
EViews 4.1 Update

EViews 4.1 Update
Copyright © 1994–2002 Quantitative Micro Software, LLC

All Rights Reserved

This software product, including program code and manual, is copyrighted, and all rights
are reserved by Quantitative Micro Software, LLC. The distribution and sale of this product
are intended for the use of the original purchaser only. Except as permitted under the
United States Copyright Act of 1976, no part of this product may be reproduced or distrib-
uted in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of Quantitative Micro Software.

Disclaimer

The authors and Quantitative Micro Software assume no responsibility for any errors that
may appear in this manual or the EViews program. The user assumes all responsibility for
the selection of the program to achieve intended results, and for the installation, use, and
results obtained from the program.

Trademarks

Windows, Windows 95/98/2000/NT/Me, and Microsoft Excel are trademarks of Microsoft
Corporation. PostScript is a trademark of Adobe Corporation. X11.2 and X12-ARIMA Ver-
sion 0.2.7 are seasonal adjustment programs developed by the U. S. Census Bureau.
Tramo/Seats is copyright by Agustin Maravall and Victor Gomez. All other product names
mentioned in this manual may be trademarks or registered trademarks of their respective
companies.

Quantitative Micro Software, LLC

4521 Campus Drive, #336, Irvine CA, 92612-2699

Telephone: (949) 856-3368

Fax: (949) 856-2044

e-mail: sales@eviews.com

web: www.eviews.com

March 11, 2002

http://www.eviews.com

Table of Contents

CHAPTER 1. INTRODUCTION . 1

New Features in 4.1 . 1

CHAPTER 1. UNIT ROOT TESTS . 5

Performing Unit Root Tests in EViews . 5

Basic Unit Root Theory . 9

CHAPTER 2. SYSTEM INSTRUMENTAL VARIABLES . 19

Specifying Instruments in Systems . 19

CHAPTER 3. STATE SPACE MODELING . 23

Specifying Errors and Variances in a Sspace . 23

Accessing Sspace Filter and Smoother Results . 25

CHAPTER 4. MISCELLANEOUS FEATURES . 27

Extended Model Commands . 27

Enhanced Wald Tests . 27

Quantiles by Classification . 32

Added Functions . 35

CHAPTER 5. UPDATED COMMAND ENTRIES . 37

REFERENCES . 47

INDEX . 49

ii— Table of Contents

Chapter 1. Introduction

We are very pleased to bring you this free upgrade from EViews 4.0 to EViews 4.1. In
response to user requests, we have added several new features to EViews. Some of
these features, like added function support, an expanded Wald test output, and exten-
sions to the modelling program language, are minor improvements to existing rou-
tines. Others, like the new unit root testing features, and extensions to both the state
space error, and system instrumental variables specification languages, represent sig-
nificant improvements in the set of tools for working with, and analyzing your data.

You are now looking at a self-contained .PDF document which describes the EViews
4.1 upgrade. Bear in mind that this document is completely isolated from your origi-
nal .PDF documents, and that the latter documents, which may still be accessed
through EViews 4.1, will contain information that is now out-of-date. Updated .PDF
files will be available for optional download when EViews 4.1 is officially released.

While we believe that you will find the new features to be problem free, you should
bear in mind that this version of EViews 4.1 is a Beta test version. To report problems,
or to make comments about this product, please send email to:
support@eviews.com. Please include in your message a comment noting that you are
working with the EViews 4.1 beta along with the date of your copy of EViews 4.1.
The date may be obtained by selecting Help/About EViews from the main menu.

New Features in 4.1

Unit Root Testing

EViews 4.1 includes support for the newest generation of unit root tests. In addition
to the existing Augmented Dickey-Fuller and Phillips-Perron tests, EViews now allows
you to compute the GLS-detrended Dickey-Fuller (Elliot, Rothenberg, and Stock,
1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg,
and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests.

EViews will also perform Newey-West (1992) and Andrews (1991) automatic band-
width selection for kernel based estimators, or automatic information criteria based
selection of lag length for Dickey-Fuller tests and AR spectral density estimators. See
“Unit Root Tests” on page 5.

The command support for these new unit root features is documented in the com-
mand reference for uroot (p. 43).

2—Chapter 1. Introduction
System Extensions

We have expanded the flexibility of instrumental variables specifications estimated by
2SLS and 3SLS.

Previously, all instrumental variables projections in systems were performed on an equa-
tion-by-equation basis. In EViews 4.1, the new @stackinst statement provides a new
way of specifying instruments for systems of equations that allows for cross-equations on
the projections of variables on instruments. You can now stack your equations and instru-
ments prior to performing the projection. The easy-to-use syntax provides you with full
control over the instrument stacking so that you may combine the earlier ordinary instru-
ment and new stacked instrument specifications. For details, see “System Instrumental
Variables” on page 19.

Sspace Improvements

EViews 4.1 extends the features of the sspace object in two distinct ways.

First, extensions to the state space syntax in EViews 4.1 allow you to write the error term
for any equation as a linear combination of named errors. This syntax allows users to spec-
ify, more naturally, a wide range of important models. For discussion, see “Specifying
Errors and Variances in a Sspace” on page 23.

Second, new sspace object data members give you access to output matrices containing
intermediate calculations from the Kalman filter. See “Accessing Sspace Filter and
Smoother Results” on page 25.

Enhanced Model Features

EViews 4.1 provides new modelling tools to aid you in model building and solution. New
command syntax provides you with greater control over the model solution procedure,
enhanced tools for working with scenarios, and additional commands to maintain the links
in your model. See “Extended Model Commands” on page 27.

Miscellaneous Statistical Features

The output of the Wald test has been expanded to provide additional information about the
restrictions and the restriction variances. As a result, you can use the expanded output to
find the standard errors of functions of your coefficients. For details, see “Enhanced Wald
Tests” on page 27.

The “Statistics by Classification” view of a series now allows you to compute arbitrary
quantiles of your data by group. See “Quantiles by Classification” on page 32. See statby
(p. 40) for documentation of the expanded command options.

New Features in 4.1—3
New Functions

EViews 4.1 now supports a family of percentage change functions that complement the
existing functions. These functions eliminate the need to rescale function values when
working in percentage terms. See “Time Series Functions” on page 35.

In addition, we have added functions for computing base-10 and arbitrary base logarithms.
See “Basic Mathematical Functions” on page 35.

4—Chapter 1. Introduction

Chapter 1. Unit Root Tests

EViews 4.1 includes support for the newest generation of unit root tests. In addition
to the existing Augmented Dickey-Fuller (1979) and Phillips-Perron (1998) tests,
EViews now allows you to compute the GLS-detrended Dickey-Fuller (Elliot, Rothen-
berg, and Stock, 1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992),
Elliott, Rothenberg, and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP,
2001) unit root tests.

In addition, EViews now allows you to perform Newey-West (1994) and Andrews
(1991) automatic bandwidth selection for kernel based estimators, or automatic infor-
mation criteria based selection of lag length for Dickey-Fuller tests and AR spectral
density estimators.

The command support for these new unit root features is documented in uroot
(p. 43).

Performing Unit Root Tests in EViews

The following discussion assumes that you are familiar with the basic forms of the
unit root tests, and the associated options. We provide theoretical background for
these tests in “Basic Unit Root Theory” beginning on page 9, and document the set-
tings used when performing these tests.

To begin, double click on the series
to open the series window, and
choose View/Unit Root Test…

You must specify four sets of
options to carry out a unit root test.
The first three settings (on the left-
hand side of the dialog) determine
the basic form of the unit root test.
The fourth set of options (on the
right-hand side of the dialog) con-
sist of test specific advanced set-
tings. You only need concern
yourself with these latter settings if you wish to customize the calculation of your
unit root test.

First, use the topmost combo box to select the type of unit root test that you wish to
perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP.

6—Chapter 1. Unit Root Tests
Next, specify whether you wish to test for a unit root in the level, first difference, or second
difference of the series.

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant
and linear trend, or neither (there are limitations on these choices for some of the tests).

You can click on OK to compute the test using the specified settings, or you can customize
your test using the advanced settings portion of the dialog.

The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged
difference terms are to be included in the ADF test equation. You may choose to let
EViews automatically select , or you may specify a fixed positive integer value. If you
choose automatic selection, you are given the additional option of selecting both the infor-
mation criterion and maximum number of lags to be used in the selection procedure.

In this case, we have chosen to estimate an ADF test that includes a constant in the test
regression and employs automatic lag length selection using a Schwarz Information Crite-
rion (BIC) and a maximum lag length of 14. Applying these settings to data on the U. S.
one-month Treasury bill rate for the period from March 1953 to July 1971, we can replicate
Example 9.2 of Hayashi (2000, p. 596). The results are described below.

The first part of the unit root output provides information about the form of the test (the
type of test, the exogenous variables, and lag length used), and contains the test output,
associated critical values, and in this case, the p-value:

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221
observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and
10% levels. Notice here that the statistic value is greater than the critical values so that
we do not reject the null at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to
calculate the ADF statistic:

p
p

Null Hypothesis: TBILL has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic based on SIC, MAXLAG=14)

 t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.417410 0.5734
Test critical values: 1% level -3.459898

 5% level -2.874435
 10% level -2.573719

*MacKinnon (1996) one-sided p-values.

tα

Performing Unit Root Tests in EViews—7
If you had chosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the right
side of the dialog would show the different options for the specified test. The options are
associated with the method used to estimate the zero frequency spectrum term, , that is
used in constructing the particular test statistic. As before, you only need pay attention to
these settings if you wish to change from the EViews defaults.

