussion of the portman-
teau tests and other VAR diagnostics.

See also arlm (p. 148) for a related multivariate residual serial correlation LM test.

qstats Var View

name=arg Save Q-statistics in named matrix object. The matrix
has two columns, where the first column is the unmod-
ified and the second column is the modified Q-statis-
tics.

p Print the portmanteau test results.

290—Chapter 8. Command Reference
Reset the workfile range (resize the workfile).

range is more general than expand, since it also allows you to shrink the workfile.

Note that data in the workfile will be lost if you shrink the workfile. Sample objects con-
tained in the workfile may also be modified when shrunk.

Syntax

Command: range start end

For workfiles with dates, follow the range keyword with the new starting and ending
dates. To resize an undated workfile, list a pair of observation numbers to indicate the new
range.

Examples

workfile mywork m 1957:1 1995:12

range 1945:1 1989:12

The first line creates a monthly workfile from January 1957 to December 1995. The second
line resizes the workfile to start from January 1945 and end at December 1989.

workfile test a 1930 1999

sample s1 1930 1972

range 1940 1989

The first line creates an annual workfile named TEST with range from 1930 to 1999. The
second line creates a sample object named S1 with sample range 1930 to 1972. The third
line resizes the workfile range from 1940 to 1989. Note that the sample range of S1 will
also be modified to 1940–1989.

Cross-references

See “Workfile Basics” on page 33 of the User’s Guide for a discussion of workfiles.

See also workfile (p. 381), expand (p. 204), smpl (p. 332).

range Command

read—291
Read data from a foreign disk file.

The “read” command may be used to read multiple series into a workfile from a file on
disk. When used as a procedure, read imports data directly into pool and matrix objects.

Syntax

Command: read(options) path\file_name name1 name2 name3

Command: read(options) path\file_name n

Coef Proc: coef_name.read(options) path\file_name

Pool Proc: pool_name.read(options) path\file_name n1? n2? n3?

Matrix Proc: matrix_name.read(options) path\file_name

You must supply the name of the source file. If you do not include the optional path speci-
fication, EViews will look for the file in the default directory. The input specification fol-
lows the source file name. Path specifications may point to local or network drives. If the
path specification contains a space, you may enclose the entire expression in double quota-
tion marks.

In the command proc form of read, there are two ways to specify the input series. First,
you may list the names of the series in the order they appear in the file. Second, if the data
file contains a header line for the series names, you may specify the number n of the series
in the file instead of a list of names; EViews will name the series as given in the header
line. If you specify a number and the data file does not contain a header line, EViews will
name the series as SER01, SER02, SER03, and so on.

For the pool proc form of read, you must provide a list of ordinary or pool series.

Options

File type options
:

If you do not specify the “t” option, EViews uses the file name extension to determine the
file type. If you do specify the “t” option, then the file name extension will not be used to
determine the file type.

read Command || Coef Proc | Matrix Proc | Pool Proc | Sym Proc | Vector
Proc

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

292—Chapter 8. Command Reference
Options for ascii text files

na=text Specify text for NAs. Default is “NA”.

byper Panel data organized by date/period. Default is data
organized by cross-section (only for pool read).

bycross (default) Panel data organized by cross-section (only for pool
read).

t Read by series (or transpose the data for matrix
objects). Default is to read by observation with series in
columns.

d=t Treat tab as delimiter.

d=c Treat comma as delimiter.

d=s Treat space as delimiter.

d=a Treat alpha numeric characters as delimiter.

custom=symbol Specify symbol/character to treat as delimiter.

mult Treat multiple delimiters as one.

name Series names in file.

label=integer Number of lines between the header line and the data.
Must be used with the “name” option.

rect(default) Treat file layout as rectangular.

norect Do not treat file layout as rectangular.

skipcol=integer Number of columns to skip. Must be used with the
“rect” option.

skiprow=integer Number of rows to skip. Must be used with the “rect”
option.

comment=symbol Specify character/symbol to treat as comment sign.
Everything to the right of the comment sign is ignored.
Must be used with the “rect” option.

singlequote Strings are in single quotes, not double quotes.

dropstrings Do not treat strings as NA; simply drop them.

negparen Treat numbers in parentheses as negative numbers.

allowcomma Allow commas in numbers (note that using commas as
a delimiter takes precedence over this option).

currency=symbol Specify symbol/character for currency data.

rename—293
Options for spreadsheet (Lotus, Excel) files

Examples

read(t=dat,na=.) a:\mydat.raw id lwage hrs

reads data from an ASCII file MYDAT.RAW in the A drive. The data file is listed by observa-
tion, NA is coded as a “.” (dot or period), and there are three series, which are to be named
ID, LWAGE, HRS in this order from left to right.

read(a2,s=sheet3) cps88.xls 10

reads data from an Excel file CPS88 in the default directory. The data are organized by
observation, the upper left data cell is A2, and 10 series are read from a sheet named
SHEET3.

read(a2, s=sheet2) "\\network\dr 1\cps91.xls" 10

reads the Excel file CPS91 from the network drive specified in the path.

Cross-references

See “Importing Data” on page 64 of the User’s Guide for a discussion and examples of
importing data from external files.

See also write (p. 383).

Rename an object in the active workfile or database.

Syntax

Command: rename old_name new_name

letter_number
(default=b2)

Coordinate of the upper-left cell containing data.

s=sheet_name Sheet name for Excel 5–8 Workbooks.

byper Panel data organized by date/period. Default is data
organized by cross-section (only for pool read).

bycross (default) Panel data organized by cross-section (only for pool
read).

t Read by series (or transpose the data for matrix
objects). Default is to read by observation with each
series in columns.

rename Command

294—Chapter 8. Command Reference
After the rename keyword, first list the old name, followed by the new name.

Examples

rename temp_u u2

renames an object named TEMP_U as U2.

rename aa::temp_u aa::u2

renames TEMP_U to U2 in database AA.

Cross-references

See “Object Basics” on page 41 of the User’s Guide for a discussion of working with objects
in EViews.

Display text of specification for equation, pool, and var objects.

Syntax

Object View: object_name.representation(options)

Options

Examples

pool1.representation

displays the specifications of the estimation object POOL1.

Cross-references

See Chapters 11, 20, and 21 of the User’s Guide, for basic details on the relevant estimation
objects.

See also spec (p. 337).

representation Equation View | Pool View | Var View

p Print the representation text.

resample—295
Resample from observations in a series or group.

Syntax

Object Proc: object_name.resample(options) [output_names]

You should follow the resample keyword and options with a list of names or wildcard
expression identifying the series to hold the output. If a list is used to identify the targets,
the number of target series must match the number of names implied by the keyword.

Options

• Since we append a suffix for the new name, no series in the group can be an auto-
series. For example, a group containing series such as X(–1) or LOG(X) will error.
You will have to generate new series, say by setting XLAG = X(–1) or LOGX =
LOG(X). Then create a new group consisting of XLAG and LOGX and call the boot-
strap procedure on this new group.

resample Group Proc | Series Proc

outsmpl="" Sample to fill the new series. Either provide the sample
range in double quotes or specify a named sample
object. The default is the current workfile sample.

name=group_na
me

Name of group to hold created series

permute Draw from rows without replacement. Default is to
draw with replacement.

weight=
series_name

Name of series to be used as weights. The weight series
must be non-missing and non-negative in the current
workfile sample. The default is equal weights.

block=integer Block length for each draw. Must be a positive integer.
The default block length is 1.

withna (default) Draw from all rows in the current sample, including
those with NAs.

dropna Do not draw from rows that contain missing values in
the current workfile sample.

fixna Excludes NAs from draws but copies rows containing
missing values to the output series.

296—Chapter 8. Command Reference
• If the name you provided to group the resampled series already exists and if it is a
group object, the group object will be overwritten with the resample series. If it
already exists but is not a group object, EViews will error.

• Block bootstrap (block length larger than 1) requires a continuous output sample.
Therefore a block length larger than 1 cannot be used together with the “fixna”
option and the “outsmpl” should not contain any gaps.

• The “fixna” option will have an effect only if there are missing values in the overlap-
ping sample of the input sample (current workfile sample) and the output sample
specified by “outsmpl”.

• If you specify “fixna”, we first copy any missing values in the overlapping sample to
the output series. Then the input sample is adjusted to drop the rows containing
missing values and the output sample is adjusted not to overwrite the copied values.

• If you choose “dropna” and the block length is larger than 1, the input sample may
shrink in order to ensure that there are no missing values in any of the drawn
blocks.

• If you choose “permute”, the block option will be reset to 1, the “dropna” and
“fixna” options will be ignored (reset to the default “withna” option), and the
“weight” option will be ignored (reset to default equal weights).

Examples

group g1 x y

g1.resample

creates new series X_B and Y_B by drawing with replacement from the rows of X and Y in
the current workfile sample. If X_B or Y_B already exist in the workfile, they will be over-
written if they are series objects; otherwise EViews will error. Note that only values of X_B
and Y_B in the output sample (in this case the current workfile sample) will be overwrit-
ten.

g1.resample(weight=wt,suffix=_2) g2

will append “_2” to the names for the new series and group them in a group object named
G2. The rows in the sample will be drawn with probabilities proportional to the corre-
sponding values in the series WT. WT must have non-missing non-negative values in the
current workfile sample.

Cross-references

See “Resampling” on page 175 of the User’s Guide for a discussion of the resampling pro-
cedure. For additional discussion of wildcards, see Appendix C, “Wildcards”, on page 657
of the User’s Guide.

residcor—297
See also @resample (p. 412) and @permute (p. 412) for sampling from matrices.

Ramsey’s regression specification error test.

Syntax

Command: reset(n, options)

Equation View: eq_name.reset(n, options)

You must provide the number of powers of fitted terms n to include in the test regression.

Options

Examples

equation eq1.ls lwage c edu race gender

eq1.reset(2)

carries out the RESET test by including two terms, the square and the cube of the fitted
values.

Cross-references

See “Ramsey's RESET Test” on page 382 of the User’s Guide for a discussion of the RESET
test.

Residual correlation matrix.

Displays the correlations of the residuals from each equation in the system, sspace, or var
object, or from each pool cross-section. The sspace object residuals are the standardized
one-step ahead signal forecast errors.

Syntax

Object View: object_name.residcor(options)

Options

reset Command || Equation View

p Print the test result.

residcor Pool View | Sspace View | System View | Var View

p Print the correlation matrix.

298—Chapter 8. Command Reference
Examples

sys1.residcor

displays the residual correlation matrix of SYS1.

Cross-references

See Chapters 19, 20, 21, and 22 of the User’s Guide for a discussion of systems, VARs,
pools, and sspace models.

See also residcov (p. 298) and makeresids (p. 259).

Residual covariance matrix.

Displays the covariances of the residuals from each equation in the system, sspace, or var
object, or each pool cross-section. The sspace object residuals are the standardized one-
step ahead forecast errors.

Syntax

Object View: object_name.residcov(options)

Options

Examples

var1.residcov

displays the residual covariance matrix of VAR1.

Cross-references

See Chapters 19, 20, 21, and 22 of the User’s Guide for a discussion of systems, vars, pools,
and sspace models.

See also residcor (p. 297) and makeresids (p. 259).

residcov Pool View | Sspace View | System View | Var View

p Print the covariance matrix.

resids—299
Display residuals.

For equation and pool objects, resids allows you to display the actual, fitted values and
residuals in either tabular or graphical form.

For sspace objects, resids allows you to display the actual-fitted-residual graph.

For system, var or pool objects, resids displays multiple graphs of the residuals. Each
graph will contain the residuals for each equation in the VAR, or for each cross-section in
the pool.

Syntax

Object View: object_name.resids(options)

Options

Examples

equation eq1.ls m1 c inc tb3 ar(1)

eq1.resids

regresses M1 on a constant, INC, and TB3 correcting for first order serial correlation, and
displays a table of actual, fitted, and residual series.

eq1.resids(g)

displays a graph of the actual, fitted, and residual series.

Cross-references

See also graph (p. 224).

resids Equation View | Pool View | Sspace View | System View | Var View

g Display graph(s) of residuals (default).

t Display table(s) of residuals (not available for system,
pool, sspace or var objects).

p Print the table/graph.

300—Chapter 8. Command Reference
Displays the results view of objects containing estimated equations.

Syntax

Object View: object_name.results(options)

Options

Examples

equation eq1.ls m1 c inc tb3 ar(1)

eq1.results(p)

estimates an equation using least squares, and displays and prints the results.

var mvar.ls 1 4 8 8 m1 gdp tb3 @ @trend(70.4)

mvar.results(p)

prints the estimation results from the estimated VAR.

Cross-references

See the various chapters of the User’s Guide for a description of the results view and data
members for each of the objects.

Recursive least squares regression.

The rls view of an equation displays the results of recursive least squares (rolling) regres-
sion. This view is only available for equations estimated by ordinary least squares without
ARMA terms.

You can plot various statistics from rls by choosing an option.

Syntax

Equation View: eq_name.rls(options) c(1) c(2) …

results Equation View | Logl View | Pool View | Sspace View | System View |
Var View

p Print the view.

rls Equation View

rls—301
Options

Examples

equation eq1.ls m1 c tb3 gdp

eq1.rls(r,s)

eq1.rls(c) c(2) c(3)

plots and saves the recursive residual series and their standard errors from EQ1 as R_RES
and R_RESSE. The third line plots the recursive slope coefficients of EQ1.

equation eq2.ls m1 c pdl(tb3,12,3) pdl(gdp,12,3)

eq2.rls(c) c(3)

eq2.rls(q)

The second command plots the recursive coefficient estimates of PDL02, the linear term in
the polynomial of TB3 coefficients. The third line plots the CUSUM test statistic and the
5% critical lines.

r Plot the recursive residuals about the zero line with
plus and minus two standard errors.

r,s Plot the recursive residuals and save the residual series
and their standard errors as series named R_RES and
R_RESSE, respectively.

c Plot the recursive coefficient estimates with two stan-
dard error bands. Follow the “rls(c)” command with
a list of coefficients to be displayed.

c,s Plot the listed recursive coefficients and save all coeffi-
cients and their standard errors as series named R_C1,
R_C1SE, R_C2, R_C2SE, and so on.

o Plot the p-values of recursive one-step Chow forecast
tests.

n Plot the p-values of recursive n-step Chow forecast
tests.

q Plot the CUSUM (standardized cumulative recursive
residual) and 5 percent critical lines.

v Plot the CUSUMSQ (CUSUM of squares) statistic and 5
percent critical lines.

p Print the view.

302—Chapter 8. Command Reference
Cross-references

See “Recursive Least Squares” on page 384 of the User’s Guide.

Uniform random number generator.

Generates (pseudo) random draws from a uniform distribution on (0,1). The expression
may be included in a series expression or in an equation to be used in solve.

Examples

series u=5+(12-5)*rnd

generates a U series drawn from a uniform distribution on (5, 12).

Cross-references

See the list of available random number generators in Appendix A, “Operator and Function
Reference”, beginning on page 435.

See also nrnd (p. 274), rndint (p. 302) and rndseed (p. 303).

Uniform random integer generator.

The rndint command fills series, vector, and matrix objects with (pseudo) random inte-
gers drawn uniformly from zero to a user specified maximum. The rndint command
ignores the current sample and fills the entire object with random integers.

Syntax

Command: rndint(object_name, n)

Type the name of the series, vector, or matrix object to fill followed by an integer value rep-
resenting the maximum value n of the random integers. n should a positive integer.

Examples

series index

rndint(index,10)

fills the entire series INDEX randomly with integers from 0 to 10. Note that, unlike genr,
rndint ignores the current sample and fills the series for the entire workfile range.

rnd Expression

rndint Command

rndseed—303
sym(3) var3

rndint(var3,5)

fills the entire symmetric matrix VAR3 with random integers ranging from 0 to 5.

Cross-references

See the list of available random number generators in Appendix A, “Operator and Function
Reference”, beginning on page 435.

See also nrnd (p. 274), rnd (p. 302) and rndseed (p. 303).

Seed the random number generator.

Use rndseed when you wish to generate a repeatable sequence of random numbers or to
select the generator to be used.

EViews 4.0 now supports three types of uniform random number generators. Note that
many of the non-uniform random numbers are generated as transformations of the uni-
form random number.

Syntax

Command: rndseed(options) integer

Options

Follow the rndseed keyword with the optional generator type, and then an integer for the
seed.

• Important backward compatibility note: while the default generator type in EViews
4.0 remains the same as in EViews 3.0, setting the seed to the same number will no
longer generate the same sequence. The reason for this discrepancy is due to the
modification we introduced in the seeding of Knuth's generator. After reseeding the
generator, we now discard a few draws as burn-in. The reason for this "wasteful"
step is to avoid the repeats we observed in a short run of draws right after reseeding
the Knuth generator.

rndseed Command

type=arg Type of random number generator: Knuth’s (1997)
lagged Fibonacci generator (“type=kn)”,
L’Ecuyer’s (1999) combined multiple recursive gen-
erator (“type=le”), or Matsumoto and Nishimura’s
(1998) Mersenne Twister (“type=“mt”).

304—Chapter 8. Command Reference
When EViews starts up, the default generator type is set to the Knuth lagged Fibonacci
generator. Unless changed using rndseed, Knuth’s generator will be used for subsequent
pseudo-random number generation.

Examples

rndseed 123456

genr t3=@qtdist(rnd,3)

rndseed 123456

genr t30=@qtdist(rnd,30)

generates random draws from a t-distribution with 3 and 30 degrees of freedom using the
same seed.

Cross-references

See the list of available random number generators in Appendix A, “Operator and Function
Reference”, beginning on page 435.

See also nrnd (p. 274), rnd (p. 302) and rndint (p. 302).

Declare a rowvector object.

The rowvector command declares and optionally initializes a (row) vector object.

Syntax

Command: rowvector(n1) vector_name

Command: rowvector vector_name=assignment

You may optionally specify the size (number of columns) of the row vector in parentheses
after the rowvector keyword. If you do not specify the size, EViews creates a rowvector
of size 1 unless the declaration is combined with an assignment.

Knuth L’Ecuyer Mersenne
Twister

Period

Time (for draws)
27.3 secs 15.7 secs 1.76 secs

Cases failed Diehard
test

0 0 0

rowvector Object Declaration

2129
2319 219937

107

run—305
By default, all elements of the vector are set to 0, unless an assignment statement is pro-
vided. EViews will automatically resize new rowvectors, if appropriate.

Examples

rowvector rvec1

rowvector(20) coefvec=2

rowvector newcoef=coefvec

RVEC1 is a row vector of size one with element 0. COEFVEC is a row vector of size 20 with
all elements equal to 2. NEWCOEF is also a row vector of size 20 with all elements equal to
2.

Cross-references

See “Rowvector” on page 36 for a complete description of the rowvector object.

See also coef (p. 164) and vector (p. 377).

Run a program.

The run command executes a program. The program may be located in memory or stored
in a program file on disk.

Syntax

Command: run(options) path\program_name %0 %1 …

If the program has arguments, you should list them after the filename. EViews first sees if
the specified program is in memory. If not, it looks for the program on disk in the current
working directory, or in the specified path. EViews expects that program files will have a
.PRG extension.

Options

run Command

v (default) Verbose mode in which messages will be sent to the
status line at the bottom of the EViews window (slow).

q Quiet mode suppresses workfile display updates (faster
execution).

integer
(default=1)

Set maximum errors allowed before halting the pro-
gram.

306—Chapter 8. Command Reference
Examples

run(q) simul x xhat

quietly runs a program named SIMUL from the default directory using arguments X and
XHAT.

Since run is a command, it may also be placed in a program file. You should note that if
you put the run command in a program file and then execute the program, EViews will
stop after executing the program referred to by the run command. For example, if you have
a program containing

run simul

print x

the print statement will not be executed since execution will stop after executing the
commands in SIMUL.PRG. If this behavior is not intended, you should consider using the
include statement (p. 425).

Cross-references

See “Executing a Program” on page 86 for further details.

See also include (p. 425).

Declare a sample object.

The sample statement declares, and optionally defines, a sample object. If no sample
statement is provided, the sample object will be set to the current workfile sample.

To reset the sample dates in a sample object, you must use the set procedure.

Syntax

Command: sample name start end if_statement

Follow the sample keyword with a name for the sample object and a sample range, possi-
bly with an if condition.

Examples

sample ss

declares a sample object named SS and sets it to the current workfile sample.

sample Object Declaration

sar—307
sample s2 1974:1 1995:4

declares a sample object named S2 and sets it from1974:1 to 1995:4.

sample fe_bl @all if gender=1 and race=3

smpl fe_bl

The first line declares a sample FE_BL with observations such that GENDER=1 and
RACE=3 in the current workfile range. The second line sets the current sample to FE_BL.

sample sf @last-10 @last

declares a sample object named SF and sets it to the last 10 observations of the current
workfile range.

sample s1 @first 1973:1

s1.set 1973:2 @last

The first line declares a sample object named S1 and sets it from the beginning of the
workfile range to 1973:1. The second line resets S1 from 1973:2 to the end of the workfile
range.

Cross-references

See “Samples” on page 60, and Appendix B of the User’s Guide for a discussion of using
dates and samples in EViews.

See also set (p. 319) and smpl (p. 332).

Seasonal autoregressive error specification.

sar can be included in ls or tsls specification to specify a multiplicative seasonal
autoregressive term. A sar(p) term can be included in your equation specification to rep-
resent a seasonal autoregressive term with lag . The lag polynomial used in estimation is
the product of that specified by the ar terms and that specified by the sar terms. The pur-
pose of the sar expression is to allow you to form the product of lag polynomials.

Examples

ls tb3 c ar(1) ar(2) sar(4)

TB3 is modeled as a second order autoregressive process with a multiplicative seasonal
autoregressive term at lag four.

sar Expression

p

308—Chapter 8. Command Reference
tsls sale c adv ar(1) sar(12) sar(24) @ c gdp

In this two-stage least squares specification, the error term is a first order autoregressive
process with multiplicative seasonal autoregressive terms at lags 12 and 24.

Cross-references

See “ARIMA Theory” beginning on page 311 of the User’s Guide for details on ARMA and
seasonal ARMA modeling.

See also sma (p. 330), ar (p. 144), and ma (p. 249).

Save the current workfile to disk.

Syntax

Command: save file_name

You may supply a name to be given the file and the name may include a path designation.

Examples

The command

save

saves the current workfile in the default directory using the current name.

load macro1

save a:\macro2

loads a workfile named MACRO1 from the default directory and saves it as MACRO2 in the
A drive. The current workfiles will change to MACRO2. The original MACRO1 workfile will
be unaltered.

Cross-references

See “Workfile Basics” on page 33 of the User’s Guide for a discussion of workfile opera-
tions.

See also load (p. 244) and open (p. 275).

save Command

scale—309
Declare a scalar object.

The scalar command declares a scalar object and optionally assigns a value.

Syntax

Command: scalar scalar_name

Command: scalar scalar_name=assignment

The scalar keyword should be followed by a valid name, and optionally, by an assign-
ment. If there is no explicit assignment, the scalar will be assigned a value of zero.

Examples

scalar alpha

declares a scalar object named ALPHA with value zero.

equation eq1.ls res c res(-1 to -4) x1 x2

scalar lm=eq1.@regobs*eq1.@r2

show lm

runs a regression, saves the as a scalar named LM, and displays its value in the sta-
tus line at the bottom of the EViews window.

Cross-references

See “Scalar” on page 38 for a summary of the features of scalar objects in EViews.

Sets axis and data scaling characteristics for the graph.

By default, EViews optimally chooses the axes to fit the graph data.

Syntax

Graph Proc: graph_name.scale(axis) options_list

Note: the syntax of the scale proc has changed considerably from version 3.1 of EViews.
While not documented here, the EViews 3 options are still (for the most part) supported.
However, we do not recommend using the old options as future support is not guaranteed.

scalar Object Declaration

scale Graph Proc

nR
2

310—Chapter 8. Command Reference
Options

The axis parameter identifies which of the axes the scale proc modifies. If no option is
specified, the scale proc will modify all of the axes. axis may take on one of the following
values:

The options list may include any of the following options:

Data scaling options

Axes scaling options

left, l Left vertical axis.

right, r Right vertical axis (for dual scale graphs).

bottom, b Bottom axis (for xyline and scatter graphs).

top, t Top axis.

all, al All axes.

linear Linear data scaling (default).

linearzero Linear data scaling (include zero when auto range
selection is employed).

log Logarithmic scaling.

norm Norm (standardize) the data prior to plotting.

range(arg) Specifies the endpoints for the scale: arg=“auto” (auto-
matic choice), arg=“minmax” (use the maximum and
minimum values of the data), arg=“n1,n2” (set mini-
mum to n1 and maximum to n2, e.g. “range(3,9)”).

overlap /
-overlap

[Overlap / Do not overlap] scales on dual scale graphs.

dual / -dual [Label / Do not label] both left and right axes (dual or
single scale graphs).

grid / -grid [Draw / Do not draw] grid lines.

zeroline /
-zeroline

Draw a horizontal line at zero.

ticksout Draw tickmarks outside the graph axes.

ticksin Draw tickmarks inside the graph axes.

ticksboth Draw tickmarks both outside and inside the graph axes.

scat—311
Examples

To set the right scale to logarithmic with manual range you can enter

graph1.scale(right) log range(10, 30)

Alternatively,

graph1.scale zeroline ticksnone range(minmax)

draws a horizontal zero line and suppresses the tick marks on the axes which are defined
to match the data range.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph options.

See also dates (p. 178), options (p. 275) and setelem (p. 323).

Scatter diagram.

The scat command produces an untitled graph object containing a scatter diagram of two
or more series. When used as a view, scat displays a scatter diagram view of the series in
the group or columns of a matrix.

By default, the first series or column of data will be located along the horizontal axis and
the remaining data on the vertical axis. You may optionally choose to plot the data in pairs,
where the first two series or columns are plotted against each other, the second two series
or columns are plotted against each other, and so forth.

When used as a group or matrix view, there must be at least series or columns in the
object.

Syntax

Command: scat(options) ser1 ser2 ser3 …

Object View: object_name.scat(options)

Graph Proc: graph_name.scat(options)

ticksnone Do not draw tickmarks.

label / -
label

[Place / Do not place] numeric labels on the axes.

font(arg) Set font size of labels.

scat Command || Graph Proc | Group View | Matrix View | Sym View

312—Chapter 8. Command Reference
For scat used as a command, list the names of series or groups. The first series is used for
the horizontal axis and the remaining series are used for the vertical axis.

Options

Template and printing options

Scale options

Examples

scat unemp inf want

produces an untitled graph object containing a scatter plot with UNEMP on the horizontal
and INF and WANT on the vertical axis.

group med age height weight

med.scat(t=scat2)

produces a scatter plot view of the group object MED using the graph object SCAT2 as a
template.

group pairs age height weight length

pairs.scat(b)

produces a scatter plot view with AGE plotted against HEIGHT, and WEIGHT plotted
against LENGTH.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graphs and templates.

See also xyline (p. 394) and graph (p. 224).

o=graph_name Use appearance options from the specified graph object.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the scatter plot.

b Plot X and Y series in pairs.

m Display scatter plots as multiple graphs.

scenario—313
Matrix of scatter plots.

The scatmat view displays a matrix of scatter plots for all pairs of series in a group.

Syntax

Group View: group_name.scatmat(options)

Options

Examples

group g1 weight height age

g1.scatmat

displays a matrix of scatter plots for all pairs of the three series in group G1.

Cross-references

See “Scatter” on page 211 of the User’s Guide for a discussion of scatter plot matrices.

Manage the model scenarios.

The scenario procedure is used to set the active and comparison scenarios for a model, to
create new scenarios, to initialize one scenario with settings from another scenario, to
delete scenarios, and to change the variable aliasing associated with a scenario.

Syntax

Model Proc: model_name.scenario(options) "name"

performs scenario options on a scenario given by the “name”. By default the scenario pro-
cedure also sets the active scenario to the specified name.

scatmat Group View

p Print the scatter plot matrix.

scenario Model Proc

3 3×

314—Chapter 8. Command Reference
Options

Examples

The command string

mod1.scenario "baseline"

sets the active scenario to the baseline, while

mod1.scenario(c) "actuals"

sets the comparison scenario to the actuals (warning: this will overwrite any historical
data in the solution period).

A newly created scenario will become the active scenario. Thus,

mod1(n) "Peace Scenario"

creates a scenario called "Peace Scenario" and makes it the active scenario. The scenario
will automatically be assigned a unique numeric alias. To change the alias, simply use the
“a=” option:

mod1(a=_ps) "Peace Scenario"

changes the alias for “Peace Scenario” to “_PS” and makes this scenario the active sce-
nario.

The command:

c Set the comparison scenario to the named scenario.

n Create a new scenario with the specified name.

i=“name” Copy the Excludes and Overrides from the named sce-
nario.

d Delete the named scenario.

a=string Set the scenario alias string to be used when creating
aliased variables (string is a 1 to 3 alphanumeric string
to be used in creating aliased variables). If an under-
score is not specified, one will be added to the begin-
ning of the string. Examples: “_5”, “_T”, “S2”. The
string “A” may not be used since it may conflict with
add factor specifications.

seas—315
mod1.scenario(n, a=w, i="Peace Scenario", c) "War Scenario"

creates a scenario called "War Scenario", initializes it with the Excludes and Overrides
contained in "Peace Scenario", associates it with the alias "_W", and makes this scenario
the comparison scenario.

mod1.scenario(i="Scenario 1") "Scenario 2"

copies the Excludes and Overrides in "Scenario 1" to "Scenario 2" and makes "Scenario 2"
the active scenario.

Compatibility Notes

For backward compatibility with EViews 4.0, the option “a” may be used to set the com-
parison scenario, but is method not guaranteed to be supported in the future.)

In all of the arguments above the quotation marks around scenario name are currently
optional. Support for the non-quoted names is provided for backward compatibility, but
may be dropped in the future, thus

mod1.scenario Scenario 1

is currently valid, but may not be in future versions of EViews.

Cross-references

Scenarios are described in detail beginning on page 616 of the User’s Guide. Chapter 23 of
the User’s Guide documents EViews models in depth.

See also solve (p. 334) in the Command and Programming Reference.

Seasonal adjustment.

The seas command carries out seasonal adjustment using either the ratio to moving aver-
age, or the difference from moving average technique.

EViews also performs Census X11 and X12 seasonal adjustment. For details, see x11
(p. 387) and x12 (p. 388).

Syntax

Command: seas(options) series_name name_adjust name_fac

Series Proc: series_name.seas(options) name_adjust name_fac

To use seas as a command, list the name of the original series and the name to be given
to the seasonally adjusted series. You may optionally include a third series name for the

seas Command || Series Proc

316—Chapter 8. Command Reference
seasonal factors. seas will display the seasonal factors using the convention of the Census
X11 program.

seas used as a series procedure applies seasonal adjustment to a series.

