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Preface

This manual describes the interactive use of EViews, a program for statistical and econo-
metric analysis, and forecasting. For details on the EViews command language, as well as a 
description of the programming and matrix languages, we refer you to the companion vol-
ume—the EViews Command and Programming Reference.

The manual is divided into five parts:

• Part I. “EViews Fundamentals” beginning on page 3—introduces you to the basics of 
using EViews. In addition to a discussion of basic Windows operations, we explain 
how to use EViews to manage your data.

• Part II. “Basic Data Analysis” beginning on page 149—describes the use of EViews 
to perform basic analysis of data and to draw graphs and create tables describing 
your data.

• Part III. “Basic Single Equation Analysis” on page 257—discusses standard regres-
sion analysis: ordinary least squares, weighted least squares, two-stage least 
squares, nonlinear least squares, time series analysis, specification testing and fore-
casting.

• Part IV. “Advanced Single Equation Analysis” beginning on page 395—documents 
autoregressive conditional heteroskedasticity (ARCH) models, discrete and limited 
dependent variable models, and user specified likelihood estimation.

• Part V. “Multiple Equation Analysis” on page 493—describes estimation and fore-
casting with systems of equations, vector autoregression and error correction mod-
els, state space models, pooled cross-section/time series data, and model solution.

You should not feel a need to read the manual from cover-to-cover in order to use EViews. 
We recommend, however, that you glance at most of Part I to gain familiarity with the 
basic concepts and operation of the program. At a minimum, you should look over Chap-
ters 1–3, especially the extended demonstration in Chapter 2, “A Demonstration”, on 
page 15.
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Part I.  EViews Fundamentals

The following chapters document the fundamentals of working with EViews:

• The first three chapters contain introductory material. Chapter 1, “Introduc-
tion” describes the basics of installing EViews. Chapter 3, “EViews Basics” pro-
vides an overview of EViews basics. Chapter 2, “A Demonstration” guides you 
through a typical EViews session, introducing you to the basics of working 
with EViews.

• Chapter 4, “Basic Data Handling” and Chapter 5, “Working with Data” docu-
ment the basics of working with data. We describe methods of getting your 
data into EViews, using the built-in tools to manipulate and manage your data, 
and exporting your data into spreadsheets, text files and other Windows appli-
cations.

• Chapter 6, “EViews Databases” contains more advanced material, describing 
the EViews database features and advanced data handling features.

We recommend that you read through most of the material in this section before 
beginning serious work with EViews. In particular, we suggest that you read the first 
three chapters prior to using the program. 
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Chapter 1.  Introduction

What Is EViews?

EViews provides sophisticated data analysis, regression, and forecasting tools on Win-
dows-based computers. With EViews you can quickly develop a statistical relation from 
your data and then use the relation to forecast future values of the data. Areas where 
EViews can be useful include: scientific data analysis and evaluation, financial analysis, 
macroeconomic forecasting, simulation, sales forecasting, and cost analysis.

EViews is a new version of a set of tools for manipulating time series data originally devel-
oped in the Time Series Processor software for large computers. The immediate predeces-
sor of EViews was MicroTSP, first released in 1981. Though EViews was developed by 
economists and most of its uses are in economics, there is nothing in its design that limits 
its usefulness to economic time series. Even quite large cross-section projects can be han-
dled in EViews.

EViews provides convenient visual ways to enter data series from the keyboard or from 
disk files, to create new series from existing ones, to display and print series, and to carry 
out statistical analysis of the relationships among series.

EViews takes advantage of the visual features of modern Windows software. You can use 
your mouse to guide the operation with standard Windows menus and dialogs. Results 
appear in windows and can be manipulated with standard Windows techniques.

Alternatively, you may use EViews’ powerful command and batch processing language. 
You can enter and edit commands in the command window. You can create and store the 
commands in programs that document your research project for later execution.

Installing and Running EViews

Your copy of EViews 4.0 is distributed on a single CD-ROM. Installation is straightfor-
ward—simply insert your CD-ROM disc into a drive, wait briefly while the disc spins-up 
and the setup program launches, and then simply follow the prompts. If the disc does not 
spin-up, navigate to the drive using Windows Explorer, then click on the Setup icon.

We have also provided more detailed installation instructions in a separate sheet that you 
should have received with your EViews package. If you did not receive this sheet, please 
contact our office, or see our website: http://www.eviews.com.
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Windows Basics

In this section, we provide a brief discussion of some useful techniques, concepts, and 
conventions that we will use in this manual. We urge those who desire more detail to 
obtain one of the (many) very good books on Windows.

The Mouse

EViews uses both buttons of the standard Windows mouse. Unless otherwise specified, 
when we say that you should click on an item, we mean a single click of the left mouse-
button. Double click means to click the left mouse-button twice in rapid succession. We 
will often refer to dragging with the mouse; this means that you should click and hold the 
left mouse-button down while moving the mouse.

Window Control

As you work, you may find that you wish to change the size of a window or temporarily 
move a window out of the way. Alternatively, a window may not be large enough to dis-
play all of your output, so that you want to move within the window in order to see rele-
vant items. Windows provides you with methods for performing each of these tasks.

Changing the Active Window

When working in Windows, you may find that you have a number of open windows on 
your screen. The active (top-most) window is easily identified since its title bar will gener-
ally differ (in color and/or intensity) from the inactive windows. You can make a window 
active by clicking anywhere in the window, or by clicking on the word Window in the 
main menu, and selecting the window by clicking on its name.

Scrolling 

Windows provides both horizontal and vertical scroll bars so that you can view informa-
tion which does not fit inside the window (when all of the information in a window fits 
inside the viewable area, the scroll bars will be hidden).

The scroll box indicates the overall relative position of the window and the data. Here, the 
vertical scroll box is near the bottom, indicating that the window is showing the lower por-
tion of our data. The size of the box also changes to show you the relative sizes of the 
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amount of data in the window and the amount of data that is off screen. Here, the current 
display covers roughly half of the horizontal contents of the window.

Clicking on the up, down, left, or right scroll arrows on the scroll bar will scroll the display 
one line in that direction. Clicking on the scroll bar on either side of a scroll box moves the 
information one screen in that direction. 

If you hold down the mouse button while you click on or next to a scroll arrow, you will 
scroll continuously in the desired direction. To move quickly to any position in the win-
dow, drag the scroll box to the desired position. 

Minimize/Maximize/Restore/Close

There may be times when you wish to move EViews out of the way while you work in 
another Windows program. Or you may wish to make the EViews window as large as pos-
sible by using the entire display area. 

In the upper right-hand corner of each window, you will see a set of buttons which control 
the window display:

By clicking on the middle (Restore/Maximize) button, you can toggle between using your 
entire display area for the window, and using the original window size. Maximize (1)  
uses your entire monitor display for the application window. Restore (2)returns the win-
dow to its original size, allowing you to view multiple windows. If you are already using 
the entire display area for your window, the middle button will display the icon for restor-
ing the window, otherwise it will display the icon for using the full screen area.

You can minimize your window by clicking on the minimize button in the upper right-
hand corner of the window. To restore a program that has been minimized, click on the 
icon in your taskbar.

Lastly, the close button provides you with a convenient method for closing the window. To 
close all of your open EViews windows, you may also select Window in the main menu, 
and either Close All, or Close All Objects.
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Moving and Resizing

You can move or change the size of the window (if it is not maximized or minimized). To 
move your window, simply click on the title bar (the top of your application window) and 
drag the window to a new location. To resize, simply put the cursor on one of the four 
sides or corners of the window. The cursor will change to a double arrow. Drag the win-
dow to the desired size, then release the mouse button.

Selecting and Opening Items

To select a single item, you should place the pointer over the item and single click. The 
item will now be highlighted. If you change your mind, you can change your selection by 
clicking on a different item, or you can cancel your selection by clicking on an area of the 
window where there are no items.

You can also select multiple items:

• To select sequential items, click on the first item you want to select, then drag the 
cursor to the last item you want to select and release the mouse button. All of the 
items will be selected. Alternatively, you can click on the first item, then hold down 
the SHIFT key and click on the last item.

• To select non-sequential items, click on the first item you want to select, then while 
holding the CTRL key, click on each additional item.

• You can also use CTRL-click to “unselect” items which have already been selected. 
In some cases it may be easier first to select a set of sequential items and then to 
unselect individual items.

Double clicking on an item will usually open the item. If you have multiple items selected, 
you can double click anywhere in the highlighted area.

Menus and Dialogs

Windows commands are accessed via menus. Most applications contain their own set of 
menus, which are located on the menu bar along the top of the application window. There 
are generally drop-down menus associated with the items in the main menu bar.

For example, the main EViews menu contains:

 

Selecting File from this menu will open a drop-down menu containing additional com-
mands. We will describe the EViews menus in greater detail in the coming sections.

There are a few conventions which Windows uses in its menus that are worth remember-
ing:
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• A grayed-out command means the command is not currently available.

• An ellipse (…) following the command means that a dialog box (prompting you for 
additional input) will appear before the command is executed.

• A right-triangle (8) means that additional (cascading) menus will appear if you 
select this item.

• A check mark (a) indicates that the option listed in the menu is currently in effect. 
If you select the item again, the option will no longer be in effect and the check 
mark will be removed. This behavior will be referred to as toggling.

• Most menu items contain underlined characters representing keyboard shortcuts. 
You can use the keyboard shortcuts to the commands by pressing the ALT key, and 
then the underlined character. For example, ALT-F in EViews brings up the File drop-
down menu.

• If you wish to close a menu without selecting an item, simply click on the menu 
name, or anywhere outside of the menu. Alternatively, you can press the ESC key.

We will often refer to entering information in dialogs. Dialogs are boxes that prompt for 
additional input when you select certain menu items. For example, when you select the 
menu item to run a regression, EViews opens a dialog prompting you for additional infor-
mation about the specification, and often suggests default values for arguments. You can 
always tell when a menu item opens a dialog by the ellipses in the drop-down menu entry.

The EViews Window

If the program is installed correctly, you should see the EViews window when you launch 
the program. This is what the EViews window looks like:
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You should familiarize yourself with the following main areas in the EViews window.

The Title Bar

The title bar, labeled EViews, is at the very top of the main window. When EViews is the 
active program in Windows, the title bar has a color and intensity that differs from the 
other windows (generally it is darker). When another program is active, the EViews title 
bar will be lighter. If another program is active, EViews may be made active by clicking 
anywhere in the EViews window or by using ALT-TAB to cycle between applications until 
the EViews window is active.

The Main Menu

Just below the title bar is the main menu. If you move the cursor to an entry in the main 
menu and click on the left mouse button, a drop-down menu will appear. Clicking on an 
entry in the drop-down menu selects the highlighted item.

For example, here we click on the Objects entry in the main menu to reveal a drop-down 
menu. Notice that some of the items in the drop-down menu are listed in black and others 
are in gray. In menus, black items may be executed while the gray items are not available. 
In this example, you cannot create a New Object or Store an object, but you can Print and 
View Options. We will explain this behavior in our discussion of “The Object Window” on 
page 46. 

The Command Window

Below the menu bar is an area called the command window. EViews commands may be 
typed in this window. The command is executed as soon as you hit ENTER. 
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The vertical bar in the 
command window is 
called the insertion point. 
It shows where the letters 
that you type on the key-
board will be placed. As 
with standard word pro-
cessors, if you have typed 
something in the command area, you can move the insertion point by pointing to the new 
location and clicking the mouse. If the insertion point is not visible, it probably means that 
the command window is not active; simply click anywhere in the command window to tell 
EViews that you wish to enter commands.

You can move the insertion point to previously executed commands, edit the existing com-
mand, and then press ENTER to execute the edited version of the command. 

The command window supports Windows cut-and-paste so that you can easily move text 
between the command window, other EViews text windows, and other Windows pro-
grams. The contents of the command area may also be saved directly into a text file for 
later use: make certain that the command window is active by clicking anywhere in the 
window, and then select File/Save As… from the main menu.

If you have entered more commands than will fit in your command window, EViews turns 
the window into a standard scrollable window. Simply use the scroll bar or up and down 
arrows on the right-hand side of the window to see various parts of the list of previously 
executed commands.

You may find that the default size of the command window is too large or small for your 
needs. You can resize the command window by placing the cursor at the bottom of the 
command window, holding down the mouse button and dragging the window up or down. 
Release the mouse button when the command window is the desired size. 

The Status Line

At the very bottom of the window is a status line which is divided into several sections.
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The left section will sometimes contain status messages sent to you by EViews. These sta-
tus messages can be cleared manually by clicking on the box at the far left of the status 
line. The next section shows the default directory that EViews will use to look for data and 
programs. The last two sections display the names of the default database and workfile. In 
later chapters, we will show you how to change both defaults.

The Work Area

The area in the middle of the window is the work area where EViews will display the vari-
ous object windows that it creates. Think of these windows as similar to the sheets of 
paper you might place on your desk as you work. The windows will overlap each other 
with the foremost window being in focus or active. Only the active window has a darkened 
titlebar. 

When a window is partly covered, you can bring it to the top by clicking on its titlebar or 
on a visible portion of the window. You can also cycle through the displayed windows by 
pressing the F6 or CTRL-TAB keys. 

Alternatively, you may select a window by clicking on the Window menu item, and select-
ing the desired name.

You can move a window by clicking on its title bar and dragging the window to a new loca-
tion. You can change the size of a window by clicking on any corner and dragging the cor-
ner to a new location.

Closing EViews

There are a number of ways to close EViews. You can always select File/Exit from the 
main menu, or you can press ALT-F4. Alternatively, you can click on the close box in the 
upper right-hand corner of the EViews window, or double click on the EViews icon in the 
upper left-hand corner of the window. If necessary, EViews will warn you and provide you 
with the opportunity to save any unsaved work. 

Where To Go For Help

The EViews Manuals

This User’s Guide describes how to use EViews to carry out your research. The earlier 
chapters deal with basic operations, the middle chapters cover basic econometric methods, 
and the later chapters describe more advanced methods.

Though we have tried to be complete, it is not possible to document every aspect of 
EViews. There are almost always several ways to do the same thing in EViews, and we can-
not describe them all. In fact, one of the strengths of the program is that you will undoubt-
edly discover alternative, and perhaps more efficient, ways to get your work done.
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Most of the User’s Guide explains the visual approach to using EViews. It describes how 
you can use your mouse to perform operations in EViews. To keep the explanations simple, 
we do not tell you about alternative ways to get your work done. For example, we will not 
remind you about the ALT- keyboard alternatives to using the mouse.

When we get to the discussion of the substantive statistical methods available in EViews, 
we will provide some technical information about the methods, and references to econo-
metrics textbooks and other sources for additional information.

The Help System

Almost all of the EViews documentation may be viewed from within EViews by using the 
help system. To access the EViews help system, simply go to the main menu and select 
Help.

Since EViews uses standard Windows Help, the on-line manual is fully searchable and 
hypertext linked. You can set bookmarks to frequently accessed pages, and annotate the 
on-line documentation with your own notes.

In addition, the Help system will contain updates to the documentation that were made 
after the manuals went to press.

The World Wide Web

To supplement the information provided in the manuals and the help system, we have set 
up information areas on the Web that you may access using your favorite browser. You can 
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find answers to common questions about installing, using, and getting the most out of 
EViews.

Another popular area is our Download Section, which contains on-line updates to EViews 
Version 4, sample data and programs, and much more. Your purchase of EViews provides 
you with much more than the enclosed program and printed documentation. As we make 
minor changes and revisions to the current version of EViews, we will post them on our 
web site for you to download. As a valued QMS customer, you are free to download 
updates to the current version as often as you wish.

So set a bookmark to our site and visit often; the address is:

http://www.eviews.com.

http://www.eviews.com


Chapter 2.  A Demonstration

In this chapter, we provide a demonstration of the basic features of EViews. The dem-
onstration is not meant to be a comprehensive description of the program. A full 
description of the program begins in Chapter 3.

This demo shows takes you through the following steps: 

• importing data into EViews from an Excel spreadsheet

• examining the data and performing simple statistical analysis

• using regression analysis to model and forecast a statistical relationship

• performing specification and hypothesis testing

• plotting results

Creating a Workfile and Importing Data

The first step in the project is to read the data into an EViews workfile. 

Before we describe the process of importing data, note that the demonstration data 
have been included in your EViews directory in both Excel spreadsheet and EViews 
workfile formats. If you wish to skip the discussion of importing data and go directly 
to the analysis part of the demonstration, you may load these data by selecting File/
Open/Workfile… and opening DEMO.WF1.

To create a workfile to hold your data, select File/New/Workfile…, which opens a 
dialog box where you will provide information about your data:

For our example, quarterly data are observed from the first quarter of 1952 to the end 
of 1996. You should set the workfile frequency to quarterly, and specify the start date 
1952:1, and the end date 1996:4.
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Once you have filled out the dialog, click on the OK button. EViews will create an untitled 
workfile, and will display a workfile window.

The workfile window is described in detail in “The Workfile Window” on page 35. For 
now, notice that the workfile window displays two pairs of dates: one for the range of 
dates contained in the workfile, and the second for the current workfile sample. Note also 
that the workfile contains the coefficient vector C and the series RESID. All EViews work-
files will contain these two objects. 

The next step is to import data into the workfile. The data for the four variables used in the 
analysis have been provided in an Excel file named DEMO.XLS. The data in the DEMO.XLS 
file are arranged with each of the four series in columns, with names in the first row, and 
dates in the first column.

To read these data, click on Procs/Import/Read Text-Lotus-Excel….
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Locate the DEMO.XLS file (it should be in your EViews installation or “Example Files” 
directory) and double click on the file name. You can make finding the file a bit easier by 
choosing to display Excel.xls files from the Files of type combo box. 

EViews will open the Excel spreadsheet import dialog:

The default settings for order of data, upper-left data cell, and the sample to import should 
be appropriate for this Excel file. Since the names of the series are in the first row of the 
Excel file, you can simply enter the number of series (in this case you will want to enter 
“4”), in the Names for series or Number of series if name in file field of the dialog box. 
Click OK, and EViews will import the four series. These series will appear as icons in the 
workfile window:
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.

An alternative method of importing the data is to copy-and-paste the data from the Excel 
spreadsheet directly into EViews. This procedure is described in detail in Chapter 4, “Basic 
Data Handling”, on page 55. 

Verifying the Data

The first thing you should do after importing the data is to verify that the data have been 
read correctly. We will create a group object that allows us to examine all four series. Click 
on the name GDP in the workfile window, and then press CTRL and click on M1, PR, and 
RS. All four of the series should be highlighted:

Now place the cursor anywhere in the highlighted area and double click the left mouse 
button. EViews will open a popup menu providing you with several options:



Verifying the Data—19
Choose Open Group. EViews will create an untitled group object containing all four of the 
series. The default window for the group shows a spreadsheet view of the series:

You should compare the spreadsheet view with the top of the Excel worksheet to ensure 
that the first part of the data has been read correctly. You can use the scroll bars and scroll 
arrows on the right side of the window to verify the remainder of the data.

Once you are satisfied that the data are correct, you should save the workfile by clicking 
the Save button in the workfile window. A save dialog will open, prompting you for a 
workfile name and location. You should enter DEMO2, then click OK. EViews will save the 
workfile in the specified directory with the name DEMO2.WF1. A saved workfile can be 
opened later by selecting File/Open/Workfile… from the main menu.
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Examining the Data

We can use basic EViews tools to examine the data in your group object in a variety of 
ways. For example, if you select View/Multiple Graphs/Line from the group object tool-
bar, EViews displays line graphs of each of the series in the group:

You can select View/Descriptive Stats/Individual Samples to compute descriptive statis-
tics for each of the series in the group:
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or click on View/Correlations/Common Samples to display the correlation matrix of the 
four series:

We can also examine characteristics of the individual series. Since our regression analysis 
will be expressed in logarithms, we will work the log of M1. Select Quick/Show… then 
enter log(m1), and click OK. EViews will open a series window for LOG(M1). 

Now select View/Descriptive Statistics/Histogram and Stats from the series toolbar to 
display the descriptive statistics for LOG(M1):

We can construct a smoothed version of the histogram by selecting View/Distribution 
Graphs/Kernel Density… and clicking on OK to accept the default options:
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Estimating a Regression Model

We now estimate a regression model for M1 using data over the period from 1952:1–1992:4 
and use this estimated regression to construct forecasts over the period 1993:1–2003:4. The 
model specification is 

(2.1)

where log(M1) is the logarithm of the money supply, log(GDP) is the log of income, RS is 
the short term interest rate, and  is the log first difference of the price level (the 
approximate rate of inflation).

To estimate the model, we will create an equation object. Select Quick from the main 
menu and choose Estimate Equation… to open the estimation dialog. Enter the following 
equation specification:

M1t( )log β1 β2 GDPt β3RSt β4 PRt εt+log∆+ +log+=

PR( )log∆
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Here we list the name of the dependent variable, followed by the names of each of the 
regressors, separated by spaces. We use expressions involving the functions log and dlog to 
represent the log transformations of M1 and GDP, and the difference of the log transforma-
tion for PR. The built-in series name C stands for the constant in the regression.

The dialog is initially set to estimate the equation using the LS - Least Squares method for 
the Sample 1952:1 1996:4. You should change the Sample to 1952:1 1992:4 to estimate the 
equation for the subsample of observations.

Click OK to estimate the equation using least squares and to display the regression results:

Note that the equation is estimated from 1952:2 to 1992:4 since one observation is dropped 
from the beginning of the estimation sample to account for the dlog difference term. The 
estimated coefficients are statistically significant, with t-statistic values well in excess of 2. 
The overall regression fit, as measured by the value, indicates a very tight fit. You can 
select View/Actual, Fitted, Residual/Graph in the equation toolbar to display a graph of 
the actual and fitted values for the dependent variable, along with the residuals: 

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 10/19/97   Time: 22:43
Sample(adjusted): 1952:2 1992:4
Included observations: 163 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C  1.312383  0.032199  40.75850  0.0000
LOG(GDP)  0.772035  0.006537  118.1092  0.0000

RS -0.020686  0.002516 -8.221196  0.0000
DLOG(PR) -2.572204  0.942556 -2.728967  0.0071

R-squared  0.993274     Mean dependent var  5.692279
Adjusted R-squared  0.993147     S.D. dependent var  0.670253
S.E. of regression  0.055485     Akaike info criterion -2.921176
Sum squared resid  0.489494     Schwarz criterion -2.845256
Log likelihood  242.0759     F-statistic  7826.904
Durbin-Watson stat  0.140967     Prob(F-statistic)  0.000000

R
2



24—Chapter 2. A Demonstration
Specification and Hypothesis Tests

We can use the estimated equation to perform hypothesis tests on the coefficients of the 
model. For example, to test the hypothesis that the coefficient on the price term is equal to 
2, we will perform a Wald test. First, determine the coefficient of interest by selecting 
View/Representations from the equation toolbar:

Note that the coefficients are assigned in the order that the variables appear in the specifi-
cation so that the coefficient for the PR term is labeled C(4). To test the restriction on C(4) 
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you should select View/Coefficient Tests/Wald–Coefficient Restrictions…, and enter the 
restriction c(4)=2. EViews will report the results of the Wald test:

The low probability values indicate that the null hypothesis that C(4)=2 is strongly 
rejected.

We should, however, be somewhat cautious of accepting this result without additional 
analysis. The low value of the Durbin-Watson statistic reported above is indicative of the 
presence of serial correlation in the residuals of the estimated equation. If uncorrected, 
serial correlation in the residuals will lead to incorrect estimates of the standard errors, and 
invalid statistical inference for the coefficients of the equation.

The Durbin-Watson statistic can be difficult to interpret. To perform a more general 
Breusch-Godfrey test for serial correlation in the residuals, select View/Residual Tests/
Serial Correlation LM Test… from the equation toolbar, and specify an order of serial cor-
relation to test against. Entering 1 yields a test against first-order serial correlation:

Wald Test: 
Equation: EQ01 

Test Statistic Value df Probability 

F-statistic 23.53081 (1, 159) 0.0000 
Chi-square 23.53081 1 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-2 + C(4) -4.572204 1.060945 

Restrictions are linear in coefficients. 
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The top part of the output presents the test statistics and associated probability values. The 
test regression used to carry out the test is reported below the statistics.

The statistic labeled “Obs*R-squared” is the LM test statistic for the null hypothesis of no 
serial correlation. The (effectively) zero probability value strongly indicates the presence of 
serial correlation in the residuals.

Modifying the Equation

The test results suggest that we need to modify our original specification to take account of 
the serial correlation. 

One approach is to include lags of the independent variables. To add variables to the exist-
ing equation, click on the Estimate button in the equation toolbar and edit the specifica-
tion to include lags for each of the original explanatory variables: 

log(m1) c log(gdp) rs dlog(pr) log(m1(-1)) log(gdp(-1)) rs(-1) 

dlog(pr(-1))

Note that lags are specified by including a negative number, enclosed in parentheses, fol-
lowing the series name. Click on OK to estimate the new specification and to display the 
results:

Breusch-Godfrey Serial Correlation LM Test:

F-statistic  813.0060     Probability  0.000000
Obs*R-squared  136.4770     Probability  0.000000

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 10/19/97   Time: 22:45

Variable Coefficient Std. Error t-Statistic Prob.

C -0.006355  0.013031 -0.487683  0.6265
LOG(GDP)  0.000997  0.002645  0.376929  0.7067

RS -0.000567  0.001018 -0.556748  0.5785
DLOG(PR)  0.404143  0.381676  1.058864  0.2913
RESID(-1)  0.920306  0.032276  28.51326  0.0000

R-squared  0.837282     Mean dependent var  1.21E-15
Adjusted R-squared  0.833163     S.D. dependent var  0.054969
S.E. of regression  0.022452     Akaike info criterion -4.724644
Sum squared resid  0.079649     Schwarz criterion -4.629744
Log likelihood  390.0585     F-statistic  203.2515
Durbin-Watson stat  1.770965     Prob(F-statistic)  0.000000
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Note that EViews has automatically adjusted the estimation sample to accommodate the 
additional lagged variables. We will save this equation in the workfile for later use. Press 
the Name button in the toolbar and name the equation EQLAGS.

Another common method of accounting for serial correlation is to include autoregressive 
(AR) and/or moving average (MA) terms in the equation. To estimate the model with an 
AR(1) error specification, you should make a copy of the previous equation by clicking 
Objects/Copy Object… EViews will create a new untitled equation containing all of the 
information from the previous equation. Press Estimate on the toolbar of the copy and 
modify the specification to read

log(m1) c log(gdp) rs dlog(pr) ar(1)

This specification removes the lagged terms, replacing them with an AR(1) specification. 
Click OK. EViews will report the estimation results, including the estimated first-order 
autoregressive coefficient of the error term: 

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 10/19/97   Time: 22:48
Sample(adjusted): 1952:3 1992:4
Included observations: 162 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C  0.071297  0.028248  2.523949  0.0126
LOG(GDP)  0.320338  0.118186  2.710453  0.0075

RS -0.005222  0.001469 -3.554801  0.0005
DLOG(PR)  0.038615  0.341619  0.113036  0.9101

LOG(M1(-1))  0.926640  0.020319  45.60375  0.0000
LOG(GDP(-1)) -0.257364  0.123264 -2.087910  0.0385

RS(-1)  0.002604  0.001574  1.654429  0.1001
DLOG(PR(-1)) -0.071650  0.347403 -0.206246  0.8369

R-squared  0.999604     Mean dependent var  5.697490
Adjusted R-squared  0.999586     S.D. dependent var  0.669011
S.E. of regression  0.013611     Akaike info criterion -5.707729
Sum squared resid  0.028531     Schwarz criterion -5.555255
Log likelihood  470.3261     F-statistic  55543.30
Durbin-Watson stat  2.393764     Prob(F-statistic)  0.000000
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The fit of the AR(1) model is roughly comparable to the lag model, but the somewhat 
higher values for both the Akaike and the Schwarz information criteria indicate that the 
previous lag model should be preferred. We will work with the lag model for the remainder 
of the demonstration.

Forecasting from an Estimated Equation

We have been working with a subset of our data, so that we may compare forecasts based 
upon this model with the actual data for the post-estimation sample 1993:1–1996:4.

Click on the Forecast button in the EQLAGS equation toolbar to open the forecast dialog:
 

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 10/19/97   Time: 22:52
Sample(adjusted): 1952:3 1992:4
Included observations: 162 after adjusting endpoints
Convergence achieved after 14 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C  1.050340  0.328390  3.198453  0.0017
LOG(GDP)  0.794929  0.049342  16.11057  0.0000

RS -0.007395  0.001457 -5.075131  0.0000
DLOG(PR) -0.008019  0.348689 -0.022998  0.9817

AR(1)  0.968100  0.018190  53.22283  0.0000

R-squared  0.999526     Mean dependent var  5.697490
Adjusted R-squared  0.999514     S.D. dependent var  0.669011
S.E. of regression  0.014751     Akaike info criterion -5.564584
Sum squared resid  0.034164     Schwarz criterion -5.469288
Log likelihood  455.7313     F-statistic  82748.93
Durbin-Watson stat  2.164265     Prob(F-statistic)  0.000000
Inverted AR Roots        .97
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We set the forecast sample to 1993:1–1996:4 and provide names for both the forecasts and 
forecast standard errors so both will be saved as series in the workfile. The forecasted val-
ues will be saved in M1_F and the forecast standard errors will be saved in M1_SE.

Note also that we have elected to forecast the log of M1, not the level, and that we request 
both graphical and forecast evaluation output. The Dynamic option constructs the forecast 
for the sample period using only information available at the beginning of 1993:1. When 
you click OK, EViews displays both a graph of the forecasts, and statistics evaluating the 
quality of the fit to the actual data:

   

We can also plot the actual values of log(M1) against the forecasted values and the 
(approximate) 95% confidence intervals for the forecasts. First, we will create a new group 
containing these values by Quick/Show… and filling out the dialog as follows:

There are three expressions in the dialog. The first two represent the upper and lower 
bounds of the (approximate) 95% forecast interval as computed by evaluating the values 
of the point forecasts plus and minus two times the standard errors. The last expression 
represents the actual values of the dependent variable.
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When you click OK, EViews opens an untitled group window containing a spreadsheet 
view of the data. Before plotting the data, we will change the sample of observations so 
that we only plot data for the forecast sample. Select Quick/Sample… or click on the Sam-
ple button in the group toolbar, and change the sample to include only the forecast period:

To plot the data for the forecast period, select View/Graph/Line from the group window:

The actual values of log(M1) are within the forecast interval for most of the forecast 
period, but fall below the lower bound of the 95% confidence interval beginning in 1996:1.

For an alternate view of these data, you can select View/Graph/Error Bar, which displays 
the graph as follows:
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This graph clearly shows that the forecasts of log(M1) over-predict the actual values in the 
last four quarters of the forecast period.

We may also choose to examine forecasts of the level of M1. Click on the Forecast button 
in the EQLAGS equation toolbar to open the forecast dialog, and select M1 under the Fore-
cast of option. Enter a new name to hold the forecasts, say M1LEVEL, and click OK. 
EViews will present a graph of the forecast of the level of M1, along with the asymmetric 
confidence intervals for this forecast:

Additional Issues

It is worth noting that the example analysis above should be used for illustrative purposes 
only since there are a number of problems with the specification. 

For one, there is quite a bit of serial correlation remaining in the EQLAGS specification. A 
test of serial correlation in the new equation (by selecting View/Residual Tests/Serial 
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Correlation LM Test…, and entering 1 for the number of lags) rejects the null hypothesis 
of no serial correlation in the reformulated equation:

Furthermore, there is evidence of autoregressive conditional heteroskedasticity (ARCH) in 
the residuals. Select View/Residual Tests/ARCH LM Test… and accept the default of 1. 
The ARCH test results strongly suggest the presence of ARCH in the residuals:

In addition to serial correlation and ARCH, there is an even more fundamental problem 
with the above specification since, as the graphs attest, log(M1) exhibits a pronounced 
upward trend. We can, and should, perform tests for a unit root in this series. The presence 
of a unit root will indicate the need for further analysis.

Display the series window by clicking on Window and selecting the LOG(M1) series win-
dow from the menu. If the series window is closed, you may open a new window by 
selecting Quick/Show…, entering log(m1), and clicking OK. 

To perform an Augmented Dickey-Fuller (ADF) test for nonstationarity of this series, select 
View/Unit Root Test… and click on OK to accept the default options. EViews will perform 
an ADF test and display the test results:

The ADF test statistic value is greater than the critical values so that we cannot reject the 
null hypothesis of a unit root. The presence of a unit root suggests that we need to adopt 
more sophisticated statistical models. These techniques are discussed in Chapter 13, “Time 
Series Regression” and Chapter 20, “Vector Autoregression and Error Correction Models” 
of the User’s Guidewhich deal with time series and vector autoregression and vector error 
correction specifications, respecively.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic  7.880369     Probability  0.005648
Obs*R-squared  7.935212     Probability  0.004848

ARCH Test:

F-statistic  11.21965     Probability  0.001011
Obs*R-squared  10.61196     Probability  0.001124

ADF Test Statistic  0.665471     1%   Critical Value* -3.4688
    5%   Critical Value -2.8780
    10% Critical Value -2.5755

*MacKinnon critical values for rejection of hypothesis of a unit root.
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Managing the variety of tasks associated with your work can be a complex and time-con-
suming process. Fortunately, EViews’ innovative design takes much of the effort out of 
organizing your work, allowing you to concentrate on the substance of your project.

At the heart of the EViews design is the concept of an object. In brief, objects are collec-
tions of related information and operations that are bundled together into an easy-to-use 
unit. Virtually all of your work in EViews will involve using and manipulating various 
objects.

EViews holds all of its objects in object containers. You can think of object containers as 
filing cabinets or organizers for the various objects with which you are working. The most 
important object container in EViews is the workfile. 

The remainder of this chapter describes basic techniques for working with objects and 
workfiles. While you may at first find the idea of objects to be a bit foreign, the basic con-
cepts are easy to master and will form the foundation for your work in EViews. But don’t 
feel that you have to understand all of the concepts the first time through. If you wish, you 
can begin working with EViews immediately, developing an intuitive understanding of 
objects and workfiles as you go.

Subsequent chapters will provide a more detailed description of working with the various 
types of objects and other types of object containers.

Workfile Basics

All EViews objects must be held in an object container. Most of your work in EViews will 
involve objects that are contained in a workfile, so your first step in any project will be to 
create a new workfile or to load an existing workfile into memory. 

Workfiles have two primary characteristics. First, they are held in RAM for quick access to 
the objects in the workfile. Second, workfiles are characterized by a frequency and a range. 

Data are often sampled at equally spaced intervals, or frequencies, over calendar time. 
When you set a workfile frequency, you tell EViews about the intervals between observa-
tions in your data. EViews has dated workfile types which handle annual, semi-annual, 
quarterly, monthly, weekly, and daily (5- or 7-day) data. For these workfiles, EViews will 
use all available calendar information in organizing and managing your data. For example, 
for weekly and daily data, EViews knows that some years contain days in each of 53 
weeks, and that some years have 366 days, and will adjust the number of observations in a 
year accordingly.
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Undated or irregular workfiles are those in which no dates are associated with the data—
observations are simply numbered consecutively. Undated data are typically used for 
cross-section data, but may also be used in any situation where data are sampled irregu-
larly; for example, financial data with frequent and irregular breaks for non-trading days.

The workfile range is a pair of dates or observation numbers describing the first and last 
observation to be held in the workfile. 

Creating a Workfile

Your first step in EViews will usually be to create a workfile. One way to create a workfile 
is to click File/New/Workfile… and then to provide the necessary dialog information.

Select the appropriate frequency and enter the 
information for the workfile range. The Start 
date is the earliest date or observation you 
plan to use in the project and the End date is 
the latest date or observation. Don’t worry if 
you don’t know the exact start and end date; if 
you later find that your workfile isn’t the right 
size, you can expand or contract the workfile 
range.

The rules for describing dates are quite simple:

• Annual: specify the year. Years from 1930–2029 may be identified using either 2 or 
4-digit identifiers (e.g. “97” or “1997”). All other years must be identified with full 
year identifiers (e.g. “1776”, “2040”, “9789” or “50234”). Note that since 2-digit 
identifiers are assumed to be in either the 20th or 21st century, EViews cannot han-
dle dates prior to A.D. 100.

• Quarterly: the year, followed by a colon or the letter “Q”, and then the quarter num-
ber. Examples: “1992:1”, “65:4”, “2002Q3”.

• Monthly: the year, followed by a colon or the letter “M”, and then the month num-
ber. Examples: “1956:1”, “1990M1”. 

• Semi-Annual: the year, followed by a colon or the letter “S”, and then either “1” or 
“2” to denote the period. Examples: “1992:1”, “2024S2”.

• Weekly and daily: by default, you should specify these dates as month number, fol-
lowed by a colon, followed by the day number, followed by a colon, followed by the 
year. Using the Options/Dates-Frequency… menu item, you can reverse the order of 
the day and month by switching to European notation. 
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For example, entering “8:10:97” indicates that you want your workfile to begin with 
August 10, 1997. If you have previously set your default date-frequency option to 
European notation, this date represents October 8, 1997.

With weekly data, the day of the week associated with the starting date determines 
the beginning of the week. In the examples above, the first observations would be 
the week running from Sunday, August 10 through Saturday, August 16, 1997, or the 
week running from Wednesday, October 8, through Tuesday, October 14, 1997. 

Alternatively, for quarterly, monthly, weekly, and daily data, you can enter just the year, 
and EViews will automatically specify the first and last observations for you.

In Appendix B, “Date Formats”, beginning on page 653 we discuss the specification of 
dates in EViews in greater detail.

After you have finished supplying the information about the type of workfile and clicked 
OK, you will see the workfile window:

Here we have specified a workfile 
which will contain quarterly data 
from the first quarter of 1955 
through the end of 1996. Since 
we have not yet saved the work-
file, it is UNTITLED.

Note that there are two icons in 
this newly created workfile. 
These icons represent the objects 
that are contained in every work-
file: a vector of coefficients, C, 
and a series of residuals, RESID. The little icon to the left identifies the type of object, an 

 for a coefficient vector and a tiny time series plot for a series. 

Workfiles may also be created directly from EViews databases. See Chapter 6 for further 
details.

The Workfile Window

After you have created a workfile and a number of objects, the workfile window will look 
something like this:

α
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In the titlebar of the workfile window you will see the “Workfile” designation followed by 
the workfile name. If the workfile has not been saved, it will be designated “UNTITLED”. If 
the workfile has been saved to disk, you will see the name and the full disk path.

Just below the titlebar is a toolbar made up of a number of buttons. These buttons provide 
you with easy access to a number of useful workfile operations.

Below the toolbar are two lines of status information where EViews displays the range of 
the workfile, the current sample of the workfile (the range of observations that are to be 
used in calculations and statistical operations), the display filter (rule used in choosing a 
subset of objects to display in the workfile window), and the default equation (the last 
equation estimated or operated on). You may change the range, sample, and filter by dou-
ble clicking on these labels and entering the relevant information in the dialog boxes. Dou-
ble clicking on the equation label opens the equation. 

Lastly, you will see the workfile directory. In normal display mode, all named objects are 
listed in the directory by name and icon. The different types of objects and their icons are 
described in detail in “Object Types” on page 43.

It is worth remembering that the workfile window is a specific example of an object win-
dow. Object windows are discussed in “The Object Window” on page 46.

Saving Workfiles

You will want to name and save your workfile for future use. Push the Save button on the 
workfile toolbar to save a copy of the workfile on disk. You can also save the file using the 
File/Save As… or File/Save… choices from the main menu. A standard Windows file dia-
log box will open: 
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You can specify the target 
directory in the upper file 
menu labeled Save in:. You 
can navigate between directo-
ries in the standard Windows 
fashion—click once on the 
down arrow to access a direc-
tory tree; double clicking on a 
directory name in the display 
area gives you a list of all the 
files and subdirectories in that 
directory. Once you have 
worked your way to the right 
directory, type the name you want to give the workfile in the File name: box and push the 
Save button. Your workfile will be saved with the name you choose and the extension 
.WF1. 

Alternatively, you could just type the full Windows path information and name, in the File 
name: box.

Once the workfile is named and saved, you can save subsequent updates or changes using 
the Save button on the toolbar, or File/Save… from the main menu. Selecting Save will 
update the existing workfile stored on disk. As with other Windows software, File/Save 
As… can be used to save the file with a new name. If the file you save to already exists, 
EViews will ask you whether you want to update the version on disk.

Note that workfiles saved in EViews Version 4 can, in general, be read by previous versions 
of EViews. Objects that are new to EViews Version 4 will, however, be removed from the 
workfile. We recommend that you take great caution when saving over your workfile using 
older versions of EViews.

Loading Workfiles

You can use File/Open/Workfile… to bring back a previously saved workfile. You will typ-
ically save your workfile containing all of your data and results at the end of the day, and 
later use File/Open/Workfile… to pick up where you left off. 

When you select File/Open/Workfile… you will see a standard Windows file dialog. Sim-
ply navigate to the appropriate directory and double click on the name of the workfile to 
load it into RAM. The workfile window will open and all of the objects in the workfile will 
immediately be available.

For convenience, EViews keeps a record of the ten most recently used workfiles and pro-
grams at the bottom of the File menu. Select an entry and it will be opened in EViews.
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Version 4 of EViews can read workfiles from all previous versions of EViews.

Save and Load Options

There are optional settings in the File/Open… and File/Save As… dialogs which provide 
you with additional control over the procedures which use files saved on disk.

Set Default Directory

All EViews file dialogs begin with a display of the contents of the default directory. You can 
always identify the default directory from the listing on the EViews status line. The default 
directory is set initially to be the directory containing the EViews program, but it can be 
changed at any time. 

You can change the default directory by using the File/Open… or the File/Save As… 
menu items, navigating to the new directory, and checking the Update Default Directory 
box in the dialog. If you then open or save a workfile, the default directory will change to 
the one you have selected. The default directory may also be set from the Options/File 
locations... dialog. See “File Locations” on page 648.

An alternative method for changing the default EViews directory is to use the cd com-
mand. Simply enter “cd” followed by the directory name in the command window (see 
cd, chdir (p. 156) of the Command and Programming Reference for details).

Using MicroTSP Files

You can read or write your workfile in a format that is compatible with MicroTSP. The 
Files of Type: and Save as Type: drop boxes allow you to handle DOS and Macintosh 
MicroTSP files. Simply click on the drop down box and select either Old Dos Workfile or 
Old Mac Workfile, as appropriate. You should be aware, however, that if you choose to 
save a workfile in MicroTSP format, only basic series data will be saved—the remainder of 
the workfile contents will be discarded.

Resizing Workfiles

You may decide to add data or make forecasts for observations beyond the ending date or 
before the starting date of your workfile. Alternatively, you may wish to remove extra 
observations from the start or end of the workfile.

To change the size of your workfile, select Procs/Change Workfile Range… and enter the 
beginning and ending observation of the workfile in the dialog. If you enter dates that 
encompass the original workfile range, EViews will expand the workfile without additional 
comment. If you enter a workfile range that does not encompass the original workfile 
range, EViews will warn you that data will be lost, and ask you to confirm the operation.
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Sorting Workfiles

Basic data in workfiles are held in objects called series. If you click on Procs/Sort Series… 
in the workfile toolbar, you can sort all of the series in the workfile on the basis of the val-
ues of one or more of the series. A dialog box will open where you can provide the details 
about the sort.

If you list two or more series, EViews uses the values of the second series to resolve ties 
from the first series, and values of the third series to resolve ties from the second, and so 
forth. If you wish to sort in descending order, select the appropriate option in the dialog.

Note that if you are using a dated workfile, sorting the workfile will generally break the 
link between an observation and the corresponding date.

Extracting from a Workfile

You can use a workfile proc to create a subset of an existing workfile.

Simply select Procs/Extract to new workfile... 
and fill out the dialog. You will need to specify 
a sample, the types of objects (see “Object 
Basics” on page 41) you wish to keep, and lists 
of wildcard expressions describing the names 
of the objects to be kept and/or the objects to 
be dropped. You can also instruct EViews to 
create a series containing an observation indi-
cator by entering a valid EViews name in the 
Save identifier/date series box. 

When you click on OK, EViews will create a 
new workfile of an appropriate type containing 
your selections. If present, the new indicator 
series will contain the position of the observa-
tion in the original workfile.

In most circumstances, the newly created workfile will have the same date format of the 
original workfile. Thus, if possible, EViews will extract a quarterly workfile to a quarterly 
workfile, and an annual workfile to an annual workfile. However, if the original workfile is 
dated and the extracting sample is non-contiguous, EViews will create the new workfile in 
an undated format. For example, if you extract the observations in the non-contiguous 
(monthly workfile) sample from Jan 1994 through Dec 1996 and Jan 1999 to December 
2000, EViews will create an undated workfile containing data from designated subsample.
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Changing the Workfile Display

Display Filter

When working with workfiles containing a large number of objects, it can become difficult 
to locate specific objects in the workfile window. You can solve this problem by using the 
workfile display filter to instruct EViews to display only a subset of objects in the workfile 
window. This subset can be defined on the basis of object name as well as object type.

Select View/Display Filter… or double 
click on the Filter description in the work-
file window. The following dialog box will 
appear: 

There are two parts to this dialog. In the 
edit field (blank space) of this dialog, you 
may place one or several name descriptions 
that include the standard wildcard charac-
ters: “*” (match any number of characters) 
and “?” (match any single character). Below 
the edit field are a series of check boxes corresponding to various types of EViews objects. 
EViews will display only objects of the specified types whose names match those in the 
edit field list. 

The default string is “*”, which will display all objects of the specified types. However, if 
you enter the string

x*

only objects with names beginning with X will be displayed in the workfile window. Enter-
ing

x?y

displays all objects that begin with the letter X, followed by any single character and then 
ending with the letter Y. If you enter:

x* y* *z

all objects with names beginning with X or Y and all objects with names ending in Z will 
be displayed. Similarly, the more complicated expression:

??y* *z*

tells EViews to display all objects that begin with any two characters followed by a Y and 
any or no characters, and all objects that contain the letter Z. Wildcards may also be used 
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in more general settings—a complete description of the use of wildcards in EViews is pro-
vided in Appendix C, “Wildcards”, on page 657.

When you specify a display filter, the Filter description in the workfile window changes to 
reflect your request. EViews always displays the current string used in matching names. 
Additionally, if you have chosen to display a subset of EViews object types, a “–” will be 
displayed in the Filter description at the top of the workfile window. 

Display Comments

You can change the default workfile display to show additional information about your 
objects. If you select View/Display Comments (Label+–), EViews will toggle between 
the standard workfile display format, and a display which provides additional information 
about the date the object was created or updated, as well as the label information that you 
may have attached to the object.

Display Letter Format

You can choose View/Name Display… in the workfile toolbar to specify whether EViews 
should use upper or lower case letters when it displays the workfile directory. The default 
is lower case.

Object Basics

Information in EViews is stored in objects. Each object consists of a collection of informa-
tion related to a particular area of analysis. For example, a series object is a collection of 
information related to a set of observations on a particular variable. An equation object is a 
collection of information related to the relationship between a collection of variables. 

Note that an object need not contain only one type of information. For example, an esti-
mated equation object contains not only the coefficients obtained from estimation of the 
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equation, but also a description of the specification, the variance-covariance matrix of the 
coefficient estimates, and a variety of statistics associated with the estimates. 

Associated with each type of object is a set of views and procedures which can be used 
with the information contained in the object. This association of views and procedures 
with the type of data contained in the object is what we term the object oriented design of 
EViews.

The object oriented design simplifies your work in EViews by organizing information as 
you work. For example, since an equation object contains all of the information relevant to 
an estimated relationship, you can move freely between a variety of equation specifica-
tions simply by working with different equation objects. You can examine results, perform 
hypothesis and specification tests, or generate forecasts at any time. Managing your work 
is simplified since only a single object is used to work with an entire collection of data and 
results.

This brief discussion provides only the barest introduction to the use of objects. The 
remainder of this section will provide a more general description of EViews objects. Subse-
quent chapters will discuss series, equations, and other object types in considerable detail. 

Object Data

Each object contains various types of information. For example, series, matrix, vector, and 
scalar objects, all contain mostly numeric information. In contrast, equations and systems 
contain complete information about the specification of the equation or system, and the 
estimation results, as well as references to the underlying data used to construct the esti-
mates. Graphs and tables contain numeric, text, and formatting information.

Since objects contain various kinds of data, you will want to work with different objects in 
different ways. For example, you might wish to compute summary statistics for the obser-
vations in a series, or you may want to perform forecasts based upon the results of an 
equation. EViews understands these differences and provides you with custom tools, 
called views and procedures, for working with an object’s data.

Object Views

There is more than one way to examine the data in an object. Views are tabular and graph-
ical windows that provide various ways of looking at the data in an object. 

For example, a series object has a spreadsheet view, which shows the raw data, a line 
graph view, a bar graph view, a histogram-and-statistics view, and a correlogram view. 
Other views of a series include distributional plots, QQ-plots, and kernel density plots. 
Series views also allow you to compute simple hypothesis tests and statistics for various 
subgroups of your sample.



Object Basics—43
An equation object has a representation view showing the equation specification, an out-
put view containing estimation results, an actual-fitted-residual view containing plots of 
fitted values and residuals, a covariance view containing the estimated coefficient covari-
ance matrix, and various views for specification and parameter tests.

Views of an object are displayed in the object’s window. Only one window can be opened 
for each object and each window displays only a single view of the object at a time. You 
can change views of an object using the View menu located in the object window’s toolbar 
or the EViews main menu. 

Perhaps the most important thing to remember about views is that views normally do not 
change data outside the object. Indeed, in most cases, changing views only changes the 
display format for the data, and not the data in the object itself.

Object Procedures

Most EViews objects also have procedures, or procs. Like views, procedures often display 
tables or graphs in the object’s window. Unlike views, however, procedures alter data, 
either in the object itself or in another object.

Many procedures create new objects. For example, a series object contains procedures for 
smoothing or seasonally adjusting time series data and creating a new series containing 
the smoothed or adjusted data. Equation objects contain procedures for generating new 
series containing the residuals, fitted values, or forecasts from the estimated equation.

You select procedures from the Procs menu on the object’s toolbar or from the EViews 
main menu.

Object Types

The most common objects in EViews are series and equation objects. There are, however, a 
number of different types of objects, each of which serves a unique function. Most objects 
are represented by a unique icon which is displayed in the object container window:

 Coefficient Vector  Scalar

 Equation Series

 Graph Sspace (State Space)

 Group System

Logl (Log Likelihood) Sym (Symmetric Matrix)

 Matrix Table

 Model Text

 Pool (Time Series / Cross-Section) Var (Vector Autoregression)

 Sample Vector/Row Vector
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Despite the fact that they are also objects, object containers do not have icons since they 
cannot be placed in other object containers—thus, workfiles and databases do not have 
icons since they cannot be placed in other workfiles or databases.

Creating, Selecting, and Opening Objects

Creating Objects

To create an object, you must first make certain that you have an open workfile container 
and that the workfile window is active. Next, select Objects/New Object… from the main 
menu. Until you have created or loaded a workfile, this selection is unavailable. After you 
click on the menu entry, you will see the following dialog box:

You can click on the type of object you want, optionally provide a name and then click on 
OK. For some object types, another dialog box will open prompting you to describe your 
object in more detail. For most objects, however, the object window will open immediately.

For example, if you select Equation, you will see a dialog box prompting you for additional 
information. Alternatively, if you click on Series and then select OK, you will see an object 
window (series window) displaying the spreadsheet view of an UNTITLED series:
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We will discuss object windows in greater detail in “The Object Window” on page 46.

Objects can also be created by applying procedures to other objects or by freezing an 
object view (see “Freezing Objects” on page 51).

Selecting Objects

Creating a new object will not always be necessary. Instead, you may want to work with 
an existing object. One of the fundamental operations in EViews is selecting one or more 
objects from the workfile directory. 

The easiest way to select objects is to point-and-click, using the standard Windows con-
ventions for selecting contiguous or multiple items if necessary (“Selecting and Opening 
Items” on page 8). Keep in mind that if you are selecting a large number of items, you may 
find it useful to use the display filter before beginning to select items.

In addition, the View button in the workfile toolbar provides convenient selection short-
cuts:

• Select All selects all of the objects in the workfile with the exception of the C coeffi-
cient vector and the RESID series. 

• Deselect All eliminates any existing selections.

Opening Objects 

Once you have selected your object or objects, you will want to open your selection, or cre-
ate a new object containing the selected objects. You can do so by double clicking any-
where in the highlighted area.

If you double click on a single selected object, you open an object window. 

If you select multiple graphs or series and double click, a pop-up menu appears giving you 
the option of creating and opening new objects (group, equation, VAR, graph) or display-
ing each of the selected objects in its own window. 

