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Chapter 1.  Introduction

We are very pleased to bring you this free upgrade from EViews 4.0 to EViews 4.1. In 
response to user requests, we have added several new features to EViews. Some of 
these features, like added function support, an expanded Wald test output, and exten-
sions to the modelling program language, are minor improvements to existing rou-
tines. Others, like the new unit root testing features, and extensions to both the state 
space error, and system instrumental variables specification languages, represent sig-
nificant improvements in the set of tools for working with, and analyzing your data.

You are now looking at a self-contained .PDF document which describes the EViews 
4.1 upgrade. Bear in mind that this document is completely isolated from your origi-
nal .PDF documents, and that the latter documents, which may still be accessed 
through EViews 4.1, will contain information that is now out-of-date. Updated .PDF 
files will be available for optional download when EViews 4.1 is officially released.

While we believe that you will find the new features to be problem free, you should 
bear in mind that this version of EViews 4.1 is a Beta test version. To report problems, 
or to make comments about this product, please send email to: 
support@eviews.com. Please include in your message a comment noting that you are 
working with the EViews 4.1 beta along with the date of your copy of EViews 4.1. 
The date may be obtained by selecting Help/About EViews from the main menu.

New Features in 4.1

Unit Root Testing

EViews 4.1 includes support for the newest generation of unit root tests. In addition 
to the existing Augmented Dickey-Fuller and Phillips-Perron tests, EViews now allows 
you to compute the GLS-detrended Dickey-Fuller (Elliot, Rothenberg, and Stock, 
1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg, 
and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests.

EViews will also perform Newey-West (1992) and Andrews (1991) automatic band-
width selection for kernel based estimators, or automatic information criteria based 
selection of lag length for Dickey-Fuller tests and AR spectral density estimators. See 
“Unit Root Tests” on page 5.

The command support for these new unit root features is documented in the com-
mand reference for uroot (p. 43).
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System Extensions

We have expanded the flexibility of instrumental variables specifications estimated by 
2SLS and 3SLS. 

Previously, all instrumental variables projections in systems were performed on an equa-
tion-by-equation basis. In EViews 4.1, the new @stackinst statement provides a new 
way of specifying instruments for systems of equations that allows for cross-equations on 
the projections of variables on instruments. You can now stack your equations and instru-
ments prior to performing the projection. The easy-to-use syntax provides you with full 
control over the instrument stacking so that you may combine the earlier ordinary instru-
ment and new stacked instrument specifications. For details, see “System Instrumental 
Variables” on page 19.

Sspace Improvements

EViews 4.1 extends the features of the sspace object in two distinct ways. 

First, extensions to the state space syntax in EViews 4.1 allow you to write the error term 
for any equation as a linear combination of named errors. This syntax allows users to spec-
ify, more naturally, a wide range of important models. For discussion, see “Specifying 
Errors and Variances in a Sspace” on page 23.

Second, new sspace object data members give you access to output matrices containing 
intermediate calculations from the Kalman filter. See “Accessing Sspace Filter and 
Smoother Results” on page 25.

Enhanced Model Features

EViews 4.1 provides new modelling tools to aid you in model building and solution. New 
command syntax provides you with greater control over the model solution procedure, 
enhanced tools for working with scenarios, and additional commands to maintain the links 
in your model. See “Extended Model Commands” on page 27.

Miscellaneous Statistical Features

The output of the Wald test has been expanded to provide additional information about the 
restrictions and the restriction variances. As a result, you can use the expanded output to 
find the standard errors of functions of your coefficients. For details, see “Enhanced Wald 
Tests” on page 27.

The “Statistics by Classification” view of a series now allows you to compute arbitrary 
quantiles of your data by group. See “Quantiles by Classification” on page 32. See statby 
(p. 40) for documentation of the expanded command options.



New Features in 4.1—3
New Functions

EViews 4.1 now supports a family of percentage change functions that complement the 
existing functions. These functions eliminate the need to rescale function values when 
working in percentage terms. See “Time Series Functions” on page 35.

In addition, we have added functions for computing base-10 and arbitrary base logarithms. 
See “Basic Mathematical Functions” on page 35.
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Chapter 1.  Unit Root Tests

EViews 4.1 includes support for the newest generation of unit root tests. In addition 
to the existing Augmented Dickey-Fuller (1979) and Phillips-Perron (1998) tests, 
EViews now allows you to compute the GLS-detrended Dickey-Fuller (Elliot, Rothen-
berg, and Stock, 1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992), 
Elliott, Rothenberg, and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP, 
2001) unit root tests.

In addition, EViews now allows you to perform Newey-West (1994) and Andrews 
(1991) automatic bandwidth selection for kernel based estimators, or automatic infor-
mation criteria based selection of lag length for Dickey-Fuller tests and AR spectral 
density estimators.

The command support for these new unit root features is documented in uroot 
(p. 43).

Performing Unit Root Tests in EViews

The following discussion assumes that you are familiar with the basic forms of the 
unit root tests, and the associated options. We provide theoretical background for 
these tests in “Basic Unit Root Theory” beginning on page 9, and document the set-
tings used when performing these tests. 

To begin, double click on the series 
to open the series window, and 
choose View/Unit Root Test…

You must specify four sets of 
options to carry out a unit root test. 
The first three settings (on the left-
hand side of the dialog) determine 
the basic form of the unit root test. 
The fourth set of options (on the 
right-hand side of the dialog) con-
sist of test specific advanced set-
tings. You only need concern 
yourself with these latter settings if you wish to customize the calculation of your 
unit root test. 

First, use the topmost combo box to select the type of unit root test that you wish to 
perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP.
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Next, specify whether you wish to test for a unit root in the level, first difference, or second 
difference of the series. 

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant 
and linear trend, or neither (there are limitations on these choices for some of the tests). 

You can click on OK to compute the test using the specified settings, or you can customize 
your test using the advanced settings portion of the dialog.

The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged 
difference terms  are to be included in the ADF test equation. You may choose to let 
EViews automatically select , or you may specify a fixed positive integer value. If you 
choose automatic selection, you are given the additional option of selecting both the infor-
mation criterion and maximum number of lags to be used in the selection procedure.

In this case, we have chosen to estimate an ADF test that includes a constant in the test 
regression and employs automatic lag length selection using a Schwarz Information Crite-
rion (BIC) and a maximum lag length of 14. Applying these settings to data on the U. S. 
one-month Treasury bill rate for the period from March 1953 to July 1971, we can replicate 
Example 9.2 of Hayashi (2000, p. 596). The results are described below.

The first part of the unit root output provides information about the form of the test (the 
type of test, the exogenous variables, and lag length used), and contains the test output, 
associated critical values, and in this case, the p-value:

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221 
observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and 
10% levels. Notice here that the statistic  value is greater than the critical values so that 
we do not reject the null at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to 
calculate the ADF statistic:

p
p

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Lag Length: 1 (Automatic based on SIC, MAXLAG=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.417410  0.5734 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 

tα
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If you had chosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the right 
side of the dialog would show the different options for the specified test. The options are 
associated with the method used to estimate the zero frequency spectrum term, , that is 
used in constructing the particular test statistic. As before, you only need pay attention to 
these settings if you wish to change from the EViews defaults.

Here we have selected the PP test in the 
combo box. Note that the right-hand side 
of the dialog has changed, and now fea-
tures a combo box for selecting the spec-
tral estimation method. You may use this 
combo box to choose between various ker-
nel or AR regression based estimators for 

. The entry labeled “Default” will show 
you the default estimator for the specific 
unit root test—here we see that the PP 
default uses a kernel sum-of-covariances 
estimator with Bartlett weights. If, instead, 
you had selected a NP test, the default entry would be “AR spectral-GLS”. 