Options

Examples

seas(a) pass pass_adj pass_fac

seasonally adjusts the series PASS using the additive method and saves the adjusted series
as PASS_ADJ and the seasonal factors as PASS_FAC.

sales.seas(m) adj_sales

seasonally adjusts the series SALES using the multiplicative method and saves the adjusted
series as ADJ_SALES.

Cross-references

See “Seasonal Adjustment” on page 177 of the User’s Guide for a discussion of seasonal
adjustment methods.

See also seasplot (p. 316), x11 (p. 387) and x12 (p. 388).

Seasonal line graph.

seasplot displays a line graph view of a series ordered by season. Available only for
quarterly and monthly frequencies.

Syntax

Series View: series_name.seasplot(options)

Options

m Multiplicative (ratio to moving average) method.

a Additive (difference from moving average) method.

seasplot Series View

m Plot series split by season. Default is to plot series
stacked by season.

series—317
Examples

freeze(gra_ip) ipnsa.seasplot

creates a graph object named GAR_IP that contains the stacked seasonal line graph view of
the series IPNSA.

Cross-references

See “Spreadsheet and Graph Views” on page 151 of the User’s Guide for a brief discussion
of seasonal line graphs.

See also seas (p. 315), x11 (p. 387) and x12 (p. 388).

Declare a series object.

The series command creates and optionally initializes a series, or modifies an existing
series.

Syntax

Command: series ser_name

Command: series ser_name=formula

The series command should be followed by either the name of a new series, or an
explicit or implicit expression for generating a series. If you create a series and do not ini-
tialize it, the series will be filled with NAs. Rules for composing a formula are given in
“Using Expressions” on page 87 of the User’s Guide.

Examples

series x

creates a series named X filled with NAs.

Once a series is declared, you do not need to include the series keyword prior to enter-
ing the formula. The following example generates a series named LOW that takes value 1 if
either INC is less than or equal to 5000 or EDU is less than 13 and 0 otherwise.

series low

low=inc<=5000 or edu<13

This example solves for the implicit relation and generates a series named Z which is the
double log of Y so that Z=log(log(Y)).

series Object Declaration

318—Chapter 8. Command Reference
series exp(exp(z))=y

The command

series z=(x+y)/2

creates a series named Z which is the average of series X and Y.

series cwage=wage*(hrs>5)

generates a series named CWAGE which is equal to WAGE if HRS exceeds 5 and zero other-
wise.

series 10^z=y

generates a series named Z which is the base 10 log of Y.

The commands

series y_t=y

smpl if y<0

y_t=na

smpl @all

generates a series named Y_T which replaces negative values of Y with NAs.

series z=@movav(x(+2),5)

creates a series named Z which is the centered moving average of the series X with two
leads and two lags. This works only for centered moving averages over an odd number of
periods.

series z=(.5*x(6)+@movsum(x(5),11)+.5*x(-6))/12

generates a series named Z which is the centered moving average of the series X over
twelve periods.

genr y=2+(5-2)*rnd

creates series named Y which is a random draw from a uniform distribution between 2 and
5.

series y=3+@sqr(5)*nrnd

generates a series named Y which is a random draw from a normal distribution with mean
3 and variance 5.

setcell—319
Cross-references

A full listing and description of series functions and expressions is provided in
Appendix A, “Operator and Function Reference”, on page 435.

See “Using Expressions” on page 87 of the User’s Guide for a discussion of rules for form-
ing EViews expressions.

Set the sample in a sample object.

The set procedure resets the sample of an existing sample object.

Syntax

Sample Proc: sample_name.set sample_description

Follow the set command with a sample description. See sample for instructions on
describing a sample.

Examples

sample s1 @first 1973

s1.set 1974 @last

The first line declares and defines a sample object named S1 from the beginning of the
workfile range to 1973. The second line resets S1 from 1974 to the end of the workfile
range.

Cross-references

See “Samples” on page 60 of the User’s Guide for a discussion of samples in EViews.

See also sample (p. 306) and smpl (p. 332).

Insert contents into cell of a table.

The setcell command puts a string or number into a cell of a table.

Syntax

Command: setcell(table_name, r, c, content[, "options"])

set Sample Proc

setcell Command

320—Chapter 8. Command Reference
Options

Provide the following information in parentheses in the following order: the name of the
table object, the row number, r, of the cell, the column number, c, of the cell, a number or
string to put in the cell, and optionally, a justification and/or numerical format code. A
string of text must be enclosed in double quotes.

The justification options are:

The numerical format code determines the format with which a number in a cell is dis-
played; cells containing strings will be unaffected. The format code can either be a positive
integer, in which case it specifies the number of decimal places to be displayed after the
decimal point, or a negative integer, in which case it specifies the total number of charac-
ters to be used to display the number. These two cases correspond to the fixed decimal
and fixed character fields in the number format dialog.

Note that when using a negative format code, one character is always reserved at the start
of a number to indicate its sign, and that if the number contains a decimal point, that will
also be counted as a character. The remaining characters will be used to display digits. If
the number is too large or too small to display in the available space, EViews will attempt
to use scientific notation. If there is insufficient space for scientific notation (six characters
or less), the cell will contain asterisks to indicate an error.

Examples

setcell(tab1, 2, 1, "Subtotal")

puts the string “Subtotal” in row 2, column 1 of the table object named TAB1.

setcell(tab1, 1, 1, "Price and cost", "r")

puts the a right-justify string "Price and cost" in row 1, column 1 of the table object named
TAB1.

Cross-references

Chapter 5 describes table formatting using commands. See Chapter 10 of the User’s Guide
for a discussion and examples of table formatting in EViews.

See also setcolwidth (p. 321).

c Center the text/number in the cell.

r Right-justify the text/number in cell.

l Left-justify the text/number in cell.

setconvert—321
Set width of a column of a table.

The setcolwidth command determines the width of a column in a table. By default,
each column is approximately 10 characters wide.

Syntax

Command: setcolwidth(table_name, c, width)

Options

To change the width of a column, provide the following information in parentheses in the
following order: the name of the table, the column number c, and the number of characters
width for the new width. EViews measures units in terms of the width of a numeric char-
acter. Because different characters have different widths, the actual number of characters
that will fit may differ slightly from the number you specify.

Examples

setcolwidth(mytab,2,20)

sets the second column of table MYTAB to fit approximately 20 characters.

Cross-references

Chapter 5 describes table formatting using commands. See also Chapter 10 of the User’s
Guide for a discussion and examples of table formatting in EViews.

See also setcell (p. 319).

Set frequency conversion method.

Determines the default frequency conversion method for a series when moved to different
frequency workfiles (using copy or fetch).

You can override this default conversion method by specifying a frequency conversion
method as an option in the fetch (p. 205) command.

If you do not set a conversion method and if you do not specify a conversion method as an
option in the fetch command, EViews will use the conversion method set in the global
option.

setcolwidth Command

setconvert Series View

322—Chapter 8. Command Reference
Syntax

Series View: ser_name.setconvert up_method [down_method]

Follow the series name with a period, the word setconvert, and option letters to specify
the frequency conversion method. You may specify an up-conversion method, a down-con-
version method, or both. If either the up-conversion or down-conversion method is omit-
ted, EViews will set the method to the “use EViews default”.

Options

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from low to high frequency:

The following options control the frequency conversion method when copying series and
group objects to a workfile, converting from high to low frequency:

r Conversion by constant match average.

d Conversion by constant match sum.

q Conversion by quadratic match average.

t Conversion by quadratic match sum.

i Conversion by linear match last

c Conversion by cubic match last.

a Conversion by taking the average of the nonmissing
observations.

s Conversion by taking the sum of the nonmissing obser-
vations.

f Conversion by taking the first nonmissing observation.

l Conversion by taking the last nonmissing observation.

x Conversion by taking the maximum nonmissing obser-
vation.

m Conversion by taking the minimum nonmissing obser-
vation.

an, na Conversion by taking the average, propagating missing
values.

sn, ns Conversion by taking the sum, propagating missing val-
ues.

setelem—323
Examples

unemp.setconvert a

sets the default down-conversion method of the series UNEMP to take the average of non-
missing observations, and resets the up-conversion method to use the global default.

ibm_hi.setconvert xn d

sets the default down-conversion method for IBM_HI to take the largest observation of the
higher frequency observations, propagating missing values, and the default up-conversion
method to constant, match sum.

consump.setconvert

resets both methods to the global default.

Cross-references

See “Frequency Conversion” on page 72 of the User’s Guide for a discussion of frequency
conversions and the treatment of missing values.

See also copy (p. 168) and fetch (p. 205).

Set individual line, bar and legend options for each series in the graph.

Syntax

Graph Proc: graph_name.setelem(n1) option_list

where n1 is the identifier for the graph element whose options you wish to modify. For
example, if n1=“2”, EViews will modify the second line in the graph.

fn, nf Conversion by taking the first observation, propagating
missing values.

ln, nl Conversion by taking the last observation, propagating
missing values.

xn, nx Conversion by taking the maximum observation, propa-
gating missing values.

mn, nm Conversion by taking the minimum observation, propa-
gating missing values.

setelem Graph Proc

324—Chapter 8. Command Reference
Options

The option list for setelem may contain one or more of the following:

lcolor(args) Sets the line and spike color.

lpat(arg) Sets the line pattern to the
type: arg can be an integer
from 1–11 or one of the
matching keywords.

Note that the “lpat” option
interacts with the global
options “color”, “lin-
eauto”, “linesolid”, “line-
pat”. In particular, you may
need to set the global option
“linepat” to enable the display of line patterns. See
options (p. 275).

lwidth(n1) Sets the line width: n1 should be a number between
“.25” and “5”, indicating the line width in points.

symbol(arg) Sets the drawing
symbol: arg can be
an integer from 1–13,
or one of the match-
ing keywords.

Selecting a symbol
automatically turns
on symbol use. The
“none” option turns
off symbol use.

fcolor(args) Sets the fill color for symbols, bars, and pies.

setelem—325
gray(n1) Sets the gray scale for bars and
pies: n1 should be an integer from
1–15 corresponding to one of the
predefined gray scale settings
(from lightest to darkest).

hatch(arg) Sets the hatch characteris-
tics for bars and pies: arg
can be an integer from 1–
7, or one of the matching
keywords.

preset(n1) Sets line and bar characteristics to EViews defaults: n1
should be an integer from 1–10 representing settings for
“lcolor”, “lpat”, “symbol”, “fcolor”, “gray”, and
“hatch” specified in predefined definitions.

default(n1) Sets line and bar characteristics to user defaults: n1 is
an integer from 1–10 representing settings for “lcolor”,
“lpat”, “symbol”, “fcolor”, “gray”, and “hatch” speci-
fied in the user default definitions.

axis(arg) Assigns the element to an axis: left (“l”), right (“r”),
bottom (“b”), top (“t”).

legend(str) Assigns legend text for the element. str will be used in
the legend to label the element.

326—Chapter 8. Command Reference
Examples

graph1.setelem(2) lcolor(blue) lwidth(2) symbol(circle)

sets the second line of GRAPH1 to be a blue line of width 2 with circle symbols.

graph1.setelem(1) lcolor(blue)

graph1.setelem(1) linecolor(0, 0, 255)

are equivalent methods of setting the linecolor to blue.

graph1.setelem(1) fillgray(6)

sets the gray-scale color for the first graph element.

The lines

graph1.setelem(1) scale(l)

graph1.setelem(2) scale(l)

graph1.setelem(3) scale(r)

create a dual scale graph where the first two series are scaled together and labeled on the
left axis and the third series is scaled and labeled on the right axis.

graph1.setelem(2) legend("gross domestic product")

sets the legend for the second graph element.

Cross-references

See Chapter 10 of the User’s Guide for a discussion of graph options in EViews.

See also scale (p. 309) and options (p. 275)

Place a horizontal line in a table.

The setline command places a double horizontal line as a separator in a table.

Syntax

Command: setline(table_name, r)

Options

Specify the name of the table and the row number r in which to place the horizontal line.

setline Command

sheet—327
Examples

setline(tab3,8)

places a (double) horizontal line in the eighth row of the table object TAB3.

Cross-references

Chapter 5 describes table formatting using commands. See also Chapter 10 of the User’s
Guide for a discussion and examples of table formatting in EViews.

Spreadsheet view.

The sheet view displays the spreadsheet view of the named object. For table objects,
sheet simply displays the table.

Syntax

Object View: object_name.sheet(options)

Pool View: pool_name.sheet(options) ser1? ser2? …

The sheet view of pool objects displays the spreadsheet view of the series in the pool.
Follow the word sheet by a list of series to display; you may use the cross section identi-
fier “?” in the series name.

Options

Examples

tab1.sheet

displays the spreadsheet view of TAB1.

Cross-references

See Chapter 4 of the User’s Guide for a discussion of the spreadsheet view of series and
groups, and Chapter 21 of the User’s Guide for a discussion of pools. See also the chapters
for the other individual objects.

sheet Coef View | Group View | Matrix View | Pool View | Series View | Table
View | Sym View | Vector View

p Print the spreadsheet view.

328—Chapter 8. Command Reference
Display objects.

The show command displays series or other objects on your screen. A scalar object is dis-
played in the status line at the bottom of the EViews window.

Syntax

Command: show object_name.view

Command: show name1 name2 name3

The command show should be followed by the name of an object, or an object name with
an attached view.

For series and graph objects, show can operate on a list of names. The list of names must
be of the same type. show creates and displays an untitled group or multiple graph object.

Examples

genr x=nrnd

show x.hist

close x

generates a series X of random draws from a standard normal distribution, displays the his-
togram view of X, and closes the series window.

show wage log(wage)

opens an untitled group window with the spreadsheet view of the two series.

freeze(gra1) wage.hist

genr lwage=log(wage)

freeze(gra2) lwage.hist

show gra1 gra2

opens an untitled graph object with two histograms.

Cross-references

See Chapter 3 for a complete listing of the views of the various objects.

See also close (p. 163).

show Command

signalgraphs—329
Graph signal series.

Display graphs of a set of signal series computed using the Kalman filter.

Syntax

Sspace View: object_name.signalgraphs(options)

Options

Examples

ss1.signalgraphs(t=smooth)

ss1.signalgraphs(t=smoothse)

displays a graph view containing the smoothed signal values, and then displays a graph
view containing the root MSE of the smoothed states.

Cross-references

See Chapter 22 of the User’s Guide for a discussion of state space models.

See also stategraphs (p. 342), makesignals (p. 260) and makestates (p. 262).

signalgraphs Sspace View

t=output_type Defines output type:

“t=pred” (one-step ahead signal predictions) (default).

“t=predse” (RMSE of the one-step ahead signal predictions).

“t=resid” (error in one-step ahead signal predictions).

“t=residse” (RMSE of the one-step ahead prediction; same as
predse).

“t=stdresid” (standardized one-step ahead prediction resid-
ual).

“t=smooth” (smoothed signals).

“t=smoothse” (RMSE of the smoothed signals).

“t=disturb” (estimate of the disturbances).

“t=disturbse” (RMSE of the estimate of the disturbances).

“t=stddisturb” (standardized estimate of the disturbances).

330—Chapter 8. Command Reference
Seasonal moving average error specification.

sma can be included in a ls or tsls specification to specify a multiplicative seasonal
moving average term. A sma(p) term can be included in your equation specification to
represent a seasonal moving average term of order . The lag polynomial used in estima-
tion is the product of that specified by the ma terms and that specified by the sma terms.
The purpose of the sma expression is to allow you to form the product of lag polynomials.

Examples

ls tb3 c ma(1) ma(2) sma(4)

TB3 is modeled as a second order moving average process with a multiplicative seasonal
moving average term at lag four.

tsls(z) sale c adv ma(1) sma(12) sma(24) @ c gdp

In this two-stage least squares specification, the error term is a first order moving average
process with multiplicative seasonal moving average terms at lags 12 and 24. The “z”
option turns off backcasting.

Cross-references

See “ARIMA Theory” beginning on page 311 of the User’s Guide for details on ARMA and
seasonal ARMA modeling.

See also sar (p. 307), ar (p. 144), and ma (p. 249).

Exponential smoothing.

smooth forecasts a series using one of a number of exponential smoothing techniques. By
default, smooth estimates the damping parameters of the smoothing model to minimize
the sum of squared forecast errors, but you may specify your own values for the damping
parameters.

smooth automatically calculates in-sample forecast errors and puts them into the series
RESID.

sma Expression

smooth Command || Series Proc

p

smooth—331
Syntax

Command: smooth(method) series_name smooth_name freq

Series Proc: series_name.smooth(method) smooth_name freq

You should follow the smooth keyword with the name of the series and a name for the
smoothed series. You must specify the smoothing method in parentheses as an option. The
optional freq may be used to override the default for the number of periods in the seasonal
cycle. By default, this value is set to the workfile frequency (e.g. — 4 for quarterly data).
For undated data, the default is 5.

Options

Smoothing method options

Other Options:

If you wish to set only some of the damping parameters and let EViews estimate the other
parameters, enter the letter “e” where you wish the parameter to be estimated.

If the number of seasons is different from the frequency of the workfile (an unusual case
that arises primarily if you are using an undated workfile for data that are not monthly or

s,x Single exponential smoothing for series with no trend.
You may optionally specify a number “x” between zero
and one for the mean parameter.

d,x Double exponential smoothing for series with a trend.
You may optionally specify a number “x” between zero
and one for the mean parameter.

n,x,y Holt-Winters without seasonal component. You may
optionally specify numbers “x”, “y” between zero and
one for the mean and trend parameters, respectively.

a,x,y,z Holt-Winters with additive seasonal component. You
may optionally specify numbers “x”, “y”, “z” between
zero and one for the mean, trend, and seasonal parame-
ters, respectively.

m,x,y,z Holt-Winters with multiplicative seasonal component.
You may optionally specify numbers “x”, “y”, “z”
between zero and one for the mean, trend, and sea-
sonal parameters, respectively.

p Print a table of forecast statistics.

332—Chapter 8. Command Reference
quarterly), you should enter the number of seasons after the smoothed series name. This
optional input will have no effect on forecasts without seasonal components.

Examples

smooth(s) sales sales_f

smooths the SALES series by a single exponential smoothing method and saves the
smoothed series as SALES_F. EViews estimates the damping (smoothing) parameter and
displays it with other forecast statistics in the SALES series window.

smooth(n,e,.3) tb3 tb3_hw

smooths the TB3 series by a Holt-Winters no seasonal method and saves the smoothed
series as TB3_HW. The mean damping parameter is estimated while the trend damping
parameter is set to 0.3.

smpl @first @last-10

smooth(m,.1,.1,.1) order order_hw

smpl @all

graph gra1.line order order_hw

show gra1

smooths the ORDER series by a Holt-Winters multiplicative seasonal method leaving the
last 10 observations. The damping parameters are all set to 0.1. The last three lines plot
and display the actual and smoothed series over the full sample.

Cross-references

See “Exponential Smoothing” on page 190 of the User’s Guide for a discussion of exponen-
tial smoothing methods.

Set sample range.

The smpl command sets the workfile sample to use for statistical operations and series
assignment expressions.

Syntax

Command: smpl start1 end1 start2 end2 … if_condition

Command: smpl sample_name

List the date or number of the first observation and the date or number of the last observa-
tion for the sample. Rules for specifying dates are given in Appendix B, “Date Formats”, on

smpl Command

smpl—333
page 653 of the User’s Guide. smpl may contain more than one pair of beginning and end-
ing observations.

The smpl command also allows you to select observations on the basis of conditions spec-
ified in an if statement. This enables you to use logical operators to specify what observa-
tions to include in EViews’ procedures. Put the if statement after the pairs of dates.

You can also use smpl to set the current observations to the contents of a named sample
object; put the name of the sample object after the command smpl.

Special keywords for smpl

The following “@-keywords” can be used in a smpl command:

Examples

smpl 1955:1 1972:12

sets the workfile sample from 1955:1 to 1972:12

smpl @first 1940 1946 1972 1975 @last

excludes observations (or years) 1941–1945 and 1973–1974 from the workfile sample.

smpl if union=1 and edu<=15

sets the sample to those observations where UNION takes the value 1 and EDU is less than
or equal to 15.

sample half @first @first+@obs(x)/2

smpl half

smpl if x>0

smpl @all if x>0

The first line declares a sample object named HALF which includes the first half of the
series X. The second line sets the sample to HALF and the third line sets the sample to
those observations in HALF where X is positive. The last line sets the sample to those
observations where X is positive over the full sample.

Cross-references

See “Samples” on page 60 of the User’s Guide for a discussion of samples in EViews.

@all The whole workfile range.

@first The first observation in the workfile.

@last The last observation in the workfile.

334—Chapter 8. Command Reference
See also set (p. 319) and sample (p. 306).

Solve the model.

solve finds the solution to a simultaneous equation model for the set of observations
specified in the current workfile sample.

Syntax

Command: solve(options)

Model Proc: model_name.solve(options)

Note: When solve is used in a program (batch mode) models are always solved over the
workfile sample. If the model contains a solution sample, it will be ignored in favor of the
workfile sample.

You should follow the name of the model after the solve command or use solve as a
procedure of a named model object. The default solution method is dynamic simulation.
You may modify the solution method as an option.

solve first looks for the specified model in the current workfile. If it is not present, solve
attempts to fetch a model file (.DBL) from the default directory or, if provided, the path
specified with the model name.

Options

solve can take any of the options available in solveopt (p. 335).

Examples

solve mod1

solves the model MOD1 using the default solution method.

nonlin2.solve(m=500,e)

solves the model NONLIN2 with an extended search of up to 500 iterations.

Cross-references

See Chapter 23 of the User’s Guide for a discussion of models.

See also model (p. 269), msg (p. 270) and solveopt (p. 335).

solve Command || Model Proc

solveopt—335
Solve options for models.

solveopt sets options for model solution but does not solve the model. The same options
can be set directly in a solve procedure.

Syntax

Model Proc: model_name.solveopt(options)

Options

solveopt Model Proc

s=arg
(default = d)

Solution type: “d” (deterministic), “m” (stochastic –
collect means only), “s” (stochastic – collect means and
s.d.), “b” (stochastic – collect means and confidence
bounds), “a” (stochastic – collect all; means, s.d. and
confidence bounds).

d=arg
(default = d)

Model solution dynamics: “d” (dynamic solution), “s”
(static solution), “f” (fitted values – single equation
solution).

m=integer
(default=5000)

Maximum number of iterations for solution (maximum
100,000).

c=number
(default =1e-8)

Convergence criterion. Based upon the maximum
change in any of the endogenous variables in the
model. You may set a number between 1e-15 and 0.01.

r=integer
(default=1000)

Number of stochastic repetitions (used with stochastic
“s=” options).

b=number
(default=.95)

Size of stochastic confidence intervals (used with sto-
chastic “s=” options).

a=arg
(default = f)

Alternate scenario solution: “t” (true - solve both active
and alternate scenario and collect deviations for sto-
chastic), “f” (false - solve only the active scenario).

o=arg
(default = g)

Solution method: “g” (Gauss-Seidel), “e” (Gauss-Seidel
with extended search/reduced step size), “n” (New-
ton), “m” (Newton with extended search/reduced step
size).

336—Chapter 8. Command Reference
Cross-references

See Chapter 23 of the User’s Guide for a discussion of models.

See also model (p. 269), msg (p. 270) and solve (p. 334).

Sort the workfile.

The sort command sorts all series in the workfile on the basis of the values of one or
more of the series. For purposes of sorting, NAs are considered to be smaller than any
other value.

By default, EViews will sort the series in ascending order. You may use options to override
the default behavior.

Syntax

Command: sort(options) ser1 ser2 …

List the name of the series by which you wish to sort the workfile. If you list two or more
series, sort uses the values of the second series to resolve ties from the first series, and
values of the third series to resolve ties from the second, and so on.

i=arg Set initial (starting) solution values: “a” (actuals), “p”
(values in period prior to start of solution period).

n=arg
(default = t)

NA behavior: “t” (true - stop on “NA” values), “f”
(false - do not stop when encountering “NA” values).
Only applies to deterministic solution; EViews will
always stop on “NA” values in stochastic solution.

e=arg Excluded variables initialized from actuals: “t” (true),
“f” (false).

t=arg Terminal condition for forward solution: “u” (user sup-
plied), “l” (constant level), “d” (constant difference),
“g” (constant growth rate).

g=arg
(default = 7)

Number of digits to round solution: an integer value
(number of digits), “n” (do not roundoff).

z=arg
(default = 1e-7)

Zero value: a positive number below which the solution
(absolute value) is set to zero), “n” (do not set to zero).

sort Command

spec—337
Options

Examples

sort(d) inc

sorts all series in the workfile in order of the INC series with the highest value of INC first.
NAs in INC (if any) will be placed at the bottom.

sort gender race wage

sorts all series in the workfile in order of the values of GENDER from low to high, with ties
resolved by ordering on the basis of RACE, with further ties resolved by ordering on the
basis of WAGE.

Cross-references

See “Sorting Workfiles” on page 39 of the User’s Guide.

Display the text specification view for logl, model, sspace, system objects.

Syntax

Object View: object_name.spec(options)

Options

Examples

model1.spec

displays the specification of the object MODEL1.

Cross-references

See also append (p. 143), merge (p. 267), text (p. 363).

d sort in descending order.

spec Logl View | Model View | Sspace View | System View

p Print the specification text.

338—Chapter 8. Command Reference
Spike graph.

The spike graph view of a group creates spike graphs for all series in the group. The spike
graph view of a matrix plots spikes for each column in the matrix.

Syntax

Object View: object_name.spike(options)

Graph Proc: graph_name.spike(options)

Options

Template and printing options

Scale options

Examples

group g1 gdp cons m1

spike Coef View | Graph Proc | Group View | Matrix View | Series View | Sym
View | Vector View

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the spike graph.

a (default) Automatic scaling. The series are graphed in their original
units and the range of the graph is chosen to accommo-
date the highest and lowest values of the series.

d Dual scaling. The first series is scaled on the left and all
other series are scaled on the right.

s Stacked spike graph. Each segment represents the cumu-
lative total of the series listed (may not be used with the
“l” option).

l Spike graph for the first series listed and a line graph for
all subsequent series (may not be used with the “s”
option).

x Same as the “d” option (dual scaling).

m Plot spikes in multiple graphs.

sspace—339
g1.spike(d)

plots line graphs of the three series in group G1 using dual scaling.

matrix1.spike(t=mygra)

displays spike graphs of the columns of MATRIX1 using the graph object MYGRA as a tem-
plate.

graph1.spike(m)

changes GRAPH1 so that it contains spike graphs of each of the series in the original
graph, with each graph plotted on separate axes.

Cross-references

See Chapter 10 of the User’s Guide for a detailed discussion of graphs in EViews.

See also graph (p. 224) for additional graph types.

Declare state space object.

Syntax

Command: sspace name

Follow the sspace keyword with a name to be given the sspace object. The append key-
word may be used to add lines to an existing sspace.

Examples

sspace stsp1

declares a sspace object named STSP1.

sspace tvp

tvp.append cs = c(1) + sv1*inc

tvp.append @state sv1 = sv1(-1) + [var=c(2)]

tvp.ml

declares a sspace object named TVP, specifies a time varying coefficient model, and esti-
mates the model by maximum likelihood.

Cross-references

The sspace object is documented in greater detail beginning on page 40.

sspace Object Declaration

340—Chapter 8. Command Reference
See Chapter 22 of the User’s Guide for a discussion of state space models.

See also ml (p. 269) for estimation of state space models.

Basic statistics by classification.

The statby view displays descriptive statistics for the elements of a series classified into
categories by one or more other series.

Syntax

Series View: series_name.statby(options) classifier_name

Follow the series name with a period, the statby keyword, and a name (or a list of
names) for the series or group by which to classify. The options control which statistics to
display and in what form. By default, statby displays the means, standard deviations,
and counts for the series.

Options

Options to control statistics to be displayed

statby Series View

sum Display sums.

med Display medians.

max Display maxima.

min Display minima.

quant=arg
(default=.5)

Display quantile with value given by the argument.

q=arg
(default=“r”)

Compute quantiles using the definition: “b” (Blom), “r”
(Rankit-Cleveland), “o” (simple fraction), “t” (Tukey),
“v” (van der Waerden).

skew Display skewness.

kurt Display kurtosis.

na Display counts of NAs.

nomean Do not display means.

nostd Do not display standard deviations.

nocount Do not display counts.

statby—341
Options to control layout

Options to control binning

Other options

Examples

wage.statby(max,min) sex race

displays the mean, standard deviation, max, and min of the series WAGE by (possibly
binned) values of SEX and RACE.

Cross-references

See “Stats by Classification” on page 154 and “Descriptive Statistics” on page 214 of the
User’s Guide.

l Display in list mode (for more than one classifier).

nor Do not display row margin statistics.

noc Do not display column margin statistics.

nom Do not display table margin statistics (unconditional
tables); for more than two classifier series.

nos Do not display sub-margin totals in list mode; only used
with “l” option and more than two classifier series.

sp Display sparse labels; only with list mode option, “l”.

dropna (default),
keepna

[Drop/Keep] NA as a category.

v=integer
(default=100)

Bin categories if classification series take on more than
the specified number of distinct values.

nov Do not bin based on the number of values of the classi-
fication series.

a=number
(default=2)

Bin categories if average cell count is less than the
specified number.

noa Do not bin based on the average cell count.

b=integer
(default=5)

Set maximum number of binned categories.

p Print the descriptive statistics table.

342—Chapter 8. Command Reference
See also hist (p. 229).

Display graphs of a set of state series computed using the Kalman filter.

Syntax

Sspace View: sspace_name.stategraph(options)

Options

Other options

Examples

ss1.stategraphs(t=filt)

displays a graph view containing the filtered state values.

stategraphs Sspace View

t=arg Defines output type:

“pred” (one-step ahead state predictions).

“predse” (RMSE of the one-step ahead state predic-
tions).

“resid” (error in one-step ahead state predictions).

“residse” (RMSE of the one-step ahead state prediction;
same as predse).

“filt” (filtered states).

“filtse” (RMSE of the filtered states).

“stdresid” (standardized one-step ahead prediction
residual).

“smooth” (smoothed states).

“smoothse” (RMSE of the smoothed states).

“disturb” (estimate of the disturbances).

“disturbse” (RMSE of the estimate of the disturbances).

“stddisturb” (standardized estimate of the distur-
bances).

p Print the view.

stateinit—343
Cross-references

See Chapter 22 of the User’s Guide for a discussion of state space models.

See also signalgraphs (p. 329), makesignals (p. 260) and makestates (p. 262).

Display final state values.

Show the one-step ahead state predictions or the state prediction covariance matrix at the
final values (T+1|T) where T is the last observation in the estimation sample. By default,
EViews shows the state predictions.