Note that if you select multiple graphs and double click or select View/Open as One Win-
dow, all of the graphs are merged into a single graph that is displayed in a window.

Other multiple item selections are not valid, and will either issue an error or will simply 
not respond when you double click.

When you open an object, EViews will display the current view. In general, the current 
view of an object is the view that was displayed the last time the object was opened (if an 
object has never been opened, EViews will use a default view). The exception to this gen-
eral rule is for those views that require significant computational time. In this latter case, 
the current view will revert to the default.
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Showing Objects

An alternative method of selecting and opening objects is to “show” the item. Click on the 
Show button on the toolbar, or select Quick/Show… from the menu and type in the object 
name or names.

Showing an object works exactly as if you first selected the object or objects, and then 
opened your selection. If you enter a single object name in the dialog box, EViews will 
open the object as if you double clicked on the object name. If you enter multiple names, 
EViews will always open a single window to display results, creating a new object if neces-
sary.

The Show button can also be used to display functions of series, also known as auto-
series. All of the rules for auto-series that are outlined in “Database Auto-Series” on 
page 119, will apply.

The Object Window

We have been using the term object window somewhat loosely in the previous discussion 
of the process of creating and opening objects. Object windows are the windows that are 
displayed when you open an object or object container. An object’s window will contain 
either a view of the object, or the results of an object procedure.

One of the more important features of EViews is that you can display object windows for a 
number of items at the same time. Managing these object windows is similar to the task of 
managing pieces of paper on your desk.

Components of the Object Window

Let’s look again at a typical object window:
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Here, we see the equation window for OLS_RESULTS. First, notice that this is a standard 
window which can be closed, resized, minimized, maximized, and scrolled both vertically 
and horizontally. As in other Windows applications, you can make an object window 
active by clicking once on the titlebar, or anywhere in its window. Making an object win-
dow active is equivalent to saying that you want to work with that object.

Second, note that the titlebar of the object window identifies the object type, name, and 
object container (in this case, the BONDS workfile). If the object is itself an object con-
tainer, the container information is replaced by directory information.

Lastly, at the top of the window there is a toolbar containing a number of buttons that pro-
vide easy access to frequently used menu items. These toolbars will vary across objects—
the series object will have a different toolbar from an equation or a group or a VAR object.

There are, however, several buttons that are found on all object toolbars:

• The View button lets you change the view that is displayed in the object window. 
The available choices will differ, depending upon the object type. 

• The Procs button provides access to a menu of procedures that are available for the 
object. 

• The Objects button lets you manage your objects. You can store the object on disk, 
name, delete, copy, or print the object. 

• The Print button lets you print the current view of the object (the window con-
tents).

• The Name button allows you to name or rename the object.
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• The Freeze button creates a new object graph, table, or text object out of the current 
view. 

The other buttons on the series toolbar are specific to a series object and are described in 
Chapter 7, “Series”, on page 151.

Menus and the Object Toolbar

As we have seen, the toolbar provides a shortcut to frequently accessed menu commands. 
There are a couple of subtle, but important, points associated with this relationship that 
deserve special emphasis:

• Since the toolbar simply provides a shortcut to menu items, you can always find the 
toolbar commands in the menus.

• This fact turns out to be quite useful if your window is not large enough to display 
all of the buttons on the toolbar. You can either enlarge the window so that all of the 
buttons are displayed, or you can access the command directly from the menu.

• The toolbar and menu both change with the object type. In particular, the contents 
of the View menu and the Procs menu will always change to reflect the type of 
object (series, equation, group, etc.) that is active.

The toolbars and menus themselves vary in how much they differ across objects. For 
example, the View and Procs drop-down menus differ for every object type. When the 
active window is displaying a series window, the menus provide access to series views and 
series procedures. Alternatively, when the active window is a group window, clicking on 
View or Procs provides access to the different set of items associated with group objects.

The figure above illustrates the relationship between the View toolbar button and the View 
menu when the series window is the active window. In the left side of the illustration, we 
see a portion of the EViews window, as it appears, after you click on View in the main 
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menu (note that the RC series window is the active window). On the right, we see a depic-
tion of the series window as it appears after you click on the View button in the series tool-
bar. Since the two operations are identical, the two drop-down menus are identical.

In contrast to the View and Procs menus, the Objects menu does not, in general, vary 
across objects. An exception occurs, however, when an object container window (a work-
file or database window) is active. In this case, clicking on Objects in the toolbar, or select-
ing Objects from the menu provides access to menu items for manipulating the objects in 
the container.

Working with Objects

Naming Objects

Objects may be named or unnamed. When you give an object a name, the name will 
appear in the directory of the workfile, and the object will be saved as part of the workfile 
when the workfile is saved. 

You must name an object if you wish to keep its results. If you do not name an object, it 
will be called “UNTITLED”. Unnamed objects are not saved with the workfile, so they are 
deleted when the workfile is closed and removed from memory.

To name or rename an object, first open the object window by double clicking on its icon, 
or by clicking on Show on the workfile toolbar, and entering the object name. Next, click 
on the Name button on the object window, and enter the name (up to 16 characters), and 
optionally, a display name to be used when labelling the object in tables and graphs. If no 
display name is provided, EViews will use the object name.

You can also rename an object from the workfile window by selecting Objects/Rename 
Selected… and then specifying the new object name. This method saves you from first 
having to open the object.

The following names are reserved and should not be used as object names: ABS, ACOS, 
AR, ASIN, C, CON, CNORM, COEF, COS, D, DLOG, DNORM, ELSE, ENDIF, EXP, LOG, 
LOGIT, LPT1, LPT2, MA, NA, NRND, PDL, RESID, RND, SAR, SIN, SMA, SQR, and THEN.

EViews accepts both capital and lower case letters in the names you give to your series and 
other objects, but does not distinguish between names based on case. Its messages to you 
will follow normal capitalization rules. For example, ‘SALES’, ‘sales’, and ‘sAles’ are all the 
same object in EViews. For the sake of uniformity, we have written all examples of input 
using names in lower case, but you should feel free to use capital letters instead. 

Despite the fact that names are not case sensitive, when you enter text information in an 
object, such as a plot legend, or label information, your capitalization will be fully pre-
served.
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By default, EViews allows only one untitled object of a given type (one series, one equa-
tion, etc.). If you create a new untitled object of an existing type, you will be prompted to 
name the original object, and if you do not provide one, EViews will replace the original 
untitled object with the new object. The original object will not be saved. If you prefer, you 
can instruct EViews to retain all untitled objects during a session but you must still name 
the ones you want to save with the workfile. See “Window and Font Options” on page 647.

Labeling Objects

In addition to the display name described above, EViews objects have label fields where 
you can provide extended annotation and commentary. To view these fields, select View/
Label from the object window:

This is the label view of an 
unmodified object. By default, 
every time you modify the 
object, EViews automatically 
records the modification in a 
History field that will be 
appended at the bottom of the 
label view. 

You can edit any of the fields, 
except the Last Update field. 
Simply click in the field cell that you want to edit. All fields, except the Remarks and His-
tory fields, contain only one line. The Remarks and History fields can contain multiple 
lines. Press ENTER to add a new line to these two fields.

These annotated fields are most useful when you want to search for an object stored in an 
EViews database. Any text that is in the fields is searchable in an EViews database; see 
“Querying the Database” on page 123, for further discussion.

Copying Objects

There are two distinct methods of duplicating the information in an object: copying and 
freezing.

If you select Object/Copy from the menu, EViews creates a new untitled object containing 
an exact copy of the original object. By exact copy, we mean that the new object duplicates 
all the features of the original (except for the name). It contains all of the views and proce-
dures of the original object and can be used in future analyses just like the original object.

You can also copy an object from the workfile window. Simply highlight the object and 
click on Object/Copy Selected…, or click on Object/Copy Selected… and specify the des-
tination name for the object.
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We mention here that Copy is a very general and powerful operation with many additional 
features and uses. For example, you can copy objects across both workfiles and databases 
using wildcards and patterns. See “Copying Objects” on page 115, for details on these addi-
tional features.

Copy-and-Pasting Objects

The standard EViews copy command makes a copy of the object in the same workfile. 
When two workfiles are in memory at the same time, you may copy objects between them 
using Copy-and-Paste. 

Highlight the objects you wish to copy in the source workfile. Then select Edit/Copy from 
the main menu. 

Select the destination workfile by clicking on its titlebar. Then select Edit/Paste from the 
main menu. EViews will place named copies of all of the highlighted objects in the destina-
tion workfile, prompting you to replace existing objects with the same name. 

If the source and destination workfiles are of different frequency, frequency conversion (if 
possible) is applied to series objects before placing them in the destination workfile. See 
“Frequency Conversion” on page 72, for the exact rules by which frequencies are con-
verted.

Freezing Objects

The second method of copying information from an object is to freeze a view of the object. 
If you click Object/Freeze Output or press the Freeze button on the object’s toolbar, a 
table or graph object is created that duplicates the current view of the original object. 

Before you press Freeze, you are looking at a view of an object in the object window. 
Freezing the view makes a copy of the view and turns it into an independent object that 
will remain even if you delete the original object. A frozen view does not necessarily show 
what is currently in the original object, but rather shows a snapshot of the object at the 
moment you pushed the button. For example, if you freeze a spreadsheet view of a series, 
you will see a view of a new table object; if you freeze a graphical view of a series, you will 
see a view of a new graph object.

The primary feature of freezing an object is that the tables and graphs created by freeze 
may be edited for presentations or reports. Frozen views do not change when the workfile 
sample or data change. 

Deleting Objects

To delete an object or objects from your workfile, select the object or objects in the work-
file directory. When you have selected everything you want to delete, click Delete or 
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Objects/Delete Selected on the workfile toolbar. EViews will prompt you to make certain 
that you wish to delete the objects.

Printing Objects

Choosing View/Print Selected from the workfile window prints the default view for all of 
the selected objects.

To print the currently displayed view of an object, push the Print button on the object win-
dow toolbar. You can also choose File/Print or Objects/Print on the main EViews menu 
bar. 

You may print the default view of more than one object at a time by selecting the objects in 
the workfile window and choosing View/Print Selected from the workfile toolbar.

The print commands normally send a view or procedure output to the current Windows 
printer. You may specify instead that the output should be saved in the workfile as a table 
or graph, or spooled to an ASCII text file on disk. Details are provided in Chapter 10, 
“Graphs, Tables, and Text Objects”, on page 243 and Appendix A, “Global Options”, on 
page 647.

Storing Objects

EViews provides three ways to save your data on disk. You have already seen how to save 
entire workfiles, where all of the objects in the workfile are saved together in a single file 
with the .WF1 extension. You may also store individual objects in their own data bank 
files. They may then be fetched into other workfiles. 

We will defer a full discussion of storing objects to data banks and databases until 
Chapter 3. For now, note that when you are working with an object, you can place it in a 
data bank or database file by clicking on the Objects/Store to DB… button on the object's 
toolbar or menu. EViews will prompt you for additional information.

You can store several objects, by selecting them in the workfile window and then pressing 
the Objects/Store selected to DB… button on the workfile toolbar or menu. 

Fetching Objects 

You can fetch previously stored items from a data bank or database. One of the common 
methods of working with data is to create a workfile and then fetch previously stored data 
into the workfile as needed.

To fetch objects into a workfile, select Objects/Fetch from DB… from the workfile menu 
or toolbar. You will see a dialog box prompting you for additional information for the fetch: 
objects to be fetched, directory and database location, as applicable.
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See “Fetching Objects from the Database” on page 114, for details on the advanced features 
of the fetch procedure.

Updating Objects

Updating works like fetching objects, but requires that the objects be present in the work-
file. To update objects in the workfile, select them from the workfile window, and click on 
Objects/Update from DB… from the workfile menu or toolbar. The Fetch dialog will open, 
but with the objects to be fetched already filled in. Simply specify the directory and data-
base location and click OK.

The selected objects will be replaced by their counterparts in the data bank or database.

See Chapter 6, “EViews Databases”, on page 107, for additional details on the process of 
updating objects from a database.

Copy-and-Paste of Object Information

You can copy the list of object information displayed in a workfile or database window to 
the Windows clipboard and paste the list to other program files such as word processing 
files or spreadsheet files. Simply highlight the objects in the workfile directory window, 
select Edit/Copy (or click anywhere in the highlighted area, with the right mouse button, 
and select Copy). Then move to the application (word processor or spreadsheet) where 
you want to paste the list, and select Edit/Paste. 

If only names are displayed in the window, EViews will copy a single line containing the 
highlighted names to the clipboard, with each name separated by a space. If the window 
contains additional information, either because View/Display Comments (Label+/–) has 
been chosen in a workfile window or a query has been carried out in a database window, 
each name will be placed in a separate line along with the additional information.

Note that if you copy-and-paste the list of objects into another EViews workfile, the objects 
themselves will be copied.

Commands

To create a new workfile, follow the workfile command with the name of the workfile. 
For example, if you type

workfile test1

EViews brings up the Workfile Range dialog to specify the range of the new workfile 
TEST1.

To save a workfile, follow the save command with a name for the saved workfile. For 
example,
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save test2

saves the active workfile under the name TEST2 in the default directory.

See the Command and Programming Reference for a complete list of commands and 
options available in EViews.

For More Info...

This concludes our brief introduction to the EViews program. You should now be well on 
your way to a full understanding of the user-friendly EViews approach to forecasting and 
statistical analysis.

For further details on any aspect of the program, be certain to use your on-line help sys-
tem, or consult the complete EViews User’s Guide and the EViews Command and Program-
ming Reference, both of which are provided in .PDF format on your CD-ROM.
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The process of entering, reading, editing, manipulating, and generating data forms the 
foundation of most data analyses. Accordingly, most of your time in EViews will probably 
be spent working with data. EViews provides you with a sophisticated set of data manipu-
lation tools that make these tasks as simple and straightforward as possible.

This chapter describes the fundamentals of working with data in EViews. There are three 
cornerstones of data handling in EViews: the two most common data objects, series and 
groups, and the use of samples. We begin with a brief description of series, groups, and 
samples, and then discuss basic input, output, and editing of data.

In the next chapter, we discuss EViews’ powerful language for generating and manipulat-
ing the data in series and groups.

Data Objects

The actual numeric values that make up your data will generally be held in one or more of 
EViews’ data objects (series, groups, matrices, vectors, scalars). For most users, series and 
groups will be, by far, the most important objects, so they will be the focus of our discus-
sion. Matrices, vectors, and scalars are discussed at length in the Command and Program-
ming Reference.

The following discussion is intended to provide only a brief introduction to the basics of 
series and groups. Our goal is to describe the basics of data input and output in EViews. 
An in-depth discussion of series and group objects follows in subsequent chapters. 

Series

An EViews series contains a set of observations on a variable. Associated with each obser-
vation in the series is a date or observation label. For series in dated workfiles, the obser-
vations are presumed to be observed regularly over time. For undated data, the 
observations are not assumed to follow any particular frequency.

Creating a series

One method of creating a series is to select Object/New Objects… from the menu, and 
then to select Series. You may, at this time, provide a name for the series, or you can let 
the new series be untitled. Click OK. EViews will open a spreadsheet view of the new 
series object. All of the observations in the series will be assigned the missing value code 
“NA”. You can then edit or use expressions to assign values for the series.

The second method of creating a series is to generate the series using mathematical expres-
sions. Click on Quick/Generate Series… and enter the expression defining the series. We 
will discuss this method in depth in the next chapter.
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Editing a series

You can edit individual values of the data in a series.

• First open the spreadsheet view of the series. If the series window display does not 
show the spreadsheet view, click on the Sheet button, or select View/Spreadsheet, 
to change the default view.

• Next, make certain that the spreadsheet window is in edit mode. EViews provides 
you with the option of protecting the data in your series by turning off the ability to 
edit from the spreadsheet window. You can use the Edit +/– button on the toolbar 
to toggle between edit mode and protected mode:

Here we see an edit mode example for a series spreadsheet window. Notice the presence of 
the edit window just underneath the series toolbar containing the value of RC in 1953:01, 
and the double box around the selected cell in the spreadsheet—neither are present in pro-
tected mode.

• To change the value for an observation, select the cell, type in the value, and press 
ENTER. For example, to change the value of RC in 1953:01, simply click on the cell 
containing the value, type the new value in the edit window, and press ENTER. 

Note that some cells are protected. If you select one of the protected cells, EViews 
will display a message in the edit window telling you that the cell cannot be edited.

• When you have finished editing, you should protect yourself from inadvertently 
changing values of your data by clicking on Edit +/– to turn off edit mode.
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Changing the Spreadsheet Display

EViews provides you with several different ways of looking at your data in spreadsheet 
form.

The narrow display displays the observations for the series in a single column, with date 
labels in the margin.

The wide display arranges the observations from left to right and top to bottom, with the 
label for the first observation in the row displayed in the margin. For dated workfiles, 
EViews will, if possible, arrange the data in a form which matches the frequency of the 
data. Thus, semi-annual data will be displayed with two observations per row, quarterly 
data will contain four observations per row, and monthly data will contain six observa-
tions in each row. 

You can change the display to show the observations in your series in a single column by 
clicking on the Wide +/- button on the spreadsheet view toolbar (you may need to resize 
the series window to make this button visible). For example, toggling the Wide +/- button 
switches the display between the compact display (as depicted), and the single column 
display:

This compact display format is useful when you wish to arrange the observations with 
data for a particular season displayed in the columns.

By default, all observations in the workfile are displayed, even those observations not in 
the current sample. By pressing Smpl +/– you can toggle between showing all observa-
tions in the workfile, and showing only those observations in the current sample. 
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There are two features that you should keep in mind as you toggle between the various 
display settings:

• If you choose to display only the observations in the current sample, EViews will 
switch to single column display.

• If you switch to wide display, EViews automatically turns off the display filter so that 
all observations in the workfile are displayed.

One consequence of this behavior is that if you begin with a narrow display of observa-
tions in the current sample, click on Wide +/- to switch to wide display, and then press 
the Wide +/- button again, EViews will provide a narrow display of all of the observations 
in the workfile. To return to the original narrow display of the current sample, you will 
need to press the Smpl +/- button again.

Inserting and deleting observations in a series

You can also insert and delete observations in the series. To insert an observation, first 
click on the cell where you want the new observation to appear. Next, click on the InsDel 
button. You will see a dialog asking whether you wish to insert or delete an observation at 
the current position:

You may change the location by editing 
the observation box. If you choose to 
insert an observation, EViews will insert 
a missing value at the appropriate posi-
tion and push all of the observations 
down so that the last observation will be 
lost from the workfile. If you wish to pre-
serve this observation, you will have to 
expand the workfile before inserting observations. If you choose to delete an observation, 
all of the remaining observations will move up, so that you will have a missing value at the 
end of the workfile range.

Groups

When working with multiple series, you will often want to create a group object to help 
you manage your data. A group is a list of series names (and potentially, mathematical 
expressions) that provides simultaneous access to all of the elements in the list.

With a group, you can refer to sets of variables using a single name. Thus, a set of vari-
ables may be analyzed, graphed, or printed using the group object, rather than each one of 
the individual series. Therefore, groups are often used in place of entering a lengthy list of 
names. Once a group is defined, you can use the group name in many places to refer to all 
of the series contained in the group. 
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You will also create groups of series when you wish to analyze or examine multiple series 
at the same time. For example, groups are used in computing correlation matrices, testing 
for cointegration and estimating a VAR or VEC, and graphing series against one another. 

Creating Groups

There are several ways to create a group. Perhaps the easiest method is to select Objects/
New Object… from the menu or workfile toolbar, click on Group, and if desired, name the 
object. 

You should enter the names of the series to be 
included in the group, and then click OK. A 
group window will open showing a spreadsheet 
view of the group.

You may have noticed that the dialog allows you 
to use group names and series expressions. If 
you include a group name, all of the series in the 
named group will be included in the new group. 
For example, suppose that the group GR1 con-
tains the series X, Y, and Z, and you create a new group GR2, which contains GR1 and the 
series A and B. Then GR2 will contain X, Y, Z, A and B. Bear in mind that only the series 
contained in GR1, not GR1 itself, are included in GR2; if you later add series to GR1, they 
will not be added to GR2.

Series expressions will be discussed in greater depth later. For now, it suffices to note that 
series expressions are mathematical expressions that may involve one or more series (e.g. 
7/2 or 3*X*Y/Z). EViews will automatically evaluate the expressions for each observation 
and display the results as if they were an ordinary series. Users of spreadsheet programs 
will be familiar with this type of automatic recalculation.

For example, here is a spread-
sheet view of an untitled group 
containing the series RC, and 
series expressions for the lag of 
RG, RG(–1), and a series 
expression involving RC and 
RG.

An equivalent method of creat-
ing a group is to select Quick/
Show…, or to click on the 
Show button on the workfile 
toolbar, and then to enter the 
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list of series, groups and series expressions to be included in the workfile. This method dif-
fers from using Objects/New Object… only in not allowing you to name the object at the 
time it is created.

You can also create an empty group that may be used for entering new data from the key-
board or pasting data copied from another Windows program. These methods are 
described in detail in “Entering Data” on page 64 and “Copying-and-Pasting” on page 65. 

Editing in a Group

Editing data in a group is similar to editing data in a series. Open the group window, and 
click on Sheet, if necessary, to display the spreadsheet view. If the group spreadsheet is in 
protected mode, click on Edit +/– to enable edit mode, then select your cell, enter the 
new value, and press RETURN. The new number should appear in the spreadsheet.

Since groups are simply references to series, editing the series within a group changes the 
values in the original series.

As with series spreadsheet views, you may click on Smpl +/– to toggle between showing 
all of the observations in the workfile and showing only those observations in the current 
sample. Unlike the series window, the group window always shows series in a single col-
umn.

Samples

One of the most important concepts in EViews is the sample of observations. The sample is 
the set (often a subset) of observations in the workfile to be included in displays and in 
statistical procedures. Samples may be specified using ranges of observations and/or “if 
conditions” that observations must satisfy to be included.

For example, you can tell EViews that you want to work with observations from 1953:1 to 
1970:12 and 1995:1 to 1996:12. Or you may want to work with data from 1953:1 to 1958:12 
where observations on the series RC exceed 3.6.

The Workfile Sample

When you create a workfile, the global or workfile sample is set initially to be the entire 
range of the workfile. The workfile sample tells EViews what set of observations you wish 
to use for subsequent operations. Unless you want to work with a different set of observa-
tions, you will not need to reset the workfile sample.
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You can always tell the current 
workfile sample of observa-
tions by looking at the top of 
your workfile window:

Here the sample consists of 
those observations between 
1953:01 and 1958:12 for which 
the value of the RC exceeds 
3.6.

Changing the Sample

There are three ways to set the global sample: you can click on the Sample button in the 
workfile toolbar, you can select Objects/Sample… from the menu, or you could click on 
the sample string in the workfile window display. 

In the upper edit window you will enter one 
or more pairs of dates. Each pair identifies a 
starting and ending observation for a set of 
observations to be included in the sample. 
For example, if you entered the string “1950 
1980 1990 1995”, EViews will use observa-
tions for 1950 through 1980 and observations 
for 1990 through 1995 in subsequent opera-
tions; observations from 1981 through 1989 
will be excluded.

EViews provides some special shortcuts that may make entering sample range pairs easier. 
First, you can use the keyword “@all”, to refer to the entire workfile range. In the workfile 
above, entering “@all” in the dialog is equivalent to entering “1953:1 1996:12”. Further-
more, you may use “@first” and “@last” to refer to the first and last observation in the 
workfile. Thus, all three of the following sample ranges are identical:

@all

@first 1996:12

1953:1 @last

Sample range elements may contain mathematical expressions to create date offsets. This 
feature can be particularly useful in setting up a fixed width window of observations. For 
example, in the workfile above, the sample strings

1953:1 1953:1+11

define a sample that includes the 12 observations in the calendar year beginning in 1953:1. 
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While EViews expects date offsets that are integer values, there is nothing to stop you from 
adding or subtracting non-integer values—EViews will automatically convert the number 
to an integer. You should be warned, however, that the conversion behavior is not guaran-
teed to be well-defined. If you must use non-integer values, you are strongly encouraged to 
use the “@round”, “@floor” or “@ceil” functions to enforce the desired behavior. 

The lower part of the sample window allows you to add conditions to the sample specifica-
tion. The sample is the intersection of the set of observations defined by the range pairs in 
the upper window and the set of observations defined by the “if” conditions in the lower 
window. For example, if you enter:

Upper window: 1980 1993

Lower window: incm > 5000

the sample includes observations for 1980 through 1993 where the series INCM is greater 
than 5000.

Similarly, if you enter:

Upper window: 1958:1 1998:1

Lower window: gdp > gdp(-1)

all observations between the first quarter of 1958 and the last quarter of 1998, where GDP 
has risen from the previous quarter, will be included.

The “or” and “and” operators allow for the construction of more complex expressions. For 
example, suppose you now wanted to include in your analysis only those individuals 
whose income exceeds 5000 dollars per year and who have at least 13 years of education. 
Then you can enter:

Upper window: @all

Lower window: income > 5000 and educ >= 13

Multiple range pairs and “if” conditions may also be specified:

Upper window: 50 100 200 250

Lower window: income >= 4000 and educ > 12 

includes undated workfile observations 50 through 100 and 200 through 250, where the 
series INCOME is greater than or equal to 4000 and the series EDUC is greater than 12.

You can create even more elaborate selection rules by including EViews built-in functions:

Upper window: 1958:1 1998:1

Lower window: (ed>=6 and ed<=13) or earn<@mean(earn)

includes all observations where the value of the variable ED falls between 6 and 13, or 
where the value of the variable EARN is lower than its mean. Note that you may use 
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parentheses to group the conditions and operators when there is potential ambiguity in the 
order of evaluation.

It is possible that one of the comparisons used in the conditioning statement will generate 
a missing value. For example, if an observation on INCM is missing, then the comparison 
INCM>5000 is not defined for that observation. EViews will treat such missing values as 
though the condition were false, and the observation will not be included in the sample.

Sample Objects

As you have seen, it is possible to develop quite elaborate selection rules for the workfile 
sample. However, it can quickly become cumbersome and time-consuming to re-enter 
these rules if you change samples frequently. Fortunately, EViews provides you with a 
method of saving sample information in a sample object which can then be referred to by 
name. If you work with various well-defined subsets of your data, you will soon find sam-
ple objects to be indispensable.

Creating a Sample Object

To create a sample object, select Objects/New… When the New Objects dialog appears, 
select Sample and optionally, provide a name. If you do not provide a name, EViews will 
automatically assign one for you (sample objects may not be untitled). Click on OK and 
EViews will open a dialog:

Here is a partially filled in sample object dia-
log named SMPL1. Notice that while this dia-
log looks very similar to the one we described 
above for setting the sample, there are minor 
cosmetic differences: the name of the sample 
object appears in the title bar, and there is a 
check box for setting the workfile sample 
equal to this sample object. 

These cosmetic differences reflect the two 
distinct purposes of the dialog: (1) to define 
the sample object, and (2) to set the workfile sample. Since EViews separates the act of 
defining the sample object from the act of setting the workfile sample, you can define the 
object without changing the workfile sample, and vice versa.

To define the sample object, you should fill out this dialog as before and click on OK. The 
sample object now appears in the workfile directory.

Using a Sample Object

Once created, a sample object can be referred to by its name almost anywhere that EViews 
prompts you for a sample description. 
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Alternatively, you can use a previously defined sample object directly to set the workfile 
sample. Simply open a sample object by double clicking on the name or icon. This will 
reopen the dialog. If you wish to change the sample object, edit the sample specification; 
otherwise, simply click Set workfile sample on the check box and click on OK.

Command Window Methods

You may find it easier to work with samples from the command window. Instead of speci-
fying the sample by clicking on Sample or selecting Quick/Sample…, you can always 
enter the sample from the command window using the smpl command. Simply click on 
the command window to make it active, and type the keyword “smpl”, followed by the 
sample string:

smpl 1955:1 1958:12 if rc>3.6

and then press ENTER (notice, in the example above, the use of the keyword “IF” to sepa-
rate the two parts of the sample specification). You should see the sample change in the 
workfile window. 

If you wish to use sample objects, you will first create the sample object using a sample 
declaration, followed by the name to be given to the sample object, then the sample string:

sample mysample 1955:1 1958:12 if rc>3.6

To set the workfile sample using the sample object, just enter the smpl command, fol-
lowed by the sample object name. For example,

smpl mysample

will set the workfile sample according to the rules contained in the sample object MYSAM-
PLE.

Importing Data

The data for your project may be available in a variety of forms. The data may be in a 
machine readable spreadsheet or text file that you created yourself or downloaded from the 
World Wide Web, or perhaps they are in a book or photocopy form.

There are several methods for getting such data into EViews. We outline the basics of data 
input into series and group objects from spreadsheet, text file, or printed formats, without 
a full discussion of working with workfiles or EViews and foreign databases. We also omit, 
for the moment, discussion of input into EViews matrix, vector and pool objects.

Entering Data

For small datasets in printed form, you may wish to enter the data by typing at the key-
board.
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• Your first step is to open a temporary spreadsheet window in which you will enter 
the data. Choose Quick/Empty Group (Edit Series) from the main menu to open an 
untitled group window:

• The next step is to create and name the series. First click once on the up arrow to 
display the second obs label on the left-hand column. The row of cells next to the 
second obs label is where you will enter and edit series names.

Click once in the cell next to the second obs label, and enter your first series name. 
Here we have typed INCOME in the command window (the name in the cell changes 
as we type in the command window). Press RETURN. 

• Repeat this procedure in subsequent columns for each additional series.

If you decide you want to rename one of your series, simply select the cell contain-
ing the series name, edit the name, and then press RETURN. EViews will prompt you 
to confirm the series rename.

• To enter the data, click on the appropriate cell and type the number. Pressing 
RETURN after entering a number will move you to the next cell. If you prefer, you 
can use the cursor keys to navigate the spreadsheet. 

• When you are finished entering data, close the group window. If you wish, you can 
first name the untitled group by clicking on the Name button. If you do not wish to 
keep the group, answer Yes when EViews asks you to confirm the deletion.

Copying-and-Pasting

The Windows clipboard is a handy way to move data within EViews and between EViews 
and other software applications. It is a natural tool for importing data from Excel and other 
Windows applications that support Windows copy-and-paste.
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Copying from Windows applications

The following discussion involves an example using an Excel spreadsheet, but the basic 
principles apply for other Windows applications.

Suppose you have bond yield and interest rate data in an Excel spreadsheet that you would 
like to bring into EViews. 

Open the spreadsheet in 
Excel. Your first step is to 
highlight the cells to be 
imported into EViews. Since 
the column headings YIELD 
and INTEREST will be used as 
EViews variable names, you 
should highlight them as well. 
Since EViews understands 
dated data, and we are going 
to create a monthly workfile, you do not need to copy the date column. Instead, click on 
the column label B and drag to the column label C. The two columns of the spreadsheet 
will be highlighted:

Select Edit/Copy to copy the 
highlighted data to the clip-
board. 

Pasting into New Series

Start EViews and create a new, 
or load an existing, monthly 
workfile containing the dates 
in the Excel spreadsheet (in 
our example 1953:1 through 
1994:11). Make certain that the sample is set to include the same observations that you 
have copied onto the clipboard.

Select Quick/Empty Group (Edit Series). Note that the spreadsheet opens in edit mode so 
there is no need to click the Edit +/– button.

Here, we have created a monthly workfile with a range from 1953:1 to 1999:12. The first 
row of the EViews spreadsheet is labeled 1953:01. Since we are pasting in the series names, 
you should click on the up arrow in the scroll bar to make room for the series names.
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Place the cursor in the upper-left cell, just to the right of the second obs label. Then select 
Edit/Paste from the main menu (not Edit +/– in the toolbar). The group spreadsheet will 
now contain the data from the clipboard.

Here, the series YIELD and INTER-
EST have been created in the work-
file and can be used in any EViews 
procedure. You may now close the 
group window and delete the unti-
tled group without losing the two 
series.

Note that when importing data from 
the clipboard, EViews follows the 
Windows standard of tab-delimited 
free-format data with one observa-
tion per line. Since different applications use different whitespace and delimiter characters, 
attempting to cut-and-paste from nonstandard applications may produce unanticipated 
results.

Pasting into Existing Series

You can import data from the clipboard into an existing EViews series or group spreadsheet 
by using Edit/Paste in the same fashion. There are only a few additional issues to con-
sider.

• To paste several series, you will first open a group window containing the existing 
series. The easiest way to do this is to click on Show, and then type the series names 
in the order they appear on the clipboard. Alternatively, you can create an untitled 
group by selecting the first series, click selecting each subsequent series (in order), 
and then double clicking to open. 

• Next, make certain that the group window is in edit mode. If not, press the Edit +/
– button to toggle between edit mode and protected mode. Place the cursor in the 
target cell, and select Edit/Paste. 

• Finally, click on Edit +/– to return to protected mode.

• If you are pasting into a single series you will need to make certain that the series 
window is in edit mode, and that the series is viewed in a single column. If the series 
is in multiple columns, push on the Smpl +/– button. Edit/Paste the data and click 
on Edit +/– to protect the data.
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Importing Data from an Spreadsheet or Text File

You can also read data directly from files created by other programs. Data may be in stan-
dard ASCII form or in either Lotus (.WKS, .WK1 or .WK3) or Excel (.XLS) spreadsheet for-
mats.

First make certain that you have an open workfile to receive the contents of the data 
import.

Next, click on Procs/Import/Read Text-Lotus-Excel... You will see a standard File dialog 
box asking you to specify the type and name of the file. Select a file type, navigate to the 
directory containing the file, and double click on the name. Alternatively, type in the name 
of the file that you wish to read (with full path information, if appropriate); if possible, 
EViews will automatically set the file type, otherwise it will treat the file as an ASCII file. 
Click on Open.

EViews will open a dialog prompting you for additional information about the import pro-
cedure. The dialog will differ greatly depending on whether the source file is a spreadsheet 
or an ASCII file.

Spreadsheet Import

The title bar of the dialog will identify the type of file that you have asked EViews to read. 
Here is the dialog for importing an Excel 5 (or later versions of Excel), spreadsheet:

You will see slightly different versions of this dialog if you are reading a Lotus, or an Excel 
4 (and earlier) file. Now fill in the dialog:
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• First, you need to tell whether the data are ordered by observation or by series. By 
observation means that all of the data for the first observation are followed by all of 
the data for the second observation, etc. By series means that all of the data for the 
first variable are followed by all data for the second variable, etc. Another interpreta-
tion for “by observation” is that variables are arranged in columns while “by row” 
implies that all of the observations for a variable are in a single row.

Our Excel example 
above is organized by 
observation since each 
series is in a separate 
column. If the Excel data 
for YIELD and INTER-
EST were each con-
tained in a single row as 
depicted, then the data 
should be read by series.

• Next, tell EViews the location of the beginning cell (upper left-hand corner) of your 
actual data, not including any label or date information. In both examples above, the 
upper left-hand cell is B2. 

• Enter the names of the series that you wish to read into the edit box. EViews reads 
spreadsheet data in contiguous blocks, so you should provide a name for each col-
umn or row (depending on the orientation of the data), even if you only wish to read 
selected rows.

• Alternatively, if the names that you wish to use for your series are contained in the 
file, you can simply provide the number of series to be read. The names must be 
adjacent to your data. If the data are organized by row and the starting cell is B2, 
then the names must be in column A, beginning at cell A2. If the data are organized 
by column beginning in B2, then the names must be in row 1, starting in cell B1. If, 
in the course of reading the data, EViews encounters an invalid cell name, it will 
automatically assign the next unused name with the prefix SER, followed by a num-
ber (e.g., SER01, SER02, etc.).

• Lastly, you should tell EViews the sample of data that you wish to import. EViews 
begins with the first observation in the file and assigns it to the first date in the sam-
ple for each variable. Each successive observation in the file is associated with suc-
cessive observations in the sample. Thus, in an annual workfile, if you enter the 
sample: 

1971 1975 1990 1991 
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in the import dialog, the first 5 observations will be assigned to the dates 1971–1975, 
and the sixth and seventh observations will be assigned to the dates 1990–1991. The 
data in the intermediate period will be unaffected by the importing procedure.

You should be warned that if you read into a sample which has more observations 
than are present in your input file, observations for which there are no correspond-
ing inputs will be assigned missing values. For example, if you read into the sample 
defined as “1971 1990”, and there are only 10 observations in the input file, the 
observations from 1981 to 1990 will be assigned missing values.

When the dialog is first displayed, EViews by default enters the current workfile 
sample in the edit box. You should edit this string to reflect the desired sample. To 
make setting the sample easier, EViews provides you with three push-buttons which 
change the string in the edit box to commonly used values:

1. Current sample sets the dialog string to the current workfile sample.

2. Workfile range sets the dialog string to the entire range of the workfile.

3. To end of range sets the dialog string to all observations from the beginning of 
the current sample to the end of the workfile range.

• If you are reading data from an Excel 5 workbook file, there will be an additional 
edit box where you can enter the name of the sheet containing your data. If you do 
not enter a name, EViews will read the topmost sheet in the Excel workbook.

• When the dialog is completely filled out, simply click OK and EViews will read your 
file, creating series and assigning values as requested.

ASCII Import

If you choose to read from an ASCII file, EViews will open an ASCII Text Import dialog. Fill 
out the dialog to read from the specified file.

The dialog box for ASCII file import is considerably more complicated than the correspond-
ing spreadsheet dialog. While unfortunate, this complexity is necessary since there is no 
standard format for ASCII files. EViews provides you with a range of options to handle var-
ious types of ASCII files.

ASCII file importing is explained in considerable detail in “Addendum: Reading ASCII 
Files” beginning on page 76.

Exporting Data 

EViews provides you with a number of methods for getting data from EViews into other 
applications.
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Copying and Pasting

You can click and drag in a spreadsheet view or table of statistical results to highlight the 
cells you want to copy. Then click Edit/Copy… to put the data into the clipboard. You will 
see a dialog box asking whether to copy the numbers with the precision showing on your 
screen (formatted copy) or to copy the numbers at full precision (unformatted copy).

As a shortcut, you can highlight entire rows or columns of cells by clicking on the gray bor-
der that surrounds the spreadsheet. Dragging across the border selects multiple rows or 
columns. To copy several adjacent series from the spreadsheet, drag across their names in 
the top border. All of their data will be highlighted. Then click Edit/Copy… to put the data 
into the clipboard

Once the data are on the clipboard, switch to the target application, and select Edit/Paste.

Exporting to a Spreadsheet or Text File

First, click on Procs/Export/Write Text-Lotus-Excel…, then enter the name and type of 
the output file in the file dialog. As you fill out the file dialog, keep in mind the following 
behavior:

• If you enter a file name with an extension, EViews will use the file extension to iden-
tify the file type. Files with common spreadsheet extensions (.XLS, .WK3, .WK1, and 
.WKS) will be saved to the appropriate spreadsheet type. All others will be saved as 
ASCII files.

• If you do not enter an extension, EViews will use the file type selected in the combo-
box to determine the output type. Spreadsheet files will have the appropriate exten-
sions appended to the name. ASCII files will be saved in the name provided in the 
dialog, without an extension. EViews will not append extensions to ASCII files 
unless you explicitly include one in the file name.

• Note that EViews cannot, at present, write into an existing file. The file that you 
select will, if necessary, be replaced.

Once you have specified the output file, click OK to open the export dialog. 

Tip: if you highlight the series you wish to export before beginning the export procedure, 
the series names will be used to fill out the export dialog. 

Spreadsheet Export

The dialogs for spreadsheet export are virtually identical to the dialogs for spreadsheet 
import. You should determine the orientation of your data, the series to export, and the 
sample of observations to be written.
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Additionally, EViews provides you with checkboxes for determining whether to include the 
series names and/or the series dates in the spreadsheet. If you choose to write one or both 
to the spreadsheet, make certain that the starting cell for your data leaves the necessary 
room along the borders for the information. If the necessary room is not available, EViews 
will ignore the option—for example, if you choose to write your data beginning in cell A1, 
EViews will not write the names or dates.

ASCII Export

The ASCII export dialog is quite similar to the spreadsheet export dialog, but it contains a 
few additional options:

• You can change the text string to be used for writing missing values. Simply enter 
the text string in the edit field.

• EViews provides you with the option of separating data values with a tab, a space, or 
a comma. Click on the desired radio button.

You should be warned that if you attempt to write your data by series, EViews will write all 
of the observations for a series on a single line. If you have a reasonably long series of 
observations, these data may overflow the line-length of other programs

Frequency Conversion

As well as importing and exporting data in different formats, you will sometimes wish to 
combine data observed at different frequencies into a single common frequency. For exam-
ple, you may have a series for which you have monthly data that you would like to use 
together with another series for which you have quarterly data. To use these series 
together they will first need to be converted to a common frequency.

Every series in EViews has an associated frequency. When a series is in a workfile, then 
the series is stored at the frequency of the workfile which contains the series. When a 
series is in a database, then each series is stored at its own frequency. Because all series in 
the same workfile must share a common frequency, moving a series from one workfile to 
another or from a database to a workfile will cause the series being moved to be converted 
to the frequency of the workfile into which it is being placed.

There are two types of frequency conversion: high frequency to low frequency conversion, 
and low frequency to high frequency conversion.

High Frequency To Low Frequency Conversion

If the series being imported has a higher frequency than the workfile, you may choose 
between a number of different conversion methods. There are six main alternatives:

• Average observations



Frequency Conversion—73
• Sum observations

• First observation

• Last observation

• Maximum observation

• Minimum observation

In addition, there is an option Conversion propagates NAs which determines how missing 
data should be handled when carrying out the calculations. If Conversion propagates NAs 
is checked and a missing value appears anywhere in a calculation, the result for that 
period will be an NA. If Conversion propagates NAs is not checked, the calculations will 
be performed ignoring the missing values (although if all values for the period are missing, 
the result for that period will still be an NA).

For example, if you choose the First observation conversion method and fetch a daily 
series into a quarterly workfile, the value of the first quarter will be taken from the January 
1 observation of the corresponding year. If no data exists for January 1, and Conversion 
propagates NAs is selected, an NA will be returned for the entire quarter. If Conversion 
propagates NAs is not selected, the quarter will be assigned the first available observation 
between January 1 and March 31.

If you fetch or copy an undated series into a dated workfile, the data will be copied into the 
workfile sequentially without any conversion, beginning at the starting observation num-
ber of the undated series (generally the first observation).

You can adjust the conversion method in three ways: as an option to the command line, as 
a series setting, or as a global option. The settings are applied in the following order:

• If you are using either the copy or fetch command and you provide an option to 
set the conversion method (see copy (p. 168) and fetch (p. 205) in the Command 
and Programming Referencefor details), then EViews will use this method for all of 
the series listed in the command.

• Otherwise, if a series has a particular frequency conversion option set, choose View/
Conversion Options… from the series object menu to view or change the option) 
that conversion method will be used for that particular series.

• Otherwise, the global option setting will be used (choose Options/Frequency Con-
version - Dates… from the main menu to view or change the option). The global 
option is initially set to average the observations and to not propagate NAs.

As an example of controlling frequency conversion, say you have daily data consisting of 
high, low, and close series for a particular stock, from which you would like to construct a 
monthly workfile. If you use the default frequency conversion methods, the monthly work-
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file will contain series which are an average of the daily observations. This is unlikely to be 
what you want. By setting the frequency conversion method of the high series to Maxi-
mum observation, of the low series to Minimum observation, and of the close series to 
Last observation, you can create a monthly workfile which will correctly follow the defini-
tions of the series.

Low Frequency to High Frequency

EViews also provides a number of different interpolation methods for dealing with the case 
where the series being brought into the workfile has a lower frequency than the workfile. 
Since observing a series at a lower frequency provides fundamentally less information than 
observing the same series at a higher frequency, it is generally not possible to recover the 
high frequency series from the low frequency data. Consequently, the results from EViews’ 
interpolation methods should be considered as suggestive rather than as providing the true 
values of the underlying series.

EViews supports the following interpolation methods:

• Constant: Constant with sum or average matched to the source data.

• Quadratic: Local quadratic with sum or average matched to the source data.

• Linear: Linear with last observation matched to the source data.

• Cubic: Cubic spline with last observation matched to the source data.

• No conversion: Disallow conversion (generates error message if mixed frequency).

Using an interpolation method which matches the average means that the average of the 
interpolated points for each period is equal to the source data point for that period. Simi-
larly if the sum is matched, the interpolated points will sum to the source data point for 
the period, and if the last observation is matched, the last interpolated point will equal the 
source data point for the period.

For all methods, all relevant data from the low frequency series is used when forming the 
high frequency series, even if the range of the destination covers only part of the source.

The following describes the different methods in greater detail:

• Constant: match average, Constant: match sum—These two methods assign the 
same value to all observations in the high frequency series associated with a particu-
lar low frequency period. In one case, the value is chosen so that the average of the 
high frequency observation matches the low frequency observation (the value is 
simply repeated). In the other case, the value is chosen so that the sum of the high 
frequency observations matches the low frequency observation (the value is divided 
by the number of observations).
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• Quadratic: match average, Quadratic: match sum—These two methods fit a local 
quadratic polynomial for each observation of the low frequency series, then use this 
polynomial to fill in all observations of the high frequency series associated with the 
period. The quadratic polynomial is formed by taking sets of three adjacent points 
from the source series and fitting a quadratic so that either the average or the sum of 
the high frequency points match to the low frequency data actually observed. For 
most points, one point before and one point after the period currently being interpo-
lated are used to provide the three points. For end points, the two periods are both 
taken from the one side where data is available. 

This method is a purely local method. The resulting interpolation curves are not con-
strained to be continuous at the boundaries between adjacent periods. Because of 
this, the method is better suited to situations where relatively few data points are 
being interpolated and the source data is fairly smooth. 

• Linear: match last—This method assigns each value in the low frequency series to 
the last high frequency observation associated with the low frequency period, then 
places all intermediate points on straight lines connecting these points.

• Cubic: match last—This method assigns each value in the low frequency series to 
the last high frequency observation associated with the low frequency period, then 
places all intermediate points on a natural cubic spline connecting all the points.

A natural cubic spline is defined by the following properties:

1. Each segment of the curve is represented by a cubic polynomial.

2. Adjacent segments of the curve have the same level, first derivative and second 
derivative at the point where they meet.

3. The second derivative of the curve at the two global end points is equal to zero 
(this is the “natural” spline condition).

Cubic spline interpolation is a global interpolation method so that changing any one 
point (or adding an additional point) to the source series will affect all points in the 
interpolated series.

Commands for Basic Data Handling

To create a new series from an existing series, follow the series or genr command with 
a name for the new series, an equal sign and an expression involving the existing series:

series logy = log(y)

creates a new series named LOGY that is the natural log of the series Y.

To create a new group of series, follow the group command with a name for the group 
and a list of series to include in the group, each separated by a space:
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group rhs c x1 x2 z

creates a group named RHS that contains the constant C (a series of ones) and the series 
X1, X2, Z.

To view the series or group, follow the show command with the name of the series or 
group:

show logy

To bring up the import dialog box, follow the read command with the full name of the file 
(including the file extension) to import from:

read c:\data\cps88.dat 

To bring up the export dialog box, follow the export command with the full name of the 
file (including the file extension) to export:

write a:\usmacro.dat

See the Command and Programming Reference for a complete list of commands and 
options available in EViews.

Addendum: Reading ASCII Files

If you instruct EViews to read from an ASCII file, the ASCII Text Import dialog will be dis-
played.

You may notice 
that the dialog 
is more compli-
cated than the 
corresponding 
spreadsheet 
dialog. Since 
there is no 
standard format 
for ASCII files, 
we need to pro-
vide a variety 
options to han-
dle various 
types of files. 

Note that the 
preview win-
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dow at the bottom of the dialog shows you the first 16K of your file. You can use this infor-
mation to set the various formatting options in the dialog.

You must provide the following information: 

• Names for series or Number of series if names in file. If the file does not contain 
series names, or if you do not want to use the names in the file, list the names of the 
series in the order they appear in the file, separated by spaces.

If the names of the series are located in the file before the start of the data, you can 
tell EViews to use these names by entering a number representing the number of 
series to be read. 

If possible, you should avoid using parentheses and mathematical symbols such as 
“*”, “+”, “-”, “/”, “^” in the names. If EViews tries to read the names from the file 
and encounters an invalid name, it will try to rename the series to a valid name by 
replacing invalid characters with underscores and numbers. For example, if the 
series is named X(-3) in the file, EViews will rename this series to X__3_01. If 
X__3_01 is already a series name, then EViews will name the series X__3_02, and so 
forth.

If EViews cannot name your series, say, because the name is a reserved name, or 
because the name is used by an object that is not a series, the series will be named 
SER01, SER02, etc. 

You should be very careful in naming your series and listing the names in the dialog. 
If the name in the list or in the file is the same as an existing series name in the 
workfile, the data in the existing series will be overwritten. 

• Data order. You need to specify how the data are organized in your file. If your data 
are ordered by observation so that each series is in a column, select in Columns. If 
your data are ordered by series so that all the data for the first series are followed by 
all the data for the second series and so on, select in Rows. 

• Import sample. You should specify the sample in which to place the data from the 
file. EViews fills out the dialog with the current workfile sample, but you can edit the 
sample string or use the sample reset buttons to change the input sample. The input 
sample only sets the sample for the import procedure, it does not alter the workfile 
sample.

EViews fills all of the observations in the current sample using the data in the input 
file. There are a couple of rules to keep in mind:

1. EViews assigns values to all observations in the input sample. Observations 
outside of the input sample will not be changed.

2. If there are too few values in the input file, EViews will assign NAs to the extra 
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observations in the sample.

3. Once all of the data for the sample have been read, the remainder of the input 
file will be ignored.

In addition to the above information, you can use the following options to further control 
the way EViews reads in ASCII data. 

EViews scans the first few lines of the source file and sets the default formatting options in 
the dialog based on what it finds. However, these settings are based on a limited number of 
lines and may not be appropriate. You may find that you need to reset these options.

Delimiters

Delimiters are the characters that your file uses to separate observations. You can specify 
multiple delimiters by selecting the appropriate entries. Tab, Comma, and Space are self-
explanatory. The Alpha option treats any of the 26 characters from the alphabet as a 
delimiter. 

For delimiters not listed in the option list, you can select the Custom option and specify 
the symbols you wish to treat as delimiters. For example, you can treat the slash “/” as a 
delimiter by selecting Custom and entering the character in the edit box. If you enter more 
than one character, each character will be treated as a delimiter. For example, if you type “/
/” in the Custom field, then the single slash “/” will be treated as a delimiter, instead of 
the double slash “//”. The double slash will be interpreted as two delimiters.

EViews provides you with the option of treating multiple delimiter characters as a single 
delimiter. For example, if “,” is a delimiter and the option Treat multiple delimiters as one 
is selected, EViews will interpret “,,” as a single delimiter. If the option is turned off, 
EViews will view this string as two delimiters surrounding a missing value.

Rectangular File Layout Options

To treat the ASCII file as a rectangular file, select the File laid out as rectangle option in 
the upper right-hand portion of the dialog. If the file is rectangular, EViews reads the file as 
a set of lines, with each new line denoting a new observation or a new series. If you turn 
off the rectangular option, EViews treats the whole file as one long string separated by 
delimiters and carriage returns. 

Knowing that a file is rectangular makes ASCII reading much simpler since EViews knows 
how many values to expect on a given line. For files that are not rectangular, you will need 
to be precise about the number of series or observations that are in your file. For example, 
suppose that you have a non-rectangular file that is ordered in columns and you tell 
EViews that there are four series in the file. EViews will ignore new lines and will read a 
new observation after reading every four values.
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If the file is rectangular, you can tell EViews to skip columns and/or rows. 

For example, if you have a rectangular file and you type 3 in the Rows to skip field, 
EViews will skip the first three rows of the data file. Note that you can only skip the first 
few rows or columns; you cannot skip rows or columns in the middle of the file.

Series Headers

This option tells EViews how many “cells” to offset as series name headers before reading 
the data in the file. The way that cell offsets are counted differs depending on whether the 
file is in rectangular form or not. 

For files in rectangular form, the offsets are given by rows (for data in columns) or by col-
umns (for data in rows). For example, suppose your data file looks as follows:

There is a one line (row) gap between the series name line and the data for the first obser-
vation. In this case, you should set the series header offset as 2, one for the series name 
line and one for the gap. If there were no gap, then the correct offset would instead be 1.

For files that are in non-rectangular form, the offsets are given by the number of cells sep-
arated by the delimiters. For example, suppose you have a data file that looks as follows:

The data are ordered in columns but each observation is recorded in two lines, the first line 
for the first 10 series and the second line for the remaining 4 series. 