Here we have selected the PP test in the
combo box. Note that the right-hand side
of the dialog has changed, and now fea-
tures a combo box for selecting the spec-
tral estimation method. You may use this
combo box to choose between various ker-
nel or AR regression based estimators for

. The entry labeled “Default” will show
you the default estimator for the specific
unit root test—here we see that the PP
default uses a kernel sum-of-covariances
estimator with Bartlett weights. If, instead,
you had selected a NP test, the default entry would be “AR spectral-GLS”.

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dia-
log will give you a choice between using Newey-West or Andrews automatic bandwidth
selection methods, or providing a user specified bandwidth. If, instead, you choose one of
the AR spectral density estimation methods (AR Spectral - OLS, AR Spectral - OLS
detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose from vari-
ous automatic lag length selection methods (using information criteria) or to provide a

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(TBILL)
Method: Least Squares
Date: 02/07/02 Time: 12:29
Sample: 1953:03 1971:07
Included observations: 221

Variable Coefficient Std. Error t-Statistic Prob.

TBILL(-1) -0.022951 0.016192 -1.417410 0.1578
D(TBILL(-1)) -0.203330 0.067007 -3.034470 0.0027

C 0.088398 0.056934 1.552626 0.1220

R-squared 0.053856 Mean dependent var 0.013826
Adjusted R-squared 0.045175 S.D. dependent var 0.379758
S.E. of regression 0.371081 Akaike info criterion 0.868688
Sum squared resid 30.01882 Schwarz criterion 0.914817
Log likelihood -92.99005 F-statistic 6.204410
Durbin-Watson stat 1.976361 Prob(F-statistic) 0.002395

f0

f0

8—Chapter 1. Unit Root Tests
user specified lag length. See “Automatic Bandwidth and Lag Length Selection” on page 16
of the User’s Guide.

Once you have chosen the appropriate settings for your test, click on the OK button.
EViews reports the test statistic along with output from the corresponding test regression.
In addition, EViews reports the estimate of the frequency zero spectrum (labeled as the
“HAC corrected variance”) as well as the uncorrected estimate of the residual variance
(where applicable). Running a PP test using the TBILL series yields:

As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series
at conventional significance levels.

Note that your test output will differ somewhat for alternative test specifications. For
example, the KPSS output only provides the asymptotic critical values tabulated by KPSS:

Similarly, the NP test output will contain results for all four test statistics, along with the
NP tabulated critical values.

A word of caution. You should note that the critical values reported by EViews are valid
only for unit root tests of a data series, and will be invalid if the series is based on esti-
mated values. For example, Engle and Granger (1987) proposed a two-step method to test

f0

Null Hypothesis: TBILL has a unit root
Exogenous: Constant
Bandwidth: 3.82 (Andrews using Bartlett kernel)

 Adj. t-Stat Prob.*

Phillips-Perron test statistic -1.519035 0.5223
Test critical values: 1% level -3.459898

 5% level -2.874435
 10% level -2.573719

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.141569
HAC corrected variance (Bartlett kernel) 0.107615

Null Hypothesis: TBILL is stationary
Exogenous: Constant
Bandwidth: 11 (Newey-West Fixed using Bartlett kernel)

 LM-Stat.

Kwiatkowski-Phillips-Schmidt-Shin test statistic 1.537310
Asymptotic critical values*: 1% level 0.739000

 5% level 0.463000
 10% level 0.347000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction) 2.415060
HAC corrected variance (Bartlett kernel) 26.11028

Basic Unit Root Theory—9
for cointegration. The test amounts to testing for a unit root in the residuals of a first stage
regression. Since these residuals are estimates of the disturbance term, the asymptotic dis-
tribution of the test statistic differs from the one for ordinary series. The correct critical val-
ues for a subset of the tests may be found in Davidson and MacKinnon (1993, Table 20.2).

Basic Unit Root Theory

The following discussion outlines the basic features of unit root tests. By necessity, the dis-
cussion will be brief. Users who require detail should consult the original sources and
standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamil-
ton, 1994, Chapter 17, and Hayashi, 2000, Chapter 9).

Consider a simple AR(1) process:

, (1.1)

where are optional exogenous regressors which may consist of constant, or a constant
and trend, and are parameters to be estimated, and the are assumed to be white
noise. If , is a nonstationary series and the variance of increases with time and
approaches infinity. If , is a (trend-)stationary series. Thus, the hypothesis of
(trend-)stationarity can be evaluated by testing whether the absolute value of is strictly
less than one.

The unit root tests that EViews provides generally test the null hypothesis
against the one-sided alternative . In some cases, the null is tested against a
point alternative. In contrast, the KPSS Lagrange Multiplier test evaluates the null of

 against the alternative .

The Augmented Dickey-Fuller (ADF) Test

The standard DF test is carried out by estimating Equation (1.1) after subtracting
from both sides of the equation:

, (1.2)

where . The null and alternative hypotheses may be written as

(1.3)

and evaluated using the conventional -ratio for :

(1.4)

where is the estimate of , and is the coefficient standard error.

yt ρyt 1− xt′δ εt+ +=

xt
ρ δ εt

ρ 1≥ y y
ρ 1< y

ρ

H0: ρ 1=
H1: ρ 1<

H0: ρ 1< H1: ρ 1=

yt 1−

yt∆ αyt 1− xt′δ εt+ +=

α ρ 1−=

H0: α 0=

H1: α 0<

t α

tα α� se α�()()⁄=

α� α se α�()

10—Chapter 1. Unit Root Tests
Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic
does not follow the conventional Student’s t-distribution, and they derive asymptotic
results and simulate critical values for various test and sample sizes. More recently,
MacKinnon (1991, 1996) implements a much larger set of simulations than those tabulated
by Dickey and Fuller. In addition, MacKinnon estimates response surfaces for the simula-
tion results, permitting the calculation of Dickey-Fuller critical values and -values for
arbitrary sample sizes. The more recent MacKinnon critical value calculations are used by
EViews in constructing test output.

The simple Dickey-Fuller unit root test described above is valid only if the series is an
AR(1) process. If the series is correlated at higher order lags, the assumption of white noise
disturbances is violated. The Augmented Dickey-Fuller (ADF) test constructs a paramet-
ric correction for higher-order correlation by assuming that the series follows an AR()
process and adding lagged difference terms of the dependent variable to the right-
hand side of the test regression:

. (1.5)

This augmented specification is then used to test (1.3) using the -ratio (1.4). An impor-
tant result obtained by Fuller is that the asymptotic distribution of the -ratio for is
independent of the number of lagged first differences included in the ADF regression.
Moreover, while the assumption that follows an autoregressive (AR) process may seem
restrictive, Said and Dickey (1984) demonstrate that the ADF test is asymptotically valid in
the presence of a moving average (MA) component, provided that sufficient lagged differ-
ence terms are included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose
whether to include exogenous variables in the test regression. You have the choice of
including a constant, a constant and a linear time trend, or neither, in the test regression.
One approach would be to run the test with both a constant and a linear trend since the
other two cases are just special cases of this more general specification. However, includ-
ing irrelevant regressors in the regression will reduce the power of the test to reject the null
of a unit root. The standard recommendation is to choose a specification that is a plausible
description of the data under both the null and alternative hypotheses. See, Hamilton
(1994a, p. 501) for discussion.

Second, you will have to specify the number of lagged difference terms (which we will
term the “lag length”) to be added to the test regression (0 yields the standard DF test;
integers greater than 0 correspond to ADF tests). The usual (though not particularly use-
ful) advice is to include a number of lags sufficient to remove serial correlation in the
residuals. EViews provides both automatic and manual lag length selection options. For
details, see “Automatic Bandwidth and Lag Length Selection” beginning on page 16.

p

εt
y p

p y

yt∆ αyt 1− xt′δ β1 yt 1−∆ β2 yt 2−∆ … βp yt p−∆ vt+ + + + + +=

t

t α

y

Basic Unit Root Theory—11
Dickey-Fuller Test with GLS Detrending (DFGLS)

As noted above, you may elect to include a constant, or a constant and a linear time trend,
in your ADF test regression. For these two cases, ERS (1996) propose a simple modification
of the ADF tests in which the data are detrended so that explanatory variables are “taken
out” of the data prior to running the test regression.

ERS define a quasi-difference of that depends on the value representing the specific
point alternative against which we wish to test the null:

(1.6)

Next, consider an OLS regression of the quasi-differenced data on the quasi-dif-
ferenced :

(1.7)

where contains either a constant, or a constant and trend, and let be the OLS esti-
mates from this regression.

All that we need now is a value for . ERS recommend the use of , where

(1.8)

We now define the GLS detrended data, using the estimates associated with the :

(1.9)

Then the DFGLS test involves estimating the standard ADF test equation, (1.5), after sub-
stituting the GLS detrended for the original :

(1.10)

Note that since the are detrended, we do not include the in the DFGLS test equa-
tion. As with the ADF test, we consider the -ratio for from this test equation.