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you 
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dia-
log will give you a choice between using Newey-West or Andrews automatic bandwidth 
selection methods, or providing a user specified bandwidth. If, instead, you choose one of 
the AR spectral density estimation methods (AR Spectral - OLS, AR Spectral - OLS 
detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose from vari-
ous automatic lag length selection methods (using information criteria) or to provide a 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(TBILL) 
Method: Least Squares 
Date: 02/07/02   Time: 12:29 
Sample: 1953:03 1971:07 
Included observations: 221 

Variable Coefficient Std. Error t-Statistic Prob. 

TBILL(-1) -0.022951 0.016192 -1.417410 0.1578 
D(TBILL(-1)) -0.203330 0.067007 -3.034470 0.0027 

C 0.088398 0.056934 1.552626 0.1220 

R-squared 0.053856     Mean dependent var 0.013826 
Adjusted R-squared 0.045175     S.D. dependent var 0.379758 
S.E. of regression 0.371081     Akaike info criterion 0.868688 
Sum squared resid 30.01882     Schwarz criterion 0.914817 
Log likelihood -92.99005     F-statistic 6.204410 
Durbin-Watson stat 1.976361     Prob(F-statistic) 0.002395 

f0

f0
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user specified lag length. See “Automatic Bandwidth and Lag Length Selection” on page 16 
of the User’s Guide.

Once you have chosen the appropriate settings for your test, click on the OK button. 
EViews reports the test statistic along with output from the corresponding test regression. 
In addition, EViews reports the estimate of the frequency zero spectrum  (labeled as the 
“HAC corrected variance”) as well as the uncorrected estimate of the residual variance 
(where applicable). Running a PP test using the TBILL series yields:

As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series 
at conventional significance levels.

Note that your test output will differ somewhat for alternative test specifications. For 
example, the KPSS output only provides the asymptotic critical values tabulated by KPSS:

Similarly, the NP test output will contain results for all four test statistics, along with the 
NP tabulated critical values.

A word of caution. You should note that the critical values reported by EViews are valid 
only for unit root tests of a data series, and will be invalid if the series is based on esti-
mated values. For example, Engle and Granger (1987) proposed a two-step method to test 

f0

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Bandwidth: 3.82 (Andrews using Bartlett kernel) 

   Adj. t-Stat   Prob.* 

Phillips-Perron test statistic -1.519035  0.5223 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 
     

Residual variance (no correction)  0.141569 
HAC corrected variance (Bartlett kernel)  0.107615 

Null Hypothesis: TBILL is stationary 
Exogenous: Constant 
Bandwidth: 11 (Newey-West Fixed using Bartlett kernel) 

    LM-Stat. 

Kwiatkowski-Phillips-Schmidt-Shin test statistic  1.537310 
Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 
  10% level   0.347000 

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  
     

Residual variance (no correction)  2.415060 
HAC corrected variance (Bartlett kernel)  26.11028 
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for cointegration. The test amounts to testing for a unit root in the residuals of a first stage 
regression. Since these residuals are estimates of the disturbance term, the asymptotic dis-
tribution of the test statistic differs from the one for ordinary series. The correct critical val-
ues for a subset of the tests may be found in Davidson and MacKinnon (1993, Table 20.2).

Basic Unit Root Theory

The following discussion outlines the basic features of unit root tests. By necessity, the dis-
cussion will be brief. Users who require detail should consult the original sources and 
standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamil-
ton, 1994, Chapter 17, and Hayashi, 2000, Chapter 9).

Consider a simple AR(1) process:

, (1.1)

where  are optional exogenous regressors which may consist of constant, or a constant 
and trend,  and  are parameters to be estimated, and the  are assumed to be white 
noise. If ,  is a nonstationary series and the variance of  increases with time and 
approaches infinity. If ,  is a (trend-)stationary series. Thus, the hypothesis of 
(trend-)stationarity can be evaluated by testing whether the absolute value of  is strictly 
less than one. 

The unit root tests that EViews provides generally test the null hypothesis  
against the one-sided alternative . In some cases, the null is tested against a 
point alternative. In contrast, the KPSS Lagrange Multiplier test evaluates the null of 

 against the alternative .

The Augmented Dickey-Fuller (ADF) Test

The standard DF test is carried out by estimating Equation (1.1) after subtracting  
from both sides of the equation:

, (1.2)

where . The null and alternative hypotheses may be written as

(1.3)

and evaluated using the conventional -ratio for :

(1.4)

where  is the estimate of , and  is the coefficient standard error.

yt ρyt 1− xt′δ εt+ +=

xt
ρ δ εt

ρ 1≥ y y
ρ 1< y

ρ

H0: ρ 1=
H1: ρ 1<

H0: ρ 1< H1: ρ 1=

yt 1−

yt∆ αyt 1− xt′δ εt+ +=

α ρ 1−=

H0: α 0=

H1: α 0<

t α

tα α� se α�( )( )⁄=

α� α se α�( )
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Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic 
does not follow the conventional Student’s t-distribution, and they derive asymptotic 
results and simulate critical values for various test and sample sizes. More recently, 
MacKinnon (1991, 1996) implements a much larger set of simulations than those tabulated 
by Dickey and Fuller. In addition, MacKinnon estimates response surfaces for the simula-
tion results, permitting the calculation of Dickey-Fuller critical values and -values for 
arbitrary sample sizes. The more recent MacKinnon critical value calculations are used by 
EViews in constructing test output.

The simple Dickey-Fuller unit root test described above is valid only if the series is an 
AR(1) process. If the series is correlated at higher order lags, the assumption of white noise 
disturbances  is violated. The Augmented Dickey-Fuller (ADF) test constructs a paramet-
ric correction for higher-order correlation by assuming that the  series follows an AR( ) 
process and adding  lagged difference terms of the dependent variable  to the right-
hand side of the test regression:

. (1.5)

This augmented specification is then used to test (1.3) using the -ratio (1.4). An impor-
tant result obtained by Fuller is that the asymptotic distribution of the -ratio for  is 
independent of the number of lagged first differences included in the ADF regression. 
Moreover, while the assumption that  follows an autoregressive (AR) process may seem 
restrictive, Said and Dickey (1984) demonstrate that the ADF test is asymptotically valid in 
the presence of a moving average (MA) component, provided that sufficient lagged differ-
ence terms are included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose 
whether to include exogenous variables in the test regression. You have the choice of 
including a constant, a constant and a linear time trend, or neither, in the test regression. 
One approach would be to run the test with both a constant and a linear trend since the 
other two cases are just special cases of this more general specification. However, includ-
ing irrelevant regressors in the regression will reduce the power of the test to reject the null 
of a unit root. The standard recommendation is to choose a specification that is a plausible 
description of the data under both the null and alternative hypotheses. See, Hamilton 
(1994a, p. 501) for discussion.

Second, you will have to specify the number of lagged difference terms (which we will 
term the “lag length”) to be added to the test regression (0 yields the standard DF test; 
integers greater than 0 correspond to ADF tests). The usual (though not particularly use-
ful) advice is to include a number of lags sufficient to remove serial correlation in the 
residuals. EViews provides both automatic and manual lag length selection options. For 
details, see “Automatic Bandwidth and Lag Length Selection” beginning on page 16.

p

εt
y p

p y

yt∆ αyt 1− xt′δ β1 yt 1−∆ β2 yt 2−∆ … βp yt p−∆ vt+ + + + + +=

t

t α

y
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Dickey-Fuller Test with GLS Detrending (DFGLS)

As noted above, you may elect to include a constant, or a constant and a linear time trend, 
in your ADF test regression. For these two cases, ERS (1996) propose a simple modification 
of the ADF tests in which the data are detrended so that explanatory variables are “taken 
out” of the data prior to running the test regression.

ERS define a quasi-difference of  that depends on the value  representing the specific 
point alternative against which we wish to test the null:

(1.6)

Next, consider an OLS regression of the quasi-differenced data  on the quasi-dif-
ferenced :

(1.7)

where  contains either a constant, or a constant and trend, and let  be the OLS esti-
mates from this regression.