It is instructive to examine what happens if you incorrectly read this file as a rectangular 
file with 14 series and a header offset of 2. EViews will look for the series names in the first 
line, will skip the second line, and will begin reading data starting with the third line, treat-
ing each line as one observation. The first 10 series names will be read correctly, but since 
EViews will be unable to find the remaining four names on the first line, the remaining 
series will be named SER01–SER04. The data will also be read incorrectly. For example, the 
first four observations for the series GR will be 215.9800, NA, 180.4800, and NA, since 
EViews treats each line as a new observation.

To read this data file properly, you should turn off the rectangle file option and set the 
header offset to 1. Then EViews will read, from left to right, the first 14 values that are sep-
arated by a delimiter or carriage return and take them as series names. This corresponds to 
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the offset of 1 for headers. The next 14 observations are the first observations of the 14 
series, and so on. 

Miscellaneous Options

• Quote with single ‘ not “. The default behavior in EViews is to treat anything inside 
a pair of matching double quotes as one string, unless it is a number. This option 
treats anything inside a pair of matching single quotes as one string, instead of the 
double quotes. Since EViews does not support strings, the occurrence of a pair of 
matching double quotes will be treated as missing, unless the thing inside the pair of 
double quotes is a number. 

• Drop strings—don’t make NA. Since EViews does not support strings, any input 
into a series observation that is not a number or delimiter will, by default, be treated 
as a missing observation. For example, 10b and 90:4 will both be treated as missing 
values (unless Alphabetic characters or “:” are treated as delimiters). The Drop 
strings option will skip these strings instead of treating them as NAs.

If you choose this option, the series names, which are strings, will also be skipped 
so that your series will be named using the EViews default names: SER01, SER02, 
and so on. If you wish to name your series, you should list the series names in the 
dialog.

Note that strings that are specified as missing observations in the Text for NA edit 
box will not be skipped and will be properly indicated as missing.

• Numbers in ( ) are negative. By default, EViews treats parentheses as strings. How-
ever, if you choose this option, numbers in parentheses will be treated as negative 
numbers and will be read accordingly.

• Allow commas in numbers. By default, commas are treated as strings unless you 
specify them as a delimiter. For example, 1,000 will be read as either NA (unless you 
choose the drop string option, in which case it will be skipped) or as two observa-
tions, 1 and 0 (if the comma is a delimiter). However, if you choose to Allow com-
mas in numbers, 1,000 will be read as the number 1000.

• Currency. This option allows you to specify a symbol for currency. For example, the 
default behavior treats $10 as a string (which will either be NA or skipped) unless 
you specify “$” as a delimiter. If you enter “$” in the Currency option field, then $10 
will be read as the number 10.

The currency symbol can appear either at the beginning or end of a number but not 
in the middle. If you type more than one symbol in the field, each symbol will be 
treated as a currency code. Note that currency symbols are case sensitive. For exam-
ple, if the Japanese yen is denoted by the “Y” prefix, you should enter “Y”, not “y”. 
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• Text for NA. This option allows you to specify a code for missing observations. The 
default is NA. You can use this option to read data files that use special values to 
indicate missing values, e.g., “.”, or “-99”.

You can specify only one code for missing observations. The entire Text for NA 
string will be treated as the missing value code.

Examples

In these examples, we demonstrate the ASCII import options using example data files 
downloaded from the World Wide Web. The first example file looks as follows:

This is a cross-section data set, seven series ordered in columns, each separated by a single 
space. Note that the B series takes string values, which will be replaced by NAs. If we type 
7 series in the number of series field and use the default setting, EViews will correctly read 
in the data.

By default, EViews checks the Treat multiple delimiters as one option even though the 
series are delimited by a single space. If you do not check this option, the last series BB 
will not be read in and EViews creates a series named SER01. This strange behavior is 
caused by an extra space in the very first column of the data file, before the 1st and 3rd 
observations of the X series. EViews treats the very first space as a delimiter and looks for 
the first series data before the first extra space, which is missing. Therefore the first series 
is named SER01 with data NA, 10, NA, 12 and all other series are incorrectly imported. 

To handle this case, EViews automatically ignores the delimiter before the first column 
data if you choose both the Treat multiple delimiters as one and the File laid out as rect-
angle options.

The top of the second example file looks like:

This is a cross-section data set, ordered in columns, with missing values coded as “-999.0”. 
There are eight series, each separated by spaces. The first series is the ID name in strings. 

If we use the EViews defaults, there will be problems reading this file. The spaces in the ID 
description will generate spurious NA values in each row, breaking the rectangular format 
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of the file. For example, the first name will generate two NAs, since “African” is treated as 
one string, and “elephant” as another string. 

You will need to use the Drop strings option to skip all of the strings in your data so that 
you don’t generate NAs. Fill out the ASCII dialog as follows:

Note the following:

• Since we skip the first string series, we list only the remaining seven series names.

• There are no header lines in the file so we set the offset to 0.

• If you are not sure whether the delimiter is a space or tab, mark both options. You 
should treat multiple delimiters as one.

• Text for NA should be entered exactly as it appears in the file. For this example you 
should enter “–999.0”, not “–999”.

The third example is a daily data file that looks as follows:

This file has 10 lines of data description, line 11 is the series name header, and the data 
begin in line 12. The data are ordered in columns in rectangular form with missing values 
coded as a “0”. To read these data, you can instruct EViews to skip the first 10 rows of the 
rectangular file, and read three series with the names in the file.
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The only problem with this method is that the DATE series will be filled with NAs since 
EViews treats the entry as a string (because of the “/” in the date entry). You can avoid this 
problem by identifying the slash as a delimiter using the Custom edit box. The first column 
will now be read as three distinct series since the two slashes are treated as delimiters. 
Therefore, we modify the option settings as follows:

Note the changes to the dialog entries:

• We now list five series names. We cannot use the file header since the line only con-
tains three names.

• We skip 11 rows with no header offset since we want to skip the name header line.

• We specify the slash “/” as an additional delimiter in the Custom option field. 

The month, day, and year will be read as separate series and can be used as a quick check 
of whether the data have been correctly read.
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Addendum: Matrix Object Reading and Writing

The two available procedures for matrices allow you to import 
and export data directly to or from the matrix object. As with 
the standard EViews procedures, you can read or write from 
spreadsheet or from ASCII files.

To read from a file, select Procs/Import Data (ASCII, 
.XLS, .WK?)… EViews will open an import dialog. 

Here, we depict the matrix import Excel dialog. As 
above, the corresponding ASCII dialog has many 
more options, since ASCII file reading is more com-
plicated. Note that both the import and export dia-
logs differ little from the series import dialogs 
described above. The differences reflect the different 
nature of series and matrix input and output. For 
example, dialog options for series names and the sample are omitted since they do not 
apply to matrices.

To write the contents of the matrix to a file, select Procs/Export Data (ASCII, .XLS, 
.WK?)… and fill in the dialog.

In reading from a file, EViews first fills the matrix with NAs, puts the first data element in 
the (1,1) element of the matrix, and then continues reading the data by row or column 
according to the specified settings for Ordering of data. If this option is set as Original, 
EViews will read by row, filling the first row from left to right, and then continuing on to 
the next row. If the ordering is set as Transpose, EViews fills the matrix by columns, read-
ing the first column from top to bottom and then continuing on to the next column.

ASCII files provide you with the option of reading your file as a rectangle. If your ASCII file 
is laid out as a rectangle, the contents of the rectangle will be placed in the matrix begin-
ning at the (1,1) element of the matrix. For example, if you have a  matrix X, and 
read from the ASCII file containing:

1 2 3 4

5 6 7 8

9 10 11 12

using the File laid out as rectangle option, the matrix X will contain the corresponding 
rectangular portion of the ASCII file:

1 2 3

5 6 7

3 3×
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9 10 11

If you do not select the rectangular read option, EViews fills the matrix element-by-ele-
ment, reading from the file line by line Then X will contain:

1 2 3

4 5 6

7 8 9
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Chapter 5.  Working with Data

In the following discussion we describe EViews’ powerful language for using expressions 
and generating and manipulating the data in series and groups. We first describe the fun-
damental rules for working with mathematical expressions in EViews, and then describe 
how to use these expressions in working with series and group data. 

Using Expressions

One of the most powerful features of EViews is the ability to use and to process mathemat-
ical expressions. EViews contains an extensive library of built-in operators and functions 
that allow you to perform complicated mathematical operations on your data with just a 
few keystrokes. In addition to supporting standard mathematical and statistical operations, 
EViews provides a number of specialized functions for automatically handling the leads, 
lags and differences that are commonly found in time series data.

An EViews expression is a combination of numbers, series names, functions, and mathe-
matical and relational operators. In practical terms, you will use expressions to describe all 
mathematical operations involving EViews objects.

As in other programs, you can use these expressions to calculate a new series from existing 
series, to describe a sample of observations, or to describe an equation for estimation or 
forecasting. However, EViews goes far beyond this simple use of expressions by allowing 
you to use expressions virtually anywhere you would use a series. We will have more on 
this important feature shortly, but first, we describe the basics of using expressions.

Operators

EViews expressions may include operators for the usual arithmetic operations. The opera-
tors for addition (+), subtraction (-), multiplication (*), division (/) and raising to a 
power (^) are used in standard fashion so that

5 + 6 * 7.0 / 3

7 + 3e-2 / 10.2345 + 6 * 10^2 + 3e3

3^2 - 9

are all valid expressions. Notice that explicit numerical values may be written in integer, 
decimal, or scientific notation.

In the examples above, the first expression takes 5 and adds to it the product of 6 and 7.0 
divided by 3 (5+14=19); the last expression takes 3 raised to the power 2 and subtracts 9 
(9 – 9 = 0). These expressions use the order of evaluation outlined below.
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The “-” and “+” operators are also used as the unary minus (negation) and unary plus 
operators. It follows that

2-2

-2+2

2+++++++++++++-2

2---2

all yield a value of 0.

EViews follows the usual order in evaluating expressions from left to right, with operator 
precedence order (from highest precedence to lowest): 

• unary minus (-), unary plus (+)

• exponentiation (^)

• multiplication (*), division (/)

• addition (+), subtraction (-)

• comparison (<, >, <=, >=, =)

• and, or

The last two sets of operators are used in logical expressions.

To enforce a particular order of evaluation, you can use parentheses. As in standard math-
ematical analysis, terms which are enclosed in parentheses are treated as a subexpression 
and evaluated first, from the innermost to the outermost set of parentheses. We strongly 
recommend the use of parentheses when there is any possibility of ambiguity in your 
expression.

To take some simple examples,

• -1^2, evaluates to (–1)^2=1 since the unary minus is evaluated prior to the power 
operator. 

• -1 + -2 * 3 + 4, evaluates to –1 + –6 + 4 = –3. The unary minus is evaluated 
first, followed by the multiplication, and finally the addition.

• (-1 + -2) * (3 + 4), evaluates to –3 * 7 = –21. The unary minuses are evalu-
ated first, followed by the two additions, and then the multiplication.

• 3*((2+3)*(7+4) + 3), evaluates to 3 * (5*11 + 3) = 3 * 58 =174. 

A full listing of operators is presented in Appendix A, “Operator and Function Reference”, 
on page 435 of the Command and Programming Reference.
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Series Expressions

Much of the power of EViews comes from the fact that expressions involving series operate 
on every observation, or element, of the series in the current sample. For example, the 
series expression

2*y + 3

tells EViews to multiply every sample value of Y by 2 and then to add 3. We can also per-
form operations that work with multiple series. For example,

x/y + z

indicates that we wish to take every observation for X and divide it by the corresponding 
observation on Y, and add the corresponding observation for Z. 

Series Functions 

EViews contains an extensive library of built-in functions that operate on all of the ele-
ments of a series in the current sample. Some of the functions are “element functions” 
which return a value for each element of the series, while others are “summary functions” 
which return scalars, vectors or matrices, which may then be used in constructing new 
series or working in the matrix language (see Chapter 4, “Matrix Language”, on page 55 of 
the Command and Programming Reference for a discussion of scalar, vector and matrix 
operations).

Most function names in EViews are preceded by the @-sign. For example, @mean returns 
the average value of a series taken over the current sample, and @abs takes the absolute 
value of each observation in the current sample.

All element functions return NAs when any input value is missing or invalid, or if the 
result is undefined. Functions which return summary information generally exclude obser-
vations for which data in the current sample are missing. For example, the @mean function 
will compute the mean for those observations in the sample that are non-missing. 

A full description of the functions is presented in Appendix A, “Operator and Function Ref-
erence”, on page 435 of the Command and Programming Reference. 

Examples

We provide a few additional examples without additional comment:

@trend(1980:1)

@movav(x,4)

@mean(x)*y + @var(x)*z

1/@sqrt(2*@acos(-1))*exp(-1/2 * x^2)
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d(x,4)

The remainder of this chapter will provide additional examples of expressions involving 
functions.

Series Elements

At times, you may wish to access a particular observation for a series. EViews provides you 
with a special function, @elem, which allows you to use a specific value of a series.

@elem takes two arguments: the first argument is the name of the series, and the second is 
the date or observation identifier.

For example, suppose that you want to use the 1980:3 value of the quarterly series Y, or 
observation 323 of the undated series X. Then the functions:

@elem(y, 1980:3)

@elem(x, 323)

will return the values of the respective series in the respective periods.

Logical Expressions

A logical expression is one which evaluates to “true” or “false”. EViews also allows logical 
expressions to take the value “missing”, but for the moment, we will ignore this point until 
our discussion of missing values (see “Missing Data” on page 92).

Logical expressions may be used as part of a mathematical operation, as part of a sample 
statement, or as part of an if-condition in programs.

We have already seen examples of logical expressions in our discussion of samples and 
sample objects. For example, we saw the sample condition:

incm > 5000

which allowed us to select observations meeting the specified condition. This is an exam-
ple of a logical expression—it is true for each observation on INCM that exceeds 5000; oth-
erwise, it is false.

More generally, logical expressions are those involving the comparison operators, “<” 
(less than), “>” (greater than), “<=” (less than or equal to), “>=” (greater than or 
equal to), “=” (equal to), “<>” (not equal to). 

As described above in the discussion of samples, you can use the “and” and “or” conjunc-
tion operators to build more complicated logical expressions:
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(incm>5000 and educ>=13) or (incm>10000)

It is worth noting that EViews uses the number 1 to represent true and 0 to represent false. 
This internal representation means that you can create complicated expressions involving 
logical subexpressions. For example, you can use logical expressions to recode your data:

0*(inc<100)+(inc>=100 and inc<200)+2*(inc>=200)

which yields 0 if INC<100, 1 if INC is greater than or equal to 100 and less than 200, and 
2 for INC greater than or equal to 200.

The equality comparison operator “=” requires a bit more discussion, since the equal sign 
is used both in assigning values and in comparing values. We consider this issue in a bit 
more depth when we discuss creating and modifying series (see “Working with Series” on 
page 94). For now, note that if used in an expression,

incm = 2000

evaluates to true if income is exactly 2000, and false, otherwise.

Leads, Lags, and Differences

It is easy to work with lags or leads of your series. Simply use the series name, followed by 
the lag or lead enclosed in parentheses. Lags are specified as negative numbers and leads 
as positive numbers so that

income(-4)

is the fourth lag of the income series, while

sales(2)

is the second lead of sales.

While EViews expects lead and lag arguments to be integers, there is nothing to stop you 
from putting non-integer values in the parentheses. EViews will automatically convert the 
number to an integer; you should be warned, however, that the conversion behavior is not 
guaranteed to be systematic. If you must use non-integer values, you are strongly encour-
aged to use the @round, @floor, or @ceil functions to control the lag behavior.

In many places in EViews, you can specify a range of lead or lag terms. For example, when 
estimating equations, you can include expressions of the form

income(-1 to -4)

to represent all of the INCOME lags from 1 to 4. Similarly, the expressions

sales sales(-1) sales(-2) sales(-3) sales(-4)

sales(0 to -4)
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sales(to -4)

are equivalent methods of specifying the level of SALES and all lags from 1 to 4.

EViews also has several built-in functions for working with difference data in either levels 
or in logs. The “D” and “DLOG” functions will automatically evaluate the differences for 
you. For example, instead of taking differences explicitly, 

income - income(-1)

log(income) - log(income(-1))

you can use the equivalent expressions,

d(income)

dlog(income)

You can take higher order differences by specifying the difference order. For example, the 
expressions

d(income,4)

dlog(income,4)

represent the fourth-order differences of INCOME and log(INCOME).

If you wish to take seasonal differences, you should specify both the ordinary, and a sea-
sonal difference term:

d(income,1,4)

dlog(income,1,4)

are first order differences with a seasonal difference at lag 4. If you want only the seasonal 
difference, specify the ordinary difference term to be 0:

d(income,0,4)

dlog(income,0,4)

Mathematical details are provided in Appendix A, “Operator and Function Reference”, on 
page 435 of the Command and Programming Reference.

Missing Data

Occasionally, you will encounter data that are not available for some periods or observa-
tions, or you may attempt to perform mathematical operations where the results are unde-
fined (e.g., division by zero, log of a negative number). EViews uses the code NA (not 
available) to represent these missing values.

For the most part, you will never have to worry about NAs. EViews will generate NAs for 
you when appropriate, and will automatically exclude observations with NAs from statisti-
cal calculations. For example, if you are estimating an equation, EViews will use the set of 
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observations in the sample that have no missing values for the dependent and all of the 
independent variables.

There are, however, a few cases where you will need to work with NAs so you should be 
aware of some issues.

When you perform operations using multiple series, there may be alternative approaches 
for handling NAs. EViews will usually provide you with the option of casewise exclusion 
(common sample) or listwise exclusion (individual sample). With casewise exclusion, only 
those observations for which all of the series have non-missing data are used. This rule is 
always used, for example, in equation estimation. For listwise exclusion, EViews will use 
the maximum number of observations possible for each series, excluding observations sep-
arately for each series in the list of series. For example, when computing descriptive statis-
tics for a group of series, you have the option to use a different sample for each series.

If you must work directly with NAs, just keep in mind that EViews NAs observe all of the 
rules of IEEE NaNs. This means that performing mathematical operations on NAs will gen-
erate missing values. Thus, each of the following expressions will generate missing values:

@log(-abs(x))

1/(x-x)

(-abs(x))^(1/3)

3*x + na

exp(x*na)

The equality and inequality comparison operators will work as expected with NA values 
treated as if they were any other value. Thus, the expressions

x = 5

y <> 5

x = na

y <> na

will all evaluate to “true” or “false” depending upon the value of each observation of the 
series. 

In contrast, inequality comparisons using NAs are not logically defined, and will always 
return NA values:

x >= na

y < na

will yield NAs for all observations, irrespective of the values of X and Y. Similarly,
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x > 5

will return a “true” or “false” for non-NA values of X, and NAs where X is missing.

If used in a mathematical operation, a logical expression resulting in an NA is treated as an 
ordinary missing value. For example, for observations where the series X contains NAs, the 
mathematical expression

5*(x>3)

will yield NAs. However, if the logical expression is used as part of a sample or if-state-
ment, NA values are treated as “false”.

smpl 1 1000 if x>3

smpl 1 1000 if x>3 and x<>na

are equivalent since the condition x>3 implicitly tests for NA values. One consequence of 
this behavior is that

smpl 1 1000 if x<=na

will result in a sample with no observations.

Versions of EViews prior to 3.x followed the same IEEE rules for missing data with one 
important exception. In previous versions multiplying any number by zero resulted in 
zero. In EViews 3 and 4, the value NA times zero equals NA. Thus a recommended 
method of recoding (replacing) NA’s in the series X to a number Y will no longer work:

x = (x<>na)*x + (x=na)*y

works in Version 2, but not subsequent versions. A new @nan function has been provided 
for this purpose.

x = @nan(x,y)

recodes “NA” values of X to take the values in the series Y. See Appendix A, “Operator and 
Function Reference”, on page 435 of the Command and Programming Reference.

Working with Series

One of the primary uses of expressions is to generate new series from existing data or to 
modify the values in an existing series. Used in combination with samples, expressions 
allow you to perform sophisticated transformations of your data, saving the results in new 
or existing series objects.

To create or modify a series, select Quick/Generate Series… or click on the Genr button 
on the workfile toolbar. EViews opens a window prompting you for additional information.
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You should enter the assignment statement in 
the upper edit box, and the relevant sample 
period in the lower edit box. 

The assignment statement is actually an implicit 
loop over observations. Beginning with the first 
observation in the sample, EViews will evaluate 
the assignment statement for each included 
observation.

Basic Assignment

You can type the series name, followed by an 
equal sign and then an expression. For every element of the sample, EViews will evaluate 
the expression on the right-hand side of the equality, and assign the value to the destina-
tion series on the left-hand side, creating the series if necessary. 

For example, if there is no series named Y,

y = 2*x + 37*z

will first create the Y series and fill it with NAs. Then, for every observation in the current 
sample, EViews will fill each element of the Y series with the value of the expression. If Y 
does exist, EViews will only replace Y values in the current sample with the value of the 
expression. All observations not in the sample will be unchanged.

One special form of assignment occurs when the right-hand side expression is a constant 
expression:

y = 3

y = 37 * 2 + 3

EViews will simply loop through all of the observations in the sample and assign the value 
of the constant.

Using Samples

By modifying the sample of observations used in assignment, you can splice together 
series using multiple Genr commands. For example, if we enter three Genr commands 
with different samples, first,

Upper window: y = z

Lower window: @all if z<=1 and z>-1 
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followed by a Genr with 

Upper window: y = -2 + 3*z

Lower window: @all if z>1

and finally,

Upper window: y = -.9 + .1*z

Lower window: @all if z<=-1

we can generate Y as a piecewise linear function of the series Z.

Note that while it is possible to perform these types of operations using loops and IF-state-
ments (see the Command and Programming Reference), we strongly urge you to use Genr 
and sample statements wherever possible since the latter approach is much more efficient.

Dynamic Assignment

Since EViews evaluates the assignment expression for each observation in the sample, you 
can perform dynamic assignment by using lagged values of the destination series on the 
right side of the equality. For example, suppose we have an annual workfile that ranges 
from 1945 to 1997. Then if we enter:

Upper window: y = y + y(-1)

Lower window: 1946 1997

EViews will replace the Y series with the cumulative sum of Y. We begin with 1946, since 
we do not want to transform the first value in the workfile. Then for each period, EViews 
will take the current value of Y and add it to the lagged value of Y. The assignment is 
dynamic since as we successively move on to the next period, the lagged value of Y con-
tains the cumulative sum.

Note that this procedure destroys the original data. To create a new series with the cumula-
tive sums, you will have to perform the assignment in two steps, first making a copy of the 
original series, and then performing the dynamic assignment.

Implicit Assignment

You can make an implicit assignment by putting a simple formula on the left-hand side of 
the equal sign. EViews will examine your expression and select, as the destination series, 
the first valid series name on the left-hand side of the equality. Then for every observation 
in the sample, EViews will assign values using the implicit relationship. For example, if 
you enter:

log(y) = x

EViews will treat Y as the destination series, and evaluate y=exp(x) for every observation 
in the sample. 
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The following are examples of valid assignment statements where Y is the destination 
series:

1/y = z

log(y/x)/14.14 = z

log(@inv(y)*x) = z

2+y+3*z = 4*w

d(y) = nrnd

In general, EViews can solve for, or normalize, equations that use the following on the left-
hand side of the equality: +, –, *, /, ^, log(), exp(), sqr(), d(), dlog(), @inv(). 

Since Genr is not a general equation solver, there will be situations in which EViews can-
not normalize your equation. You cannot, for example, use the assignment statement

@tdist(y, 3) = x

since @tdist is not one of the functions that EViews knows how to invert. Similarly, 
EViews cannot solve for equations where the destination series appears more than once on 
the left side of the equality. For example, EViews cannot solve the equation,

x + 1/x = 5

In both cases, EViews will display the error message “Unable to normalize equation”.

Note that the destination series can appear on both sides of the equality. For example, 

log(x) = x

is a legal assignment statement. EViews will normalize the expression and perform the 
assignment

x = exp(x)

so that X will be assigned the exponential of the original value of X. EViews will not solve 
for the values of X satisfying the equality log(x) = x.

Command Window Assignment

You can create series and assign values from the command window. First, set the sample 
using the sample statement, then enter the assignment statement.

There are alternative forms for the assignment statement. First, if the series does not exist, 
you must use either the series or the genr keywords, followed by the assignment 
expression. The two statements

series y = exp(x)

genr y = exp(x)
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are equivalent methods of generating the series Y. Once the series has been created, subse-
quent assignment statements do not require the keywords:

smpl @all

series y = exp(x)

smpl 1950 1990 if y>300

y = y/2 

Examples

The following examples demonstrate how to perform some common tasks involving gener-
ating series (using the command line syntax):

• Time trend (with the value 0 in 1987:1)

series time = @trend(1987:1)

• Price index (with the value 1 in 1985:6)

series index = price/@elem(price, 1985:6)

• Dummy variables

series high_inc = income>12000

• Recode using logical expressions

series newser = x*(y>30) + z*(y<=30)

Working with Auto-series

Another important method of working with expressions is to use an expression in place of 
a series. EViews’ powerful tools for expression handling allow you to substitute expres-
sions virtually any place you would use a series—as a series object, as a group element, in 
equation specifications and estimation, and in models.

We term expressions that are used in place of series as auto-series, since the transforma-
tions in the expressions are automatically calculated without an explicit assignment state-
ment.

Auto-series are most useful when you wish to see the behavior of a function of series, but 
do not want to keep the transformed series, or in cases where the underlying series data 
change frequently. Since the auto-series expressions are automatically recalculated when-
ever the underlying data change, they are never out-of-date.

“Creating” Auto-series

It is easy to create and use an auto-series—anywhere you might use a series name, simply 
enter an EViews expression. For example, suppose that you wish to plot the log of CP 
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against time for the period 1953:01 to 1958:12. One way to plot these values is to generate 
a new series, say LOGCP, and then plot the values. To generate the new series, enter

series logcp = log(cp)

in the command window, open the series LOGCP and select View/Line Graph. 

Alternatively, you can create and use an auto-series by clicking on the Show button, or 
selecting Quick/Show… and entering log(cp). EViews will open a series window in 
spreadsheet view:

Note that in place of an actual series name, EViews substitutes the expression used to cre-
ate the auto-series. 

Furthermore, the auto-series may be treated as a standard series window so all of the series 
views and procedures are immediately available.

To display a time series graph of the LOG(CP) series, simply select View/Line Graph:
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All other views and procedures are also accessible from the menus.

Note that if the data in the CP series are altered, the auto-series will reflect these changes. 
Suppose, for example, that we take the first four years of the CP series, and multiply it by a 
factor of 10:

smpl 1953:01 1956:12

cp = cp*10

smpl 1953:01 1958:12

the auto-series graph will automatically change to reflect the new data

Similarly, you may use an auto-series to compute a 12 period, backward-looking, geomet-
ric moving average of the original CP data. The command:

show @exp(@movav(@log(cp),12))

will display the auto-series containing the geometric moving average:
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Using Auto-series in Groups

One of the more useful ways of working with auto-series is to include them in a group. 
Simply create the group as usual, using an expression in place of a series name, as appro-
priate. For example, if you select Objects/New Object/Group, and enter

cp @exp(@movav(@log(cp),12))

you will create a group containing two series: the ordinary series CP, and the auto-series 
representing the geometric moving average. We can then use the group object graphing 
routines to compare the original, with the smoothed series:

“Working with Groups of Series” on page 102 describes other useful techniques for work-
ing with auto-series.
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Using Auto-Series in Estimation

One method of using auto-series in estimation is to allow expressions as right-hand side 
variables. Thus, you could estimate an equation with log(x) or exp(x+z) as an explan-
atory variable.

EViews goes a step beyond this use of auto-series, by allowing you to use auto-variables as 
the dependent variable in estimation. Thus, if you want to regress the log of Y on explana-
tory variables, you don’t have to create a new variable LOGY. Instead, you can use the 
expression log(y)as your dependent variable.

When you forecast using an equation with an auto-series dependent variable, EViews will, 
if possible, forecast the untransformed dependent variable and adjust the estimated confi-
dence interval accordingly. For example, if the dependent variable is specified as log(y), 
EViews will allow you to forecast the level of Y, and will compute the asymmetric confi-
dence interval. See Chapter 14, “Forecasting from an Equation”, on page 343 for additional 
details.

Working with Groups of Series

EViews provides specialized tools for working with groups of series that are held in the 
form of a group object. In Chapter 4 we used groups to import data from spreadsheets. 
Briefly, a group is a collection of one or more series identifiers or expressions. Note that a 
group does not contain the data in the individual series, only references to the data in the 
series.

To create a group, select Objects/New Object/Group and fill in the dialog with names of 
series and auto-series. Or you can select Show from the workfile toolbar and fill out the 
dialog. Alternatively, type the command group in the command window, followed by a 
name to be given to the group and then the series and auto-series names:

group macrolist gdp invest cons

creates the group MACROLIST containing the series GDP, INVEST and CONS. Similarly,

group altlist log(gdp) d(invest) cons/price

creates the group ALTLIST containing the log of the series GDP, the first difference of the 
series INVEST, and the CONS series divided by the PRICE series.

There are a few features of groups that are worth keeping in mind:

• A group is simply a list of series identifiers. It is not a copy of the data in the series. 
Thus, if you change the data for one of the series in the group, you will see the 
changes reflected in the group.
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• If you delete a series from the workfile, it will disappear from any group that origi-
nally included the series. If the deleted series is the only series in a group, the group 
will also be deleted.

• Renaming a series changes the reference in every group containing the series.

• There are many routines in EViews where you can use a group name in place of a 
list of series. If you wish, for example, to use X1, X2 and X3 as right-hand side vari-
ables in a regression, you can instead create a group containing the series, and use 
the group in the regression.

We describe groups in greater detail in Chapter 8, “Groups”, on page 199.

Accessing Individual Series in a Group

Groups, like other EViews objects, contain their own views and procedures. For now, note 
that you can access the individual elements of a named group as individual series. 

To refer the -th series in the group, simply append “( )” to the group name. For exam-
ple, consider the MACROLIST group, defined above. The expression MACROLIST(1) may 
be used to refer to GDP and MACROLIST(2) to refer to INVEST. 

You can work with MACROLIST(1) as though it were any other series in EViews. You can 
display the series by clicking on the Show button on the toolbar and entering MAC-
ROLIST(1). You can include GDP in another group directly or indirectly. A group which 
contains

macrolist(1) macrolist(2)

will be identical to a group containing

gdp invest

We can also use the individual group members as part of expressions in generating new 
series:

series realgdp = macrolist(1)/price

series y = 2*log(macrolist(3))

or in modifying the original series:

series macrolist(2) = macrolist(2)/price

Note that in this latter example the series keyword is required, despite the fact that the 
INVEST series already exists.

Other tools allow you to retrieve the number of series in a group by appending “.@count” 
to the group name:

n n
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scalar numgroup = macrolist.@count

and to retrieve the names of each of the series using “.@seriesname”. These tools are 
described in greater detail in “Group Data Members” on page 28 of the Command and Pro-
gramming Reference.

Illustration

Access to the members of a group, when paired with auto-series, provides a powerful set of 
tools for working with series data. As we saw above, auto-series provide you with dynamic 
updating of expressions. If we use the auto-series expression:

log(y)

the result will be automatically updated whenever the contents of the series Y changes. 

A potential drawback of using auto-series is that expressions may be quite lengthy. For 
example, the two expressions:

log(gdp)/price + d(invest) * (cons + invest)

12345.6789 * 3.14159 / cons^2 + dlog(gdp)

are not suited to use as auto-series if they are to be used repeatedly in other expressions.

You can employ group access to make this style of working with data practical. First, create 
groups containing the expressions:

group g1 log(gdp)/price+d(invest)*(cons+invest)

group g2 12345.6789*3.14159/cons^2+dlog(gdp)

If there are spaces in the expression, the entire contents should be enclosed in parentheses.

You can now refer to the auto-series as G1(1) and G2(1). You can go even further by com-
bining the two auto-series into a single group:

group myseries g1(1) g2(1)

and then referring to the series as MYSERIES(1) and MYSERIES(2). If you wish to skip the 
intermediate step of defining the subgroups G1 and G2, make certain that there are no 
spaces in the subexpression or that it is enclosed in parentheses. For example, the two 
expressions in the group ALTSERIES,

group altseries (log(gdp)/price) 3.141*cons/price

may be referred to as ALTSERIES(1) and ALTSERIES(2). 
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Working with Scalars 

Scalar objects are different from series and groups in that they have no window views. Sca-
lars are created by commands of the form

scalar scalar_name = number

where you assign a number to the scalar name. The number may be an expression or spe-
cial functions that return a scalar. 

To examine the contents of a scalar, you may enter the command show, followed by the 
name of the scalar. EViews will display the value of the scalar in the status line at the bot-
tom of the EViews window, in the left-hand corner of the status line. For example,

scalar logl1=eq1.@logl

show logl1

stores the log likelihood value of the equation object named EQ1 in a scalar named LOGL1, 
and displays the value in the status line. Alternatively, double clicking on the scalar name 
in the workfile window displays the value in the status line.
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Chapter 6.  EViews Databases

An EViews database resembles a workfile in that it is used to contain a collection of 
EViews objects. It differs from a workfile in two major ways. First, unlike a workfile, the 
entire database need not be loaded into memory in order to access an object inside it; an 
object can be fetched or stored directly to the database on disk. Second, the objects in a 
database are not restricted to being of a single frequency or range. A database could con-
tain a collection of annual, monthly, and daily series, all with different numbers of obser-
vations.

EViews databases also differ from workfiles in that they support powerful query features 
which can be used to search through the database to find a particular series or a set of 
series with a common property. This makes databases ideal for managing large quantities 
of data.

While EViews has its own native storage format for databases, EViews also allows direct 
access to data stored in a variety of other formats through the same database interface. You 
can perform queries, copy objects to and from workfiles and other databases, and rename 
and delete objects within a database, all without worrying about in what format the data is 
actually stored.

An Overview

An EViews database is a set of files containing a collection of EViews objects. In this chap-
ter we describe how to:

• Create a new database or open an existing database.

• Work with objects in the database, including how to store and fetch objects into 
workfiles, and how to copy, rename and delete objects in the database.

• Use auto-series to work with data directly from the database without creating a copy 
of the data in the workfile.

• Use the database registry to create shortcuts for long database names and to set up a 
search path for series names not found in the workfile.

• Perform a query on the database to get a list of objects with particular properties.

• Use object aliases to work with objects whose names are illegal or awkward.

• Maintain a database with operations such as packing, copying, and repairing.

• Work with remote database links to access data from remote sites.
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Database Basics

What is an EViews Database?

An EViews native format database consists of a set of files on disk. There is a main file 
with the extension .EDB which contains the actual object data, and a number of index files 
with extensions such as .E0, .E1A and .E1B which are used to speed up searching opera-
tions on the database. In normal use, EViews manages these files for the user, so there is 
no need to be aware of this structure. However, if you are copying, moving, renaming, or 
deleting an EViews database from outside of EViews (using Windows Explorer for exam-
ple), you should perform the operation on both the main database file and all the index 
files associated with the database. If you accidentally delete or damage an index file, 
EViews can regenerate it for you from the main data file using the repair command (see 
“Maintaining the Database” on page 133).

The fact that EViews databases are kept on disk rather than in memory has some impor-
tant consequences. Any changes made to a database cause immediate changes to be made 
to the disk files associated with the database. Therefore, unlike workfiles, once a change is 
made to a database, there is no possibility of discarding the change and going back to the 
previously saved version. Because of this, you should take care when modifying a data-
base, and should consider keeping regular backup copies of databases which you modify 
frequently.

EViews also allows you to deal with a variety of foreign format databases through the same 
interface provided to EViews’ native format databases. Foreign databases can have many 
different forms, including files on disk, or data made available through some sort of net-
work server. See “Foreign Format Databases” on page 135 for a discussion of the different 
types of foreign databases that EViews can access.

Creating a Database

To create a database, simply select File/New/Database… from the main menu.

For a native EViews database, simply enter a 
name for the database in the field labeled DB 
File name/path, then click on the button 
marked OK. This will create a new EViews 
database in the current path.

To create a database in a different directory, 
you can enter the full path and database name 
in the DB File name/path edit field. Alterna-
tively, you can browse to the desired directory. 
Simply click on the Browse Files button to call 
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up the common file dialog, and then navigate to the target directory. Enter the name of the 
new database in the “File name:” edit field, then click on the OK button to accept the 
information and close the file dialog. EViews will put the new path and filename in the DB 
File name/path edit field.

The Database/File Type field allows you to create different types of databases; see “For-
eign Format Databases” on page 135 for a discussion of working with different database 
types.

The Open As field allows you to specify the shorthand that will be associated with this 
database. A shorthand is a short text label which is used to refer to the database in com-
mands and programs. If you leave this field blank, a default shorthand will be assigned 
automatically. See “Database Shorthands” on page 111 for details.

The Browse Registry and Add to Registry buttons provide a convenient way to recall 
information associated with a previously registered database or to include the new data-
base in the database registry; see “The Database Registry” on page 121 for details.

A database can also be created from the command line or in a program using the com-
mand:

dbcreate db_name

where db_name is the name of the database using the same rules given above.

The Database Window

When you create a new database, a database window will open on the screen. 

The database window pro-
vides a graphical interface 
which allows you to query the 
database, copy-and-paste 
objects to and from your work-
file, and perform basic mainte-
nance on the database. Note that some database operations can also be carried out directly 
without first opening the database window.

To open a database window for an existing database, select File/Open/Database… from 
the main menu. The same dialog will appear as was used during database creation. To 
open an EViews database, use the Browse Files button to select a file using the common 
file dialog, then click on OK to open the file. A new window should appear representing 
the open database.

From the command line or in a program, you can open a database window by typing:
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dbopen db_name

Unlike a workfile window, a database window does not display the contents of the data-
base when it is first opened, although it does tell you how many objects are in the data-
base. The second line of the window text shows the number of objects currently displayed 
(zero when the window is first opened) followed by the total number of objects stored in 
the database.

You can bring up an alphabetical listing of every object in the workfile by clicking on the 
All button:

As for a workfile, each object is pre-
ceded by a small icon that identifies 
the type of the object. When per-
forming an All query, no other infor-
mation about the object is visible. 
However, by double clicking on an 
object you can bring up a full 
description of the object including 
its name, type, modification date, 
frequency, start and end date (for 
series), and label.

For large databases, the All button 
generally displays too many objects and not enough information about each object. The 
database query features (“Querying the Database” on page 123) allow you to control pre-
cisely which objects should be displayed, and what information about each object should 
be visible. The text form of the query currently being displayed is always visible in the top 
line of the database window.

When working with foreign databases, the object names may appear in color to indicate 
that they are illegal names or that an alias has been attached to an object name. See 
“Object Aliases and Illegal Names” on page 131 for details.

The “Packable space” field in the database window displays the percentage of unused 
space in the database that can be recovered by a database pack operation; see “Packing the 
Database” on page 134 for details.

A brief technical note: having a database window open in EViews generally does not keep 
a file open at the operating system level. EViews will normally open files only when it is 
performing operations on those files. Consequently, multiple users can have a database 
open at the same time and can often perform operations simultaneously. There are some 
limits imposed by the fact that one user cannot read from a database that another user is 
writing to at the same time. However, EViews will detect this situation and continue to 
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retry the operation until the database becomes available. If the database does not become 
available within a specified time, EViews will generate an error stating that a “sharing vio-
lation” on the database has occurred.

For some foreign formats, even minor operations on a database may require full rewriting 
of the underlying file. In these cases, EViews will hold the file open as long as the database 
window is open in order to improve efficiency. The formats that currently behave this way 
are Aremos TSD files, RATS portable files and TSP portable files. When using these for-
mats, only one user at a time may have an open database window for the file.

Database Shorthands

In many situations, EViews allows you to prefix an object name with a database identifier 
to indicate where the series is located. These database identifiers are referred to as “short-
hands”. For example, the command:

fetch db1::x db2::y

indicates to EViews that the object named X is located in the database with the shorthand 
db1 and the object named y is located in the database with the shorthand db2.

Whenever a database is opened or created, it is assigned a shorthand. The shorthand can 
be specified by the user in the Open as field when opening a database, or using the “As” 
clause in the dbopen command (see dbopen (p. 183) of the Command and Programming 
Reference). If a shorthand is explicitly specified when opening a database, an error will 
occur if the shorthand is already in use.

If no shorthand is provided by the user, a shorthand is assigned automatically. The default 
value will be the name of the database after any path or extension information has been 
removed. If this shorthand is already in use, either because a database is already open with 
the same name, or because an entry in the database registry already uses the name, then a 
numerical suffix is appended to the shorthand, counting upwards until an unused short-
hand is found.

For example, if we open two databases with the same name in a program:

dbopen test.edb

dbopen test.dat

then the first database will receive the shorthand “TEST” and the second database will 
receive the shorthand “TEST1”. If we then issue the command:

fetch test::x

the object will be fetched from the EViews database TEST.EDB. To fetch the object named 
X from the Haver database TEST.DAT we would use:
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fetch test1::x

To minimize confusion, you should assign explicit shorthands to databases whenever 
ambiguity could arise. For example, we could explicitly assign the shorthand TEST_HAVER 
to the second database by replacing the second dbopen command with:

dbopen test.dat as test_haver

The shorthand attached to a database remains in effect until the database is closed. The 
shorthand assigned to an open database is displayed in the title bar of the database win-
dow.

The Default Database

In order to simplify common operations, EViews uses the concept of a default database. 
The default database is used in several places, the most important of which is as the 
default source or destination for store or fetch operations when an alternative database is 
not explicitly specified.

The default database is set by opening a new database window, or by clicking on an 
already open database window if there are multiple databases open on the screen. The 
name of the default database is listed in the status line at the bottom of the main EViews 
window (see Chapter 3, “EViews Basics”, on page 33 for details). The concept is similar to 
that of the current workfile with one exception: when there are no currently open data-
bases there is still a default database; when there are no currently open workfiles, the cur-
rent workfile is listed as “none.”

EViews .DB? files

The database features described in this chapter were added in Version 3 of EViews. Previ-
ous versions of EViews and MicroTSP supported a much more limited set of database oper-
ations. Objects could be stored on disk in individual files, with one object per file. 
Essentially, the disk directory system was used as a database and each database entry had 
its own file. These files had the extension “.DB” for series, and .DB followed by an addi-
tional character for other types of objects. EViews refers to these collectively as .DB? files. 

While the new database features added to EViews provide a superior method of archiving 
and managing your data, we have continued to support .DB? files to provide backward 
compatibility, and as a convenient method of distributing data to other programs. Series 
.DB files are now supported by a large number of programs including TSP, RATS, and 
SHAZAM. Also, some organizations such as the National Bureau of Economic Research 
(NBER), distribute data in .DB format.
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Working with Objects in Databases

Since databases are simply containers of other EViews objects, most of your work with 
databases will involve moving objects into and out of them. The sections on storing, fetch-
ing and exporting objects discuss different ways of doing this.

You will also need to manage the objects inside a database. You can create duplicate copies 
of objects, change their names, or remove them from the database entirely. The sections on 
copying, renaming and deleting discuss how these operations can be carried out.

Storing Objects in the Database

An object can be stored in a database in a number of ways. If you have a workfile open on 
the screen and would like to store objects contained inside it into a database, just select the 
objects from the workfile window with the mouse, then click on the Store button in the 
workfile toolbar. A sequence of dialogs will come up, one for each object selected, which 
provide a number of options for renaming the object and determining where the object 
should be stored.

By default, the object will be stored in the cur-
rent default database with the same name as 
in the workfile. Click Yes to store this object, 
or Yes-to-All to store all the selected objects 
using these settings.

If you would like to store the object with a dif-
ferent name, simply type the new name over 
the old name in the edit box labeled Store 
object_name as: (where object_name is the name of the object currently being stored). If 
you would like to store the object in a different database, either type in the name of the 
new database in the text box marked Database Alias or Path: (see “The Database Regis-
try” on page 121 for an explanation of database aliases), or click on the button marked 
Browse to select the database name interactively. To store the object to disk as an EViews 
.DB? file, click on the arrow to the right of the field labeled Store in: and select Individual 
.DB? files. You may then specify a path in which to place the file using the field labeled 
Path for DB files.
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If there is already an existing object in the database 
with the same name, EViews will display a dialog. The 
first and last of the three options are self explanatory. 
The second option can only be used if the object you 
are storing from the workfile and the object already in 
the database are both series of the same frequency. In 
this case, EViews will merge the data from the two 
series so that the new series in the database has all the 
observations from the series being stored, as well as 
any observations from the existing series which have 
not been overwritten. For example, if the existing series in the database is an annual series 
from 1950 to 1990, and the series being stored is an annual series from 1980 to 1995, the 
new series will run from 1950 to 1995, with data from the existing series for 1950 to 1979, 
and data from the new series for 1980 to 1995.

Fetching Objects from the Database

There are a number of ways to fetch objects from a database, most of which are similar to 
the methods for storing.

The first method is to click on the button marked Fetch on the toolbar of the workfile into 
which you would like to fetch the object. A dialog will come up which is similar to the dia-
log for store:

The dialog allows you to specify 
the names of the objects to 
fetch, and the database or direc-
tory from which to retrieve 
them.

Enter the names of the objects 
you would like to fetch in the 
field Objects to Fetch. Alterna-
tively, you can use the mouse to 
select objects from the workfile 
window before clicking on the 
Fetch button, in which case the names of these objects will appear automatically. The 
fields labeled Database Alias or Path and Fetch from are the same as for the store dialog 
with one exception. In addition to EViews Database and Individual .DB? files, Fetch from 
has an option titled Search Databases. This option tells EViews to search multiple data-
bases for objects which match the specified names. To use this option you must first define 
a search order in the database registry; see “The Database Registry” on page 121.
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When you click on OK, EViews will fetch all the objects. If an object which is being 
fetched is already contained in the workfile, a dialog will appear asking whether to replace 
the object or not. Click on Yes to replace the object in the workfile or No to leave the object 
in the workfile unchanged. 

Because a workfile has a fixed frequency and range, fetching a series into a workfile may 
cause the data in the series to be modified to match the frequency and range of the work-
file (see “Frequency Conversion” on page 72 for details). Be aware that loading a series 
into a workfile then saving it back into the database can cause truncation and frequency 
conversion of the series stored in the database. 

Objects/Update selected from DB… from the workfile toolbar is the same as Fetch except 
that there is no overwrite warning message. If the object in the database is the same type 
as the one in the workfile, it is automatically overwritten. If it is of a different type, the 
fetch does not proceed. Update is also available from the Objects button in individual 
object windows.

Database Export

You can also move data into a workfile from the database window. From an open database 
window, select the objects you would like to copy using the mouse, then click on the but-
ton marked Export in the toolbar at the top of the database window. A dialog titled “Data-
base Export” will appear on the screen:

When you click on the down arrow on the right of the field 
labeled Workfile for selected objects:, a list of all workfiles 
that are currently open should appear. Choose the workfile into 
which you would like to copy the objects. Clicking on the but-
ton marked OK will copy the selected objects to the chosen 
workfile.

In the list of open workfiles is an extra option called New Workfile. Choosing this option 
allows you to create a new workfile containing the objects you have selected. After you 
click on OK, a dialog will appear in which you can set the frequency and range of the 
workfile to be created. The default frequency is set to the lowest frequency of any of the 
objects selected, and the default range is set to cover all the data points contained in the 
objects. Clicking on OK will open a new workfile window and copy the selected objects 
into it, performing frequency conversions where necessary.

Copying Objects

In addition to the above methods for moving objects, EViews provides general support for 
the copying and pasting of objects between any two EViews container objects (workfiles or 
databases). You can use these features to move objects between two databases or between 
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two workfiles, to create duplicate copies of objects within a workfile or database, or as an 
alternative method for store and fetch.

For copying objects between containers, the procedure is very similar no matter what types 
of container objects are involved. Before you start, make sure that the windows for both 
containers are open on the screen. In the container from which you would like to copy the 
objects, select the objects then click on Edit/Copy in the EViews program menu. Click on 
the container object into which you would like to paste the objects, then select Edit/Paste 
from the EViews program menu.

Depending on the types of the two containers, you will be presented with one or more dia-
logs. If you are performing a fetch or store operation, the same dialogs will appear as if you 
had carried out the operations using the toolbar buttons on the workfile window.

You can perform similar operations, as well as creat-
ing duplicate copies of an object within a container, 
by using the object copy procedure. From the main 
menu select Object/Copy (this may appear as 
Object/Copy selected…). The Object Copy dialog 
will be displayed.

The Source field specifies the object or objects you 
would like to copy, the Destination field specifies where you would like to copy them and 
what names they should be given.

The Source field should be filled in with an expression of the form:

source_db::source_pattern

where source_db:: is optional, and indicates which database the objects should be cop-
ied from (if no database name is supplied, the source is taken to be the default workfile), 
and source_pattern is either a simple object name or a name pattern. A name pattern 
may include the wildcard characters “?” which matches any single character, and “*” 
which matches zero or more characters.

The Destination field should be filled in with an expression of the form:

dest_db::dest_name

where dest_db:: is again optional, and indicates which database the objects should be 
copied to (if no database name is supplied, the destination is taken to be the default work-
file), and dest_name, which is also optional, is the name to be given to the new copy of 
the object. If no name is given, the object will be copied with its existing name. If a pattern 
was used when specifying the source, a pattern must also be used when specifying the 
destination (see “Source and Destination Patterns” on page 658 for details).
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For example, to copy an object from the database DB1 to the database DB2, keeping the 
existing name, you would fill in the dialog:

source: db1::object_name

destination: db2::

where OBJECT_NAME is the original name as displayed by EViews.

To copy all the objects in the database DB1 beginning with the letter X into the current 
workfile, changing the names so that they begin with Y, you would fill in the dialog

source: db1::x*

destination: y*

To make a duplicate copy of the object named ABC in the database DB1, giving it the new 
name XYZ you would fill in the dialog:

source: db1::abc

destination: db1::xyz

Renaming Objects in the Database

You may rename an object in the database by selecting the object in an open database win-
dow, then clicking on the button marked Rename in the database window toolbar. A dia-
log will come up in which you can modify the existing name or type in a new name. You 
can rename several objects at the same time using wildcard patterns and the rename com-
mand. 

Deleting Objects From the Database

To delete objects from the database, select the objects in an open database window, then 
click on the button marked Delete on the database window toolbar. You can delete several 
objects at the same time using wildcard patterns. There is also a delete command. See 
the Command and Programming Referencefor details.

Store, Fetch, and Copy of Group Objects

A group object in EViews is essentially a list of series names that form the group. The data 
of each series are contained in the series object, not in the group object. When you do a 
store, fetch, or copy operation on a group object, an issue arises as to whether you want to 
do the operation on each of the series or to the group definition list.

Storing a Group Object

When you store a group object to a database, there are four available options: 
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• Store the group definition and the series as sep-
arate objects: stores the group object (only its 
definition information) and each of its series as 
separate objects in the database. If any of the 
series already exist in the database, EViews will 
ask whether to overwrite the existing series if in 
interactive mode, and will error if in batch 
mode.

• Store the group definition and the series as one 
object: stores each series within the group object. A group object that contains series 
data will have an icon G+ in the database directory window. A group object with 
only its definition information will have the usual icon G. If you use this option, you 
can store two different series with the same name (with one of the series as member 
of a group).

• Store only the series (as separate objects): only stores each series as separate objects 
in the database. If you want to store a long list of series into a database, you can cre-
ate a temporary group object that contains those series and issue the store command 
only once.

• Store only the group definition: stores only the group definition information; none of 
the series data are stored in the database. This option is useful if you want to update 
the member data from the database but want to keep the group information (e.g. the 
dated data table settings) in the group.

By default, EViews will display a dialog asking you to select a group store option every 
time you store a group object. You can, however, instruct EViews to suppress the dialog 
and use the global option setting. Simply click on Options/Database Default Storage 
Options... to bring up a dialog that allows you both to set the global storage options, and 
to suppress the group store option dialog.

Fetching a Group Object

When you fetch a group object to a database, there are three options available:
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• Fetch both group definition and the actual series: 
fetches both group definition and its series as sep-
arate objects. If any of the series defined in the 
group is not found in the database, the corre-
sponding series will be created in the workfile 
filled with NAs. If any of the series already exist in 
the workfile, EViews will ask whether to over-
write the existing series or not if in interactive 
mode, and will error if in batch mode.

• Fetch only the series in the group: only fetches each series defined in the group. If 
the series exists both within the group object (with a G+ icon) and as a separate 
series object in the database, the series within the group object will be fetched. 