While the DFGLS -ratio follows a Dickey-Fuller (no constant) distribution in the constant
only case, the asymptotic distribution differs when you include both a constant and trend.
ERS (1996, Table 1, p. 825) simulate the critical values of the test statistic in this latter set-
ting for . Thus, the EViews lower tail critical values use the
MacKinnon simulations for the constant only case, but are interpolated from the ERS simu-
lated values for the constant and trend case. The null hypothesis is rejected for values that
fall below these critical values.

yt a

d yt a()
yt

yt ayt 1−−

=
if t 1=

if t 1 >

d yt a()
d xt a()

d yt a() d xt a()′δ a() ηt+=

xt δ� a()

a a a=

a
1 7 T⁄−
1 13.5 T⁄−

=
if xt 1{ }=

if xt 1 t,{ }=

yt
d

a

yt
d

yt xt′δ� a()−≡

yt
d

yt

yt
d∆ αyt 1−

d
β1 yt 1−

d∆ … βpyt p−
d

vt+ + + +=

yt
d

xt
t α�

t

T 50 100 200 ∞, , ,{ }=

12—Chapter 1. Unit Root Tests
The Phillips-Perron (PP) Test

Phillips and Perron (1988) propose an alternative (nonparametric) method of controlling
for serial correlation when testing for a unit root. The PP method estimates the non-aug-
mented DF test equation (1.2), and modifies the -ratio of the coefficient so that serial
correlation does not affect the asymptotic distribution of the test statistic. The PP test is
based on the statistic:

(1.11)

where is the estimate, and the -ratio of , is coefficient standard error, and
 is the standard error of the test regression. In addition, is a consistent estimate of the

error variance in (1.2) (calculated as , where is the number of regressors).
The remaining term, , is an estimator of the residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First, you must
choose whether to include a constant, a constant and a linear time trend, or neither, in the
test regression. Second, you will have to choose a method for estimating . EViews sup-
ports estimators for based on kernel-based sum-of-covariances, or on autoregressive
spectral density estimation. See “Frequency Zero Spectrum Estimation” beginning on
page 14 for details.

The asymptotic distribution of the PP modified -ratio is the same as that of the ADF sta-
tistic. EViews reports MacKinnon lower-tail critical and p-values for this test.

The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test

The KPSS (1992) test differs from the other unit root tests described here in that the series
 is assumed to be (trend-) stationary under the null. The KPSS statistic is based on the

the residuals from the OLS regression of on the exogenous variables :

(1.12)

The LM statistic is be defined as:

(1.13)

where , is an estimator of the residual spectrum at frequency zero and where is a
cumulative residual function:

(1.14)

based on the residuals . We point out that the estimator of used in
this calculation differs from the estimator for used by GLS detrending since it is based on
a regression involving the original data, and not on the quasi-differenced data.

t α

t�α tα
γ0
f0
�����

 1 2⁄ T f0 γ0−() se α�()()

2f0
1 2⁄

s
��−=

α� tα t α se α�()
s γ0

T k−()s2
T⁄ k

f0

f0
f0

t

yt
yt xt

yt xt′δ ut+=

LM S t()2 T
2
f0()⁄

t
Σ=

f0 S t()

S t() u� r
r 1=

t

Σ=

u� t yt xt′δ� 0()−= δ
δ

Basic Unit Root Theory—13
To specify the KPSS test, you must specify the set of exogenous regressors and a
method for estimating .

The reported critical values for the LM test statistic are based upon the asymptotic results
presented in KPSS (Table 1, p. 166).

Elliot, Rothenberg, and Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equa-
tions (1.7). Define the residuals from (1.7) as , and let

 be the sum-of-squared residuals function. The ERS (feasible) point
optimal test statistic of the null that against the alternative that , is then
defined as

(1.15)

where , is an estimator of the residual spectrum at frequency zero.

To compute the ERS test you must specify the set of exogenous regressors and a
method for estimating .

Critical values for the ERS test statistic are computed by interpolating the simulation
results provided by ERS (1996, Table 1, p. 825) for .

Ng and Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended
data . These test statistics are modified forms of Phillips and Perron and statis-
tics, the Bhargava (1986) statistic, and the ERS Point Optimal statistic. First, define the
term:

(1.16)

The GLS-detrended modified statistics may then be written as

(1.17)

where

xt
f0

η� t a() d yt a() d xt a()′δ� a()−=
SSR a() η� t

2
a()Σ=

α 1= α a=

PT SSR a() aSSR 1()−() f0⁄=

f0

xt
f0

T 50 100 200 ∞, , ,{ }=

yt
d

Zα Zt
R1

κ yt 1−
d()

2
T

2⁄
t 2=

T

Σ=

MZα
d

T
1−

yT
d()

2
f0−() 2κ()⁄=

MZt
d

MZα MSB×=

MSB
d

κ f0⁄()1 2⁄=

MPT
d c

2
κ c− T

1−
yT
d()

2
() f0⁄

c
2
κ 1 c−()T 1−

yT
d()

2
+() f0⁄

=
if xt 1{ }=

if xt 1 t,{ }=

14—Chapter 1. Unit Root Tests
(1.18)

The NP tests require a specification for and a choice of method for estimating

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistent estimate of the residual
spectrum at frequency zero. EViews supports two classes of estimators for : kernel-
based sum-of-covariances estimators, and autoregressive spectral density estimators.

Kernel Sum-of-Covariances Estimation

The kernel-based estimator of the frequency zero spectrum is based on a weighted sum of
the autocovariances, with the weights are defined by a kernel function. The estimator
takes the form

(1.19)

where is a bandwidth parameter, is a kernel function, and where , the j-th sam-
ple autocovariance of the residuals , is defined as

 (1.20)

Note that the residuals that EViews uses in estimating the autocovariance functions in
(1.20) will differ depending on the specified unit root test:

EViews supports the following kernel functions:

Unit root test Source of residuals for kernel estimator

ADF, DFGLS not applicable.

PP, ERS Point
Optimal, NP

residuals from the Dickey-Fuller test equation, (1.2).

KPSS residuals from the OLS test equation, (1.12).

c
7−

13.5−

=
if xt 1{ }=

if xt 1 t,{ }=

xt f0

f0

f�0 γ� j() K j l⁄()⋅
j T 1−()−=

T 1−

Σ=

l K γ� j()
u� t

γ� j() u� tu� t j−()
t j 1+=

T

Σ T⁄=

u� t

u� t

Basic Unit Root Theory—15
The properties of these kernels are described in Andrews (1991).

As with most kernel estimators, the choice of the bandwidth parameter is of consider-
able importance. EViews allows you to specify a fixed parameter, or to have EViews select
one using a data-dependent method. Automatic bandwidth parameter selection is dis-
cussed in “Automatic Bandwidth and Lag Length Selection” beginning on page 16.

Autoregressive Spectral Density Estimator

The autoregressive spectral density estimator at frequency zero is based upon the residual
variance and estimated coefficients from the auxiliary regression:

(1.21)

EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS
detrending, corresponding to difference choices for the data . The following table sum-
marizes the auxiliary equation estimated by the various AR spectral density estimators:

where are the coefficient estimates from the regression defined in (1.7).

The AR spectral estimator of the frequency zero spectrum is defined as:

(1.22)

Bartlett:

Parzen:

Quadratic Spectral

AR spectral method Auxiliary AR regression specification

OLS , and , .

OLS detrended , and .

GLS detrended
. and .

K x()
1 x−
0

=
if x 1≤
otherwise

K x()
1 6x2− 6 x

3+

2 1 x−()3

0

=
if 0 x 1 2⁄()≤ ≤
if 1 2⁄() x< 1≤
otherwise

K x() 25

12π2
x

2������������������
6πx 5⁄()sin

6πx 5⁄
������������������������������ 6πx 5⁄()cos−

 =

l

y� t∆ αy� t 1− ϕ x� t′δ⋅ β1 y� t 1−∆ … βp y� t p−∆+ + ut+ + +=

y� t

y� t yt= ϕ 1= x� t xt=

y� t yt xt′δ� 0()−= ϕ 0=

y� t yt xt′δ� a()− yt
d= = ϕ 0=

δ� a()

f� 0 σ� u
2 1 β� 1 β� 2− …− β� p−−()⁄=

16—Chapter 1. Unit Root Tests
where is the residual variance, and are the estimates from (1.21). We
note here that EViews uses the non-degree-of-freedom estimator of the residual variance.
As a result, spectral estimates computed in EViews may differ slightly from those obtained
from other sources. Moreover, the estimator of the variance differs conceptually from the
estimator used in computing the -ratios used in ADF and PP test statistics.

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference
terms in the auxiliary equation. You may either specify a fixed parameter, or have EViews
automatically select one based on an information criterion. Automatic lag length selection
is examined in “Automatic Bandwidth and Lag Length Selection” on page 16.

Default Estimation Settings

By default, EViews will choose the estimator of used by the authors of a given test
specification. You may, of course, override the default settings and choose from either fam-
ily of estimation methods. The default settings are listed below:

Automatic Bandwidth and Lag Length Selection

There are three distinct situations in which EViews can automatically compute a band-
width or a lag length parameter.

The first situation occurs when you are selecting the bandwidth parameter for the ker-
nel-based estimators of . For the kernel estimators, EViews provides you with the option
of using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth
parameter methods. For those familiar with the Newey-West procedure, we note that
EViews uses the lag selection parameter formulae given in the corresponding first lines of
Table II-C. The Andrews method is based on an AR(1) specification. See the original
sources for details.