All that we need now is a value for . ERS recommend the use of , where

(1.8)

We now define the GLS detrended data,  using the estimates associated with the :

(1.9)

Then the DFGLS test involves estimating the standard ADF test equation, (1.5), after sub-
stituting the GLS detrended  for the original :

(1.10)

Note that since the  are detrended, we do not include the  in the DFGLS test equa-
tion. As with the ADF test, we consider the -ratio for  from this test equation.

While the DFGLS -ratio follows a Dickey-Fuller (no constant) distribution in the constant 
only case, the asymptotic distribution differs when you include both a constant and trend. 
ERS (1996, Table 1, p. 825) simulate the critical values of the test statistic in this latter set-
ting for . Thus, the EViews lower tail critical values use the 
MacKinnon simulations for the constant only case, but are interpolated from the ERS simu-
lated values for the constant and trend case. The null hypothesis is rejected for values that 
fall below these critical values.

yt a

d yt a( )
yt
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


=
if t 1=
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a a a=

a
1 7 T⁄−
1 13.5 T⁄−




=
if xt 1{ }=

if xt 1 t,{ }=

yt
d

a

yt
d

yt xt′δ� a( )−≡

yt
d

yt

yt
d∆ αyt 1−

d
β1 yt 1−

d∆ … βpyt p−
d

vt+ + + +=

yt
d

xt
t α�

t

T 50 100 200 ∞, , ,{ }=



12—Chapter 1. Unit Root Tests
The Phillips-Perron (PP) Test

Phillips and Perron (1988) propose an alternative (nonparametric) method of controlling 
for serial correlation when testing for a unit root. The PP method estimates the non-aug-
mented DF test equation (1.2), and modifies the -ratio of the  coefficient so that serial 
correlation does not affect the asymptotic distribution of the test statistic. The PP test is 
based on the statistic:

(1.11)

where  is the estimate, and  the -ratio of ,  is coefficient standard error, and 
 is the standard error of the test regression. In addition,  is a consistent estimate of the 

error variance in (1.2) (calculated as , where  is the number of regressors). 
The remaining term, , is an estimator of the residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First, you must 
choose whether to include a constant, a constant and a linear time trend, or neither, in the 
test regression. Second, you will have to choose a method for estimating . EViews sup-
ports estimators for  based on kernel-based sum-of-covariances, or on autoregressive 
spectral density estimation. See “Frequency Zero Spectrum Estimation” beginning on 
page 14 for details.

The asymptotic distribution of the PP modified -ratio is the same as that of the ADF sta-
tistic. EViews reports MacKinnon lower-tail critical and p-values for this test.

The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test

The KPSS (1992) test differs from the other unit root tests described here in that the series 
 is assumed to be (trend-) stationary under the null. The KPSS statistic is based on the 

the residuals from the OLS regression of  on the exogenous variables :

(1.12)

The LM statistic is be defined as:

(1.13)

where , is an estimator of the residual spectrum at frequency zero and where  is a 
cumulative residual function:

(1.14)

based on the residuals . We point out that the estimator of  used in 
this calculation differs from the estimator for  used by GLS detrending since it is based on 
a regression involving the original data, and not on the quasi-differenced data.

t α

t�α tα
γ0
f0
����� 
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2f0
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To specify the KPSS test, you must specify the set of exogenous regressors  and a 
method for estimating  .

The reported critical values for the LM test statistic are based upon the asymptotic results 
presented in KPSS (Table 1, p. 166).

Elliot, Rothenberg, and Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equa-
tions (1.7). Define the residuals from (1.7) as , and let 

 be the sum-of-squared residuals function. The ERS (feasible) point 
optimal test statistic of the null that  against the alternative that , is then 
defined as

(1.15)

where , is an estimator of the residual spectrum at frequency zero.

To compute the ERS test you must specify the set of exogenous regressors  and a 
method for estimating .

Critical values for the ERS test statistic are computed by interpolating the simulation 
results provided by ERS (1996, Table 1, p. 825) for .

Ng and Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended 
data . These test statistics are modified forms of Phillips and Perron  and  statis-
tics, the Bhargava (1986)  statistic, and the ERS Point Optimal statistic. First, define the 
term:

(1.16)

The GLS-detrended modified statistics may then be written as

(1.17)
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(1.18)

The NP tests require a specification for  and a choice of method for estimating 

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistent estimate of the residual 
spectrum at frequency zero. EViews supports two classes of estimators for : kernel-
based sum-of-covariances estimators, and autoregressive spectral density estimators.

Kernel Sum-of-Covariances Estimation

The kernel-based estimator of the frequency zero spectrum is based on a weighted sum of 
the autocovariances, with the weights are defined by a kernel function. The estimator 
takes the form

(1.19)

where  is a bandwidth parameter,  is a kernel function, and where , the j-th sam-
ple autocovariance of the residuals , is defined as

 (1.20)

Note that the residuals  that EViews uses in estimating the autocovariance functions in 
(1.20) will differ depending on the specified unit root test:

EViews supports the following kernel functions:

Unit root test Source of  residuals for kernel estimator

ADF, DFGLS not applicable.

PP, ERS Point 
Optimal, NP

residuals from the Dickey-Fuller test equation, (1.2).

KPSS residuals from the OLS test equation, (1.12).
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The properties of these kernels are described in Andrews (1991).

As with most kernel estimators, the choice of the bandwidth parameter  is of consider-
able importance. EViews allows you to specify a fixed parameter, or to have EViews select 
one using a data-dependent method. Automatic bandwidth parameter selection is dis-
cussed in “Automatic Bandwidth and Lag Length Selection” beginning on page 16.

Autoregressive Spectral Density Estimator

The autoregressive spectral density estimator at frequency zero is based upon the residual 
variance and estimated coefficients from the auxiliary regression:

(1.21)

EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS 
detrending, corresponding to difference choices for the data . The following table sum-
marizes the auxiliary equation estimated by the various AR spectral density estimators:

where  are the coefficient estimates from the regression defined in (1.7).

The AR spectral estimator of the frequency zero spectrum is defined as:

(1.22)
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where  is the residual variance, and  are the estimates from (1.21). We 
note here that EViews uses the non-degree-of-freedom estimator of the residual variance. 
As a result, spectral estimates computed in EViews may differ slightly from those obtained 
from other sources. Moreover, the estimator of the variance differs conceptually from the 
estimator  used in computing the -ratios used in ADF and PP test statistics. 

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference 
terms in the auxiliary equation. You may either specify a fixed parameter, or have EViews 
automatically select one based on an information criterion. Automatic lag length selection 
is examined in “Automatic Bandwidth and Lag Length Selection” on page 16.

Default  Estimation Settings

By default, EViews will choose the estimator of  used by the authors of a given test 
specification. You may, of course, override the default settings and choose from either fam-
ily of estimation methods. The default settings are listed below:

Automatic Bandwidth and Lag Length Selection

There are three distinct situations in which EViews can automatically compute a band-
width or a lag length parameter. 

The first situation occurs when you are selecting the bandwidth parameter  for the ker-
nel-based estimators of . For the kernel estimators, EViews provides you with the option 
of using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth 
parameter methods. For those familiar with the Newey-West procedure, we note that 
EViews uses the lag selection parameter formulae given in the corresponding first lines of 
Table II-C. The Andrews method is based on an AR(1) specification. See the original 
sources for details. 

The latter two situations occur when the unit root test requires estimation of a regression 
with a parametric correction for serial correlation as in the ADF and DFGLS test equation 
regressions, and in the AR spectral estimator for . In both of these settings,  lagged 
difference terms are added to a regression equation. The automatic selection methods 
choose  (less than the specified maximum) to minimize one of the following criteria:

Unit root test Frequency zero spectrum default method

ADF, DFGLS not applicable

PP, KPSS Kernel (Bartlett) sum-of-covariances

ERS Point Optimal AR spectral regression (OLS)

NP AR spectral regression (GLS-detrended)

σ� u
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where the modification factor  is computed as

(1.23)

for , when computing the ADF test equation, and for  as defined in “Autore-
gressive Spectral Density Estimator” on page 15, when estimating . NP (2001) propose 
and examine the modified criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to 
the lag length. By default, EViews chooses a maximum lag of 

(1.24)

but you may substitute any positive integer value.