• Fetch only the group definition: fetches only the group definition (but not the series 
data). If any of the series defined in the group does not exist in the workfile, EViews 
will create the corresponding series filled with NAs. 

You can click on Options/Database Default Storage Options... to bring up a dialog that 
allows you both to set the global fetch options, and to suppress the fetch option dialog.

Copying Group Objects between Workfiles and Databases

You can also copy groups between different containers. The options that are available will 
differ depending on the type of source and destination container:

• Copy from workfile to database: same options as the store operation. 

• Copy from database to workfile: same options as the fetch operation.

• Copy from workfile to workfile: both the group definition and series will be copied.

• Copy from database to database. If the group object contains only the group defini-
tion (with a G icon), only the group definition will be copied. If the group object also 
contains its series data (with a G+ icon), then the group will be copied containing 
the series data and the copied group will also appear with a G+ icon.

Database Auto-Series

We have described how to fetch series into a workfile. There is an alternative way of work-
ing with databases which allows you to make direct use of the series contained in a data-
base without first copying the series. The advantage of this approach is that you need not 
go through the process of importing the data every time the database is revised. This 
approach follows the model of auto-series in EViews as described in “Working with Auto-
series” beginning on page 98.
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There are many places in EViews where you can use a series expression, such as log(X), 
instead of a simple series name and EViews will automatically create a temporary auto-
series for use in the procedure. This functionality has been extended so that you can now 
directly refer to a series in a database using the syntax:

db_name::object_name

where db_name is the shorthand associated with the database. If you omit the database 
name and simply prefix the object name with a double colon like this:

::object_name

EViews will look for the object in the default database.

A simple example is to generate a new series:

series lgdp = log(macro_db::gdp)

EViews will fetch the series named GDP from the database with the shorthand 
MACRO_DB, and put the log of GDP in a new series named LGDP in the workfile. It then 
deletes the series GDP from memory, unless it is in use by another object. Note that the 
generated series LGDP only contains data for observations within the current workfile 
sample.

You can also use auto-series in a regression. For example:

equation eq1.ls log(db1::y) c log(db2::x)

This will fetch the series named Y and X from the databases named DB1 and DB2, perform 
any necessary frequency conversions and end point truncation so that they are suitable for 
use in the current workfile, take the log of each of the series, then run the requested regres-
sion. Y and X are then deleted from memory unless they are otherwise in use.

The auto-series feature can be further extended to include automatic searching of data-
bases according to rules set in the database registry (see “The Database Registry” on 
page 121, for details). Using the database registry you can specify a list of databases to 
search whenever a series you request cannot be found in the workfile. With this feature 
enabled, the series command

series lgdp = log(gdp)

looks in the workfile for a series named GDP. If it is not found, EViews will search through 
the list of databases one by one until a series called GDP is found. When found, the series 
will be fetched into EViews so that the expression can be evaluated. Similarly, the regres-
sion
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ls log(y) c log(x)

will fetch Y and/or X if they are not found in the workfile. Note that the regression output 
will label all variables with the database name from which they were imported.

In general, using auto-series directly from the database has the advantage that the data will 
be completely up to date. If the series in the database are revised, you do not need to 
repeat the step of importing the data into the workfile. You can simply reestimate the equa-
tion or model and EViews will automatically retrieve new copies of any data which are 
required. 

There is one complication to this discussion which results from the rules which regulate 
the updating and deletion of auto-series in general. If there is an existing copy of an auto-
series already in use in EViews, then a second use of the same expression will not cause 
the expression to be reevaluated (in this case reloaded from the database); it will simply 
make use of the existing copy. If the data in the database have changed since the last time 
the auto-series was loaded, the new expression will use the old data.

One implication of this behavior is that a copy of a series from a database can persist for 
any length of time if it is stored as a member in a group. For example, if you type:

show db1::y db2::x

this will create an untitled group in the workfile containing the expressions db1::y and 
db2::x. If the group window is left open and the data in the database are modified (for 
example by a store or a copy command), the group and its window will not update auto-
matically. Furthermore, if the regression

ls log(db1::y) c log(db2::x)

is run again, this will use the copies of the series contained in the untitled group; it will not 
refetch the series from the database. 

The Database Registry

The database registry is a file on disk that manages a variety of options which control data-
base operations. It gives you the ability to assign short alias names that can be used in 
place of complete database paths, and it allows you to configure the automatic searching 
features of EViews.
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Options/Database Registry… 
from the main menu brings up 
the Database Registry dialog 
allowing you to view and edit 
the database registry:

The box labeled Registry 
Entries lists the databases that 
have been registered with 
EViews. The first time you 
bring up the dialog, the box 
should be empty. If you click 
on the Add new entry button, 
a second dialog appears.

There are three things you must specify in the 
dialog: the full name (including path) of the 
database, the alias which you would like to 
associate with the database, and the option for 
whether you wish to include the database in 
automatic searches.

The full name and path of the database should 
be entered in the top edit field. Alternatively, 
click the Browse button to select your data-
base interactively.

The next piece of information you must pro-
vide is a database alias: a short name that you 
can use in place of the full database path in 
EViews commands. The database alias will 
also be used by EViews to label database auto-series. For example, suppose you have a 
database named DRIBASIC in the subdirectory DATA on drive C. The following regression 
command is legal but awkward:

ls c:\data\dribasic::gdp c c:\data\dribasic::gdp(-1)

Long database names such as these may also cause output labels to truncate, making it dif-
ficult to see which series were used in a procedure.

By assigning DRIBASIC the alias DRI, we can use the more readable command:
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ls dri::gdp c dri::gdp(-1)

and the regression output will be labeled with the shorter names. To minimize the possibil-
ity of truncation, we recommend the use of short alias names if you intend to make use of 
database auto-series.

Finally you should tell EViews if you want to include the database in automatic database 
searches by checking the Include in auto search checkbox. Clicking on OK will return you 
to the main Database Registry dialog with the new entry included in the list.

Any registry entry may be edited, deleted, switched on or off for searching, or moved to 
the top of the search order by highlighting the entry in the list and clicking the appropriate 
button to the right of the list box.

The remainder of the Database Registry dialog allows you to set options for automatic 
database searching. The Auto-search: checkbox is used to control EViews behavior when 
you enter a command involving a series name which cannot be found in the current work-
file. If this checkbox is selected, EViews will automatically search all databases that are 
registered for searching, before returning an error. If a series with the unrecognized name 
is found in any of the databases, EViews will create a database auto-series and continue 
with the procedure. 

The last section of the dialog, Default Database in Search Order, lets you specify how the 
default database is treated in automatic database searches. Normally, when performing an 
automatic search, EViews will search through the databases contained in the Registry 
Entries window in the order that they are listed (provided that the Include in auto search 
box for that entry has been checked). These options allow you to assign a special role to 
the default database when performing a search.

• Include at start of search order—means that the current default database will be 
searched first, before searching the listed databases.

• Include at end of search order—means that the current default database will be 
searched last, after searching the listed databases.

• Do not include in search—means that the current default database will not be 
searched unless it is already one of the listed databases.

Querying the Database

A great deal of the power of the database comes from its extensive query capabilities. 
These capabilities make it easy to locate a particular object, or to perform operations on a 
set of objects which share similar properties.

The query capabilities of the database can only be used interactively from the database 
window. There are two ways of performing a query on the database: the easy mode and 
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the advanced mode. Both methods are really just different ways of building up a text query 
to the database. The easy mode provides a simpler interface for performing the most com-
mon types of queries. The advanced mode offers more flexibility at the cost of increased 
complexity.

Easy Queries

To perform an easy query, first open the database, then click on the EasyQuery button in 
the toolbar at the top of the database window. The Easy Query dialog will appear contain-
ing two text fields and a number of check boxes:

There are two main sections to this dialog: 
Select and Where. The Select section deter-
mines which fields to display for each object that 
meets the query condition. The Where section 
allows you to specify conditions that must be 
met for an object to be returned from the query. 
An Easy Query allows you to set conditions on 
the object name, object description, and/or 
object type.

The two edit fields (name and description) and 
the set of check boxes (object type) in the 
Where section provide three filters of objects 
that are returned from the query to the database. 
The filters are applied in sequence (using a logi-
cal ‘and’ operation) so that objects in the database must meet all of the criteria selected in 
order to appear in the results window of the query.

The name and description fields are each used to specify a pattern expression that the 
object must meet in order to satisfy the query. The simplest possible pattern expression 
consists of a single pattern. A pattern can either be a simple word consisting of alphanu-
meric characters, or a pattern made up of a combination of alphanumeric characters and 
the wildcard symbols “?” and “*”, where “?” means to match any one character and “*” 
means to match zero or more characters. For example:

pr?d*ction

would successfully match the words production, prediction, and predilection. Frequently 
used patterns include “s*” for words beginning in “S”, “*s” for words ending in “S”, and 
“*s*” for words containing “S”. Upper or lower case is not significant when searching for 
matches.
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Matching is done on a word by word basis where at least one word in the text must match 
the pattern for it to match overall. Since object names in a database consist of only a single 
word, pattern matching for names consists of simply matching this word.

For descriptions, words are constructed as follows: each word consists of a set of consecu-
tive alphanumeric characters, underlines, dollar signs, or apostrophes. However, the fol-
lowing list words are explicitly ignored: “a”, “an”, “and”, “any”, “are”, “as”, “be”, 
“between”, “by”, “for”, “from”, “if”, “in”, “is”, “it”, “not”, “must”, “of”, “on”, “or”, 
“should”, “that”, “the”, “then”, “this”, “to”, “with”, “when”, “where”, “while”. (This is 
done for reasons of efficiency, and to minimize false matches to patterns from uninterest-
ing words). The three words “and”, “or”, and “not” are used for logical expressions.

For example,

bal. of p’ment: seas.adj. by X11

is broken into the following words: “bal”, “p’ment”, “seas”, “adj”, and “x11”. The words 
“of” and “by” are ignored.

A pattern expression can also consist of one or more patterns joined together with the log-
ical operators “and”, “or” and “not” in a manner similar to that used in evaluating logical 
expressions in EViews. That is, the keyword and requires that both the surrounding condi-
tions be met, the keyword or requires that either of the surrounding conditions be met, 
and the keyword not requires that the condition to the right of the operator is not met. For 
example:

s* and not *s

matches all objects which contain words which begin with, but do not end with, the letter 
S.

More than one operator can be used in an expression, in which case parentheses can be 
added to determine precedence (the order in which the operators are evaluated). Operators 
inside parentheses are always evaluated logically prior to operators outside parentheses. 
Nesting of parentheses is allowed. If there are no parentheses, the precedence of the oper-
ators is determined by the following rules: not is always applied first; and is applied sec-
ond; and or is applied last. For example,

p* or s* and not *s

matches all objects which contain words beginning with P, or all objects which contain 
words which begin with, but do not end with, the letter S.

The third filter provided in the Easy Query dialog is the ability to filter by object type. Sim-
ply select the object types which you would like displayed, using the set of check boxes 
near the bottom of the dialog.
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Advanced Queries

Advanced queries allow considerably more control over both the filtering and the results 
which are displayed from a query. Because of this flexibility, advanced queries require 
some understanding of the structure of an EViews database to be used effectively.

Each object in an EViews database is described by a set of fields. Each field is identified by 
a name. The current list of fields includes: 

An advanced query allows you to examine the contents of any of these fields, and to select 
objects from the database by placing conditions on these fields. An advanced query can be 
performed by opening the database window, then clicking on the button marked Query in 
the toolbar at the top of the window. The Advanced Query dialog is displayed.

name The name of the object.

type The type of the object.

last_write The time this object was last written to the database.

last_update The time this object was last modified by EViews.

freq The frequency of the data contained in the object.

start The date of the first observation contained in the object.

end The date of the last observation contained in the object.

obs The number of data points stored in the series (including 
missing values).

description A brief description of the object.

source The source of the object.

units The units of the object.

remarks Additional remarks associated with the object.

history Recent modifications of the object by EViews.

display_name The EViews display name.
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The first edit field labeled Select: is used to 
specify a list of all the fields that you would 
like displayed in the query results. Input into 
this text box consists of a series of field names 
separated by commas. Note that the name and 
type fields are always fetched automatically.

The ordering of display of the results of a 
query is determined by the Order By edit field. 
Any field name can be entered into this box, 
though some fields are likely to be more useful 
than others. The description field, for example, 
does not provide a useful ordering of the 
objects. The Order By field can be useful for 
grouping together objects with the same value of a particular field. For example, ordering 
by type is an effective way to group together the results so that objects of the same type 
are placed together in the database window. The Ascending and Descending buttons can 
be used to reverse the ordering of the objects. For example, to see objects listed from those 
most recently written in the database to those least recently written, one could simply sort 
by the field last_write in Descending order.

The Where edit field is the most complicated part of the query. Input consists of a logical 
expression built up from conditions on the fields of the database. The simplest expression 
is an operator applied to a single field of the database. For example, to search for all series 
which are of monthly or higher frequencies (where higher frequency means containing 
more observations per time interval), the appropriate expression is:

freq >= monthly

Field expressions can also be combined with the logical operators and, or and not with 
precedence following the same rules as those described above in the section on easy que-
ries. For example, to query for all series of monthly or higher frequencies which begin 
before 1950 we could enter the expression:

freq >= monthly and start < 1950

Each field has its own rules as to the operators and constants which can be used with the 
field.

Name

The name field supports the operators “<“, “<=”, “>”, “>=”, “=”, and “<>” to per-
form typical comparisons on the name string using alphabetical ordering. For example, 
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name >= c and name < m

will match all objects with names beginning with letters from C to L. The name field also 
supports the operator “matches”. This is the operator which is used for filtering the name 
field in the easy query and is documented extensively in the previous section. Note that if 
matches is used with an expression involving more than one word, the expression must 
be contained in quotation marks. For example,

name matches "x* or y*" and freq = quarterly

is a valid query, while

name matches x* or y* and freq = quarterly

is a syntax error because the part of the expression that is related to the matches operator 
is ambiguous.

Type

The type field can be compared to the following object types in EViews using the “=” 
operator: sample, equation, graph, table, text, program, model, system, var, 
pool, sspace, matrix, group, sym, matrix, vector, coef, series. Relational opera-
tors are defined for the type field, although there is no particular logic to the ordering. The 
ordering can be used, however, to group together objects of similar types in the Order By 
field.

Freq

The frequency field has one of the following values:

Any word beginning with the letter above is taken to denote that particular frequency, so 
that monthly can either be written as “m” or “monthly”. Ordering over frequencies is 
defined so that a frequency with more observations per time interval is considered 
“greater” than a series with fewer observations per time interval. The operators “<”, “>”, 
“<=”, “>=”, “=”, “<>” are all defined according to these rules. For example,

u Undated

a Annual

s Semiannual

q Quarterly

m Monthly

w Weekly

5 5 day daily

7 7 day daily
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freq <= quarterly

will match objects whose frequencies are quarterly, semiannual, annual or undated. 

Start and End

Start and end dates use the following representation. A date from an annual series is writ-
ten as an unadorned year number such as “1980”. A date from a semiannual series is writ-
ten as a year number followed by an “S” followed by the six month period, for example 
“1980S2”. The same pattern is followed for quarterly and monthly data using the letters 
“Q” and “M” between the year and period number. Weekly, five day daily and 7 day daily 
data are denoted by a date in the format 

mm/dd/yyyy 

where m denotes a month digit, d denotes a day digit, and y denotes a year digit.

Operators on dates are defined in accordance with calendar ordering where an earlier date 
is less than a later date. Where a number of days are contained in a period, such as for 
monthly or quarterly data, an observation is ordered according to the first day of the 
period. For example,

start <= 1950

will include dates whose attributed day is the first of January 1950, but will not include 
dates which are associated with other days in 1950, such as the second, third, or fourth 
quarter of 1950. However, the expression

start < 1951

would include all intermediate quarters of 1950.

Last_write and Last_update

As stated above, last_write refers to the time the object was written to disk, while 
last_update refers to the time the object was last modified inside EViews. For example, 
if a new series was generated in a workfile, then stored in a database at some later time, 
last_write would contain the time that the store command was executed, while 
last_update would contain the time the new series was generated. Both of these fields 
contain date and time information which is displayed in the format:

mm/dd/yyyy hh:mm

where m represents a month digit, d represents a day digit, y represents a year digit, h rep-
resents an hour digit and m represents a minute digit.

The comparison operators are defined on the time fields so that earlier dates and times are 
considered less than later dates and times. A typical comparison has the form:
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last_write >= mm/dd/yyyy

A day constant always refers to twelve o’clock midnight at the beginning of that day. There 
is no way to specify a particular time during the day.

Description, Source, Units, Remarks, History, Display_name

These fields contain the label information associated with each object (which can be 
edited using the Label view of the object in the workfile). Only one operator is available on 
these fields, the matches operator, which behaves exactly the same as the description 
field in the section on easy queries.

Query Examples

Suppose you are looking for data related to gasoline consumption and gasoline prices in 
the database named DRIBASIC. First open the database: click File/Open, select Files of 
type: Database .edb and locate the database. From the database window, click Query and 
fill in the Advanced Query dialog as follows:

Select: name, type, description

Where: description matches gasoline

If there are any matches, the results are displayed in the database window like this:

To view the contents of all fields of an item, double click on its name. EViews will open an 
Object Description window that looks as follows:
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To further restrict your search to series with at least quarterly frequency and to display the 
start and end dates of the results, click Query and again and modify the fields as follows:

Select: name, type, start, end, description

Where: description matches gasoline and freq>=q

If you are interested in seasonally adjusted series, which happen to contain sa or saar in 
their description in this database, further modify the fields to

Select: name, type, start, end, description

Where: description matches "gasoline and (sa or saar)" and 

freq>=q

The display of the query results now looks as follows:

Object Aliases and Illegal Names

When working with a database, EViews allows you to create a list of aliases for that data-
base which allow you to refer to objects inside a database by a different name. The most 
important use of this is when working with a database in a foreign format where some of 
the names used in the database are not legal EViews object names. However, the aliasing 
features of EViews can also be used in other contexts, such as to assign a shorter name to 
a series with an inconveniently long name.
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The basic idea is as follows: each database can have one or more object aliases associated 
with it where each alias entry consists of the name of the object in the database and the 
name by which you would like it to be known in EViews.

The easiest way to create an object alias for an illegal name is simply to try and fetch the 
object with the illegal name into EViews. If you are working with query results, you can 
tell which object names are illegal because they will be displayed in the database window 
in red. When you try to fetch an object with an illegal name, a dialog will appear.

The field labeled EViews Name: initially contains the 
illegal name of the database object. You should edit 
this to form a legal EViews object name. In this exam-
ple, we could change the name GNP%N96C to 
GNP_N_96C. The checkbox labeled Add this name to 
the database alias list (which by default is not 
checked), determines whether you want to create a 
permanent association between the name you have just 
typed and the illegal name. If you check the box, then 
whenever you use the edited object name in the future, 
EViews will take it to refer to the underlying illegal name. The edited name acts as an alias 
for the underlying name. It is as though you had renamed the object in the database to the 
new legal name, except that you have not actually modified the database itself, and your 
changes will not affect other users of the database.

When EViews displays an object in the database window for which an alias has been set, 
EViews will show the alias, rather than the underlying name of the object. In order to indi-
cate that this substitution has been done, EViews displays the alias in blue.

Creating an alias can cause shadowing of object names. Shadowing occurs when you cre-
ate an alias for an object in the database, but the name you use as an alias is the name of 
another object in the database. Because the existence of the alias will stop you from 
accessing the other object, that object is said to be shadowed. To indicate that an object 
name being displayed has been shadowed, EViews displays the name of shadowed objects 
in green. You will not be able to fetch an object which has been shadowed without modify-
ing either its name or the alias which is causing it to be shadowed. Even if the shadowed 
series is explicitly selected with the mouse, operations performed on the series will use the 
series with the conflicting alias, not the shadowed series.

You can view a list of the aliases currently defined for any database by clicking on the 
View button at the top of the database window, then selecting Object Aliases. A list of all 
the aliases will be displayed in the window.
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Each line represents one alias attached to the database and follows the format:

alias = database_object_name

You can edit the list of aliases to delete unwanted entries, or you can type in, or cut-and-
paste, new entries into the file. You must follow the rule that both the set of aliases and the 
set of database names do not contain any repeated entries. (If you do not follow this rule, 
EViews will refuse to save your changes). To save any modifications you have made, sim-
ply switch back to the Object Display view of the database. EViews will prompt you for 
whether you want to save or discard your edits.

The list of currently defined database aliases for all databases is kept in the file 
OBALIAS.INI in the EViews installation directory. If you would like to replicate a particular 
set of aliases onto a different machine, you should copy this file to the other machine, or 
use a text editor to combine a portion of this file with the file already in use on the other 
machine. You must exit and restart EViews to be sure that EViews will reread the aliases 
from the file.

Maintaining the Database

In many cases an EViews database should function adequately without any explicit main-
tenance. Where maintenance is necessary, EViews provides a number of procedures to 
help you perform common tasks.

Database File Operations

Because EViews databases are spread across multiple files, all of which have the same 
name but different extensions, simple file operations like copy, rename and delete require 
multiple actions if performed outside of EViews. The Procs button in the database window 
toolbar contains the procedures Copy the database, Rename the database, and Delete the 
database that carry out the chosen operation on all of the files that make up the database.

Note that file operations do not automatically update the database registry. If you delete or 
rename a database that is registered, you should either create a new database with the 
same name and location, or edit the registry.
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Packing the Database

If many objects are deleted from an EViews database without new objects being inserted, a 
large amount of unused space will be left in the database. In addition, if objects are fre-
quently overwritten in the database, there will be a tendency for the database to grow 
gradually in size. The extent of growth will depend on circumstances, but a typical data-
base is likely to stabilize at a size around 60% larger than what it would be if it were writ-
ten in a single pass.

A database can be compacted down to its minimum size by using the pack procedure. Sim-
ply click on the button marked Procs in the toolbar at the top of the database window, 
then select the menu item Pack the Database. Depending on the size of the database and 
the speed of the computer which you are using, performing this operation may take a sig-
nificant amount of time.

You can get some idea of the amount of space that will be reclaimed during a pack by look-
ing at the Packable Space percentage displayed in the top right corner of the database win-
dow. A figure of 30%, for example, indicates that roughly a third of the database file 
consists of unused space. A more precise figure can be obtained from the Database Statis-
tics view of a database. The number following the label “unused space” gives the number 
of bytes of unused space contained in the main database file.

Dealing with Errors

The best way to protect against damage to a database is to make regular backup copies of 
the database. This can be performed easily using the Copy the Database procedure docu-
mented above. EViews provides a number of other features to help you deal with damaged 
databases.

Damaged databases can be divided into two basic categories depending on how severely 
the database has been damaged. A database which can still be opened in a database win-
dow, but generates an error when performing some operations, may not be severely dam-
aged, and may be able to be repaired. A database which can no longer be opened in a 
database window is severely damaged and will need to be rebuilt as a new database.

EViews has two procedures designed for working with databases which can be opened: 
Test Database Integrity and Repair Database. Both procedures are accessed by clicking 
on the button marked Procs in the database window toolbar, then selecting the appropri-
ate menu item.

Test Database Integrity conducts a series of validity checks on the main database and 
index files. If an error is detected, a message box will be displayed providing some infor-
mation as to the type of error found, and a suggestion as to how it might be dealt with. 
Because testing performs a large number of consistency checks on the database files, it 
may take considerable time to complete. You can monitor its progress by watching the 
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messages displayed in the status line at the bottom of the EViews window. Testing a data-
base does not modify the database in any way, and will never create additional damage to 
a database.

Repair Database will attempt to automatically detect and correct simple problems in the 
database. Although care has been taken to make this command as safe as possible, it will 
attempt to modify a damaged database, so it is probably best to make a back up copy of a 
damaged database before running this procedure.

Rebuilding the Database

If the database is badly corrupted, it may not be possible for it to be repaired. In this case, 
EViews gives you the option of building a new database from the old one using the dbre-
build command. This operation can only be performed from the command line (since it 
may be impossible to open the database). The command is:

dbrebuild old_dbname new_dbname

The dbrebuild command does a low level scan through the main data file of the data-
base old_dbname looking for any objects which can be recovered. Objects which it finds 
are copied into the new database new_dbname. This is a very time consuming process, but 
should be able to recover as much data as possible from even heavily damaged files.

Foreign Format Databases

While most of your work with databases will probably involve using EViews native format 
databases, EViews also gives you the ability to access data stored in a variety of other for-
mats using the same database interface. You can perform queries, copy objects to and from 
workfiles and other databases, rename and delete objects within the database, add data-
bases to your search path, and use EViews’ name aliasing features, all without worrying 
about how the data is actually stored.

When copying objects, EViews preserves not only the data itself, but as much as possible 
of any date information and documentation associated with the object. Missing values are 
translated automatically.

To Convert Or Not To Convert?

Although EViews allows you to work with foreign files in their native format, in some 
cases you may be better off translating the entire foreign file into EViews format. If neces-
sary, you can then translate the entire file back again when your work is complete. EViews 
native databases have been designed to support a certain set of operations efficiently, and 
while access to foreign formats has been kept as fast as possible, in some cases there will 
be substantial differences in performance depending on the format in use.
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One significant difference is the time taken to search for objects using keywords in the 
description field. If the data is in EViews' format, EViews can typically query databases 
containing tens of thousands of series in a couple of seconds. When working with other 
formats, you may find that this same operation takes much longer, with the time increasing 
substantially as the database grows.

On the other hand, keeping the data in the foreign format may allow you to move between 
a number of applications without having to retranslate the file. This minimizes the number 
of copies of the data you have available, which may make the data easier to update and 
maintain.

Using EViews, you can either translate your data, or work with your data directly in the 
foreign format. You should choose between the two based on your particular needs.

Opening a Foreign Database

Working with foreign formats requires very little additional knowledge. To open a foreign 
database, simply select File/Open/Database... from the main menu to open the dialog. In 
the field Database/File Type: select the type of the foreign database or file you wish to 
open. If the database is a local file, you can then use the Browse Files button to locate the 
database in exactly the same way as for a native EViews database. You can create a new 
foreign format database by a similar procedure way using File/New/Database... from the 
main EViews menu.

If the database is accessed through a client-server model, selecting the dialog will change 
to show extra fields necessary for making the connection to the server. For example, when 
accessing a database located on a FAME server, the dialog will include fields for the FAME 
server, username and password.

Since access to a server requires many fields to 
be entered, you may wish to save this informa-
tion as an entry in the database registry (see 
“The Database Registry” on page 121 for 
details).

There are special issues relating to working 
with DRIPro links. See “DRIPro Link” on 
page 137 for details.

You can also create and open foreign format 
files using the “dbopen” and “dbcreate” com-
mands. You can either use an option to explic-
itly specify the foreign type, or let EViews 
determine the type using the file extension. See 
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dbopen (p. 183) and dbcreate (p. 181) in the Command and Programming Reference for 
details.

Copying a Foreign Database

Once you have opened a window to a foreign database, you can copy the entire database 
into a new format using Procs/Copy the Database from the database menus. A dialog will 
appear which allows you to specify the type and other attributes of the new database you 
would like to create.

When performing a database copy to a new format, objects which cannot be copied due to 
incompatibility between formats will result in error messages in the EViews command 
window, but will not halt the copying process. Upon completion, a message in the status 
line reports how many objects could not be copied.

Notes on Particular Formats

DRIPro Link

A DRIPro link is a special type of database which allows you to fetch data remotely over 
the internet from DRI’s extensive collection of economic data. To use DRIPro access you 
must have a valid DRIPro account with DRI. There are special issues involved with using 
DRIPro links, which are discussed in detail in “DRIPro Link” on page 137. 

DRIBase Database

The DRIBase system is a client server system used by DRI to provide databases at the client 
site which can be kept current by remote updates. Customers can also use DRIBase as a 
means of storing their own databases in an Sybase or Microsoft SQL Server system.

DRIBase access is only available in the Enterprise Edition of EViews.

In order to access DRIBase databases, the TSRT library from DRI must already be installed 
on the client machine. This will normally be done by DRI as part of the DRIBase installa-
tion procedure. DRIBase access 

When working with DRIBase databases, the Server specification field should be set to 
contain the DRIBase database prefix, while the Database name field should contain the 
DRIBase bank name, including the leading “@” where appropriate. Note that these fields, 
as well as the Username and Password fields may be case sensitive, so make sure to pre-
serve the case of any information given to you.

A DRIBase database has slightly different handling of frequencies than most other data-
bases supported by EViews. See “Issues with DRI Frequencies” on page 145 for details. 
You should also read “Dealing with Illegal Names” on page 144 for a discussion of how 
DRI names are automatically remapped by EViews.
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For further information on DRIBase, please contact DRI directly.

FAME

The FAME format is a binary format written by FAME database products. FAME provides a 
variety of products and services for working with time series data.

FAME access is only available in the Enterprise Edition of EViews.

In order to access FAME databases, a valid installation of FAME must already be installed. 
EViews makes use of the FAME C HLI library, and will error unless the FAME .DLLs are 
correctly installed on the machine. EViews currently supports only version 8 of the FAME 
libraries.

A local FAME database can have any file extension, and EViews supports access to a FAME 
database with any name. However, because many commands in EViews use the file exten-
sion to automatically detect the file type, you will generally find it easier to work with 
FAME databases which have the default “.DB” extension. 

EViews also allows access to FAME databases located on a FAME Database Server. When 
working with a FAME server, the Server specification should be given in the form

#port_number@ip_address

For example, the server specification for access to a FAME/Channel database might appear 
as:

#2552@channel.fame.com

Access to a server will require a valid username and password for that server.

Please contact FAME directly for further information about the FAME database system and 
other FAME products.

Haver

The Haver database format is a binary format used by Haver Analytics when distributing 
data.

Haver access is only available in the Enterprise Edition of EViews.

The main difference between Haver databases and other file formats supported by EViews, 
is that Haver databases are read-only. You cannot create your own database in Haver for-
mat, nor can you modify an existing database. EViews will error if you try to do so.

Please contact Haver Analytics directly for further information about Haver Analytics data 
products.
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AREMOS TSD

The TSD format is a portable ASCII file format written by the AREMOS package. Although 
EViews already has some support for TSD files through the tsdftech, tsdstore, tsd-
load and tsdsave commands, working with the database directly gives you an intuitive 
graphical interface to the data, and allows you to move data directly in and out of an 
EViews database without having to move the data through a workfile (which may force the 
data to be converted to a single frequency).

GiveWin/PcGive

The GiveWin/PcGive format is a binary file format used by GiveWin, PcGive versions 7 
and 8, and PcFiml.

There are two issues when working with GiveWin/PcGive files. The first is that EViews is 
case insensitive when working with object names, while GiveWin and PcGive are case sen-
sitive. Because of this, if you intend to work with a file in both packages, you should avoid 
having two objects with names distinguished only by case. If your files do not follow this 
rule, EViews will only be able to read the last of the objects with the same name. Any early 
objects will be invisible.

The second issue concerns files with mixed frequency. The GiveWin/PcGive file format 
does support series of mixed frequency, and EViews will write to these files accordingly. 
However, GiveWin itself appears to only allow you to read series from one frequency at a 
time, and will ignore (with error messages) any series which do not conform to the chosen 
frequency. Consequently, depending on your application, you may prefer to store series of 
only one frequency per GiveWin/PcGive file.

RATS 4.x

The RATS 4.x format is a binary format used by RATS version 4 on all platforms.

The main issue to be aware of when working with RATS 4.x format files is that the “.RAT” 
extension is also used by RATS version 3 files. EViews will neither read from nor write to 
RATS files in this earlier format. If you try to use EViews to open one of these files, EViews 
will error, giving you a message that the file has a version number which is not supported.

To work with a RATS version 3 file in EViews, you will first have to use RATS to translate 
the file to the version 4 format. To convert a version 3 file to a version 4 file, simply load 
the file into RATS and modify it in some way. When you save the file, RATS will ask you 
whether you would like to translate the file into the new format. One simple way to modify 
the file without actually changing the data is to rename a series in the file to the name 
which it already has. For example, if we have a version 3 file called “OLDFILE.RAT”, we 
can convert to a version 4 by first opening the file for editing in RATS:
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dedit oldfile.rat

then listing the series contained in the file:

catalog

then renaming one of the series (say “X”) to its existing name

rename x x

and finally saving the file

save

At this point, you will be prompted whether you would like to translate the file into the 
version 4 format.

See the RATS documentation for details.

RATS Portable

The RATS portable format is an ASCII format which can be read and written by RATS. It is 
generally slower to work with than RATS native format, but the files are human readable 
and can be modified using a text editor.

You can read the contents of a RATS portable file into memory in RATS with the following 
commands:

open data filename.trl

data(format=portable) start end list_of_series 

close data

To write what is currently in memory in RATS to a RATS portable file, use:

open copy filename.trl

copy(format=portable) start end list_of_series

close copy

See the RATS documentation for details.

TSP Portable

The TSP portable format is an ASCII format which can be read and written by copies of 
TSP on all platforms. The file consists of a translation of a TSP native databank (which typ-
ically have the extension “.TLB”) into a TSP program which, when executed, will regener-
ate the databank on the new machine.
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To create a TSP portable file from a TSP databank file, use the DBCOPY command from 
within TSP:

dbcopy databank_name

To translate a TSP portable file back into a TSP databank file, simply execute the TSP file as 
a TSP program.

Once the data is in TSP databank format, you can use the TSP command 

in databank_name

to set the automatic search to use this databank and the TSP command

out databank_name

to save any series which are created or modified back to the databank.

See the TSP documentation for details.

Working with DRIPro Links

EViews has the ability to remotely access databases hosted by DRI. Subscribers to DRI data 
services can use these features to access data directly from within EViews.

Although the interface to remote databases is very similar to that of local databases, there 
are some differences due to the nature of the connection. There are also some issues spe-
cifically related to accessing DRI data. The following sections document these differences.

Enabling DRI Access

In order to access DRI data services, you will need to have an active account with DRI. If 
you are not an existing DRI customer but may be interested in becoming one, you should 
contact DRI for details (see the booklet included with EViews for contact information). DRI 
will often provide trial access to the service to interested customers.

Access to DRI data will not be possible unless you have already installed and configured 
the DRIPro server software. If you have not already done this, you should follow the 
instructions in the DRIPro booklet included with EViews. You should test that the DRIPro 
software is functioning correctly before attempting to use EViews to connect remotely to 
DRI. If you have difficulties with getting the DRI software to work, you should contact DRI 
directly for technical support.

Creating a Database Link

A remote DRI database is represented in EViews by a database link. A database link resem-
bles a local database, consisting of a set of files on disk, but instead of containing the data 
itself, a database link contains information as to how to access the remote data. A database 
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link also contains a cache in which copies of recently retrieved objects are kept, which can 
substantially reduce the time taken to perform some database operations.

You can create a database link by following a similar procedure to that used to create a 
local database. Select File/New/Database… from the main menu, then select DRIPro 
Link in the field Database/File Type. The dialog should change appearance so that a num-
ber of extra fields are displayed. Enter the name you would like to give the new database 
link in Cache name/path:. You may wish to name the database link after the DRI bank to 
which it links.

In the field Connection name: you should 
enter the name of the DRI connection you 
would like to use, as it appears in the Connec-
tion Settings box in the DRIPro configuration 
program. If you have only configured a single 
connection, and have not modified the con-
nection name, the connection name will be 
DEFAULT, and this will be filled in automati-
cally by EViews if you leave the field blank.

In the field DRI Databank: you should input 
the full name of the DRI bank to which you 
would like to connect, not including any lead-
ing @ sign. For example, to connect to the DRI 
U.S. Central database, you should enter 
“uscen”. (See the separate DRIPro booklet for a full list of DRI banks and their names). 
Each EViews database link can be associated with only one DRI databank, although you 
can create as many database links as you require.

The field Local Password: can be used to set a password that must be entered whenever 
you wish to use the database link. This should not be confused with your DRI username 
and password, which you must already have provided in the DRI configuration program. 
Accessing a database link which contains a local password will cause a dialog to appear 
which prompts the user to input the password. Access to the remote database is only pro-
vided if the remote password is valid. Leave this field blank if you do not want a password 
to be attached to the database link.

When you have finished filling in the dialog fields, click on the OK button. A new database 
will be created and a database window should appear on the screen.

The DRI database link window is very similar to a normal EViews database window. You 
should be able to perform basic query operations and simple fetching of series without any 
special instructions. Note, however, that it is not possible to modify a remote DRI database 
from within EViews, so operations which involve writing to the database have been 
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removed. There are a number of other complications related to dealing with DRI databases 
as described below.

Understanding the Cache

A database link includes a cache of recently fetched objects which is used to speed up cer-
tain operations on the database. In some circumstances, fetching an object from the data-
base will simply retrieve a copy from the local cache, rather than fetching a fresh copy of 
the data from the remote site. Even if a fresh copy is retrieved, having a previous copy of 
the series in the cache can substantially speed up retrieval.

You can regulate the caching behavior of the database link in a number of different ways. 
The basic option which determines under what circumstances a new copy of the data 
should be fetched is the days before refresh. If you attempt to fetch an object from the data-
base link, and the copy of the object currently in the cache was fetched more recently than 
the days before refresh value, then the object currently in the cache will be returned 
instead of a fresh copy being fetched. For example, if days before refresh is set to one, any 
object which has already been fetched today will be retrieved from the cache, while any 
object which has not yet been fetched today will be retrieved from the remote site. Simi-
larly, if days before refresh is set to seven, then an object in the cache must be more than a 
week old before a new copy of the object will be fetched. If days before refresh is set to 
zero, then a new copy of the data is fetched every time it is used.

You can change the days before refresh setting by clicking on the Procs button at the top of 
the database link window, then choosing Link Options… from the pop-up menu. A dialog 
will appear: 

The dialog contains a number of fields, 
one of which is labeled Days before 
refreshing objects. Type a new number 
in the field to change the value.

The same dialog also contains a button 
marked Reset cache now. This button 
can be used to modify the behavior docu-
mented above. Clicking on the button 
causes the cache to mark all objects in 
the cache as out of date, so that the next 
time each object is fetched, it is guaran-
teed that a fresh copy will be retrieved. This provides a simple way for you to be certain 
that the database link will not return any data fetched before a particular time.

The dialog also contains some options for managing the size of the cache. The field 
marked Maximum cache size in kilobytes can be used to set the maximum size that the 
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cache will be allowed to grow to on disk. If the cache grows above this size, a prompt will 
appear warning you that the cache has exceeded the limit and asking if you would like to 
compact the cache. Compacting is performed by deleting objects from oldest to newest 
until the cache size is reduced to less than three quarters of its maximum size. The cache 
is then packed to reclaim the empty space.

You can also completely clear the contents of the cache at any time by clicking on the but-
ton marked Reset & Clear Cache Now.

You can always examine the current contents of the database cache by clicking on the 
Cache button at the top of the database link window. This will display the names of all 
objects currently in the cache.

Configuring Link Options

The link options dialog also allows you to specify a number of timeout values. In most 
cases the default values will behave acceptably. If you believe you are having problems 
with EViews aborting the connection too early, or you would like to shorten the times so as 
to receive a timeout message sooner, then enter new values in the appropriate fields.

• Connection timeout—is the length of time, in seconds, that EViews will wait for a 
response when first connecting to DRI. Depending on the type of connection you are 
making to DRI, this can take a significant amount of time.

• Conversation timeout—is the length of time, in seconds, that EViews will wait for a 
response from DRI when carrying out a transaction after a connection has already 
been made.

The values are attached to a particular database link, and can be reset at any time.

Dealing with Illegal Names

DRI databanks contain a number of series with names which are not legal names for 
EViews objects. In particular, DRI names frequently contain the symbols “@”, “&” and 
“%”, none of which are legal characters in EViews object names. We have provided a 
number of features to allow you to work with these series within EViews.

Because the “@” symbol is so common in DRI names, while the underline symbol (which 
is a legal character in EViews) is unused, we have hard-coded the rule that all underlines 
in EViews are mapped into “@” symbols in DRI names when performing operations on an 
DRI database link. For example, if there is a series which DRI documentation suggests has 
the name JQIMET@UK, you should refer to this series inside EViews as JQIMET_UK. Note 
that when performing queries, EViews will automatically replace the “@” symbol by an 
underline in the object name before displaying the query results on the screen. Conse-
quently, if you are fetching data by copying-and-pasting objects from a query window, you 
do not need to be aware of this translation.
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For other illegal names, you should use the object aliasing features (see “Object Aliases 
and Illegal Names” on page 131) to map the names into legal EViews object names.

Issues with DRI Frequencies

DRI databases have a different structure than EViews databases. An EViews database can 
contain series with mixed frequencies. A DRI database can contain data of only a single 
frequency. In order that similar data may be grouped together, each DRI databank is actu-
ally composed of a series of separate databases, one for each frequency. When working 
with DRI data from within DRI software, you will often have to specify at exactly which 
frequency a particular series can be found. In some cases, a DRI databank may contain a 
series with the same name stored at several different frequencies.

Because this approach is inconsistent with the way that EViews’ own databases work, we 
have tried to create a simpler interface to DRI data where you do not need to keep track of 
the frequency of each series that you would like to fetch. Instead, you can simply fetch a 
series by name or by selecting it from the query window, and EViews will do whatever is 
necessary to find out the frequency for you.

An ambiguity can arise in doing this, where a series with the same name appears at a vari-
ety of different frequencies in the DRI databank. By default, EViews resolves this ambigu-
ity by always fetching the highest frequency data available. EViews will then perform 
necessary frequency conversions using the standard rules for frequency conversion in 
EViews (see “Frequency Conversion” on page 72).

In many cases, this procedure will exactly replicate the results that would be obtained if 
the lower frequency data was fetched directly from DRI. In some cases (typically when the 
series in question is some sort of ratio or other expression of one or more series) the fig-
ures may not match up exactly. In this case, if you know that the DRI data exists at multi-
ple frequencies and you are familiar with DRI frequency naming conventions, you can 
explicitly fetch a series from DRI at a particular frequency by using a modified form of the 
command line form of fetch. Simply add the DRI frequency in parentheses after the name 
of the series. For example, the command:

fetch x(Q) y(A)

will fetch the series X and Y from the current default database, reading the quarterly fre-
quency copy of X and the annual frequency copy of Y. If you request a frequency at which 
the data is not available, you will receive an error message. You should consult DRI docu-
mentation for details on DRI frequencies.

Limitations of DRI Queries

Queries to DRI database links are more limited than those available for EViews databases. 
The following section documents the restrictions.
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First, queries on DRI databases allow only a subset of the fields available in EViews data-
bases to be selected. The fields supported are: name, type, freq, start, end, last_update and 
description.

Second, the only fields which can be used in “where” conditions in a query on a DRI data-
base link are name and description. (EViews does not support queries by frequency 
because of the ambiguities arising from DRI frequencies noted above).

Each of these fields has only one operator, the “matches” operator, and operations on the 
two fields can only be joined together using the “and” operator.

The “matches” operator is also limited for queries on DRI databases, matching only a sub-
set of the expressions available for EViews databases. In particular, the pattern expression 
in a query on an DRI database must either have the form

a or b or … c

or the form

a and b and … c

Mixing of “and” and “or” is not allowed, and the “not” operator is not supported.

Patterns, however, are allowed and follow the normal EViews rules where “?” denotes any 
single character and “*” denotes zero or more characters.

Sorting of results by field is not supported.

Dealing with Common Problems

As stated in the introduction, you must install and configure the DRI software before 
EViews will be able to connect to DRI. If you cannot connect to DRI using the DRIPro soft-
ware, you should contact DRI directly for assistance.

Assuming that you have correctly configured your DRI connection, in most cases EViews 
will be able to recover adequately from unexpected problems which arise during a DRI ses-
sion without user intervention. Sometimes this will require EViews to automatically dis-
connect then reconnect to DRI.

There are some circumstances in which EViews may have problems making a connection. 
In order to connect to DRI, EViews uses a program written by DRI called DRIprosv. You 
can tell when this program is running by looking for the icon labeled “DRIpro server” in 
the Windows taskbar. Because of problems that can arise with multiple connections, 
EViews will not attempt to use the program if it is already running. Instead, EViews will 
report an error message “DRI server software already running”. If there is another applica-
tion which is using the connection to DRI, you can simply close down that program and 
the DRI server software should shut down automatically. If this is not the case, you may 
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have to close down the DRI server software manually. Simply click on the icon in the Win-
dows taskbar with the right mouse button, then select Close from the pop-up menu.

You can also use this as a procedure for forcing the DRI connection to terminate. (For 
example to hang up the phone if you are using a direct modem rather than an Internet con-
nection). Closing down the server software may cause EViews to report an error if it is cur-
rently carrying out a database transaction, but should otherwise be safe. EViews will 
restart the server software whenever it is needed.

Note that running other DRIPro software while EViews is using the DRI server software 
may cause EViews to behave unreliably.

Commands

To create a new EViews format database named USDB, type

dbcreate c:\evdata\usdb

To open the database DRIBASIC and make it the default database, type

dbopen dribasic

To open, if not already open, or to create a new database if one does not already exist, a 
database named US1, type

db us1

Note that this command also makes US1 the default database.

To make a backup copy US1_BAK of the entire database US1, type

dbcopy us1 us1_bak

To delete the entire US1 database, type

dbdelete us1

To store objects (named GDP and M1) in the default database, type

store gdp m1

To store the object named GDP into two different databases (named US1 and FINANCE1), 
type

store us1::gdp finance1::gdp

To store GDP into the default database and all objects whose name begins with the letter X 
into the database named US1, type
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store(1) gdp us1::x*

The option 1 in parentheses instructs EViews to save space by storing all series in single 
rather than double precision.

To store two objects (GDP and M1) into individual .DB files, type

store(i) gdp c:\evdata\m1

To fetch two objects GDP and M1, searching all databases in the search order, type

fetch(d) gdp m1

To fetch two objects from individual .DB files, with frequency conversion by summation if 
necessary, type

fetch(i,c=s) gdp m1

To fetch all objects that have GDP in their names from two databases, with frequency con-
version by averaging if necessary, type

fetch(c=a) us1::*gdp* dri::*gdp*

To make a backup copy of GDP within the US1 database, type

copy us1::gdp us1::gdp_bak

To copy all objects in the US1 database to another existing database WORLD1, type

copy us1::* world1::



Part II.  Basic Data Analysis

The following chapters describe the EViews objects that you will use to perform basic data 
analysis.

• Chapter 7, “Series”, beginning on page 151 describes the series object. Series are the 
basic unit of data in EViews and are the basis for all univariate analysis. This chapter 
documents the basic graphing and data analysis features associated with series. 

• Chapter 8, “Groups”, on page 199 documents the group object. Groups are collec-
tions of series which form the basis for a variety of multivariate graphing and data 
analyses. 

• Chapter 9, “Statistical Graphs Using Series and Groups”, on page 225 provides 
detailed documentation for exploratory data analysis using distribution graphs, ker-
nel density, and scatterplot fit graphs.

• Chapter 10, “Graphs, Tables, and Text Objects”, beginning on page 243 describes the 
creation and customization of tables and graphs.
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EViews provides various statistical graphs, descriptive statistics, and procedures as 
views and procedures of a series. Once you have read or generated data into series 
objects using any of the methods described in Chapter 4, “Basic Data Handling”, 
Chapter 5, “Working with Data”, and Chapter 6, “EViews Databases”, you are ready 
to perform statistical and graphical analysis using the data contained in the series.

Series views compute various statistics for a single series and display these statistics 
in various forms such as spreadsheets, tables, and graphs. The views range from a 
simple line graph, to kernel density estimators. Series procedures create new series 
from the data in existing series. These procedures include various seasonal adjust-
ment methods, exponential smoothing methods, and the Hodrick-Prescott filter.

Methods which involve more than one series are described in Chapter 8, “Groups”, 
on page 199, which outlines views and procedures for group objects.

To access the views and procedures for series, open the series window by double 
clicking on the series name in the workfile, or by typing show followed by the name 
of the series in the command window. 

Series Views

The series view drop-down menu is divided into four blocks. The first block lists 
views of the underlying data in the series. The second and third blocks provide access 
to general statistics; the views in the third block are mainly for time series. The fourth 
block contains the label view and allows you to assign default frequency conversion 
methods.

Spreadsheet and Graph Views

• Spreadsheet displays the raw data in the series in 
spreadsheet format.

• Line Graph plots the series against the date/observa-
tion number. This view is most useful for time series. 
See Chapter 10, “Graphs, Tables, and Text Objects”, 
beginning on page 243 for a discussion of techniques 
for modifying and customizing the graphical display.

• Bar Graph plots the bar graph of the series. This view is useful for plotting 
series from a small data set that takes only a few distinct values.
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• Spike Graph plots a spike graph of the series. The spike graph depicts values of the 
series as vertical spikes from the origin.

• Seasonal Stacked Line/Seasonal Split Line. These views plot the series reordered 
by season. The seasonal line graph view is currently available only for quarterly and 
monthly frequency workfiles.

The stacked view reorders the series into seasonal groups where the first season 
observations are ordered by year, and then followed by the second season observa-
tions, and so on. Also depicted are the horizontal lines identifying the mean of the 
series in each season.

The split view plots the line graph for each season on an annual horizontal axis.

Descriptive Statistics

This view displays various summary statistics for the series.

Histogram and Stats

This view displays the frequency distribution of your series in a his-
togram. The histogram divides the series range (the distance between the maximum and 
minimum values) into a number of equal length intervals or bins and displays a count of 
the number of observations that fall into each bin.

A complement of standard 
descriptive statistics are dis-
played along with the histo-
gram. All of the statistics 
are calculated using obser-
vations in the current sam-
ple.

• Mean is the average 
value of the series, 
obtained by adding 
up the series and 
dividing by the num-
ber of observations.

• Median is the middle value (or average of the two middle values) of the series when 
the values are ordered from the smallest to the largest. The median is a robust mea-
sure of the center of the distribution that is less sensitive to outliers than the mean.

• Max and Min are the maximum and minimum values of the series in the current 
sample.
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• Std. Dev. (standard deviation) is a measure of dispersion or spread in the series. The 
standard deviation is given by:

(7.1)

where  is the number of observations in the current sample and  is the mean of 
the series.

• Skewness is a measure of asymmetry of the distribution of the series around its 
mean. Skewness is computed as:

(7.2)

where  is an estimator for the standard deviation that is based on the biased esti-
mator for the variance . The skewness of a symmetric distri-
bution, such as the normal distribution, is zero. Positive skewness means that the 
distribution has a long right tail and negative skewness implies that the distribution 
has a long left tail. 

• Kurtosis measures the peakedness or flatness of the distribution of the series. Kurto-
sis is computed as

(7.3)

where  is again based on the biased estimator for the variance. The kurtosis of the 
normal distribution is 3. If the kurtosis exceeds 3, the distribution is peaked (lep-
tokurtic) relative to the normal; if the kurtosis is less than 3, the distribution is flat 
(platykurtic) relative to the normal. 

• Jarque-Bera is a test statistic for testing whether the series is normally distributed. 
The test statistic measures the difference of the skewness and kurtosis of the series 
with those from the normal distribution. The statistic is computed as:

(7.4)

where  is the skewness,  is the kurtosis, and  represents the number of esti-
mated coefficients used to create the series. 

Under the null hypothesis of a normal distribution, the Jarque-Bera statistic is dis-
tributed as with 2 degrees of freedom. The reported Probability is the probability 
that a Jarque-Bera statistic exceeds (in absolute value) the observed value under the 
null hypothesis—a small probability value leads to the rejection of the null hypothe-

s yi y−( )2

i 1=

N

Σ 
  N 1−( )⁄=

N y

S
1
N
����

yi y−
σ�

������������� 
 

3

i 1=

N

Σ=

σ�
σ� s N 1−( ) N⁄=( )

K
1
N
����

yi y−
σ�

������������� 
 

4

i 1=

N

Σ=

σ�

Jarque-Bera
N k−
6

�������������� S
2 K 3−( )2

4
���������������������+ 

 =

S K k

χ
2



154—Chapter 7. Series
sis of a normal distribution. For the LWAGE series displayed above, we reject the 
hypothesis of normal distribution at the 5% level but not at the 1% significance 
level. 

Stats Table

Displays slightly more information than the Histogram/Stats view, with the numbers dis-
played in tabular form.

Stats by Classification

This view allows you to compute the descriptive statistics of a series for various subgroups 
of your sample. If you select View/Descriptive Statistics/Stats by Classification… a Sta-
tistics by Classification dialog box appears:

The Statistics option at the left 
allows you to choose the statis-
tics you wish to compute.