The latter two situations occur when the unit root test requires estimation of a regression
with a parametric correction for serial correlation as in the ADF and DFGLS test equation
regressions, and in the AR spectral estimator for . In both of these settings, lagged
difference terms are added to a regression equation. The automatic selection methods
choose (less than the specified maximum) to minimize one of the following criteria:

Unit root test Frequency zero spectrum default method

ADF, DFGLS not applicable

PP, KPSS Kernel (Bartlett) sum-of-covariances

ERS Point Optimal AR spectral regression (OLS)

NP AR spectral regression (GLS-detrended)

σ� u
2

u� t
2

Σ T⁄= β�

s t

f0

f0

l
f0

f0 p

p

Basic Unit Root Theory—17
where the modification factor is computed as

(1.23)

for , when computing the ADF test equation, and for as defined in “Autore-
gressive Spectral Density Estimator” on page 15, when estimating . NP (2001) propose
and examine the modified criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to
the lag length. By default, EViews chooses a maximum lag of

(1.24)

but you may substitute any positive integer value.

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.

Information criterion Definition

Akaike (AIC)

Schwarz (SIC)

Hannan-Quinn (HQ)

Modified AIC (MAIC)

Modified SIC (MSIC)

Modified Hannan-Quinn
(MHQ)

2 l T⁄()− 2k T⁄+

2 l T⁄()− k T()log T⁄+

2 l T⁄()− 2k T()log()log T⁄+

2 l T⁄()− 2 k τ+() T⁄+

2 l T⁄()− k τ+() T()log T⁄+

2 l T⁄()− 2 k τ+() T()log()log T⁄+

τ

τ α
2

y� t 1−
2

t
Σ σ� u

2⁄=

y� t yt= y� t
f0

kmax int 12 T 100⁄()1 4⁄
� �=

18—Chapter 1. Unit Root Tests

Chapter 2. System Instrumental Variables

In EViews 4.1, the new @stackinst statement provides a new way of specifying
instruments for systems of equations that allows for cross-equations on the projec-
tions of variables on instruments. Previously, all instrumental variables projections in
systems were performed on an equation-by-equation basis. You can now stack your
equations and instruments prior to performing the projection. The easy-to-use syntax
provides you with full control over the instrument stacking so that you may combine
the earlier ordinary instrument and new stacked instrument specifications.

Specifying Instruments in Systems

If you plan to estimate your system using two-stage least squares, three-stage least
squares, or GMM, you must specify the instrumental variables to be used in estima-
tion. There are several ways to specify your instruments, with the appropriate form
depending on whether you wish to have identical instruments in each equation, and
whether you wish to compute the projections on an equation-by-equation basis, or
whether you wish to compute a restricted projection using the stacked system.

In the simplest (default) case, EViews will form your instrumental variable projec-
tions on an equation-by-equation basis. If you prefer to think of this process as a two-
step (2SLS) procedure, the first-stage regression of the variables in your model on the
instruments will be run separately for each equation.

In this setting, there are two ways to specify your instruments. If you would like to
use identical instruments in every equations, you should include a line beginning
with the keyword “@INST” or “INST”, followed by a list of all the exogenous vari-
ables to be used as instruments. For example, the line

@inst gdp(-1 to -4) x gov

instructs EViews to use these six variables as instruments for all of the equations in
the system. System estimation will involve a separate projection for each equation in
your system.

You may also specify different instruments for each equation by appending an
“@”-sign at the end of the equation, followed by a list of instruments for that equa-
tion. For example,

cs = c(1)+c(2)*gdp+c(3)*cs(-1) @ cs(-1) inv(-1) gov

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

20—Chapter 2. System Instrumental Variables
The first equation uses CS(-1), INV(-1), GOV, and a constant as instruments, while the sec-
ond equation uses GDP(-1), GOV, and a constant as instruments.

Lastly, you can mix the two methods. Any equation without individually specified instru-
ments will use the instruments specified by the @inst statement. The system

@inst gdp(-1 to -4) x gov

cs = c(1)+c(2)*gdp+c(3)*cs(-1)

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

will use the instruments GDP(-1), GDP(-2), GDP(-3), GDP(-4), X, GOV, and C, for the CS
equation, but only GDP(-1), GOV, and C, for the INV equation.

As noted above, the EViews default behavior is to perform the instrumental variables pro-
jection on an equation-by-equation basis. You may, however, wish to perform the projec-
tions on the stacked system. Notably, where the number of instruments is large, relative to
the number of observations, stacking the equations and instruments prior to performing
the projection may be the only feasible way to compute 2SLS estimates.

To designate instruments for a stacked projection, you should use the @stackinst state-
ment (note: this statement is only available for systems estimated by 2SLS or 3SLS; it is not
available for systems estimated using GMM).

In a @stackinst statement, the “@STACKINST” keyword should be followed by a list of
stacked instrument specifications. Each specification is a comma delimited list of series
enclosed in parentheses (one per equation), describing the instruments to be constrained
in a stacked specification.

For example, the following @stackinst specification creates two instruments in a three
equation model:

@stackinst (z1,z2,z3) (m1,m1,m1)

This statement instructs EViews to form two stacked instruments, one by stacking the sep-
arate series Z1, Z2, and Z3, and the other formed by stacking M1 three times. The first-
stage instrumental variables projection is then of the variables in the stacked system on the
stacked instruments.

When working with systems that have a large number of equations, the above syntax may
be unwieldy. For these cases, EViews provides a couple of shortcuts. First, for instruments
that are identical in all equations, you may us an “*” after the comma to instruct EViews to
repeat the specified series. Thus, the above statement is equivalent to

Specifying Instruments in Systems—21
@stackinst (z1,z2,z3) (m1,*)

Second, for non-identical instruments, you may specify a set of stacked instruments using
an EViews group object, so long as the number of variables in the group is equal to the
number of equations in the system. Thus, if you create a group Z with

group z z1 z2 z3

the above statement can be simplified to:

@stackinst z (m1,*)

You can, of course, combine ordinary instrument and stacked instrument specifications.
This situation is equivalent to having common and equation specific coefficients for vari-
ables in your system. Simply think of the stacked instruments as representing common
(coefficient) instruments, and ordinary instruments as representing equation specific (coef-
ficient) instruments. For example, consider the system given by

@stackinst (z1,z2,z3) (m1,*)

@inst ia

y1 = c(1)*x1

y2 = c(1)*x2

y3 = c(1)*x3 @ ic

The stacked instruments for this specification may be represented as:

(2.1)

so it is easy to see that this specification is equivalent to the following stacked specification

@stackinst (z1, z2, z3) (m1, *) (ia, 0, 0) (0, ia, 0) (0, 0, ia)

(0, 0, ic)

since the common instrument specification

@inst ia

is equivalent to

@stackinst (ia, 0, 0) (0, ia, 0) (0, 0, ia)

Additional Comments

• If you include a “C” in the stacked instrument list, it will not be included in the indi-
vidual equations. If you do not include the “C” as a stacked instrument, it will be
included as an instrument in every equation, whether specified explicitly or not.

Z1 M1 IA 0 0 0
Z2 M1 0 IA 0 0
Z3 M1 0 0 IA IC

22—Chapter 2. System Instrumental Variables
• You should list all exogenous right-hand side variables as instruments for a given
equation.

• Identification requires that there should be at least as many instruments (including
the constant) in each equation as there are right-hand side variables in that equa-
tion.

• The @stackinst statement is only available for estimation by 2SLS and 3SLS. It is
not currently supported for GMM.

• If you estimate your system using a method that does not use instruments, all instru-
ment specification lines will be ignored.

Chapter 3. State Space Modeling

EViews 4.1 extends the features of the sspace object in two distinct ways.

First, extensions to the state space syntax in EViews 4.1 allow you to write the error
term for any equation as a linear combination of named errors. This syntax allows
users to specify, more naturally, a wide range of important models.

Second, new sspace object data members give you access to output matrices contain-
ing intermediate calculations from the Kalman filter.

Specifying Errors and Variances in a Sspace

While EViews always adds an implicit error term to each equation in an equation or
system object, the handling of error terms differs in a sspace object. In a sspace
object, the equation specifications in a signal or state equation do not contain error
terms unless specified explicitly.

The easiest way to add an error to a state space equation is to specify an implied error
term using its variance. You can simply add an error variance expression, consisting
of the keyword “VAR” followed by an assignment statement (all enclosed in square
brackets), to the existing equation:

@signal y = c(1) + sv1 + sv2 + [var = 1]

@state sv1 = sv1(-1) + [var = exp(c(2))]

@state sv2 = c(3) + c(4)*sv2(-1) + [var = exp(c(2)*x)]

The specified variance may be a known constant value, or it can be an expression
containing unknown parameters to be estimated. You may also build time-variation
into the variances using a series expression. Variance expressions may not, however,
contain state or signal variables.

While straightfoward, this direct variance specification method does not admit corre-
lation between errors in different equations (by default, EViews assumes that the
covariance between error terms is 0). If you require a more flexible variance struc-
ture, you will need to use the “named error” approach to define named errors with
variances and covariances, and then to use these named errors as parts of expres-
sions in the signal and state equations.

The first step of this general approach is to define your named errors. You may
declare a named error by including a line with the keyword “@ENAME” followed by
the name of the error:

24—Chapter 3. State Space Modeling
@ename e1

@ename e2

Once declared, a named error may enter linearly into state and signal equations. In this
manner, one can build correlation between the equation errors. For example, the errors in
the state and signal equations in

y = c(1) + sv1*x1 + e1

@state sv1 = sv1(-1) + e2 + c(2)*e1

@ename e1

@ename e2

are, in general, correlated since the named error E1 appears in both equations.