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.

Information criterion Definition

Akaike (AIC)

Schwarz (SIC)

Hannan-Quinn (HQ)

Modified AIC (MAIC)

Modified SIC (MSIC)

Modified Hannan-Quinn 
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Chapter 2.  System Instrumental Variables

In EViews 4.1, the new @stackinst statement provides a new way of specifying 
instruments for systems of equations that allows for cross-equations on the projec-
tions of variables on instruments. Previously, all instrumental variables projections in 
systems were performed on an equation-by-equation basis. You can now stack your 
equations and instruments prior to performing the projection. The easy-to-use syntax 
provides you with full control over the instrument stacking so that you may combine 
the earlier ordinary instrument and new stacked instrument specifications. 

Specifying Instruments in Systems

If you plan to estimate your system using two-stage least squares, three-stage least 
squares, or GMM, you must specify the instrumental variables to be used in estima-
tion. There are several ways to specify your instruments, with the appropriate form 
depending on whether you wish to have identical instruments in each equation, and 
whether you wish to compute the projections on an equation-by-equation basis, or 
whether you wish to compute a restricted projection using the stacked system.

In the simplest (default) case, EViews will form your instrumental variable projec-
tions on an equation-by-equation basis. If you prefer to think of this process as a two-
step (2SLS) procedure, the first-stage regression of the variables in your model on the 
instruments will be run separately for each equation. 

In this setting, there are two ways to specify your instruments. If you would like to 
use identical instruments in every equations, you should include a line beginning 
with the keyword “@INST” or “INST”, followed by a list of all the exogenous vari-
ables to be used as instruments. For example, the line

@inst gdp(-1 to -4) x gov

instructs EViews to use these six variables as instruments for all of the equations in 
the system. System estimation will involve a separate projection for each equation in 
your system. 

You may also specify different instruments for each equation by appending an 
“@”-sign at the end of the equation, followed by a list of instruments for that equa-
tion. For example, 

cs = c(1)+c(2)*gdp+c(3)*cs(-1) @ cs(-1) inv(-1) gov

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov
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The first equation uses CS(-1), INV(-1), GOV, and a constant as instruments, while the sec-
ond equation uses GDP(-1), GOV, and a constant as instruments.

Lastly, you can mix the two methods. Any equation without individually specified instru-
ments will use the instruments specified by the @inst statement. The system

@inst gdp(-1 to -4) x gov

cs = c(1)+c(2)*gdp+c(3)*cs(-1) 

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

will use the instruments GDP(-1), GDP(-2), GDP(-3), GDP(-4), X, GOV, and C, for the CS 
equation, but only GDP(-1), GOV, and C, for the INV equation.

As noted above, the EViews default behavior is to perform the instrumental variables pro-
jection on an equation-by-equation basis. You may, however, wish to perform the projec-
tions on the stacked system. Notably, where the number of instruments is large, relative to 
the number of observations, stacking the equations and instruments prior to performing 
the projection may be the only feasible way to compute 2SLS estimates.

To designate instruments for a stacked projection, you should use the @stackinst state-
ment (note: this statement is only available for systems estimated by 2SLS or 3SLS; it is not 
available for systems estimated using GMM). 

In a @stackinst statement, the “@STACKINST” keyword should be followed by a list of 
stacked instrument specifications. Each specification is a comma delimited list of series 
enclosed in parentheses (one per equation), describing the instruments to be constrained 
in a stacked specification.

For example, the following @stackinst specification creates two instruments in a three 
equation model:

@stackinst (z1,z2,z3) (m1,m1,m1)

This statement instructs EViews to form two stacked instruments, one by stacking the sep-
arate series Z1, Z2, and Z3, and the other formed by stacking M1 three times. The first-
stage instrumental variables projection is then of the variables in the stacked system on the 
stacked instruments.

When working with systems that have a large number of equations, the above syntax may 
be unwieldy. For these cases, EViews provides a couple of shortcuts. First, for instruments 
that are identical in all equations, you may us an “*” after the comma to instruct EViews to 
repeat the specified series. Thus, the above statement is equivalent to



Specifying Instruments in Systems—21
@stackinst (z1,z2,z3) (m1,*)

Second, for non-identical instruments, you may specify a set of stacked instruments using 
an EViews group object, so long as the number of variables in the group is equal to the 
number of equations in the system. Thus, if you create a group Z with

group z z1 z2 z3

the above statement can be simplified to:

@stackinst z (m1,*)

You can, of course, combine ordinary instrument and stacked instrument specifications. 
This situation is equivalent to having common and equation specific coefficients for vari-
ables in your system. Simply think of the stacked instruments as representing common 
(coefficient) instruments, and ordinary instruments as representing equation specific (coef-
ficient) instruments. For example, consider the system given by

@stackinst (z1,z2,z3) (m1,*)

@inst ia 

y1 = c(1)*x1

y2 = c(1)*x2

y3 = c(1)*x3 @ ic

The stacked instruments for this specification may be represented as:

(2.1)

so it is easy to see that this specification is equivalent to the following stacked specification

@stackinst (z1, z2, z3) (m1, *) (ia, 0, 0) (0, ia, 0) (0, 0, ia) 

(0, 0, ic)

since the common instrument specification

@inst ia 

is equivalent to

@stackinst (ia, 0, 0) (0, ia, 0) (0, 0, ia) 

Additional Comments

• If you include a “C” in the stacked instrument list, it will not be included in the indi-
vidual equations. If you do not include the “C” as a stacked instrument, it will be 
included as an instrument in every equation, whether specified explicitly or not. 

Z1 M1 IA 0 0 0
Z2 M1 0 IA 0 0
Z3 M1 0 0 IA IC
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• You should list all exogenous right-hand side variables as instruments for a given 
equation.

• Identification requires that there should be at least as many instruments (including 
the constant) in each equation as there are right-hand side variables in that equa-
tion.

• The @stackinst statement is only available for estimation by 2SLS and 3SLS. It is 
not currently supported for GMM.

• If you estimate your system using a method that does not use instruments, all instru-
ment specification lines will be ignored. 



Chapter 3.  State Space Modeling

EViews 4.1 extends the features of the sspace object in two distinct ways. 

First, extensions to the state space syntax in EViews 4.1 allow you to write the error 
term for any equation as a linear combination of named errors. This syntax allows 
users to specify, more naturally, a wide range of important models.

Second, new sspace object data members give you access to output matrices contain-
ing intermediate calculations from the Kalman filter.

Specifying Errors and Variances in a Sspace

While EViews always adds an implicit error term to each equation in an equation or 
system object, the handling of error terms differs in a sspace object. In a sspace 
object, the equation specifications in a signal or state equation do not contain error 
terms unless specified explicitly.

The easiest way to add an error to a state space equation is to specify an implied error 
term using its variance. You can simply add an error variance expression, consisting 
of the keyword “VAR” followed by an assignment statement (all enclosed in square 
brackets), to the existing equation:

@signal y = c(1) + sv1 + sv2 + [var = 1]

@state sv1 = sv1(-1) + [var = exp(c(2))]

@state sv2 = c(3) + c(4)*sv2(-1) + [var = exp(c(2)*x)]

The specified variance may be a known constant value, or it can be an expression 
containing unknown parameters to be estimated. You may also build time-variation 
into the variances using a series expression. Variance expressions may not, however, 
contain state or signal variables.