Syntax

Sspace View: sspace_name.statefinal(options)

Options

Examples

ss1.statefinal(c)

displays a view containing the final state covariances (the one-step ahead covariances for
the first out-of-(estimation) sample period.

Cross-references

See Chapter 22 of the User’s Guide for a discussion of state space models.

See also stateinit (p. 343).

Display initial state values.

Show the state initial values or the state covariance initial values used to initialize the Kal-
man Filter (1|0). By default, EViews shows the state values.

Syntax

Sspace View: sspace_name.stateinit(options)

statefinal Sspace View

c Display the state prediction covariance matrix.

p Print the view.

stateinit Sspace View

344—Chapter 8. Command Reference
Options

Examples

ss1.stateinit

displays a view containing the initial state values (the one-step ahead predictions for the
first period).

Cross-references

See Chapter 22 of the User’s Guide for a discussion of state space models.

See also statefinal (p. 343).

Descriptive statistics.

Computes and displays a table of means, medians, maximum and minimum values, stan-
dard deviations, and other descriptive statistics of one or more series or a group of series.

When used as a command, stats creates an untitled group containing all of the specified
series and opens a statistics view of the group. By default, if more than one series is given,
the statistics are calculated for the common sample.

When used for coef or matrix objects, stats computes the statistics for each column of
data.

Syntax

Command: stats(options) ser1 ser2 ser3 …

Object View: group_name.stats(options)

Options

c Display the covariance matrix.

p Print the view.

stats Command || Coef View | Group View | Matrix View | Sym View | Vector
View

i Individual sample for each series.

p Print the descriptive statistics table.

stom—345
Examples

stats height weight age

opens an untitled group window displaying the histogram and descriptive statistics for the
common sample of the three series.

group group1 wage hrs edu

group1.stats(i)

displays the descriptive statistics view of GROUP1 for the individual samples.

Cross-references

See “Descriptive Statistics” on page 152 and page 214 of the User’s Guide for a discussion
of the descriptive statistics views of series and groups.

See also hist (p. 229).

Send text to the status line.

Displays a message in the status line at the bottom of the EViews main window. The mes-
sage may include text, control variables, and string variables.

Syntax

Command: statusline message

Examples

statusline Iteration Number: !t

Displays the message “Iteration Number: !t” in the status line replacing “!t” with the cur-
rent value of the control variable in the program.

Cross-references

See Chapter 6, “EViews Programming”, on page 85 for a discussion and examples of pro-
grams, control variables and string variables.

Convert a series or group to a vector or matrix.

Fills a vector or matrix with the data from a series or group.

statusline Command

stom Group Proc | Series Proc

346—Chapter 8. Command Reference
Syntax

Series Proc: stom(series, vector[, sample])

Group Proc: stom(group, matrix[, sample])

Include the series or group name in parentheses followed by a comma and the vector or
matrix name. By default, the series values in the current workfile sample are used to fill
the vector or matrix; you may optionally provide an alternative sample.

There are two important features of stom that you should keep in mind:

• If any of the series contain NAs, those observations will be dropped from the vector/
matrix (for alternative behavior, see stomna, below).

• If the vector or matrix already exists in the workfile, EViews automatically resizes
the vector/matrix to fit the series/group.

Examples

series lwage=log(wage)

stom(lwage,vec1)

converts the series LWAGE into a vector named VEC1 using the current workfile sample.
Any NAs in LWAGE will be dropped from VEC1.

group rhs x1 x2 x3

sample s1 1951 1990

stom(rhs,x,s1)

converts a group of three series named X1, X2 and X3 to a matrix named X using sample
S1. The matrix X will have 40 rows and 3 columns (provided there are no NAs).

Cross-references

See Chapter 4, “Matrix Language”, on page 55 of the Command and Programming Refer-
ence for further discussion and examples of matrices.

See also stomna (p. 346) and mtos (p. 409).

Convert a series or group to a vector or matrix without dropping NAs.

Fills a vector or matrix with the data from a series or group without dropping observations
with missing values.

Works in identical fashion to stom, above, but does not drop observations containing NAs.

stomna Group Proc | Series Proc

store—347
Syntax

Series Proc: stomna(series, vector[, sample])

Group Proc: stomna(group, matrix[, sample])

Include the series or group name in parentheses followed by a comma and the vector or
matrix name. By default, the series values in the current workfile sample are used to fill
the vector or matrix; you may optionally provide an alternative sample.

Examples

series lwage=log(wage)

stomna(lwage,vec1)

converts the series LWAGE into a vector named VEC1 using the current workfile sample.
Any NAs in LWAGE will be placed in VEC1.

group rhs x1 x2 x3

sample s1 1951 1990

stom(rhs,x,s1)

converts a group of three series RHS to a matrix named X using sample S1. The matrix X
will always have 40 rows and 3 columns.

Cross-references

See Chapter 4, “Matrix Language”, on page 55 of the Command and Programming Refer-
ence for further discussion and examples of matrices.

See also stom (p. 345) and mtos (p. 409).

Store objects in databases and databank files.

Stores one or more objects in the current workfile in EViews databases or individual data-
bank files on disk. The objects are stored under the name that appears in the workfile.

When used as a pool proc, EViews will first expand the list of series using the pool opera-
tor, and then perform the fetch.

Syntax

Command: store(options) object_name_list

Pool Proc: pool_name.store(options) ser1? ser2?

store Command || Pool Proc

348—Chapter 8. Command Reference
Follow the store command with a list of the object names (each separated by a space)
that you wish to store. The default is to store the objects in the default database. (This
behavior is a change from EViews Version 2 and earlier where the default was to store
objects in individual databank files).

You can precede the object name with a database name and the double colon “::” to indi-
cate a specific database. You can also specify the database name as an option in parenthe-
ses, in which case all objects without an explicit database name will be stored in the
specified database.

When used as a command, you may use wild card characters “?” (to match any single
character) or “*” (to match zero or more characters) in the object name list. All objects
with names matching the pattern will be stored. You may not use “?” as a wildcard charac-
ter if store is being used as a pool proc since this conflicts with the pool identifier.

You can optionally choose to store the listed objects in individual databank files. To store
in files other than the default path, you should include a path designation before the object
name.

Options

If you do not specify the precision option (1 or 2), the global option setting will be used.
See “Data Registry / Database Default Storage Options” on page 648 of the User’s Guide.

d=db_name Store to the specified database.

i Store to individual databank files.

1 Store series in single precision to save space.

2 Store series in double precision.

o Overwrite object in database (default is to merge data,
where possible).

g=s For group objects, store group definition and series as
separate objects.

g=t For group objects, store group definition and series as
one object.

g=d For group objects, store only the series (as separate
objects).

g=l For group objects, store only the group definition.

structure—349
Examples

store m1 gdp unemp

stores the three objects M1, GDP, UNEMP in the default database.

store(d=us1) m1 gdp macro::unemp

stores M1 and GDP in the US1 database and UNEMP in the MACRO database.

store usdat::gdp macro::gdp

stores the same object GDP in two different databases USDAT and MACRO.

store(1) cons*

stores all objects with names starting with CONS in the default database. The 1 option uses
single precision to save space.

store(i) m1 c:\data\unemp

stores M1 and UNEMP in individual databank files.

Cross-references

“Basic Data Handling” on page 55 of the User’s Guide discusses exporting data in other file
formats. See Chapter 6 of the User’s Guide for a discussion of EViews databases and data-
bank files. For additional discussion of wildcards, see Appendix C, “Wildcards”, on
page 657 of the User’s Guide.

See also fetch (p. 205) and copy (p. 168).

Display summary of sspace specification.

Show view which summarizes the system transition matrices or the covariance structure of
the state space specification. EViews can display either the formulae or the values of the
system transition matrices or covariance. By default, EViews will display the formulae for
the system matrices.

Syntax

Sspace View: sspace_name.structure(options) [argument]

If you choose to display the values for a time-varying system using the “v” option, you
should use the optional [argument] to specify a single date at which to evaluate the matri-
ces. If none is provided, EViews will use the first date in the current sample.

structure Sspace View

350—Chapter 8. Command Reference
Options

Examples

ss1.structure

displays a system transition matrices.

ss1.structure 1993:4

displays the transition matrices evaluated at 1993:4.

Cross-references

See Chapter 22 of the User’s Guide for a discussion of state space models.

Estimate a system using seemingly unrelated regression (SUR).

Note that the EViews procedure is more general than textbook versions of SUR since the sys-
tem of equations may contain cross-equation restrictions on parameters.

Syntax

System Method: system_name.sur(options)

Options

v Display the values of the system transition or covari-
ance matrices.

c Display the system covariance matrix.

p Print the view.

sur System Method

i Iterate on the weighting matrix and coefficient vector
simultaneously.

s Iterate on the weighting matrix and coefficient vector
sequentially.

o (default) Iterate only on the coefficient vector with one step of
the weighting matrix.

c One step iteration on the coefficient vector after one
step of the weighting matrix.

m=integer Maximum number of iterations.

svar—351
Examples

sys1.sur(i)

estimates SYS1 by SUR, iterating simultaneously on the weighting matrix and coefficient
vector.

nlsys.sur(d,m=500)

estimates NLSYS by SUR with up to 500 iterations. The “d” option displays the starting val-
ues.

Cross-references

See Chapter 19 of the User’s Guide for a discussion of system estimation.

Estimate factorization matrix for structural innovations.

Syntax

Var Proc: var_name.svar(options)

You must specify the identifying restrictions either in text form by the append proc or by a
pattern matrix option. See “Specifying the Identifying Restrictions” on page 531 of the
User’s Guide for details on specifying restrictions.

c=number Set convergence criterion.

l=number Set maximum number of iterations on the first-stage
iteration to get one-step weighting matrix.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should
be a one- or two-letter string. The first letter should
either be “f” or “a” corresponding to fast or accurate
numeric derivatives (if used). The second letter should
be either “n” (always use numeric) or “a” (use analytic
if possible). If omitted, EViews will use the global
defaults.

p Print estimation results.

svar Var Proc

352—Chapter 8. Command Reference
Options

You must specify one of the following restriction type:

Other Options:

rtype=text Text form restrictions. The restrictions must be specified
by the append command to use this option.

rtype=patsr Short-run pattern restrictions. You must provide the
names of the patterned matrices by the “namea=” and
“nameb=” options as described below.

rtype=patlr Long-run pattern restrictions. You must provide the
name of the patterned matrix by the “namelr=” option
as described below.

namea=arg,

nameb=arg

Names of the pattern matrices for A and B matrices.
Must be used with “rtype=patsr”.

namelr=arg Name of the pattern matrix for long-run impulse
responses. Must be used with “rtype=patlr”.

fsign Do not apply the sign normalization rule. Default is to
apply the sign normalization rule whenever applicable.
See “Sign Indeterminacy” on page 536 of the User’s
Guide for a discussion of the sign normalization rule.

f0=arg (default
“f0 = 0.1”)

Starting values for the free parameters: “f0=scalar”
(specify fixed value for starting values), “f0=s” (user
specified starting values are taken from the C coefficient
vector), “f0=u” (draw starting values for free parame-
ters from a uniform distribution on [0,1]), “f0=n”
(draw starting values for free parameters from standard
normal).

maxiter=integer Maximum number of iterations. Default is taken from
global option setting.

conv=number Convergence criterion. Default is taken from global
option setting.

trace=integer Trace iterations process every integer iterations (dis-
plays an untitled text object containing summary infor-
mation).

nostop Suppress “Near Singular Matrix” error message even if
Hessian is singular at final parameter estimates.

sym—353
Examples

var var1.ls 1 4 m1 gdp cpi

matrix(3,3) pata

'fill matrix in row major order

pata.fill(by=r) 1,0,0, na,1,0, na,na,1

matrix(3,3) patb

pata.fill(by=r) na,0,0, 0,na,0, 0,0,na

var1.svar(rtype=patsr,namea=pata,nameb=patb)

The first line declares and estimates a VAR with three variables. Then we create the short-
run pattern matrices and estimate the factorization matrix.

var var1.ls 1 8 dy u @

var1.append(svar) @lr1(@u1)=0

freeze(out1) var1.svar(rtype=text)

The first line declares and estimates a VAR with two variables without a constant. The next
two lines specify a long-run restriction in text form and stores the estimation output in a
table object named OUT1.

Cross-references

See “Structural (Identified) VARs” on page 531 of the User’s Guide for a discussion of struc-
tural VARs.

Declare a symmetric matrix object.

The sym command declares and optionally initializes a matrix object.

Syntax

Command: sym(n) sym_name

Command: sym(n) sym_name=assignment

sym takes an optional argument n specifying the row and column dimension of the matrix
and is followed by the name you wish to give the matrix.

You may also include an assignment in the sym command. The symmetric matrix will be
resized, if necessary. Once declared, symmetric matrices may be resized by repeating the
sym command for a given matrix name.

You may use sym instead of matrix for working with symmetric matrices.

sym Object Declaration

354—Chapter 8. Command Reference
Examples

sym mom

declares a symmetric matrix named MOM with one zero element.

sym y=@inner(x)

declares a symmetric matrix Y and assigns to it the inner product of the matrix X.

Cross-references

See “Matrix Language” on page 55 of the Command and Programming Reference for a dis-
cussion of matrix objects in EViews.

See also matrix (p. 265).

Declare system of equations.

The system command declares an object as a system for estimation by system methods
such as three-stage least squares.

Syntax

Command: system system_name

Follow the system keyword by a name for the system. If you do not provide a name,
EViews will open an untitled system object (if in interactive mode).

Examples

system mysys

creates a system named MYSYS.

Cross-references

Chapter 19 of the User’s Guide provides a full discussion of system objects.

See ls (p. 245), wls (p. 380), tsls (p. 368), wtsls (p. 385), 3sls (p. 136), and gmm
(p. 221) for various system estimation methods.

system Object Declaration

testadd—355
Applies templates to graph objects.

If you apply template to a multiple graph object, the template options will be applied to
each graph in the multiple graph. If the template graph is a multiple graph, the options of
the first graph will be used.

Syntax

Graph Proc: graph_name.template(options) template_graph_name

Follow the name of the graph you want to apply the template options with a period, the
keyword template, and the name of the graph object to use as a template.

Options

Examples

gra_cs.template gra_gdp

applies the option settings in the graph object GRA_GDP to the graph GRA_CS. Text and
shadings in GRA_GDP will not be applied to GRA_CS.

g1.template(t) mygraph1

applies the option settings of MYGRAPH1 and all text and shadings in the graph to the
graph G1.

Cross-references

See “Graph Templates” on page 249 of the User’s Guide for additional discussion.

Test whether to add regressors.

Tests the hypothesis that the listed variables were incorrectly omitted from the (default)
equation. The test displays the Wald and LR test statistics and the test regression.

template Graph Proc

t Copy any text labels and shading in the template graph
in addition to its option settings.

testadd Command || Equation View

356—Chapter 8. Command Reference
Syntax

Command: testadd ser1 ser2 ser3

Equation View: eq_name.testadd ser1 ser2 ser3

List the names of the series or groups of series to test for omission after the add keyword.
The command form applies the test to the default equation.

Options

Examples

ls sales c adver lsales ar(1)

testadd gdp gdp(-1)

tests whether GDP and GDP(-1) belong in the specification for SALES. The commands

equation oldeq.ls sales c adver lsales ar(1)

oldeq.testadd gdp gdp(-1)

perform the same test using a named equation object.

Cross-references

See “Coefficient Tests” on page 368 of the User’s Guide for further discussion.

See also testdrop (p. 358) and wald (p. 378).

Test equality of the mean, median or variance between (among) series in a group.

Syntax

Group View: group_name.testbtw(options)

Specify the type of test as an option.

Options

p Print output from the test.

testbtw Group View

mean (default) Test equality of mean.

med Test equality of median.

var Test equality of variance.

testby—357
Examples

group g1 wage_m wage_f

g1.testbtw

g1.testbtw(var,c)

tests the equality of means between the two series WAGE_M and WAGE_F.

Cross-references

See “Tests of Equality” on page 214 of the User’s Guide for further discussion of these tests.

See also testby (p. 357), teststat (p. 362).

Test equality of the mean, median, or variance of a series across categories classified by a
list of series or a group.

Syntax

Series View: series_name.testby(options) ser1 ser2 ser3 …

Follow the testby keyword by a list of the names of the series to use as classifiers. Specify
the type of test as an option.

Options

c Use common sample.

i (default) Use individual sample.

p Print the test results.

testby Series View

mean (default) Test equality of mean.

med Test equality of median.

var Test equality of variance.

dropna (default),
keepna

[Drop /Keep] NAs as a category.

v=integer
(default=100)

Bin categories if classification series take more than
the specified number of distinct values.

nov Do not bin based on the number of values of the
classification series.

358—Chapter 8. Command Reference
Examples

wage.testby(med) race

Tests equality of medians of WAGE across groups classified by RACE.

Cross-references

See “Equality Tests by Classification” on page 159 of the User’s Guide for a discussion of
equality tests.

See also testbtw (p. 356), teststat (p. 362).

Test whether to drop regressors from a regression.

Tests the hypothesis that the listed variables were incorrectly included in the (default)
equation. The test displays the and LR test statistics and the test regression.

Syntax

Command: testdrop ser1 ser2 ser3

Equation View: eq_name.testdrop ser1 ser2 ser3

List the names of the series or groups of series to test for omission after the add keyword.
The command form applies the test to the default equation.

Options

Examples

ls sales c adver lsales ar(1)

testdrop adver

tests whether ADVER should be excluded from the specification for SALES. The commands

a=number
(default=2)

Bin categories if average cell count is less than the
specified number.

noa Do not bin on the basis of average cell count.

b=integer
(default=5)

Set maximum number of binned categories.

p Print the test results.

testdrop Command || Equation View

p Print output from the test.

F

testexog—359
equation oldeq.ls sales c adver lsales ar(1)

oldeq.testdrop adver

perform the same test using a named equation object.

Cross-references

See “Coefficient Tests” on page 368 of the User’s Guide for further discussion of testing
coefficients.

See also testadd (p. 355) and wald (p. 378).

Exogeneity (Granger causality) tests.

Syntax

Var View: var_name.testexog(options)

Options

The name= option stores a matrix, where is the number of endogenous
variables in the VAR. For the first rows, the i-th row, j-th column entry is the Wald statis-
tic for the joint significance of lags of the i-th endogenous variable in the j-th equation.
(Note that the entries in the main diagonal are not reported in the table view). The degrees
of freedom of the Wald statistics for the first rows is the number of lags you included in
the VAR.

The j-th column of the last row contains the Wald statistic for the joint significance of all
lagged endogenous variables (excluding lags of the dependent variable) in the j-th equa-
tion. The degrees of freedom of the Wald statistics in the last row is times the
number of lags you included in the VAR.

Examples

var var1.ls 1 6 lgdp lm1 lcpi

freeze(tab1) var1.testexog(name=exog)

testexog Var View

name=arg Save the Wald test statistics in named matrix object. See
below for a description of the statistics stored in the
matrix.

p Print output from the test.

k 1+() k× k
k

k

k 1−()

360—Chapter 8. Command Reference
The first line declares and estimates a VAR. The second line stores the exclusion test results
in a named table TAB1 and stores the Wald statistics in a matrix named EXOG.

Cross-references

See “Diagnostic Views” on page 522 of the User’s Guide for a discussion other VAR diag-
nostics.

See also testlags (p. 361).

Carry out the Hosmer-Lemeshow and/or Andrews goodness-of-fit tests for binary models.

Syntax

Equation View: binary_equation.testfit(options)

Options

Examples

equation eq1.binary work c age edu

eq1.testfit(h,5,u)

estimates a probit specification, and tests goodness-of-fit by comparing five unbalanced
groups of actual data to those estimated by the model.

testfit Equation View

h Group by the predicted values of the estimated equa-
tion.

s=series name Group by the specified series.

integer
(default=10)

Specify the number of quantile groups in which to clas-
sify observations.

u Unbalanced grouping. Default is to randomize ties to
balance the number of observations in each group.

v Group according to the values of the reference series.

l=integer
(default=100)

Limit the number of values to use for grouping. Should
be used with the “v” option.

p Print the result of the test.

testlags—361
Cross-references

See “Goodness-of-Fit Tests” on page 431 of the User’s Guide for a discussion of the
Andrews and Hosmer-Lemeshow tests.

Lag exclusion (Wald) tests.

Syntax

Var View: var_name.testlags(options)

Options

The “name=” option stores an matrix, where is the number of lagged
terms and is the number of endogenous variables in the VAR. For the first columns,
the i-th row, j-th column entry is the Wald statistic for the joint significance of all i-th
lagged endogenous variables in the j-th equation. These Wald statistics have a distribu-
tion with degrees of freedom under the exclusion null.

The i-th row of the last column contains the system Wald statistic for testing the joint sig-
nificance of all i-th lagged endogenous variables in the VAR system. The system Wald sta-
tistics has a chi-square distribution with degrees of freedom under the exclusion null.

Examples

var var1.ls 1 6 lgdp lm1 lcpi

freeze(tab1) var1.testlags(name=lags)

The first line declares and estimates a VAR. The second line stores the lag exclusion test
results in a table named TAB1 and stores the Wald statistics in a matrix named LAGS.

Cross-references

See “Diagnostic Views” on page 522 of the User’s Guide for a discussion other VAR diag-
nostics.

See also laglen (p. 239) and testexog (p. 359).

testlags Var View

name=arg Save the Wald test statistics in named matrix object. See
below for a description of the statistics contained in the
stored matrix.

p Print the result of the test.

m k 1+()× m
k k

χ
2

k

k
2

362—Chapter 8. Command Reference
Test simple hypotheses of whether the mean, median, or variance of a series is equal to a
specified value.

Syntax

Series View: series_name.teststat(options)

Specify the type of test and the value under the null hypothesis as an option.

Options

Examples

smpl if race=1

lwage.teststat(var=4)

tests the null hypothesis that the variance of LWAGE is equal to 4 for the subsample with
RACE=1.

Cross-references

See “Tests for Descriptive Stats” on page 156 of the User’s Guide for a discussion of simple
hypothesis tests.

See also testbtw (p. 356), testby (p. 357).

teststat Series View

mean=number Test the null hypothesis that the mean equals the speci-
fied number.

med=number Test the null hypothesis that the median equals the
specified number.

var=number Test the null hypothesis that the variance equals the
specified number. The number must be positive.

std=number Test equality of mean conditional on the specified stan-
dard deviation. The standard deviation must be posi-
tive.

p Print the test results.

tic—363
Declare a text object when used as a command, or display text representation of the
model specification.

Syntax

Command: text text_name

Model View: model_name.text(options)

Follow the text keyword with a name for the text object. When used as a model view,
text is equivalent to spec (p. 337).

Options

Examples

text notes1

declares a text object named NOTES1.

Cross-references

See Chapter 23 of the User’s Guide for further details on models. See Chapter 10 of the
User’s Guide for a discussion of text objects in EViews.

See also spec (p. 337).

Reset the timer.

Syntax

Command: tic

Examples

The sequence of commands

tic

[some commands]

toc

text Object Declaration || Model View

p Print the model text specification.

tic Command

364—Chapter 8. Command Reference
resets the timer, executes commands, and then displays the elapsed time in the statusline.
Alternatively,

tic

[some commands]

!elapsed = @toc

resets the time, executes commands, and saves the elapsed time in the control variable
!ELAPSED.

Cross-references

See also toc (p. 364) and @toc (p. 432).

Display elapsed time (since timer reset) in seconds.

Syntax

Command: toc

Examples

The sequence of commands

tic

[some commands]

toc

resets the timer, executes commands, and then displays the elapsed time in the statusline,
while the set of commands

tic

[some commands]

!elapsed = @toc

resets the time, executes commands, and saves the elapsed time in the control variable
!ELAPSED.

Cross-references

See also tic (p. 363) and @toc (p. 432).

toc Command

tramoseats—365
Display trace view of a model showing iteration history for selected solved variables.

Syntax

Model View: model_name.trace(options)

Options

Cross-references

See “Diagnostics” on page 637 of the User’s Guide for further details on tracing model solu-
tions.

See also msg (p. 270), solve (p. 334) and solveopt (p. 335).

Run the external seasonal adjustment program Tramo/Seats using the data in the series.

tramoseats is available for annual, semi-annual, quarterly, and monthly series. The pro-
cedure requires at least observations and can adjust up to 600 observations where

(8.2)

Syntax

Series Proc: series_name.tramoseats(options) base_name

Enter the name of the original series followed by a dot, the keyword tramoseats, and
optionally provide a base name (no more than 20 characters long) to name the saved
series. The default base name is the original series name. The saved series will have post-
fixes appended to the base name.

trace Model View

p Print the block structure view.

tramoseats Series Proc

n

n
36

max 12 4s� � �



=
for monthly data

for other seasonal data

366—Chapter 8. Command Reference
Options

runtype=ts
(default)

Run Tramo followed by Seats. The “opt=” options are
passed to Tramo, and Seats is run with the input file
returned from Tramo.

runtype=t Run only Tramo.

runtype=s Run only Seats.

save=arg Specify series to save in workfile. You must use one or
more from the following key word list:

“hat” for forecasts of original series

“lin” for linearized series from Tramo

“pol” for interpolated series from Tramo

“sa” for seasonally adjusted series from Seats

“trd” for final trend component from Seats

“ir” or final irregular component from Seats

“sf” for final seasonal factor from Seats

“cyc” for final cyclical component from Seats

To save more than one series, separate the list of key
words with a space. Do not use commas within the list.
The special key word “save=*” will save all series in
the key word list. The five key words “sa”, “trd”, “ir”,
“sf”, “cyc” will be ignored if “runtype=t”.

opt=arg A space delimited list of input namelist. Do not use
commas within the list. The syntax for the input namel-
ist is explained in the pdf documentation file. See also
“Notes” below.

reg=arg A space delimited list for one line of reg namelist. Do
not use commas within the list. This option must be
used in pairs, either with another “reg=” option or
“regname=” option. The reg namelist is available only
for Tramo and its syntax is explained in the pdf docu-
mentation file. See also “Notes” below.

regname=arg Name of a series or group in the current workfile that
contains the exogenous regressors specified in the pre-
vious “reg=” option. See “Notes” below.

p Print the results of the Tramo/Seats procedure.

tramoseats—367
Notes

The command line interface to Tramo/Seats does very little error checking of the command
syntax. EViews simply passes on the options you provide “as is” to Tramo/Seats. If the
syntax contains an error, you will most likely to see the EViews error message “output file
not found”. If you see this error message, check the input files produced by EViews for pos-
sible syntax errors as described in “Trouble Shooting” on page 189 of the User’s Guide.

Additionally, here are some of the more commonly encountered syntax errors.

• To replicate the dialog options from the command line, use the following input
options in the “opt=” list. See the pdf documentation file for a description of each
option.

1. data frequency: “mq=”.

2. forecast horizon: “npred=” for Tramo and “fh=” for Seats .

3. transformation: “lam=”.

4. ARIMA order search: “inic=” and “idif=”.

5. Easter adjustment: “ieast=”.

6. trading day adjustment: “itrad=”.

7. outlier detection: “iatip=” and “aio=”.

• The command option input string list must be space delimited. Do not use commas.
Options containing an equals sign should not contain any spaces around the equals;
the space will be interpreted as a delimiter by Tramo/Seats.

• If you set “rtype=ts”, you are responsible for supplying either “seats=1” or
“seats=2” in the “opt=” option list. EViews will issue the error message “Seats.itr
not found” if the option is omitted. Note that the dialog option Run Seats after
Tramo sets “seats=2”.

• Each “reg=” or “regname=” option is passed to the input file as a separate line in
the order that they appear in the option argument list. Note that these options must
come in pairs. A “reg=” option must be followed by another “reg=” option that
specifies the outlier or intervention series or by a “regname=” option that provides
the name for an exogenous series or group in the current workfile. See the sample
programs in the EXAMPLE FILES directory.

• If you specify exogenous regressors with the “reg=” option, you must set the appro-
priate “ireg=” option (for the total number of exogenous series) in the “opt=” list.

• To use the “regname=” option, the preceding “reg=” list must contain the “user=-
1” option and the appropriate “ilong=” option. Do not use “user=1” since EViews
will always write data in a separate external file. The “ilong=” option must be at

368—Chapter 8. Command Reference
least the number of observations in the current workfile sample plus the number of
forecasts. The exogenous series should not contain any missing values in this range.
Note that Tramo may increase the forecast horizon, in which case the exogenous series
is extended by appending zeros at the end.

Examples

freeze(tab1) show x.tramoseats(runtype=t, opt="lam=-1 iatip=1

aio=2 va=3.3 noadmiss=1 seats=2", save=*) x

replicates the example file EXAMPLE.1 in Tramo. The output file from Tramo is stored in a
text object named tab1. This command returns three series named X_HAT, X_LIN, X_POL.

show x.TramoSeats(runtype=t, opt="NPRED=36 LAM=1 IREG=3

INTERP=2 IMEAN=0 P=1 Q=0 D=0", reg="ISEQ=1 DELTA=1.0",

reg="61 1", reg="ISEQ=8 DELTAS=1.0", reg="138 5 150 5 162 5

174 5 186 5 198 5 210 5 222 5", reg="ISEQ=8 DELTAS=1.0",

reg="143 7 155 7 167 7 179 7 191 7 203 7 215 7 227 7") x

replicates the example file EXAMPLE.2 in Tramo. This command produces an input file
that looks as follows:

$INPUT NPRED=36 LAM=1 IREG=3 INTERP=2 IMEAN=0 P=1 Q=0 D=0, $

$REG ISEQ=1 DELTA=1.0$

61 1

$REG ISEQ=8 DELTAS=1.0$

138 5 150 5 162 5 174 5 186 5 198 5 210 5 222 5

$REG ISEQ=8 DELTAS=1.0$

143 7 155 7 167 7 179 7 191 7 203 7 215 7 227 7

Further examples that replicate many of the example files provided by Tramo/Seats can be
found in the EXAMPLE FILES directory. You will also find example files that compare sea-
sonal adjustments from Census X12 and Tramo/Seats.

Cross-references

See also the Tramo/Seats documentation that accompanied your EViews distribution.

See also seas (p. 315) and x12 (p. 388).

Two-stage least squares.

Carries out estimation for equations or systems using two-stage least squares.

tsls Command || Equation Method | System Method

tsls—369
Syntax

Command: tsls(options) y x1 x2 @ z1 z2 z3

tsls(options) formula @ z1 z2 z3

Equation Method: eq_name.tsls(options) y x1 x2 @ z1 z2 z3

eq_name.tsls(options) formula @ z1 z2 z3

System Method: system_name.tsls(options)

To use tsls as a command or equation method, list the dependent variable first, followed
by the regressors, then any AR or MA error specifications, then an “@”-sign, and finally, a
list of exogenous instruments. There must be at least as many instrumental variables as
there are independent variables. All exogenous variables included in the regressor list
should also be included in the instrument list. A constant is included in the list of instru-
mental variables even if not explicitly specified. You can estimate nonlinear equations or
equations specified with formulas; always list the instrumental variables after an “@”-
sign.