In the Series/Group for Classify 
field enter series or group names 
that define your subgroups. You 
must type at least one name. 
Descriptive statistics will be cal-
culated for each unique value of 
the classification series unless 
binning is selected. You may type 
more than one series or group 
name; separate each name by a space. The quantile statistic requires an additional argu-
ment (a number between 0 and 1) corresponding to the desired quantile value. Click on 
the options button to choose between various methods of computing the quantiles. See 
“CDF-Survivor-Quantile” on page 225 for details.

By default, EViews excludes observations which have missing values for any of the classi-
fication series. To treat NA values as a valid subgroup, select the NA handling option.

The Layout option allows you to control the display of the statistics. Table layout arrays the 
statistics in cells of two-way tables. The list form displays the statistics in a single line for 
each classification group.

The Table and List options are only relevant if you use more than one series as a classifier. 

The Sparse Labels option suppresses repeating labels in list mode to make the display less 
cluttered.
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The Row Margins, Column Margins, and Table Margins instruct EViews to compute sta-
tistics for aggregates of your subgroups. For example, if you classify your sample on the 
basis of gender and age, EViews will compute the statistics for each gender/age combina-
tion. If you elect to compute the marginal statistics, EViews will also compute statistics 
corresponding to each gender, and each age subgroup.

A classification may result in a large number of distinct values with very small cell sizes. 
By default, EViews automatically groups observations to maintain moderate cell sizes and 
numbers of categories. Group into Bins provides you with control over this process. 

Setting the # of values option bins tell EViews to group data if the classifier series takes 
more than the specified number of distinct values.

The Avg. count option bins the series if the average count for each distinct value of the 
classifier series is less than the specified number. 

The Max # of bins specifies the maximum number of subgroups to bin the series. Note 
that this number only provides you with approximate control over the number of bins.

The default setting is to bin the series into 5 subgroups if either the series takes more than 
100 distinct values or if the average count is less than 2. If you do not want to bin the 
series, unmark both options.

For example, consider the following stats by classification view in table form:

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97   Time: 01:11
Sample: 1 1000
Included observations: 1000

Mean
Median
Std. Dev. UNION
Obs. 0 1 All

0  1.993829  2.387019  2.052972
 1.906575  2.409131  2.014903
 0.574636  0.395838  0.568689

 305  54  359

MARRIED 1  2.368924  2.492371  2.400123
 2.327278  2.525729  2.397895
 0.557405  0.380441  0.520910

 479  162  641

All  2.223001  2.466033  2.275496
 2.197225  2.500525  2.302585
 0.592757  0.386134  0.563464

 784  216  1000
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The header indicates that the table cells are categorized by two series MARRIED and 
UNION. These two series are dummy variables that take only two values and no binning 
was made. If the series were binned, intervals rather than a number would be displayed in 
the margins. 

The upper left cell of the table indicates the reported statistics in each cell; in this case the 
median and the number of observations are reported in each cell. The row and column 
labeled All correspond to the Row Margin and Column Margin options described above.

Here is the same view in list form with sparse labels:

Tests for Descriptive Stats

Simple Hypothesis Tests

This view carries out simple hypothesis tests regarding the mean, median, and the vari-
ance of the series. These are all single sample tests; see “Equality Tests by Classification” 
on page 159 for a description of two sample tests. If you select View/Tests for Descriptive 
Stats/Simple Hypothesis Tests, the Series Distribution Tests dialog box will be displayed.

Mean Test

Carries out the test of the null hypothesis that the 
mean  of the series X is equal to a specified 
value  against the two-sided alternative that it 
is not equal to :

(7.5)

If you do not specify the standard deviation of X, EViews reports a t-statistic computed as:

Descriptive Statistics for LWAGE
Categorized by values of MARRIED and UNION
Date: 10/15/97   Time: 01:08
Sample: 1 1000
Included observations: 1000

UNION MARRIED Mean Median Std. Dev. Obs.
0 0  1.993829  1.906575  0.574636  305

1  2.368924  2.327278  0.557405  479
All  2.223001  2.197225  0.592757  784

1 0  2.387019  2.409131  0.395838  54
1  2.492371  2.525729  0.380441  162
All  2.466033  2.500525  0.386134  216

All 0  2.052972  2.014903  0.568689  359
1  2.400123  2.397895  0.520910  641
All  2.275496  2.302585  0.563464  1000

µ
m

m

H0:  µ m=

H1:  µ m.≠
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(7.6)

where  is the sample mean of X,  is the unbiased sample standard deviation, and is 
the number of observations of X. If X is normally distributed, under the null hypothesis the 
t-statistic follows a t-distribution with  degrees of freedom.

If you specify a value for the standard deviation of X, EViews also reports a z-statistic

(7.7)

where  is the specified standard deviation of X. If X is normally distributed with standard 
deviation , under the null hypothesis, the z-statistic has a standard normal distribution.

To carry out the mean test, type in the value of the mean under the null hypothesis in the 
edit field next to Mean. If you want to compute the z-statistic conditional on a known stan-
dard deviation, also type in a value for the standard deviation in the right edit field. You 
can type in any number or standard EViews expression in the edit fields.

The reported probability value is the p-value, or marginal significance level, against a two-
sided alternative. If this probability value is less than the size of the test, say 0.05, we 
reject the null hypothesis. Here, we strongly reject the null hypothesis for the two-sided 
test of equality. The probability value for a one-sided alternative is one half the p-value of 
the two-sided test.

Variance Test

Carries out the test of the null hypothesis that the variance of a series X is equal to a spec-
ified value against the two-sided alternative that it is not equal to :

(7.8)

t X m−
s N⁄
����������������=

X s N

N 1−

z
X m−
σ N⁄
����������������=

σ
σ

Hypothesis Testing for LWAGE
Date: 10/15/97   Time: 01:14
Sample: 1 1000
Included observations: 1000

Test of Hypothesis:  Mean = 2

Sample Mean =  2.275496
Sample Std. Dev. =  0.563464

Method Value Probability
t-statistic  15.46139  0.00000

σ
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σ
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EViews reports a statistic computed as:

(7.9)

where  is the number of observations,  is the sample standard deviation, and  is the 
sample mean of X. Under the null hypothesis and the assumption that X is normally dis-
tributed, the statistic follows a distribution with  degrees of freedom. The proba-
bility value is computed as min , where  is the probability of observing a -
statistic as large as the one actually observed under the null hypothesis.

To carry out the variance test, type in the value of the variance under the null hypothesis 
in the field box next to Variance. You can type in any positive number or expression in the 
field.

Median Test

Carries out the test of the null hypothesis that the median of a series X is equal to a speci-
fied value  against the two-sided alternative that it is not equal to :

(7.10)

EViews reports three rank-based, nonparametric test statistics. The principal references for 
this material are Conover (1980) and Sheskin (1997).

• Binomial sign test. This test is based on the idea that if the sample is drawn ran-
domly from a binomial distribution, the sample proportion above and below the true 
median should be one-half. Note that EViews reports two-sided p-values for both the 
sign test and the large sample normal approximation (with continuity correction). 

• Wilcoxon signed ranks test. Suppose that we compute the absolute value of the dif-
ference between each observation and the mean, and then rank these observations 
from high to low. The Wilcoxon test is based on the idea that the sum of the ranks 
for the samples above and below the median should be similar. EViews reports a p-
value for the asymptotic normal approximation to the Wilcoxon T-statistic (correct-
ing for both continuity and ties). See Sheskin (1997, pp. 82–94) and Conover (1980, 
p. 284). 

• Van der Waerden (normal scores) test. This test is based on the same general idea 
as the Wilcoxon test, but is based on smoothed ranks. The signed ranks are 
smoothed by converting them to quantiles of the normal distribution (normal 
scores). EViews reports the two-sided p-value for the asymptotic normal test 
described by Conover (1980). 
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To carry out the median test, type in the value of the median under the null hypothesis in 
the edit box next to Median. You can type any numeric expression in the edit field.

Equality Tests by Classification

This view allows you to test equality of the means, medians, and variances across subsam-
ples (or subgroups) of a single series. For example, you can test whether mean income is 
the same for males and females, or whether the variance of education is related to race. 
The tests assume that the subsamples are independent.

For single sample tests, see the discussion of “Simple Hypothesis Tests” on page 156, 
above. For tests of equality across different series, see “Equality Tests by Classification” on 
page 159.

Select View/Tests for Descriptive Stats/Equal-
ity Tests by Classification…. The Tests by 
Classification dialog box will appear.

First, select whether you wish to test the mean, 
the median or the variance. Specify the sub-
groups, the NA handling, and the grouping 
options as described in “Stats by Classification” 
beginning on page 154.

Mean Equality Test

This test is based on a single-factor, between-subjects, analysis of variance (ANOVA). The 
basic idea is that if the subgroups have the same mean, then the variability between the 

Hypothesis Testing for LWAGE
Date: 10/14/97   Time: 23:23
Sample: 1 1000
Included observations: 1000

Test of Hypothesis:  Median = 2.25

Sample Median =  2.302585

Method Value Probability
Sign (exact binomial)  532  0.046291
Sign (normal approximation)  1.992235  0.046345
Wilcoxon signed rank  1.134568  0.256556
van der Waerden (normal scores)  1.345613  0.178427

Median Test Summary

Category Count Mean Rank

Obs > 2.25  532  489.877820
Obs < 2.25  468  512.574786
Obs = 2.25  0

Total  1000
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sample means (between groups) should be the same as the variability within any subgroup 
(within group).

Denote the i-th observation in group  as , where  for groups 
. The between and within sums of squares are defined as

(7.11)

(7.12)

where  is the sample mean within group  and  is the overall sample mean. The F-
statistic for the equality of means is computed as

(7.13)

where  is the total number of observations. The F-statistic has an F-distribution with 
 numerator degrees of freedom and  denominator degrees of freedom under 

the null hypothesis of independent and identical normal distribution, with equal means 
and variances in each subgroup.

For tests with only two subgroups , EViews also reports the t-statistic, which is 
simply the square root of the F-statistic with one numerator degree of freedom:
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The analysis of variance table shows the decomposition of the total sum of squares into 
the between and within sum of squares, where

Mean Sq. = Sum of Sq./df

The F-statistic is the ratio

F = Between Mean Sq./Within Mean Sq.

Median (Distribution) Equality Tests

EViews computes various rank-based nonparametric tests of the hypothesis that the sub-
groups have the same general distribution, against the alternative that at least one sub-
group has a different distribution.

In the two group setting, the null hypothesis is that the two subgroups are independent 
samples from the same general distribution. The alternative hypothesis may loosely be 
defined as “the values of (the first group) tend to differ from the values (of the second 
group)” (Conover 1980, p. 281). See also Bergmann, Ludbrook and Spooren (2000) for a 
more precise analysis of the issues involved.

Test for Equality of Means of LWAGE
Categorized by values of MARRIED and UNION
Date: 10/14/97   Time: 12:28
Sample: 1 1000
Included observations: 1000

Method df Value Probability

Anova F-statistic (3, 996) 43.40185 0.0000

Analysis of Variance

Source of Variation df Sum of Sq. Mean Sq.

Between 3 36.66990 12.22330
Within 996 280.5043 0.281631

Total 999 317.1742 0.317492

Category Statistics

Std. Err.
UNION MARRIED Count Mean Std. Dev. of Mean

0 0 305 1.993829 0.574636 0.032904
0 1 479 2.368924 0.557405 0.025468
1 0 54 2.387019 0.395838 0.053867
1 1 162 2.492371 0.380441 0.029890

       All 1000 2.275496 0.563464 0.017818
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We note that the “median” category in which we place these tests is somewhat misleading 
since the tests focus more generally on the equality of various statistics computed across 
subgroups. For example, the Wilcoxon test examines the comparability of mean ranks 
across subgroups. The categorization reflects common usage for these tests and various 
textbook definitions. The tests may, of course, have power against median differences.

• Wilcoxon signed ranks test. This test is computed when there are two subgroups. 
The test is identical to the Wilcoxon test outlined in the description of median tests 
on page 158 but the division of the series into two groups is based upon the values 
of the classification variable instead of the value of the observation relative to the 
median. 

• Chi-square test for the median. This is a rank-based ANOVA test based on the com-
parison of the number of observations above and below the overall median in each 
subgroup. This test is sometimes referred to as the median test (Conover, 1980). 

Under the null hypothesis, the median chi-square statistic is asymptotically distrib-
uted as a with degrees of freedom. EViews also reports Yates’ continuity 
corrected statistic. You should note that the use of this correction is controversial 
(Sheskin, 1997, p. 218).

• Kruskal-Wallis one-way ANOVA by ranks. This is a generalization of the Mann-
Whitney test to more than two subgroups. The idea behind the Mann-Whitney test is 
to rank the series from smallest value (rank 1) to largest, and to compare the sum of 
the ranks from subgroup 1 to the sum of the ranks from subgroup 2. If the groups 
have the same median, the values should be similar.

EViews reports the asymptotic normal approximation to the U-statistic (with conti-
nuity and tie correction) and the p-values for a two-sided test. For details, see She-
skin (1997) The test is based on a one-way analysis of variance using only ranks of 
the data. EViews reports the chi-square approximation to the Kruskal-Wallis test 
statistic (with tie correction). Under the null hypothesis, this statistic is approxi-
mately distributed as a with  degrees of freedom (see Sheskin, 1997). 

• van der Waerden (normal scores) test. This test is analogous to the Kruskal-Wallis 
test, except that we smooth the ranks by converting them into normal quantiles 
(Conover, 1980). EViews reports a statistic which is approximately distributed as a 

with  degrees of freedom under the null hypothesis. See the discussion of 
the Wilcoxon test for additional details on interpreting the test more generally as a 
test of a common subgroup distributions.

In addition to the test statistics and p-values, EViews reports values for the components of 
the test statistics for each subgroup of the sample. For example, the column labeled Mean 
Score contains the mean values of the van der Waerden scores (the smoothed ranks) for 
each subgroup.
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Variance Equality Tests

Tests the null hypothesis that the variances in all  subgroups are equal against the alter-
native that at least one subgroup has a different variance. See Conover, et al. (1981) for a 
general discussion of variance testing.

• F-test. This test statistic is reported only for tests with two subgroups . 
Compute the variance for each subgroup and denote the subgroup with the larger 
variance as  and the subgroup with the smaller variance as . Then the F-statis-
tic is given by

(7.14)

where  is the variance in subgroup . This F-statistic has an F-distribution with 
 numerator degrees of freedom and  denominator degrees of freedom 

under the null hypothesis of equal variance and independent normal samples

• Siegel-Tukey test. This test statistic is reported only for tests with two subgroups 
. The test assumes the two subgroups are independent and have equal 

median. The test statistic is computed using the same steps as the Kruskal-Wallis 
test described above for the median equality tests on page 162, with a different 
assignment of ranks. For the Siegel-Tukey test, first rank all observations from lowest 
to highest. Assign rank 1 to the lowest value. Then assign rank 2 to the highest value 
and rank 3 to the second highest value. Assign rank 4 to the second lowest value and 
rank 5 to the third lowest value, and so on. In other words, the ranking for the Sie-
gel-Tukey test alternates from the lowest to the highest value for every other rank. 
EViews reports the normal approximation to the Siegel-Tukey statistic with a conti-
nuity correction (Sheskin, 1997, pp. 196–207). 

• Bartlett test. This test compares the logarithm of the weighted average variance with 
the weighted sum of the logarithms of the variances. Under the joint null hypothesis 
that the subgroup variances are equal and that the sample is normally distributed, 
the test statistic is approximately distributed as a with  degrees of free-
dom. Note, however, that the joint hypothesis implies that this test is sensitive to 
departures from normality. EViews reports the adjusted Bartlett statistic. For details, 
see Sokal and Rohlf (1995) and Judge, et al. (1985). 

• Levene test. This test is based on an analysis of variance (ANOVA) of the absolute 
difference from the mean. The F-statistic for the Levene test has an approximate F-
distribution with  numerator degrees of freedom and  denominator 
degrees of freedom under the null hypothesis of equal variances in each subgroup 
(Levene, 1960). 

• Brown-Forsythe (modified Levene) test. This is a modification of the Levene test in 
which we replace the absolute mean difference with the absolute median difference 
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and appears to be a superior test in terms of robustness and power (Conover, et al. 
(1981), Brown and Forsythe (1974a, 1974b), Neter, et al. (1996)).

Distribution Graphs

These views display various graphs that characterize the empirical distribution of the 
series. A detailed description of these views may be found in Chapter 9, “Statistical Graphs 
Using Series and Groups”, on page 225.

CDF-Survivor-Quantile

This view plots the empirical cumulative distribution, survivor, 
and quantile functions of the series together with plus/minus 
two standard error bands. EViews provides a number of alternative methods for perform-
ing these computations.

Quantile-Quantile

The quantile-quantile (QQ)-plot is a simple yet powerful tool for comparing two distribu-
tions. This view plots the quantiles of the chosen series against the quantiles of another 
series or a theoretical distribution.

Kernel Density

This view plots the kernel density estimate of the distribution of the series. The simplest 
nonparametric density estimate of a distribution of a series is the histogram. The histo-
gram, however, is sensitive to the choice of origin and is not continuous. The kernel den-
sity estimator replaces the “boxes” in a histogram by “bumps” that are smooth (Silverman 
1986). Smoothing is done by putting less weight on observations that are further from the 
point being evaluated. 

EViews provides a number of kernel choices as well as control over bandwidth selection 
and computational method.

Empirical Distribution Tests

EViews provides built-in Kolmogorov-Smirnov, Lilliefors, Cramer-von Mises, Anderson-
Darling, and Watson empirical distribution tests. These tests are based on the comparison 
between the empirical distribution and the specified theoretical distribution function. For a 
general description of empirical distribution function testing, see D’Agostino and Stephens 
(1986)

You can test whether your series is normally distributed, or whether it comes from, among 
others, an exponential, extreme value, logistic, chi-square, Weibull, or gamma distribution. 
You may provide parameters for the distribution, or EViews will estimate the parameters 
for you. 
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To carry out the test, simply double click on the series and select View/Distribution/
Empirical Distribution Tests... from the series window. 

There are two tabs in the dialog. The Test 
Specification tab allows you to specify the 
parametric distribution against which you 
want to test the empirical distribution of the 
series. Simply select the distribution of interest 
from the drop-down menu. The small display 
window will change to show you the parame-
terization of the specified distribution.

You can specify the values of any known 
parameters in the edit field or fields. If you 
leave any field blank, EViews will estimate the 
corresponding parameter using the data con-
tained in the series. 

The Estimation Options tab provides control over any iterative estimation that is required. 
You should not need to use this tab unless the output indicates failure in the estimation 
process. Most of the options in this tab should be self-explanatory. If you select User-spec-
ified starting values, EViews will take the starting values from the C coefficient vector.

It is worth noting that some distributions have positive probability on a restricted domain. 
If the series data take values outside this domain, EViews will report an out-of-range error. 
Similarly, some of the distributions have restrictions on domain of the parameter values. If 
you specify a parameter value that does not satisfy this restriction, EViews will report an 
error message.

The output from this view consists of two parts. The first part displays the test statistics 
and associated probability values. 

Here we show the output from a test for normality where both the mean and the variance 
are estimated from the series data. The first column, “Value” reports the asymptotic test 

Empirical Distribution Test for DPOW2 
Hypothesis: Normal 
Date: 01/09/01   Time: 09:11 
Sample: 1 1000 
Included observations: 1000 

Method Value Adj. Value Probability  

Lilliefors (D) 0.294098    NA 0.0000  
Cramer-von Mises (W2) 27.89617 27.91012 0.0000  
Watson (U2) 25.31586 25.32852 0.0000  
Anderson-Darling (A2) 143.6455 143.7536 0.0000  
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statistics while the second column “Adj. Value” reports test statistics that have a finite sam-
ple correction or adjusted for parameter uncertainty (in case the parameters are esti-
mated). The third column reports p-value for the adjusted statistics. 

All of the reported EViews p-values will account for the fact that parameters in the distri-
bution have been estimated. In cases where estimation of parameters is involved, the dis-
tributions of the goodness-of-fit statistics are non-standard and distribution dependent, so 
that EViews may report a subset of tests and/or only a range of p-value. In this case, for 
example, EViews reports the Lilliefors test statistic instead of the Kolmogorov statistic since 
the parameters of the normal have been estimated. Details on the computation of the test 
statistics and the associated p-values may be found in Anderson and Darling (1952, 1954), 
Lewis (1961), Durbin (1970), Dallal and Wilkinson (1986), Davis and Stephens (1989), 
Csörgö and Faraway (1996) and Stephens (1986).

The second part of the output table displays the parameter values used to compute the the-
oretical distribution function. Any parameters that are specified to estimate are estimated 
by maximum likelihood (for the normal distribution, the estimate of the standard deviation 
is degree-of-freedom corrected if the mean is not specified a priori). For parameters that do 
not have a closed form analytic solution, the likelihood function is maximized using ana-
lytic first and second derivatives. These estimated parameters are reported with a standard 
error and p-value based on the asymptotic normal distribution.

One-Way Tabulation

This view tabulates the series in ascending order, optionally displaying the counts, percent-
age counts, and cumulative counts. When you select View/One-Way Tabulation… the 
Tabulate Series dialog box will be displayed.

 

The Output options control which statistics to 
display in the table. You should specify the NA 
handling and the grouping options as described 
above in the discussion of “Stats by Classifica-
tion” on page 154.

Method: Maximum Likelihood - d.f. corrected (Exact Solution) 

Parameter Value Std. Error z-Statistic Prob. 

MU 0.142836 0.015703 9.096128 0.0000 
SIGMA 0.496570 0.011109 44.69899 0.0000 

Log likelihood -718.4084       Mean dependent var. 0.142836 
No. of Coefficients 2       S.D. dependent var. 0.496570 
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Cross-tabulation ( -way tabulation) is also available as a group view. See “N-Way Tabula-
tion” on page 216 for details.

Correlogram

This view displays the autocorrelation and partial autocorrelation functions up to the spec-
ified order of lags. These functions characterize the pattern of temporal dependence in the 
series and typically make sense only for time series data. When you select View/Correlo-
gram… the Correlogram Specification dialog box appears

You may choose to plot the correlogram of the raw series (level) x, the first difference 
d(x)=x–x(–1), or the second difference 

d(x)-d(x(-1)) = x-2x(-1)+x(-2) 

of the series.

You should also specify the highest order of lag to display the correlogram; type in a posi-
tive integer in the field box. The series view displays the correlogram and associated statis-
tics:

Autocorrelations (AC)

The autocorrelation of a series  at lag  is estimated by:

n

Y k
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(7.15)

where  is the sample mean of . This is the correlation coefficient for values of the 
series  periods apart. If  is nonzero, it means that the series is first order serially corre-
lated. If  dies off more or less geometrically with increasing lag , it is a sign that the 
series obeys a low-order autoregressive (AR) process. If  drops to zero after a small 
number of lags, it is a sign that the series obeys a low-order moving-average (MA) process. 
See “Serial Correlation Theory” on page 303, for a more complete description of AR and 
MA processes.

Note that the autocorrelations estimated by EViews differ slightly from theoretical descrip-
tions of the estimator: 

(7.16)

where . The difference arises since, for computational simplic-
ity, EViews employs the same overall sample mean  as the mean of both  and . 
While both formulations are consistent estimators, the EViews formulation biases the 
result toward zero in finite samples.

The dotted lines in the plots of the autocorrelations are the approximate two standard error 
bounds computed as . If the autocorrelation is within these bounds, it is not sig-
nificantly different from zero at (approximately) the 5% significance level. 

Partial Autocorrelations (PAC)

The partial autocorrelation at lag  is the regression coefficient on  when  is 
regressed on a constant, . This is a partial correlation since it measures the 
correlation of  values that are  periods apart after removing the correlation from the 
intervening lags. If the pattern of autocorrelation is one that can be captured by an autore-
gression of order less than , then the partial autocorrelation at lag  will be close to 
zero.

The PAC of a pure autoregressive process of order , AR( ), cuts off at lag , while the 
PAC of a pure moving average (MA) process asymptotes gradually to zero. 

EViews estimates the partial autocorrelation at lag  recursively by
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(7.17)

where  is the estimated autocorrelation at lag  and

(7.18)

This is a consistent approximation of the partial autocorrelation. The algorithm is 
described in Box and Jenkins (1976, Part V, Description of computer programs). To obtain 
a more precise estimate of , simply run the regression

(7.19)

where  is a residual. The dotted lines in the plots of the partial autocorrelations are the 
approximate two standard error bounds computed as . If the partial autocorrela-
tion is within these bounds, it is not significantly different from zero at (approximately) the 
5% significance level.

Q-Statistics

The last two columns reported in the correlogram are the Ljung-Box Q-statistics and their 
p-values. The Q-statistic at lag  is a test statistic for the null hypothesis that there is no 
autocorrelation up to order  and is computed as:

(7.20)

where  is the j-th autocorrelation and  is the number of observations. If the series is 
not based upon the results of ARIMA estimation, then under the null hypothesis, Q is 
asymptotically distributed as a with degrees of freedom equal to the number of autocor-
relations. If the series represents the residuals from ARIMA estimation, the appropriate 
degrees of freedom should be adjusted to represent the number of autocorrelations less the 
number of AR and MA terms previously estimated. Note also that some care should be 
taken in interpreting the results of a Ljung-Box test applied to the residuals from an 
ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite sample 
performance of the test in this setting).

The Q-statistic is often used as a test of whether the series is white noise. There remains 
the practical problem of choosing the order of lag to use for the test. If you choose too 
small a lag, the test may not detect serial correlation at high-order lags. However, if you 
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choose too large a lag, the test may have low power since the significant correlation at one 
lag may be diluted by insignificant correlations at other lags. For further discussion, see 
Ljung and Box (1979) or Harvey (1990, 1993). 

Unit Root Test 

This view carries out the Augmented Dickey-Fuller (ADF), GLS transformed Dickey-Fuller 
(DFGLS), Phillips-Perron (PP), Kwiatkowski, et. al. (KPSS), Elliot, Richardson and Stock 
(ERS) Point Optimal, and Ng and Perron (NP) unit root tests for whether the series (or it’s 
first or second difference) is stationary. 

See “Nonstationary Time Series” on page 328 for a discussion of stationary and nonsta-
tionary time series and additional details on how to carry out the unit roots tests in Eviews.

BDS Test

This view carries out the BDS test for independence, as described in Brock, Dechert, Schei-
nkman and LeBaron (1996).

The BDS test is a portmanteau test for time based dependence in a series. It can be used 
for testing against a variety of possible deviations from independence including linear 
dependence, non-linear dependence, or chaos.

The test can be applied to a series of estimated residuals to check whether the residuals are 
independent and identically distributed (iid). For example, the residuals from an ARMA 
model can be tested to see if there is any non-linear dependence in the series after the lin-
ear ARMA model has been fitted.

The idea behind the test is fairly simple. To perform the test, we first choose a distance, . 
We then consider a pair of points. If the observations of the series truly are iid, then for 
any pair of points, the probability of the distance between these points being less than or 
equal to epsilon will be constant. We denote this probability by .

We can also consider sets consisting of multiple pairs of points. One way we can choose 
sets of pairs is to move through the consecutive observations of the sample in order. That 
is, given an observation , and an observation  of a series X, we can construct a set of 
pairs of the form

(7.21)

where  is the number of consecutive points used in the set, or embedding dimension. 
We denote the joint probability of every pair of points in the set satisfying the epsilon con-
dition by the probability .
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The BDS test proceeds by noting that under the assumption of independence, this probabil-
ity will simply be the product of the individual probabilities for each pair. That is, if the 
observations are independent,

. (7.22)

When working with sample data, we do not directly observe  or . We can only 
estimate them from the sample. As a result, we do not expect this relationship to hold 
exactly, but only with some error. The larger the error, the less likely it is that the error is 
caused by random sample variation. The BDS test provides a formal basis for judging the 
size of this error.

To estimate the probability for a particular dimension, we simply go through all the possi-
ble sets of that length that can be drawn from the sample and count the number of sets 
which satisfy the  condition. The ratio of the number of sets satisfying the condition 
divided by the total number of sets provides the estimate of the probability. Given a sample 
of  observations of a series X, we can state this in mathematical notation

(7.23)

where  is the indicator function

(7.24)

Note that the statistics  are often referred to as correlation integrals.

We can then use these sample estimates of the probabilities to construct a test statistic for 
independence

(7.25)

where the second term discards the last  observations from the sample so that it is 
based on the same number of terms as the first statistic. 

Under the assumption of independence, we would expect this statistic to be close to zero. 
In fact, it is shown in Brock et al. (1996) that

(7.26)
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and where  can be estimated using .  is the probability of any triplet of points 
lying within  of each other, and is estimated by counting the number of sets satisfying the 
sample condition

(7.28)

To calculate the BDS test statistic in EViews, simply open the series you would like to test 
in a window, and choose View/BDS Independence Test.... A dialog will appear prompting 
you to input options.

To carry out the test, we must choose , the distance used for testing proximity of the data 
points, and the dimension , the number of consecutive data points to include in the set.

The dialog provides several choices for how to specify :

• Fraction of pairs:  is calculated so as to ensure a certain fraction of the total num-
ber of pairs of points in the sample lie within  of each other.

• Fixed value:  is fixed at a raw value specified in the units as the data series.

• Standard deviations:  is calculated as a multiple of the standard deviation of the 
series.

• Fraction of range:  is calculated as a fraction of the range (the difference between 
the maximum and minimum value) of the series.

The default is to specify  as a fraction of pairs, since this method is most invariant to dif-
ferent distributions of the underlying series.

You must also specify the value used in calculating . The meaning of this value varies 
based on the choice of method. The default value of 0.7 provides a good starting point for 
the default method when testing shorter dimensions. For testing longer dimensions, you 
should generally increase the value of  to improve the power of the test.
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EViews also allows you to specify the maximum correlation dimension for which to calcu-
late the test statistic. EViews will calculate the BDS test statistic for all dimensions from 2 
to the specified value, using the same value of  or each dimension. Note the same  is 
used only because of calculational efficiency. It may be better to vary  with the correla-
tion dimension to maximize the power of the test.

In small samples or in series that have unusual distributions, the distribution of the BDS 
test statistic can be quite different from the asymptotic normal distribution. To compensate 
for this, EViews offers you the option of calculating bootstrapped p-values for the test sta-
tistic. To request bootstrapped p-values, simply check the Use bootstrap box, then specify 
the number of repetitions in the field below. A greater number of repetitions will provide a 
more accurate estimate of the p-values, but the procedure will take longer to perform.

When bootstrapped p-values are requested, EViews first calculates the test statistic for the 
data in the order in which it appears in the sample. EViews then carries out a set of repeti-
tions where for each repetition a set of observations is randomly drawn without replace-
ment from the original data with the same size as the original data. For each repetition, 
EViews recalculates the BDS test statistic for the randomly drawn data, then compares the 
statistic to that obtained from the original data. When all the repetitions are complete, 
EViews forms the final estimate of the bootstrapped p-value by dividing the lesser of the 
number of repetitions above or below the original statistic by the total number of repeti-
tions, then multiplying by two (to account for the two tails).

As an example of a series where the BDS statistic will reject independence, consider a 
series generated by the non-linear moving average model:

(7.29)

where  is a normal random variable. On simulated data, the correlogram of this series 
shows no statistically significant correlations, yet the BDS test strongly rejects the hypothe-
sis that the observations of the series are independent (note that the Q-statistics on the 
squared levels of the series also reject independence).

Conversion Options

When you fetch a series from an EViews database, it will automatically be converted to the 
frequency of the current workfile. The conversion options view allows you to set the 
method that will be used to perform these conversions.
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Each series has a frequency conversion 
method associated with it. The default 
conversion method is the one set by the 
EViews global options; see Appendix A, 
“Global Options”, on page 647. You can 
change or check the conversion method 
by clicking View/Conversion 
Options…

Label

This view displays a description of the 
series object.

You can edit any of the field cells 
in the series label, except the Last 
Update cell which displays the 
date/time the series was last modi-
fied. Each field contains a single 
line, except for the Remarks and 
History fields which can contain 
up to 20 comment lines. Note that 
if you insert a line, the last (of the 
20) line of these fields will be 
deleted.

The Name is the series name as it appears in the workfile; you can rename your series by 
editing this cell. If you fill in the Display Name field, this name may be used in tables and 
graphs in place of the standard object name. Unlike ordinary object names, Display Names 
may contain spaces and preserve capitalization (upper and lower case letters). 

See Chapter 6 for further discussion of label fields and their use in Database searches.

Series Procs

Series procedures may be used to generate new series that are based upon the data in the 
original series.

Generate by Equation

This is a general procedure that allows you to create new series by 
using expressions to transform values in the existing series. The 
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rules governing the generation of series are explained in detail in “Series Expressions” on 
page 89.

Resampling

The series resampling procedure selects from the observations in a series to create a new 
series (the resampled series). You may draw your new sample with replacement (allow a 
given observation to be drawn multiple times) or without replacement. When you select 
Procs/Resample... from the series window, you will be prompted to specify various 
options.

Input Sample

Describes the sample from which 
observations are to be drawn. The 
default is the current workfile sample. 

If you select the Draw without 
replacement option, each row will be 
drawn at most once. This option 
requires the input sample to be at least 
as large as the output sample. If you do 
not select this option, each row will be 
drawn with replacement. 

Output Sample

Specifies the sample into which the resampled series will be saved. Any value outside the 
output sample will not be changed. The default output sample is the current workfile sam-
ple. If you select the Draw without replacement option, the output sample cannot be 
larger than the input sample. 

NA Handling

The default Include NAs in draws instructs EViews to draw from every observation in the 
input sample, including those that contain missing values. Alternatively, you may select 
the Exclude NAs from draws option so that you draw only from observations in the input 
sample that do not contain any missing values. Finally, the Exclude NAs from draws but 
copy NA rows to output option first copies matching observations in the input sample that 
contain missing values to the output sample. The remaining rows of the output sample are 
then filled by drawing from observations in the input sample that do not contain any miss-
ing values. This option keeps observations with missing values fixed and resamples those 
that do not contain any missing values. 
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Series Name

The new series will be named using the specified series name. You may provide a series 
name or a wildcard expression. If you use a wildcard expression, EViews will substitute 
the existing series name in place of the wildcard. For example, if you are sampling from the 
series X and specify “*_SMP” as the output series, EViews will save the results in the series 
X_SMP. You may not specify a destination series that is the same as the original series.

If another series with the specified name exists in the workfile, the values in the output sam-
ple will be overwritten with the resampled values. Any values outside the output sample 
will remain unchanged. If there is a non-series object with the specified name, EViews will 
return an error message. 

Because of these naming conventions, your original series cannot be an auto-series. For 
example, if the original series is X(-1) or LOG(X), EViews will issue an error. You will have 
to generate a new series, say by setting XLAG = X(-1) or LOGX = LOG(X), and then resa-
mple from the newly generated series. 

Weighting

By default, the procedure draws from each row in the input sample with equal probabili-
ties. If you want to attach different probabilities to the rows (importance sampling), you 
can specify a name of an existing series that contains weights that are proportional to the 
desired probabilities in each row. The weight series must have non-missing non-negative 
values in the input sample, but the weights need not add up to 1 since EViews will normal-
ize the weights.

Block Length

By default, sets the block length to 1, meaning that we draw one observation at a time from 
the input sample. If you specify a block length larger than 1, EViews will draw blocks of 
consecutive rows of the specified length. The blocks drawn in the procedure form a set of 
overlapping moving blocks in the input sample. The drawn blocks will be appended one 
after the other in the output series until it fills the output sample (the final block will be 
truncated if the block size is not an integer multiple of the output sample size). Block resa-
mpling with a block length larger than 1 makes the most sense when resampling time 
series data. 

Block resampling requires a continuous output sample. Therefore a block length larger 
than 1 cannot be used when the output sample contains “gaps” or when you have selected 
the Exclude NAs from draws but copy NA rows to output option. If you choose Exclude 
NAs from draws option and the block length is larger than 1, the input sample will shrink 
in the presence of NAs in order to ensure that there are no missing values in any of the 
drawn blocks. 
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Seasonal Adjustment 

Time series observed at quarterly and monthly frequencies often exhibit cyclical move-
ments that recur every month or quarter. For example, ice cream sales may surge during 
summer every year and toy sales may reach a peak every December during Christmas 
sales. Seasonal adjustment refers to the process of removing these cyclical seasonal move-
ments from a series and extracting the underlying trend component of the series. 

The EViews seasonal adjustment procedures are available only for quarterly and monthly 
series. To seasonally adjust a series, click on Procs/Seasonal Adjustment in the series 
window toolbar and select the adjustment method (Census X12, X11 (Historical), Tramo/
Seats or moving average). 

Census X12 

EViews provides a convenient front-end for accessing the U.S. Census Bureau’s X12 sea-
sonal adjustment program from within EViews. The X12 seasonal adjustment program 
X12A.EXE is publicly provided by the Census and is installed in your EViews directory. 

When you request X12 seasonal adjustment from EViews, EViews will perform all of the 
following steps:

• write out a specification file and data file for the series.

• execute the X12 program in the background, using the contents of the specification 
file.

• read back the output file and saved data into your EViews workfile.

The following is a brief description of the EViews menu interface to X12. While some parts 
of X12 are not available via the menus, EViews also provides a more general command 
interface to the program (see x12 (p. 388) of the Command and Programming Reference).

Users who desire a more detailed discussion of the X12 procedures and capabilities should 
consult the Census Bureau documentation. The full documentation for the Census pro-
gram, X12-ARIMA Reference Manual, can be found in the DOCS subdirectory of your 
EViews directory in the PDF files (FINALPT1.PDF and FINALPT2.PDF).

To call the X12 seasonal adjustment procedure, select Procs/Seasonal Adjustment/Census 
X12... from the series window menu. A dialog will open with several tabs for setting the 
X12 options for seasonal adjustment, ARIMA estimation, trading day/holiday adjustment, 
outlier handling, and diagnostic output.

It is worth noting that when you open the X12 dialog, the options will be set to those from 
the previously executed X12 dialog. One exception to this rule is the outlier list in the Out-
liers tab, which will be cleared unless the previous seasonal adjustment was performed on 
the same series.
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Seasonal Adjustment Options

X11 Method specifies the form of the 
seasonal adjustment decomposition. A 
description of the four choices can be 
found in pages 75-77 of the X12-ARIMA 
Reference Manual. Be aware that the 
Pseudo-additive method must be accom-
panied by an ARIMA specification (see 
“ARIMA Options” on page 179 for details 
on specifying the form of your ARIMA).

Note that the multiplicative, pseudo-
additive, and log-additive methods do 
not allow for zero or negative data. 

The Seasonal Filter drop-down box 
allows you to select a seasonal moving 
average filter to be used when estimating 
the seasonal factors. The default Auto 
(X12 default) setting is an automatic procedure based on the moving seasonality ratio. For 
details on the remaining seasonal filters, consult the X12-ARIMA Reference Manual. To 
approximate the results from the previous X11 program’s default filter, choose the X11-
default option. You should note the following:

• The seasonal filter specified in the dialog is used for all frequencies. If you wish to 
apply different filters to different frequencies, you will have to use the more general 
X12 command language described in detail in x12 (p. 388) of the Command and 
Programming Reference.

• X12 will not allow you to specify a  seasonal filter for series shorter than 20 
years.

• The Census Bureau has confirmed that the X11-default filter option does not produce 
results which match those obtained from the previous version of X11. The difference 
arises due to changes in extreme value identification, replacement for the latest val-
ues, and the way the end weights of the Henderson filter is calculated. For compara-
bility, we have retained the previous (historical) X11 routines as a separate 
procedure (see “Census X11 (Historical)” on page 184). Please note that the old X11 
program is year 2000 compliant only through 2100 and supports only DOS 8.3 format 
filenames.

The Trend Filter (Henderson) settings allow you to specify the number of terms in the 
Henderson moving average used when estimating the trend-cycle component. You may use 

3 15×
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any odd number greater than 1 and less than or equal to 101. The default is the automatic 
procedure used by X12. 

You must provide a base name for the series stored from the X12 procedure in the Name 
for Adjusted Series/Component Series to Save edit box. To save a series returned from 
X12 in the workfile, click on the appropriate check box. The saved series will have the 
indicated suffix appended to the base name. For example, if you enter a base name of “X” 
and ask to save the seasonal factors (“_SF”), EViews will save the seasonal factors as X_SF. 

You should take care when using long base names, since EViews must be able to create a 
valid series using the base name and any appended Census designations. In interactive 
mode, EViews will warn you that the resulting name exceeds the maximum series name 
length; in batch mode, EViews will create a name using a truncated base name and 
appended Census designations. 

The dialog only allows you to store the four most commonly used series. You may, how-
ever, store any additional series as listed on Table 6-8 (p. 74) of the X12-ARIMA Reference 
Manual by running X12 from the command line (see x12 (p. 388) of the Command and 
Programming Reference).

ARIMA Options

The X12 program also allows you to fit ARMA models to the series prior to seasonal adjust-
ment. You can use X12 to remove deterministic effects (such as holiday and trading day 
effects) prior to seasonal adjustment and to obtain forecasts/backcasts that can be used for 
seasonal adjustment at the boundary of the sample. To fit an ARMA, select the ARIMA 
Options tab in the X12 Options dialog and fill in the desired options.

The Data Transformation setting allows you to transform the series before fitting an 
ARMA model. The Auto option selects between no transformation and a log transforma-
tion based on the Akaike information criterion. The Logistic option transforms the series 

 to  and is defined only for series with values that are strictly between 0 
and 1. For the Box-Cox option, you must provide the parameter value  for the transfor-
mation 

(7.30)

See the “transform spec” (pp. 60–67) of the X12-ARIMA Reference Manual for further 
details. 

ARIMA Specification allows you to choose between two different methods for specifying 
your ARIMA model. The Specify in-line option asks you to provide a single ARIMA speci-
fication to fit. The X12 syntax for the ARIMA specification is different from the one used by 
EViews and follows the Box-Jenkins notation “(p d q)(P D Q)” where

y y 1 y−( )⁄( )log
λ

yt( )log if λ 0=
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The default specification “(0 1 1)(0 1 1)” is the seasonal IMA model

(7.31)

Here are some other examples (  is the lag operator):

You can skip lags using square brackets and explicitly specify the seasonal order after the 
parentheses:

See the X12-ARIMA Reference Manual (pp. 110–114) for further details and examples of 
ARIMA specification in X12. Note that there is a limit of 25 total AR, MA, and differencing 
coefficients in a model and that the maximum lag of any AR or MA parameter is 24 and the 
maximum number of differences in any ARIMA factor is 3.

Alternatively, if you choose Select from file, X12 will select an ARIMA model from a set of 
possible specifications provided in an external file. The selection process is based on a pro-
cedure developed by Statistics Canada for X11-ARIMA/88 and is described in the X12-
ARIMA Reference Manual (p. 133). If you use this option, you will be asked to provide the 
name of a file that contains a set of possible ARIMA specifications. By default, EViews will 
use a file named X12A.MDL that contains a set of default specifications provided by Cen-
sus (the list of specifications contained in this file is given below).

To provide your own list in a file, the ARIMA specification must follow the X12 syntax as 
explained in the ARIMA Specification section above. You must specify each model on a 
separate line, with an “X” at the end of each line except the last. You may also designate 

p nonseasonal AR order

d order of nonseasonal differences

q nonseasonal MA order

P (multiplicative) seasonal AR order

D order of seasonal differences

Q (multiplicative) seasonal MA order

(1 0 0)

(0 1 1)

(1 0 1)(1 0 0)  where 
 for quarterly data and  for monthly 

data

([2 3] 0 0)

(0 1 1)12

1 L−( ) 1 L
s−( )yt 1 θ1L−( ) 1 θsL
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L
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one of the models as a “default” model by marking the end of a line with an asterisk “*” 
instead of “X”; see p. 133 of the X12-ARIMA Reference Manual for an explanation of the 
use of a default model. To ensure that the last line is read, it should be terminated by hit-
ting the return key.

For example, the default file (X12A.MDL) provided by X12 contains the following specifica-
tions:

(0 1 1)(0 1 1) *

(0 1 2)(0 1 1) x

(2 1 0)(0 1 1) x

(0 2 2)(0 1 1) x

(2 1 2)(0 1 1)

There are two additional options for Select from file. Select best checks all models in the 
list and looks for the model with minimum forecast error; the default is to select the first 
model that satisfies the model selection criteria. Select by out-of-sample-fit uses out-of-
sample forecast errors (by leaving out some of the observations in the sample) for model 
evaluation; the default is to use within-sample forecast errors. 

The Regressors option allows you to include prespecified sets of exogenous regressors in 
your ARIMA model. Simply use the checkboxes to specify a constant term and/or (cen-
tered) seasonal dummy variables. Additional predefined regressors to capture trading day 
and/or holiday effects may be specified using the Trading Day/Holiday tab. You can also 
use the Outlier tab to capture outlier effects.

Trading Day and Holiday Effects

X12 provides options for handling trading day and/or holiday effects. To access these 
options, select the Trading Day/Holiday tab in the X12 Options dialog.

As a first step you should indicate whether you wish to make these adjustments in the 
ARIMA step or in the X11 seasonal adjustment step. To understand the distinction, note 
that there are two main procedures in the X12 program: the X11 seasonal adjustment step, 
and the ARIMA estimation step. The X11 step itself consists of several steps that decom-
pose the series into the trend/cycle/irregular components. The X12 procedure may there-
fore be described as follows:

• optional preliminary X11 step (remove trading day/holiday effects from series, if 
requested).

• ARIMA step: fit an ARIMA model (with trading/holiday effects, if specified) to the 
series from step 1 or to the raw series.

• X11 step: seasonally adjust the series from step 2 using backcasts/forecasts from the 
ARIMA model.
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While it is possible to perform trading day/holiday adjustments in both the X11 step and 
the ARIMA step, Census recommends against doing so (with a preference to performing 
the adjustment in the ARIMA step). EViews follows this advice by allowing you to perform 
the adjustment in only one of the two steps.

If you choose to perform the adjustment in the X11 step, there is an additional setting to 
consider. The checkbox Apply only if significant (AIC) instructs EViews to adjust only if 
warranted by examination of the Akaike information criterion. 

It is worth noting that in X11, the significance tests for use of trading day/holiday adjust-
ment are based on an F-est. For this, and a variety of other reasons the X12 procedure with 
“X11 settings” will not produce results that match those obtained from historical X11. To 
obtain comparable results, you must use the historical X11 procedure (see “Census X11 
(Historical)” on page 184).

Once you select your adjustment method, the dialog will present additional adjustment 
options:

• Trading Day Effects — There are two options for trading day effects, depending on 
whether the series is a flow series or a stock series (such as inventories). For a flow 
series, you may adjust for day-of-week effects or only for weekday-weekend con-
trasts. Trading day effects for stock series are available only for monthly series and 
the day of the month in which the series is observed must be provided. 

• Holiday Effects — Holiday effect adjustments apply only to flow series. For each 
holiday effect, you must provide a number that specifies the duration of that effect 
prior to the holiday. For example, if you select 8, the level of daily activity changes 
on the seventh day before the holiday and remains at the new level until the holiday 
(or a day before the holiday, depending on the holiday). 

Note that the holidays are as defined for the United States and may not apply to other 
countries. For further details, see the X12-ARIMA Reference Manual, Tables 6–15 (p. 94) 
and 6–18 (p. 133).

Outlier Effects

As with trading day/holiday adjustments, outlier effects can be adjusted either in the X11 
step or in the ARIMA step (see the discussion in “Trading Day and Holiday Effects” on 
page 181). However, outlier adjustments in the X11 step are done only to robustify the trad-
ing day/holiday adjustments in the X11 step. Therefore, in order to perform outlier adjust-
ment in the X11 step, you must perform trading day/holiday adjusment in the X11 step. 
Only additive outliers are allowed in the X11 step; other types of outliers are available in 
the ARIMA step. For further information on the various types of outliers, see the X12-
ARIMA Reference Manual, Tables 6–15 (p. 94) and 6–18 (p. 133).
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If you do not know the exact date of an outlier, you may ask the program to test for an out-
lier (see “Diagnostics” on page 183). 

Diagnostics

This tab provides options for various diagnostics. The Sliding spans and Historical revi-
sions options test for stability of the adjusted series. While Sliding spans checks the 
change in adjusted series over a moving sample of fixed size (overlapping subspans), His-
torical revisions checks the change in adjusted series over an increasing sample as new 
observations are added to the sample. See the X12-ARIMA Reference Manual for further 
details and references of the testing procedure. You may also choose to display various 
diagnostic output:

• Residual diagnostics will report standard residual diagnostics (such as the autocor-
relation functions and Q-statistics) to check the adequacy of the fitted ARIMA 
model. Note that this option requires estimation of an ARIMA model; if you do not 
provide an ARIMA model nor any exogenous regressors (including those from the 
Trading day/Holiday or Outlier tab), the diagnostics will be applied to the original 
series. 

• Outlier detection automatically detects and reports outliers using the specified 
ARIMA model. This option requires an ARIMA specification or at least one exoge-
nous regressor (including those from the Trading day/Holiday or Outlier tab); if no 
regression model is specified, the option is ignored. 

• Spectral plots displays the spectra of the differenced seasonally adjusted series 
(SP1) and/or of the outlier modified irregular series (SP2). The red vertical dotted 
lines are the seasonal frequencies and the black vertical dashed lines are the trading 
day frequencies. If you observe peaks at these vertical lines it is an indication of 
inadequate adjustment. For further details, see Findley et al. (1998, section 3.1). If 
you request this option, data for the spectra will be stored in a matrix named 
seriesname_SA_SP1 and seriesname_SA_SP2 in your workfile. The first column of 
these matrices are the frequencies and the second column are 10 times the log spec-
tra at the corresponding frequency.

X11/X12 Troubleshooting

The currently shipping versions of X11 and X12 as distributed by the Census (X11 executa-
bles dated 6/15/2000 and version 0.2.9 of X12) have the following limitation regarding 
directory length. First, you will not be able to run X11/X12 if you are running EViews from 
a shared directory on a server which has spaces in its name. The solution is to map that 
directory to a letter drive on your local machine. Second, the temporary directory path 
used by EViews to read and write data cannot have more than four subdirectories. This 
temporary directory used by EViews can be changed by selecting Options/File Loca-
tions.../Temp File Path in the main menu. If your temporary directory has more than four 
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subdirectories, change the Temp File Path to a writeable path that has fewer subdirectories. 
Note that if the path contains spaces or has more than 8 characters, it may appear in short-
ened form compatible with the old DOS convention.

Census X11 (Historical)

The Census X11.2 methods (multiplicative and additive) are the standard methods used by 
the U.S. Bureau of Census to seasonally adjust publicly released data. The X11 routines are 
separate programs provided by the Census and are installed in the EViews directory in the 
files X11Q2.EXE and X11SS.EXE. The documentation for these programs can also be found 
in your EViews directory as text files X11DOC1.TXT through X11DOC3.TXT. 

The X11 programs may be run directly from DOS or from inside EViews. If you run the X11 
programs from EViews by choosing the X11 options in the Seasonal Adjustment dialog, the 
adjusted series and the factor series will be automatically imported into your EViews work-
file. X11 summary output and error messages will also be displayed in the series window at 
the end of the procedure.

The X11 method has many options, the most important of which are available in the Sea-
sonal Adjustment dialog. However, there are other options not available in the EViews dia-
log; to use these other options, you should run the X11 programs from the DOS command 
line. All options available in the X11 methods are described in the X11DOC text files in your 
EViews directory.

You should note that there is a limit on the number of observations that you can seasonally 
adjust. X11 only works for quarterly and monthly frequencies, requires at least four full 
years of data, and can adjust only up to 20 years of monthly data and up to 30 years of 
quarterly data.

Moving Average Methods

Ratio to moving average—multiplicative

The algorithm works as follows. Denote the series to be filtered by .

1. First compute the centered moving average of  as

(7.32)

2. Take the ratio .

3. Compute the seasonal indices. For monthly series, the seasonal index  for month 
 is the average of  using observations only for month . For quarterly series, 
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the seasonal index  for quarter  is the average of  using observations only for 
quarter .

4. We then adjust the seasonal indices so that they multiply to one. This is done by 
computing the seasonal factors as the ratio of the seasonal index to the geometric 
mean of the indices:

 (7.33)

5. These  are the reported scaling factors in the series window and are saved as series 
if you provide a name in the field box. The interpretation is that the series  is  
percent higher in period  relative to the adjusted series.

6. The seasonally adjusted series is obtained by dividing  by the seasonal factors . 

Difference from moving average—additive

Suppose that we wish to filter .

1. First compute the centered moving average of  as in Equation (7.32) on page 184.

2. Take the difference .

3. Compute the seasonal indices. For monthly series, the seasonal index  for month 
 is the average of  using observations only for month . For quarterly series, 

the seasonal index  for quarter  is the average of  using observations only for 
quarter .