In the special case where a named error is the only error in a given equation, you can both
declare and use the named residual by adding an error expression consisting of keyword
“ENAME” followed by an assignment and a name identifier.

y = c(1) + sv1*x1 + [ename = e1]

@state sv1 = sv1(-1) + [ename = e2]

The final step in building a general error structure is to define the variances and covari-
ances associated with your named errors. You should include a sspace line comprised of
the keyword “@EVAR” followed by an assignment statement for the variance of the error
or the covariance between two errors:

@evar cov(e1, e2) = c(2)

@evar var(e1) = exp(c(3))

@evar var(e2) = exp(c(4))*x

The syntax for the @EVAR assignment statements should be self-explanatory. Simply indi-
cate whether the term is a variance or covariance, identify the error(s), and enter the spec-
ification for the variance or covariance. There should be a separate line for each named
error covariance or variance that you wish to specify. If an error term is named, but there
are no corresponding “VAR=” or @EVAR specifications, the missing variance or covari-
ance specifications will remain at the default values of “NA” and “0”, respectively.

As you might expect, in the special case where an equation contains a single error term,
you may combine the named error and direct variance assignment statements:

@state sv1 = sv1(-1) + [ename = e1, var = exp(c(3))]

@state sv2 = sv2(-1) + [ename = e2, var = exp(c(4))]

@evar cov(e1, e2) = c(5)

Accessing Sspace Filter and Smoother Results—25
Accessing Sspace Filter and Smoother Results

The following functions allow you to extract the filter and smoother results for the estima-
tion sample and place them in matrix objects. In some cases, the results overlap those
available thorough the sspace procs, while in other cases, the matrix results are the only
way to obtain the results.

Note also that since the computations are only for the estimation sample, the one-step-
ahead predicted state and state standard error values will not match the final values dis-
played in the estimation output. The latter are the predicted values for the first out-of-esti-
mation sample period.

@pred_signal........matrix or vector of one-step ahead predicted signals.

@pred_signalcov...matrix where every row is the @vech of the one-step ahead pre-
dicted signal covariance.

@pred_signalse.....matrix or vector of the standard errors of the one-step ahead pre-
dicted signals.

@pred_errmatrix or vector of one-step ahead prediction errors.

@pred_errcovmatrix where every row is the @vech of the one-step ahead pre-
diction error covariance.

@pred_errcovinv ..matrix where every row is the @vech of the inverse of the one-
step ahead prediction error covariance.

@pred_errsematrix or vector of the standard errors of the one-step ahead pre-
diction errors.

@pred_errstdmatrix or vector of standardized one-step ahead prediction errors.

@pred_state..........matrix or vector of one-step ahead predicted states.

@pred_statecov.....matrix where each row is the @vech of the one-step ahead predi-
cated state covariance.

@pred_statese.......matrix or vector of the standard errors of the one-step ahead pre-
dicted states.

@pred_stateerrmatrix or vector of one-step ahead predicted state errors.

@curr_err.............matrix or vector of filtered error estimates.

@curr_gain...........matrix or vector where each row is the @vec of the Kalman gain.

@curr_statematrix or vector of filtered states.

@curr_statecovmatrix where every row is the @vech of the filtered state covari-
ance.

@curr_statesematrix or vector of the standard errors of the filtered state est-
mates.

@sm_signalmatrix or vector of smoothed signal estimates.

26—Chapter 3. State Space Modeling
@sm_signalcov matrix where every row is the @vech of the smoothed signal cova-
riance.

@sm_signalse matrix or vector of the standard errors of the smoothed signals.

@sm_signalerr matrix or vector of smoothed signal error estimates.

@sm_signalerrcov matrix where every row is the @vech of the smoothed signal error
covariance.

@sm_signalerrse .. matrix or vector of the standard errors of the smoothed signal
error.

@sm_signalerrstd. matrix or vector of the standardized smoothed signal errors.

@sm_state matrix or vector of smoothed states.

@sm_statecov matrix where each row is the @vech of the smoothed state covari-
ances.

@sm_statese matrix or vector of the standard errors of the smoothed state.

@sm_stateerr matrix or vector of the smoothed state errors.

@sm_stateerrcov .. matrix where each row is the @vech of the smoothed state error
covariance.

@sm_stateerrse matrix or vector of the standard errors of the smoothed state
errors.

@sm_stateerrstd... matrix or vector of the standardized smoothed state errors .

@sm_crosserrcov . matrix where each row is the @vec of the smoothed error cross-
covariance.

Sspace Examples

The one-step-ahed state values and variances from SS01 may be saved using

vector ss_state=ss01.@pred_state

matrix ss_statecov=ss01.@pred_statecov

Chapter 4. Miscellaneous Features

Extended Model Commands

EViews 4.1 extends the set of modelling tools to aid you in model building and solu-
tion:

• New options features provide greater control over the model solution proce-
dure. You can now initialize solution values and excluded variables, control ter-
minal conditions for forward solution, and set roundoff conditions from the
command line. See solveopt (p. 39).

• Expanded programming language support has been provided for working with
scenarios. Updated documentation and notes regarding backward compatibility
are provided in the entry for scenario (p. 37).

• You may now unlink selected dependent variable links using commands. For
details, see unlink (p. 42).

• EViews 4.1 now allows you to force recompilation of a model and the updating
of all model and equation links from the command line. See update (p. 43).

Enhanced Wald Tests

The Wald test computes a test statistic based on the unrestricted regression. The
Wald statistic measures how close the unrestricted estimates come to satisfying the
restrictions under the null hypothesis. If the restrictions are in fact true, then the
unrestricted estimates should come close to satisfying the restrictions.

The output of the Wald test has been expanded to provide additional information
about the restrictions and the restriction variances. As a result, you can use the
expanded output to find the standard errors of functions of your coefficients.

How to Perform Wald Coefficient Tests

To demonstrate the calculation of Wald tests in EViews, we consider simple exam-
ples. Suppose a Cobb-Douglas production function has been estimated in the form:

, (4.1)

where , and denote value-added output and the inputs of capital and labor
respectively. The hypothesis of constant returns to scale is then tested by the restric-
tion: .

Qlog A α Llog β Klog ε+ + +=

Q K L

α β+ 1=

28—Chapter 4. Miscellaneous Features
Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971
provided the following result:

The sum of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to
determine whether the difference is statistically relevant, we will conduct the hypothesis
test of constant returns.

To carry out a Wald test, choose View/Coefficient Tests/Wald-Coefficient Restrictions…
from the equation toolbar. Enter the restrictions into the edit box, with multiple coefficient
restrictions separated by commas. The restrictions should be expressed as equations
involving the estimated coefficients and constants (you may not include series names).
The coefficients should be referred to as C(1), C(2), and so on, unless you have used a dif-
ferent coefficient vector in estimation.

To test the hypothesis of constant returns to scale, type the following restriction in the dia-
log box:

c(2) + c(3) = 1

and click OK. EViews reports the following result of the Wald test:

Dependent Variable: LOG(Q)
Method: Least Squares
Date: 08/11/97 Time: 16:56
Sample: 1947 1971
Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.

C -2.327939 0.410601 -5.669595 0.0000
LOG(L) 1.591175 0.167740 9.485970 0.0000
LOG(K) 0.239604 0.105390 2.273498 0.0331

R-squared 0.983672 Mean dependent var 4.767586
Adjusted R-squared 0.982187 S.D. dependent var 0.326086
S.E. of regression 0.043521 Akaike info criterion -3.318997
Sum squared resid 0.041669 Schwarz criterion -3.172732
Log likelihood 44.48746 F-statistic 662.6819
Durbin-Watson stat 0.637300 Prob(F-statistic) 0.000000

Wald Test:
Equation: EQ1

Test Statistic Value df Probability

Chi-square 120.0177 1 0.0000
F-statistic 120.0177 (1, 22) 0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-1 + C(2) + C(3) 0.830779 0.075834

Restrictions are linear in coefficients.

Enhanced Wald Tests—29
EViews reports an F-statistic and a Chi-square statistic with associated p-values. See “Wald
Test Details” on page 30 for a discussion of these statistics. In addition, EViews reports the
value of the normalized (homogeneous) restriction and an associated standard error. In
this example, we have a single linear restriction so the two test statistics are identical, with
the p-value indicating that we can decisively reject the null hypothesis of constant returns
to scale.

To test more than one restriction, separate the restrictions by commas. For example, to test
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity
with respect to capital is 1/3, enter the restrictions as

c(2)=2/3, c(3)=1/3

and EViews reports

Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix).

As an example of a nonlinear model with a nonlinear restriction, we estimate a production
function of the form

(4.2)

and test the constant elasticity of substitution (CES) production function restriction
. This is an example of a nonlinear restriction. To estimate the (unrestricted)

nonlinear model, you should select Quick/Estimate Equation… and then enter the follow-
ing specification:

log(q) = c(1) + c(2)*log(c(3)*k^c(4)+(1-c(3))*l^c(4))

To test the nonlinear restriction, choose View/Coefficient Tests/Wald-Coefficient Restric-
tions… from the equation toolbar and type the following restriction in the Wald Test dialog
box:

Wald Test:
Equation: EQ1

Test Statistic Value df Probability

Chi-square 53.99105 2 0.0000
F-statistic 26.99553 (2, 22) 0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-2/3 + C(2) 0.924508 0.167740
-1/3 + C(1) -2.661272 0.410601

Restrictions are linear in coefficients.