Options

General options

m=integer Set maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

deriv=keyword Set derivative methods. The argument keyword should
be a one- or two-letter string. The first letter should
either be “f” or “a” corresponding to fast or accurate
numeric derivatives (if used). The second letter should
be either “n” (always use numeric) or “a” (use analytic
if possible). If omitted, EViews will use the global
defaults.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

p Print estimation results.

370—Chapter 8. Command Reference
Additional options for equations

Additional options for systems

Examples

eq1.tsls y_d c cpi inc ar(1) @ lw(-1 to -3)

estimates EQ1 using TSLS regression of Y_D on a constant, CPI, INC with AR(1) using a
constant, LW(-1), LW(-2), LW(-3) as instruments.

param c(1) .1 c(2) .1

eq1.tsls(s,m=500) y_d=c(1)+inc^C(2) @ cpi

estimates a nonlinear TSLS model using a constant and CPI as instruments. The first line
sets the starting values for the nonlinear iteration algorithm.

w=series_name Weighted TSLS. Each observation will be weighted by
multiplying by the specified series.

h White’s heteroskedasticity consistent standard errors.

n Newey-West heteroskedasticity and autocorrelation
consistent (HAC) standard errors.

s Use the current coefficient values in C as starting values
for equations with AR or MA terms (see PARAM).

s=number Specify a number between zero and one to determine
starting values for equations with AR or MA terms as a
fraction of preliminary LS or TSLS estimates made with-
out including AR or MA terms (out of range values are
set to “s=1”).

z Turn off backcasting in ARMA models.

i Iterate on the weighting matrix and coefficient vector
simultaneously.

s Iterate on the weighting matrix and coefficient vector
sequentially.

o (default) Iterate only on the coefficient vector with one step of
the weighting matrix.

c One step iteration of the coefficient vector after one step
of the weighting matrix.

l=number Set maximum number of iterations on the first-stage
iteration to get one-step weighting matrix.

unlink—371
sys1.tsls

estimates the system object using TSLS.

Cross-references

See “Two-stage Least Squares” on page 283 and page 497 of the User’s Guide for details on
two-stage least squares estimation in single equations and systems.

See also ls (p. 245). For estimation of weighted TSLS in systems, see wtsls (p. 385).

Break model links.

Breaks equation links in the model. Follow the name of the model object by a period, the
keyword unlink, and a specification for the variables to unlink.

Syntax

Model Proc: object.unlink spec

where spec is

Note: If a link is to another Model or a System object, then more than one endogenous
variable may be associated with the link. If the spec contains any of the endogenous vari-
ables in a linked Model or System, EViews will break the link for all of the variables found
in the link.

Examples

mod1.unlink @all

mod2.unlink z1 z2

unlinks all of equations in MOD1, and all of the variables associated with the links for Z1
and Z2 in MOD2.

Cross-references

See Chapter 23 of the User’s Guide for a discussion of specifying and solving models in
EViews. See also append (p. 143), merge (p. 267) and solve (p. 334).

unlink Model Proc

@all Unlinks all equations in the model.

list of
endogenous vars

Unlink equations for the listed endogenous variables.

372—Chapter 8. Command Reference
Update model specification.

Recompiles the model and updates all links.

Syntax

Model Proc: model.update

Follow the name of the model object by a period and the keyword update. See Chapter 23
of the User’s Guide for a discussion of specifying and solving models in EViews.

Examples

mod1.update

recompiles and updates all of the links in MOD1.

See also append (p. 143), merge (p. 267) and solve (p. 334).

Update coefficients.

Copies coefficients from the estimation object into the appropriate coefficient vector or
vectors.

Syntax

Object Proc: object.updatecoef

Follow the name of the estimation object by a period and the keyword updatecoef.

Examples

equation eq1.ls y c x1 x2 x3

equation eq2.ls z c z1 z2 z3

eq1.updatecoef

places the coefficients from EQ1 in the default coefficient vector C.

coef(3) a

equation eq3.ls y=a(1)+z1^c(1)+log(z2+a(2))+exp(c(4)+z3/a(3))

equation eq2.ls z c z1 z2 z3

eq3.updatecoef

update Model Proc

updatecoefs Equation Proc | Logl Proc | Pool Proc | Sspace Proc | System Proc

uroot—373
updates the coefficient vector A and the default vector C so that both contain the coeffi-
cients from EQ3.

Cross-references

See also coef (p. 164).

Unit root tests.

Carries out the Augmented Dickey-Fuller (ADF), GLS detrended Dickey-Fuller (DFGLS),
Phillips-Perron (PP), Kwiatkowski, et. al. (KPSS), Elliot, Rothenberg, and Stock (ERS) Point
Optimal, or Ng and Perron (NP) tests for a unit root in the series (or its first or second dif-
ference).

Syntax

Command: uroot(options) series_name

Series View: series_name.uroot(options)

You should enter the keyword uroot followed by the series name, or the series name fol-
lowed by a period and the keyword uroot.

Options

Specify the test type using one of the following keywords:

Specify the exogenous variables in the test equation from the following:

uroot Command || Series View

adf (default) Augmented Dickey-Fuller.

dfgls GLS detrended Dickey-Fuller (Elliot, Rothenberg, and
Stock).

pp Phillips-Perron.

kpss Kwiatkowski, Phillips, Schmidt, and Shin.

ers Elliot, Rothenberg, and Stock (Point Optimal).

np Ng and Perron.

374—Chapter 8. Command Reference
For backward compatibility, the shortened forms “c”, “t”, and “n” are presently supported.
However for future compatiblity we recommend that you use the longer forms.

Other Options:

const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test
equation.

none Do not include a constant or time trend (only available
for the ADF and PP tests).

dif=integer
(default=0)

Order of differencing of the series prior to running the
test. Valid values are {0, 1, 2}.

hac=arg Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel), “ar” (AR spectral), “ardt (AR spectral -
OLS detrended data), “argls” (AR spectral - GLS
detrended data).

The default settings are test specific: “bt” for PP and
KPSS, “ar” for ERS, “argls” for NP.

Applicable to PP, KPSS, ERS and NP tests.

band = arg, b=arg
(default = “nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), “number” (user specified band-
width).

Applicable to PP, KPSS, ERS, ERS and NP tests when
using kernel sums-of-covariances estimators (where
“hac=” is one of {bt, pz, qs}).

lag=arg
(default = “a”)

Method of selecting lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), “integer”
(user specified lag length)

Applicable to ADF and DFGLS tests, and for the other
tests when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

uroot—375
Examples

The command

gnp.uroot(adf,const,lag=3,save=mout)

performs an ADF test on the series GDP with the test equation including a constant term
and three lagged first-difference terms. Intermediate results are stored in the matrix MOUT.

ip.uroot(dfgls,trend,info=sic)

runs the DFGLS unit root test on the series IP with a constant and a trend. The number of
lagged difference terms is selected automatically using the Schwarz criterion.

unemp.uroot(kpss,const,hac=pr,b=2.3)

runs the KPSS test on the series UNEMP The null hypothesis is that the series is stationary
around a constant mean. The frequency zero spectrum is estimated using kernel methods
(with a Parzen kernel), and a bandwidth of 2.3.

sp500.uroot(np,hac=ardt,info=maic)

runs the NP test on the series SP500. The frequency zero spectrum is estimated using the
OLS AR spectral estimator with the lag length automatically selected using the modified
AIC.

Cross-references

See “Unit Root Tests” on page 329 of the User’s Guide for further discussion.

info=arg

(default = “maic”)

Information criterion to use when computing automatic
lag length selection: “aic” (Akaike), “sic” (Schwarz),
“hqc” (Hannan-Quinn), “msaic” (Modified Akaike),
“msic” (Modified Schwarz), “mhqc” (Modified Han-
nan-Quinn).

Applicable to ADF and DFGLS tests, and for other tests
when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

maxlag=integer Maximum lag length to consider when performing
automatic lag length selection (default =

)).

Applicable to ADF and DFGLS tests, and for other tests
when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

p Print output from the test.

int 12 T 100⁄()1 4⁄
� �

376—Chapter 8. Command Reference
Declare a var (Vector Autoregression) object.

Syntax

Command: var var_name

Command: var var_name.ls lag_pairs y1 y2 @ x1 x2

Command: var var_name.ec(options) specification

Declare the var as a name, or a name followed by an estimation method (either ls or ec).

The ls method estimates an unrestricted VAR using equation-by-equation OLS. You must
specify the order of the VAR (using one or more pairs of lag intervals), and then provide a
list of endogenous variables. You may include exogenous variables such as trends and sea-
sonal dummies in the VAR by including an “@-sign” followed by a list of series. A constant
is always included as an exogenous variable.

See ec (p. 196) for the error correction specification of a VAR.

Options

Examples

var mvar.ls 1 4 8 8 m1 gdp tb3 @ @trend(70.4)

declares and estimates an unrestricted VAR named MVAR with three endogenous variables
(M1, GDP, TB3), five lagged terms (lags 1 through 4 and 8), a constant, and a linear trend.

var jvar.ec(c,2) 1 4 m1 gdp tb3

declares and estimates an error correction model named JVAR with three endogenous vari-
ables (M1, GDP, TB3), four lagged terms (lags 1 through 4) including two cointegrating
relations. The “c” option assumes a linear trend in data but only a constant in the cointe-
grating relations.

Cross-references

See Chapter 20 of the User’s Guide for a discussion of vector autoregressions.

See ec (p. 196) for error correction models in VARs.

var Object Declaration

p Print the estimation result if the estimation procedure is
specified.

vector—377
View of model organized by variable.

Display the model in variable form with identification of endogenous, exogenous, and
identity variables, as well as dependency tracking.

Syntax

Model View: model_name.vars

Cross-references

See “Variable View” on page 622 of the User’s Guide for details. See Chapter 23 of the
User’s Guide for a general discussion of models.

See also block (p. 154), text (p. 363), and eqs (p. 201) for alternative representations of
the model.

Declare a vector object.

The vector command declares and optionally initializes a (column) vector object.

Syntax

Command: vector(size) name

Command: vector(size) name=assignment

The vector keyword should be followed by the name you wish to give the vector. vec-
tor also takes an optional argument specifying the size of the vector. Once declared, vec-
tors may be resized by repeating the vector command.

You may combine vector declaration and assignment. If there is no assignment statement,
the vector will initially be filled with zeros.

Examples

vector vec1

vector(20) vec2=nrnd

rowvector(10) row3=3

vector vec3=row3

vars Model View

vector Object Declaration

378—Chapter 8. Command Reference
VEC1 is declared as a column vector of size one with element 0. VEC2 is declared as a col-
umn vector of size 20 containing a simulated random draw from the standard normal dis-
tribution. Although declared as a column vector, VEC3 is reassigned as a row vector of size
10 with all elements equal to 3.

Cross-references

See Chapter 4, “Matrix Language”, on page 55 of the Command and Programming Refer-
ence for a discussion of matrices and vectors in EViews.

See also coef (p. 164) and rowvector (p. 304).

Wald coefficient restriction test.

The wald view carries out a Wald test of coefficient restrictions for an estimation object.

Syntax

Object View: object_name.wald restrictions

Enter the object name, followed by a period, and the keyword wald. This should be fol-
lowed by a list of the coefficient restrictions. Joint (multiple) coefficient restrictions should
be separated by commas.

Options

Examples

eq1.wald c(2)=0, c(3)=0

tests the null hypothesis that the second and third coefficients in equation EQ1 are jointly
zero.

sys1.wald c(2)=c(3)*c(4)

tests the non-linear restriction that the second coefficient is equal to the product of the
third and fourth coefficients in SYS1.

pool panel us uk jp

panel.ls cons? inc? @ ar(1)

panel.wald c(3)=c(4)=c(5)

wald Equation View | Logl View | Pool View | Sspace View | System View

p Print the test results.

white—379
declares a pool object with three cross section members (US, UK, JP), estimates a pooled
OLS regression with separate AR(1) coefficients, and tests the null hypothesis that all
AR(1) coefficients are equal.

Cross-references

See “Wald Test (Coefficient Restrictions)” on page 368 of the User’s Guide for a discussion
of Wald tests.

See also testdrop (p. 358), testadd (p. 355).

White’s test for heteroskedasticity.

Carries out White’s test for heteroskedasticity to the residuals of the specified equation. By
default, the test is computed without the cross-product terms (using only the terms involv-
ing the original variables and squares of the original variables). You may elect to compute
the original form of the White test including the cross-products.

White’s test is not available for equations estimated by binary, ordered, censored, or
count. For a var object, the white command computes the multivariate version of the
test.

Syntax

Equation View: eq_name.white(options)

Var View: var_name.white(options)

Options

Options for Var View

For var views, the “name=” option stores a matrix, where is the number of
unique residual cross-product terms. For a VAR with endogenous variables,

. The first rows contain statistics for each individual test equation,
where the first column is the regression R-squared, the second column is the F-statistic,

white Equation View | Var View

c Include all possible nonredundant cross-product terms
in the test regression.

p Print the test results.

name=arg Save test statistics in named matrix object. See below
for a description of the statistics stored in the matrix.

r 1+() 5× r
k

r k k 1+() 2⁄= r

380—Chapter 8. Command Reference
the third column is the p-value of F-statistic, the 4th column is the chi-square sta-
tistic, and the fifth column is the p-value of the chi-square statistic. The numerator and
denominator degrees of freedom of the F-statistic are stored in the -st row, third
and fourth columns, while the chi-square degrees of freedom is stored in the -st
row, fifth column.

In the -st row and first column contains the joint (system) LM chi-square statistic
and the second column contains the degrees of freedom of this statistic.

Examples

eq1.white(c)

carries out the White test of heteroskedasticity including all possible cross-product terms.

Cross-references

See “White's Heteroskedasticity Test” on page 378 for a discussion of White’s test. For the
multivariate version of this test, see page 526 of the User’s Guide.

Weighted least squares.

wls estimates a system of equations using weighted least squares. To perform weighted
least squares in single equation estimation, see ls (p. 245).

Syntax

System Method: system_name.wls(options)

Options

wls System Method

i Iterate simultaneously over the weighting matrix and
coefficient vector.

s Iterate sequentially over the computation of the weight-
ing matrix and the estimation of the coefficient vector.

o (default) Iterate the estimate of the coefficient vector to conver-
gence following one-iteration of the weighting matrix.

c One step (iteration) of the coefficient vector estimates
following one iteration of the weighting matrix.

m=integer Maximum number of iterations.

T R
2×

r 1+()
r 1+()

r 1+()
χ

2

workfile—381
Examples

sys1.wls

estimates the system of equations in SYS1 by weighted least squares.

Cross-references

See Chapter 19 of the User’s Guide for a discussion of system estimation.

See also the available options for weighted least squares in ls (p. 245).

Create or change workfiles.

Syntax

Command: workfile name

Command: workfile name frequency start end

Typing workfile without arguments is equivalent to selecting File/New/Workfile. A dialog
box will open prompting you for additional information concerning the frequency and
dates for the workfile (see “Creating a Workfile” on page 34 of the User’s Guide for the
rules of specifying dates). Once you specify the information, EViews will create an untitled
workfile of the specified type.

c=number Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

l=number Set maximum number of iterations on the first-stage
coefficient estimation to get one-step weighting matrix.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should
be a one- or two-letter string. The first letter should
either be “f” or “a” corresponding to fast or accurate
numeric derivatives (if used). The second letter should
be either “n” (always use numeric) or “a” (use analytic
if possible). If omitted, EViews will use the global
defaults.

p Print the estimation results.

workfile Command

382—Chapter 8. Command Reference
You may also use the keyword workfile followed by a name for a workfile. If a workfile
with that name is already loaded into memory, the workfile will become active.

If you specify workfile with a name, followed by a frequency code and a start and end
date or observation, a new workfile will be created.

Options

The frequency codes for workfiles are:

Examples

workfile test

either makes the loaded workfile named TEST active or brings up a dialog to create a new
workfile named TEST.

workfile macro q 45.1 2000

creates a quarterly workfile named MACRO from 1945.1 to 2000.4.

workfile psid u 1 20000

creates an undated workfile named PSID with 20000 observations.

Cross-references

See “Creating a Workfile” on page 34 of the User’s Guide and Appendix B, “Date Formats”,
on page 653 of the User’s Guide for a discussion of frequencies and rules for composing
dates in EViews.

See also create (p. 176), load (p. 244) and open (p. 275).

a Annual.

s Semi-annual.

q Quarterly.

m Monthly.

w Weekly.

d Daily (5 day week).

7 Daily (7 day week).

u Undated or irregular.

write—383
Write series to a disk file.

The write command creates a foreign format disk file containing any number of series.
You should use write when you wish to export EViews data to another program.

Syntax

Command: write(options) path\file name1 name2 name3 …

Pool Proc: pool_name.write(options) path\file n1? n2? n3? …

Coef Proc: coef_name.write(options) path\file

Matrix Proc: matrix_name.write(options) path\file

Follow the write keyword by a name for the output file and list the series to be written.
The optional path name may be on the local machine, or may point to a network drive. If
the path name contains spaces, enclose the entire expression in double quotation marks.
To write matrix objects, simply provide a filename; the entire matrix will be exported.

Note that EViews cannot, at present, write into an existing file. The file that you select will,
if necessary, be replaced.

Options

Options are specified in parentheses after the write keyword and are used to specify the
format of the output file.

File type

If you omit the “t=” option, EViews will determine the type based on the file extension.
Unrecognized extensions will be treated as ASCII files. For Lotus and Excel spreadsheet
files specified without the “t=” option, EViews will automatically append the appropriate
extension if it is not otherwise specified.

write Command || Coef Proc | Matrix Proc | Pool Proc | Sym Proc | Vector
Proc

t=dat, txt ASCII (plain text) files.

t=wk1, wk3 Lotus spreadsheet files.

t=xls Excel spreadsheet files.

384—Chapter 8. Command Reference
ASCII text files

Spreadsheet (Lotus, Excel) files

na=text Specify text for NAs. Default is “NA”.

dates Write dates/obs and (for pool) cross section identifiers.

nodates
(default)

Do not write dates/obs and (for pool) cross-section
identifiers.

names
(default)

Write series names.

nonames Do not write series names.

id Write cross-section identifier.

d=s Single space delimiter (default is tab).

d=c Comma delimiter (default is tab).

byper Panel data organized by date/period. Default is data
organized by cross-section (only for pool write).

bycross
(default)

Panel data organized by cross-section (only for pools).

t Write by series (or transpose the data for matrix
objects). Default is to read by obs with series in col-
umns.

letter_number Coordinate of the upper-left cell containing data.

dates (default) Write dates/obs and (for pool) cross-section identifiers.

dates=first Write date in Excel date format converting to the first
day of the corresponding observation if necessary (only
for Excel files).

dates=last Write date in Excel date format converting to the last
day of the corresponding observation if necessary (only
for Excel files).

nodates Do not write dates/obs and (pool) cross-section identifi-
ers.

names
(default)

Write series names.

nonames Do not write series names.

wtsls—385
Examples

write(t=txt,na=.,d=c,dates) a:\dat1.csv hat1 hat_se1

Writes the two series HAT1 and HAT_SE1 into an ASCII file named DAT1.CSV on the A
drive. The data file is listed by observations, NAs are coded as “.” (dot), each series is sep-
arated by a comma, and the date/observation numbers are written together with the series
names.

write(t=txt,na=.,d=c,dates) dat1.csv hat1 hat_se1

writes the same file in the default directory.

mypool.write(t=xls,per) "\\network\drive a\growth" gdp? edu?

writes an Excel file GROWTH.XLS in the specified directory. The data are organized by
observations and are listed by period/time.

Cross-references

See “Exporting to a Spreadsheet or Text File” on page 71 of the User’s Guide for a discus-
sion.

See also read (p. 291).

Weighted two-stage least squares.

wtsls estimates a system of equations using weighted two-stage least squares. To perform
weighted two-stage least squares in a single equation, see ls (p. 245).

Syntax

System Method: system_name.wtls(options)

byper Panel data organized by date/period. Default is data
organized by cross-section (only for pool write).

bycross
(default)

Panel data organized by cross-section (only for pools).

t Write by series (or transpose the data for matrix
objects). Default is to write by obs with each series in
columns.

wtsls System Method

386—Chapter 8. Command Reference
Options

Examples

sys1.wtsls

estimates the system of equations in SYS1 by weighted two-stage least squares.

Cross-references

See “Weighted Two-Stage Least Squares” on page 497 of the User’s Guide for further dis-
cussion.

See also tsls (p. 368) for both unweighted and weighted single equation 2SLS.

i Iterate simultaneously over the weighting matrix and
coefficient vector.

s Iterate sequentially over the computation of the weight-
ing matrix and the estimation of the coefficient vector.

o (default) Iterate the coefficient vector to convergence following
one-iteration of the weighting matrix.

c One step (iteration) of the coefficient vector following
one iteration of the weighting matrix.

m=integer Maximum number of iterations.

c=number Set convergence criterion. The criterion is based upon
the maximum of the percentage changes in the scaled
coefficients.

l=number Set maximum number of iterations on the first-stage
iteration to get the one-step weighting matrix.

showopts /
-showopts

[Do / do not] display the starting coefficient values and
estimation options in the estimation output.

deriv=keyword Set derivative methods. The argument keyword should
be a one- or two-letter string. The first letter should
either be “f” or “a” corresponding to fast or accurate
numeric derivatives (if used). The second letter should
be either “n” (always use numeric) or “a” (use analytic
if possible). If omitted, EViews will use the global
defaults.

p Print estimation results.

x11—387
Seasonally adjust series using the Census X11.2 method.

Syntax

Series Proc: series_name.x11(options) adj_name fac_name

The X11 procedure carries out Census X11.2 seasonal adjustment. Enter the name of the
original series followed by a period, the keyword x11 and then provide a name for the sea-
sonally adjusted series. You may optionally list a second series name for the seasonal fac-
tors. The seasonal adjustment method is specified as an option in parentheses after the
x11 keyword.

The X11 procedure is available only for quarterly and monthly series. The procedure
requires at least four full years of data, and can adjust up to 20 years of monthly data and
30 years of quarterly data.

Options

Examples

sales.x11(m,h) salesx11 salesfac

seasonally adjusts the SALES series and saves the adjusted series as SALESX11 and the sea-
sonal factors as SALESFAC. The adjustment assumes multiplicative seasonals and makes
adjustment for all holidays.

x11 Series Proc

m Multiplicative seasonals.

a Additive seasonals.

s Use sliding spans.

h Adjustment for all holidays (only for monthly data spec-
ified with the m option).

i Adjustment for holidays if significant (only for monthly
data specified with the “m” option).

t Adjustment for all trading days (only for monthly data).

q Adjustment for trading days if significant (only for
monthly data).

p Print the X11 results.

388—Chapter 8. Command Reference
Cross-references

See “Census X11 (Historical)” on page 184 of the User’s Guide for a discussion of Census
X11 seasonal adjustment method.

Note that the X11 routines are separate programs provided by the Census and are installed
in the EViews directory in the files X11Q2.EXE and X11SS.EXE. The documentation for
these programs can also be found in your EViews directory as text files X11DOC1.TXT
through X11DOC3.TXT.

See also seas (p. 315), seasplot (p. 316) and x12 (p. 388).

Seasonally adjust series using the Census X12 method.

x12 is available only for quarterly and monthly series. The procedure requires at least 3
full years of data and can adjust up to 600 observations (50 years of monthly data or 150
years of quarterly data).

Syntax

Series Proc: series_name.x12(options) adj_base_name

Enter the name of the original series followed by a dot, the x12 keyword, and a base name
(no more than the maximum length of a series name minus 4) for the saved series. If you
do not provide a base name, the original series name will be used as a base name. See the
description in “save=” option below for the naming convention used to save series.

Options

Commonly Used Options

x12 Series Proc

mode=m
(default)

Multiplicative seasonal adjustment. Series must take non-
negative values.

mode=a Additive seasonal adjustment.

mode=p Pseudo-additive seasonal adjustment.

mode=l Log-additive seasonal adjustment. Series must take non-neg-
ative values.

filter=msr
(default)

Automatic (moving seasonality ratio) seasonal filter.

filter=x11 X11 default seasonal filter.

filter=stable Stable seasonal filter.

x12—389
filter=s3x1 3x1 moving average seasonal filter.

filter=s3x3 3x3 moving average seasonal filter.

filter=s3x5 3x5 moving average seasonal filter.

filter=s3x9 3x9 moving average seasonal filter.

filter=s3x15 3x15 moving average seasonal filter. Series must have at
least 20 years of data.

save= “arg” Optionally saved series enclosed in quotes. List the exten-
sion (given in Table 6-8, p.71 of the X12-ARIMA Reference
Manual) for the series you want to save. Commonly used
options and its stored name (in parentheses) are given
below:

"d10" final seasonal factors (basename_sf).

"d11" final seasonally adjusted series (basename_sa).

"d12" final trend-cycle component (basename_tc).

"d13" final irregular component (basename_ir).

All other options are named using the option symbol. For
example ‘save="d16"‘ will store a series named
BASENAME_D16.

To save more than two series, separate the list with a space.
For example, ‘save=“d10 d12” saves the seasonal factors
and the trend-cycle series.

tf=logit Logit transformation for regARIMA.

tf=auto Automatically choose between no transformation and log
transformation for regARIMA.

tf=number Box-Cox power transformation using specified parameter for
regARIMA. Use “tf=0” for log transformation.

sspan Sliding spans stability analysis. Cannot be used along with
the “h” option.

history Historical record of seasonal adjustment revisions. Cannot
be used along with the “sspan” option.

check Check residuals of regARIMA.

outlier Outlier analysis of regARIMA.

390—Chapter 8. Command Reference
x11reg= Regressors to model the irregular component in seasonal
adjustment. Regressors must be chosen from the predefined
list in Table 6-14, p. 88 of the X12-ARIMA Reference Manual.
To specify more than one regressor, separate by a space
within the double quotes.

reg=arg_list Regressors for the regARIMA model. Regressors must be
chosen from the predefined list in Table 6-17, pp. 100-101 of
the X12-ARIMA Reference Manual. To specify more than one
regressor, separate by a space within the double quotes.

arima=arg ARIMA spec of the regARIMA model. Must follow the X12
ARIMA specification syntax. Cannot be used together with
the “amdl=” option.

amdl=f Automatically choose the ARIMA spec. Use forecasts from
the chosen model in seasonal adjustment. Cannot be used
together with the arima= option and must be used together
with the mfile= option.

amdl=b Automatically choose the ARIMA spec. Use forecasts and
backcasts from the chosen model in seasonal adjustment.
Cannot be used together with the “arima=” option and must
be used together with the “mfile=” option.

best Sets the method option of the auto model spec to best
(default is first). Also sets the identify option of the auto
model spec to all (default is first). Must be used together
with the “amdl=” option.

mod-
elsmpl=arg

Sets the subsample for fitting the ARIMA model. Either
specify a sample object name or a sample range. The model
sample must be a subsample of the current workfile sample
and should not contain any breaks.

mfile=arg Specifies the file name (include the extension, if any) that
contains a list of ARIMA specifications to choose from. Must
be used together with the “amdl=” option. The default is the
X12A.MDL file provided by the Census.

x12—391
Other Options

outsmpl Use out-of-sample forecasts for automatic model selection.
Default is in-sample forecasts. Must be used together with
the “amdl=” option.

plotspectra Save graph of spectra for differenced seasonally adjusted
series and outlier modified irregular series. The saved graph
will be named GR_seriesname_SP.

p Print X12 procedure results.

hma=integer Specifies the Henderson moving average to estimate the
final trend-cycle. The X12 default is automatically selected
based on the data. To override this default, specify an odd
integer between 1 and 101.

sigl=arg Specifies the lower sigma limit used to downweight extreme
irregulars in the seasonal adjustment. The default is 1.5 and
you can specify any positive real number.

sigh=arg Specifies the upper sigma limit used to downweight extreme
irregulars in the seasonal adjustment. The default is 2.5 and
you can specify any positive real number less than the lower
sigma limit.

ea Nonparametric Easter holiday adjustment (x11easter). Can-
not be used together with the “easter[w]” regressor in the
“reg=” or “x11reg=” options.

f Appends forecasts up to one year to some optionally saved
series. Forecasts are appended only to the following series
specified in the “save=” option: “b1” (original series,
adjusted for prior effects), “d10” (final seasonal factors),
“d16” (combined seasonal and trading day factors).

flead=integer Specifies the number of periods to forecast (to be used in
the seasonal adjustment procedure). The default is one year
and you can specify an integer up to 60.

fback=integer Specifies the number of periods to backcast (to be used in
the seasonal adjustment procedure). The default is 0 and
you can specify an integer up to 60. No backcasts are pro-
duced for series more than 15 years long.

392—Chapter 8. Command Reference
User provided spec file

The x12 command in EViews provides most of the basic options in the X12 program. For
users who need to access the full set of options, we have provided an option to pass your
own X12 specification file from EViews. The advantage of using this option (as opposed to
running the X12 program in DOS) is that EViews will automatically handle the data in the
input and output series.

To provide your own specification file, specify the path/name of your file using the
“sfile=” option in the x12 proc. Your specification file should follow the format of an X12
specification file as described in the X12-ARIMA Reference Manual, except

• the specification file should not have a series spec nor a composite spec.

• the x11 spec must have a save option for D11 (the final seasonally adjusted series)
and any other extensions you want to store. EViews will always look for D11 and
will error if not found.

• to read back data for a save option other than D11, you must use the “save=” option
in the x12 proc. For example, to get back the final trend-cycle series (D12) into
EViews, you must have a “save=” option for D12 (and D11) in the x11 spec of your
specification file and a “save=d12" option in the EViews x12 proc.

Note that when you use an “sfile=” option, EViews will ignore any other options in the
x12 proc, except for the “save=” option.

Difference between the dialog and command line

The options corresponding to the Trading Day/Holiday and Outliers tab in the X12 dialog
should be specified by listing the appropriate regressors in the “x11reg=” and “reg=”
options.