4. We then adjust the seasonal indices so that they add up to zero. This is done by set-
ting  where  is the average of all seasonal indices. These  are the 
reported scaling factors. The interpretation is that the series  is  higher in period 

 relative to the adjusted series.

5. The seasonally adjusted series is obtained by subtracting the seasonal factors  
from .

The main difference between X11 and the moving average methods is that the seasonal fac-
tors may change from year to year in X11. The seasonal factors are assumed to be constant 
for the moving average method.

Tramo/Seats

Tramo (“Time Series Regression with ARIMA Noise, Missing Observations, and Outliers”) 
performs estimation, forecasting, and interpolation of regression models with missing 
observations and ARIMA errors, in the presence of possibly several types of outliers. Seats 
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(“Signal Extraction in ARIMA Time Series”) performs an ARIMA-based decomposition of 
an observed time series into unobserved components. The two programs were developed 
by Victor Gomez and Agustin Maravall.

Used together, Tramo and Seats provide a commonly used alternative to the Census X12 
program for seasonally adjusting a series. Typically, individuals will first “linearize” a 
series using Tramo and will then decompose the linearized series using Seats. 

EViews provides a convenient front-end to the Tramo/Seats programs as a series proc. Sim-
ply select Procs/Seasonal Adjustment/Tramo Seats... and fill out the dialog. EViews 
writes an input file which is passed to Tramo/Seats via a call to a .DLL, and reads the out-
put files from Tramo/Seats back into EViews (note: since EViews uses a new .DLL version 
of Tramo/Seats, results may differ from the older DOS version of the program).

Since EViews only provides an interface to an external program, we cannot provide any 
technical details or support for Tramo/Seats itself. Users who are interested in the technical 
details should consult the original documentation Instructions for the User which is pro-
vided as a .PDF file in the DOCS/TRAMOSEATS subdirectory of your EViews directory. 

Dialog Options

The Tramo/Seats interface from the dialog provides access to the most frequently used 
options. Users who desire more control over the execution of Tramo/Seats may use the 
command line form of the procedure as documented in the Command and Programming 
Reference.

The dialog contains three tabs. The main tab controls the basic specification of your 
Tramo/Seats run.

• Run mode: You can 
choose either to run only 
Tramo or you can select 
the Run Seats after Tramo 
checkbox to run both. In 
the latter case, EViews 
uses the input file pro-
duced by Tramo to run 
Seats. If you wish to run 
only Seats, you must use 
the command line inter-
face.

• Forecast horizon: You may 
set the number of periods 
to forecast outside the cur-
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rent sample. If you choose a number smaller than the number of forecasts required 
to run Seats, Tramo will automatically lengthen the forecast horizon as required.

• Transformation: Tramo/Seats is based on an ARIMA model of the series. You may 
choose to fit the ARIMA model to the level of the series or to the (natural) log of the 
series, or you select Auto select level or log. This option automatically chooses 
between the level model and the log transformed model using results from a 
trimmed range-mean regression; see the original Tramo/Seats documentation for fur-
ther details.

• ARIMA order search: You may either specify the orders of the ARIMA model to fit 
or ask Tramo to search for the “best” ARIMA model. If you select Fix order in the 
combo box and specify the order of all of the ARIMA components, Tramo will use 
the specified values for all components where the implied ARIMA model is of the 
form

with seasonal frequency . When you fix the order of your ARIMA you should spec-
ify non-negative integers in the edit fields for , , , , , and 

. 

Alternatively, if you select Fix only difference orders, Tramo will search for the best 
ARMA model for differenced data of the orders specified in the edit fields.

You can also instruct Tramo to choose all orders. Simply choose Search all or Search 
all and unit complex roots to have Tramo find the best ARIMA model subject to 
limitations imposed by Tramo. The two options differ in the handling of complex 
roots. Details are provided in the original Tramo/Seats documentation.

Warning: if you choose to run Seats after Tramo, note that Seats has the following 
limit on the ARIMA orders , , , , , 

. 

• Series to Save: To save series output by Tramo/Seats in your workfile, provide a valid 
base name and check the series you wish to save. The saved series will have a post-
fix appended to the basename as indicated in the dialog. If the saved series contains 
only missing values, it indicates that Tramo/Seats did not return the requested 
series; see “Trouble Shooting” on page 189.
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If Tramo/Seats returns forecasts for the selected series, EViews will append them at 
the end of the stored series. The workfile range must have enough observations after 
the current workfile sample to store these forecasts.

If you need access to series that are not listed in the dialog options, see “Trouble 
Shooting” on page 189.

• User specified exogenous series: You may provide your own exogenous series to be 
used by Tramo. These must be a named series or a group in the current workfile and 
should not contain any missing values in the current sample and the forecast period.

If you selected a trading day adjustment option, you have the option of specifying 
exogenous series to be treated as a holiday series. The specification of the holiday 
series will depend on whether you chose a weekday/weekend adjustment or a 5-day 
adjustment. See the original Tramo/Seats documentation for further details.

If you are running Seats after Tramo, you must specify which component to allocate 
the regression effects. The Tramo default is to treat the regression effect as a separate 
additional component which is not included in the seasonally adjusted series.

EViews will write a separate data file for each entry in the exogenous series list 
which is passed to Tramo. If you have many exogenous series with the same specifi-
cation, it is best to put them into one group.

• Easter/Trading day adjustment: These options are intended for monthly data; see the 
original Tramo/Seats documentation for details.

• Outlier detection: You may either ask Tramo to automatically detect possible outliers 
or you can specify your own outlier but not both. If you wish to do both, create a 
series corresponding to the known outlier and pass it as an exogenous series.

Similarly, the built-in intervention option in Tramo is not supported from the dialog. 
You may obtain the same result by creating the intervention series in EViews and 
passing it as an exogenous series. See the example below.

The original Tramo/Seats documentation provides definitions of the various outlier 
types and the method to detect them.

After you click OK, the series window will display the text output returned by Tramo/
Seats. If you ran both Tramo and Seats, the output from Seats is appended at the end of 
Tramo output. Note that this text view will be lost if you change the series view. You 
should freeze the view into a text object if you wish to refer to the output file without hav-
ing to run Tramo/Seats again.

It is worth noting that when you run Tramo/Seats, the dialog will generally contain the set-
tings from the previous run of Tramo/Seats. A possible exception is the user specified out-
lier list which is cleared unless Tramo/Seats is called on the previously used series.



Seasonal Adjustment—189
Comparing X12 and Tramo/Seats

Both X12 and Tramo/Seats are seasonal adjustment procedures based on extracting com-
ponents from a given series. Methodologically, X12 uses a non-parametric moving average 
based method to extract its components, while Tramo/Seats bases its decomposition on an 
estimated parametric ARIMA model (the recent addition of ARIMA modelling in X12 
appears to be used mainly to identify outliers and to obtain backcasts and forecasts for 
end-of-sample problems encountered when applying moving average methods.)

For the practitioner, the main difference between the two methods is that X12 does not 
allow missing values while Tramo/Seats will interpolate the missing values (based on the 
estimated ARIMA model). While both handle quarterly and monthly data, Tramo/Seats 
also handles annual and semi-annual data. See the sample programs in the Example Files 
directory for a few results that compare X12 and Tramo/Seats.

Trouble Shooting

Error handling

As mentioned elsewhere, EViews writes an input file which is passed to Tramo/Seats via a 
call to a .DLL. Currently the Tramo/Seats .DLL does not return error codes. Therefore, the 
only way to tell that something went wrong is to examine the output file. If you get an 
error message indicating that the output file was not found, the first thing you should do is 
to check for errors in the input file.

When you call Tramo/Seats, EViews creates two subdirectories called Tramo and Seats in a 
temporary directory. This temporary directory is taken from the global option Options/File 
Locations.../Temp File Path (note that long directory names with spaces may appear in 
shortened DOS form). The Temp File Path can be retrieved in a program by a call to the 
function @temppath (p. 430) as described in the Command and Programming Reference.

The Tramo input file written by EViews will be placed in the subdirectory TRAMO and is 
named SERIE. A Seats input file written by Tramo is also placed in subdirectory TRAMO 
and is named SEATS.ITR. 

The input file used by Seats is located in the SEATS subdirectory and is named SERIE2. If 
Seats is run alone, then EViews will create the SERIE2 file. When Tramo and Seats are 
called together, the Tramo file SEATS.ITR is copied into SERIE2.

If you encounter the error message containing the expression “output file not found”, it 
probably means that Tramo/Seats encountered an error in one of the input files. You 
should look for the input files SERIE and SERIE2 in your temp directories and check for 
any errors in these files.
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Retrieving additional output

The output file displayed in the series window is placed in the OUTPUT subdirectory of the 
TRAMO and/or SEATS directories. The saved series are read from the files returned by 
Tramo/Seats that are placed in the GRAPH subdirectories. If you need to access other data 
files returned by Tramo/Seats that are not supported by EViews, you will have to read 
them back into the workfile using the read command from these GRAPH subdirectories. 
See the PDF documentation file for a description of these data file formats. 

Warning: if you wish to examine these files, make sure to read these data files before you 
run the next Tramo/Seats procedure. EViews will clear these subdirectories before running 
the next Tramo/Seats command (this clearing is performed as a precautionary measure so 
that Tramo/Seats does not read results from a previous run).

Exponential Smoothing

Exponential smoothing is a simple method of adaptive forecasting. It is an effective way of 
forecasting when you have only a few observations on which to base your forecast. Unlike 
forecasts from regression models which use fixed coefficients, forecasts from exponential 
smoothing methods adjust based upon past forecast errors. For additional discussion, see 
Bowerman and O’Connell (1979).

To obtain forecasts based on exponential smoothing methods, choose Procs/Exponential 
Smoothing. The Exponential Smoothing dialog box appears:

You need to provide the following informa-
tion:

• Smoothing Method. You have the 
option to choose one of the five meth-
ods listed.

• Smoothing Parameters. You can either 
specify the values of the smoothing 
parameters or let EViews estimate 
them. 

To estimate the parameter, type the letter e 
(for estimate) in the edit field. EViews esti-
mates the parameters by minimizing the sum 
of squared errors. Don't be surprised if the 
estimated damping parameters are close to one—it is a sign that the series is close to a ran-
dom walk, where the most recent value is the best estimate of future values.
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To specify a number, type the number in the field corresponding to the parameter. All 
parameters are constrained to be between 0 and 1; if you specify a number outside the unit 
interval, EViews will estimate the parameter. 

• Smoothed Series Name. You should provide a name for the smoothed series. By 
default, EViews will generate a name by appending SM to the original series name, 
but you can enter any valid EViews name.

• Estimation Sample. You must specify the sample period upon which to base your 
forecasts (whether or not you choose to estimate the parameters). The default is the 
current workfile sample. EViews will calculate forecasts starting from the first obser-
vation after the end of the estimation sample.

• Cycle for Seasonal. You can change the number of seasons per year from the default 
of 12 for monthly or 4 for quarterly series. This option allows you to forecast from 
unusual data such as an undated workfile. Enter a number for the cycle in this field. 

Single Smoothing (one parameter)

This single exponential smoothing method is appropriate for series that move randomly 
above and below a constant mean with no trend nor seasonal patterns. The smoothed 
series  of  is computed recursively by evaluating

(7.34)

where  is the damping (or smoothing) factor. The smaller is the , the smoother 
is the  series. By repeated substitution, we can rewrite the recursion as 

(7.35)

This shows why this method is called exponential smoothing—the forecast of  is a 
weighted average of the past values of , where the weights decline exponentially with 
time. 

The forecasts from single smoothing are constant for all future observations. This constant 
is given by

(7.36)

where  is the end of the estimation sample.

To start the recursion, we need an initial value for  and a value for . EViews uses the 
mean of the initial observations of  to start the recursion. Bowerman and O’Connell 
(1979) suggest that values of  around 0.01 to 0.30 work quite well. You can also let 
EViews estimate  to minimize the sum of squares of one-step forecast errors.
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Double Smoothing (one parameter)

This method applies the single smoothing method twice (using the same parameter) and is 
appropriate for series with a linear trend. Double smoothing of a series  is defined by the 
recursions

(7.37)

where  is the single smoothed series and  is the double smoothed series. Note that 
double smoothing is a single parameter smoothing method with damping factor 

. 

Forecasts from double smoothing are computed as

(7.38)

The last expression shows that forecasts from double smoothing lie on a linear trend with 
intercept  and slope . 

Holt-Winters—Multiplicative (three parameters)

This method is appropriate for series with a linear time trend and multiplicative seasonal 
variation. The smoothed series  is given by

(7.39)

where

(7.40)

These three coefficients are defined by the following recursions

(7.41)
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where  are the damping factors and  is the seasonal frequency specified 
in the Cycle for Seasonal field box.

Forecasts are computed by

(7.42)

where the seasonal factors are used from the last  estimates.

Holt-Winters—Additive (three parameter)

This method is appropriate for series with a linear time trend and additive seasonal varia-
tion. The smoothed series  is given by

(7.43)

where  and  are the permanent component and trend as defined above in 
Equation (7.40) and  are the additive seasonal factors. The three coefficients are defined 
by the following recursions

(7.44)

where  are the damping factors and  is the seasonal frequency specified 
in the Cycle for Seasonal field box.

Forecasts are computed by

(7.45)

where the seasonal factors are used from the last  estimates. 

Holt-Winters—No Seasonal (two parameters)

This method is appropriate for series with a linear time trend and no seasonal variation. 
This method is similar to the double smoothing method in that both generate forecasts 
with a linear trend and no seasonal component. The double smoothing method is more 
parsimonious since it uses only one parameter, while this method is a two parameter 
method. The smoothed series  is given by

(7.46)

where  and  are the permanent component and trend as defined above in 
Equation (7.40).

These two coefficients are defined by the following recursions
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(7.47)

where  are the damping factors. This is an exponential smoothing method 
with two parameters.

Forecasts are computed by

(7.48)

These forecasts lie on a linear trend with intercept  and slope . 

It is worth noting that Holt-Winters—No Seasonal, is not the same as additive or multipli-
cative with . The condition  only restricts the seasonal factors from chang-
ing over time so there are still (fixed) nonzero seasonal factors in the forecasts. 

Illustration

As an illustration of forecasting using exponential smoothing we forecast data on monthly 
housing starts (HS) for the period 1985:01–1988:12 using the DRI Basics data for the period 
1959:01–1984:12. These data are provided in the workfile HS.WF1. Load the workfile, 
highlight the HS series, double click, select Procs/Exponential Smoothing…. We use the 
Holt-Winters—multiplicative method to account for seasonality, name the smoothed fore-
casts as HS_SM, and estimate all parameters over the period 1959:1–1984:12. 

When you click OK, EViews displays the results of the smoothing procedure. The first part 
displays the estimated (or specified) parameter values, the sum of squared residuals, the 
root mean squared error of the forecast. The zero values for Beta and Gamma in this exam-
ple mean that the trend and seasonal components are estimated as fixed and not changing. 

The second part of the table displays the mean , and trend  at the end of the esti-
mation sample that are used for post-sample smoothed forecasts. 
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Sample: 1959:01 1984:12
Included observations: 312
Method: Holt-Winters Multiplicative Seasonal
Original Series: HS
Forecast Series: HS_SM

Parameters: Alpha  0.7100
Beta  0.0000
Gamma  0.0000

Sum of Squared Residuals  40365.69
Root Mean Squared Error  11.37441
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For seasonal methods, the seasonal factors  used in the forecasts are also displayed. 
The smoothed series in the workfile contains data from the beginning of the estimation 
sample to the end of the workfile range; all values after the estimation period are forecasts.

When we plot the actual values and the smoothed forecasts on a single graph, we get:

The forecasts from the multiplicative exponential smoothing method do a good job of 
tracking the seasonal movements in the actual series. 

Hodrick-Prescott Filter

This is a smoothing method that is widely used among macroeconomists to obtain a 
smooth estimate of the long-term trend component of a series. The method was first used 
in a working paper (circulated in the early 1980’s and published in 1997) by Hodrick and 
Prescott to analyze postwar U.S. business cycles. 

End of Period Levels: Mean  134.6584
Trend  0.064556
Seasonals: 1984:01  0.680745

1984:02  0.711559
1984:03  0.992958
1984:04  1.158501
1984:05  1.210279
1984:06  1.187010
1984:07  1.127546
1984:08  1.121792
1984:09  1.050131
1984:10  1.099288
1984:11  0.918354
1984:12  0.741837
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Technically, the Hodrick-Prescott (HP) filter is a two-sided linear filter that computes the 
smoothed series  of  by minimizing the variance of  around , subject to a penalty 
that constrains the second difference of . That is, the HP filter chooses  to minimize:

. (7.49)

The penalty parameter  controls the smoothness of the series . The larger the , the 
smoother the . As ,  approaches a linear trend.

 

To smooth the series using the Hodrick-Prescott filter, choose Procs/Hodrick-Prescott Fil-
ter….

First, provide a name for the smoothed series. EViews will suggest a name, but you can 
always enter a name of your choosing. Next, specify an integer value for the smoothing 
parameter, . The default values in EViews are set to be:

(7.50)

EViews will round off any non-integer values. 

When you click OK, EViews displays a graph of the filtered series together with the origi-
nal series. Note that only data in the current workfile sample are filtered. Data for the 
smoothed series outside the current sample are filled with NAs. 

Commands

The command syntax is to follow the name of the series with a dot and then the view or 
procedure name, with options specified in parentheses. For example, to view the histogram 
and descriptive statistics of a series named LWAGE, type 
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lwage.hist

To test whether the mean of the series HRS is equal to 3, type 

hrs.teststat(mean=3)

To plot the quantiles of the series INJURE against the quantiles of the uniform distribution, 
type 

injure.qqplot(u)

To plot the correlogram of the series GDP up to 20 lags, type

gdp.correl(20)

To smooth the series GDP by the Hodrick-Prescott filter with smoothing parameter 1600 
and to save the smoothed series as GDP_HP, type 

gdp.hpf(1600) gdp_hp

See “Series” (p. 39) in the Command and Programming Reference for a complete list of 
commands and options that are available for series objects.



198—Chapter 7. Series



Chapter 8.  Groups

This chapter describes the views and procedures of a group object. With a group, you can 
compute various statistics that describe the relationship between multiple series and dis-
play them in various forms such as spreadsheets, tables, and graphs.

The remainder of this chapter assumes that you are already familiar with the basics of cre-
ating and working with a group. See the documentation of EViews features beginning with 
Chapter 3 for relevant details on the basic operations.

Views from a Group Window

The group view drop-down menu is divided into four blocks:

• The views in the first block provide various ways of looking at 
the actual data in the group.

• The views in the second block display various basics statistics. 

• The views in the third block are for specialized statistics typi-
cally computed using time series data. 

• The fourth block contains the label view, which provides infor-
mation regarding the group object.

Group Members

This view displays the member series in the group and allows you to alter the group. To 
change the group, simply edit the group window. You can add other series from the work-
file, include expressions involving series, or you can delete series from the group.

Note that editing the window does not change the list of group members. Once you make 
your changes to the list, you must press the UpdateGroup button in the group window 
toolbar to save the changes.

Spreadsheet

This view displays the data, in spreadsheet form, for each series in the group. If you wish, 
you can flip the rows and columns of the spreadsheet by pressing the Transpose button. In 
transpose format, each row contains a series, and each column an observation or date. 
Pressing the Transpose button toggles between the two spreadsheet views. 
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You can change the display mode of your spreadsheet 
view to show common transformations of your data. By 
default, EViews displays the original values in the series. 
If you wish, you can change the spreadsheet display to 
show various differences of the series (in levels or percent 
changes). Simply click on the Transform button on the 
toolbar and select one of the display units from the drop-
down menu.

If you select any method beside “Level”, EViews will add a header line to the spreadsheet 
display describing the transformation method used to generate the data displayed in the 
spreadsheet view.

You can edit the series data in either lev-
els or transformed values. The Edit +/- 
on the group toolbar toggles the edit 
mode for the group. If you are in edit 
mode, an edit window appears in the 
top of the group window and a double-
box is used to indicate the cell that is 
being edited.

Here, we are editing the data in the 
group in 1-period percent changes (note 
the label to the right of the edit field). If 
we change the 1952:4 value of the per-
cent change in GDP, from 3.626 to 5, the values of GDP from 1952:4 to the end of the 
workfile will change to reflect the one-time increase in the value of GDP.

Dated Data Table

The dated data table view is used to construct tables for reporting and presenting data, 
forecasts, and simulation results. This view displays the series contained in the group in a 
variety of formats. You can also use this view to perform common transformations and fre-
quency conversions, and to display data at various frequencies in the same table. 

For example, suppose you wish to show your quarterly data for the CS and GDP series, 
with data for each year, along with an annual average, on a separate line:
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The dated data table handles all of the work of setting up this table, and computing the 
summary values.

Alternatively, you may wish to display annual averages for each year up to the last, fol-
lowed by the last four quarterly observations in your sample:

Again, the dated data table may be used to automatically perform the required calculations 
and set up the table.

The dated data table is capable of creating more complex tables and performing a variety 
of other calculations. Note, however, that the dated data table view is currently available 
only for annual, semi-annual, quarterly, or monthly workfiles.

Creating and Specifying a Dated Data Table

To create a dated data table, create a group containing the series of interest and select 
View/Dated Data Table. The group window initially displays a default table view. The 
default is to show a single year of data on each line, along with a summary measure (the 
annual average).

You can, however, set options to control the display of your data through the Table and 
Row Options dialogs. Note the presence of two new buttons on the group window toolbar, 
labeled TabOptions (for Table Options) and RowOptions. TabOptions sets the global 
options for the dated data table. These options will apply to all series in the group object. 
The RowOptions button allows you to override the global options for a particular series. 
Once you specify table and row options for your group, EViews will remember these 
options the next time you open the dated data table view for the group.

Table Setup

When you click on the TabOptions button, the Table Options dialog appears. The top half 
of the dialog provides options to control the general style of the table.

1988 1988  
CS 3128.2  3147.8  3170.6  3202.9 3162.4
GDP 4655.3  4704.8  4734.5  4779.7 4718.6

1989 1989  
CS 3203.6  3212.2  3235.3  3242.0 3223.3
GDP 4817.6  4839.0  4839.0  4856.7 4838.1

1987 1988 1989 89:1 89:2 89:3 89:4

CS 3052.2  3162.4  3223.3 3203.6  3212.2  3235.3  3242.0
GDP 4540.0  4718.6  4838.1 4817.6  4839.0  4839.0  4856.7
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The buttons on the left hand side of 
the dialog allow you to choose 
between the two display formats 
described above:

• The first style displays the 
data for  years per row, 
where  is the positive inte-
ger specified in the edit field. 

• The second style is a bit more complex. It allows you to specify, for data displayed at 
a frequency other than annual, the number of observations taken from the end of the 
workfile sample that are to be displayed. For data displayed at an annual frequency, 
EViews will display observations over the entire workfile sample.

The two combo boxes on the top right of the dialog supplement your dated display choice 
by allowing you to display your data at multiple frequencies in each row. The First Col-
umns selection describes the display frequency for the first group of columns, while the 
Second Columns selection controls the display for the second group of columns. If you 
select the same frequency, only one set of results will be displayed.

In each combo box, you may choose among:

• Native frequency (the frequency of the workfile)

• Annual

• Quarterly

• Monthly

If necessary, EViews will perform any frequency conversion (to a lower frequency) 
required to construct the table.

The effects of these choices on the table display are best described by the following exam-
ple. For purposes of illustration, assume that the current workfile sample is quarterly, with 
a range from 1997:1–2003:4. 

Now suppose that you choose to display the first style (two years per row), with the first 
columns set to the native frequency, and the second columns set to annual frequency. Each 
row will contain eight quarters of data (the native frequency data) followed by the corre-
sponding two annual observations (the annual frequency data): 

n

n
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EViews automatically performs the frequency conversion to annual data using the speci-
fied method (see page 204).

If you reverse the ordering of data types in the first and second columns so that the first 
columns display the annual data, and the second columns display the native frequency, 
the top of the table will contain:

Now, click on TabOptions, choose the second display style, and enter 4 in the edit box. 
Then specify Annual frequency for the first columns and Native frequency for the second 
columns. EViews will display the annual data for the workfile sample, followed by the last 
four quarterly observations:

The last four columns display the data for the last four observations of the current sample: 
2003:1–2003:4. The remaining columns are the annual transformations of the current 
workfile sample 1997:1–2003:4.

Additional Table Options

The bottom of the Table Options dialog controls the default data transformations and 
numeric display for each series in the group. EViews allows you to use two rows, each 
with a different transformation and a different output format, to describe each series.

1997 1998 1997  1998  
GDPR 1775.4  1784.9  1789.8  1799.6  1810.6  1820.9

1830.9 1841.0
 1787.4  1825.8

CS  681.0  687.2  691.6  696.0  700.2  704.4  708.7  713.3  688.9  706.6
PCGDPD  2.42  1.44  1.46  1.43  1.54  1.64  1.73  1.81  1.69  1.68

1999 2000 1999  2000  
GDPR

1851.0
 1860.9  1870.7  1880.9  1891.0  1900.9

1910.6 1920.4
 1865.9  1905.7

CS  717.8  722.3  726.8  731.8  736.4  741.0  745.7  750.7  724.7  743.5
PCGDPD  1.88  1.94  2.00  2.05  2.09  2.13  2.16  2.20  1.97  2.15

1997  1998  1997 1998
GDPR  1787.4  1825.8 1775.4  1784.9  1789.8  1799.6  1810.6  1820.9  1830.9  1841.0
CS  688.9  706.6  681.0  687.2  691.6  696.0  700.2  704.4  708.7  713.3
PCGDPD  1.69  1.68  2.42  1.44  1.46  1.43  1.54  1.64  1.73  1.81

1999  2000  1999 2000
GDPR  1865.9  1905.7 1851.0  1860.9  1870.7  1880.9  1891.0  1900.9  1910.6  1920.4
CS  724.7  743.5  717.8  722.3  726.8  731.8  736.4  741.0  745.7  750.7
PCGDPD  1.97  2.15  1.88  1.94  2.00  2.05  2.09  2.13  2.16  2.20

1997 1998 1999 2000 2001 2002 2003 03:1 03:2 03:3 03:4
GDPR 1787.4  1825.8  1865.9  1905.7  1945.4  1985.3  2024.2 2009.8  2019.4  2029.0  2038.5
CS  688.9  706.6  724.7  743.5  763.4  783.9  805.0  797.0  802.3  807.6  813.0
PCGDPD  1.69  1.68  1.97  2.15  2.26  2.33  2.37  2.36  2.36  2.37  2.38
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For each row, you specify the 
transformation method, fre-
quency conversion method, and 
the number format.

Keep in mind that you may over-
ride the default transformation 
for a particular series using the 
RowOptions menu (see page 206).

Transformation Methods

The following transformations are available:

We emphasize that the above transformation methods represent only the most commonly 
employed transformations. If you wish to construct your table with other transformations, 
you should add an appropriate auto-series to the group.

Frequency Conversion

The following frequency conversion methods are provided:

None (raw data) No transformation

1 Period Difference

1 Year Difference

1 Period% Change

1 Period% Change at 
Annual Rate

Computes  such that

where  is defined above and  is the 1 period% 
change. 

1 Year% Change , where  is defined 
above.

No second row Do not display a second row

y y 1−( )−( )

y y f−( )  wheref

1 for annual
2 for semi-annual
4 for quarterly

12 for monthly







=,−

100 y y 1−( )−( ) y 1−( )⁄×
R

1 r 100⁄+( )f

f r

100 y y f−( )−( ) y f−( )⁄× f
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The choice between Average then Transform and Transform then Average changes the 
ordering of the transformation and frequency conversion operations. The methods differ 
only for nonlinear transformations (such as the% change). 

For example, if we specify:
 

EViews will display a table with data formatted in the following fashion:

If, instead, you change the Frequency Conversion to First Period, EViews will display a 
table of the form:

Average then Trans-
form

First convert by taking the average, then trans-
form the average, as specified. 

Transform then Aver-
age

First transform the series, then take the aver-
age of the transformed series.

Sum then Transform First convert by taking the sum, then trans-
form the sum, as specified.

First Period Convert by taking the first quarter of each year 
or first month of each quarter/year.

Last Period Convert by taking the last quarter of each year 
or last month of each quarter/year.

1997 1997  
GDPR 1775.4  1784.9  1789.8  1799.6 7149.8
CS  681.0  687.2  691.6  696.0 2755.7

1998 1998  
GDPR 1810.6  1820.9  1830.9  1841.0 7303.3
CS  700.2  704.4  708.7  713.3 2826.5
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Below, we provide an example which illustrates the computation of the percentage change 
measures.

Formatting Options

EViews lets you choose between fixed decimal, fixed digit, and auto formatting of the 
numeric data. Generally, auto formatting will produce appropriate output formatting, but if 
not, simply select the desired method and enter an integer in the edit field. The options 
are:

EViews will round your data prior to display in order to fit the specified format. This 
rounding is for display purposes only and does not alter the original data.

Row Options

These options allow you to override the row defaults specified by the Table Options dialog. 
You can specify a different transformation, frequency conversion method, and number for-
mat, for each series.

Auto format EViews chooses the format depending on the 
data.

Fixed decimal Specify how many digits to display after the deci-
mal point. This option aligns all numbers at the 
decimal point.

Fixed chars Specify how many total characters to display for 
each number. 

1997 1997  
GDPR  1775.4  1784.9  1789.8  1799.6  1775.4
CS  681.0  687.2  691.6  696.0  681.0

1998 1998  
GDPR  1810.6  1820.9  1830.9  1841.0  1810.6
CS  700.2  704.4  708.7  713.3  700.2
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In the dialog that appears, select 
the series for which you wish to 
override the table default options. 
Then specify the transformation, 
frequency conversion, or number 
format you want to use for that 
series. The options are the same as 
those described above for the row 
defaults. 

Other Options

Label for NA: allows you to define 
the symbol used to identify miss-
ing values in the table. Bear in 
mind that if you choose to display 
your data in transformed form, the 
transformation may generate missing values even if none of the raw data are missing. 
Dated data table transformations are explained above.

If your series has display names, you can use the display name as the label for the series in 
the table by selecting the Use display names as default labels option. See Chapter 3 for a 
discussion of display names and the label view.

Illustration

As an example, consider the following dated data table which displays both quarterly and 
annual data for GDPR and CS:

The first row of output for each of the series is not transformed, while the second row con-
tains the 1-period percentage change in the series. The second row of GDPR is computed 
using the Average then Transformed setting while the second row of CS is computed with 
the Transform then Average option. We specified this alternative setting for CS by using 
the RowOptions dialog to override the table defaults.

1997 1997  
GDPR 1775.4  1784.9  1789.8  1799.6 1787.4

 1.20  0.54  0.27  0.55  3.19
CS  681.0  687.2  691.6  696.0  688.9

 0.95  0.91  0.63  0.64  3.17

1998 1998  
GDPR 1810.6  1820.9  1830.9  1841.0 1825.8

 0.61  0.57  0.55  0.55  2.15
CS  700.2  704.4  708.7  713.3  706.6

 0.61  0.60  0.60  0.65  2.57
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The first four columns show the data in native frequency so the choice between Average 
then Transform and Transform then Average is irrelevant—each entry in the second row 
measures the 1-period (1-quarter) percentage change in the variable.

The 1-period percentage change in the last column is computed differently under the two 
methods. The Average then Transformed percentage change in GDPR for 1998 measures 
the percentage change between the average value in 1997 and the average value in 1998. It 
is computed as:

(8.1)

EViews computes this transformation using full precision for intermediate results, then dis-
plays the result using the specified number format. 

The computation of the Transform then Average one-period change in CS for 1998 is a bit 
more subtle. Since we want a measure of the annual change, we first evaluate the one-year 
percentage change at each of the quarters in the year, and then average the results. For 
example, the one-year percentage change in 1998:1 is given by 100(700.2 − 681.0) /
681.0 = 2.82 and the one-year percentage change in 1998:2 is 100(704.4 − 687.2) /
687.2 = 2.50. Averaging these percentage changes yields 

(8.2)

Note that this computation differs from evaluating the average of the one-quarter percent-
age changes for each of the quarters of the year.

Other Menu Items

• Edit+/– allows you to edit the row (series) labels as well as the actual data in the 
table. You will not be able to edit any of the computed ranks and any changes that 
you make to the row labels will only apply to the dated data table view.

We warn you that if you edit a data cell, the underlying series data will also change. 
This latter feature allows you to use dated data tables for data entry from published 
sources.

If you want to edit the data in the table but wish to keep the underlying data 
unchanged, first Freeze the table view and then apply Edit to the frozen table.

• Font allows you to choose the font, font style, and font size to be used in the table. 

• Title allows you to add a title to the table.

• Sample allows you to change the sample to display in the table.

100 1825 1787−( ) 1787⁄⋅ 2.15≅

100 700.2 681.0−
681.0

���������������������������������
704.5 687.2−

687.2
���������������������������������

708.7 691.6−
691.6

���������������������������������
713.3 696.0−

696.0
���������������������������������+ + + 

  4⁄

2.57≅
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Here is an example of a table after freezing and editing:

Graphs

These views display the series in the group in various graphical forms. You can create 
graph objects by freezing these views. Chapter 10, “Graphs, Tables, and Text Objects”, on 
page 243 explains how to edit and modify graph objects in EViews. 

The Graph views display all series in a single graph. To display each 
series in a separate graph, see “Multiple Graphs” on page 211. 

Line and Bar Graphs

Displays a line or bar graph of the series in the group. Click any-
where in the background of the graph to modify the scaling options 
or line patterns.

Scatter 

There are five variations on the scatter diagram view of a series. 

Simple Scatter plots a scatter diagram with the first series on 
the horizontal axis and the remaining series on the vertical 
axis.

The remaining three options, Scatter with Regression, Scatter 
with Nearest Neighbor Fit, and Scatter with Kernel Fit, plot fitted lines of the first series 
against the second on top of the scatter diagram. They differ in how the fitted lines are cal-
culated. All three graph views are described in detail in “Scatter Diagrams with Fit Lines” 
beginning on page 233.

XY Pairs produces scatterplots of the first series in the group against the second, the third 
series against the fourth, and so forth.

1997 1997  
 Gross Domestic Product (Billions $ '92)  1775.4  1784.9  1789.8  1799.6  1787.4
    One-period % change  (1.20)  (0.54)  (0.27)  (0.55)  (3.19)
Consumer Expenditure - Services (Billions $ '92)  681.0  687.2  691.6  696.0  688.9
    One-period % change  (0.95)  (0.91)  (0.63)  (0.64)  (3.17)

1998 1998  
 Gross Domestic Product (Billions $ '92)  1810.6  1820.9  1830.9  1841.0  1825.8
    One-period % change  (0.61)  (0.57)  (0.55)  (0.55)  (2.15)
Consumer Expenditure - Services (Billions $ '92)  700.2  704.4  708.7  713.3  706.6
    One-period % change  (0.61)  (0.60)  (0.60)  (0.65)  (2.57)
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XY Line

These views plot XY line graphs of the series in the group. They are similar to the scatter-
plot graphs, but with successive observations connected by lines. One X against all Y’s 
will plot the first series in the group against all other series in the group. XY pairs will pro-
duce XY plots for successive pairs of series in the group.

You can also display symbols only (similar to a scatterplot), or lines 
and symbols for each XY graph. Click anywhere in the background of 
the view and change the line attributes for the selected line from 
Lines only to Symbol only or Line & Symbol. 

See Chapter 10, “Graphs, Tables, and Text Objects”, on page 243 for additional details on 
graph customization.

Error Bar

The Error Bar view plots error bars using the first two or three series in the group. The first 
series is used for the “high” value and the second series is the “low” value. The high and 
low values are connected with a vertical line. The (optional) third series is plotted as a 
small circle. 

Note that EViews does not check the 
values of your high and low data for 
consistency. If the high value is 
below the low value, EViews will 
draw “outside half-lines” that do not 
connect. 

This view is commonly used to dis-
play confidence intervals for a statis-
tic. 

High-Low (Open-Close)

This view plots the first two to four 
series in the group as a high-low 
(open-close) chart. As the name suggests, this chart is commonly used by financial ana-
lysts to plot the daily high, low, opening and closing values of stock prices.
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The first series in your group should 
be used to represent the “high” value 
and the second series should be the 
“low” value. The high and low values 
are connected with a vertical line. 
EViews will not check the values of 
your high and low data for consis-
tency. If the high value is below the 
low value, EViews will draw “outside 
half-lines” that do not connect. 

The third and fourth series are 
optional. If you provide only three 
series, the third series will be used as the “close” value in a high-low-close graph. The 
third series will be plotted as a right-facing horizontal line representing the “close” value.

If you provide four series, the third series will represent the “open” value and will be plot-
ted as a left-facing horizontal line. The fourth series will be used to represent the “close” 
value. The close value will be plotted as a right-facing horizontal line.

Pie Graph

This view displays each observation as a pie chart, where the percentage of each series in 
the group is shown as a wedge in the pie.

If a series has a negative or missing value, the series will simply be dropped from the pie 
for that observation. You can label the observation number to each pie; double click in the 
background of the pie chart and mark the Label Pie option in the Graph Options dialog.

Multiple Graphs

While Graph views display all series in a single graph, Multiple Graphs views display a 
separate graph for each series in the group.

Line and Bar Graphs

These views display a separate line graph or bar graph for each series 
in the group. 

Scatter 

First series against all. This view displays scatter plots with the first series in the group on 
the horizontal axis and the remaining series on the vertical axis, each in a separate graph. 
If there are  series in the group,  scatter plots will be displayed. G G 1−
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Matrix of all pairs (SCATMAT). This view displays the scatterplot matrix, where scatter 
plots for all possible pairs of series in the group are displayed as a matrix. The important 
feature of the scatterplot matrix is that the scatter plots are arranged in such a way that 
plots in the same column share a common horizontal scale, while plots in the same row 
share a common vertical scale. 

If there are  series in the group,  scatter plots will be displayed. The plots on the 
main diagonal all lie on a 45 degree line, showing the distribution of the corresponding 
series on the 45 degree line. The  scatters below and above the main diago-
nal are the same; they are repeated so that we can scan the plots both across the rows and 
across the columns. 

Here is a scatter plot matrix that we copy-and-pasted directly into our document. Note that 
the resolution of the scatter plot matrix deteriorates quickly as the number of series in the 
group increases. You may want to freeze the view and modify the graph by moving the axis 
labels into the scatters on the main diagonal. You can also save more space by moving 
each scatter close to each other. Set the vertical and horizontal spacing by right-clicking 
and choosing the Position and align graphs... option. 
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XY line

This view plots the XY line graph of the first series on the horizontal X-axis and each of the 
remaining series on the vertical Y-axis in separate graphs. See the XY line view for Graph 
for more information on XY line graphs. If there are  series in the group,  XY line 
graphs will be displayed.

Distribution Graphs

CDF-Survivor-Quantile

This view displays the empirical cumulative distribution functions (CDF), survivor func-
tions, and quantiles of each series in the group. These are identical to the series CDF-Sur-
vivor-Quantile view; see “CDF-Survivor-Quantile” on page 225 for a detailed description 
of how these graphs are computed and the available options. 

Quantile-Quantile

This view plots the quantiles of each series against the quantiles of a specified distribution 
or the empirical quantiles of another series. QQ-plots are explained in detail in “Quantile-
Quantile” on page 227.

One useful application of group QQ-plots is to form a group of simulated series from differ-
ent distributions and plot them against the quantiles of the series of interest. This way you 
can view, at a glance, the QQ-plots against various distributions. Suppose you want to 
know the distribution of the series SLEEP2. First, create a group containing random draws 
from the candidate distributions. For example, 

group dist @rnorm @rtdist(5) @rextreme @rlogit @rnd

creates a group named DIST that contains simulated random draws from the standard nor-
mal, a t-distribution with 5 degrees of freedom, extreme value, logistic, and uniform distri-
butions. Open the group DIST, choose View/Multiple Graphs/Distribution Graphs/
Quantile-Quantile, select the Series or Group option and type in the name of the series 
SLEEP2 in the field of the QQ Plot dialog box.

G G 1−
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The quantiles of SLEEP2 are plotted on the vertical axis of each graph. (We moved one of 
the graphs to make the plots a bit easier to see.) The QQ-plot of the underlying distribution 
should lie on a straight line. In this example, none of the QQ-plots lie on a line, indicating 
that the distribution of SLEEP2 does not match any of those in the group DIST. 

Descriptive Statistics

This view displays the summary statistics of each series in the group. Details for each sta-
tistic are provided in “Descriptive Statistics” on page 152. 

• Common Sample computes the statistics using observations for which there are no 
missing values in any of the series in the group (casewise deletion of observations).

• Individual Samples computes the statistics using all nonmissing observations for 
each series (listwise deletion). 

The two views are identical if there are no missing values, or if every series has missing 
observations at the same observation numbers. 

Tests of Equality

This view tests the null hypothesis that all series in the group have the same mean, median 
(distribution), or variance. All of these tests are described in detail in “Equality Tests by 
Classification” on page 159. 
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The Common sample option uses only observations for 
which none of the series in the group has missing values. 

Example 

As an illustration, we demonstrate the use of this view to test 
for groupwise heteroskedasticity. Suppose we use data for 
seven countries over the period 1950–1992 and estimate a 
pooled OLS model (see Chapter 21, “Pooled Time Series, Cross-Section Data”, on 
page 551). To test whether the residuals from this pooled regression are groupwise het-
eroskedastic, we test the equality of the variances of the residuals for each country. 

First, save the residuals from the pooled OLS regression and make a group of the residuals 
corresponding to each country. This is most easily done by estimating the pooled OLS 
regression using a pool object and saving the residuals by selecting Procs/Make Residuals 
in the pool object menu or toolbar. 

Next, open a group containing the residual series. One method is to highlight each residual 
series with the right mouse button, double click in the highlighted area and select Open 
Group. Alternatively, you can type show, followed by the names of the residual series, in 
the command window.

Select View/Tests of Equality…, and choose the Variance option in the Test Between 
Series dialog box. 

Test for Equality of Variances between Series
Date: 10/20/97   Time: 15:24
Sample: 1950 1992
Included observations: 43

Method df Value Probability

Bartlett 6  47.65089  1.39E-08
Levene (6, 287)  5.947002  7.15E-06
Brown-Forsythe (6, 287)  4.603232  0.000176

Category Statistics

Mean Abs. Mean Abs.
Variable Count Std. Dev. Mean Diff. Median Diff.

RESID_CAN  42  387.3328  288.2434  275.5092
RESID_FRA  42  182.4492  143.0463  140.4258
RESID_GER  42  224.5817  169.6377  167.0994
RESID_ITA  42  173.4625  132.1824  131.2676
RESID_JAP  42  230.4443  185.5166  185.5166
RESID_UK  42  218.8625  159.4564  157.8945
RESID_US  42  340.9424  271.5252  265.4067

All  294  263.4411  192.8011  189.0171

Bartlett weighted standard deviation:  262.1580
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The test statistics decisively reject the null hypothesis of equal variance of the residuals 
across countries, providing strong evidence of the presence of groupwise heteroskedastic-
ity. You may want to adjust the denominator degrees of freedom to take account of the 
number of estimated parameters in the regression. The tests are, however, consistent even 
without the degrees of freedom adjustment.

N-Way Tabulation

This view classifies the observations in the current sample into cells defined by the series 
in the group. You can display the cell counts in various forms and examine statistics for 
independence among the series in the group. Select View/N-Way Tabulation… which 
opens the tabulation dialog.

Many of the settings will be familiar from 
our discussion of one-way tabulation in 
“One-Way Tabulation” on page 166.

Group into Bins If

If one or more of the series in the group is 
continuous and takes many distinct values, 
the number of cells becomes excessively 
large. This option provides you two ways to 
automatically bin the values of the series 
into subgroups. 

• Number of values option bins the 
series if the series takes more than the specified number of distinct values. 

• Average count option bins the series if the average count for each distinct value of 
the series is less than the specified number. 

• Maximum number of bins specifies the approximate maximum number of sub-
groups to bin the series. The number of bins may be chosen to be smaller than this 
number in order to make the bins approximately the same size.

The default setting is to bin a series into approximately 5 subgroups if the series takes 
more than 100 distinct values or if the average count is less than 2. If you do not want to 
bin the series, unmark both options.

NA Handling

By default, EViews drops observations from the contingency table where any of the series 
in the group has a missing value. Treat NA as category option includes all observations 
and counts NAs in the contingency table as an explicit category. 
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Layout

This option controls the display style of the tabulation. The Table mode displays the cate-
gories of the first two series in  tables for each category of the remaining series in the 
group.

The List mode displays the table in a more compact, hierarchical form. The Sparse Labels 
option omits repeated category labels to make the list less cluttered. Note that some of the 
conditional statistics are not displayed in list mode.

Output

To understand the options for output, consider a group with three series. Let (i, j, k) index 
the bin of the first, second, and third series, respectively. The number of observations in 
the (i, j, k)-th cell is denoted as  with a total of  observations. 

• Overall% is the percentage of the total number of observations accounted for by the 
cell count.

• Table% is the percentage of the total number of observations in the conditional 
table accounted for by the cell count. 

• Row% is the percentage of the number of observations in the row accounted for by 
the cell count.

• Column% is the percentage of the number of observations in the column accounted 
for by the cell count.

The overall expected count in the (i, j, k)-th cell is the number expected if all series in the 
group were independent of each other. This expectation is estimated by

. (8.3)

The table expected count  is estimated by computing the expected count for the con-
ditional table. For a given table, this expected value is estimated by:

(8.4)

where  is the total number of observations in the  table.

Chi-square Tests

If you select the Chi-square tests option, EViews reports statistics for testing the inde-
pendence of the series in the group. The test statistics are based on the distance between 
the actual cell count and the count expected under independence. 
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• Overall (unconditional) independence among all series in the group. EViews 
reports the following two test statistics for overall independence among all series in 
the group:

(8.5)

where  and  are the actual and overall expected count in each cell. Under 
the null hypothesis of independence, the two statistics are asymptotically distributed 

with  degrees of freedom where  
are the number of categories for each series.

These test statistics are reported at the top of the contingency table

In this group there are three series LWAGE, UNION, and MARRIED, each with 
, , and  categories. Note the WARNING message: if there are 

many cells with expected value less than 5, the small sample distribution of the test 
statistic under the null hypothesis may deviate considerably from the asymptotic 

distribution.

• Conditional independence between series in the group. If you display in table 
mode, EViews presents measures of association for each conditional table. These 
measures are analogous to the correlation coefficient; the larger the measure, the 
larger the association between the row series and the column series in the table. In 
addition to the Pearson for the table, the following three measures of association 
are reported:

Pearson χ2 n� i j k, , ni j k, ,−( )2

n� i j k, ,
�����������������������������������������

i j k, ,
Σ=

Likelihood ratio 2 ni j k, ,
ni j k, ,
n� i j k, ,
������������� 

 log
i j k, ,
Σ=

nijk n� ijk

χ
2

IJK I 1−( )− J 1−( )− K 1−( )− 1− I J K, ,

Tabulation of LWAGE and UNION and MARRIED 
Date: 012/15/00  Time: 14:12 
Sample: 1 1000 
Included observations: 1000 

Tabulation Summary 

Variable Categories   
LWAGE 5   
UNION 2   
MARRIED 2   
Product of Categories 20   

     
Test Statistics df Value Prob 
Pearson X2 13 174.5895 0.0000 
Likelihood Ratio G2 13 167.4912 0.0000 

     
WARNING: Expected value is less than 5 in 40.00% of cells (8 of 
        20). 

I 5= J 2= K 2=

χ
2

χ
2
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(8.6)

(8.7)

(8.8)

where min  is the smaller of the number of row categories  or column catego-
ries  of the table, and  is the number of observations in the table. Note that all 
three measures are bounded between 0 and 1, a higher number indicating a stronger 
relation between the two series in the table. While the correlation coefficient only 
measures the linear association between two series, these nonparametric measures 
are robust to departures from linearity.

Bear in mind that these measures of association are computed for each two-way 
table. The conditional tables are presented at the top, and the unconditional tables 
are reported at the bottom of the view.

Principal Components

The principal components view of the group displays the Eugene-decomposition of the 
sample second moment of a group of series. Select View/Principal Components... to call 
up the dialog.

Phi coefficient χ�
2
N�⁄=

Cramers V χ�
2 min r c,{ } 1−( )N�( )⁄=

Contingency coefficient χ�
2

χ�
2

N+( )⁄=

r c,( ) r
c N�

Table 1: Conditional table for MARRIED=0:

UNION
Count 0 1 Total

[0, 1)  0  0  0
[1, 2)  167  8  175

LWAGE [2, 3)  121  44  165
[3, 4)  17  2  19
[4, 5)  0  0  0
Total  305  54  359

Measures of Association  Value  
Phi Coefficient  0.302101
Cramer's V  0.302101
Contingency Coefficient  0.289193

Table Statistics  df  Value  Prob  
Pearson X2  2  32.76419  7.68E-08
Likelihood Ratio G2  2  34.87208  2.68E-08

Note: Expected value is less than 5 in 16.67% of cells (1 of 6).
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You may either decompose the sample covariance 
matrix or the correlation matrix computed for the 
series in the group. The sample second moment 
matrix is computed using data in the current work-
file sample. If there are any missing values, the 
sample second moment is computed using the com-
mon sample where observations within the work-
file range with missing values are dropped. 

There is also a checkbox that allows you to correct 
for degrees of freedom in the computation of the 
covariances. If you select this option, EViews will 
divide the sum of squared deviations by  
instead of .

You may store the results in your workfile by simply providing the names in the appropri-
ate fields. To store the first  principal component series, simply list  names in the Com-
ponent series edit field, each separated by a space. Note that you cannot store more 
principal components than there are series in the group. You may also store the eigenval-
ues and eigenvectors in a named vector and matrix. 

The principal component view displays output that looks as follows:

The column headed by “Comp1” and “Vector1” corresponds to the first principal compo-
nent, “Comp2” and “Vector2” denote the second principal component and so on. The row 
labeled “Eigenvalue” reports the eigenvalues of the sample second moment matrix in 
descending order from left to right. The Variance Prop. row displays the variance propor-

n 1−
n

k k

Date: 10/31/00   Time: 16:05 
Sample: 1 74 
Included observations: 74 
Correlation of X1 X2 X3 X4  

     

 Comp 1 Comp 2 Comp 3 Comp 4 
     

Eigenvalue  3.497500  0.307081  0.152556  0.042863 
Variance Prop.  0.874375  0.076770  0.038139  0.010716 

Cumulative Prop.  0.874375  0.951145  0.989284  1.000000 
     

Eigenvectors: 
     

Variable Vector 1 Vector 2 Vector 3 Vector 4 
     

X1 -0.522714 -0.164109 -0.236056  0.802568 
X2 -0.512619 -0.074307 -0.660639 -0.543375 
X3 -0.491857 -0.537452  0.640927 -0.241731 
X4  0.471242 -0.823827 -0.311521  0.046838 
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tion explained by each principal component. This value is simply the ratio of each eigen-
value to the sum of all eigenvalues. The Cumulative Prop. row displays the cumulative 
sum of the Variance Prop. row from left to right and is the variance proportion explained 
by principal components up to that order. 

The second part of the output table displays the eigenvectors corresponding to each eigen-
value. The first principal component is computed as a linear combination of the series in 
the group with weights given by the first eigenvector. The second principal component is 
the linear combination with weights given by the second eigenvector and so on. 

Correlations, Covariances, and Correlograms

Correlations and Covariances display the correlation and covariance matrices of the series 
in the group. The Common Sample view drops observations for which any one of the 
series has missing data in the current sample. The Pairwise Samples view computes each 
of the second moments using all non-missing observations for the relevant series. Note 
that Pairwise Samples returns entries that correspond to @cov(x,y) and @cor(x,y) 
functions. For unbalanced samples, the Pairwise Samples method uses the maximum 
number of observations, but may result in a non-positive definite matrix.

Correlogram displays the autocorrelations and partial autocorrelations of the first series in 
the group. See “Correlogram” on page 167, for a description of the correlogram view. 

Cross Correlations and Correlograms

This view displays the cross correlations of the first two series in the group. The cross cor-
relations between the two series  and  are given by

(8.9)

and

(8.10)

Note that, unlike the autocorrelations, cross correlations are not necessarily symmetric 
around lag 0. 

The dotted lines in the cross correlograms are the approximate two standard error bounds 
computed as . 

x y
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Cointegration Test

This view carries out the Johansen test for whether the series in the group are cointegrated 
or not. “Cointegration Test” on page 537 discusses the Johansen test in detail and 
describes how one should interpret the test results. 