Qlog β1 β2 β3K
β4 1 β3−()Lβ4+()log ε+ +=

β2 1 β4⁄=

30—Chapter 4. Miscellaneous Features
c(2)=1/c(4)

The results are presented below:

Since this is a nonlinear equation, we focus on the Chi-square statistic which fails to reject
the null hypothesis. Note that EViews reports that it used the delta method (with analytic
derivatives) to compute the Wald restriction variance for the nonlinear restriction.

It is well-known that nonlinear Wald tests are not invariant to the way that you specify the
nonlinear restrictions. In this example, the nonlinear restriction may equiva-
lently be written as or (for nonzero and). For example,
entering the restriction as

c(2)*c(4)=1

yields:

so that the test now decisively rejects the null hypothesis. We hasten to add that type of
inconsistency is not unique to EViews, but is a more general property of the Wald test.
Unfortunately, there does not seem to be a general solution to this problem (see Davidson
and MacKinnon, 1993, Chapter 13).

Wald Test Details

Consider a general nonlinear regression model

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)=1/C(4)

F-statistic 0.028507 Probability 0.867539
Chi-square 0.028507 Probability 0.865923

Wald Test:
Equation: EQ2

Test Statistic Value df Probability

Chi-square 0.028508 1 0.8659
F-statistic 0.028508 (1, 21) 0.8675

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

C(2) - 1/C(4) 1.292163 7.653088

Delta method computed using analytic derivatives.

β2 1 β4⁄=
β2β4 1= β4 1 β2⁄= β2 β4

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)*C(4)=1

F-statistic 104.5599 Probability 0.000000
Chi-square 104.5599 Probability 0.000000

Wald Test:
Equation: EQ2

Test Statistic Value df Probability

Chi-square 104.5599 1 0.0000
F-statistic 104.5599 (1, 21) 0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Err.

-1 + C(2)*C(4) 0.835330 0.081691

Delta method computed using analytic derivatives.

Enhanced Wald Tests—31
(4.3)

where and are -vectors and is a -vector of parameters to be estimated. Any
restrictions on the parameters can be written as

, (4.4)

where is a smooth function, , imposing restrictions on . The Wald sta-
tistic is then computed as

 (4.5)

where is the number of observations and is the vector of unrestricted parameter esti-
mates, and where is an estimate of the covariance. In the standard regression case,
is given by

(4.6)

where is the vector of unrestricted residuals, and is the usual estimator of the unre-
stricted residual variance, , but the estimator of may differ. For
example, may be a robust variance matrix estimator computing using White or Newey-
West techniques.

More formally, under the null hypothesis , the Wald statistic has an asymptotic
distribution, where is the number of restrictions under .

For the textbook case of a linear regression model

(4.7)

and linear restrictions

, (4.8)

where is a known matrix, and is a -vector, respectively. The Wald statistic in
Equation (4.5) reduces to

, (4.9)

which is asymptotically distributed as under .

If we further assume that the errors are independent and identically normally distrib-
uted, we have an exact, finite sample F-statistic:

, (4.10)

y f β() ε+=

y ε T β k

H0: g β() 0=

g g: Rk
R

q→ q β

W g β()′ ∂g β()
∂β
���������������V� b()∂g β()

∂β ′
���������������

 g β() β b==

T b
V� b V�

V� b() s
2 ∂f β()

∂β
���������������

∂f β()
∂β′
���������������

 1−

β b=
=

u s
2

s
2

u′u() N k−()⁄= V
V�

H0 χ
2

q()
q H0

y Xβ ε+=

H0: Rβ r− 0=

R q k× r q

W Rb r−()′ Rs
2

X ′X()
1−
R ′()

1−
Rb r−()=

χ
2

q() H0

ε

F
W

q
�����

u� ′u� u′u−() q⁄
u′u() T k−()⁄
�����������������������������������= =

32—Chapter 4. Miscellaneous Features
where is the vector of residuals from the restricted regression. In this case, the F-statis-
tic compares the residual sum of squares computed with and without the restrictions
imposed.

We remind you that the expression for the finite sample F-statistic in (4.10) is for standard
linear regression, and is not valid for more general cases (nonlinear models, ARMA specifi-
cations, or equations where the variances are estimated using other methods such as
Newey-West or White). In non-standard settings, the reported F-statistic (which EViews
always computes computes as), does not possess the desired finite-sample proper-
ties. In these cases, while asymptotically valid, the F-statistic results should be viewed as
illustrative and for comparison purposes only.

Quantiles by Classification

The “Stats by Classification” view of a series now allows you to compute arbitrary quan-
tiles of your data by group. An options menu allows you to choose the quantile definition.
Command support for this new calculation is documented in statby (p. 40).

Stats by Classification

This view allows you to compute the descriptive statistics of a series for various subgroups
of your sample. If you select View/Descriptive Statistics/Stats by Classification… a Sta-
tistics by Classification dialog box appears:

The Statistics option at the left
allows you to choose the statis-
tics you wish to compute.

In the Series/Group for Classify
field enter series or group names
that define your subgroups. You
must type at least one name.
Descriptive statistics will be cal-
culated for each unique value of
the classification series unless
binning is selected. You may type
more than one series or group
name; separate each name by a space. The quantile statistic requires an additional argu-
ment (a number between 0 and 1) corresponding to the desired quantile value. Click on
the options button to choose between various methods of computing the quantiles.

By default, EViews excludes observations which have missing values for any of the classi-
fication series. To treat NA values as a valid subgroup, select the NA handling option.

u�

W q⁄

Quantiles by Classification—33
The Layout option allows you to control the display of the statistics. Table layout arrays the
statistics in cells of two-way tables. The list form displays the statistics in a single line for
each classification group.

The Table and List options are only relevant if you use more than one series as a classifier.

The Sparse Labels option suppresses repeating labels in list mode to make the display less
cluttered.

The Row Margins, Column Margins, and Table Margins instruct EViews to compute sta-
tistics for aggregates of your subgroups. For example, if you classify your sample on the
basis of gender and age, EViews will compute the statistics for each gender/age combina-
tion. If you elect to compute the marginal statistics, EViews will also compute statistics
corresponding to each gender, and each age subgroup.

A classification may result in a large number of distinct values with very small cell sizes.
By default, EViews automatically groups observations to maintain moderate cell sizes and
numbers of categories. Group into Bins provides you with control over this process.

Setting the # of values option bins tell EViews to group data if the classifier series takes
more than the specified number of distinct values.

The Avg. count option bins the series if the average count for each distinct value of the
classifier series is less than the specified number.

The Max # of bins specifies the maximum number of subgroups to bin the series. Note
that this number only provides you with approximate control over the number of bins.

The default setting is to bin the series into 5 subgroups if either the series takes more than
100 distinct values or if the average count is less than 2. If you do not want to bin the
series, unmark both options.

For example, consider the following stats by classification view in table form:

34—Chapter 4. Miscellaneous Features
The header indicates that the table cells are categorized by two series MARRIED and
UNION. These two series are dummy variables that take only two values and no binning
was made. If the series were binned, intervals rather than a number would be displayed in
the margins.

The upper left cell of the table indicates the reported statistics in each cell; in this case the
median and the number of observations are reported in each cell. The row and column
labeled All correspond to the Row Margin and Column Margin options described above.

Here is the same view in list form with sparse labels:

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97 Time: 01:11
Sample: 1 1000
Included observations: 1000

Mean
Median
Std. Dev. UNION
Obs. 0 1 All

0 1.993829 2.387019 2.052972
 1.906575 2.409131 2.014903
 0.574636 0.395838 0.568689

 305 54 359

MARRIED 1 2.368924 2.492371 2.400123
 2.327278 2.525729 2.397895
 0.557405 0.380441 0.520910

 479 162 641

All 2.223001 2.466033 2.275496
 2.197225 2.500525 2.302585
 0.592757 0.386134 0.563464

 784 216 1000

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97 Time: 01:08
Sample: 1 1000
Included observations: 1000

UNION MARRIED Mean Median Std. Dev. Obs.
0 0 1.993829 1.906575 0.574636 305

1 2.368924 2.327278 0.557405 479
All 2.223001 2.197225 0.592757 784

1 0 2.387019 2.409131 0.395838 54
1 2.492371 2.525729 0.380441 162
All 2.466033 2.500525 0.386134 216

All 0 2.052972 2.014903 0.568689 359
1 2.400123 2.397895 0.520910 641
All 2.275496 2.302585 0.563464 1000

Added Functions—35
Added Functions

EViews 4.1 now supports a family of percentage change functions that complement the
existing functions. These functions eliminate the need to rescale function values when
working in percentage terms. In addition, we have added functions for computing base-10
and arbitrary base logarithms.

Time Series Functions

Basic Mathematical Functions

@pc(x) one-period percentage
change (in percent)

equals @pch(x)*100

@pch(x) one-period percentage
change (in decimal)

@pca(x) one-period percentage
change—annualized (in
percent)

equals @pcha(x)*100

@pcha(x) one-period percentage
change—annualized (in
decimal)

where is the lag associ-
ated with one-year ()
for quarterly data, etc.).

@pcy(x) one-year percentage change
(in percent)

equals @pchy(x)*100

@pchy(x) one-year percentage change
(in decimal)

,
where is the lag associ-
ated with one-year
() for annual data,
etc.).