While straightfoward, this direct variance specification method does not admit corre-
lation between errors in different equations (by default, EViews assumes that the 
covariance between error terms is 0). If you require a more flexible variance struc-
ture, you will need to use the “named error” approach to define named errors with 
variances and covariances, and then to use these named errors as parts of expres-
sions in the signal and state equations. 

The first step of this general approach is to define your named errors. You may 
declare a named error by including a line with the keyword “@ENAME” followed by 
the name of the error:
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@ename e1

@ename e2

Once declared, a named error may enter linearly into state and signal equations. In this 
manner, one can build correlation between the equation errors. For example, the errors in 
the state and signal equations in 

y = c(1) + sv1*x1 + e1

@state sv1 = sv1(-1) + e2 + c(2)*e1

@ename e1

@ename e2

are, in general, correlated since the named error E1 appears in both equations.

In the special case where a named error is the only error in a given equation, you can both 
declare and use the named residual by adding an error expression consisting of keyword 
“ENAME” followed by an assignment and a name identifier.

y = c(1) + sv1*x1 + [ename = e1]

@state sv1 = sv1(-1) + [ename = e2]

The final step in building a general error structure is to define the variances and covari-
ances associated with your named errors. You should include a sspace line comprised of 
the keyword “@EVAR” followed by an assignment statement for the variance of the error 
or the covariance between two errors:

@evar cov(e1, e2) = c(2)

@evar var(e1) = exp(c(3))

@evar var(e2) = exp(c(4))*x

The syntax for the @EVAR assignment statements should be self-explanatory. Simply indi-
cate whether the term is a variance or covariance, identify the error(s), and enter the spec-
ification for the variance or covariance. There should be a separate line for each named 
error covariance or variance that you wish to specify. If an error term is named, but there 
are no corresponding “VAR=” or @EVAR specifications, the missing variance or covari-
ance specifications will remain at the default values of “NA” and “0”, respectively. 

As you might expect, in the special case where an equation contains a single error term, 
you may combine the named error and direct variance assignment statements:

@state sv1 = sv1(-1) + [ename = e1, var = exp(c(3))]

@state sv2 = sv2(-1) + [ename = e2, var = exp(c(4))]

@evar cov(e1, e2) = c(5)
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Accessing Sspace Filter and Smoother Results

The following functions allow you to extract the filter and smoother results for the estima-
tion sample and place them in matrix objects. In some cases, the results overlap those 
available thorough the sspace procs, while in other cases, the matrix results are the only 
way to obtain the results. 

Note also that since the computations are only for the estimation sample, the one-step-
ahead predicted state and state standard error values will not match the final values dis-
played in the estimation output. The latter are the predicted values for the first out-of-esti-
mation sample period.

@pred_signal........matrix or vector of one-step ahead predicted signals.

@pred_signalcov...matrix where every row is the @vech of the one-step ahead pre-
dicted signal covariance.

@pred_signalse.....matrix or vector of the standard errors of the one-step ahead pre-
dicted signals.

@pred_err ............matrix or vector of one-step ahead prediction errors.

@pred_errcov .......matrix where every row is the @vech of the one-step ahead pre-
diction error covariance.

@pred_errcovinv ..matrix where every row is the @vech of the inverse of the one-
step ahead prediction error covariance.

@pred_errse .........matrix or vector of the standard errors of the one-step ahead pre-
diction errors.

@pred_errstd ........matrix or vector of standardized one-step ahead prediction errors.

@pred_state..........matrix or vector of one-step ahead predicted states.

@pred_statecov.....matrix where each row is the @vech of the one-step ahead predi-
cated state covariance.

@pred_statese.......matrix or vector of the standard errors of the one-step ahead pre-
dicted states.

@pred_stateerr .....matrix or vector of one-step ahead predicted state errors.

@curr_err.............matrix or vector of filtered error estimates.

@curr_gain...........matrix or vector where each row is the @vec of the Kalman gain.

@curr_state ..........matrix or vector of filtered states.

@curr_statecov .....matrix where every row is the @vech of the filtered state covari-
ance.

@curr_statese .......matrix or vector of the standard errors of the filtered state est-
mates.

@sm_signal ..........matrix or vector of smoothed signal estimates.
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@sm_signalcov .... matrix where every row is the @vech of the smoothed signal cova-
riance.

@sm_signalse ...... matrix or vector of the standard errors of the smoothed signals.

@sm_signalerr ..... matrix or vector of smoothed signal error estimates.

@sm_signalerrcov matrix where every row is the @vech of the smoothed signal error 
covariance.

@sm_signalerrse .. matrix or vector of the standard errors of the smoothed signal 
error.

@sm_signalerrstd. matrix or vector of the standardized smoothed signal errors.

@sm_state ........... matrix or vector of smoothed states.

@sm_statecov ...... matrix where each row is the @vech of the smoothed state covari-
ances.

@sm_statese ........ matrix or vector of the standard errors of the smoothed state.

@sm_stateerr ....... matrix or vector of the smoothed state errors.

@sm_stateerrcov .. matrix where each row is the @vech of the smoothed state error 
covariance.

@sm_stateerrse .... matrix or vector of the standard errors of the smoothed state 
errors.

@sm_stateerrstd... matrix or vector of the standardized smoothed state errors .

@sm_crosserrcov . matrix where each row is the @vec of the smoothed error cross-
covariance.

Sspace Examples

The one-step-ahed state values and variances from SS01 may be saved using

vector ss_state=ss01.@pred_state

matrix ss_statecov=ss01.@pred_statecov
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Extended Model Commands

EViews 4.1 extends the set of modelling tools to aid you in model building and solu-
tion:

• New options features provide greater control over the model solution proce-
dure. You can now initialize solution values and excluded variables, control ter-
minal conditions for forward solution, and set roundoff conditions from the 
command line. See solveopt (p. 39).

• Expanded programming language support has been provided for working with 
scenarios. Updated documentation and notes regarding backward compatibility 
are provided in the entry for scenario (p. 37).

• You may now unlink selected dependent variable links using commands. For 
details, see unlink (p. 42).

• EViews 4.1 now allows you to force recompilation of a model and the updating 
of all model and equation links from the command line. See update (p. 43).

Enhanced Wald Tests

The Wald test computes a test statistic based on the unrestricted regression. The 
Wald statistic measures how close the unrestricted estimates come to satisfying the 
restrictions under the null hypothesis. If the restrictions are in fact true, then the 
unrestricted estimates should come close to satisfying the restrictions. 

The output of the Wald test has been expanded to provide additional information 
about the restrictions and the restriction variances. As a result, you can use the 
expanded output to find the standard errors of functions of your coefficients. 

How to Perform Wald Coefficient Tests

To demonstrate the calculation of Wald tests in EViews, we consider simple exam-
ples. Suppose a Cobb-Douglas production function has been estimated in the form:

, (4.1)

where ,  and  denote value-added output and the inputs of capital and labor 
respectively. The hypothesis of constant returns to scale is then tested by the restric-
tion: .

Qlog A α Llog β Klog ε+ + +=

Q K L

α β+ 1=
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Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971 
provided the following result:

The sum of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to 
determine whether the difference is statistically relevant, we will conduct the hypothesis 
test of constant returns.

To carry out a Wald test, choose View/Coefficient Tests/Wald-Coefficient Restrictions… 
from the equation toolbar. Enter the restrictions into the edit box, with multiple coefficient 
restrictions separated by commas. The restrictions should be expressed as equations 
involving the estimated coefficients and constants (you may not include series names). 
The coefficients should be referred to as C(1), C(2), and so on, unless you have used a dif-
ferent coefficient vector in estimation.

To test the hypothesis of constant returns to scale, type the following restriction in the dia-
log box:

c(2) + c(3) = 1

and click OK. EViews reports the following result of the Wald test:

Dependent Variable: LOG(Q)
Method: Least Squares
Date: 08/11/97  Time: 16:56
Sample: 1947 1971
Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.