Granger Causality

Correlation does not necessarily imply causation in any meaningful sense of that word. 
The econometric graveyard is full of magnificent correlations, which are simply spurious or 
meaningless. Interesting examples include a positive correlation between teachers’ salaries 
and the consumption of alcohol and a superb positive correlation between the death rate 
in the UK and the proportion of marriages solemnized in the Church of England. Econo-
mists debate correlations which are less obviously meaningless.

The Granger (1969) approach to the question of whether  causes  is to see how much 
of the current  can be explained by past values of  and then to see whether adding 
lagged values of  can improve the explanation.  is said to be Granger-caused by  if  
helps in the prediction of , or equivalently if the coefficients on the lagged ’s are statis-
tically significant. Note that two-way causation is frequently the case;  Granger causes  
and  Granger causes . 

It is important to note that the statement “  Granger causes ” does not imply that  is 
the effect or the result of . Granger causality measures precedence and information con-
tent but does not by itself indicate causality in the more common use of the term. 

When you select the Granger Causality view, you will first see a dialog box asking for the 
number of lags to use in the test regressions. In general it is better to use more rather than 
fewer lags, since the theory is couched in terms of the relevance of all past information. 
You should pick a lag length, , that corresponds to reasonable beliefs about the longest 
time over which one of the variables could help predict the other.

EViews runs bivariate regressions of the form 

(8.11)

for all possible pairs of  series in the group. The reported F-statistics are the Wald 
statistics for the joint hypothesis:

(8.12)

for each equation. The null hypothesis is that  does not Granger-cause  in the first 
regression and that  does not Granger-cause  in the second regression. The test results 
are given by

x y
y y
x y x x

y x
x y

y x

x y y
x

l

yt α0 α1yt 1− … αlyt l− β1xt 1− … βlx l− εt+ + + + + + +=

xt α0 α1xt 1− … αlxt l− β1yt 1− … βly l− ut+ + + + + + +=
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For this example, we cannot reject the hypothesis that GDP does not Granger cause CS but 
we do reject the hypothesis that CS does not Granger cause GDP. Therefore it appears that 
Granger causality runs one-way from CS to GDP and not the other way. 

If you want to run Granger causality tests with other exogenous variables (e.g. seasonal 
dummy variables or linear trends) or if you want to carry out likelihood ratio (LR) tests, 
run the test regressions directly using equation objects. 

Label

This view displays descriptions of the group. You can edit any of the field cells in the label 
view, except the Last Update cell which shows the date/time the group was last modified. 

Name is the group name as it appears in the workfile; you can rename your group by edit-
ing this cell. If you fill in the Display Name cell, EViews will use this name in some of the 
tables and graphs of the group view. Unlike Names, Display Names may contain spaces 
and preserve capitalization (upper and lower case letters).

See Chapter 6 for a discussion of the label fields and their use in database searches.

Group Procedures

There are three procedures available for groups.

• Make Equation… opens an Equation Specification dialog box with the first series in 
the group listed as the dependent variable and the remaining series as the regressors, 
including a constant term C. You can modify the specification as you wish. 

• Make Vector Autoregression… opens an Unrestricted Vector Autoregression dialog 
box, where all series in the group are listed as endogenous variables in the VAR. See 
Chapter 20, “Vector Autoregression and Error Correction Models”, on page 519 for a 
discussion of specifying and estimating VARs in EViews.

• Resample... performs resampling on all of the series in the group. A full description 
of the resampling procedure is provided in “Resampling” on page 175.

Pairwise Granger Causality Tests
Date: 10/20/97   Time: 15:31
Sample: 1946:1 1995:4
Lags: 4

  Null Hypothesis: Obs F-Statistic Probability

  GDP does not Granger Cause CS 189  1.39156  0.23866
  CS does not Granger Cause GDP  7.11192  2.4E-05
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Commands

You can type the following commands as an alternative to choosing from menus in the 
group window toolbar. The general rule is to follow the name of the group with a dot and 
command name for the view or procedure with options specified in parentheses. For exam-
ple, to view the simple scatter diagram of a group named GRP1, type

grp1.scat 

To test whether the medians of all the series in group GP_WAGE are equal, type

gp_wage.testbet(med)

To plot the cross correlogram of the first two series in group GRP_MACRO up to 12 lags, 
type

grp_macro.cross(12)



Chapter 9.  Statistical Graphs Using Series and Groups

EViews provides several methods for exploratory data analysis. In Chapter 7 we document 
several graph views that may be used to characterize the distribution of a series. This 
chapter describes several bivariate scatterplot views which allow you to fit lines using 
parametric, and nonparametric procedures.

These views, which involve relatively complicated calculations or have a number of spe-
cialized options, are documented in detail below. While the discussion sometimes involves 
some fairly technical issues, you should not feel as though you need to master all of the 
details to use these views. The graphs correspond to familiar concepts, and are designed to 
be simple and easy to understand visual displays of your data. The EViews default settings 
should be sufficient for all but the most specialized of analyses. Feel free to explore each of 
the views, clicking on OK to accept the default settings.

Distribution Graphs of Series

The view menu of a series lists three graphs that characterize the empirical distribution of 
the series under View/Distribution...

CDF-Survivor-Quantile

This view plots the empirical cumulative distribution, survivor, 
and quantile functions of the series together with the plus or 
minus two standard error bands. Select View/Distribution Graphs/CDF-Survivor-Quan-
tile…

• The Cumulative Distribution option plots the empirical cumulative distribution 
function (CDF) of the series. The CDF is the probability of observing a value from 
the series not exceeding a specified value :

. (9.1)

r

Fx r( ) Pr x r≤( )=
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• The Survivor option plots the empirical survivor function of the series. The survivor 
function gives the probability of observing a value from the series at least as large as 
some specified value  and is equal to one minus the CDF:

. (9.2)

• The Quantile option plots the empirical quantiles of the series. For , the 
-th quantile  of  is a number such that

(9.3)

The quantile is the inverse function of the CDF; graphically, the quantile can be 
obtained by flipping the horizontal and vertical axis of the CDF.

• The All option plots the CDF, survivor, and quantiles.

Standard Errors

The Include standard errors option plots the approximate 95% confidence intervals 
together with the empirical distribution functions. The methodology for computing these 
intervals is described in detail in Conover (1980, pp. 114–116). Note that using this 
approach, we do not compute confidence intervals for the quantiles corresponding to the 
first and last few order statistics.

Saved matrix name 

This optional edit field allows you to save the results in a matrix object. See cdfplot 
(p. 157) of the Command and Programming Reference for details on the structure of the 
saved matrix.

Options

EViews provides several methods of computing the empirical CDF used in the CDF and 
quantile computations.

Given a total of  observations, the CDF for value  is estimated as

r

Sx r( ) Pr x r>( ) 1 Fx r( )−= =

0 q 1< <
q x q( ) x

Pr x x q( )≤( ) q≤
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The various methods differ in how they adjust for the non-continuity of the CDF computa-
tion. The differences between these alternatives will become negligible as the sample size 

 grows.

Quantile-Quantile

The quantile-quantile (QQ)-plot is a simple yet powerful tool for comparing two distribu-
tions (Cleveland, 1994). This view plots the quantiles of the chosen series against the 
quantiles of another series or a theoretical distribution. If the two distributions are the 
same, the QQ-plot should lie on a straight line. If the QQ-plot does not lie on a straight line, 
the two distributions differ along some dimension. The pattern of deviation from linearity 
provides an indication of the nature of the mismatch. 

To generate a QQ-plot, select View/Distribution 
Graphs/Quantile-Quantile…You can plot against 
the quantiles of the following theoretical distribu-
tions: 

• Normal. Bell-shaped and symmetric distribu-
tion.

• Uniform. Rectangular density function. Equal 
probabilities associated with any fixed interval 
size in the support.

• Exponential. The unit exponential is a positively skewed distribution with a long 
right tail.

• Logistic. This symmetric distribution is similar to the normal, except that it has 
longer tails than the normal.

• Extreme value. The Type-I (minimum) extreme value is a negatively skewed distri-
bution with a long left tail—it is very close to a lognormal distribution. 

You can also plot against the quantiles of any series in your workfile. Type the names of 
the series or groups in the edit box, and select Series or Group. EViews will compute a 

Rankit (default)

Ordinary

Van der Waerden

Blom

Tukey

r 1 2⁄−( ) N⁄

r N⁄
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QQ-plot against each series in the list. You can use this option to plot against the quantiles 
of a simulated series from any distribution; see the example below. 

The Options button provides you with several methods for computing the empirical quan-
tiles. The options are explained in the CDF-Survivor-Quantile section above; the choice 
should not make much difference unless the sample is very small. 

For additional details, see Cleveland (1994), or Chambers, et al. (1983, Chapter 6).

Illustration

Labor economists typically estimate wage earnings equations with the log of wage on the 
left-hand side instead of the wage itself. This is because the log of wage has a distribution 
more close to the normal than the wage, and classical small sample inference procedures 
are more likely to be valid. To check this claim, we can plot the quantiles of the wage and 
log of wage against those from the normal distribution. Highlight the series, double click, 
select View/Distribution Graphs/Quantile-Quantile…, and choose the (default) Normal 
distribution option:

:

If the distributions of the series on the vertical and horizontal axes match, the plots should 
lie on a straight line. The two plots clearly indicate that the log of wage has a distribution 
closer to the normal than the wage. 

The concave shape of the QQ-plot for the wage indicates that the distribution of the wage 
series is positively skewed with a long right tail. If the shape were convex, it would indi-
cate that the distribution is negatively skewed. 

The QQ-plot for the log of wage falls nearly on a straight line except at the left end, where 
the plot curves downward. QQ-plots that fall on a straight line in the middle but curve 
upward at the left end and curve downward at the right end indicate that the distribution is 
leptokurtic and has a thicker tail than the normal distribution. If the plot curves downward 
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at the left, and upward at the right, it is an indication that the distribution is platykurtic 
and has a thinner tail than the normal distribution. Here, it appears that log wages are 
somewhat platykurtic.

If you want to compare your series with a distribution not in the option list, you can use 
the random number generator in EViews and plot against the quantiles of the simulated 
series from the distribution. For example, suppose we wanted to compare the distribution 
of the log of wage with the F-distribution with 10 numerator degrees of freedom and 50 
denominator degrees of freedom. First generate a random draw from an F(10,50) distribu-
tion using the command 

series fdist=@rfdist(10,50)

Then highlight the log of wage series, double click, select View/Distribution Graphs/
Quantile-Quantile…, and choose the Series or Group option and type in the name of the 
simulated series (in this case fdist)

The plot is slightly convex, indicating that the 
distribution of the log of wage is slightly nega-
tively skewed compared to the F(10,50). 

Kernel Density

This view plots the kernel density estimate of 
the distribution of the series. The simplest non-
parametric density estimate of a distribution of a 
series is the histogram. You can view the histo-
gram by selecting View/Descriptive Statistics/
Histogram and Stats. The histogram, however, 
is sensitive to the choice of origin and is not 
continuous. 

The kernel density estimator replaces the “boxes” in a histogram by “bumps” that are 
smooth (Silverman 1986). Smoothing is done by putting less weight on observations that 
are further from the point being evaluated. More technically, the kernel density estimate of 
a series  at a point  is estimated by:

, (9.4)

where  is the number of observations,  is the bandwidth (or smoothing parameter) 
and  is a kernel weighting function that integrates to one.

When you choose View/Distribution Graphs/Kernel Density…, the Kernel Density dia-
log appears:
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To display the kernel density estimates, you need to specify the following:

• Kernel. The kernel function is a weighting function that determines the shape of the 
bumps. EViews provides the following options for the kernel function :

where  is the argument of the kernel function and  is the indicator function that 
takes a value of one if its argument is true, and zero otherwise.

• Bandwidth. The bandwidth  controls the smoothness of the density estimate; the 
larger the bandwidth, the smoother the estimate. Bandwidth selection is of crucial 
importance in density estimation (Silverman 1986), and various methods have been 
suggested in the literature. The Silverman option (default) uses a data-based auto-
matic bandwidth

Epanechnikov (default)

Triangular 

Uniform (Rectangular)

Normal (Gaussian)

Biweight (Quartic)

Triweight

Cosinus

K

3
4
��� 1 u

2−( )I u 1≤( )

1 u−( ) I u 1≤( )( )

1
2
��� I u 1≤( )( )

1
2π
����������

1
2
���u

2− 
 exp

15
16
������ 1 u

2−( )
2
I u 1≤( )

35
32
������ 1 u

2−( )
3
I u 1≤( )

π
4
���

π
2
���u 
  I u 1≤( )cos

u I

h



Distribution Graphs of Series—231
(9.5)

where  is the number of observations,  is the standard deviation, and  is the 
interquartile range of the series (Silverman 1986, equation 3.31). The factor  is a 
canonical bandwidth-transformation that differs across kernel functions (Marron 
and Nolan 1989; Härdle 1991). The canonical bandwidth-transformation adjusts the 
bandwidth so that the automatic density estimates have roughly the same amount of 
smoothness across various kernel functions. 

To specify a bandwidth of your choice, mark User Specified option and type a non-
negative number for the bandwidth in the field box. Although there is no general 
rule for the appropriate choice of the bandwidth, Silverman (1986, section 3.4) 
makes a case for undersmoothing by choosing a somewhat small bandwidth, since it 
is easier for the eye to smooth than it is to unsmooth. 

The Bracket Bandwidth option allows you to investigate the sensitivity of your esti-
mates to variations in the bandwidth. If you choose to bracket the bandwidth, 
EViews plots three density estimates using bandwidths , , and . 

• Number of Points. You must specify the number of points  at which you will 
evaluate the density function. The default is  points. Suppose the mini-
mum and maximum value to be considered are given by  and , respectively. 
Then  is evaluated at  equi-spaced points given by:

. (9.6)

EViews selects the lower and upper evaluation points by extending the minimum 
and maximum values of the data by two (for the normal kernel) or one (for all other 
kernels) bandwidth units.

• Method. By default, EViews utilizes the Linear Binning approximation algorithm of 
Fan and Marron (1994) to limit the number of evaluations required in computing the 
density estimates. For large samples, the computational savings are substantial.

The Exact option evaluates the density function using all of the data points for each 
,  for each . The number of kernel evaluations is therefore of 

order , which, for large samples, may be quite time-consuming.

Unless there is a strong reason to compute the exact density estimate or unless your 
sample is very small, we recommend that you use the binning algorithm.

• Saved matrix name. This optional edit field allows you to save the results in a 
matrix object. See kdensity (p. 236) in the Command and Programming Reference 
for details on the structure of the saved matrix.
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Illustration

As an illustration of kernel density estimation, we use the three month CD rate data for 69 
Long Island banks and thrifts used in Simonoff (1996). The histogram of the CD rate looks 
as follows:

This histogram is a very crude estimate of the distribution of CD rates and does not pro-
vide us with much information about the underlying distribution. To view the kernel den-
sity estimate, select View/Distribution Graphs/Kernel Density… The default options 
produced the following view:

This density estimate seems to be oversmoothed. Simonoff (1996, chapter 3) uses a Gauss-
ian kernel with bandwidth 0.08. To replicate his results, select View/Distribution Graphs/
Kernel Density… and fill in the dialog box as follows:
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Note that we select the Exact method option since there are only 69 observations to evalu-
ate the kernel. The kernel density result is depicted below:

This density estimate has about the right degree of smoothing. Interestingly enough, this 
density has a trimodal shape with modes at the “focal” numbers 7.5, 8.0, and 8.5. 

Scatter Diagrams with Fit Lines 

The view menu of a group includes four variants of scatterplot diagrams. View/Graph/
Scatter/Simple Scatter plots a scatter diagram with the first series on the horizontal axis 
and the remaining series on the vertical axis.

The remaining three graphs, Scatter with Regression, Scatter 
with Nearest Neighbor Fit, and Scatter with Kernel Fit plot 
fitted lines for the second series. 
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Scatter with Regression

This view fits a bivariate regression of transformations of the second series in the group Y 
on transformations of the first series in the group X (and a constant).

The following transformations of the series are available for the bivariate fit:

where you specify the parameters  and  in the edit field. Note that the Box-Cox trans-
formation with parameter zero is the same as the log transformation. 

• If any of the transformed values are not available, EViews returns an error message. 
For example, if you take logs of negative values, noninteger powers of nonpositive 
values, or inverses of zeros, EViews will stop processing and issue an error message.

• If you specify a high-order polynomial, EViews may be forced to drop some of the 
high order terms to avoid collinearity. 

When you click OK, EViews displays a scatter diagram of the series together with a line 
connecting the fitted values from the regression. You may optionally save the fitted values 
as a series. Type a name for the fitted series in the Fitted Y series edit field. 
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Robustness Iterations 

The least squares method is very sensitive to the presence of even a few outlying observa-
tions. The Robustness Iterations option carries out a form of weighted least squares 
where outlying observations are given relatively less weight in estimating the coefficients 
of the regression.

For any given transformation of the series, the Robustness Iteration option carries out 
robust fitting with bisquare weights. Robust fitting estimates the parameters ,  to mini-
mize the weighted sum of squared residuals

(9.7)

where  and  are the transformed series and the bisquare robustness weights  are 
given by

(9.8)

where  is the residual from the previous iteration (the first iteration 
weights are determined by the OLS residuals), and  is the median of . Observations 
with large residuals (outliers) are given small weights when forming the weighted sum of 
squared residuals. 

To choose robustness iterations, click on the check box for Robustness Iterations and 
specify an integer for the number of iterations. 

See Cleveland (1993) for additional discussion.

Scatter with Nearest Neighbor Fit

This view displays local polynomial regressions with bandwidth based on nearest neigh-
bors. Briefly, for each data point in a sample, we fit a locally weighted polynomial regres-
sion. It is a local regression since we use only the subset of observations which lie in a 
neighborhood of the point to fit the regression model; it may be weighted so that observa-
tions further from the given data point are given less weight.
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This class of regressions includes the popu-
lar Loess (also known as Lowess) techniques 
described by Cleveland (1993, 1994). Addi-
tional discussion of these techniques may 
be found in Fan and Gijbels (1996), and in 
Chambers, Cleveland, Kleiner, Tukey (1983).

Method

You should choose between computing the 
local regression at each data point in the 
sample, or using a subsample of data points. 

• Exact (full sample) fits a local regression at every data point in the sample.

• Cleveland subsampling performs the local regression at only a subset of points. You 
should provide the size of the subsample  in the edit box. 

The number of points at which the local regressions are computed is approximately 
equal to . The actual number of points will depend on the distribution of the 
explanatory variable.

Since the exact method computes a regression at every data point in the sample, it may be 
quite time consuming when applied to large samples. For samples with over 100 observa-
tions, you may wish to consider subsampling.

The idea behind subsampling is that the local regression computed at two adjacent points 
should differ by only a small amount. Cleveland subsampling provides an adaptive algo-
rithm for skipping nearby points in such a way that the subsample includes all of the rep-
resentative values of the regressor. 

It is worth emphasizing that at each point in the subsample, EViews uses the entire sample 
in determining the neighborhood of points. Thus, each regression in the Cleveland sub-
sample corresponds to an equivalent regression in the exact computation. For large data 
sets, the computational savings are substantial, with very little loss of information.

Specification 

For each point in the sample selected by the Method option, we compute the fitted value 
by running a local regression using data around that point. The Specification option deter-
mines the rules employed in identifying the observations to be included in each local 
regression, and the functional form used for the regression. 

Bandwidth span determines which observations should be included in the local regres-
sions. You should specify a number  between 0 and 1. The span controls the smoothness 
of the local fit; a larger fraction  gives a smoother fit. The fraction  instructs EViews to 

M

M

α
α α
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include the  observations nearest to the given point, where  is % of 
the total sample size, truncated to an integer. 

Note that this standard definition of nearest neighbors implies that the number of points 
need not be symmetric around the point being evaluated. If desired, you can force symme-
try by selecting the Symmetric neighbors option.

Polynomial degree specifies the degree of polynomial to fit in each local regression.

If you mark the Bracket bandwidth span option, EViews displays three nearest neighbor 
fits with spans of , , and .

Other Options

Local Weighting (Tricube) weights the observations of each local regression. The 
weighted regression minimizes the weighted sum of squared residuals

. (9.9)

The tricube weights  are given by

(9.10)

where  and  is the -th smallest such distance. Observa-
tions that are relatively far from the point being evaluated get small weights in the sum of 
squared residuals. If you turn this option off, each local regression will be unweighted with 

 for all . 

Robustness Iterations iterates the local regressions by adjusting the weights to down-
weight outlier observations. The initial fit is obtained using weights , where  is 
tricube if you choose Local Weighting and 1 otherwise. The residuals  from the initial 
fit are used to compute the robustness bisquare weights  as given on page 235. In the 
second iteration, the local fit is obtained using weights . We repeat this process for 
the user specified number of iterations, where at each iteration the robustness weights  
are recomputed using the residuals from the last iteration.

Symmetric Neighbors forces the local regression to include the same number of observa-
tions to the left and to the right of the point being evaluated. This approach violates the 
definition, though not the spirit, of nearest neighbor regression.

To save the fitted values as a series; type a name in the Fitted series field box. If you have 
specified subsampling, EViews will linearly interpolate to find the fitted value of  for the 
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actual value of . If you have marked the Bracket bandwidth span option, EViews saves 
three series with _L, _M, _H appended to the name, each corresponding to bandwidths of 

, , and , respectively. 

Note that Loess is a special case of nearest neighbor fit, with a polynomial of degree 1, and 
local tricube weighting. The default EViews options are set to provide Loess estimation.

Scatter with Kernel Fit

This view displays fits of local polynomial kernel regressions of the second series in the 
group Y on the first series in the group X. Both the nearest neighbor fit, described above, 
and the kernel fit are nonparametric regressions that fit local polynomials. The two differ 
in how they define “local” in the choice of bandwidth. The effective bandwidth in nearest 
neighbor regression varies, adapting to the observed distribution of the regressor. For the 
kernel fit, the bandwidth is fixed but the local observations are weighted according to a 
kernel function. 

Extensive discussion may be found in Simonoff (1996), Hardle (1991), Fan and Gijbels 
(1996).

Local polynomial kernel regressions fit , at each value , by choosing the parameters  
to minimize the weighted sum-of-squared residuals:

(9.11)

where  is the number of observations,  is the bandwidth (or smoothing parameter), 
and  is a kernel function that integrates to one. Note that the minimizing estimates of  
will differ for each . 

When you select the Scatter with Kernel Fit view, the Kernel Fit dialog appears.

You will need to specify the form of the 
local regression, the kernel, the band-
width, and other options to control the 
fit procedure.

Regression 

Specify the order of polynomial  to be 
fit at each data point. The Nadaraya-
Watson option sets  and locally 
fits a constant at each . Local Linear 
sets  at each . For higher order 
polynomials, mark the Local Polynomial 
option and type in an integer in the field box to specify the order of the polynomial. 
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Kernel 

The kernel is the function used to weight the observations in each local regression. EViews 
provides the option of selecting one of the following kernel functions:

where  is the argument of the kernel function and  is the indicator function that takes a 
value of one, if its argument is true, and zero otherwise.

Bandwidth

The bandwidth  determines the weights to be applied to observations in each local 
regression. The larger the , the smoother the fit. By default, EViews arbitrarily sets the 
bandwidth to:

(9.12)

where  is the range of . 

For nearest neighbor bandwidths, see Scatter with Nearest Neighbor Fit.

To specify your own bandwidth, mark User Specified and enter a nonnegative number for 
the bandwidth in the edit box.

Bracket Bandwidth option fits three kernel regressions using bandwidths , , and 
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Number of grid points

You must specify the number of points  at which to evaluate the local polynomial 
regression. The default is  points; you can specify any integer in the field. Sup-
pose the range of the series is . Then the polynomial is evaluated at  equi-
spaced points

(9.13)

Method

Given a number of evaluation points, EViews provides you with two additional computa-
tional options: exact computation and linear binning.

The Exact method performs a regression at each , using all of the data points , 
for . Since the exact method computes a regression at every grid point, it 
may be quite time consuming when applied to large samples. In these settings, you may 
wish to consider the linear binning method.

The Linear Binning method (Fan and Marron 1994) approximates the kernel regression by 
binning the raw data  fractionally to the two nearest evaluation points, prior to evaluat-
ing the kernel estimate. For large data sets, the computational savings may be substantial, 
with virtually no loss of precision.

To save the fitted values as a series, type a name in the Fitted Series field box. EViews will 
save the fitted  to the series, linearly interpolating points computed on the grid, to find 
the appropriate value. If you have marked the Bracket Bandwidth option, EViews saves 
three series with “_L”, “_M”, “_H” appended to the name, each corresponding to band-
widths , , and , respectively.

Example

As an example, we estimate a bivariate relation for a simulated data set used in Hardle 
(1991). The data were generated by

series x=rnd

series y=sin(2*pi*x^3)^3+nrnd*(0.1^.5)

The simple scatter of Y and the “true” conditional mean of Y against X looks as follows:

M
M 100=
X XLXU	 � 
 M

xi XL i
XU XL−

M
���������������������� 

        for i⋅+ 0 1 …M 1−, ,= =

xi Xj Yj,( )
j 1 2 … N, , ,=

Xj

Y

0.5α α 1.5α



Scatter Diagrams with Fit Lines—241
The triangular shapes in the middle of the scatterplot trace out the “true” conditional mean 
of Y. Note that the true mean reaches a peak around , a valley around , 
and a saddle around . 

To fit a nonparametric regression of Y on X, you first create a group containing the series Y 
and X. The order that you enter the series is important; the explanatory series variable 
must be the first series in the group. Highlight the series name X and then Y, double click 
in the highlighted area, select Open Group, and select View/Graph/Scatter/Scatter with 
Nearest Neighbor Fit, and repeat the procedure for Scatter with Kernel Fit.

The two fits, computed using the EViews default settings, are shown together with the lin-
ear regression line: 
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Both local regression lines seem to capture the peak, but the kernel fit is more sensitive to 
the upturn in the neighborhood of X=1. Of course, the fitted lines change as we modify 
the options, particularly when we adjust the bandwidth  and window width .

Commands 

The command

lwage.cdfplot(a)

plots the CDF, quantile and survive functions for LWAGE.

lwage.kdensity(k=n)

plots the kernel density estimate of LWAGE using a normal kernel and the automatic band-
width selection.

lwage.kdensity(k=e,b=.25)

plots the kernel density estimate using the Epanechnikov kernel, a bandwidth of 0.25, and 
bracketing.

group aa age lwage

aa.linefit(yl,xl)

creates a group AA containing the series LWAGE and AGE, and fits a regression line of log 
LWAGE on log AGE.

aa.linefit(yl,d=3)

fits log LWAGE to a third degree polynomial in AGE.

aa.nnfit

aa.kerfit

uses the default settings to generate scatterplots with (Loess) nearest-neighbor and kernel 
regression fits to the data in AA.

h α



Chapter 10.  Graphs, Tables, and Text Objects

EViews objects (series, groups, equations, and so on) display their views as graphs, tables, 
and text. Views are dynamic: when the underlying object changes, or the active sample 
changes, so do the views. Often one would like to preserve the current view so that it does 
not change when the object changes. In EViews this is referred to as freezing the view. 
Freezing a view will create an object containing a “snapshot” of the contents of the view 
window. The type of object created varies with the original view: freezing a graphical view 
creates a graph object, freezing a tabular view creates a table object, and freezing a text 
view creates a text object. 

Frozen views form the basis of most presentation output and EViews provides tools for 
customizing the appearance of these objects. This chapter describes the options available 
for controlling the appearance of graph, table, and text objects.

Creating Graphs

Graph objects are usually created by freezing a view. Simply press the Freeze button in an 
object window which contains a graph view. 

It is important to keep in mind the dis-
tinction between a graphical view of 
an object such as a series or a group, 
and a graph object created by freezing 
that view. 

For example, suppose you wish to cre-
ate a graph object containing a line 
graph of the series PASSENGERF. To 
display the line graph view of the 
series, select View/Graph/Line from 
the PASSENGERF series menu.

Notice the window titlebar which 
shows that this is a view of the series 
object PASSENGERF. If you wish to create a graph object for further customization, click 
on the Freeze button. EViews will create an UNTITLED graph object containing a snapshot 
of the view.
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Here, the titlebar shows that we have 
an untitled Graph object. The contents 
of the two windows are identical since 
the graph object contains a copy of the 
contents of the original series view. 
Notice also that since we are working 
with a graph object, the menubar pro-
vides access to a new set of views and 
procedures which allow you to further 
modify the contents of the graph 
object.

As with other EViews objects, the 
UNTITLED graph will not be saved 
with the workfile. If you wish to store 
the frozen graph object in your workfile, you must name the graph object; press the Name 
button and provide a name.

Note that while you can modify the appearance of a graphical view of an object, any 
changes will be lost when the view is redrawn, e.g. when the object window is closed and 
reopened, when the workfile sample is modified, or when the data underlying the object 
are changed. If you would like to keep a customized graphical view, say for presentation 
purposes, you should create a graph object from the view.

You may also create a graph object by combining two or more existing named graph 
objects. Simply select all of the desired graphs and then double click on any one of the 
highlighted names. An alternative method of combining graphs is to select Quick/Show… 
and enter the names of the graphs.

Modifying Graphs

A graph object is made up of a number of elements: the plot area, the axes, the graph leg-
end, and one or more pieces of added text or shading. To select one of these elements for 
editing, simply click in the area associated with it. A blue box will appear around the 
selected element. Once you have made your selection, you can click and drag to move the 
element around the graph, double click to bring up a dialog of options associated with the 
element, or use the toolbar or the right mouse button menus to remove the object entirely.

Alternatively, you may double click anywhere in the graph window to bring up the Graph 
Options tabbed dialog.
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Changing Graph Types

The Type tab allows you to 
change the graph type. The 
available graph type depends 
on whether the graph involves 
a single series or more than 
one series. For example, the 
Mixed Bar & Line, Mixed 
Spike & Line, Error Bar, and 
High-Low (Open-Close) types 
are only available for graphs 
containing multiple lines.

Most of the graph types are 
self-explanatory, but a few 
comments may prove useful.

If you select the Line & Symbol and Spike & Symbol types, use the Lines & Symbols tab 
to control the line pattern and/or symbol type. For bar graphs and pie charts, use the Bars 
& Pies tab to control its appearance.

The Error Bar type is designed for displaying statistics with standard errors bands. This 
graph type shows a vertical error bar connecting the values for the first and second series. 
If the first series value is below the second series value, the bar will have outside half-lines. 
The (optional) third series is plotted as a symbol. 

The High-Low (Open-Close) type displays up to four series. Data from the first two series 
(the high-low values) will be connected as a vertical line, the third series (the open value) 
as a left horizontal half-line, and the fourth series (the close value) as a right horizontal 
half-line. This graph type is commonly used to display daily stock price data.

The Stack lines & bars option plots the series so that each line represents the sum of all 
preceding series. In other words, each series value is the vertical distance between each 
successive line. Note that if some (but not all) of the series have missing values, the sum 
will be cumulated with missing values replaced by zeros.

Once you have selected a graph type, click on Apply to change the graph type.



246—Chapter 10. Graphs, Tables, and Text Objects
Changing Graph Size, Axes, Scaling, and Legend

The General tab controls basic 
display characteristics of the 
graph, including color usage, 
framing style, and perhaps 
most importantly, graph size. 
You can control the aspect ratio 
of your graph using the pre-
defined ratios, or you can input 
a custom set of dimensions. 
Note that the values are dis-
played in “virtual inches”.

Be aware that if you added text 
in the graph with user specified 
(absolute) position, changing 
the graph frame size may 
change the relative position of 
the text in the graph.

Go change or edit axes, select 
the Axes & Scaling tab. 
Depending on its type, a graph 
can have up to four axes: left, 
bottom, right, and top. Each 
series is assigned an axis as 
displayed in the upper right 
combo box. You may change 
the assigned axis by first high-
lighting the series and then 
clicking on one of the avail-
able axis buttons. For exam-
ple, to plot several series with 
a common scale, you should 
assign all series to the same 
axis. To plot two series with a 
dual left-right scale, assign dif-
ferent axes to the two series.

To edit an axis, select the desired axis from the drop down menu at the top of the dialog. 
For the Time/Observation Plot type, you may edit the bottom axis to control how the 
dates/observations are labeled.
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To edit the graph legends, select the Legend tab. Note that if you place the legend using 
user specified (absolute) position, the relative position of the legend may change when you 
change the graph frame size.   

Customizing Lines & Symbols / Bars & Pies 

The Lines & Symbols tab provides you with control over the drawing of all lines and sym-
bols corresponding to the data in your graph.

You can choose to display 
lines, symbols, or both, and 
can customize the color, width, 
pattern, and symbol usage. 

Once you make your choices, 
click on Apply to see the effect 
of the new settings. The cur-
rent line and symbol settings 
for each of the graphs will be 
displayed in the window on the 
right hand side of the dialog.

The similar Bars & Pies tab 
allows you to control the dis-
play characteristics of your bar 
of pie graph. Among the ele-
ments you can set are the color, 
shading, and labeling of the graph elements.

Adding and Editing Text

You can customize a graph by adding one or more lines of text anywhere in the graph. This 
can be useful for labeling a particular observation or period, or for adding titles or remarks 
to the graph. To add new text, simply click on the AddText button in the toolbar or select 
Procs/Add text…. 



248—Chapter 10. Graphs, Tables, and Text Objects
To modify an existing text, simply double click 
on the text. The Text Label dialog is displayed:

Enter the text you want to display in the large 
edit field. Spacing and capitalization (upper 
and lower case letters) will be preserved. If 
you want to enter more than one line, press 
the Enter key after each line. 

• The Justification options determine 
how multiple lines will be aligned rela-
tive to each other. 

• Text in Box puts the label in a rectangle 
box.

• Font allows you to select the fonts for the label. 

The first four options in Position place the text at the indicated (relative) position outside 
the graph. You can also place the text by specifying its coordinates. Coordinates are set in 
virtual inches, with the origin at the upper left-hand corner of the graph.

The X-axis position increases as you move to the right of the origin, while the Y-axis 
increases as you move down from the origin. By default graphs are  virtual inches 
except scatter diagrams, which are  virtual inches. Thus, the X=4, Y=3 position 
refers to the lower right hand corner of the graph. Labels will be placed with the upper left-
hand corner of the enclosing box at the specified coordinate.

4 3×
3 3×
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You can change the position of text added to the graph by selecting the text box and drag-
ging it to the position you choose. After dragging to the desired position, you may double 
click on the text to bring up the Table Labels dialog and to check the coordinates of that 
position or to make changes to the text. Note that if you specify the text position using 
coordinates, the relative position of the text may change when you change the graph frame 
size.

Drawing Lines and Shades

You may draw lines or add a shaded area to the graph. From a graph object, click on the 
Shade/Lines button in the toolbar or select Procs/Add shading…. The Lines & Shading 
dialog will appear:

Select whether you want to draw a line or add 
a shaded area and enter the appropriate infor-
mation to position the line or shaded area hori-
zontally or vertically. If you select Vertical, 
EViews will prompt you to position the line or 
shaded area at a given observation. If you 
select Horizontal, you must provide a data 
value at which to draw the line or shaded area.

You should also use this dialog to choose line 
patterns, width, and colors using the drop 
down menus.

To modify an existing line or shaded area, simply double click on it to bring up the dialog.

Removing Graph Elements

The Remove button in the graph toolbar removes the selected element of a frozen graph. 
For example, to remove text that you have placed on the graph, click on the text. A border 
will appear around the text. Press the Remove button and it will disappear. The same 
method can be applied to legends, scales, and shading.

Graph Templates

Having put a lot of effort into getting a graph to look just the way you want it, you may 
want to use the same options in another graph. EViews allows you to use any graph as a 
template for a new or existing graph. You can think of a template as a graph style that can 
be applied to other graphs. 

First, name the graph object that you want to use as template. Then click the Template 
button in the toolbar of the graph object to which you wish to apply the template. Type the 
name of the graph object to use as a template. There are two template options:
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• Copy options applies only the Graph Options settings of the template graph to the 
graph you are working on. 

• Copy options, text and shading copies any text labels and shading in the template 
to the graph as well as its options.

If you select Template from a multiple graph window, the template options will be applied 
to each graph in the multiple graph object. 

Multiple Graphs

Some views are made up of multiple graphs. Like single graph views, these may be turned 
into graph objects by freezing. For example, the impulse response view of a VAR can dis-
play multiple graphs in a single view. 

You may also create a graph object containing multiple graphs by combining existing 
named graph objects. Simply select the desired graphs and then double click on any one of 
the highlighted names. An alternative method of combining graphs is to select Quick/
Show… and enter the names of the graphs.

There are two ways to work with a multiple graph. You may change the settings for the 
multiple graph as a whole, or you may work with an individual graph component of the 
multiple graph.

Working With Multiple Graphs

EViews makes it easy to work with all of the graphs in a multiple graph. Simply select 
Procs from the graph menu and EViews will display a menu prompting you for additional 
choices.

These menu items set options that apply to all graphs in the 
graph object. 

• To set a common graph attribute to all graphs, select the 
Options on all graphs…. After selecting the desired 
options, check the Apply page to all graphs checkbox at the bottom of the tab. 

• While each single graph in a multiple graph can be freely positioned by dragging the 
graph, you may wish to globally align graphs in columns and control the overall 
spacing between graphs. To globally position your graphs, select Position and align 
graphs….

• If all of your graphs share a common axis, you can draw lines or add shading to each 
graph in the object, by selecting Add shading to all graphs….
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• Selecting Add text… allows you to annotate your multiple graph. Note that adding 
an item to the multiple graph differs from adding it to an individual graph since it 
will not move with the individual graph.

There is a shortcut method if you merely wish to set the options for all of your graphs. 
Simply double click anywhere in the background area of your graph, and EViews will open 
the Multiple Graph Options dialog.

Working with Individual Graphs

You may change the options for an individual graph in the usual fashion by double clicking 
on the graph to display the options dialog.

You can also perform various operations on individual graphs. 
Click on the graph and EViews will confirm the selection by sur-
rounding the individual graph with a blue border. Select Procs or 
right mouse click to display a menu that allows you to set 
options, add shading or remove the selected graph. Deleting the 
selected graph can also be performed by pressing the Remove 
button on the graph toolbar. 

In addition, you can place each individual graph at an arbitrary position by simply drag-
ging the individual graph to the desired location.

An Example

Here is an example of an annotated and customized combined graph created in EViews 
and copy-and-pasted into a word processor:
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Printing Graphs

Clicking on the Print button on the graph view or graph object window toolbar will print 
the graph. You can control printing options using File/Print Setup on the main EViews 
menu.

Most of the options are self-explanatory. If you wish to print your graph in color using your 
color printer, make certain that the Print in color box is checked. Conversely, if you are 
printing to a black and white printer, you should make certain this box is not checked so 
that EViews will substitute line patterns for colors.

Printing Graphs as PostScript Files

EViews uses the standard Windows printer services for all of its printing. This means that 
the standard Windows methods of setting up printing to a file will work. Under Windows 
95/98/Me, it is very simple to set this up. From the taskbar, choose Start/Settings/Print-
ers. Double click on Add Printer, click Next, click on Local, and select a PostScript printer. 
We have found that selecting the HP LaserJet 4M or the Apple LaserWriter Pro drivers (by 
clicking on the manufacturer, and then the printer name) appears to work well, though 
you may wish to experiment with different drivers depending upon your printing hard-
ware. 

Once you have selected a printer, select FILE: to instruct Windows to print to a file and 
then tell Windows whether you wish this to be the default printer. Windows will then cre-
ate a new printer icon representing file capture of the postscript. This “printer” may be 
selected from within any Windows application including EViews.

Copying Graphs to Other Windows Programs

You can incorporate an EViews graph view directly into a document in your Windows 
word processor. To do this, first activate the object window containing the graph you wish 
to move; click anywhere in the window so that the titlebar changes to a bright color. Then 
click Edit/Copy on the EViews main menu; the Copy Graph as Metafile dialog box appears. 

You can copy the graph to the Windows clip-
board or to a disk file in Windows metafile 
(WMF) or enhanced metafile (EMF) formats. 
You can request that the graph be in color and 
that its lines be in bold. We recommend that you 
copy graphs in black-and-white unless you will 
be printing to a color printer.

If you copy a graph to the clipboard, you can 
switch to your word processor and paste the 
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graph into your document. Standard programs such as Word or WordPerfect will give you a 
graph which can be sized, positioned, and modified within the program. You can also 
paste graphs into drawing programs, and make further modifications before pasting into 
your word processor or other software.

You can choose to hide this copy dialog so that you use the default settings for subsequent 
operations by unchecking the Display this dialog... box. If you wish to change the default 
settings or to turn on or off the display of the copy dialog, you should go to the Metafile 
tab of the global Graph options (Options/Graphics Defaults...). 

When working with graph objects, EViews also allows you to create a metafile using a 
proc. Simply click on Procs/Save graph as metafile... and follow the dialogs to name and 
save the file.

Graph Commands

For those of you who wish to automate some of these procedures, for example to produce 
a regular report, EViews allows you to perform extensive graph customization from the 
command line or using programs. See “Graph” (p. 25) in the Command and Programming 
Reference for additional details.

Tables

Any views that are not graphical are displayed either as tables or text windows. Tables con-
tain formatted text that is aligned in columns and rows. Examples of views displayed in 
tables are the Spreadsheet views and the Estimation Output views. Just as there are two 
types of graphs, there are two types of tables: table views and table objects. Table objects 
can be created by freezing table views. As with graph objects, table objects are “not live” 
in the sense that they do not reflect the current contents of the underlying object, but are 
based instead upon the contents of the object at the time the object was frozen. 

Table Options

As with graph objects, there are editing options for tables that are more extensive than for 
views. These options are available from the Procs menu or as buttons on the table window 
toolbar. When you edit a table, you either highlight the cells you want to edit or refer to a 
rectangle specified by upper-left and lower-right cells. Cells are identified by the column 
letter and row number displayed in the margins of the table. If you highlight the cells 
before you push the editing button, the dialogs will propose that editing be applied to the 
highlighted cells. 

• Font allows you to choose a font to be used in the table.

• Insert-Delete (InsDel) inserts or deletes rows or columns at the desired position in 
the table.
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• Column Width (Width) changes the width of the columns in the table. The width is 
measured by the number of characters and depends on the font used.

• Number Cell Format (Numbers) controls the format for some or all of the numbers 
in the table. Fixed characters specifies the total number of characters to display, 
while Fixed decimal specifies the number of digits to the right of the decimal point. 
Note that the digits may not be visible if the cell width is not wide enough; use Col-
umn Width to increase the cell width. Justification entries set in the Number Cell 
Format dialog only apply to numbers. You should use Justify for justification of all 
selected cells.

• Justification (Justify) justifies all numbers and text for the selected cells.

• Horizontal Lines (Lines) adds or removes (double) lines from the specified cells. 
Note that lines will overlap with any other existing text or numbers in the cell. To 
place a line by itself, insert an empty row by clicking InsDel. 

• Grid+/– toggles on or off the grid marking the cells in the table.

• Title allows you to put a header title at the top center of the table. This is different 
from Name, which provides the object name for the table in the workfile.

• Edit+/– toggles on or off edit mode that allows you edit text or numbers in the 
table. 

Table Commands

For those of you who wish to automate some of these procedures, say to produce a 
monthly report, EViews allows you to perform considerable customization from the com-
mand line or using programs. For details, see Chapter 5, “Working with Tables”, on 
page 79 of the Command and Programming Reference. 

Copying Tables to Other Windows Programs

You can also cut-and-paste a table into spreadsheet or word processing software. Highlight 
the area of the table you want to copy and then choose Edit/Copy from the main menu. A 
dialog box will provide you with the option of copying the numbers as they appear in the 
table, or at the highest internal precision. After you make a choice, switch to your applica-
tion and select Edit/Paste. 

EViews copies tables as rich text format (RTF) files, allowing you to preserve the format-
ting information that is built into the table. Thus, if you copy-and-paste a table from 
EViews into Microsoft Word or another program which supports RTF, you will create a 
nicely formatted table containing your results:
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Some word processors provide the option of pasting the contents of the clipboard as unfor-
matted files. If you wish to paste the table as unformatted text, you should select Edit/
Paste Special.

Text Objects

Some output views have no formatting and are simple displays of text information. Exam-
ples are representations of an equation and results from X-11 seasonal adjustment. If you 
freeze one of these views, you will create a text object.

You can also create a blank text object by selecting Objects/New Object/Text or by simply 
typing “text” in the command window. Text objects may be used whenever you wish to 
capture textual data that does not contain any formatting information.

Commands

The freeze command freezes the specified view of the named object. Provide a name for 
the frozen object in parentheses after the freeze command. For example, to freeze the 
histogram view of a series named LWAGE to a graph object named LW_HIST, type 

freeze(lw_hist) lwage.hist

To freeze the simple scatter diagram of the series in the group GRP1 to a graph named 
GRA1, type

freeze(gra1) grp1.scat

To combine two graph objects named GRA1 and GRA2 into a graph object named BIGGRA, 
type

Dependent Variable: M1
Method: Least Squares
Date: 09/07/97   Time: 12:51
Sample(adjusted): 1952:2 1979:4
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C -4.881480  1.532169 -3.185993  0.0019
PCGDPD -0.033838  0.202541 -0.167066  0.8676

GDPR  0.008857  0.005484  1.615040  0.1093
M1(-1)  1.014426  0.013662  74.25210  0.0000

RD -0.432699  0.378003 -1.144697  0.2549

R-squared  0.998632     Mean dependent var  214.6029
Adjusted R-squared  0.998581     S.D. dependent var  85.66340
S.E. of regression  3.227174     Akaike info criterion  5.225090
Sum squared resid  1103.953     Schwarz criterion  5.347140
Log likelihood -284.9925     F-statistic  19350.15
Durbin-Watson stat  2.770462     Prob(F-statistic)  0.000000
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freeze(biggra) gra1 gra2

See the Command and Programming Reference for a more complete discussion of these and 
related commands.



Part III.  Basic Single Equation Analysis

The following chapters describe the EViews features for basic single equation analysis.

• Chapter 11, “Basic Regression”, beginning on page 259 outlines the basics of ordi-
nary least squares estimation in EViews.

• Chapter 12, “Additional Regression Methods”, on page 279 discusses weighted least 
squares, two-stage least squares and nonlinear least square estimation techniques.

• Chapter 13, “Time Series Regression”, on page 303 describes single equation regres-
sion techniques for the analysis of time series data: testing for serial correlation, esti-
mation of ARMAX and ARIMAX models, using polynomial distributed lags, and unit 
root tests for nonstationary time series. 

• Chapter 14, “Forecasting from an Equation”, beginning on page 343 outlines the 
fundamentals of using EViews to forecast from estimated equations.

• Chapter 15, “Specification and Diagnostic Tests”, beginning on page 367 describes 
specification testing in EViews.

Additional single equation techniques for autoregressive conditional heteroskedasticity, 
and discrete and limited dependent variable models are described in Part IV. Part V docu-
ments multiple equation analysis.
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Chapter 11.  Basic Regression

Single equation regression is one of the most versatile and widely used statistical tech-
niques. Here, we describe the use of basic regression techniques in EViews: specifying and 
estimating a regression model, performing simple diagnostic analysis, and using your esti-
mation results in further analysis.

Subsequent chapters discuss testing and forecasting, as well as more advanced and spe-
cialized techniques such as weighted least squares, two-stage least squares (TSLS), nonlin-
ear least squares, ARIMA/ARIMAX models, generalized method of moments (GMM), 
GARCH models, and qualitative and limited dependent variable models. These techniques 
and models all build upon the basic ideas presented in this chapter.

You will probably find it useful to own an econometrics textbook as a reference for the 
techniques discussed in this and subsequent documentation. Standard textbooks that we 
have found to be useful are listed below (in generally increasing order of difficulty): 

• Pindyck and Rubinfeld (1991), Econometric Models and Economic Forecasts, 3rd edi-
tion.

• Johnston and DiNardo (1997), Econometric Methods, 4th Edition.

• Greene (1997), Econometric Analysis, 3rd Edition.

• Davidson and MacKinnon (1993), Estimation and Inference in Econometrics.

Where appropriate, we will also provide you with specialized references for specific topics.

Equation Objects

Single equation regression estimation in EViews is performed using the equation object. To 
create an equation object in EViews: select Objects/New Object/Equation or Quick/Esti-
mate Equation… from the main menu, or simply type the keyword equation in the com-
mand window. 

Next, you will specify your equation in the Equation Specification dialog box that appears, 
and select an estimation method. Below, we provide details on specifying equations in 
EViews. EViews will estimate the equation and display results in the equation window. 

The estimation results are stored as part of the equation object so they can be accessed at 
any time. Simply open the object to display the summary results, or to access EViews tools 
for working with results from an equation object. For example, you can retrieve the sum-
of-squares from any equation, or you can use the estimated equation as part of a multi-
equation model.
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Specifying an Equation in EViews

When you create an equation object, a specification dialog box is displayed.

You need to specify three things 
in this dialog: the equation speci-
fication, the estimation method, 
and the sample to be used in esti-
mation.

In the upper edit box, you can 
specify the equation: the depen-
dent (left-hand side) and inde-
pendent (right-hand side) 
variables and the functional 
form. There are two basic ways 
of specifying an equation: “by list” and “by formula” or “by expression”. The list method is 
easier but may only be used with unrestricted linear specifications; the formula method is 
more general and must be used to specify nonlinear models or models with parametric 
restrictions.

Specifying an Equation by List

The simplest way to specify a linear equation is to provide a list of variables that you wish 
to use in the equation. First, include the name of the dependent variable or expression, fol-
lowed by a list of explanatory variables. For example, to specify a linear consumption func-
tion, CS regressed on a constant and INC, type the following in the upper field of the 
Equation Specification dialog:

cs c inc

Note the presence of the series name C in the list of regressors. This is a built-in EViews 
series that is used to specify a constant in a regression. EViews does not automatically 
include a constant in a regression so you must explicitly list the constant (or its equivalent) 
as a regressor. The internal series C does not appear in your workfile, and you may not use 
it outside of specifying an equation. If you need a series of ones, you can generate a new 
series, or use the number 1 as an auto-series.

You may have noticed that there is a pre-defined object C in your workfile. This is the 
default coefficient vector—when you specify an equation by listing variable names, EViews 
stores the estimated coefficients in this vector, in the order of appearance in the list. In the 
example above, the constant will be stored in C(1) and the coefficient on INC will be held 
in C(2).
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Lagged series may be included in statistical operations using the same notation as in gen-
erating a new series with a formula—put the lag in parentheses after the name of the 
series. For example, the specification:

cs cs(-1) c inc

tells EViews to regress CS on its own lagged value, a constant, and INC. The coefficient for 
lagged CS will be placed in C(1), the coefficient for the constant is C(2), and the coefficient 
of INC is C(3).

You can include a consecutive range of lagged series by using the word “to” between the 
lags. For example, 

cs c cs(-1 to -4) inc

regresses CS on a constant, CS(-1), CS(-2), CS(-3), CS(-4), and INC. If you don't include 
the first lag, it is taken to be zero. For example, 

cs c inc(to -2) inc(-4)

regresses CS on a constant, INC, INC(-1), INC(-2), and INC(-4). 

You may include auto-series in the list of variables. If the auto-series expressions contain 
spaces, they should be enclosed in parentheses. For example,

log(cs) c log(cs(-1)) ((inc+inc(-1)) / 2)

specifies a regression of the natural logarithm of CS on a constant, its own lagged value, 
and a two period moving average of INC.

Typing the list of series may be cumbersome, especially if you are working with many 
regressors. If you wish, EViews can create the specification list for you. First, highlight the 
dependent variable in the workfile window by single clicking on the entry. Next, CTRL-
click on each of the explanatory variables to highlight them as well. When you are done 
selecting all of your variables, double click on any of the highlighted series, and select 
Open/Equation… The Equation Specification dialog box should appear with the names 
entered in the specification field. The constant C is automatically included in this list; you 
must delete the C if you do not wish to include the constant.

Specifying an Equation by Formula

You will need to specify your equation using a formula when the list method is not general 
enough for your specification. Many, but not all, estimation methods allow you to specify 
your equation using a formula.

An equation formula in EViews is a mathematical expression involving regressors and 
coefficients. To specify an equation using a formula, simply enter the expression in the dia-
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log in place of the list of variables. EViews will add an implicit additive disturbance to this 
equation and will estimate the parameters of the model using least squares.

When you specify an equation by list, EViews converts this into an equivalent equation 
formula. For example, the list,

log(cs) c log(cs(-1)) log(inc)

is interpreted by EViews as,

log(cs) = c(1) + c(2)*log(cs(-1)) + c(3)*log(inc)

Equations do not have to have a dependent variable followed by an equal sign and then an 
expression. The “=” sign can be anywhere in the formula, as in:

log(urate) + c(1)*dmr = c(2)

The residuals for this equation are given by: 

. (11.1)

EViews will minimize the sum-of-squares of these residuals.