@log10(x) base-10 logarithm,

@logx(x, b) base-b logarithm,

X X 1−()−() X 1−()⁄

@pcha(x)
1 @pch x()+()n 1−= n

n 4=

X X n−()−() X n−()⁄
n

n 12=

log10 x()
@log10(100) 2=

logb x() @log(256, 2) 8=

36—Chapter 4. Miscellaneous Features

Chapter 5. Updated Command Entries

The following is an alphabetical listing of the commands, views, and procedures in EViews that
have been updated for Version 4.1.

Manage the model scenarios.

The scenario procedure is used to set the active and comparison scenarios for a model, to cre-
ate new scenarios, to initialize one scenario with settings from another scenario, to delete sce-
narios, and to change the variable aliasing associated with a scenario.

Syntax

Model Proc: model_name.scenario(options) "name"

performs scenario options on a scenario given by the “name”. By default the scenario proce-
dure also sets the active scenario to the specified name.

Options

Examples

The command string

scenario Model Proc

c Set the comparison scenario to the named scenario.

n Create a new scenario with the specified name.

i=“name” Copy the Excludes and Overrides from the named sce-
nario.

d Delete the named scenario.

a=string Set the scenario alias string to be used when creating
aliased variables (string is a 1 to 3 alphanumeric string
to be used in creating aliased variables). If an under-
score is not specified, one will be added to the begin-
ning of the string. Examples: “_5”, “_T”, “S2”. The
string “A” may not be used since it may conflict with
add factor specifications.

38—Chapter 5. Updated Command Entries
mod1.scenario "baseline"

sets the active scenario to the baseline, while

mod1.scenario(c) "actuals"

sets the comparison scenario to the actuals (warning: this will overwrite any historical
data in the solution period).

A newly created scenario will become the active scenario. Thus,

mod1(n) "Peace Scenario"

creates a scenario called "Peace Scenario" and makes it the active scenario. The scenario
will automatically be assigned a unique numeric alias. To change the alias, simply use the
“a=” option:

mod1(a=_ps) "Peace Scenario"

changes the alias for “Peace Scenario” to “_PS” and makes this scenario the active sce-
nario.

The command:

mod1.scenario(n, a=w, i="Peace Scenario", c) "War Scenario"

creates a scenario called "War Scenario", initializes it with the Excludes and Overrides
contained in "Peace Scenario", associates it with the alias "_W", and makes this scenario
the comparison scenario.

mod1.scenario(i="Scenario 1") "Scenario 2"

copies the Excludes and Overrides in "Scenario 1" to "Scenario 2" and makes "Scenario 2"
the active scenario.

Compatibility Notes

For backward compatibility with EViews 4.0, the option “a” may be used to set the com-
parison scenario, but is method not guaranteed to be supported in the future.)

In all of the arguments above the quotation marks around scenario name are currently
optional. Support for the non-quoted names is provided for backward compatibility, but
may be dropped in the future, thus

mod1.scenario Scenario 1

is currently valid, but may not be in future versions of EViews.

solveopt—39
Solve options for models.

solveopt sets options for model solution but does not solve the model. The same options
can be set directly in a solve procedure.

Syntax

Model Proc: model_name.solveopt(options)

Options

solveopt Model Proc

s=arg
(default = d)

Solution type: “d” (deterministic), “m” (stochastic –
collect means only), “s” (stochastic – collect means and
s.d.), “b” (stochastic – collect means and confidence
bounds), “a” (stochastic – collect all; means, s.d. and
confidence bounds).

d=arg
(default = d)

Model solution dynamics: “d” (dynamic solution), “s”
(static solution), “f” (fitted values – single equation
solution).

m=integer
(default=5000)

Maximum number of iterations for solution (maximum
100,000).

c=number
(default =1e-8)

Convergence criterion. Based upon the maximum
change in any of the endogenous variables in the
model. You may set a number between 1e-15 and 0.01.

r=integer
(default=1000)

Number of stochastic repetitions (used with stochastic
“s=” options).

b=number
(default=.95)

Size of stochastic confidence intervals (used with sto-
chastic “s=” options).

a=arg
(default = f)

Alternate scenario solution: “t” (true - solve both active
and alternate scenario and collect deviations for sto-
chastic), “f” (false - solve only the active scenario).

o=arg
(default = g)

Solution method: “g” (Gauss-Seidel), “e” (Gauss-Seidel
with extended search/reduced step size), “n” (New-
ton), “m” (Newton with extended search/reduced step
size).

40—Chapter 5. Updated Command Entries
Basic statistics by classification.

The statby view displays descriptive statistics for the elements of a series classified into
categories by one or more other series.

Syntax

Series View: series_name.statby(options) classifier_name

Follow the series name with a period, the statby keyword, and a name (or a list of
names) for the series or group by which to classify. The options control which statistics to
display and in what form. By default, statby displays the means, standard deviations,
and counts for the series.

Options

Options to control statistics to be displayed

i=arg Set initial (starting) solution values: “a” (actuals), “p”
(values in period prior to start of solution period).

n=arg
(default = t)

NA behavior: “t” (true - stop on “NA” values), “f”
(false - do not stop when encountering “NA” values).
Only applies to deterministic solution; EViews will
always stop on “NA” values in stochastic solution.

e=arg Excluded variables initialized from actuals: “t” (true),
“f” (false).

t=arg Terminal condition for forward solution: “u” (user sup-
plied), “l” (constant level), “d” (constant difference),
“g” (constant growth rate).

g=arg
(default = 7)

Number of digits to round solution: an integer value
(number of digits), “n” (do not roundoff).

z=arg
(default = 1e-7)

Zero value: a positive number below which the solution
(absolute value) is set to zero), “n” (do not set to zero).

statby Series View

sum Display sums.

med Display medians.

max Display maxima.

min Display minima.

statby—41
Options to control layout

Options to control binning

quant=arg
(default=.5)

Display quantile with value given by the argument.

q=arg
(default=“r”)

Compute quantiles using the definition: “b” (Blom), “r”
(Rankit-Cleveland), “o” (simple fraction), “t” (Tukey),
“v” (van der Waerden).

skew Display skewness.

kurt Display kurtosis.

na Display counts of NAs.

nomean Do not display means.

nostd Do not display standard deviations.

nocount Do not display counts.

l Display in list mode (for more than one classifier).

nor Do not display row margin statistics.

noc Do not display column margin statistics.

nom Do not display table margin statistics (unconditional
tables); for more than two classifier series.

nos Do not display sub-margin totals in list mode; only used
with “l” option and more than two classifier series.

sp Display sparse labels; only with list mode option, “l”.

dropna (default),
keepna

[Drop/Keep] NA as a category.

v=integer
(default=100)

Bin categories if classification series take on more than
the specified number of distinct values.

nov Do not bin based on the number of values of the classi-
fication series.

a=number
(default=2)

Bin categories if average cell count is less than the
specified number.

noa Do not bin based on the average cell count.

b=integer
(default=5)

Set maximum number of binned categories.

42—Chapter 5. Updated Command Entries
Other options

Examples

wage.statby(max,min) sex race

displays the mean, standard deviation, max, and min of the series WAGE by (possibly
binned) values of SEX and RACE.

Cross-references

See “Stats by Classification” on page 32.

Break model links.

Breaks equation links in the model. Follow the name of the model object by a period, the
keyword unlink, and a specification for the variables to unlink.

Syntax

Model Proc: object.unlink spec

where spec is

Note: If a link is to another Model or a System object, then more than one endogenous
variable may be associated with the link. If the spec contains any of the endogenous vari-
ables in a linked Model or System, EViews will break the link for all of the variables found
in the link.

Examples

mod1.unlink @all

mod2.unlink z1 z2

unlinks all of equations in MOD1, and all of the variables associated with the links for Z1
and Z2 in MOD2.

p Print the descriptive statistics table.

unlink Model Proc

@all Unlinks all equations in the model.

list of
endogenous vars

Unlink equations for the listed endogenous variables.

uroot—43
Update model specification.

Recompiles the model and updates all links.

Syntax

Model Proc: model.update

Follow the name of the model object by a period and the keyword update.

Examples

mod1.update

recompiles and updates all of the links in MOD1.

Unit root tests.

Carries out the Augmented Dickey-Fuller (ADF), GLS detrended Dickey-Fuller (DFGLS),
Phillips-Perron (PP), Kwiatkowski, et. al. (KPSS), Elliot, Rothenberg, and Stock (ERS) Point
Optimal, or Ng and Perron (NP) tests for a unit root in the series (or its first or second dif-
ference).

Syntax

Command: uroot(options) series_name

Series View: series_name.uroot(options)

You should enter the keyword uroot followed by the series name, or the series name fol-
lowed by a period and the keyword uroot.

Options

Specify the test type using one of the following keywords:

update Model Proc

uroot Command | Series View

adf (default) Augmented Dickey-Fuller.

dfgls GLS detrended Dickey-Fuller (Elliot, Rothenberg, and
Stock).

pp Phillips-Perron.

44—Chapter 5. Updated Command Entries
Specify the exogenous variables in the test equation from the following:

For backward compatibility, the shortened forms “c”, “t”, and “n” are presently supported.
However for future compatiblity we recommend that you use the longer forms.