C -2.327939  0.410601 -5.669595  0.0000
LOG(L)  1.591175  0.167740  9.485970  0.0000
LOG(K)  0.239604  0.105390  2.273498  0.0331

R-squared  0.983672   Mean dependent var  4.767586
Adjusted R-squared  0.982187   S.D. dependent var  0.326086
S.E. of regression  0.043521   Akaike info criterion -3.318997
Sum squared resid  0.041669   Schwarz criterion -3.172732
Log likelihood  44.48746   F-statistic  662.6819
Durbin-Watson stat  0.637300   Prob(F-statistic)  0.000000

Wald Test: 
Equation: EQ1 

Test Statistic Value df Probability 

Chi-square 120.0177 1 0.0000 
F-statistic 120.0177 (1, 22) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2) + C(3) 0.830779 0.075834 

Restrictions are linear in coefficients. 
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EViews reports an F-statistic and a Chi-square statistic with associated p-values. See “Wald 
Test Details” on page 30 for a discussion of these statistics. In addition, EViews reports the 
value of the normalized (homogeneous) restriction and an associated standard error. In 
this example, we have a single linear restriction so the two test statistics are identical, with 
the p-value indicating that we can decisively reject the null hypothesis of constant returns 
to scale.

To test more than one restriction, separate the restrictions by commas. For example, to test 
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity 
with respect to capital is 1/3, enter the restrictions as

c(2)=2/3, c(3)=1/3

and EViews reports

Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix).

As an example of a nonlinear model with a nonlinear restriction, we estimate a production 
function of the form

(4.2)

and test the constant elasticity of substitution (CES) production function restriction 
. This is an example of a nonlinear restriction. To estimate the (unrestricted) 

nonlinear model, you should select Quick/Estimate Equation… and then enter the follow-
ing specification:

log(q) = c(1) + c(2)*log(c(3)*k^c(4)+(1-c(3))*l^c(4))

To test the nonlinear restriction, choose View/Coefficient Tests/Wald-Coefficient Restric-
tions… from the equation toolbar and type the following restriction in the Wald Test dialog 
box:

Wald Test: 
Equation: EQ1 

Test Statistic Value df Probability 

Chi-square 53.99105 2 0.0000 
F-statistic 26.99553 (2, 22) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-2/3 + C(2) 0.924508 0.167740 
-1/3 + C(1) -2.661272 0.410601 

Restrictions are linear in coefficients. 

 

Qlog β1 β2 β3K
β4 1 β3−( )Lβ4+( )log ε+ +=

β2 1 β4⁄=
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c(2)=1/c(4)

The results are presented below:

Since this is a nonlinear equation, we focus on the Chi-square statistic which fails to reject 
the null hypothesis. Note that EViews reports that it used the delta method (with analytic 
derivatives) to compute the Wald restriction variance for the nonlinear restriction.

It is well-known that nonlinear Wald tests are not invariant to the way that you specify the 
nonlinear restrictions. In this example, the nonlinear restriction  may equiva-
lently be written as  or  (for nonzero  and ). For example, 
entering the restriction as

c(2)*c(4)=1

yields:

so that the test now decisively rejects the null hypothesis. We hasten to add that type of 
inconsistency is not unique to EViews, but is a more general property of the Wald test. 
Unfortunately, there does not seem to be a general solution to this problem (see Davidson 
and MacKinnon, 1993, Chapter 13).

Wald Test Details

Consider a general nonlinear regression model

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)=1/C(4)

F-statistic  0.028507 Probability  0.867539
Chi-square  0.028507 Probability  0.865923

Wald Test: 
Equation: EQ2 

Test Statistic Value df Probability 

Chi-square 0.028508 1 0.8659 
F-statistic 0.028508 (1, 21) 0.8675 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

C(2) - 1/C(4) 1.292163 7.653088 

Delta method computed using analytic derivatives. 

β2 1 β4⁄=
β2β4 1= β4 1 β2⁄= β2 β4

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)*C(4)=1

F-statistic  104.5599 Probability  0.000000
Chi-square  104.5599 Probability  0.000000

Wald Test: 
Equation: EQ2 

Test Statistic Value df Probability 

Chi-square 104.5599 1 0.0000 
F-statistic 104.5599 (1, 21) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2)*C(4) 0.835330 0.081691 

Delta method computed using analytic derivatives. 
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(4.3)

where  and  are -vectors and  is a -vector of parameters to be estimated. Any 
restrictions on the parameters can be written as 

, (4.4)

where  is a smooth function, , imposing  restrictions on . The Wald sta-
tistic is then computed as

 (4.5)

where  is the number of observations and  is the vector of unrestricted parameter esti-
mates, and where  is an estimate of the  covariance. In the standard regression case,  
is given by

(4.6)

where  is the vector of unrestricted residuals, and  is the usual estimator of the unre-
stricted residual variance, , but the estimator of  may differ. For 
example,  may be a robust variance matrix estimator computing using White or Newey-
West techniques.

More formally, under the null hypothesis , the Wald statistic has an asymptotic  
distribution, where  is the number of restrictions under . 

For the textbook case of a linear regression model

(4.7)

and linear restrictions

, (4.8)

where  is a known  matrix, and  is a -vector, respectively. The Wald statistic in 
Equation (4.5) reduces to

, (4.9)

which is asymptotically distributed as  under . 

If we further assume that the errors  are independent and identically normally distrib-
uted, we have an exact, finite sample F-statistic:

, (4.10)
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where  is the vector of residuals from the restricted regression. In this case, the F-statis-
tic compares the residual sum of squares computed with and without the restrictions 
imposed. 

We remind you that the expression for the finite sample F-statistic in (4.10) is for standard 
linear regression, and is not valid for more general cases (nonlinear models, ARMA specifi-
cations, or equations where the variances are estimated using other methods such as 
Newey-West or White). In non-standard settings, the reported F-statistic (which EViews 
always computes computes as ), does not possess the desired finite-sample proper-
ties. In these cases, while asymptotically valid, the F-statistic results should be viewed as 
illustrative and for comparison purposes only.

Quantiles by Classification

The “Stats by Classification” view of a series now allows you to compute arbitrary quan-
tiles of your data by group. An options menu allows you to choose the quantile definition. 
Command support for this new calculation is documented in statby (p. 40).

Stats by Classification

This view allows you to compute the descriptive statistics of a series for various subgroups 
of your sample. If you select View/Descriptive Statistics/Stats by Classification… a Sta-
tistics by Classification dialog box appears:

The Statistics option at the left 
allows you to choose the statis-
tics you wish to compute.

In the Series/Group for Classify 
field enter series or group names 
that define your subgroups. You 
must type at least one name. 
Descriptive statistics will be cal-
culated for each unique value of 
the classification series unless 
binning is selected. You may type 
more than one series or group 
name; separate each name by a space. The quantile statistic requires an additional argu-
ment (a number between 0 and 1) corresponding to the desired quantile value. Click on 
the options button to choose between various methods of computing the quantiles.

By default, EViews excludes observations which have missing values for any of the classi-
fication series. To treat NA values as a valid subgroup, select the NA handling option.

u�

W q⁄
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The Layout option allows you to control the display of the statistics. Table layout arrays the 
statistics in cells of two-way tables. The list form displays the statistics in a single line for 
each classification group.

The Table and List options are only relevant if you use more than one series as a classifier. 

The Sparse Labels option suppresses repeating labels in list mode to make the display less 
cluttered.

The Row Margins, Column Margins, and Table Margins instruct EViews to compute sta-
tistics for aggregates of your subgroups. For example, if you classify your sample on the 
basis of gender and age, EViews will compute the statistics for each gender/age combina-
tion. If you elect to compute the marginal statistics, EViews will also compute statistics 
corresponding to each gender, and each age subgroup.

A classification may result in a large number of distinct values with very small cell sizes. 
By default, EViews automatically groups observations to maintain moderate cell sizes and 
numbers of categories. Group into Bins provides you with control over this process. 