Examples

The command

aicx11 Test (based on AIC) whether to retain the regressors speci-
fied in “x11reg=”. Must be used together with the “x11reg=”
option.

aicreg Test (based on AIC) whether to retain the regressors speci-
fied in “reg=”. Must be used together with the “reg=”
option.

sfile=arg Path/name (including extension, if any) of user provided
specification file. The file must follow a specific format; see
the discussion below.

x12—393
sales.x12(mode=m,save="d10 d12") salesx12

seasonally adjusts the SALES series in multiplicative mode. The seasonal factors (d10) are
stored as SALESX12_SF and the trend-cycles series is stored as SALESX12_TC.

sales.x12(tf=0,arima="(0 0 1)",reg="const td")

specifies a regARIMA model with a constant, trading day effect variables, and MA(1) using
a log transformation. This command does not store any series.

freeze(x12out) sales.x12(tf=auto, amdl=f, mfile=

"c:\eviews\mymdl.txt")

stores the output from X12 in a text object named X12OUT. The options specify an auto-
matic transformation and an automatic model selection from the file MYMDL.TXT.

revenue.x12(tf=auto,sfile="c:\eviews\spec1.txt",save="d12

d13")

adjusts the series REVENUE using the options given in the SPEC1.TXT file. Note the fol-
lowing: (1) the "tf=auto" option will be ignored (you should specify this in your specifica-
tion file) and (2) EViews will save two series REVENUE_TC and REVENUE_IR which will
be filled with NAs unless you provided the save option for D12 and D13 in your specifica-
tion file.

freeze(x12out) sales.x12(tf=auto, amdl=f, mfile=

"c:\eviews\mymdl.txt")

stores the output from X12 in a text object named X12OUT. The options specify an auto-
matic transformation and an automatic model selection from the file MYMDL.TXT. The
seasonally adjusted series is stored as SALES_SA by default.

revenue.x12(tf=auto,sfile="c:\eviews\spec1.txt",save="d12

d13")

adjusts the series REVENUE using the options given in the SPEC1.TXT file. Note the fol-
lowing: (1) the “tf=auto” option will be ignored (you should specify this in your specifica-
tion file) and (2) EViews will error if you did not specify a save option for D11, D12, and
D13 in your specification file.

Cross-references

See “Census X12” on page 177 of the User’s Guide for a discussion of the Census X12 pro-
gram. The documentation for X12, X12-ARIMA Reference Manual, can be found in the
DOCS subdirectory of your EViews directory in the PDF files FINALPT1.PDF and
FINALPT2.PDF.

See also seas (p. 315) and x11 (p. 387).

394—Chapter 8. Command Reference
XY line graph.

The xyline view of a graph object changes the graph to XY line (if possible). The xyline
view of a group displays an XY plot.

By default, the first series or column of data will be located along the horizontal axis and
the remaining data on the vertical axis. You may optionally choose to plot the data in pairs,
where the first two series or columns are plotted against each other, the second two series
or columns are plotted against each other, and so forth.

When used as a group or matrix view, there must be at least series or columns in the
object.

Syntax

Graph Proc: graph_name.xyline(options)

Group View: group_name.xyline(options)

Options

Options may be specified in parentheses after the xyline keyword.

Template and printing options

Scale options

xyline Graph Proc | Group View | Matrix View | Sym View

o=graph_name Use appearance options from the specified graph.

t=graph_name Use appearance options and copy text and shading from
the specified graph.

p Print the XY line graph.

a (default) Automatic single scale.

b Plot X and Y series in pairs.

n Normalized scale (zero mean and unit standard devia-
tion).

d Dual scaling with no crossing.

xyline—395
Examples

group g1 inf unemp gdp inv

g1.xyline

plots INF on the horizontal axis and UNEMP, GDP and INV on the vertical axis.

g1.xyline(b)

g1.xyline(b,m)

plots INF against UNEMP and GDP against INV in first in a single graph, and then in mul-
tiple graphs.

Cross-references

See “XY Line” on page 210 of the User’s Guide for additional details.

See also graph (p. 224) for additional graph types. See also options (p. 275) for graph
options.

x Dual scaling with possible crossing.

s Stack so that the difference between lines corresponds
to the value of the associated series (not available if “b”
option is set)..

m Display XY plots as multiple graphs.

396—Chapter 8. Command Reference

Chapter 9. Matrix and String Reference

The following is an alphabetical listing of the functions and commands used when work-
ing with the EViews matrix language. For a description of the EViews matrix language, see
Chapter 4, “Matrix Language”, on page 55. For a quick summary of these entries, see
“Matrix Function and Command Summary” on page 76.

Syntax: @cholesky(s)

Argument: sym, s

Return: matrix

Returns a matrix containing the Cholesky factorization of . The Cholesky factorization
finds the lower triangular matrix such that is equal to the symmetric source
matrix. Example:

matrix fact = @cholesky(s1)

matrix orig = fact*@transpose(fact)

Syntax: colplace(m, v, n)

Argument 1: matrix, m

Argument 2: vector, v

Argument 3: integer, n

Places the column vector v into the matrix m at column n. The number of rows of m and v
must match, and the destination column must already exist within m. Example:

colplace(m1,v1,3)

The third column of M1 will be set equal to the vector V1.

See also rowplace (p. 414).

@cholesky Matrix Algebra Function

colplace Matrix Utility Command

s
L LL′

398—Chapter 9. Matrix and String Reference
Syntax: @columnextract(m, n)

Argument 1: matrix or sym, m

Argument 2: integer, n

Return: vector

Extract a vector from column n of the matrix object m, where m is a matrix or sym.

Example:

vector v1 = @columnextract(m1,3)

Note that while you may extract the first column of a column vector, or any column of a
row vector, the command is more easily executed using simple element or vector assign-
ment in these cases.

See also @rowextract (p. 414).

Syntax: @columns(o)

Argument: matrix, vector, rowvector, sym, scalar, or series, o

Return: integer

Returns the number of columns in the matrix object o. Example:

scalar sc2 = @columns(m1)

vec1(2) = @columns(s1)

See also @rows (p. 414).

Syntax: @cond(o, n)

Argument 1: matrix or sym, o

Argument 2: (optional) scalar n

Return: scalar

@columnextract Matrix Utility Function

@columns Matrix Utility Function

@cond Matrix Algebra Function

@convert—399
Returns the condition number of a square matrix or sym, o. If no norm is specified, the
infinity norm is used to determine the condition number. The condition number is the
product of the norm of the matrix divided by the norm of the inverse. Possible norms are “-
1” for the infinity norm, “0” for the Frobenius norm, and an integer “n” for the norm.
Example:

scalar sc1 = @cond(m1)

mat1(1,4) = @cond(s1,2)

Syntax: @convert(o, smp)

Argument 1: series or group, o

Argument 2: (optional) sample, smp

Return: vector or matrix

If o is a series, @convert returns a vector from the values of o using the optional sample
smp or the current workfile sample. If any observation has the value “NA”, the observa-
tion will be omitted from the vector. Examples:

vector v2 = @convert(ser1)

vector v3 = @convert(ser2,smp1)

If o is a group, @convert returns a matrix from the values of o using the optional sample
object smp or the current workfile sample. The series in o are placed in the columns of the
resulting matrix in the order they appear in the group spreadsheet. If any of the series for a
given observation, has the value “NA”, the observation will be omitted for all series. For
example,

matrix m1=@convert(grp1)

matrix m2=@convert(grp1, smp1)

For a conversion method that preserves NAs, see stomna (p. 416).

@convert Matrix Utility Function

L
n

400—Chapter 9. Matrix and String Reference
Syntax: @cor(v1, v2)

Argument 1: vector, rowvector, or series, v1

Argument 2: vector, rowvector, or series, v2

Return: scalar

Syntax: @cor(o)

Argument: matrix object or group, o

Return: sym

If used with two vector or series objects, v1 and v2, @cor returns the correlation between
the two vectors or series. Examples:

scalar sc1 = @cor(v1,v2)

s1(1,2) = @cor(v1,r1)

If used with a matrix object or group, o, @cor calculates the correlation matrix between
the columns of the matrix object.

scalar sc2 = @cor(v1,v2)

mat3(4,2) = 100*@cor(r1,v1)

For series and group calculations, EViews will use the current workfile sample. See also
@cov (p. 400).

Syntax: @cov(v1, v2)

Argument 1: vector, rowvector, or series, v1

Argument 2: vector, rowvector, or series, v2

Return: scalar

Syntax: @cov(o)

Argument: matrix object or group, o

Return: sym

If used with two vector or series objects, v1 and v2, @cov returns the covariance between
the two vectors or series. Examples:

@cor Matrix Descriptive Statistic

@cov Matrix Descriptive Statistic

@dtoo—401
scalar sc1 = @cov(v1, v2)

s1(1,2) = @cov(v1, r1)

If used with a matrix object or group, o, @cov calculates the covariance matrix between
the columns of the matrix object.

!1 = @cov(v1, v2)

mat3(4,2) = 100*@cov(r1, v1)

For series and group calculations, EViews will use the current workfile sample. See also
@cor (p. 400).

Syntax: @det(m)

Argument: matrix or sym, m

Return: scalar

Calculate the determinant of the square matrix or sym, m. The determinant is nonzero for
a nonsingular matrix and 0 for a singular matrix. Example:

scalar sc1 = @det(m1)

vec4(2) = @det(s2)

See also @rank (p. 412).

Syntax: @dtoo(str)

Argument: string, str

Return: integer

Date-TO-Observation. Returns the observation number corresponding to the date con-
tained in the string. The observation number is relative to the start of the current workfile
range, not the current sample. Observation numbers may be used to select a particular ele-
ment in a vector that has been converted from a series, provided that NAs are preserved
(see stomna). Examples:

scalar obnum = @dtoo("1994:01")

vec1(1) = gdp(@dtoo("1955:01")+10)

Suppose that the workfile contains quarterly data. Then the second example places the
1957:02 value of the GDP series in the first element of VEC1.

@det Matrix Algebra Function

@dtoo String Function

402—Chapter 9. Matrix and String Reference
See also @otod.

Syntax: @eigenvalues(s)

Argument: sym, s

Return: vector

Returns a vector containing the eigenvalues of the sym. The eigenvalues are those scalars
 that satisfy . where is the sym associated with the argument . Associated

with each eigenvalue is an eigenvector (see @eigenvectors (p. 402)). The eigenvalues
are arranged in ascending order.

Example:

vector v1 = @eigenvalues(s1)

Syntax: @eigenvectors(s)

Argument: sym, s

Return: matrix

Returns a square matrix, of the same dimension as the sym, whose columns are the eigen-
vectors of the source matrix. Each eigenvector v satisfies Sv=nv, where S is the symmetric
matrix given by s, and where n is the eigenvalue associated with the eigenvector v. The
eigenvalues are arranged in ascending order, and the columns of the eigenvector matrix
correspond to the sorted eigenvalues. Example:

matrix m2 = @eigenvectors(s1)

See also the function @eigenvalues (p. 402).

Syntax: @explode(s)

Argument: sym, s

Return: matrix

Creates a square matrix from a sym, s, by duplicating the lower triangle elements into the
upper triangle. Example:

@eigenvalues Matrix Algebra Function

@eigenvectors Matrix Algebra Function

@explode Matrix Utility Function

λ Sx=λx S s

@filledsym—403
matrix m2 = @explode(s1)

See also @implode (p. 405).

Syntax: @filledmatrix(n1, n2, n3)

Argument 1: integer, n1

Argument 2: integer, n2

Argument 3: scalar, n3

Return: matrix

Returns a matrix with n1 rows and n2 columns, where each element contains the value n3.
Example:

matrix m2 = @filledmatrix(3,2,7)

creates a matrix where each element is set to 7. See also fill (p. 208).

Syntax: @filledrowvector(n1, n2)

Argument 1: integer, n1

Argument 2: scalar, n2

Return: rowvector

Returns a rowvector of length n1, where each element contains the value n2. Example:

rowvector r1 = @filledrowvector(3,1)

creates a 3 element rowvector where each element is set to 1. See also fill (p. 208).

Syntax: @filledsym(n1, n2)

Argument 1: integer, n1

Argument 2: scalar, n2

Return: sym

Returns an sym, where each element contains n2. Example:

@filledmatrix Matrix Utility Function

@filledrowvector Matrix Utility Function

@filledsym Matrix Utility Function

3 2×

n1 n1×

404—Chapter 9. Matrix and String Reference
sym s2= @filledsym(3,9)

creates a sym where each element is set to 9. See also fill (p. 208).

Syntax: @filledvector(n1, n2)

Argument 1: integer, n1

Argument 2: scalar, n2

Return: vector

Returns a vector of length n1, where each element contains the value n2. Example:

vector r1 = @filledvector(5,6)

creates a 5 element column vector where each element is set to 6. See also fill (p. 208).

Syntax: @getmaindiagonal(m)

Argument: matrix or sym, m

Return: vector

Returns a vector created from the main diagonal of the matrix or sym object. Example:

vector v1 = @getmaindiagonal(m1)

vector v2 = @getmaindiagonal(s1)

Syntax: @identity(n)

Argument: integer, n

Return: matrix

Returns a square identity matrix. Example:

@filledvector Matrix Utility Function

@getmaindiagonal Matrix Utility Function

@identity Matrix Utility Function

3 3×

n n×

@inner—405
matrix i1 = @identity(4)

Syntax: @implode(m)

Argument: square matrix, m

Return: sym

Forms a sym by copying the lower triangle of a square input matrix, m. Where possible,
you should use a sym in place of a matrix to take advantage of computational efficiencies.
Be sure you know what you are doing if the original matrix is not symmetric—this function
does not check for symmetry. Example:

sym s2 = @implode(m1)

See also @explode (p. 402).

Syntax: @inner(v1, v2, smp)

Argument 1: vector, rowvector, or series, v1

Argument 2: vector, rowvector, or series, v2

Argument 3: (optional) sample, smp

Return: scalar

Syntax: @inner(o, smp)

Argument 1: matrix object or group, o

Argument 2: (optional) sample, smp

Return: scalar

If used with two vectors, v1 and v2, @inner returns the dot or inner product of the two
vectors. Examples:

scalar sc1 = @inner(v1, v2)

s1(1,2) = @inner(v1, r1)

If used with two series, @inner returns the inner product of the series using observations
in the workfile sample. You may provide an optional sample.

@implode Matrix Utility Function

@inner Matrix Algebra Function

406—Chapter 9. Matrix and String Reference
If used with a matrix or sym, o, @inner returns the inner product, or moment matrix, o′o.
Each element of the result is the vector inner product of two columns of the source matrix.
The size of the resulting sym is the number of columns in o. Examples:

scalar sc1 = @inner(v1)

sym sym1 = @inner(m1)

If used with a group, @inner returns the uncentered second moment matrix of the data in
the group, g, using the observations in the sample, smp. If no sample is provided, the
workfile sample is used. Examples:

sym s2 = @inner(gr1)

sym s3 = @inner(gr1, smp1)

See also @outer (p. 411).

Syntax: @inverse(m)

Argument: square matrix or sym, m

Return: matrix or sym

Returns the inverse of a square matrix object or sym. The inverse has the property that the
product of the source matrix and its inverse is the identity matrix. The inverse of a matrix
returns a matrix, while the inverse of a sym returns a sym. Note that inverting a sym is
much faster than inverting a matrix.

Examples:

matrix m2 = @inverse(m1)

sym s2 = @inverse(s1)

sym s3 = @inverse(@implode(m2))

See @solvesystem (p. 415).

Syntax: @issingular(o)

Argument: matrix or sym, o

Return: integer

Returns “1” if the square matrix or sym, o, is singular, and “0” otherwise. A singular
matrix has a determinant of 0, and cannot be inverted.

@inverse Matrix Algebra Function

@issingular Matrix Algebra Function

@left—407
Example:

scalar sc1 = @issingular(m1)

Syntax: @kronecker(o1, o2)

Argument 1: matrix object, o1

Argument 2: matrix object, o2

Return: matrix

Calculates the Kronecker product of the two matrix objects, o1 and o2. The resulting
matrix has a number of rows equal to the product of the numbers of rows of the two
matrix objects and a number of columns equal to the product of the numbers of columns
of the two matrix objects. The elements of the resulting matrix consist of submatrices con-
sisting of one element of the first matrix object multiplied by the entire second matrix
object.

Example:

matrix m3 = @kronecker(m1,m2)

Syntax: @left(str, n)

Argument 1: string, str

Argument 2: integer, n

Return: string

Returns a string containing n characters from the left end of str. If the string is shorter than
n characters, this function returns all of the characters in the source string.

Example:

scalar sc1 = @left("I did not do it",5)

returns “I did”.

See also @right (p. 413), @mid (p. 409).

@kronecker Matrix Algebra Function

@left String Function

408—Chapter 9. Matrix and String Reference
Syntax: @makediagonal(v, k)

Argument 1: vector or rowvector, v

Argument 2: (optional) integer, k

Return: matrix

Creates a square matrix with the specified vector or rowvector, v, in the k-th diagonal rela-
tive to the main diagonal, and zeroes off the diagonal. If no k value is provided or if k is set
to 0, the resulting matrix will have the same number of rows and columns as the length of
v, and will have v in the main diagonal. If a value for k is provided, the matrix has the
same number of rows and columns as the number of elements in the vector plus k, and
will place v in the diagonal offset from the main by k. Example:

matrix m1 = @makediagonal(v1)

matrix m2 = @makediagonal(v1,1)

matrix m4 = @makediagonal(r1,-3)

M1 will contain V1 in the main diagonal; M2 will contain V1 in the diagonal immediately
above the main diagonal; M4 will contain R1 in the diagonal 3 positions below the main
diagonal. Using the optional k parameter may be useful in creating covariance matrices for
AR models. For example, you can create an AR(1) correlation matrix by issuing the com-
mands:

matrix(10,10) m1

vector(9) rho = .3

m1 = @makediagonal(rho,-1) + @makediagonal(rho,+1)

m1 = m1 + @identity(10)

Syntax: matplace(m1, m2, n1, n2)

Argument 1: matrix, m1

Argument 2: matrix, m2

Argument 3: integer, n1

Argument 4: integer, n2

@makediagonal Matrix Utility Function

matplace Matrix Utility Command

mtos—409
Places the matrix object m2 into m1 at row n1 and column n2. The sizes of the two matri-
ces do not matter, as long as m1 is large enough to contain all of m2 with the upper left
cell of m2 placed at row n1 and column n2.

Example:

matrix(100,5) m1

matrix(100,2) m2

matplace(m1,m2,1,1)

Syntax: @mid(str, n1, n2)

Argument 1: string, str

Argument 2: integer, n1

Argument 3: integer, n2

Return: string

Returns n2 characters from str, starting at location n1 and continuing to the right. If you
omit n2, it will return all of the remaining characters in the string.

Example:

%1 = @mid("I doubt it", 9, 2)

%2 = @mid("I doubt it", 9)

See also @left (p. 407) and @right (p. 413).

Convert matrix to a series or group. Fills a series or group with the data from a vector or
matrix.

Syntax

Vector Proc: mtos(vector, series[, sample])

Matrix Proc: mtos(matrix, group[, sample])

Matrix-TO-Series Object. Include the vector or matrix name in parentheses, followed by a
comma and then the series or group name. The number of included observations in the
sample must match the row size of the matrix to be converted. If no sample is provided,
the matrix is written into the series using the current workfile sample.

@mid String Function

mtos Matrix Utility Command

410—Chapter 9. Matrix and String Reference
Examples

The command

mtos(mom,gr1)

converts the first column of the matrix MOM to the first series in the group GR1, the sec-
ond column of MOM to the second series in GR1, and so on. The current workfile sample
length must match the row length of the matrix MOM. If GR1 is an existing group object,
the number of series in GR1 must match the number of columns of MOM. If a group object
named GR1 does not exist, EViews creates GR1 with the first series named SER1, the sec-
ond series named SER2, and so on.

series col1

series col2

group g1 col1 col2

sample s1 1951 1990

mtos(m1,g1,s1)

The first two lines declare series objects, the third line declares a group object, the fourth
line declares a sample object, and the fifth line converts the columns of the matrix M1 to
series in group G1 using sample S1. This command will generate an error if M1 is not a

 matrix.

Cross-references

See Chapter 4, “Matrix Language”, on page 55 for further discussions and examples of
matrices.

See also stom (p. 415) and stomna (p. 416).

Syntax: @norm(o, n)

Argument 1: matrix, vector, rowvector, sym, scalar, or series, o

Argument 2: (optional) integer, n

Return: scalar

Returns the value of the norm of any matrix object, o. Possible choices for the norm type n
include “–1” for the infinity norm, “0” for the Frobenius norm, and an integer “n” for the

 norm. If no norm type is provided, this function returns the infinity norm.

Examples:

@norm Matrix Algebra Function

40 2×

L
n

@outer—411
scalar sc1 = @norm(m1)

scalar sc2 = @norm(v1,1)

Syntax: @otod(n)

Argument: integer, n

Return: string

Observation-TO-Date. Returns a string containing the date or observation corresponding to
observation number n, counted from the beginning of the current workfile. For example,
consider the string assignment

%1 = @otod(5)

For an annual workfile dated 1991–2000, %1 will contain the string “1995”. For a quarterly
workfile dated 1970:1–2000:4, %1 will contain the string “1971:1”. Note that @otod(1)
returns the date or observation label for the start of the workfile.

See also @dtoo.

Syntax: @outer(v1, v2)

Argument 1: vector, rowvector, or series, v1

Argument 2: vector, rowvector, or series, v2

Return: matrix

Calculates the cross product of v1 and v2. Vectors may be either row or column vectors.
The outer product is the product of v1 (treated as a column vector) and v2 (treated as a
row vector), and is a square matrix of every possible product of the elements of the two
inputs. Example:

matrix m1=@outer(v1,v2)

matrix m4=@outer(r1,r2)

See also @inner (p. 405).

@otod String Function

@outer Matrix Algebra Function

412—Chapter 9. Matrix and String Reference
Syntax: @permute(m1)

Input: matrix m1

Return: matrix

This function returns a matrix whose rows are randomly drawn without replacement from
rows of the input matrix m1. The output matrix has the same size as the input matrix.

matrix xp = @permute(x)

To draw with replacement from rows of a matrix, use @resample (p. 412).

Syntax: @rank(o, n)

Argument 1: vector, rowvector, matrix, sym, or series, o

Argument 2: (optional) integer, n

Return: integer

Returns the rank of the matrix object o. The rank is calculated by counting the number of
singular values of the matrix which are smaller in absolute value than the tolerance, which
is given by the argument n. If n is not provided, EViews uses the value given by the largest
dimension of the matrix multiplied by the norm of the matrix multiplied by machine epsi-
lon (the smallest representable number).

scalar rank1 = @rank(m1)

scalar rank2 = @rank(s1)

See also @svd (p. 418).

Syntax: @resample(m1, n2, n3, v4)

Input 1: matrix m1

Input 2: (optional) integer n2

Input 3: (optional) positive integer n3

Input 4: (optional) vector v4

Output: matrix

@permute Matrix Utility Function

@rank Matrix Algebra Function

@resample Matrix Utility Function

@right—413
This function returns a matrix whose rows are randomly drawn with replacement from
rows of the input matrix.

 represents the number of “extra” rows to be drawn from the matrix. If the input matrix
has r rows and c columns, the output matrix will have rows and columns. By
default, .

 represents the block size for the resample procedure. If you specify , then
blocks of consecutive rows of length will be drawn with replacement from the first

rows of the input matrix.

You may provide a name for the vector to be used for weighted resampling. The
weighting vector must have length and all elements must be non-missing and non-nega-
tive. If you provide a weighting vector, each row of the input matrix will be drawn with
probability proportional to the weights in the corresponding row of the weighting vector.
(The weights need not sum to 1. EViews will automatically normalize the weights).

matrix xb = @bootstrap(x)

To draw without replacement from rows of a matrix, use @permute (p. 412).

Syntax: @right(str, n)

Argument 1: string, str

Argument 2: integer, n

Return: same as source

Returns a string containing n characters from the right end of str. If the source is shorter
than n, the entire string is returned. Example:

%1 = @right("I doubt it",8)

returns the string “doubt it”.

See also @left (p. 407), @mid (p. 409).

@right String Function

n2
r n2+ c

n2=0

n3 n3 1>
n3

r n3− 1+

v4
r

414—Chapter 9. Matrix and String Reference
Syntax: @rowextract(m, n)

Argument 1: matrix or sym, m

Argument 2: integer, n

Return: rowvector

Extracts a rowvector from row n of the matrix object m. Example:

rowvector r1 = @rowextract(m1,3)

See also @columnextract (p. 398).

Syntax: rowplace(m, r, n)

Argument 1: matrix, m

Argument 2: rowvector, r

Argument 3: integer

Places the rowvector r into the matrix m at row n. The number of columns in m and r must
match, and row n must exist within m. Example:

rowplace(m1,r1,4)

See also colplace (p. 397).

Syntax: @rows(o)

Argument: matrix, vector, rowvector, sym, series, or group, o

Return: scalar

Returns the number of rows in the matrix object, o.

Example:

scalar sc1=@rows(m1)

scalar size=@rows(m1)*@columns(m1)

@rowextract Matrix Utility Function

rowplace Matrix Utility Command

@rows Matrix Utility Function

stom—415
For series and groups @rows (p. 414) returns the number of observations in the workfile
range. See also @columns (p. 398).

Syntax: @solvesystem(o, v)

Argument 1: matrix or sym, o

Argument 2: vector, v

Return: vector

Returns the vector x that solves the equation where the matrix or sym is
given by the argument o. Example:

vector v2 = @solvesystem(m1,v1)

See also @inverse (p. 406).

Syntax: stom(o1, o2, smp)

Argument 1: series or group, o1

Argument 2: vector or matrix, o2

Argument 3: (optional) sample smp

Series-TO-Matrix Object. If o1 is a series, stom fills the vector o2 with data from the o1
using the optional sample object smp or the workfile sample. o2 will be resized accord-
ingly. If any observation has the value “NA”, the observation will be omitted from the vec-
tor. Example:

stom(ser1,v1)

stom(ser1,v2,smp1)

If o1 is a group, stom fills the matrix o2 with data from o1 using the optional sample object
smp or the workfile sample. o2 will be resized accordingly. The series in o1 are placed in
the columns of o2 in the order they appear in the group spreadsheet. If any of the series in
the group has the value “NA” for a given observation, the observation will be omitted for
all series. Example:

stom(grp1,m1)

stom(grp1,m2,smp1)

For a conversion method that preserves NAs, see stomna (p. 416).

@solvesystem Matrix Algebra Function

stom Matrix Utility Command

Mx p= M

416—Chapter 9. Matrix and String Reference
Syntax: stomna(o1, o2, smp)

Argument 1: series or group, o1

Argument 2: vector or matrix, o2

Argument 3: (optional) sample smp

Series-TO-Matrix Object with NAs. If o1 is a series, stom fills the vector o2 with data from
o1 using the optional sample object smp or the workfile sample. o2 will be resized accord-
ingly. All “NA” values in the series will be assigned to the corresponding vector elements.

Example:

stom(ser1,v1)

stom(ser1,v2,smp1)

If o1 is a group, stom fills the matrix o2 with data from o1 using the optional sample object
smp or the workfile sample. o2 will be resized accordingly. The series in o1 are placed in
the columns of o2 in the order they appear in the group spreadsheet. All NAs will be
assigned to the corresponding matrix elements. Example:

stomna(grp1,m1)

stomna(grp1,m2,smp1)

For conversion methods that automatically remove observations with NAs, see @convert
(p. 399) and stom (p. 415).

Syntax: @str(n)

Argument: scalar, n

Return: string

Returns a string representing the given number. Example:

%1 = @str(15)

See also @val (p. 419).

stomna Matrix Utility Command

@str String Function

@subextract—417
Syntax: @strlen(s)

Argument: string, s

Return: number n

Returns the length of a string. Example:

!1 = @strlen("Hi mom")

!1 will contain the value “6”. See also @val (p. 419).

Syntax: @subextract(o, n1, n2, n3, n4)

Argument 1: vector, rowvector, matrix or sym, o

Argument 2: integer, n1

Argument 3: integer, n2

Argument 4: (optional) integer, n3

Argument 5: (optional) integer, n4

Return: matrix

Returns a submatrix of a specified matrix, o. n1 is the row and n2 is the column of the
upper left element to be extracted. The optional arguments n3 and n4 provide the row and
column location of the lower right corner of the matrix. Unless n3 and n4 are provided this
function returns a matrix containing all of the elements below and to the right of the start-
ing element.

Examples:

matrix m2 = @subextract(m1,5,9,6,11)

matrix m2 = @subextract(m1,5,9)

@strlen String Function

@subextract Matrix Utility Function

418—Chapter 9. Matrix and String Reference
Syntax: @svd(m1, v1, m2)

Argument 1: matrix or sym, m1

Argument 2: vector, v1

Argument 3: matrix or sym, m2

Return: matrix

Performs a singular value decomposition of the matrix m1. The matrix is returned by
the function, the vector v1 will be filled (resized if necessary) with the singular values and
the matrix m2 will be assigned (resized if necessary) the other matrix, , of the decompo-
sition. The singular value decomposition satisfies

(9.1)

where is a diagonal matrix with the singular values along the diagonal. Singular values
close to zero indicate that the matrix may not be of full rank. See the @rank (p. 412) func-
tion for a related discussion.

Examples:

matrix m2

vector v1

matrix m3 = @svd(m1,v1,m2)

Syntax: @trace(m)

Argument: matrix or sym, m

Return: scalar

Returns the trace (the sum of the diagonal elements) of a square matrix or sym, m. Exam-
ple:

@svd Matrix Algebra Function

@trace Matrix Algebra Function

U

V

m1 UWV ′=

U ′U V′V I= =

W

@val—419
scalar sc1 = @trace(m1)

Syntax: @transpose(o)

Argument: matrix, vector, rowvector, or sym, o

Return: matrix, rowvector, vector, or sym

Forms the transpose of a matrix object, o. o may be a vector, rowvector, matrix, or a sym.
The result is a matrix object with a number of rows equal to the number of columns in the
original matrix and number of columns equal to the number of rows in the original matrix.
This function is an identity function for a sym, since a sym by definition is equal to its
transpose. Example:

matrix m2 = @transpose(m1)

rowvector r2 = @transpose(v1)

Syntax: @unitvector(n1, n2)

Argument 1: integer, n1

Argument 2: integer, n2

Return: vector

Creates an n1 element vector with a “1” in the n2-th element, and “0” elsewhere. Example:

vec v1 = @unitvector(8, 5)

creates an 8 element vector with a “1” in the fifth element and “0” for the other 7 ele-
ments. Note: if you wish to create an n1 element vector of ones, you should use a declara-
tion statement of the form

vector(n1) v1=1

Syntax: @val(str)

Argument: string, str

Return: scalar

@transpose Matrix Algebra Function

@unitvector Matrix Utility Function

@val String Function

420—Chapter 9. Matrix and String Reference
Returns the number that a string str represents. The number is terminated by the first non-
numeric character. If the string begins with a non-numeric character (that is not a plus or a
minus sign), the function returns “NA”. This function is useful for extracting numbers from
tables. Example:

scalar sc1 = @val("17.4648")

scalar sc2 = @val(tab1(3,4))

scalar sc3 = @val("-234.35")

See also @str (p. 416).