Other Options:

kpss Kwiatkowski, Phillips, Schmidt, and Shin.

ers Elliot, Rothenberg, and Stock (Point Optimal).

np Ng and Perron.

const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test
equation.

none Do not include a constant or time trend (only available
for the ADF and PP tests).

dif=integer
(default=0)

Order of differencing of the series prior to running the
test. Valid values are {0, 1, 2}.

hac=arg Method of estimating the frequency zero spectrum: “bt”
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic
Spectral kernel), “ar” (AR spectral), “ardt (AR spectral -
OLS detrended data), “argls” (AR spectral - GLS
detrended data).

The default settings are test specific: “bt” for PP and
KPSS, “ar” for ERS, “argls” for NP.

Applicable to PP, KPSS, ERS and NP tests.

band = arg, b=arg
(default = “nw”)

Method of selecting the bandwidth: “nw” (Newey-West
automatic variable bandwidth selection), “a” (Andrews
automatic selection), “number” (user specified band-
width).

Applicable to PP, KPSS, ERS, ERS and NP tests when
using kernel sums-of-covariances estimators (where
“hac=” is one of {bt, pz, qs}).

uroot—45
Examples

The command

gnp.uroot(adf,const,lag=3,save=mout)

performs an ADF test on the series GDP with the test equation including a constant term
and three lagged first-difference terms. Intermediate results are stored in the matrix MOUT.

ip.uroot(dfgls,trend,info=sic)

runs the DFGLS unit root test on the series IP with a constant and a trend. The number of
lagged difference terms is selected automatically using the Schwarz criterion.

unemp.uroot(kpss,const,hac=pr,b=2.3)

runs the KPSS test on the series UNEMP The null hypothesis is that the series is stationary
around a constant mean. The frequency zero spectrum is estimated using kernel methods
(with a Parzen kernel), and a bandwidth of 2.3.

lag=arg
(default = “a”)

Method of selecting lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), “integer”
(user specified lag length)

Applicable to ADF and DFGLS tests, and for the other
tests when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

info=arg

(default = “maic”)

Information criterion to use when computing automatic
lag length selection: “aic” (Akaike), “sic” (Schwarz),
“hqc” (Hannan-Quinn), “msaic” (Modified Akaike),
“msic” (Modified Schwarz), “mhqc” (Modified Han-
nan-Quinn).

Applicable to ADF and DFGLS tests, and for other tests
when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

maxlag=integer Maximum lag length to consider when performing
automatic lag length selection (default =

)).

Applicable to ADF and DFGLS tests, and for other tests
when using AR spectral density estimators (where
“hac=” is one of {ar, ardt, argls}).

p Print output from the test.

int 12 T 100⁄()1 4⁄
� �

46—Chapter 5. Updated Command Entries
sp500.uroot(np,hac=ardt,info=maic)

runs the NP test on the series SP500. The frequency zero spectrum is estimated using the
OLS AR spectral estimator with the lag length automatically selected using the modified
AIC.

Cross-references

See “Unit Root Tests” on page 5 for further discussion.

References

Andrews, Donald W. K. (1991). “Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation,” Econometrica, 59, 817–858.

Andrews, Donald W. K. and J. Christopher Monahan (1992). “An Improved Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix Estimator,” Econometrica, 60, 953–966.

Bhargava, A. (1986). “On the Theory of Testing for Unit Roots in Observed Time Series,” Review of
Economic Studies, 53, 369-384.

Davidson, Russell and James G. MacKinnon (1993). Estimation and Inference in Econometrics,
Oxford University Press.

Dickey, D.A. and W.A. Fuller (1979). “Distribution of the Estimators for Autoregressive Time Series
with a Unit Root,” Journal of the American Statistical Association, 74, 427–431.

Elliott, Graham, Thomas J. Rothenberg and James H. Stock (1996). "Efficient Tests for an Autoregres-
sive Unit Root,” Econometrica 64, 813-836.

Hamilton, James D. (1994a). Time Series Analysis, Princeton University Press.

Hayashi, Fumio. (2000). Econometrics, Princeton University Press.

Kwiatkowski, Denis, Peter C. B. Phillips, Peter Schmidt & Yongcheol Shin (1992). “Testing the Null
Hypothesis of Stationary against the Alternative of a Unit Root,” Journal of Econometrics, 54,
159-178.

MacKinnon, J. G. (1991). “Critical Values for Cointegration Tests,” Chapter 13 in R. F. Engle and C. W.
J. Granger (eds.), Long-run Economic Relationships: Readings in Cointegration, Oxford Univer-
sity Press.

MacKinnon, James G. (1996). “Numerical Distribution Functions for Unit Root and Cointegration
Tests,” Journal of Applied Econometrics, 11, 601-618.

Newey, Whitney and Kenneth West (1994). “Automatic Lag Selection in Covariance Matrix Estima-
tion,” Review of Economic Studies, 61, 631-653.

Ng, Serena and Pierre Perron. 2001. “Lag Length Selection and the Construction of Unit Root Tests
with Good Size and Power,” Econometrica, 69(6), 1519-1554.

Phillips, P.C.B. and P. Perron (1988). “Testing for a Unit Root in Time Series Regression,” Biometrika,
75, 335–346.

Said, Said E. and David A. Dickey (1984). “Testing for Unit Roots in Autoregressive Moving Average
Models of Unknown Order,” Biometrika, 71, 599–607.

White, Halbert (1980).“A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Het-
eroskedasticity,” Econometrica, 48, 817–838.

48— References

Index

Symbols

@-functions
mathematical functions 35
time series functions 35

A

Augmented Dickey-Fuller test 9, 43

B

Binning option 33

C

Chi-square
statistic for Wald test 29

D

Descriptive statistics
by classification 32, 40
for a series 34

Dickey-Fuller test 9, 43

E

Elliot, Rothenberg, and Stock point optimal test 13

F

F-statistic 29

G

GLS detrending 11
Group into bins option 33

K

KPSS test 12
Kwiatkowski, Phillips, Schmidt, and Shin test 12

M

Mathematical functions 35
Model (object)

break all model links 42

update specification 43
Models

options for solving 39
scenarios 37

N

Nonlinear coefficient restriction
Wald test 30

P

Percentage change 35
Phillips-Perron test 12, 43

S

scenario 37
Solve. See Models.
solveopt 39
Sparse label option 33
statby 40
Statistics

compute for subgroups 40

T

Test
unit root 43

U

Unit root test
augmented Dickey-Fuller 9
Dickey-Fuller 9
Dickey-Fuller GLS detrended 11
Elliot, Rothenberg, and Stock 13
KPSS 12
Phillips-Perron 12
trend assumption 10

unlink 42
update 43
uroot 43

W

Wald test

50— Index
formula 31
F-statistic 31
joint restriction 29
nonlinear restriction 30

	Chapter 1. Introduction
	New Features in 4.1
	Unit Root Testing
	System Extensions
	Sspace Improvements
	Enhanced Model Features
	Miscellaneous Statistical Features
	New Functions

	Chapter 1. Unit Root Tests
	Performing Unit Root Tests in EViews
	Basic Unit Root Theory
	The Augmented Dickey-Fuller (ADF) Test
	Dickey-Fuller Test with GLS Detrending (DFGLS)
	The Phillips-Perron (PP) Test
	Elliot, Rothenberg, and Stock Point Optimal (ERS) Test
	Ng and Perron (NP) Tests
	Frequency Zero Spectrum Estimation
	Automatic Bandwidth and Lag Length Selection

	Chapter 2. System Instrumental Variables
	Specifying Instruments in Systems
	Additional Comments

	Chapter 3. State Space Modeling
	Specifying Errors and Variances in a Sspace
	Accessing Sspace Filter and Smoother Results

	Chapter 4. Miscellaneous Features
	Extended Model Commands
	Enhanced Wald Tests
	How to Perform Wald Coefficient Tests
	Wald Test Details

	Quantiles by Classification
	Stats by Classification

	Added Functions
	Time Series Functions
	Basic Mathematical Functions

	Chapter 5. Updated Command Entries
	scenario
	solveopt
	statby
	unlink
	update
	uroot

	References
	Index
	Symbols
	@-functions
	mathematical functions 35
	time series functions 35

	A
	Augmented Dickey-Fuller test 9, 43

	B
	Binning option 33

	C
	Chi-square
	statistic for Wald test 29

	D
	Descriptive statistics
	by classification 32, 40
	for a series 34

	Dickey-Fuller test 9, 43

	E
	Elliot, Rothenberg, and Stock point optimal test 13

	F
	F-statistic 29

	G
	GLS detrending 11
	Group into bins option 33

	K
	KPSS test 12
	Kwiatkowski, Phillips, Schmidt, and Shin test 12

	M
	Mathematical functions 35
	Model (object)
	break all model links 42
	update specification 43

	Models
	options for solving 39
	scenarios 37

	N
	Nonlinear coefficient restriction
	Wald test 30

	P
	Percentage change 35
	Phillips-Perron test 12, 43

	S
	scenario 37
	Solve. See Models.
	solveopt 39
	Sparse label option 33
	statby 40
	Statistics
	compute for subgroups 40

	T
	Test
	unit root 43

	U
	Unit root test
	augmented Dickey-Fuller 9
	Dickey-Fuller 9
	Dickey-Fuller GLS detrended 11
	Elliot, Rothenberg, and Stock 13
	KPSS 12
	Phillips-Perron 12
	trend assumption 10

	unlink 42
	update 43
	uroot 43

	W
	Wald test
	formula 31
	F-statistic 31
	joint restriction 29
	nonlinear restriction 30