Setting the # of values option bins tell EViews to group data if the classifier series takes 
more than the specified number of distinct values.

The Avg. count option bins the series if the average count for each distinct value of the 
classifier series is less than the specified number. 

The Max # of bins specifies the maximum number of subgroups to bin the series. Note 
that this number only provides you with approximate control over the number of bins.

The default setting is to bin the series into 5 subgroups if either the series takes more than 
100 distinct values or if the average count is less than 2. If you do not want to bin the 
series, unmark both options.

For example, consider the following stats by classification view in table form:
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The header indicates that the table cells are categorized by two series MARRIED and 
UNION. These two series are dummy variables that take only two values and no binning 
was made. If the series were binned, intervals rather than a number would be displayed in 
the margins. 

The upper left cell of the table indicates the reported statistics in each cell; in this case the 
median and the number of observations are reported in each cell. The row and column 
labeled All correspond to the Row Margin and Column Margin options described above.

Here is the same view in list form with sparse labels:

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97   Time: 01:11
Sample: 1 1000
Included observations: 1000

Mean
Median
Std. Dev. UNION
Obs. 0 1 All

0  1.993829  2.387019  2.052972
 1.906575  2.409131  2.014903
 0.574636  0.395838  0.568689

 305  54  359

MARRIED 1  2.368924  2.492371  2.400123
 2.327278  2.525729  2.397895
 0.557405  0.380441  0.520910

 479  162  641

All  2.223001  2.466033  2.275496
 2.197225  2.500525  2.302585
 0.592757  0.386134  0.563464

 784  216  1000

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97   Time: 01:08
Sample: 1 1000
Included observations: 1000

UNION MARRIED Mean Median Std. Dev. Obs.
0 0  1.993829  1.906575  0.574636  305

1  2.368924  2.327278  0.557405  479
All  2.223001  2.197225  0.592757  784

1 0  2.387019  2.409131  0.395838  54
1  2.492371  2.525729  0.380441  162
All  2.466033  2.500525  0.386134  216

All 0  2.052972  2.014903  0.568689  359
1  2.400123  2.397895  0.520910  641
All  2.275496  2.302585  0.563464  1000
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Added Functions

EViews 4.1 now supports a family of percentage change functions that complement the 
existing functions. These functions eliminate the need to rescale function values when 
working in percentage terms. In addition, we have added functions for computing base-10 
and arbitrary base logarithms.

Time Series Functions

Basic Mathematical Functions

@pc(x) one-period percentage 
change (in percent)

equals @pch(x)*100

@pch(x) one-period percentage 
change (in decimal)

@pca(x) one-period percentage 
change—annualized (in 
percent)

equals @pcha(x)*100

@pcha(x) one-period percentage 
change—annualized (in 
decimal)

where  is the lag associ-
ated with one-year ( ) 
for quarterly data, etc.).

@pcy(x) one-year percentage change 
(in percent)

equals @pchy(x)*100

@pchy(x) one-year percentage change 
(in decimal)

, 
where  is the lag associ-
ated with one-year 
( ) for annual data, 
etc.).

@log10(x) base-10 logarithm, 

@logx(x, b) base-b logarithm, 

X X 1−( )−( ) X 1−( )⁄

@pcha(x)
1 @pch x( )+( )n 1−= n

n 4=

X X n−( )−( ) X n−( )⁄
n

n 12=

log10 x( )
@log10(100) 2=

logb x( ) @log(256, 2) 8=
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Chapter 5.  Updated Command Entries

The following is an alphabetical listing of the commands, views, and procedures in EViews that 
have been updated for Version 4.1. 

Manage the model scenarios.

The scenario procedure is used to set the active and comparison scenarios for a model, to cre-
ate new scenarios, to initialize one scenario with settings from another scenario, to delete sce-
narios, and to change the variable aliasing associated with a scenario. 

Syntax

Model Proc: model_name.scenario(options) "name"

performs scenario options on a scenario given by the “name”. By default the scenario proce-
dure also sets the active scenario to the specified name.

Options

Examples

The command string

scenario Model Proc

c Set the comparison scenario to the named scenario.

n Create a new scenario with the specified name.

i=“name” Copy the Excludes and Overrides from the named sce-
nario.

d Delete the named scenario.

a=string Set the scenario alias string to be used when creating 
aliased variables (string is a 1 to 3 alphanumeric string 
to be used in creating aliased variables). If an under-
score is not specified, one will be added to the begin-
ning of the string. Examples: “_5”, “_T”, “S2”. The 
string “A” may not be used since it may conflict with 
add factor specifications.
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mod1.scenario "baseline"

sets the active scenario to the baseline, while

mod1.scenario(c) "actuals"

sets the comparison scenario to the actuals (warning: this will overwrite any historical 
data in the solution period). 

A newly created scenario will become the active scenario. Thus, 

mod1(n) "Peace Scenario"

creates a scenario called "Peace Scenario" and makes it the active scenario. The scenario 
will automatically be assigned a unique numeric alias. To change the alias, simply use the 
“a=” option:

mod1(a=_ps) "Peace Scenario"

changes the alias for “Peace Scenario” to “_PS” and makes this scenario the active sce-
nario.

The command:

mod1.scenario(n, a=w, i="Peace Scenario", c) "War Scenario"

creates a scenario called "War Scenario", initializes it with the Excludes and Overrides 
contained in "Peace Scenario", associates it with the alias "_W", and makes this scenario 
the comparison scenario.

mod1.scenario(i="Scenario 1") "Scenario 2"

copies the Excludes and Overrides in "Scenario 1" to "Scenario 2" and makes "Scenario 2" 
the active scenario.

Compatibility Notes

For backward compatibility with EViews 4.0, the option “a” may be used to set the com-
parison scenario, but is method not guaranteed to be supported in the future.)

In all of the arguments above the quotation marks around scenario name are currently 
optional. Support for the non-quoted names is provided for backward compatibility, but 
may be dropped in the future, thus

mod1.scenario Scenario 1

is currently valid, but may not be in future versions of EViews.
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Solve options for models. 

solveopt sets options for model solution but does not solve the model. The same options 
can be set directly in a solve procedure.

Syntax

Model Proc: model_name.solveopt(options) 

Options

solveopt Model Proc

s=arg 
(default = d)

Solution type: “d” (deterministic), “m” (stochastic – 
collect means only), “s” (stochastic – collect means and 
s.d.), “b” (stochastic – collect means and confidence 
bounds), “a” (stochastic – collect all; means, s.d. and 
confidence bounds).

d=arg 
(default = d)

Model solution dynamics: “d” (dynamic solution), “s” 
(static solution), “f” (fitted values – single equation 
solution).

m=integer 
(default=5000)

Maximum number of iterations for solution (maximum 
100,000).

c=number 
(default =1e-8)

Convergence criterion. Based upon the maximum 
change in any of the endogenous variables in the 
model. You may set a number between 1e-15 and 0.01.

r=integer 
(default=1000)

Number of stochastic repetitions (used with stochastic 
“s=” options).

b=number 
(default=.95)

Size of stochastic confidence intervals (used with sto-
chastic “s=” options).

a=arg 
(default = f)

Alternate scenario solution: “t” (true - solve both active 
and alternate scenario and collect deviations for sto-
chastic), “f” (false - solve only the active scenario).

o=arg 
(default = g)

Solution method: “g” (Gauss-Seidel), “e” (Gauss-Seidel 
with extended search/reduced step size), “n” (New-
ton), “m” (Newton with extended search/reduced step 
size).
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Basic statistics by classification. 

The statby view displays descriptive statistics for the elements of a series classified into 
categories by one or more other series.

Syntax

Series View: series_name.statby(options) classifier_name

Follow the series name with a period, the statby keyword, and a name (or a list of 
names) for the series or group by which to classify. The options control which statistics to 
display and in what form. By default, statby displays the means, standard deviations, 
and counts for the series.