Syntax: @vec(o)

Argument: matrix, sym, o

Return: vector

Creates a vector from the columns of the given matrix stacked one on top of each other.
The vector will have the same number of elements as the source matrix. Example:

vector v1 = @vec(m1)

Syntax: @vech(o)

Argument: matrix, sym, o

Return: vector

Creates a vector from the columns of the lower triangle of the source square matrix o
stacked on top of each another. The vector has the same number of elements as the source
matrix has in its lower triangle. Example:

vector v1 = @vech(m1)

@vec Matrix Utility Function

@vech Matrix Utility Function

Chapter 10. Programming Language Reference

The following reference is an alphabetical listing of the program statements and support
functions used by the EViews programming language.

For details on the EViews programming language, see Chapter 6, “EViews Programming”,
on page 85. For a quick summary of these entries, see “Programming Summary” on
page 114.

Call a subroutine within a program.

The call statement is used to call a subroutine within a program.

Cross-references

See “Calling Subroutines” on page 109. See also subroutine (p. 430), endsub (p. 422).

Syntax: @date

Return: string

Returns a string containing the current date in “mm/dd/yy” format.

Examples

%y = @date

assigns a string of the form “10/10/00“.

Cross-references

See also @time (p. 431).

call Program Statement

@date Support Function

422—Chapter 10. Programming Language Reference
ELSE clause of IF statement in a program.

Starts a sequence of commands to be executed when the IF condition is false. The else
keyword must be terminated with an endif.

Syntax

if [condition] then

[commands to be executed if condition is true]

else

[commands to be executed if condition is false]

endif

Cross-references

See “IF Statements” on page 98. See also, if (p. 424), endif (p. 422), then (p. 431).

End of IF statement. Marks the end of an IF, or an IF-ELSE statement.

Syntax

if [condition] then

[commands if condition true]

endif

Cross-references

See “IF Statements” on page 98. See also, if (p. 424), else (p. 422), then (p. 431).

Mark the end of a subroutine.

Syntax

subroutine name(arguments)

commands

else Program Statement

endif Program Statement

endsub Program Statement

exitloop—423
endsub

Cross-references

See “Defining Subroutines” beginning on page 107. See also, subroutine (p. 430),
return (p. 428).

Syntax: @errorcount

Argument: none

Return: integer

Number of errors encountered. Returns a scalar containing the number of errors encoun-
tered during program execution.

Syntax: @evpath

Return: string

Returns a string containing the directory path for the EViews executable.

Examples

If your currently executing copy of EViews is installed in “D:\EVIEWS”, then

%y = @evpath

assigns a string of the form “D:\EVIEWS”.

Cross-references

See also cd, chdir (p. 156) and @temppath (p. 430).

Exit from current loop in programs.

exitloop causes the program to break out of the current FOR or WHILE loop.

Syntax

Command: exitloop

@errorcount Support Function

@evpath Support Function

exitloop Program Statement

424—Chapter 10. Programming Language Reference
Examples

for !i=1 to 107

if !i>6 then exitloop

next

Cross-references

See “The FOR Loop” on page 100. See also, stop (p. 430), return (p. 428), for (p. 424),
next (p. 425), step (p. 429).

FOR loop in a program.

The for statement is the beginning of a FOR...NEXT loop in a program.

Syntax

for counter=start to end [step stepsize]

 commands

next

Cross-references

See “The FOR Loop” on page 100. See also, exitloop (p. 423), next (p. 425), step
(p. 429).

IF statement in a program.

The if statement marks the beginning of a condition and commands to be executed if the
statement is true. The statement must be terminated with the beginning of an ELSE clause,
or an endif.

Syntax

if [condition] then

[commands if condition true]

endif

for Program Statement

if Program Statement

next—425
Cross-references

See “IF Statements” on page 98. See also else (p. 422), endif (p. 422), then (p. 431).

Include another file in a program.

The include statement is used to include the contents of another file in a program file.

Syntax

include filename

Cross-references

See “Multiple Program Files” on page 106. See also call (p. 421).

Syntax: @isobject(str)

Argument: string, str

Return: integer

Check for an object’s existence. Returns a “1” if the object exists in the current workfile,
and a “0” if it does not exist.

End of FOR loop. next marks the end of a FOR loop in a program.

Syntax

for [conditions of the FOR loop]

[commands]

next

Cross-references

See “The FOR Loop” beginning on page 100. See also, exitloop (p. 423), for (p. 424),
step (p. 429).

include Program Statement

@isobject Support Function

next Program Statement

426—Chapter 10. Programming Language Reference
Syntax: @obsrange

Return: number

returns number of observations in the current active workfile range (0 if no workfile in
memory)

Examples

!z = @obsrange

will place the number of observations in the workfile range in the replacement variable
!Z“.

Cross-references

See also @obssmpl (p. 426).

Syntax: @obssmpl

Return: number

returns number of observations in the current active workfile sample (0 if no workfile in
memory)

Examples

!z = @obssmpl

will place the number of observations in the sample in the replacement variable !Z“.

Cross-references

See also @obsrange (p. 426).

Open a file. Opens a workfile, database, program file, or ASCII text file.

See open (p. 275).

@obsrange Support Function

@obssmpl Support Function

open Command

pon—427
Redirects printer output or display estimation output.

See output (p. 279).

Turn off automatic printing in programs.

poff turns off automatic printing of all output. In programs, poff is used in conjunction
with pon to control automatic printing; these commands have no effect in interactive use.

Syntax

Command: poff

Cross-references

See “Print Setup” on page 651 for a discussion of printer control.

See also pon (p. 427).

Turn on automatic printing in programs.

pon instructs EViews to send all statistical and data display output to the printer (or the
redirected printer destination; see output (p. 279)). It is equivalent to including the “p”
option in all commands that generate output. pon and poff only work in programs; they
have no effect in interactive use.

Syntax

Command: pon

Cross-references

See “Print Setup” on page 651 of the User’s Guide for a discussion of printer control.

See also poff (p. 427).

output Command

poff Program Statement

pon Program Statement

428—Chapter 10. Programming Language Reference
Create a program.

See program (p. 287).

Exit subroutine.

The return statement forces an exit from a subroutine within a program. A common use
of return is to exit from the subroutine if an unanticipated error has occurred.

Syntax

if [condition] then

return

endif

Cross-references

See “Subroutines” beginning on page 107. See also exitloop (p. 423), stop (p. 430).

Run a program. The run command executes a program. The program may be located in
memory or stored in a program file on disk.

See run (p. 305).

Send a text message to the EViews statusline.

Syntax

for !i = 1 to 10

statusline Iteration !i

next

program Command

return Program Statement

run Command

statusline Program Statement

step—429
Step size of a FOR loop.

Syntax

for !i=a to b step n

[commands]

next

step may be used in a FOR loop to specify the size of the step in the looping variable. If
no step is provided, for assumes a step of “+1”.

If a given step exceeds the end value b in the FOR loop specification, the contents of the
loop will not be executed.

Examples

for !j=5 to 1 step -1

series x = nrnd*!j

next

repeatedly executes the commands in the loop with the control variable !J set to “5”, “4”,
“3”, “2”, “1”.

for !j=0 to 10 step 3

series z = z/!j

next

Loops the commands with the control variable !J set to “0”, “3”, “6”, and “9”.

You should take care when using non-integer values for the stepsize since round-off error
may yield unanticipated results. For example:

for !j=0 to 1 step .01

series w = !j

next

may stop before executing the loop for the value !J=1 due to round-off error.

Cross-references

See “The FOR Loop” beginning on page 100. See also exitloop (p. 423), for (p. 424),
next (p. 425).

step Program Statement

430—Chapter 10. Programming Language Reference
Break out of program.

The stop command halts execution of a program. It has the same effect as hitting the F1
(break) key.

Syntax

Command: stop

Cross-references

See also, exitloop (p. 423), return (p. 428).

Declare a subroutine within a program.

The subroutine statement marks the start of a subroutine.

Syntax

subroutine name(arguments)

[commands]

endsub

Cross-references

See “Subroutines” beginning on page 107. See also endsub (p. 422).

Syntax: @temppath

Return: string

Returns a string containing the directory path for the EViews temporary files as specified in
the global options File Locations.... menu.

Examples

If your currently executing copy of EViews puts temporary files in “D:\EVIEWS”, then

%y = @temppath

stop Program Statement

subroutine Program Statement

@temppath Support Function

@time—431
assigns a string of the form “D:\EVIEWS”.

Cross-references

See also cd, chdir (p. 156) and @evpath (p. 423).

Part of IF statement.

then marks the beginning of commands to be executed if the condition given in the IF
statement is satisfied.

Syntax

if [condition] then

[commands if condition true]

endif

Cross-references

See “IF Statements” on page 98. See also, else (p. 422), endif (p. 422), if (p. 424).

Syntax: @time

Return: string

Returns a string containing the current time in “hh:mm” format.

Examples

%y = @time

assigns a string of the form “15:35”.

Cross-references

See also @date (p. 421).

then Program Statement

@time Support Function

432—Chapter 10. Programming Language Reference
Upper limit of for loop OR lag range specifier.

to is required in the specification of a FOR loop to specify the upper limit of the control
variable; see “The FOR Loop” on page 100.

When used as a lag specifier, to may be used to specify a range of lags to be used in esti-
mation.

Syntax

Used in a FOR loop:

for !i=n to m

[commands]

next

Used as a Lag specifier:

series_name(n to m)

Examples

ls cs c gdp(0 to -12)

Runs an OLS regression of CS on a constant, and the variables GDP, GDP(–1), GDP(–2), …,
GDP(–11), GDP(–12).

Cross-references

See “The FOR Loop” beginning on page 100. See also, exitloop (p. 423), for (p. 424),
next (p. 425).

Syntax: @toc

Return: integer

Compute elapsed time (since timer reset) in seconds.

Examples

tic

[some commands]

!elapsed = @toc

to Expression || Program Statement

@toc Support Function

while—433
resets the timer, executes commands, and saves the elapsed time in the control variable
!ELAPSED.

Cross-references

See also tic (p. 363) and toc (p. 364).

End of WHILE clause.

wend marks the end of a set of program commands that are executed under the control of
a WHILE statement.

Syntax

while [condition]

[commands while condition true]

wend

Cross-references

See “The WHILE Loop” on page 104. See also while (p. 433).

Conditional control statement. The while statement marks the beginning of a WHILE
loop.

The commands between the while keyword and the wend keyword will be executed
repeatedly until the condition in the while statement is false.

Syntax

while [condition]

[commands while condition true]

wend

Cross-references

See “The WHILE Loop” on page 104. See also wend (p. 433).

wend Program Statement

while Program Statement

434—Chapter 10. Programming Language Reference

Appendix A. Operator and Function Reference

The reference material in this section describes the operators and functions that may
be used with series and (in some cases) matrix objects. A general description of the
use of these operators and functions may be found in Chapter 5, “Working with
Data”, beginning on page 87 of the User’s Guide.

This material is divided into several topics:

• Operators.

• Date and observation functions.

• Basic mathematical functions.

• Time series functions.

• Descriptive statistics.

• Additional and special functions.

• Trigonometric functions.

• Statistical distribution functions.

For a list of functions specific to matrices, see “Matrix Function and Command Sum-
mary” on page 76.

Operators

All of the operators described below may be used in expressions involving series and
scalar values. When applied to a series expression, the operation is performed for
each observation in the current sample. The precedence of evaluation is listed in
“Operators” on page 87 of the User’s Guide. Note that you can enforce order-of-evalu-
ation using parentheses.

.

Expression Operator Description

+ add x+y adds the contents of X and Y.

– subtract x–y subtracts the contents of Y from X.

* multiply x*y multiplies the contents of X by Y.

/ divide x/y divides the contents of X by Y.

^ raise to the power x^y raises X to the power of Y.

436—Appendix A. Operator and Function Reference
Date and Observation Functions

These functions allow you to identify the period associated with a given observation, or
the value associated with a given date/observation.

For example, if you create the series

> greater than x>y takes the value 1 if X exceeds Y, and 0 other-
wise.

< less than x<y takes the value 1 if Y exceeds X, and 0 oth-
erwise.

= equal to x=y takes the value 1 if X and Y are equal, and 0
otherwise.

<> not equal to x<>y takes the value 1 if X and Y are not equal,
and 0 if they are equal.

<= less than or equal
to

x<=y takes the value 1 if X does not exceed Y,
and 0 otherwise.

>= greater than or
equal to

x>=y takes the value 1 if Y does not exceed X,
and 0 otherwise.

and logical and x and y takes the value 1 if both X and Y are
nonzero, and 0 otherwise.

or logical or x or y takes the value 1 if either X or Y is non-
zero, and 0 otherwise.

Function Name Description

@day observation day for daily or weekly workfiles, returns the
observation day in the month for each
observation.

@elem(x,"d"),

@elem(x, s)

element returns the value of the series , at obser-
vation or date, , or string .

@month observation month returns the month of observation (for
monthly, daily, and weekly data) for each
observation.

@quarter observation quarter returns the quarter of observation (except
for annual, semi-annual, and undated data)
for each observation.

@year observation year returns the year associated with each obser-
vation (except for undated data) for each
observation.

x
d s

Basic Mathematical Functions—437
series y = @month

with a monthly workfile, Y will contain a numeric indicator for each month (1 through
12). If you create the series

series z = @quarter

for the same workfile, EViews will fill Z with the numeric quarter indicator (1 through 4)
associated with each observation.

You may only use these functions in a workfile of at least as high frequency. Thus, while
you can use the @month function in a daily or annual workfile, you cannot use the @day
function in a monthly or annual workfile, nor can you use the @month function in an
annual workfile.

Basic Mathematical Functions

These functions perform basic mathematical operations. When applied to a series, they
return a value for every observation in the current sample. When applied to a matrix
object, they return a value for every element of the matrix object. The functions will return
NA values for observations where the input values are NAs, or where the input values are
not valid. For example, the square-root function @sqrt, will return NAs for all observa-
tions less than zero.

Name Function Examples/Description

@abs(x), abs(x) absolute value .

@ceiling(x) smallest integer not less
than

;
.

@exp(x), exp(x) exponential, .

@fact(x) factorial, ; .

@factlog(x) natural logarithm of the fac-
torial,

;
.

@floor(x) largest integer not greater
than

;
.

@inv(x) reciprocal, .

@mod(x, y) floating point remainder returns the remainder of with
the same sign as . If the
result is 0.

@log(x), log(x) natural logarithm, ;
.

@abs(-3) 3=
@ceiling(2.34) 3=
@ceiling(4) 4=

e
x @exp(1) 2.71813≈

x! @fact(3) 6= @fact(0) 1=

loge x!()
@factlog(3) 1.7918≈
@factlog(0)=0

@floor(1.23) 1=
@floor(-3.1)=-4

1 x⁄ @inv 0.5=

x y⁄
x y 0=

loge x() @ 2()log 0.693≈
2.71813()log 1≈

438—Appendix A. Operator and Function Reference
Time Series Functions

The following functions facilitate working with time series data. Note that NAs will be
returned for observations for which lagged values are not available. For example, d(x)
returns a missing value for the first observation in the workfile, since the lagged value is
not available.

@log10(x) base-10 logarithm,

@logx(x, b) base-b logarithm,

@nan(x, y) recode NAs in X to Y returns if , and if
.

@recode(s, x, y) recode by condition returns if condition is true; oth-
erwise returns : @recode(y>0, x,
2).

@round(x) round to the nearest integer ;
.

@sqrt(x), sqr(x) square root .

Name Function Description

d(x) first difference

where is the lag operator.

d(x,n) n-th order difference
.

d(x,n,s) n-th order difference with a
seasonal difference at

.

dlog(x) first difference of the logarithm

dlog(x,n) n-th order difference of the log-
arithm

.

dlog(x,n,s n-th order difference of the log-
arithm with a seasonal differ-
ence at

.

@movav(x,n) n-period backward moving
average

log10 x()
@log10(100) 2=

logb x() @log(256, 2) 8=

x x<>NA y
x NA=

x s
y

@round(-97.5) 98−=
@round(3.5) 4=
@sqrt(9) 3=

1 L−()X X X 1−()−=

L

1 L−()nX

s
1 L−()n 1 L

s−()X

1 L−() X()log
X()log X 1−()()log−=

1 L−()n X()log

s

1 L−()n 1 L
s−() X()log

@movav(x, 3)
X X 1−() X 2−()+ +()

3⁄
=

Descriptive Statistics—439
Descriptive Statistics

These functions compute descriptive statistics for a specified sample, excluding missing
values if necessary. The default sample is the current workfile sample. If you are perform-
ing these computations on a series and placing the results into a series, you can specify a
sample as the last argument of the descriptive statistic function, either as a string (in dou-
ble quotes) or using the name of a sample object. For example,

@movsum(x,n) n-period backward moving
sum

@pc(x) one-period percentage change
(in percent)

equals @pch(x)*100

@pch(x) one-period percentage change
(in decimal)

@pca(x) one-period percentage
change—annualized (in per-
cent)

equals @pcha(x)*100

@pcha(x) one-period percentage
change—annualized (in deci-
mal)

where is the lag associated
with one-year () for
quarterly data, etc.).

@pcy(x) one-year percentage change (in
percent)

equals @pchy(x)*100

@pchy(x) one-year percentage change (in
decimal)

, where
 is the lag associated with one-

year () for annual data,
etc.).

@seas(n) seasonal dummy returns 1 when the quarter or
month equals and 0 other-
wise.

@trend,

@trend(n)

time trend returns a trend series, normal-
ized to 0 in period , where
is a date or observation number;
if is omitted, then the series is
normalized at the first observa-
tion in the workfile.

@movsum(x,3)
X X 1−() X 2−()+ +()=

X X 1−()−() X 1−()⁄

@pcha(x)
1 @pch x()+()n 1−=

n
n 4=

X X n−()−() X n−()⁄
n

n 12=

n

n n

n

440—Appendix A. Operator and Function Reference
series z = @mean(x,"1945:01 1979:12")

or

w = @var(y, s2)

where S2 is the name of a sample object and W and X are series. Note that you may not
use a sample argument if the results are assigned into a matrix, vector, or scalar object. For
example, the following assignment

vector(2) a

series x

a(1) = @mean(x, "1945:01 1979:12")

is not valid since the target A(1) is a vector element. To perform this latter computation
you must explicitly set the global sample prior to performing the calculation performing
the assignment:

smpl 1945:01 1979:12

a(1) = @mean(x)

To determine the number of observations available for a given series, use the @obs func-
tion. Note that where appropriate, EViews will perform casewise exclusion of data with
missing values. For example, @cov(x,y) and @cor(x,y) will use only observations for
which data on both X and Y are valid.

In the following table, arguments in square brackets [] are optional arguments:

• [s]: sample expression in double quotes or name of a sample object. The optional
sample argument may only be used if the result is assigned to a series. For @quan-
tile, you must provide the method option argument in order to include the
optional sample argument.

Function Name Description

@cor(x,y[,s]) correlation the correlation between X and Y.

@cov(x,y[,s]) covariance the covariance between X and Y.

@inner(x,y[,s]) inner product the inner product of X and Y.

@obs(x[,s]) number of observa-
tions

the number of non-missing obser-
vations for X in the current sam-
ple.

@mean(x[,s]) mean average of the values in X.

Additional and Special Functions—441
Additional and Special Functions

EViews provides a number of utility and “special” functions used in evaluating the proper-
ties of various statistical distributions or for returning special mathematical values such as
Euler’s constant. For further details on special functions, see the extensive discussions in
Temme (1996), Abramowitz and Stegun (1964), and Press, et al. (1992).

@median(x[,s]) median computes the median of the X
(uses the average of middle two
observations if the number of
observations is even).

@min(x[,s]) minimum minimum of the values in X.

@max(x[,s]) maximum maximum of the values in X.

@quantile(x,q[,m,s]) quantile the q-th quantile of the series X. m
is an optional integer argument for
specifying the quantile method: 1
(rankit - default), 2 (ordinary), 3
(van der Waerden), 4 (Blom), 5
(Tukey).

@stdev(x[,s]) standard deviation square root of the unbiased sam-
ple variance (sum-of-squared
residuals divided by).

@sum(x[,s]) sum the sum of X.

@sumsq(x[,s]) sum-of-squares sum of the squares of X.

@var(x[,s]) variance variance of the values in X (divi-
sion by).

Function Description

@beta(a,b) beta integral (Euler integral of the second kind)

for .

@betainc(x,a,b) incomplete beta integral

for and .

n 1−

n

B a b,() t
a 1− 1 t−()b 1−

td
0

1

∫ Γ a()Γ b()
Γ a b+()
�����������������������= =

a b 0>,

1
B a b,()
������������������ t

a 1− 1 t−()b 1−
td

0

x

∫

0 x 1≤ ≤ a b 0>,

442—Appendix A. Operator and Function Reference
@betaincder(x,a,b,s) derivative of the incomplete beta integral:

Evaluates the derivatives of the incomplete beta integral
, where is an integer from 1 to 9 corre-

sponding to the desired derivative:

@betaincinv(p,a,b) inverse of the incomplete beta integral: returns an
satisfying:

for and .

@betalog(a,b) natural logarithm of the beta integral:

.

@binom(n,x) binomial coefficient

for and positive integers, .

@binomlog(n,x) natural logarithm of the binomial coefficient:

@cloglog(x) complementary log-log function:

See also @qextreme.

@digamma(x), @psi(x) first derivative of the log gamma function:

B x a b, ,() s

1 2 3
4 5 6
7 8 9

∂B

∂x
��������

∂B

∂a
��������

∂B

∂b
��������

∂
2
B

∂x
2����������

∂
2
B

∂x∂a
��������������

∂
2
B

∂x∂b
�������������

∂
2
B

∂a
2����������

∂
2
B

∂a∂b
�������������

∂
2
B

∂b
2����������

=

x

p
1

B a b,()
������������������ t

a 1− 1 t−()b 1−
td

0

x

∫=

0 p 1≤ ≤ a b 0>,

B a b,()log Γ a()log Γ b()log Γ a b+()log−+=

n
x 

  n!
x! n x−()!
�������������������������=

n x 0 x n≤ ≤

n!()log x!()log− n x−()!()log−

1 x−()log−()log

x() d Γ x()log
dx

������������������������
1

Γ x()
������������

dΓ x()
dx
���������������= =

Additional and Special Functions—443
@erf(x) error function:

for .

@erfc(x) complementary error function:

.

for .

@gamma(x) (complete) gamma function:

for .

@gammader(x) first derivative of the gamma function:

Note: Euler’s constant, , may be evaluated
as . See also @digamma and
@trigamma.

@gammainc(x,a) incomplete gamma function:

for and .

@gammaincder(x,a,n) derivative of the incomplete gamma function:

Evaluates the derivatives of the incomplete gamma
integral , where is an integer from 1 to 5
corresponding to the desired derivative:

erf x() 2
π
������� e

t2−
td

0

x

∫=

x 0≥

erfc x() 2
π
������� e

t2−
td

x

∞

∫ 1 erf x()−= =

x 0≥

Γ x() e
t−
t
x 1−

td
0

∞

∫=

x 0≥

Γ ′ x() dΓ x() dx()⁄=

γ 0.5772≈
γ @gammader(1)−=

G x a,() 1
Γ a()
������������ e

t−
t
a 1−

td
0

x

∫=

x 0≥ a 0>

G x a,() n

1 2 -
3 4 5

∂G

∂x
��������

∂G

∂a
�������� -

∂
2
G

∂x
2����������

∂
2
G

∂x∂a
��������������

∂
2
G

∂a
2����������

=

444—Appendix A. Operator and Function Reference
Trigonometric Functions

When applied to a series, all of the trigonometric functions operate on every observation in
the current sample and return a value for every observation. Where relevant, the input and
results should/will be expressed in radians. All results are real valued—complex values
will return NAs.

Statistical Distribution Functions

The following functions provide access to the density or probability functions, cumulative
distribution, quantile functions, and random number generators for a number of standard
statistical distributions.

@gammaincinv(p,a) inverse of the incomplete gamma function: find the
value of satisfying

 for and .

@gammalog(x) logarithm of the gamma function: . For deriva-
tives of this function see @digamma and @trigamma.

@logit(x) logistic transform:

@psi(x) see @digamma.

@trigamma(x) second derivative of the log gamma function:

Function Name Examples/Description

@acos(x) arc cosine (real results in radians)

@asin(x) arc sine (real results in radians)

@atan(x) arc tangent (results in radians)

@cos(x) cosine (argument in radians)

@sin(x) sine (argument in radians)

@tan(x) tangent (argument in radians)

x

p G x a,() 1
Γ a()
������������ e

t−
t
a 1−

td
0

x

∫= =

0 p 1<≤ a 0>
Γ x()log

1

1 e
x−+

������������������
e
x

1 e
x+

����������������=

′ x() d
2

Γ x()log

dx
2��������������������������=

@acos(-1) π=

@asin(-1) π 2⁄=

@atan(1) π 4⁄=

@cos(3.14159) 1−≈
@sin(3.14159) 0≈
@tan(1) 1.5574≈

Statistical Distribution Functions—445
There are four functions associated with each distribution. The first character of each func-
tion name identifies the type of function:

The remainder of the function name identifies the distribution. For example, the functions
for the beta distribution are @cbeta, @dbeta, @qbeta and @rbeta.

When used with series arguments, EViews will evaluate the function for each observation
in the current sample. As with other functions, NA or invalid inputs will yield NA values.
For values outside of the support, the functions will return zero.

Note that the CDFs are assumed to be right-continuous: . The quan-
tile functions will return the smallest value where the CDF evaluated at the value equals or
exceeds the probability of interest: , where . The inequalities are
only relevant for discrete distributions.

The information provided below should be sufficient to identify the meaning of the param-
eters for each distribution. For further details, see the Command and Programming Refer-
ence.

\

Function Type Beginning of Name

Cumulative distribution (CDF) @c

Density or probability @d

Quantile (inverse CDF) @q

Random number generator @r

Distribution Functions Density/Probability Function

Beta @cbeta(x,a,b),

@dbeta(x,a,b),

@qbeta(p,a,b),

@rbeta(a,b) for and for , where is
the @beta function.

Binomial @cbinom(x,n,p),

@dbinom(x,n,p),

@qbinom(s,n,p),

@rbinom(n,p) if , and 0 otherwise, for
.

FX k() Pr X k≤()=

qX p() q∗= FX q∗() p≥

f x a b, ,() x
a 1− 1 x−()b 1−

B a b,()
���������������������������������������=

0 p 1≤ ≤ a b, 0> B

Pr x n p, ,() n
x 

  px 1 p−()n x−=

x 0 1 … n …, , , ,=
0 p 1≤ ≤

446—Appendix A. Operator and Function Reference
Chi-square @cchisq(x,v),

@dchisq(x,v),

@qchisq(p,v),

@rchisq(v) where , and . Note that the
degrees-of-freedom parameter need not be
an integer.

Exponential @cexp(x,m),

@dexp(x,m),

@qexp(p,m),

@rexp(m) for , and .

Extreme Value

(Type I-minimum)

@cextreme(x),

@dextreme(x),

@qextreme(p),
@cloglog(p),

@rextreme

for .

F-distribution @cfdist(x,v1,v2),

@dfdist(x,v1,v2),

@qfdist(p,v1,v2),

@rfdist(v1,v1)

where , and . Note that the
functions allow for fractional degrees-of-free-
dom parameters and .

Gamma @cgamma(x,b,r),

@dgamma(x,b,r),

@qgamma(p,b,r),

@rgamma(b,r)

where , and .

Generalized Error @cged(x,r),

@dged(x,r),

@qged(p,r),

@rged(r)

where , and .

Laplace @claplace(x),

@dlaplace(x),

@qlaplace(x),

@rlaplace for .

f x v,() 1

2v 2⁄
Γ v 2⁄()

�����������������������������x
v 2⁄ 1−

e
x 2⁄−=

x 0≥ v 0>
v

f x m,() 1
m
�����e

x m⁄−=

x 0≥ m 0>

f x() x e
x−()exp=

∞ x ∞< <−

f x v1 v2, ,()
v1
v1 2⁄

v2
v2 2⁄

B v1 2⁄ v2 2⁄,()
�������������������������������������

x
v1 2−() 2⁄

v2 v1x+() v1 v2+() 2⁄−

=

x 0≥ v1 v2, 0>

v1 v2

f x b r, ,() b
r−
x
r 1−

e
x b⁄−

Γ r()⁄=

x 0≥ b r 0>,

f x r,()
rΓ

3
r
��� 

  1 2⁄

2rΓ 1
r
��� 

  3 2⁄�������������������������� x
r Γ 3 r⁄()

Γ 1 r⁄()
������������������ 

  1 2⁄
−exp=

∞ x ∞< <− r 0>

f x() 1
2
���e

x−=

∞ x ∞< <−

Statistical Distribution Functions—447
Logistic @clogistic(x),

@dlogistic(x),

@qlogistic(p),

@rlogistic for .

Log-normal @clognorm(x,m,s),

@dlognorm(x,m,s),

@qlognorm(p,m,s),

@rlognorm(m,s) , , and .

Negative Binomial @cnegbin(x,n,p),
@dnegbin(x,n,p),

@qnegbin(s,n,p),

@rnegbin(n,p) if , and 0 otherwise, for
.

Normal
(Gaussian)

@cnorm(x),

@dnorm(x),

@qnorm(p),

@rnorm, nrnd
for .

Poisson @cpoisson(x,m),

@dpoisson(x,m),

@qpoisson(p,m),

@rpoisson(m)

if , and 0 otherwise, for
.

Pareto @cpareto(x,a,k),

@dpareto(x,a,k),

@qpareto(p,a,k),

@rpareto(a,k)

for , and .

f x() 1

1 e
x−+

������������������
e
x

1 e
x+

����������������= =

∞ x ∞< <−

f x m s, ,() 1

x 2πs2
��������������������e

x m−log()2 2s2()⁄−=

x 0> ∞ m ∞< <− s 0>

Pr x n p, ,() Γ x n+()
Γ x 1+()Γ n()
�����������������������������������p

n 1 p−()x=

x 0 1 … n …, , , ,=
0 x 1≤ ≤

f x() 2π() 1 2⁄−
e

x2 2⁄−=

∞ x ∞< <−

Pr x m,() m
x
e

m−
x!⁄=

x 0 1 … n …, , , ,=
m 0>

f x a k, ,() ak
a() x

a 1+⁄=

a 0> 0 k x≤ ≤

448—Appendix A. Operator and Function Reference
Additional Distribution Related Functions

The following utility functions were designed to facilitate the computation of p-values for
common statistical tests. While these results may be derived using the distributional func-
tions above, they are retained for convenience and backward compatibility.

Student's
t-distribution

@ctdist(x,v),

@dtdist(x,v),

@qtdist(p,v),

@rtdist(v)

for , and . Note that
, yields the Cauchy distribution.