Options

Options to control statistics to be displayed

i=arg Set initial (starting) solution values: “a” (actuals), “p” 
(values in period prior to start of solution period).

n=arg 
(default = t)

NA behavior: “t” (true - stop on “NA” values), “f” 
(false - do not stop when encountering “NA” values). 
Only applies to deterministic solution; EViews will 
always stop on “NA” values in stochastic solution.

e=arg Excluded variables initialized from actuals: “t” (true), 
“f” (false).

t=arg Terminal condition for forward solution: “u” (user sup-
plied), “l” (constant level), “d” (constant difference), 
“g” (constant growth rate).

g=arg 
(default = 7)

Number of digits to round solution: an integer value 
(number of digits), “n” (do not roundoff).

z=arg 
(default = 1e-7)

Zero value: a positive number below which the solution 
(absolute value) is set to zero), “n” (do not set to zero).

statby Series View

sum Display sums.

med Display medians.

max Display maxima.

min Display minima.
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Options to control layout

Options to control binning

quant=arg 
(default=.5)

Display quantile with value given by the argument.

q=arg 
(default=“r”)

Compute quantiles using the definition: “b” (Blom), “r” 
(Rankit-Cleveland), “o” (simple fraction), “t” (Tukey), 
“v” (van der Waerden).

skew Display skewness.

kurt Display kurtosis.

na Display counts of NAs.

nomean Do not display means.

nostd Do not display standard deviations.

nocount Do not display counts.

l Display in list mode (for more than one classifier).

nor Do not display row margin statistics. 

noc Do not display column margin statistics. 

nom Do not display table margin statistics (unconditional 
tables); for more than two classifier series.

nos Do not display sub-margin totals in list mode; only used 
with “l” option and more than two classifier series. 

sp Display sparse labels; only with list mode option, “l”.

dropna (default), 
keepna

[Drop/Keep] NA as a category.

v=integer 
(default=100)

Bin categories if classification series take on more than 
the specified number of distinct values. 

nov Do not bin based on the number of values of the classi-
fication series.

a=number 
(default=2)

Bin categories if average cell count is less than the 
specified number. 

noa Do not bin based on the average cell count.

b=integer 
(default=5)

Set maximum number of binned categories.
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Other options

Examples

wage.statby(max,min) sex race

displays the mean, standard deviation, max, and min of the series WAGE by (possibly 
binned) values of SEX and RACE. 

Cross-references

See “Stats by Classification” on page 32.

Break model links.

Breaks equation links in the model. Follow the name of the model object by a period, the 
keyword unlink, and a specification for the variables to unlink. 

Syntax

Model Proc: object.unlink spec

where spec is 

Note: If a link is to another Model or a System object, then more than one endogenous 
variable may be associated with the link. If the spec contains any of the endogenous vari-
ables in a linked Model or System, EViews will break the link for all of the variables found 
in the link.

Examples

mod1.unlink @all

mod2.unlink z1 z2

unlinks all of equations in MOD1, and all of the variables associated with the links for Z1 
and Z2 in MOD2.

p Print the descriptive statistics table.

unlink Model Proc

@all Unlinks all equations in the model.

list of 
endogenous vars

Unlink equations for the listed endogenous variables.
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Update model specification.

Recompiles the model and updates all links.

Syntax

Model Proc: model.update

Follow the name of the model object by a period and the keyword update.

Examples

mod1.update

recompiles and updates all of the links in MOD1.

Unit root tests.

Carries out the Augmented Dickey-Fuller (ADF), GLS detrended Dickey-Fuller (DFGLS), 
Phillips-Perron (PP), Kwiatkowski, et. al. (KPSS), Elliot, Rothenberg, and Stock (ERS) Point 
Optimal, or Ng and Perron (NP) tests for a unit root in the series (or its first or second dif-
ference). 

Syntax

Command: uroot(options) series_name 

Series View: series_name.uroot(options) 

You should enter the keyword uroot followed by the series name, or the series name fol-
lowed by a period and the keyword uroot.

Options

Specify the test type using one of the following keywords:

update Model Proc

uroot Command | Series View

adf (default) Augmented Dickey-Fuller.

dfgls GLS detrended Dickey-Fuller (Elliot, Rothenberg, and 
Stock).

pp Phillips-Perron.
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Specify the exogenous variables in the test equation from the following: 

For backward compatibility, the shortened forms “c”, “t”, and “n” are presently supported. 
However for future compatiblity we recommend that you use the longer forms.

Other Options:

kpss Kwiatkowski, Phillips, Schmidt, and Shin.

ers Elliot, Rothenberg, and Stock (Point Optimal).

np Ng and Perron.

const (default) Include a constant in the test equation.

trend Include a constant and a linear time trend in the test 
equation.

none Do not include a constant or time trend (only available 
for the ADF and PP tests).

dif=integer 
(default=0)

Order of differencing of the series prior to running the 
test. Valid values are {0, 1, 2}.

hac=arg Method of estimating the frequency zero spectrum: “bt” 
(Bartlett kernel), “pr” (Parzen kernel), “qs” (Quadratic 
Spectral kernel), “ar” (AR spectral), “ardt (AR spectral - 
OLS detrended data), “argls” (AR spectral - GLS 
detrended data).

The default settings are test specific: “bt” for PP and 
KPSS, “ar” for ERS, “argls” for NP.

Applicable to PP, KPSS, ERS and NP tests.

band = arg, b=arg 
(default = “nw”)

Method of selecting the bandwidth: “nw” (Newey-West 
automatic variable bandwidth selection), “a” (Andrews 
automatic selection), “number” (user specified band-
width).

Applicable to PP, KPSS, ERS, ERS and NP tests when 
using kernel sums-of-covariances estimators (where 
“hac=” is one of {bt, pz, qs}).
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Examples

The command

gnp.uroot(adf,const,lag=3,save=mout) 

performs an ADF test on the series GDP with the test equation including a constant term 
and three lagged first-difference terms. Intermediate results are stored in the matrix MOUT.

ip.uroot(dfgls,trend,info=sic) 

runs the DFGLS unit root test on the series IP with a constant and a trend. The number of 
lagged difference terms is selected automatically using the Schwarz criterion.

unemp.uroot(kpss,const,hac=pr,b=2.3)

runs the KPSS test on the series UNEMP The null hypothesis is that the series is stationary 
around a constant mean. The frequency zero spectrum is estimated using kernel methods 
(with a Parzen kernel), and a bandwidth of 2.3.

lag=arg 
(default = “a”)

Method of selecting lag length (number of first differ-
ence terms) to be included in the regression: “a” (auto-
matic information criterion based selection), “integer” 
(user specified lag length)

Applicable to ADF and DFGLS tests, and for the other 
tests when using AR spectral density estimators (where 
“hac=” is one of {ar, ardt, argls}).

info=arg

(default = “maic”)

Information criterion to use when computing automatic 
lag length selection: “aic” (Akaike), “sic” (Schwarz), 
“hqc” (Hannan-Quinn), “msaic” (Modified Akaike), 
“msic” (Modified Schwarz), “mhqc” (Modified Han-
nan-Quinn).

Applicable to ADF and DFGLS tests, and for other tests 
when using AR spectral density estimators (where 
“hac=” is one of {ar, ardt, argls}).

maxlag=integer Maximum lag length to consider when performing 
automatic lag length selection (default = 

)). 

Applicable to ADF and DFGLS tests, and for other tests 
when using AR spectral density estimators (where 
“hac=” is one of {ar, ardt, argls}).

p Print output from the test.

int 12 T 100⁄( )1 4⁄
� �
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sp500.uroot(np,hac=ardt,info=maic)

runs the NP test on the series SP500. The frequency zero spectrum is estimated using the 
OLS AR spectral estimator with the lag length automatically selected using the modified 
AIC.

Cross-references

See “Unit Root Tests” on page 5  for further discussion.
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