Uniform @cunif(x,a,b),

@dunif(x,a,b),

@qunif(p,a,b),

@runif(a,b), rnd for and .

Weibull @cweib(x,m,a),

@dweib(x,m,a),

@qweib(p,m,a),

@rweib(m,a)
where , and .

Function Distribution Description

@chisq(x,v) Chi-square Returns the probability that a Chi-squared
statistic with degrees of freedom exceeds

:

@chisq(x,v) = 1–@cchisq(x,d)

@fdist(x,v1,v2) F-distribution Probability that an F-statistic with
numerator degrees of freedom and
denominator degrees of freedom exceeds

:

@fdist(x,v1,v2) = 1–@cfdist(x,v1,v2)

@tdist(x,v) t-distribution Probability that a t-statistic with degrees
of freedom exceeds in absolute value
(two-sided p-value):

@tdist(x,v) = 2*(1–@ctdist(x,v))

f x v,()
Γ

v 1+
2

������������� 
 

vπ()1 2⁄
Γ

v

2
��� 

 
������������������������������� 1 x

2

v
����� 

 + 
 

v 1+()−
2���������������������

=

∞ x ∞< <− v 0>
v 1=

f x() 1
b a−
������������=

a x b< < b a>

f x m a, ,() am
a−
x
a 1−

e
x m⁄()a−=

∞ x ∞< <− m a 0>,

v
x

v1
v2

x

v
x

Index

Symbols

! (exclamation) control variable 90
% (percent sign)

program arguments 96
string variable 90

* (asterisk) multiplication 67
+ (plus)

addition 67
string concatenation 92

/ (slash) division 68
@abs 437
@beta 441
@betainc 441
@betaincder 442
@betaincinv 442
@betalog 442
@binom 442
@binomlog 442
@ceiling 437
@cholesky 397
@cloglog 442
@columnextract 398
@columns 398
@cond 398
@convert 399
@cor 400, 440
@cov 400, 440
@date 421
@day 436
@det 401
@digamma 442
@dtoc 401
@eigenvalues 402
@eigenvectors 402
@elem 436
@erf 443
@erfc 443
@errorcount 423
@evpath 423
@exp 437

@explode 402
@fact 437
@factlog 437
@filledmatrix 403
@filledrowvector 403
@filledsym 403
@filledvector 404
@floor 437
@-functions

date functions 436
descriptive statistics 439
integrals and other special functions 441
mathematical functions 437
special p-value functions 448
statistical distribution functions 444
string manipulation 92
time series functions 438
trigonometric functions 444

@gamma 443
@gammader 443
@gammainc 443
@gammaincder 443
@gammaincinv 444
@gammalog 444
@getmaindiagonal 404
@identity 404
@implode 405
@inner 405, 440
@inv 437
@inverse 406
@isobject 425
@issingular 406
@kronecker 407
@left 407
@log 437
@log10 438
@logit 444
@logx 438
@makediagonal 408
@max 441
@median 441

450— Index
@mid 409
@min 441
@mod 437
@month 436
@movav 438
@movsum 439
@nan 438
@norm 410
@obs 440
@obsrange 426
@obssmpl 426
@otod 411
@outer 411
@permute 412
@psi 442
@quantile 441
@quarter 436
@rank 412
@recode 438
@resample 412
@round 438
@rowextract 414
@rows 414
@seas 439
@solvesystem 415
@sqrt 438
@stdev 441
@str 416
@strlen 417
@subextract 417
@sum 441
@sumsq 441
@svd 418
@temppath 430
@time 431
@toc 432
@trace 418
@transpose 419
@trend 439
@trigamma 444
@unitvector 419
@val 419
@var 441
@vec 420

@vech 420
@year 436
_ (continuation character) 86
– (dash)

negation 66
subtraction 67

Numerics

2sls (two-stage least squares) 368
3sls (three-stage least squares) 136

A

abs 437
add 137
Add factor

initialization 139
addassign 138
addinit 139
Addition operator (+) 67
addtext 140
align 142
Align multiple graphs 142
And operator 436
Anderson-Darling test 198
Andrews test 360
append 143
AR

autoregressive error 144
inverse roots of polynomial 148
seasonal 307

ar 144
Arc cosine 444
Arc sine 444
Arc tangent 444
ARCH

residual LM test for ARCH 147
see also GARCH. 145

arch 145
archtest 147
Arguments

in programs 96
in subroutines 108

arlm 148
arroots 148
Assign values to matrix objects 56

C—451
by element 56
converting series or group 62
copy 59
copy submatrix 61
fill procedure 57

Augmented Dickey-Fuller test 373
auto 149
Autocorrelation

compute and display 172
multivariate VAR residual test 289

Autogressive error. See AR.
Autoregressive conditional heteroskedasticity. See

ARCH and GARCH.
Autowrap text 85
Auxiliary commands 10

summary 17
Axis

rename label 271
scale 309

B

bar 150
Bar graph 150
Batch mode

See Program.
BDS test 152
bdstest 152
Beta

distribution 445
integral 441

Beta integral
logarithm 442

binary 152
Binary dependent variables 152
Binary models

prediction table 285
Binomial

coefficient function 442
distribution 445

Binomial coefficients 442
logarithm 442

block 154
Bootstrap rows of matrix 412
Breusch-Godfrey test

See also Serial correlation.

C

call 421
Call subroutine 109
Causality test 154
cause 154
ccopy 156
cd 156
cdfplot 157
censored 158
Censored models 158
cfetch 160
Change default directory 156
chdir 156
checkderivs 160
Chi-square distribution 446
Cholesky factor

function to compute 397
chow 161
Chow test 161
clabel 162
cleartext 163
close 163
Close EViews application 203
Close window 163
coef 164
Coef (object) 20

data members 20
declare 164
fill values 208
procs 20
views 20

coefcov 165
Coefficient

covariance matrix of estimates 165
See Coef (object).
update default coef vector 372

coint 166
Cointegration

make cointegrating relations from VEC 250
Cointegration test 166
colplace 397
Column

extract from matrix 398
number of columns in matrix 398
place in matrix 397

452— Index
stack matrix 420
stack matrix (lower triangle) 420

Column width of table 321
Commands

auxiliary 10, 17
basic command summary 17
batch mode 2
execute without opening window 192
interactive mode 1
object assignment 9
object command 6
object declaration 5, 9
save record of 2
window 1

Comparison operators 68
for strings 99
with missing values 100

Complementary log-log function 442
Condition number of matrix 398
Conditional standard deviation

display graph of 219
Conditional variance

make series from ARCH 252
Container (object) 11

database 12
workfile 11

Continuation character in programs 86
control 168
Control variable 90

as replacement variable 94
in while statement 104
save value to scalar 90

Convert
date to observation number 93, 401
matrix object to series or group 409
matrix objects 62, 74, 399
matrix to sym 405
observation number to date 93, 411
scalar to string 416
series or group to matrix (drop NAs) 415
series or group to matrix (keep NAs) 416
string to scalar 91, 93, 419
sym to matrix 402

Coordinates
for legend in graph 240

Copy
database 181

copy 168
Copy objects 14, 168
cor 171
correl 172
Correlation 171, 400, 440

cross 177
Correlogram 172

squared residuals 173
correlsq 173
Cosine 444
count 173
Count models 173
cov 175
Covariance 175, 400, 440
Cramer-von Mises test 198
create 176
Create database 181
Create workfile 176
cross 177
Cross correlations 177
Cross product 411
Cross section member

add to pool 137
define list of 188

Current date function 421
Current time function 431
CUSUM test 301

of squares 301

D

Data
entering from keyboard 178

data 178
Data members

coef 20
equation 23
group 28
matrix 32
pool 35
rowvector 37
series 40
sspace 41
sym 45
system 46
table 48
var 50

E—453
vector 52
Database

copy 13, 181
create 12, 181
delete 13, 182
fetch 205
Haver Analytics 227, 230
open 13, 183
open or create 180
pack 184
rebuild 184
rename 13, 185
repair 185

Date
@-functions 93
convert from observation number 411
convert to observation number 93, 401
functions 436

Dated data report table 196
Dated data table 255
dates 178
db 180
dbcopy 181
dbcreate 181
dbdelete 182
dbopen 183
dbpack 184
dbrebuild 184
dbrename 185
dbrepair 185
Declare

matrix 55
object 5, 9

decomp 186
define 188
Delete

database 182
object 16
objects or pool identifiers 188

delete 188
Derivatives

make series or group containing 251
Derivatives of equation specification 189
derivs 189
describe 190
Descriptive statistics 344

@-functions 439
by category of dependent variable 266
by classification 340
make series 263
matrix functions 77
pool 190

Determinant 401
Diagonal matrix 408
Dickey-Fuller test 373
Difference 438
Directory

change working 156
EViews executable 423

Display
action 6
and print 8

Display numbers 327
Display object 328
displayname 192
Distribution function

empirical cumulative, survivor and quantiles
157

Quantile-quantile plot 288
Division operator (/) 68
do 192
Double exponential smoothing 330
draw 193
Draw lines in graph 193
DRI database

convert to EViews database 194
copy from 156
fetch series 160
read series description 162

driconvert 194
Drop

group series or cross-section from pool defini-
tion 195

drop 195
dtable 196
Dummy variable

seasonal 439
Durbin's h 107
Dynamic forecast 214

E

ec 196

454— Index
edftest 198
Eigenvalues 402
Eigenvectors 402
Elapsed time 364
elapsed time 432
Element

assign in matrix 56
matrix functions 77

else 422
Else clause in if statement 98, 422
Empirical distribution functions 157
Empirical distribution test 198
Empty string 99
endif 422
endog 200
Endogenous variables 200

make series or group 251
endsub 422
eqs 201
equals comparison 68
equation 200
Equation (object) 21

data members 23
declare 200
methods 21
procs 23
views 22

errbar 201
Error bar graph 201
Error correction model

See VEC and VAR.Vector error correction model
Error count in programs 423
Error function 443

complementary 443
Error handling 105
Estimation methods

(single) equation 21
pool 248
state space 29, 41
system (of equations) 46
VAR 49

Euler’s constant 443
Excel file

reading data from 291
writing data to 383

exclude 203

Exclude variables from model solution 203
Execute program 86

abort 88
quiet mode 87
verbose mode 87
with arguments 96

Exit
from EViews 203
loop 106, 423
subroutine 428

exit 203
exitloop 423
exp 437
expand 204
Expand workfile 204
Exponential

distribution 446
function 437

Exponential smoothing 330
Export data

matrix 73
Exporting data to file 383
Extract

main diagonal of matrix 404
row vector 414
submatrix from matrix 417

Extreme value distribution 446

F

Factorial 437
F-distribution 446
fetch 205
Fetch object 16, 205
Files

temporary location 430
Fill

values of matrix 57
values of object 208

fill 208
Filled

matrix 403
row vector 403
symmetric matrix 403
vector 404

fiml 210
fit 212

G—455
Fixed effects 248
for 424
For loop

accessing elements of a series 101
accessing elements of a vector 101
changing samples within 101
define using control variables 100
define using scalars 102
define using string variables 102
exit loop 106
mark end 425
nesting 102
roundoff error in 429
start loop 424
step size 429
upper limit 432

Forecast
dynamic (multi-period) 214
static (one-period ahead) 212

forecast 214
Format number 81
freeze 216
Freeze view 216
freq 217
Frequency conversion

set method 321
Frequency table

one-way 217
Full information maximum likelihood 210

G

Gamma
distribution 446

Gamma function 443
derivative 442, 443
incomplete 443
incomplete derivative 443
incomplete inverse 444
logarithm 444
second derivative 444

GARCH
display conditional standard deviation 219
estimate model 145
generate conditional variance series 252

garch 219
Gaussian distribution 447
Generalized autoregressive conditional heteroske-

dasticity. See ARCH and GARCH.
Generalized error distribution 446
Generalized method of moments 221
Generate series

for pool 220
genr 220

See also series.
Global

subroutine 110
variable 110

GMM
estimate 221

gmm 221
Gompit models 152
Goodness of fit (for binary models) 360
Gradients

display 223
saving in series 253

grads 223
Granger causality test 154, 359
Graph

align multiple graphs 142
axis labeling 178
change legend or axis name 271
drawing lines and shaded areas 193
error bar 201
high-low-open-close 228
place text 140
set axis scale 309
set individual graph options 323
set options 275
spike 338
templates 355
XY line graph 394

graph 224
Graph (object) 25

creating 224
procs 25

greater than comparison 68
greater than or equal to comparison 68
Group

convert to matrix 345, 346, 409
convert to matrix (with NAs) 416

group 226
Group (object) 26

add series 137
data members 28

456— Index
declare 226
procs 27
views 26

H

Haver Analytics Database
convert to EViews database 226

hconvert 226
Heteroskedasticity test (White) 379
hfetch 227
High-Low (Open-Close) graphs 228
hilo 228
hist 229
Histogram 229
hlabel 230
Hodrick-Prescott filter 231
Holt-Winters 330
Hosmer-Lemeshow test 360
hpf 231

I

Identity matrix 404
extract column 419

if 424
If statement 98

else clause 98, 422
end of condition 422
start of condition 424
then 431

Import data
matrix 72

Import data from file 291
impulse 232
Impulse response function 232
Include

file in a program file 425
program file 107

include 425
Incomplete beta

derivative 442
integral 441
inverse 442

Incomplete beta integral 441
Incomplete gamma 443
Independence test 152

Initial parameter values 281
Inner product 405, 440
Insertion point in command line 2
Integer random number 302
Interactive mode 1
Inverse of matrix 406

J

Jarque-Bera
multivariate normality test 234

jbera 234
Johansen cointegration test 166

K

Kalman filter 252
kdensity 236
kerfit 237
Kernel

bivariate regression 237
density 236

Kolmogorov-Smirnov test 198
Kronecker product 407

L

label 238
Label object 192, 238
Lag

specify as range 432
VAR lag order selection 239

Lag exclusion test 361
laglen 239
Lagrange multiplier

test for ARCH in residuals 147
Landscape printing 8
Laplace distribution 446
Least squares estimation 245
Legend

appearance and placement 240
rename 271

legend 240
less than comparison 68
less than or equal to comparison 68
Lilliefors test 198
line 241
Line drawing 193

M—457
Line graph 241
Line pattern 193
Line style 193
linefit 242
Load

workfile 244
load 244
Local

subroutine 112
variable 110

log
arbitrary base 438
base 10 438
natural 437

Log difference 438
Logistic

logit function 444
Logistic distribution 447
logit 244
Logit models 152
logl 245
Logl (object) 29

check user-supplied derivatives 160
data members 30
declare 245
method 29
procs 29
statements 29
views 29

Log-normal distribution 447
Loop

exit loop 106, 423
for (control variables) 100
for (scalars) 102
for (string variables) 102
nest 102
over matrix elements 73, 101
while 104

ls 245

M

MA
seasonal 330

ma 249
Main diagonal of matrix 404
Make model object 257

Make residuals 259
makecoint 250
makederivs 251
makeendog 251
makefilter 252
makegarch 252
makegraph 254
makegroup 255
makelimits 257
makemodel 257
makeregs 258
makeresids 259
makesignals 260
makestates 262
makestats 263
makesystem 264
Mathematical functions 437
matplace 408
Matrix

assign values 56
convert to other matrix objects 74
convert to series or group 62
copy 59
copy submatrix 61
declare 55
export data 73
filled 403
import data 72
main diagonal 404
objects 55
permute rows of 412
place submatrix 408
resample rows from 412
singular value decomposition 418
stack columns 420
stack lower triangular columns 420

matrix 265
Matrix (object)

data members 32
declare 265
fill values 208
procs 31
views 31, 72

Matrix commands and functions
commands 70
descriptive statistics 69, 77
difference 70

458— Index
element 69, 77
functions 70
matrix algebra 69, 77
missing values 71
utility 69, 76

Matrix operators
addition (+) 67
and loop operators 73
comparison operators 68
division (/) 68
multiplication (*) 67
negation (-) 66
order of evaluation 66
subtraction (-) 67

Maximum 441
Maximum likelihood estimation 269

Logl (object) 29
Sspace (object) 41

Mean 440
Mean test 356, 357
means 266
Median 441
Median test 356, 357
merge 267
Messages

suppress during program execution 87
metafile 268
Minimum 441
Missing value code 270
Missing values 71

inequality comparison 100
mathematical functions 437
recoding 438
test 99

ml 269
model 269
Model (object) 32

append specification line 143
break all model links 371
declare 269
equation view 201
procs 33
update specification 372
variable view 377
views 33

Models
add factor assignment and removal 138

add factor initialization 139
block structure 154
exclude variables from solution 203
make from estimation object 257
make graph of model series 254
make group of model series 255
options for solving 335
overrides in model solution 280
scenarios 313
solution messages 270
solve 334
solve to match target 168
text representation 363
trace iteration history 365

modulus 437
Moving average 249, 438
Moving sum 439
msg 270
mtos 409
Multiplication operator (*) 67

N

NA
inequality comparison 100
recode 438
test 99

na 270
name 271
Nearest neighbor regression 272
Negation operator (-) 66
Negative binomial count model 173
Negative binomial distribution 447
next 425
nnfit 272
Nonlinear least squares 245
Norm of a matrix 410
Normal distribution 447
Normal random number 274
not equal to comparison 68
nrnd 274
Number

evaluate a string 419
formatting in tables 81

Number of observations 440

P—459
O

Object
assignment 9
command 6
containers 11
copy 14
create using freeze 216
declaration 5, 9
delete 16
fetch 16, 205
merge 267
rename 15, 293
save 16
store 16
test for existence 425

Observations
number in workfile range 426

OLS (ordinary least squares) 245
Omitted variables test 355
One-way frequency table 217
Open

database 183
files 275
workfile 244

open 275
Operator 435
options 275
Or operator 436
ordered 277
Ordered dependent variable

estimating models with 277
make vector of limit points from equation 257

Outer product 411
Output

display estimation results 279
extracting results from views 124
printing 8

output 279
Output redirection 427
override 280
Override variables in model solution 280

P

Pack database 184
param 281

Parameters 281
Pareto distribution 447
Partial autocorrelation 172
Partial correlation 172
pdl 282
PDL (polynomial distributed lag) 282
Percent change 439
Percentage change 439
Permute rows of matrix 412
Phillips-Perron test 373
Pi 444
Pi (constant) 444
pie 284
Pie graph 284
poff 427
Poisson count model 173
Poisson distribution 447
Polynomial distributed lags 282
pon 427
Pool

generate series using identifiers 220
make group of pool series 255

pool 285
Pool (object) 34

add cross section member 137
data members 35
declare 285
delete identifiers 188
fixed effects 248
members 34
procs 34
random effects 248
views 34

Portrait (print orientation) 8
Power (raise to) 435
Precedence of evaluation 66
predict 285
Prediction table 285
Presentation table 196
Principal components 281
Print

and display 8
automatic printing 427
landscape 8
portrait 8
turn off in program 427

460— Index
print 286
Printing

automatic printing 427
probit 287
Probit models 152
Program 85

abort 88
arguments 96
call subroutine 109, 421
counting execution errors 423
create 85
declare 287
entering text 85
exit loop 106
if statement 98
include file 107, 425
line continuation character 86
open 86
place subroutine 109
quiet mode 87
run 305
running 86
save 86
stop 105
stop execution 430
verbose mode 87

program 287
P-value functions 448

Q

QQ-plot
See Distribution function.

qqplot (quantile-quantile) 288
Q-statistic 172
qstats 289
Quantile function 441
Quantile-Quantile plot. See QQ-plot
Quiet mode 87

R

Random effects 248
Random number

integer 302
seed 303
uniform 302

Random number generator

normal 274
range 290
Rank 412
Read

data from foreign file 291
read 291
Recode values 438
Recursive least squares 300

CUSUM 301
CUSUM of squares 301

Redirect output to file 8, 279
Redundant variables test 358
Regressors

make group containing 258
Rename

database 185
object 15, 293

rename 293
Repair database 185
Replacement variable 93

naming objects 95
Resample

observations 295
rows from matrix 412

resample 295
reset 297
RESET test 297
Reset timer 363
residcor 297
residcov 298
Residuals

correlation matrix of 297
covariance matrix of 298
make series or group containing 259

Resize workfile 290
Restricted VAR text 163
Results

display or retrieve 300
results 300
return 428
rls 300
rnd 302
rndint 302
rndseed 303
Roots of the AR polynomial 148

S—461
Roundoff error in for loops 429
Row

numbers 414
place in matrix 414

rowplace 414
rowvector 304
Rowvector (object)

data members 37
declare 304
extract 414
filled rowvector function 403
views 37

run 305
Run program 305

multiple files 106

S

Sample
change using for loop 101
number of observations 426
set 319, 332

sample 306
Sample (object)

declare 306
procs 38

sar 307
Save

commands in file 2
objects to disk 16
workfile 308

save 308
scalar 309
Scalar (object) 38

declare 309
scale 309
scat 311
scatmat 313
Scatter diagrams 311

matrix of 313
with bivariate fit 242

scenario 313
seas 315
Seasonal adjustment

moving average 315
Tramo/Seats 365
X11 387

X12 388
Seasonal autoregressive error 307
Seasonal dummies 439
Seasonal dummy variable 439
Seasonal graphs 316
seasplot 316
Second moment matrix 405
Seed random number generator 303
Seemingly unrelated regression. See SUR
Sequential LR tests 106
Serial correlation

Breusch-Godfrey LM test 149
multivariate VAR LM test 148

Series
convert to matrix 345, 346, 409, 415
convert to matrix (with NAs) 416
extract observation 436

series 317
Series (object) 39

data members 40
declare 317
element function 40
fill values 208
views 39

set 319
Set graph date labeling formats 178
setcell 319
setcolwidth 321
setconvert 321
setelem 323
setline 326
Shade region of graph 193
sheet 327
show 328
Show object view 328
Signal variables

display graphs 329
saving 260

signalgraph 329
Sine 444
Singular matrix

test for 406
Singular value decomposition 418
sma 330
smooth 330

462— Index
Smoothing
exponential smooth series 330
signal series 260
state series 262

smpl 332
Solve

linear system 415
simultaneous equations model 334

solve 334
Solve. See Models.
solveopt 335
sort 336
Sort workfile 336
spec 337
Specification view 337
spike 338
Spike graph 338
Spreadsheet view 327
sqrt 438
sspace 339
Sspace (object)

append specification line 143
data members 41
declare 339
display signal graphs 329
make Kalman filter from 252
method 41
procs 41
state graphs 342
views 41

Stack matrix by column 420
lower triangle 420

Standard deviation 441
Starting values 281
statby 340
State variables

display graphs of 342
final one-step ahead predictions 343
initial values 343
smoothed series 262

statefinal 343
stategraph 342
stateinit 343
Static forecast 212
Statistical distribution functions 444
Statistics 190

compute for subgroups 340
stats 344
Status line 345
statusline 345, 428
step 429
stom 345, 415
stomna 346, 416
stop 430
Stop program execution 105, 430
store 347
Store object 16, 347
String 90

assign to table cell 80
comparison 99
convert to a scalar 419
empty 99
from a number 416
length of 417

String variable 90
@-functions 92
as replacement variable 94
comparison 99
convert to a scalar 91, 93
in for loop 102
program arguments 96
test for empty string 99

Subroutine 107
arguments 108
call 109, 421
declare 430
define 107
global 110
local 112
mark end 422
placement 109
return from 107, 428

subroutine 430
Substring 407, 409
Subtraction operator (-) 67
Sum 441
Sum of squares 441
SUR

estimating 350
sur 350
svar 351
sym 353

T—463
Sym (object) 44
create from lower triangle of square matrix 405
create from scalar function 403
create square matrix from 402
data members 45
declare 353
procs 45
stack columns 420
views 44

Symmetric matrix
See Sym.

system 354
System (object) 45

append specification line 143
create from pool or var 264
data members 46
declare 354
methods 46
procs 46
views 46

T

Table
decimal format code 81
declare 79
example 82
fill cell with number 80
fill cell with string 80
format cell 81
horizontal line 80, 326
justification code 81
set and format cell contents 319
set column width 79, 321

Table (object) 48
data members 48
views 48

Tangent 444
t-distribution 448
template 355
Test

Chow 161
CUSUM 301
CUSUM of squares 301
exogeneity 359
for ARCH 147
for serial correlation 148, 149
Goodness of fit 360

Granger causality 154
heteroskedasticity (White) 379
Johansen cointegration 166
lag exclusion (Wald) 361
mean, median, variance equality 356, 362
mean, median, variance equality by classifica-

tion 357
omitted variables 355
redundant variables 358
RESET 297
unit root 373
Wald 378

testadd 355
testbtw 356
testby 357
testdrop 358
testexog 359
testfit 360
testlags 361
teststat 362
text 363
Text (object)

declare 363
Then 431
Three stage least squares 136
tic 363
Time trend 439
Timer 363, 364, 432
to 432
Tobit models 158
toc 364
trace 365
Trace of a matrix 418
Tramo/Seats 365
tramoseats 365
Transpose 419
Trend series 439
Trigonometric functions 444
Truncated dependent variable

models 158
tsls 368
Two-stage least squares

see 2sls

464— Index
U

Uniform distribution 448
Uniform random number generator 302
Unit vector 419
unlink 371
Untitled objects 11
update 372
updatecoefs 372
uroot 373

V

VAR
estimate factorization matrix 351
impulse response 232
lag exclusion test 361
lag length test 239
multivariate autocorrelation test 289
variance decomposition 186

var 376
VAR (object) 49

clear restrictions 163
data members 50
declare 376
methods 49
procs 49
views 49

Variance 441
Variance decomposition 186
Variance test 356, 357
vars 377
VEC

estimating 196
vector 377
Vector (object) 52

data members 52
declare 377
procs 52
return filled 404
views 52

Vector autoregression
See VAR.

Verbose mode 87
Views

extracting results from 124

W

wald 378
Wald test 378
Watson test 198
Weibull distribution 448
Weighted least squares 380
Weighted two-stage least squares 385
wend 433
while 433
While loop 104

abort 104
end of 433
exit loop 106
start of 433

white 379
Wildcards 14
wls 380
Workfile 11

close 12
creating 176
creating or changing active 381
expand 204
frequency 11
open 12
open existing 244
resize 290
save 12
save to disk 308
sort observations 336

workfile 381
Write

data to file 383
write 383
wtsls 385

X

X11 387
x11 387
X12 388
x12 388
xyline 394

	Chapter 1. Introduction
	Using Commands
	Interactive Use

	Batch Program Use
	How to Use this Manual

	Chapter 2. Object and Command Basics
	Object Declaration
	Object Commands
	Output Control

	Object Assignment Statements
	More on Declaring Objects
	Auxiliary Commands
	Managing Workfiles and Databases
	Managing Workfiles
	Managing Databases

	Managing Objects
	Copying Objects
	Renaming Objects
	Deleting Objects
	Saving Objects
	Fetch Objects

	Basic Command Summary

	Chapter 3. Object, View and Procedure Reference
	Coef
	Equation
	Graph
	Group
	Logl
	Matrix
	Model
	Pool
	Rowvector
	Sample
	Scalar
	Series
	Sspace
	Sym
	System
	Table
	Var
	Vector

	Chapter 4. Matrix Language
	Declaring Matrices
	Assigning Matrix Values
	Element assignment
	Fill assignment
	Matrix assignment

	Copying Data Between Objects
	Copying data from matrix objects
	Copying data from parts of matrix objects
	Copying data between matrix objects and other objects

	Matrix Expressions
	Matrix Operators

	Matrix Commands and Functions
	Functions versus Commands
	NA Handling

	Matrix Views and Procs
	Matrix Graph and Statistics Views
	Matrix input and output

	Matrix Operations versus Loop Operations
	Summary of Automatic Resizing of Matrix Objects
	Matrix Function and Command Summary

	Chapter 5. Working with Tables
	Declaring a Table
	Controlling Appearance
	Filling Cells
	Strings
	Numbers
	Cell Formatting

	Table Example
	Table Summary

	Chapter 6. EViews Programming
	Program Basics
	Creating a Program
	Saving a Program
	Opening a Program
	Executing a Program
	Stopping a Program

	Simple Programs
	Program Variables
	Control Variables
	String Variables
	Manipulating Strings
	Replacement Variables

	Program Arguments
	Control of Execution
	IF Statements
	The FOR Loop
	The WHILE Loop
	Handling Execution Errors
	Other Tools

	Multiple Program Files
	Subroutines
	Defining Subroutines
	Subroutine with arguments
	Subroutine Placement
	Calling Subroutines
	Global and Local Variables
	Global Subroutines
	Local Subroutines

	Programming Summary

	Chapter 7. Sample Programs
	Descriptive Statistics by Year
	(descr1.prg)
	(desc2.prg)

	Rolling ADF Test
	(rollreg.prg)

	Calculating Cumulative Sums
	(cum_sum.prg)

	Time Series Operations on a Sample
	(subset.prg)

	Creating Dummy Variables with a Loop
	(make_dum.prg)

	Extracting Test Statistics in a Loop
	(omitted.prg)

	Between Group Estimation for Pooled Data
	(between.prg)

	Hausman Test for Fixed Versus Random Effects
	(hausman.prg)

	Regression Output Table
	(regrun.prg / regtab.prg)

	Chapter 8. Command Reference
	3sls
	add
	addassign
	addinit
	addtext
	align
	append
	ar
	arch
	archtest
	arlm
	arroots
	auto
	bar
	bdstest
	binary
	block
	cause
	ccopy
	cd, chdir
	cdfplot
	censored
	cfetch
	checkderivs
	chow
	clabel
	cleartext
	close
	coef
	coefcov
	coint
	control
	copy
	cor
	correl
	correlsq
	count
	cov
	create
	cross
	data
	dates
	db
	dbcopy
	dbcreate
	dbdelete
	dbopen
	dbpack
	dbrebuild
	dbrename
	dbrepair
	decomp
	define
	delete
	derivs
	describe
	displayname
	do
	draw
	driconvert
	drop
	dtable
	ec
	edftest
	endog
	equation
	eqs
	errbar
	exit
	exclude
	expand
	fetch
	fill
	fiml
	fit
	forecast
	freeze
	freq
	garch
	genr
	gmm
	grads
	graph
	group
	hconvert
	hfetch
	hilo
	hist
	hlabel
	hpf
	impulse
	jbera
	kdensity
	kerfit
	label
	laglen
	legend
	line
	linefit
	load
	logit
	logl
	ls
	ma
	makecoint
	makederivs
	makeendog
	makefilter
	makegarch
	makegrads
	makegraph
	makegroup
	makelimits
	makemodel
	makeregs
	makeresids
	makesignals
	makestates
	makestats
	makesystem
	matrix
	means
	merge
	metafile
	ml
	model
	msg
	na
	name
	nnfit
	nrnd
	open
	options
	ordered
	output
	override
	param
	pcomp
	pdl
	pie
	plot
	pool
	predict
	print
	probit
	program
	qqplot
	qstats
	range
	read
	rename
	representation
	resample
	reset
	residcor
	residcov
	resids
	results
	rls
	rnd
	rndint
	rndseed
	rowvector
	run
	sample
	sar
	save
	scalar
	scale
	scat
	scatmat
	scenario
	seas
	seasplot
	series
	set
	setcell
	setcolwidth
	setconvert
	setelem
	setline
	sheet
	show
	signalgraphs
	sma
	smooth
	smpl
	solve
	solveopt
	sort
	spec
	spike
	sspace
	statby
	stategraphs
	statefinal
	stateinit
	stats
	statusline
	stom
	stomna
	store
	structure
	sur
	svar
	sym
	system
	template
	testadd
	testbtw
	testby
	testdrop
	testexog
	testfit
	testlags
	teststat
	text
	tic
	toc
	trace
	tramoseats
	tsls
	unlink
	update
	updatecoefs
	uroot
	var
	vars
	vector
	wald
	white
	wls
	workfile
	write
	wtsls
	x11
	x12
	xyline

	Chapter 9. Matrix and String Reference
	@cholesky
	colplace
	@columnextract
	@columns
	@cond
	@convert
	@cor
	@cov
	@det
	@dtoo
	@eigenvalues
	@eigenvectors
	@explode
	@filledmatrix
	@filledrowvector
	@filledsym
	@filledvector
	@getmaindiagonal
	@identity
	@implode
	@inner
	@inverse
	@issingular
	@kronecker
	@left
	@makediagonal
	matplace
	@mid
	mtos
	@norm
	@otod
	@outer
	@permute
	@rank
	@resample
	@right
	@rowextract
	rowplace
	@rows
	@solvesystem
	stom
	stomna
	@str
	@strlen
	@subextract
	@svd
	@trace
	@transpose
	@unitvector
	@val
	@vec
	@vech

	Chapter 10. Programming Language Reference
	call
	@date
	else
	endif
	endsub
	@errorcount
	@evpath
	exitloop
	for
	if
	include
	@isobject
	next
	@obsrange
	@obssmpl
	open
	output
	poff
	pon
	program
	return
	run
	statusline
	step
	stop
	subroutine
	@temppath
	then
	@time
	to
	@toc
	wend
	while

	Appendix A. Operator and Function Reference
	Operators
	Date and Observation Functions
	Basic Mathematical Functions
	Time Series Functions
	Descriptive Statistics
	Additional and Special Functions
	Trigonometric Functions
	Statistical Distribution Functions
	Additional Distribution Related Functions

	Index
	Symbols
	! (exclamation) control variable 90
	% (percent sign)
	program arguments 96
	string variable 90

	* (asterisk) multiplication 67
	+ (plus)
	addition 67
	string concatenation 92

	/ (slash) division 68
	@abs 437
	@beta 441
	@betainc 441
	@betaincder 442
	@betaincinv 442
	@betalog 442
	@binom 442
	@binomlog 442
	@ceiling 437
	@cholesky 397
	@cloglog 442
	@columnextract 398
	@columns 398
	@cond 398
	@convert 399
	@cor 400, 440
	@cov 400, 440
	@date 421
	@day 436
	@det 401
	@digamma 442
	@dtoc 401
	@eigenvalues 402
	@eigenvectors 402
	@elem 436
	@erf 443
	@erfc 443
	@errorcount 423
	@evpath 423
	@exp 437
	@explode 402
	@fact 437
	@factlog 437
	@filledmatrix 403
	@filledrowvector 403
	@filledsym 403
	@filledvector 404
	@floor 437
	@-functions
	date functions 436
	descriptive statistics 439
	integrals and other special functions 441
	mathematical functions 437
	special p-value functions 448
	statistical distribution functions 444
	string manipulation 92
	time series functions 438
	trigonometric functions 444

	@gamma 443
	@gammader 443
	@gammainc 443
	@gammaincder 443
	@gammaincinv 444
	@gammalog 444
	@getmaindiagonal 404
	@identity 404
	@implode 405
	@inner 405, 440
	@inv 437
	@inverse 406
	@isobject 425
	@issingular 406
	@kronecker 407
	@left 407
	@log 437
	@log10 438
	@logit 444
	@logx 438
	@makediagonal 408
	@max 441
	@median 441
	@mid 409
	@min 441
	@mod 437
	@month 436
	@movav 438
	@movsum 439
	@nan 438
	@norm 410
	@obs 440
	@obsrange 426
	@obssmpl 426
	@otod 411
	@outer 411
	@permute 412
	@psi 442
	@quantile 441
	@quarter 436
	@rank 412
	@recode 438
	@resample 412
	@round 438
	@rowextract 414
	@rows 414
	@seas 439
	@solvesystem 415
	@sqrt 438
	@stdev 441
	@str 416
	@strlen 417
	@subextract 417
	@sum 441
	@sumsq 441
	@svd 418
	@temppath 430
	@time 431
	@toc 432
	@trace 418
	@transpose 419
	@trend 439
	@trigamma 444
	@unitvector 419
	@val 419
	@var 441
	@vec 420
	@vech 420
	@year 436
	_ (continuation character) 86
	– (dash)
	negation 66
	subtraction 67

	Numerics
	2sls (two-stage least squares) 368
	3sls (three-stage least squares) 136

	A
	abs 437
	add 137
	Add factor
	initialization 139

	addassign 138
	addinit 139
	Addition operator (+) 67
	addtext 140
	align 142
	Align multiple graphs 142
	And operator 436
	Anderson-Darling test 198
	Andrews test 360
	append 143
	AR
	autoregressive error 144
	inverse roots of polynomial 148
	seasonal 307

	ar 144
	Arc cosine 444
	Arc sine 444
	Arc tangent 444
	ARCH
	residual LM test for ARCH 147
	see also GARCH. 145

	arch 145
	archtest 147
	Arguments
	in programs 96
	in subroutines 108

	arlm 148
	arroots 148
	Assign values to matrix objects 56
	by element 56
	converting series or group 62
	copy 59
	copy submatrix 61
	fill procedure 57

	Augmented Dickey-Fuller test 373
	auto 149
	Autocorrelation
	compute and display 172
	multivariate VAR residual test 289

	Autogressive error. See AR.
	Autoregressive conditional heteroskedasticity. See ARCH and GARCH.
	Autowrap text 85
	Auxiliary commands 10
	summary 17

	Axis
	rename label 271
	scale 309

	B
	bar 150
	Bar graph 150
	Batch mode
	See Program.

	BDS test 152
	bdstest 152
	Beta
	distribution 445
	integral 441

	Beta integral
	logarithm 442

	binary 152
	Binary dependent variables 152
	Binary models
	prediction table 285

	Binomial
	coefficient function 442
	distribution 445

	Binomial coefficients 442
	logarithm 442

	block 154
	Bootstrap rows of matrix 412
	Breusch-Godfrey test
	See also Serial correlation.

	C
	call 421
	Call subroutine 109
	Causality test 154
	cause 154
	ccopy 156
	cd 156
	cdfplot 157
	censored 158
	Censored models 158
	cfetch 160
	Change default directory 156
	chdir 156
	checkderivs 160
	Chi-square distribution 446
	Cholesky factor
	function to compute 397

	chow 161
	Chow test 161
	clabel 162
	cleartext 163
	close 163
	Close EViews application 203
	Close window 163
	coef 164
	Coef (object) 20
	data members 20
	declare 164
	fill values 208
	procs 20
	views 20

	coefcov 165
	Coefficient
	covariance matrix of estimates 165
	See Coef (object).
	update default coef vector 372

	coint 166
	Cointegration
	make cointegrating relations from VEC 250

	Cointegration test 166
	colplace 397
	Column
	extract from matrix 398
	number of columns in matrix 398
	place in matrix 397
	stack matrix 420
	stack matrix (lower triangle) 420

	Column width of table 321
	Commands
	auxiliary 10, 17
	basic command summary 17
	batch mode 2
	execute without opening window 192
	interactive mode 1
	object assignment 9
	object command 6
	object declaration 5, 9
	save record of 2
	window 1

	Comparison operators 68
	for strings 99
	with missing values 100

	Complementary log-log function 442
	Condition number of matrix 398
	Conditional standard deviation
	display graph of 219

	Conditional variance
	make series from ARCH 252

	Container (object) 11
	database 12
	workfile 11

	Continuation character in programs 86
	control 168
	Control variable 90
	as replacement variable 94
	in while statement 104
	save value to scalar 90

	Convert
	date to observation number 93, 401
	matrix object to series or group 409
	matrix objects 62, 74, 399
	matrix to sym 405
	observation number to date 93, 411
	scalar to string 416
	series or group to matrix (drop NAs) 415
	series or group to matrix (keep NAs) 416
	string to scalar 91, 93, 419
	sym to matrix 402

	Coordinates
	for legend in graph 240

	Copy
	database 181

	copy 168
	Copy objects 14, 168
	cor 171
	correl 172
	Correlation 171, 400, 440
	cross 177

	Correlogram 172
	squared residuals 173

	correlsq 173
	Cosine 444
	count 173
	Count models 173
	cov 175
	Covariance 175, 400, 440
	Cramer-von Mises test 198
	create 176
	Create database 181
	Create workfile 176
	cross 177
	Cross correlations 177
	Cross product 411
	Cross section member
	add to pool 137
	define list of 188

	Current date function 421
	Current time function 431
	CUSUM test 301
	of squares 301

	D
	Data
	entering from keyboard 178

	data 178
	Data members
	coef 20
	equation 23
	group 28
	matrix 32
	pool 35
	rowvector 37
	series 40
	sspace 41
	sym 45
	system 46
	table 48
	var 50
	vector 52

	Database
	copy 13, 181
	create 12, 181
	delete 13, 182
	fetch 205
	Haver Analytics 227, 230
	open 13, 183
	open or create 180
	pack 184
	rebuild 184
	rename 13, 185
	repair 185

	Date
	@-functions 93
	convert from observation number 411
	convert to observation number 93, 401
	functions 436

	Dated data report table 196
	Dated data table 255
	dates 178
	db 180
	dbcopy 181
	dbcreate 181
	dbdelete 182
	dbopen 183
	dbpack 184
	dbrebuild 184
	dbrename 185
	dbrepair 185
	Declare
	matrix 55
	object 5, 9

	decomp 186
	define 188
	Delete
	database 182
	object 16
	objects or pool identifiers 188

	delete 188
	Derivatives
	make series or group containing 251

	Derivatives of equation specification 189
	derivs 189
	describe 190
	Descriptive statistics 344
	@-functions 439
	by category of dependent variable 266
	by classification 340
	make series 263
	matrix functions 77
	pool 190

	Determinant 401
	Diagonal matrix 408
	Dickey-Fuller test 373
	Difference 438
	Directory
	change working 156
	EViews executable 423

	Display
	action 6
	and print 8

	Display numbers 327
	Display object 328
	displayname 192
	Distribution function
	empirical cumulative, survivor and quantiles 157
	Quantile-quantile plot 288

	Division operator (/) 68
	do 192
	Double exponential smoothing 330
	draw 193
	Draw lines in graph 193
	DRI database
	convert to EViews database 194
	copy from 156
	fetch series 160
	read series description 162

	driconvert 194
	Drop
	group series or cross-section from pool definition 195

	drop 195
	dtable 196
	Dummy variable
	seasonal 439

	Durbin's h 107
	Dynamic forecast 214

	E
	ec 196
	edftest 198
	Eigenvalues 402
	Eigenvectors 402
	Elapsed time 364
	elapsed time 432
	Element
	assign in matrix 56
	matrix functions 77

	else 422
	Else clause in if statement 98, 422
	Empirical distribution functions 157
	Empirical distribution test 198
	Empty string 99
	endif 422
	endog 200
	Endogenous variables 200
	make series or group 251

	endsub 422
	eqs 201
	equals comparison 68
	equation 200
	Equation (object) 21
	data members 23
	declare 200
	methods 21
	procs 23
	views 22

	errbar 201
	Error bar graph 201
	Error correction model
	See VEC and VAR.Vector error correction model

	Error count in programs 423
	Error function 443
	complementary 443

	Error handling 105
	Estimation methods
	(single) equation 21
	pool 248
	state space 29, 41
	system (of equations) 46
	VAR 49

	Euler’s constant 443
	Excel file
	reading data from 291
	writing data to 383

	exclude 203
	Exclude variables from model solution 203
	Execute program 86
	abort 88
	quiet mode 87
	verbose mode 87
	with arguments 96

	Exit
	from EViews 203
	loop 106, 423
	subroutine 428

	exit 203
	exitloop 423
	exp 437
	expand 204
	Expand workfile 204
	Exponential
	distribution 446
	function 437

	Exponential smoothing 330
	Export data
	matrix 73

	Exporting data to file 383
	Extract
	main diagonal of matrix 404
	row vector 414
	submatrix from matrix 417

	Extreme value distribution 446

	F
	Factorial 437
	F-distribution 446
	fetch 205
	Fetch object 16, 205
	Files
	temporary location 430

	Fill
	values of matrix 57
	values of object 208

	fill 208
	Filled
	matrix 403
	row vector 403
	symmetric matrix 403
	vector 404

	fiml 210
	fit 212
	Fixed effects 248
	for 424
	For loop
	accessing elements of a series 101
	accessing elements of a vector 101
	changing samples within 101
	define using control variables 100
	define using scalars 102
	define using string variables 102
	exit loop 106
	mark end 425
	nesting 102
	roundoff error in 429
	start loop 424
	step size 429
	upper limit 432

	Forecast
	dynamic (multi-period) 214
	static (one-period ahead) 212

	forecast 214
	Format number 81
	freeze 216
	Freeze view 216
	freq 217
	Frequency conversion
	set method 321

	Frequency table
	one-way 217

	Full information maximum likelihood 210

	G
	Gamma
	distribution 446

	Gamma function 443
	derivative 442, 443
	incomplete 443
	incomplete derivative 443
	incomplete inverse 444
	logarithm 444
	second derivative 444

	GARCH
	display conditional standard deviation 219
	estimate model 145
	generate conditional variance series 252

	garch 219
	Gaussian distribution 447
	Generalized autoregressive conditional heteroskedasticity. See ARCH and GARCH.
	Generalized error distribution 446
	Generalized method of moments 221
	Generate series
	for pool 220

	genr 220
	See also series.

	Global
	subroutine 110
	variable 110

	GMM
	estimate 221

	gmm 221
	Gompit models 152
	Goodness of fit (for binary models) 360
	Gradients
	display 223
	saving in series 253

	grads 223
	Granger causality test 154, 359
	Graph
	align multiple graphs 142
	axis labeling 178
	change legend or axis name 271
	drawing lines and shaded areas 193
	error bar 201
	high-low-open-close 228
	place text 140
	set axis scale 309
	set individual graph options 323
	set options 275
	spike 338
	templates 355
	XY line graph 394

	graph 224
	Graph (object) 25
	creating 224
	procs 25

	greater than comparison 68
	greater than or equal to comparison 68
	Group
	convert to matrix 345, 346, 409
	convert to matrix (with NAs) 416

	group 226
	Group (object) 26
	add series 137
	data members 28
	declare 226
	procs 27
	views 26

	H
	Haver Analytics Database
	convert to EViews database 226

	hconvert 226
	Heteroskedasticity test (White) 379
	hfetch 227
	High-Low (Open-Close) graphs 228
	hilo 228
	hist 229
	Histogram 229
	hlabel 230
	Hodrick-Prescott filter 231
	Holt-Winters 330
	Hosmer-Lemeshow test 360
	hpf 231

	I
	Identity matrix 404
	extract column 419

	if 424
	If statement 98
	else clause 98, 422
	end of condition 422
	start of condition 424
	then 431

	Import data
	matrix 72

	Import data from file 291
	impulse 232
	Impulse response function 232
	Include
	file in a program file 425
	program file 107

	include 425
	Incomplete beta
	derivative 442
	integral 441
	inverse 442

	Incomplete beta integral 441
	Incomplete gamma 443
	Independence test 152
	Initial parameter values 281
	Inner product 405, 440
	Insertion point in command line 2
	Integer random number 302
	Interactive mode 1
	Inverse of matrix 406

	J
	Jarque-Bera
	multivariate normality test 234

	jbera 234
	Johansen cointegration test 166

	K
	Kalman filter 252
	kdensity 236
	kerfit 237
	Kernel
	bivariate regression 237
	density 236

	Kolmogorov-Smirnov test 198
	Kronecker product 407

	L
	label 238
	Label object 192, 238
	Lag
	specify as range 432
	VAR lag order selection 239

	Lag exclusion test 361
	laglen 239
	Lagrange multiplier
	test for ARCH in residuals 147

	Landscape printing 8
	Laplace distribution 446
	Least squares estimation 245
	Legend
	appearance and placement 240
	rename 271

	legend 240
	less than comparison 68
	less than or equal to comparison 68
	Lilliefors test 198
	line 241
	Line drawing 193
	Line graph 241
	Line pattern 193
	Line style 193
	linefit 242
	Load
	workfile 244

	load 244
	Local
	subroutine 112
	variable 110

	log
	arbitrary base 438
	base 10 438
	natural 437

	Log difference 438
	Logistic
	logit function 444

	Logistic distribution 447
	logit 244
	Logit models 152
	logl 245
	Logl (object) 29
	check user-supplied derivatives 160
	data members 30
	declare 245
	method 29
	procs 29
	statements 29
	views 29

	Log-normal distribution 447
	Loop
	exit loop 106, 423
	for (control variables) 100
	for (scalars) 102
	for (string variables) 102
	nest 102
	over matrix elements 73, 101
	while 104

	ls 245

	M
	MA
	seasonal 330

	ma 249
	Main diagonal of matrix 404
	Make model object 257
	Make residuals 259
	makecoint 250
	makederivs 251
	makeendog 251
	makefilter 252
	makegarch 252
	makegraph 254
	makegroup 255
	makelimits 257
	makemodel 257
	makeregs 258
	makeresids 259
	makesignals 260
	makestates 262
	makestats 263
	makesystem 264
	Mathematical functions 437
	matplace 408
	Matrix
	assign values 56
	convert to other matrix objects 74
	convert to series or group 62
	copy 59
	copy submatrix 61
	declare 55
	export data 73
	filled 403
	import data 72
	main diagonal 404
	objects 55
	permute rows of 412
	place submatrix 408
	resample rows from 412
	singular value decomposition 418
	stack columns 420
	stack lower triangular columns 420

	matrix 265
	Matrix (object)
	data members 32
	declare 265
	fill values 208
	procs 31
	views 31, 72

	Matrix commands and functions
	commands 70
	descriptive statistics 69, 77
	difference 70
	element 69, 77
	functions 70
	matrix algebra 69, 77
	missing values 71
	utility 69, 76

	Matrix operators
	addition (+) 67
	and loop operators 73
	comparison operators 68
	division (/) 68
	multiplication (*) 67
	negation (-) 66
	order of evaluation 66
	subtraction (-) 67

	Maximum 441
	Maximum likelihood estimation 269
	Logl (object) 29
	Sspace (object) 41

	Mean 440
	Mean test 356, 357
	means 266
	Median 441
	Median test 356, 357
	merge 267
	Messages
	suppress during program execution 87

	metafile 268
	Minimum 441
	Missing value code 270
	Missing values 71
	inequality comparison 100
	mathematical functions 437
	recoding 438
	test 99

	ml 269
	model 269
	Model (object) 32
	append specification line 143
	break all model links 371
	declare 269
	equation view 201
	procs 33
	update specification 372
	variable view 377
	views 33

	Models
	add factor assignment and removal 138
	add factor initialization 139
	block structure 154
	exclude variables from solution 203
	make from estimation object 257
	make graph of model series 254
	make group of model series 255
	options for solving 335
	overrides in model solution 280
	scenarios 313
	solution messages 270
	solve 334
	solve to match target 168
	text representation 363
	trace iteration history 365

	modulus 437
	Moving average 249, 438
	Moving sum 439
	msg 270
	mtos 409
	Multiplication operator (*) 67

	N
	NA
	inequality comparison 100
	recode 438
	test 99

	na 270
	name 271
	Nearest neighbor regression 272
	Negation operator (-) 66
	Negative binomial count model 173
	Negative binomial distribution 447
	next 425
	nnfit 272
	Nonlinear least squares 245
	Norm of a matrix 410
	Normal distribution 447
	Normal random number 274
	not equal to comparison 68
	nrnd 274
	Number
	evaluate a string 419
	formatting in tables 81

	Number of observations 440

	O
	Object
	assignment 9
	command 6
	containers 11
	copy 14
	create using freeze 216
	declaration 5, 9
	delete 16
	fetch 16, 205
	merge 267
	rename 15, 293
	save 16
	store 16
	test for existence 425

	Observations
	number in workfile range 426

	OLS (ordinary least squares) 245
	Omitted variables test 355
	One-way frequency table 217
	Open
	database 183
	files 275
	workfile 244

	open 275
	Operator 435
	options 275
	Or operator 436
	ordered 277
	Ordered dependent variable
	estimating models with 277
	make vector of limit points from equation 257

	Outer product 411
	Output
	display estimation results 279
	extracting results from views 124
	printing 8

	output 279
	Output redirection 427
	override 280
	Override variables in model solution 280

	P
	Pack database 184
	param 281
	Parameters 281
	Pareto distribution 447
	Partial autocorrelation 172
	Partial correlation 172
	pdl 282
	PDL (polynomial distributed lag) 282
	Percent change 439
	Percentage change 439
	Permute rows of matrix 412
	Phillips-Perron test 373
	Pi 444
	Pi (constant) 444
	pie 284
	Pie graph 284
	poff 427
	Poisson count model 173
	Poisson distribution 447
	Polynomial distributed lags 282
	pon 427
	Pool
	generate series using identifiers 220
	make group of pool series 255

	pool 285
	Pool (object) 34
	add cross section member 137
	data members 35
	declare 285
	delete identifiers 188
	fixed effects 248
	members 34
	procs 34
	random effects 248
	views 34

	Portrait (print orientation) 8
	Power (raise to) 435
	Precedence of evaluation 66
	predict 285
	Prediction table 285
	Presentation table 196
	Principal components 281
	Print
	and display 8
	automatic printing 427
	landscape 8
	portrait 8
	turn off in program 427

	print 286
	Printing
	automatic printing 427

	probit 287
	Probit models 152
	Program 85
	abort 88
	arguments 96
	call subroutine 109, 421
	counting execution errors 423
	create 85
	declare 287
	entering text 85
	exit loop 106
	if statement 98
	include file 107, 425
	line continuation character 86
	open 86
	place subroutine 109
	quiet mode 87
	run 305
	running 86
	save 86
	stop 105
	stop execution 430
	verbose mode 87

	program 287
	P-value functions 448

	Q
	QQ-plot
	See Distribution function.

	qqplot (quantile-quantile) 288
	Q-statistic 172
	qstats 289
	Quantile function 441
	Quantile-Quantile plot. See QQ-plot
	Quiet mode 87

	R
	Random effects 248
	Random number
	integer 302
	seed 303
	uniform 302

	Random number generator
	normal 274

	range 290
	Rank 412
	Read
	data from foreign file 291

	read 291
	Recode values 438
	Recursive least squares 300
	CUSUM 301
	CUSUM of squares 301

	Redirect output to file 8, 279
	Redundant variables test 358
	Regressors
	make group containing 258

	Rename
	database 185
	object 15, 293

	rename 293
	Repair database 185
	Replacement variable 93
	naming objects 95

	Resample
	observations 295
	rows from matrix 412

	resample 295
	reset 297
	RESET test 297
	Reset timer 363
	residcor 297
	residcov 298
	Residuals
	correlation matrix of 297
	covariance matrix of 298
	make series or group containing 259

	Resize workfile 290
	Restricted VAR text 163
	Results
	display or retrieve 300

	results 300
	return 428
	rls 300
	rnd 302
	rndint 302
	rndseed 303
	Roots of the AR polynomial 148
	Roundoff error in for loops 429
	Row
	numbers 414
	place in matrix 414

	rowplace 414
	rowvector 304
	Rowvector (object)
	data members 37
	declare 304
	extract 414
	filled rowvector function 403
	views 37

	run 305
	Run program 305
	multiple files 106

	S
	Sample
	change using for loop 101
	number of observations 426
	set 319, 332

	sample 306
	Sample (object)
	declare 306
	procs 38

	sar 307
	Save
	commands in file 2
	objects to disk 16
	workfile 308

	save 308
	scalar 309
	Scalar (object) 38
	declare 309

	scale 309
	scat 311
	scatmat 313
	Scatter diagrams 311
	matrix of 313
	with bivariate fit 242

	scenario 313
	seas 315
	Seasonal adjustment
	moving average 315
	Tramo/Seats 365
	X11 387
	X12 388

	Seasonal autoregressive error 307
	Seasonal dummies 439
	Seasonal dummy variable 439
	Seasonal graphs 316
	seasplot 316
	Second moment matrix 405
	Seed random number generator 303
	Seemingly unrelated regression. See SUR
	Sequential LR tests 106
	Serial correlation
	Breusch-Godfrey LM test 149
	multivariate VAR LM test 148

	Series
	convert to matrix 345, 346, 409, 415
	convert to matrix (with NAs) 416
	extract observation 436

	series 317
	Series (object) 39
	data members 40
	declare 317
	element function 40
	fill values 208
	views 39

	set 319
	Set graph date labeling formats 178
	setcell 319
	setcolwidth 321
	setconvert 321
	setelem 323
	setline 326
	Shade region of graph 193
	sheet 327
	show 328
	Show object view 328
	Signal variables
	display graphs 329
	saving 260

	signalgraph 329
	Sine 444
	Singular matrix
	test for 406

	Singular value decomposition 418
	sma 330
	smooth 330
	Smoothing
	exponential smooth series 330
	signal series 260
	state series 262

	smpl 332
	Solve
	linear system 415
	simultaneous equations model 334

	solve 334
	Solve. See Models.
	solveopt 335
	sort 336
	Sort workfile 336
	spec 337
	Specification view 337
	spike 338
	Spike graph 338
	Spreadsheet view 327
	sqrt 438
	sspace 339
	Sspace (object)
	append specification line 143
	data members 41
	declare 339
	display signal graphs 329
	make Kalman filter from 252
	method 41
	procs 41
	state graphs 342
	views 41

	Stack matrix by column 420
	lower triangle 420

	Standard deviation 441
	Starting values 281
	statby 340
	State variables
	display graphs of 342
	final one-step ahead predictions 343
	initial values 343
	smoothed series 262

	statefinal 343
	stategraph 342
	stateinit 343
	Static forecast 212
	Statistical distribution functions 444
	Statistics 190
	compute for subgroups 340

	stats 344
	Status line 345
	statusline 345, 428
	step 429
	stom 345, 415
	stomna 346, 416
	stop 430
	Stop program execution 105, 430
	store 347
	Store object 16, 347
	String 90
	assign to table cell 80
	comparison 99
	convert to a scalar 419
	empty 99
	from a number 416
	length of 417

	String variable 90
	@-functions 92
	as replacement variable 94
	comparison 99
	convert to a scalar 91, 93
	in for loop 102
	program arguments 96
	test for empty string 99

	Subroutine 107
	arguments 108
	call 109, 421
	declare 430
	define 107
	global 110
	local 112
	mark end 422
	placement 109
	return from 107, 428

	subroutine 430
	Substring 407, 409
	Subtraction operator (-) 67
	Sum 441
	Sum of squares 441
	SUR
	estimating 350

	sur 350
	svar 351
	sym 353
	Sym (object) 44
	create from lower triangle of square matrix 405
	create from scalar function 403
	create square matrix from 402
	data members 45
	declare 353
	procs 45
	stack columns 420
	views 44

	Symmetric matrix
	See Sym.

	system 354
	System (object) 45
	append specification line 143
	create from pool or var 264
	data members 46
	declare 354
	methods 46
	procs 46
	views 46

	T
	Table
	decimal format code 81
	declare 79
	example 82
	fill cell with number 80
	fill cell with string 80
	format cell 81
	horizontal line 80, 326
	justification code 81
	set and format cell contents 319
	set column width 79, 321

	Table (object) 48
	data members 48
	views 48

	Tangent 444
	t-distribution 448
	template 355
	Test
	Chow 161
	CUSUM 301
	CUSUM of squares 301
	exogeneity 359
	for ARCH 147
	for serial correlation 148, 149
	Goodness of fit 360
	Granger causality 154
	heteroskedasticity (White) 379
	Johansen cointegration 166
	lag exclusion (Wald) 361
	mean, median, variance equality 356, 362
	mean, median, variance equality by classification 357
	omitted variables 355
	redundant variables 358
	RESET 297
	unit root 373
	Wald 378

	testadd 355
	testbtw 356
	testby 357
	testdrop 358
	testexog 359
	testfit 360
	testlags 361
	teststat 362
	text 363
	Text (object)
	declare 363

	Then 431
	Three stage least squares 136
	tic 363
	Time trend 439
	Timer 363, 364, 432
	to 432
	Tobit models 158
	toc 364
	trace 365
	Trace of a matrix 418
	Tramo/Seats 365
	tramoseats 365
	Transpose 419
	Trend series 439
	Trigonometric functions 444
	Truncated dependent variable
	models 158

	tsls 368
	Two-stage least squares
	see 2sls

	U
	Uniform distribution 448
	Uniform random number generator 302
	Unit vector 419
	unlink 371
	Untitled objects 11
	update 372
	updatecoefs 372
	uroot 373

	V
	VAR
	estimate factorization matrix 351
	impulse response 232
	lag exclusion test 361
	lag length test 239
	multivariate autocorrelation test 289
	variance decomposition 186

	var 376
	VAR (object) 49
	clear restrictions 163
	data members 50
	declare 376
	methods 49
	procs 49
	views 49

	Variance 441
	Variance decomposition 186
	Variance test 356, 357
	vars 377
	VEC
	estimating 196

	vector 377
	Vector (object) 52
	data members 52
	declare 377
	procs 52
	return filled 404
	views 52

	Vector autoregression
	See VAR.

	Verbose mode 87
	Views
	extracting results from 124

	W
	wald 378
	Wald test 378
	Watson test 198
	Weibull distribution 448
	Weighted least squares 380
	Weighted two-stage least squares 385
	wend 433
	while 433
	While loop 104
	abort 104
	end of 433
	exit loop 106
	start of 433

	white 379
	Wildcards 14
	wls 380
	Workfile 11
	close 12
	creating 176
	creating or changing active 381
	expand 204
	frequency 11
	open 12
	open existing 244
	resize 290
	save 12
	save to disk 308
	sort observations 336

	workfile 381
	Write
	data to file 383

	write 383
	wtsls 385

	X
	X11 387
	x11 387
	X12 388
	x12 388
	xyline 394