If you wish, you can specify an equation as a simple expression, without a dependent vari-
able and an equal sign. If there is no equal sign, EViews assumes that the entire expression 
is the disturbance term. For example, if you specify an equation as 

c(1)*x + c(2)*y + 4*z

EViews will find the coefficient values that minimize the sum of squares of the given 
expression, in this case (C(1)*X+C(2)*Y+4*Z). While EViews will estimate an expression 
of this type, since there is no dependent variable, some regression statistics (e.g. R-
squared) are not reported and the equation cannot be used for forecasting. This restriction 
also holds for any equation that includes coefficients to the left of the equal sign. For 
example, if you specify,

x + c(1)*y = c(2)*z 

EViews finds the values of C(1) and C(2) that minimize the sum of squares of (X+C(1)*Y–
C(2)*Z). The estimated coefficients will be identical to those from an equation specified 
using:

x = -c(1)*y + c(2)*z

but some regression statistics are not reported.

The two most common motivations for specifying your equation by formula are to esti-
mate restricted and nonlinear models. For example, suppose that you wish to constrain the 

ε urate( )log c 1( )dmr− c 2( )−=
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coefficients on the lags on the variable X to sum to one. Solving out for the coefficient 
restriction leads to the following linear model with parameter restrictions:

y = c(1) + c(2)*x + c(3)*x(-1) + c(4)*x(-2) +(1-c(2)-c(3)-

c(4))*x(-3)

To estimate a nonlinear model, simply enter the nonlinear formula. EViews will automati-
cally detect the nonlinearity and estimate the model using nonlinear least squares. For 
details, see “Nonlinear Least Squares” on page 289.

One benefit to specifying an equation by formula is that you can elect to use a different 
coefficient vector. To create a new coefficient vector, choose Objects/New Object… and 
select Matrix-Vector-Coef from the main menu, type in a name for the coefficient vector, 
and click OK. In the New Matrix dialog box that appears, select Coefficient Vector and 
specify how many rows there should be in the vector. The object will be listed in the work-
file directory with the coefficient vector icon (the little ).

You may then use this coefficient vector in your specification. For example, suppose you 
created coefficient vectors A and BETA, each with a single row. Then you can specify your 
equation using the new coefficients in place of C:

log(cs) = a(1) + beta(1)*log(cs(-1))

Estimating an Equation in EViews

Estimation Methods

Having specified your equation, you now need to choose an estimation method. Click on 
the Method: entry in the dialog and you will see a drop-down menu listing estimation 
methods.

Standard, single-equation regression is performed 
using least squares. The other methods are described 
in subsequent chapters. 

Equations estimated by ordinary least squares and 
two-stage least squares, GMM, and ARCH can be 
specified with a formula. Nonlinear equations are not allowed with binary, ordered, cen-
sored, and count models, or in equations with ARMA terms.

Estimation Sample

You should also specify the sample to be used in estimation. EViews will fill out the dialog 
with the current workfile sample, but you can change the sample for purposes of estima-
tion by entering your sample string or object in the edit box (see “Samples” on page 60 for 
details). Changing the estimation sample does not affect the current workfile sample.

α
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If any of the series used in estimation contain missing data, EViews will temporarily adjust 
the estimation sample of observations to exclude those observations (listwise exclusion). 
EViews notifies you that it has adjusted the sample by reporting the actual sample used in 
the estimation results:

Here we see the top of an equation output view. EViews reports that it has adjusted the 
sample. Out of the 372 observations in the period 1959:01–1989:12, EViews uses the 340 
observations with observations for all of the relevant variables.

You should be aware that if you include lagged variables in a regression, the degree of sam-
ple adjustment will differ depending on whether data for the pre-sample period are avail-
able or not. For example, suppose you have nonmissing data for the two series M1 and IP 
over the period 1959:01–1989:12 and specify the regression as 

m1 c ip ip(-1) ip(-2) ip(-3)

If you set the estimation sample to the period 1959:01–1989:12, EViews adjusts the sample 
to:

since data for IP(–3) are not available until 1959:04. However, if you set the estimation 
sample to the period 1960:01–1989:12, EViews will not make any adjustment to the sample 
since all values of IP(-3) are available during the estimation sample. 

Some operations, most notably estimation with MA terms and ARCH, do not allow missing 
observations in the middle of the sample. When executing these procedures, an error mes-
sage is displayed and execution is halted if an NA is encountered in the middle of the sam-
ple. EViews handles missing data at the very start or the very end of the sample range by 
adjusting the sample endpoints and proceeding with the estimation procedure.

Estimation Options

EViews provides a number of estimation options. These options allow you to weight the 
estimating equation, to compute heteroskedasticity and auto-correlation robust covari-

Dependent Variable: Y
Method: Least Squares
Date: 08/19/97   Time: 10:24
Sample(adjusted): 1959:01 1989:12
Included observations: 340
Excluded observations: 32 after adjusting endpoints

Dependent Variable: M1
Method: Least Squares
Date: 08/19/97   Time: 10:49
Sample: 1960:01 1989:12
Included observations: 360
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ances, and to control various features of your estimation algorithm. These options are dis-
cussed in detail in “Estimation Options” on page 292.

Equation Output

When you click OK in the Equation Specification dialog, EViews displays the equation 
window displaying the estimation output view:

Using matrix notation, the standard regression may be written as:

(11.2)

where  is a -dimensional vector containing observations on the dependent variable,  
is a  matrix of independent variables,  is a -vector of coefficients, and  is a 

-vector of disturbances.  is the number of observations and  is the number of right-
hand side regressors. 

In the output above,  is log(M1), consists of three variables C, log(IP), and TB3, where 
 and .

Coefficient Results

Regression Coefficients

The column labeled “Coefficient” depicts the estimated coefficients. The least squares 
regression coefficients  are computed by the standard OLS formula

(11.3)

If your equation is specified by list, the coefficients will be labeled in the “Variable” col-
umn with the name of the corresponding regressor; if your equation is specified by for-
mula, EViews lists the actual coefficients, C(1), C(2), etc.

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 08/18/97   Time: 14:02
Sample: 1959:01 1989:12
Included observations: 372

Variable Coefficient Std. Error t-Statistic Prob.

C -1.699912  0.164954 -10.30539  0.0000
LOG(IP)  1.765866  0.043546  40.55199  0.0000

TB3 -0.011895  0.004628 -2.570016  0.0106

R-squared  0.886416     Mean dependent var  5.663717
Adjusted R-squared  0.885800     S.D. dependent var  0.553903
S.E. of regression  0.187183     Akaike info criterion -0.505429
Sum squared resid  12.92882     Schwarz criterion -0.473825
Log likelihood  97.00980     F-statistic  1439.848
Durbin-Watson stat  0.008687     Prob(F-statistic)  0.000000

y Xβ ε+=
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For the simple linear models considered here, the coefficient measures the marginal contri-
bution of the independent variable to the dependent variable, holding all other variables 
fixed. If present, the coefficient of the C is the constant or intercept in the regression—it is 
the base level of the prediction when all of the other independent variables are zero. The 
other coefficients are interpreted as the slope of the relation between the corresponding 
independent variable and the dependent variable, assuming all other variables do not 
change. 

Standard Errors

The “Std. Error” column reports the estimated standard errors of the coefficient estimates. 
The standard errors measure the statistical reliability of the coefficient estimates—the 
larger the standard errors, the more statistical noise in the estimates. If the errors are nor-
mally distributed, there are about 2 chances in 3 that the true regression coefficient lies 
within one standard error of the reported coefficient, and 95 chances out of 100 that it lies 
within two standard errors. 

The covariance matrix of the estimated coefficients is computed as,

(11.4)

where  is the residual. The standard errors of the estimated coefficients are the square 
roots of the diagonal elements of the coefficient covariance matrix. You can view the whole 
covariance matrix by choosing View/Covariance Matrix.

t-Statistics

The t-statistic, which is computed as the ratio of an estimated coefficient to its standard 
error, is used to test the hypothesis that a coefficient is equal to zero. To interpret the t-sta-
tistic, you should examine the probability of observing the t-statistic given that the coeffi-
cient is equal to zero. This probability computation is described below.

In cases where normality can only hold asymptotically, EViews will report a z-statistic 
instead of a t-statistic.

Probability

The last column of the output shows the probability of drawing a t-statistic (or a z-statistic) 
as extreme as the one actually observed, under the assumption that the errors are normally 
distributed, or that the estimated coefficients are asymptotically normally distributed.

This probability is also known as the p-value or the marginal significance level. Given a p-
value, you can tell at a glance if you reject or accept the hypothesis that the true coefficient 
is zero against a two-sided alternative that it differs from zero. For example, if you are per-
forming the test at the 5% significance level, a p-value lower than 0.05 is taken as evidence 

var b( ) s
2
X ′X( ) 1−      s2; ε� ′ε� T k−( )⁄      ε�; y Xb−= = =

ε�
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to reject the null hypothesis of a zero coefficient. If you want to conduct a one-sided test, 
the appropriate probability is one-half that reported by EViews. 

For the above example output, the hypothesis that the coefficient on TB3 is zero is rejected 
at the 5% significance level but not at the 1% level. However, if theory suggests that the 
coefficient on TB3 cannot be positive, then a one-sided test will reject the zero null hypoth-
esis at the 1% level.

The p-values are computed from a t-distribution with  degrees of freedom.

Summary Statistics

R-squared

The R-squared ( ) statistic measures the success of the regression in predicting the val-
ues of the dependent variable within the sample. In standard settings, may be inter-
preted as the fraction of the variance of the dependent variable explained by the 
independent variables. The statistic will equal one if the regression fits perfectly, and zero 
if it fits no better than the simple mean of the dependent variable. It can be negative for a 
number of reasons. For example, if the regression does not have an intercept or constant, if 
the regression contains coefficient restrictions, or if the estimation method is two-stage 
least squares or ARCH.

EViews computes the (centered)  as

(11.5)

where  is the mean of the dependent (left-hand) variable. 

Adjusted R-squared

One problem with using as a measure of goodness of fit is that the will never 
decrease as you add more regressors. In the extreme case, you can always obtain an of 
one if you include as many independent regressors as there are sample observations. 

The adjusted , commonly denoted as , penalizes the for the addition of regres-
sors which do not contribute to the explanatory power of the model. The adjusted is 
computed as

(11.6)

The is never larger than the , can decrease as you add regressors, and for poorly fit-
ting models, may be negative.
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Standard Error of the Regression (S.E. of regression)

The standard error of the regression is a summary measure based on the estimated vari-
ance of the residuals. The standard error of the regression is computed as

(11.7)

Sum-of-Squared Residuals

The sum-of-squared residuals can be used in a variety of statistical calculations, and is pre-
sented separately for your convenience:

(11.8)

Log Likelihood

EViews reports the value of the log likelihood function (assuming normally distributed 
errors) evaluated at the estimated values of the coefficients. Likelihood ratio tests may be 
conducted by looking at the difference between the log likelihood values of the restricted 
and unrestricted versions of an equation.

The log likelihood is computed as

(11.9)

When comparing EViews output to that reported from other sources, note that EViews 
does not ignore constant terms.

Durbin-Watson Statistic

The Durbin-Watson statistic measures the serial correlation in the residuals. The statistic is 
computed as

(11.10)

See Johnston and DiNardo (1997, Table D.5) for a table of the significance points of the 
distribution of the Durbin-Watson statistic.

As a rule of thumb, if the DW is less than 2, there is evidence of positive serial correlation. 
The DW statistic in our output is very close to one, indicating the presence of serial corre-
lation in the residuals. See “Serial Correlation Theory” beginning on page 303 for a more 
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extensive discussion of the Durbin-Watson statistic and the consequences of serially corre-
lated residuals. 

There are better tests for serial correlation. In “Testing for Serial Correlation” on page 304, 
we discuss the Q-statistic, and the Breusch-Godfrey LM test, both of which provide a more 
general testing framework than the Durbin-Watson test.

Mean and Standard Deviation (S.D.) of the Dependent Variable

The mean and standard deviation of  are computed using the standard formulae:

(11.11)

Akaike Information Criterion

The Akaike Information Criterion (AIC) is computed as:

(11.12)

where  is the log likelihood (given by Equation (11.9) on page 268).

The AIC is often used in model selection for non-nested alternatives—smaller values of the 
AIC are preferred. For example, you can choose the length of a lag distribution by choosing 
the specification with the lowest value of the AIC. See Appendix F, “Information Criteria”, 
on page 683, for additional discussion.

Schwarz Criterion

The Schwarz Criterion (SC) is an alternative to the AIC that imposes a larger penalty for 
additional coefficients:

(11.13)

F-Statistic

The F-statistic reported in the regression output is from a test of the hypothesis that all of 
the slope coefficients (excluding the constant, or intercept) in a regression are zero. For 
ordinary least squares models, the F-statistic is computed as

(11.14)

Under the null hypothesis with normally distributed errors, this statistic has an F-distribu-
tion with  numerator degrees of freedom and  denominator degrees of free-
dom. 
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The p-value given just below the F-statistic, denoted Prob(F-statistic), is the marginal sig-
nificance level of the F-est. If the p-value is less than the significance level you are testing, 
say 0.05, you reject the null hypothesis that all slope coefficients are equal to zero. For the 
example above, the p-value is essentially zero, so we reject the null hypothesis that all of 
the regression coefficients are zero. Note that the F-est is a joint test so that even if all the 
t-statistics are insignificant, the F-statistic can be highly significant. 

Working With Equation Statistics

The regression statistics reported in the estimation output view are stored with the equa-
tion and are accessible through special “@-functions”. You can retrieve any of these statis-
tics for further analysis by using these functions in genr, scalar, or matrix expressions. If a 
particular statistic is not computed for a given estimation method, the function will return 
an NA.

There are two kinds of “@-functions”: those that return a scalar value, and those that 
return matrices or vectors. 

Keywords that return scalar values

@aic Akaike information criterion

@coefcov(i,j) covariance of coefficient estimates  and 

@coefs(i) i-th coefficient value

@dw Durbin-Watson statistic

@f F-statistic

@hq Hannan-Quinn information criterion

@jstat J-statistic — value of the GMM objective function 
(for GMM)

@logl value of the log likelihood function

@meandep mean of the dependent variable

@ncoef number of estimated coefficients

@r2 R-squared statistic

@rbar2 adjusted R-squared statistic

@regobs number of observations in regression

@schwarz Schwarz information criterion

@sddep standard deviation of the dependent variable

@se standard error of the regression

@ssr sum of squared residuals

i j



Equation Output—271
Keywords that return vector or matrix objects

If you use these functions without reference to an equation object, EViews will use the 
default equation. For example, the command:

series y = @dw

creates a series named Y and assigns to every observation, the value of the Durbin-Watson 
statistic for the default equation. 

We strongly recommend, however, that you prepend the name of an equation object and a 
“.” to the statistic keyword. This instructs EViews to use the appropriate statistic for the 
named equation. For example:

series y = eq1.@dw

assigns to Y the value of the Durbin-Watson for the equation EQ1.

Functions that return a vector or matrix object should be assigned to the corresponding 
object type. For example, you should assign the results from @tstats to a vector:

vector tstats = eq1.@tstats

and the covariance matrix to a matrix:

matrix mycov = eq1.@cov

You can also access individual elements of these statistics:

scalar pvalue = 1-@cnorm(@abs(eq1.@tstats(4)))

scalar var1 = eq1.@covariance(1,1)

For documentation on using vectors and matrices in EViews, see Chapter 4, “Matrix Lan-
guage”, on page 55 of the Command and Programming Reference.

@stderrs(i) standard error for coefficient 

@tstats(i) t-statistic value for coefficient 

c(i) i-th element of default coefficient vector for equa-
tion (if applicable)

@coefcov matrix containing the coefficient covariance matrix

@coefs vector of coefficient values

@stderrs vector of standard errors for the coefficients

@tstats vector of t-statistic values for coefficients

i

i
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Working with Equations

Views of an Equation

• Representations. Displays the equation in three forms: EViews command form, as 
an algebraic equation with symbolic coefficients, and as an equation with the esti-
mated values of the coefficients.

You can cut-and-paste 
from the representations 
view into any applica-
tion that supports the 
Windows clipboard.

• Estimation Output. Dis-
plays the equation output 
results described above. 

• Actual, Fitted, Residual. 
These views display the actual and fitted values of the dependent variable and the 
residuals from the regression in tabular and graphical form. Actual, Fitted, Residual 
Table displays these values in table form.

Note that the actual value 
is always the sum of the 
fitted value and the resid-
ual. Actual, Fitted, 
Residual Graph displays 
a standard EViews graph 
of the actual values, fit-
ted values, and residu-
als. Residual Graph plots 
only the residuals, while 
the Standardized Residual Graph plots the residuals divided by the estimated resid-
ual standard deviation. 

• Gradients and Derivatives... Provides views which describe the gradients of the 
objective function and the information about the computation of any derivatives of 
the regression function. Details on these views are provided in Appendix E, “Gradi-
ents and Derivatives”, on page 675.

• Covariance Matrix. Displays the covariance matrix of the coefficient estimates as a 
spreadsheet view. To save this covariance matrix as a matrix object, use the @cov 
function. 
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• Coefficient Tests, Residual Tests, and Stability Tests. These are views for specifica-
tion and diagnostic tests and are described in detail in Chapter 15, “Specification 
and Diagnostic Tests”, beginning on page 367.

Procedures of an Equation

• Specify/Estimate… brings up the Equation Specification dialog box so that you can 
modify your specification. You can edit the equation specification, or change the 
estimation method or estimation sample.

• Forecast… forecasts or fits values using the estimated equation. Forecasting using 
equations is discussed in Chapter 14.

• Make Residual Series… saves the residuals from the regression as a series in the 
workfile. Depending on the estimation method, you may choose from three types of 
residuals: ordinary, standardized, and generalized. For ordinary least squares, only 
the ordinary residuals may be saved.

• Make Regressor Group creates an untitled group comprised of all the variables used 
in the equation (with the exception of the constant). 

• Make Gradient Group creates a group containing the gradients of the objective 
function with respect to the coefficients of the model.

• Make Derivative Group creates a group containing the derivatives of the regression 
function with respect to the coefficients in the regression function.

• Make Model creates an untitled model containing a link to the estimated equation. 
This model can be solved in the usual manner. See Chapter 23, “Models”, on 
page 601 for information on how to use models for forecasting and simulations.

• Update Coefs from Equation places the estimated coefficients of the equation in the 
coefficient vector. You can use this procedure to initialize starting values for various 
estimation procedures.

Default Equation

Following estimation, EViews often holds the estimated coefficients and their covariance 
matrix, the residuals, and some summary statistics in an untitled equation object. These 
results are available for use in a variety of subsequent computations including the specifi-
cation and diagnostic tests described in Chapter 15, “Specification and Diagnostic Tests”, 
beginning on page 367, and the computation of forecasts and model simulation in 
Chapter 14, “Forecasting from an Equation”, on page 343 and Chapter 23, “Models”, on 
page 601. 

Untitled equations are not saved with the workfile. You may use the Name button on the 
equation toolbar to name your equation. The equation will be saved with the workfile 
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when the latter is saved. Once named, you can access the information in the equation at 
any time, even if you have just estimated several other models, or have not worked with 
the workfile for a long period of time.

For your convenience, EViews keeps track of a default equation. The default equation is 
the equation that is active or was the most recently active equation. The name of the 
default equation is shown at the upper right hand corner of the workfile window.

Residuals from an Equation

The residuals from the default equation are stored in a series object called RESID. RESID 
may be used directly as if it were a regular series, except in estimation.

RESID will be overwritten whenever you estimate an equation and will contain the residu-
als from the latest estimated equation. To save the residuals from a particular equation for 
later analysis, you should save them in a different series so they are not overwritten by the 
next estimation command. For example, you can copy the residuals into a regular EViews 
series called RES1 by the command

series res1 = resid

Even if you have already overwritten the RESID series, you can always create the desired 
series using EViews’ built-in procedures if you still have the equation object. If your equa-
tion is named EQ1, open the equation window and select Procs/Make Residual Series, or 
enter

eq1.makeresid res1

to create the desired series.

Regression Statistics

You may refer to various regression statistics through the @-functions described above. For 
example, to generate a new series equal to FIT plus twice the standard error from the last 
regression, you can use the command

series plus = fit + 2*eq1.@se

To get the t-statistic for the second coefficient from equation EQ1, you could specify

eq1.@tstats(2)

To store the coefficient covariance matrix from EQ1 as a named symmetric matrix, you can 
use the command

sym ccov1 = eq1.@cov

See “Keywords that return scalar values” on page 270 for additional details.
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Storing and Retrieving an Equation 

As with other objects, equations may be stored to disk in data bank or database files. You 
can also fetch equations from these files. 

Equations may also be copied-and-pasted to, or from, workfiles or databases. 

EViews even allows you to access equations directly from your databases or another work-
file. You can estimate an equation, store it in a database, and then use it to forecast in sev-
eral workfiles.

See Chapter 3, “EViews Basics”, beginning on page 33 and Chapter 6, “EViews Data-
bases”, beginning on page 107 for additional information about objects, databases, and 
object containers.

Using Estimated Coefficients

The coefficients of an equation are listed in the representations view. By default, EViews 
will use the C coefficient vector when you specify an equation, but you may explicitly use 
other coefficient vectors in defining your equation. 

These stored coefficients may be used as scalars in generating data. While there are easier 
ways of generating fitted values (see “Forecasting from an Equation” on page 343), for pur-
poses of illustration, note that we can use the coefficients to form the fitted values from an 
equation. The command:

series cshat = eq1.c(1) + eq1.c(2)*gdp

forms the fitted value of CS, CSHAT, from the OLS regression coefficients and the indepen-
dent variables from the equation object EQ1.

Note that while EViews will accept a series generating equation which does not explicitly 
refer to a named equation:

series cshat = c(1) + c(2)*gdp

and will use the existing values in the C coefficient vector, we strongly recommend that 
you always use named equations to identify the appropriate coefficients. In general, C will 
contain the correct coefficient values only immediately following estimation or a coeffi-
cient update. Using a named equation, or selecting Procs/Update coefs from equation, 
guarantees that you are using the correct coefficient values.

An alternative to referring to the coefficient vector is to reference the @coefs elements of 
your equation (see page 270). For example, the examples above may be written as
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series cshat=eq1.@coefs(1)+eq1.@coefs(2)*gdp

EViews assigns an index to each coefficient in the order that it appears in the representa-
tions view. Thus, if you estimate the equation

equation eq01.ls y=c(10)+b(5)*y(-1)+a(7)*inc

where B and A are also coefficient vectors, then 

• eq01.@coefs(1) contains C(10)

• eq01.@coefs(2) contains B(5)

• eq01.@coefs(3) contains A(7) 

This method should prove useful in matching coefficients to standard errors derived from 
the @stderrs elements of the equation (see Chapter 3, “Object, View and Procedure Ref-
erence”, beginning on page 19 of the Command and Programming Reference). The @coefs 
elements allow you to refer to both the coefficients and the standard errors using a com-
mon index.

If you have used an alternative named coefficient vector in specifying your equation, you 
can also access the coefficient vector directly. For example, if you have used a coefficient 
vector named BETA, you can generate the fitted values by issuing the commands

equation eq02.ls cs=beta(1)+beta(2)*gdp

series cshat=beta(1)+beta(2)*gdp

where BETA is a coefficient vector. Again, however, we recommend that you use the 
@coefs elements to refer to the coefficients of EQ02. Alternatively, you can update the 
coefficients in BETA prior to use by selecting Procs/Update coefs from equation from the 
equation window. Note that EViews does not allow you to refer to the named equation 
coefficients EQ02.BETA(1) and EQ02.BETA(2). You must instead use the expressions, 
EQ02.@COEFS(1) and EQ02.@COEFS(2).

Estimation Problems

Exact Collinearity

If the regressors are very highly collinear, EViews may encounter difficulty in computing 
the regression estimates. In such cases, EViews will issue an error message “Near singular 
matrix.” When you get this error message, you should check to see whether the regressors 
are exactly collinear. The regressors are exactly collinear if one regressor can be written as 
a linear combination of the other regressors. Under exact collinearity, the regressor matrix 

 does not have full column rank and the OLS estimator cannot be computed.X
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You should watch out for exact collinearity when you are using dummy variables in your 
regression. A set of mutually exclusive dummy variables and the constant term are exactly 
collinear. For example, suppose you have quarterly data and you try to run a regression 
with the specification

y c x @seas(1) @seas(2) @seas(3) @seas(4)

EViews will return a “Near singular matrix” error message since the constant and the four 
quarterly dummy variables are exactly collinear through the relation:

c = @seas(1) + @seas(2) + @seas(3) + @seas(4)

In this case, simply drop either the constant term or one of the dummy variables. 

The textbooks listed above provide extensive discussion of the issue of collinearity.

Commands

To declare a new equation object, follow the equation command with a name for the equa-
tion object:

equation eq1

To estimate an equation by OLS, follow the equation name with a dot and the keyword “ls” 
or “est”, the name of the dependent variable, and the names of the independent variables, 
each separated by a space:

eq1.ls cs c gdp cpi

 regresses CS on a constant, GDP, and CPI.

Alternatively, you can specify the equation by a formula with an equal sign:

eq1.ls cs = c(1) + c(2)*gdp + c(3)*cpi

You can define and estimate an equation in one command: 

equation eq_sale.ls sales c trend orders industry_growth

estimates the specified equation and stores the results in an equation named EQ_SALE. 

See ls (p. 245) in the Command and Programming Reference for a complete list of com-
mands and options for single equation least squares estimation in EViews.



278—Chapter 11. Basic Regression



Chapter 12.  Additional Regression Methods

This chapter discusses weighted least squares, heteroskedasticity and autocorrelation con-
sistent covariance estimation, two-stage least squares (TSLS), nonlinear least squares, and 
generalized method of moments (GMM). Note that most of these methods are also avail-
able in systems of equations; see Chapter 19.

Parts of this chapter refer to estimation of models which have autoregressive (AR) and 
moving average (MA) error terms. These concepts are discussed in greater depth in 
Chapter 13.

Weighted Least Squares

Suppose that you have heteroskedasticity of known form, and that there is a series , 
whose values are proportional to the reciprocals of the error standard deviations. You can 
use weighted least squares, with weight series , to correct for the heteroskedasticity.

EViews performs weighted least squares by first dividing the weight series by its mean, 
then multiplying all of the data for each observation by the scaled weight series. The scal-
ing of the weight series is a normalization that has no effect on the parameter results, but 
makes the weighted residuals more comparable to the unweighted residuals. The normal-
ization does imply, however, that EViews weighted least squares is not appropriate in situ-
ations where the scale of the weight series is relevant, as in frequency weighting.

Estimation is then completed by running a regression using the weighted dependent and 
independent variables to minimize the sum-of-squared residuals

(12.1)

with respect to the -dimensional vector of parameters . In matrix notation, let  be a 
diagonal matrix containing the scaled  along the diagonal and zeroes elsewhere, and let 

 and  be the usual matrices associated with the left and right-hand side variables. The 
weighted least squares estimator is

, (12.2)

and the estimated covariance matrix is

. (12.3)

To estimate an equation using weighted least squares, first go to the main menu and select 
Quick/Estimate Equation…, then choose LS—Least Squares (NLS and ARMA) from the 
combo box. Enter your equation specification and sample in the edit boxes, then push the 
Options button and click on the Weighted LS/TSLS option.
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Fill in the blank after Weight: with the name of the series containing your weights, and 
click on OK. Click on OK again to accept the dialog and estimate the equation.

EViews will open an output window displaying the standard coefficient results, and both 
weighted and unweighted summary statistics. The weighted summary statistics are based 
on the fitted residuals, computed using the weighted data,

. (12.4)

The unweighted summary results are based on the residuals computed from the original 
(unweighted) data, 

Dependent Variable: LOG(X)
Method: Least Squares
Date: 10/15/97   Time: 11:10
Sample(adjusted): 1891 1983
Included observations: 93 after adjusting endpoints
Weighting series: POP

Variable Coefficient Std. Error t-Statistic Prob.

C  0.004233  0.012745  0.332092  0.7406
LOG(X(-1))  0.099840  0.112539  0.887163  0.3774
LOG(W(-1))  0.194219  0.421005  0.461322  0.6457

Weighted Statistics

R-squared  0.016252     Mean dependent var  0.009762
Adjusted R-squared -0.005609     S.D. dependent var  0.106487
S.E. of regression  0.106785     Akaike info criterion -1.604274
Sum squared resid  1.026272     Schwarz criterion -1.522577
Log likelihood  77.59873     F-statistic  0.743433
Durbin-Watson stat  1.948087     Prob(F-statistic)  0.478376

Unweighted Statistics

R-squared -0.002922     Mean dependent var  0.011093
Adjusted R-squared -0.025209     S.D. dependent var  0.121357
S.E. of regression  0.122877     Sum squared resid  1.358893
Durbin-Watson stat  2.086669

u� t wt yt xt′bWLS−( )=
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. (12.5)

Following estimation, the unweighted residuals are placed in the RESID series.

If the residual variance assumptions are correct, the weighted residuals should show no 
evidence of heteroskedasticity. If the variance assumptions are correct, the unweighted 
residuals should be heteroskedastic, with the reciprocal of the standard deviation of the 
residual at each period  being proportional to .

The weighting option will be ignored in equations containing ARMA specifications. Note 
also that the weighting option is not available for binary, count, censored and truncated, or 
ordered discrete choice models. 

Heteroskedasticity and Autocorrelation Consistent Covariances 

When the form of heteroskedasticity is not known, it may not be possible to obtain effi-
cient estimates of the parameters using weighted least squares. OLS provides consistent 
parameter estimates in the presence of heteroskedasticity but the usual OLS standard 
errors will be incorrect and should not be used for inference. 

Before we describe the techniques for HAC covariance estimation, note that:

• Using the White heteroskedasticity consistent or the Newey-West HAC consistent 
covariance estimates does not change the point estimates of the parameters, only the 
estimated standard errors. 

• There is nothing to keep you from combining various methods of accounting for het-
eroskedasticity and serial correlation. For example, weighted least squares estima-
tion might be accompanied by White or Newey-West covariance matrix estimates.

Heteroskedasticity Consistent Covariances (White)

White (1980) has derived a heteroskedasticity consistent covariance matrix estimator 
which provides correct estimates of the coefficient covariances in the presence of heterosk-
edasticity of unknown form. The White covariance matrix is given by:

, (12.6)

where is  the number of observations,  is the number of regressors, and  is the least 
squares residual.

EViews provides you the option to use the White covariance estimator in place of the stan-
dard OLS formula. Open the equation dialog and specify the equation as before, then push 
the Options button. Next, click on the check box labeled Heteroskedasticity Consistent 
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Covariance and click on the White radio button. Accept the options and click OK to esti-
mate the equation.

EViews will estimate your equation and compute the variances using White’s covariance 
estimator. You can always tell when EViews is using White covariances, since the output 
display will include a line to document this fact:

HAC Consistent Covariances (Newey-West) 

The White covariance matrix described above assumes that the residuals of the estimated 
equation are serially uncorrelated. Newey and West (1987) have proposed a more general 
covariance estimator that is consistent in the presence of both heteroskedasticity and auto-
correlation of unknown form. The Newey-West estimator is given by

, (12.7)

where

(12.8)

and , the truncation lag, is a parameter representing the number of autocorrelations used 
in evaluating the dynamics of the OLS residuals . Following the suggestion of Newey 
and West, EViews sets  to

. (12.9)

To use the Newey-West method, push the Options button in the estimation dialog box. 
Check the box labeled Heteroskedasticity Consistent Covariance and press the Newey-
West radio button.

Dependent Variable: LOG(X)
Method: Least Squares
Date: 10/15/97   Time: 11:11
Sample(adjusted): 1891 1983
Included observations: 93 after adjusting endpoints
Weighting series: POP
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.

C  0.004233  0.012519  0.338088  0.7361
LOG(X(-1))  0.099840  0.137262  0.727369  0.4689
LOG(W(-1))  0.194219  0.436644  0.444800  0.6575
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Two-stage Least Squares

A fundamental assumption of regression analysis is that the right-hand side variables are 
uncorrelated with the disturbance term. If this assumption is violated, both OLS and 
weighted LS are biased and inconsistent.

There are a number of situations where some of the right-hand side variables are corre-
lated with disturbances. Some classic examples occur when:

• There are endogenously determined variables on the right-hand side of the equation.

• Right-hand side variables are measured with error.

For simplicity, we will refer to variables that are correlated with the residuals as endoge-
nous, and variables that are not correlated with the residuals as exogenous or predeter-
mined.

The standard approach in cases where right-hand side variables are correlated with the 
residuals is to estimate the equation using instrumental variables regression. The idea 
behind instrumental variables is to find a set of variables, termed instruments, that are 
both (1) correlated with the explanatory variables in the equation, and (2) uncorrelated 
with the disturbances. These instruments are used to eliminate the correlation between 
right-hand side variables and the disturbances.

Two-stage least squares (TSLS) is a special case of instrumental variables regression. As 
the name suggests, there are two distinct stages in two-stage least squares. In the first 
stage, TSLS finds the portions of the endogenous and exogenous variables that can be 
attributed to the instruments. This stage involves estimating an OLS regression of each 
variable in the model on the set of instruments. The second stage is a regression of the 
original equation, with all of the variables replaced by the fitted values from the first-stage 
regressions. The coefficients of this regression are the TSLS estimates. 

You need not worry about the separate stages of TSLS since EViews will estimate both 
stages simultaneously using instrumental variables techniques. More formally, let  be 
the matrix of instruments, and let  and  be the dependent and explanatory variables. 
Then the coefficients computed in two-stage least squares are given by,

, (12.10)

and the estimated covariance matrix of these coefficients is given by

, (12.11)

where is the estimated residual variance (square of the standard error of the regression).
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Estimating TSLS in EViews 

To use two-stage least squares, open the equation specification box by choosing Object/
New Object/Equation… or Quick/Estimate Equation…. Choose TSLS from the Method: 
combo box and the dialog will change to include an edit window where you will list the 
instruments. In the edit boxes, specify your dependent variable and independent variables 
and the list of instruments.

There are a few things to keep in 
mind as you enter your instru-
ments:

• In order to calculate TSLS 
estimates, your specification 
must satisfy the order condi-
tion for identification, which 
says that there must be at 
least as many instruments as 
there are coefficients in your 
equation. There is an addi-
tional rank condition which 
must also be satisfied. See 
Davidson and MacKinnon 
(1994) and Johnston and DiNardo (1997) for additional discussion.

• For econometric reasons that we will not pursue here, any right-hand side variables 
that are not correlated with the disturbances can be used as instruments. 

• The constant, C, is always a suitable instrument, so EViews will add it to the instru-
ment list if you omit it.

For example, suppose you are interested in estimating a consumption equation relating 
consumption (CONS) to gross domestic product (GDP), lagged consumption (CONS(–1)), 
a trend variable (TIME) and a constant (C). GDP is endogenous and therefore correlated 
with the residuals. You may, however, believe that government expenditures (G), the log of 
the money supply (LM), lagged consumption, TIME, and C, are exogenous and uncorre-
lated with the disturbances, so that these variables may be used as instruments. Your 
equation specification is then,

cons c gdp cons(-1) time

and the instrument list is,
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c gov cons(-1) time lm

This specification satisfies the order condition for identification, which requires that there 
are at least as many instruments (five) as there are coefficients (four) in the equation spec-
ification. 

Furthermore, all of the variables in the consumption equation that are believed to be 
uncorrelated with the disturbances, (CONS(–1), TIME, and C), appear both in the equation 
specification and in the instrument list. Note that listing C as an instrument is redundant, 
since EViews automatically adds it to the instrument list.

Output from TSLS

Below, we present TSLS estimates from a regression of LOG(CS) on a constant and 
LOG(GDP), with the instrument list C LOG(CS(-1)) LOG(GDP(-1)):

EViews identifies the estimation procedure, as well as the list of instruments in the header. 
This information is followed by the usual coefficient, t-statistics, and asymptotic p-values.

The summary statistics reported at the bottom of the table are computed using the formu-
las outlined in Chapter 11. Bear in mind that all reported statistics are only asymptotically 
valid. For a discussion of the finite sample properties of TSLS, see Johnston and DiNardo 
(1997, pp. 355–358) or Davidson and MacKinnon (1984, pp. 221–224).

EViews uses the structural residuals  in calculating all of the sum-
mary statistics. For example, the standard error of the regression used in the asymptotic 
covariance calculation is computed as

. (12.12)

These structural residuals should be distinguished from the second stage residuals that you 
would obtain from the second stage regression if you actually computed the two-stage least 
squares estimates in two separate stages. The second stage residuals are given by 

Dependent Variable: LOG(CS)
Method: Two-Stage Least Squares
Date: 10/15/97   Time: 11:32
Sample(adjusted): 1947:2 1995:1
Included observations: 192 after adjusting endpoints
Instrument list: C LOG(CS(-1)) LOG(GDP(-1))

Variable Coefficient Std. Error t-Statistic Prob.

C -1.209268  0.039151 -30.88699  0.0000
LOG(GDP)  1.094339  0.004924  222.2597  0.0000

R-squared  0.996168     Mean dependent var  7.480286
Adjusted R-squared  0.996148     S.D. dependent var  0.462990
S.E. of regression  0.028735     Sum squared resid  0.156888
F-statistic  49399.36     Durbin-Watson stat  0.102639
Prob(F-statistic)  0.000000

ut yt xt′bTSLS−=

s
2

ut
2

T k−( )⁄
t
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, where the  and  are the fitted values from the first-stage regres-
sions.

We caution you that some of the reported statistics should be interpreted with care. For 
example, since different equation specifications will have different instrument lists, the 
reported  for TSLS can be negative even when there is a constant in the equation.

Weighted TSLS

You can combine TSLS with weighted regression. Simply enter your TSLS specification as 
above, then press the Options button, select the Weighted LS/TSLS option and enter the 
weighting series.

Weighted two-stage least squares is performed by multiplying all of the data, including the 
instruments, by the weight variable, and estimating TSLS on the transformed model. 
Equivalently, EViews then estimates the coefficients using the formula,

(12.13)

The estimated covariance matrix is

. (12.14)

TSLS with AR errors

You can adjust your TSLS estimates to account for serial correlation by adding AR terms to 
your equation specification. EViews will automatically transform the model to a nonlinear 
least squares problem, and estimate the model using instrumental variables. Details of this 
procedure may be found in Fair (1984, pp. 210–214). The output from TSLS with an AR(1) 
specification looks as follows:
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The Options button in the estimation box may be used to change the iteration limit and 
convergence criterion for the nonlinear instrumental variables procedure.

First-order AR errors

Suppose your specification is:

(12.15)

where  is a vector of endogenous variables, and  is a vector of predetermined vari-
ables, which, in this context, may include lags of the dependent variable.  is a vector of 
instrumental variables not in  that is large enough to identify the parameters of the 
model. 

In this setting, there are important technical issues to be raised in connection with the 
choice of instruments. In a widely quoted result, Fair (1970) shows that if the model is esti-
mated using an iterative Cochrane-Orcutt procedure, all of the lagged left- and right-hand 
side variables  must be included in the instrument list to obtain con-
sistent estimates. In this case, then the instrument list should include

. (12.16)

Despite the fact the EViews estimates the model as a nonlinear regression model, the first 
stage instruments in TSLS are formed as if running Cochrane-Orcutt. Thus, if you choose 
to omit the lagged left- and right-hand side terms from the instrument list, EViews will 
automatically add each of the lagged terms as instruments. This fact is noted in your out-
put.

Dependent Variable: LOG(CS)
Method: Two-Stage Least Squares
Date: 10/15/97   Time: 11:42
Sample(adjusted): 1947:2 1995:1
Included observations: 192 after adjusting endpoints
Convergence achieved after 4 iterations
Instrument list: C LOG(CS(-1)) LOG(GDP(-1))

Variable Coefficient Std. Error t-Statistic Prob.

C -1.420705  0.203266 -6.989390  0.0000
LOG(GDP)  1.119858  0.025116  44.58782  0.0000

AR(1)  0.930900  0.022267  41.80595  0.0000

R-squared  0.999611     Mean dependent var  7.480286
Adjusted R-squared  0.999607     S.D. dependent var  0.462990
S.E. of regression  0.009175     Sum squared resid  0.015909
F-statistic  243139.7     Durbin-Watson stat  1.931027
Prob(F-statistic)  0.000000
Inverted AR Roots        .93

yt xt′β wtγ ut+ +=
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Higher Order AR errors

The AR(1) result extends naturally to specifications involving higher order serial correla-
tion. For example, if you include a single AR(4) term in your model, the natural instrument 
list will be

(12.17)

If you include AR terms from 1 through 4, one possible instrument list is

(12.18)

Note that while theoretically valid, this instrument list has a large number of overidentify-
ing instruments, which may lead to computational difficulties and large finite sample 
biases (Fair (1984, p. 214), Davidson and MacKinnon (1993, pp. 222-224)). In theory, add-
ing instruments should always improve your estimates, but as a practical matter this may 
not be so in small samples. 

Examples

Suppose that you wish to estimate the consumption function by two-stage least squares, 
allowing for first-order serial correlation. You may then use two-stage least squares with 
the variable list,

cons c gdp ar(1)

and instrument list,

c gov log(m1) time cons(-1) gdp(-1)

Notice that the lags of both the dependent and endogenous variables (CONS(–1) and 
GDP(–1)), are included in the instrument list.

Similarly, consider the consumption function,

cons c cons(-1) gdp ar(1) 

A valid instrument list is given by

c gov log(m1) time cons(-1) cons(-2) gdp(-1)

Here we treat the lagged left and right-hand side variables from the original specification as 
predetermined and add the lagged values to the instrument list.

Lastly, consider the specification,

cons c gdp ar(1) ar(2) ar(3) ar(4)

Adding all of the relevant instruments in the list, we have

wt zt yt 4− xt 4− wt 4−, , , ,( )

wt zt yt 1− … y, , t 4− xt 1− … x, , t 4− wt 1− … w, , t 4−, , , ,( )
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c gov log(m1) time cons(-1) cons(-2) cons(-3) cons(-4) gdp(-1) 

gdp(-2) gdp(-3) gdp(-4)

TSLS with MA errors

You can also estimate two-stage least squares variable problems with MA error terms of 
various orders. To account for the presence of MA errors, simply add the appropriate terms 
to your specification prior to estimation.

Illustration

Suppose that you wish to estimate the consumption function by two-stage least squares, 
accounting for first-order moving average errors. You may then use two-stage least squares 
with the variable list,

cons c gdp ma(1)

and instrument list,

c gov log(m1) time

EViews will add both first and second lags of CONS and GDP to the instrument list.

Technical Details

Most of the technical details are identical to those outlined above for AR errors. EViews 
transforms the model that is nonlinear in parameters (employing backcasting, if appropri-
ate) and then estimates the model using nonlinear instrumental variables techniques.

Note that EViews augments the instrument list appropriately by adding lagged left- and 
right-hand side variables. There is an approximately involved here, however, in a trunca-
tion of the lag structure. In principle, each MA term involves an infinite number of AR 
terms. Clearly it is impossible to add an infinite number of lags to the instrument list. 
Instead, EViews performs an ad hoc approximation by adding a truncated set of instru-
ments involving the MA order and an additional lag. If for example, you have an MA(5), 
EViews will add lagged instruments corresponding to lags 5 and 6.

Nonlinear Least Squares

Suppose that we have the regression specification

, (12.19)

where  is a general function of the explanatory variables  and the parameters . Least 
squares estimation chooses the parameter values that minimize the sum of squared residu-
als:

yt f xt β,� � εt+=

f xt β
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(12.20)

We say that a model is linear in parameters if the derivatives of  with respect to the 
parameters do not depend upon ; if the derivatives are functions of , we say that the 
model is nonlinear in parameters.

For example, consider the model given by

. (12.21)

it is easy to see that this model is linear in its parameters, implying that it can be estimated 
using ordinary least squares.

In contrast, the equation specification

(12.22)

has derivatives that depend upon the elements of . There is no way to rearrange the 
terms in this model so that ordinary least squares can be used to minimize the sum-of-
squared residuals. We must use nonlinear least squares techniques to estimate the param-
eters of the model. 

Nonlinear least squares minimizes the sum-of-squared residuals with respect to the choice 
of parameters . While there is no closed form solution for the parameter estimates, the 
estimates satisfy the first-order conditions:

, (12.23)

where  is the matrix of first derivatives of  with respect to  (to simplify 
notation we suppress the dependence of  upon ). The estimated covariance matrix is 
given by

. (12.24)

where  are the estimated parameters. For additional discussion of nonlinear estima-
tion, see Pindyck and Rubinfeld (1991, pp. 231-245) or Davidson and MacKinnon (1993).

Estimating NLS Models in EViews

It is easy to tell EViews that you wish to estimate the parameters of a model using nonlin-
ear least squares. EViews automatically applies nonlinear least squares to any regression 
equation that is nonlinear in its coefficients. Simply select Object/New Object/Equation, 
enter the equation in the equation specification dialog box and click OK. EViews will do all 
of the work of estimating your model using an iterative algorithm.

A full technical discussion of iterative estimation procedures is provided in Appendix D, 
“Estimation Algorithms and Options”, beginning on page 663.
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Specifying Nonlinear Least Squares 

For nonlinear regression models, you will have to enter your specification in equation form 
using EViews expressions that contain direct references to coefficients. You may use ele-
ments of the default coefficient vector C (e.g. C(1), C(2), C(34), C(87)), or you can define 
and use other coefficient vectors. For example,

y = c(1) + c(2)*(k^c(3)+l^c(4))

is a nonlinear specification that uses the first through the fourth elements of the default 
coefficient vector, C. 

To create a new coefficient vector, select Objects/New Object/Matrix-Vector-Coef/Coeffi-
cient Vector in the main menu and provide a name. You may now use this coefficient vec-
tor in your specification. For example, if you create a coefficient vector named CF, you can 
rewrite the specification above as

y = cf(11) + cf(12)*(k^cf(13)+l^cf(14))

which uses the eleventh through the fourteenth elements of CF. 

You can also use multiple coefficient vectors in your specification:

y = c(11) + c(12)*(k^cf(1)+l^cf(2))

which uses both C and CF in the specification.

It is worth noting that EViews implicitly adds an additive disturbance to your specification. 
For example, the input

y = (c(1)*x + c(2)*z + 4)^2

is interpreted as , and EViews will minimize

. (12.25)

If you wish, the equation specification may be given by a simple expression that does not 
include a dependent variable. For example, the input

(c(1)*x + c(2)*z + 4)^2

is interpreted by EViews as , and EViews will minimize

. (12.26)

While EViews will estimate the parameters of this last specification, the equation cannot 
be used for forecasting and cannot be included in a model. This restriction also holds for 
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any equation that includes coefficients to the left of the equal sign. For example, if you 
specify

x + c(1)*y = z^c(2) 

EViews will find the values of C(1) and C(2) that minimize the sum of squares of the 
implicit equation

, (12.27)

but the estimated equation cannot be used in forecasting or included in a model, since 
there is no dependent variable.

Estimation Options

Starting Values. Iterative estimation procedures require starting values for the coefficients 
of the model. There are no general rules for selecting starting values for parameters. The 
closer to the true values the better, so if you have reasonable guesses for parameter values, 
these can be useful. In some cases, you can obtain good starting values by estimating a 
restricted version of the model using least squares. In general, however, you will have to 
experiment in order to find starting values.

EViews uses the values in the coefficient vector at the time you begin the estimation proce-
dure as starting values for the iterative procedure. It is easy to examine and change these 
coefficient starting values.

To see the starting values, double click on the coefficient vector in the workfile directory. If 
the values appear to be reasonable, you can close the window and proceed with estimating 
your model. 

If you wish to change the starting values, first make certain that the spreadsheet view of 
your coefficients is in edit mode, then enter the coefficient values. When you are finished 
setting the initial values, close the coefficient vector window and estimate your model. 

You may also set starting coefficient values from the command window using the PARAM 
command. Simply enter the PARAM keyword, following by each coefficient and desired 
value:

param c(1) 153 c(2) .68 c(3) .15

sets C(1)=153, C(2)=.68, and C(3)=.15.

See Appendix D, “Estimation Algorithms and Options” on page 663, for further details.

Derivative Methods. Estimation in EViews requires computation of the derivatives of the 
regression function with respect to the parameters. EViews provides you with the option of 
computing analytic expressions for these derivatives (if possible), or computing finite dif-
ference numeric derivatives in cases where the derivative is not constant. Furthermore, if 

xt c 1( )yt zt
c 2( )−+ εt=
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numeric derivatives are computed, you can choose whether to favor speed of computation 
(fewer function evaluations) or whether to favor accuracy (more function evaluations). 
Additional issues associated with ARIMA models are discussed in “Estimation Options” on 
page 318.

Iteration and Convergence Options. You can control the iterative process by specifying 
convergence criterion and the maximum number of iterations. Press the Options button in 
the equation dialog box and enter the desired values.

EViews will report that the estimation procedure has converged if the convergence test 
value is below your convergence tolerance. See “Iteration and Convergence Options” on 
page 669 for details.

In most cases, you will not need to change the maximum number of iterations. However, 
for some difficult to estimate models, the iterative procedure will not converge within the 
maximum number of iterations. If your model does not converge within the allotted num-
ber of iterations, simply click on the Estimate button, and, if desired, increase the maxi-
mum number of iterations. Click on OK to accept the options, and click on OK to begin 
estimation. EViews will start estimation using the last set of parameter values as starting 
values.

These options may also be set from the global options dialog. See Appendix A, “Estimation 
Defaults” on page 649.

Output from NLS

Once your model has been estimated, EViews displays an equation output screen showing 
the results of the nonlinear least squares procedure. Below is the output from a regression 
of LOG(CS) on C, and the Box-Cox transform of GDP:

Dependent Variable: LOG(CS)
Method: Least Squares
Date: 10/15/97   Time: 11:51
Sample(adjusted): 1947:1 1995:1
Included observations: 193 after adjusting endpoints
Convergence achieved after 80 iterations
LOG(CS)= C(1)+C(2)*(GDP^C(3)-1)/C(3)

Coefficient Std. Error t-Statistic Prob.

C(1)  2.851780  0.279033  10.22024  0.0000
C(2)  0.257592  0.041147  6.260254  0.0000
C(3)  0.182959  0.020201  9.056824  0.0000

R-squared  0.997252     Mean dependent var  7.476058
Adjusted R-squared  0.997223     S.D. dependent var  0.465503
S.E. of regression  0.024532     Akaike info criterion -4.562220
Sum squared resid  0.114350     Schwarz criterion -4.511505
Log likelihood  443.2542     F-statistic  34469.84
Durbin-Watson stat  0.134628     Prob(F-statistic)  0.000000
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If the estimation procedure has converged, EViews will report this fact, along with the 
number of iterations that were required. If the iterative procedure did not converge, 
EViews will report “Convergence not achieved after” followed by the number of iterations 
attempted. 

Below the line describing convergence, EViews will repeat the nonlinear specification so 
that you can easily interpret the estimated coefficients of your model. 

EViews provides you with all of the usual summary statistics for regression models. Pro-
vided that your model has converged, the standard statistical results and tests are asymp-
totically valid.

Weighted NLS

Weights can be used in nonlinear estimation in a manner analogous to weighted linear 
least squares. To estimate an equation using weighted nonlinear least squares, enter your 
specification, press the Options button and click on the Weighted LS/TSLS option. Fill in 
the blank after Weight: with the name of the weight series and then estimate the equation. 

EViews minimizes the sum of the weighted squared residuals:

(12.28)

with respect to the parameters , where  are the values of the weight series and  is 
the matrix of weights. The first-order conditions are given by

(12.29)

and the covariance estimate is computed as

. (12.30)

NLS with AR errors

EViews will estimate nonlinear regression models with autoregressive error terms. Simply 
select Objects/New Object/Equation… or Quick/Estimate Equation… and specify your 
model using EViews expressions, followed by an additive term describing the AR correc-
tion enclosed in square brackets. The AR term should consist of a coefficient assignment 
for each AR term, separated by commas. For example, if you wish to estimate

(12.31)

you should enter the specification
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cs = c(1) + gdp^c(2) + [ar(1)=c(3), ar(2)=c(4)]

See “How EViews Estimates AR Models” on page 310 for additional details. EViews does 
not currently estimate nonlinear models with MA errors, nor does it estimate weighted 
models with AR terms—if you add AR terms to a weighted nonlinear model, the weighting 
series will be ignored.

Nonlinear TSLS

Nonlinear two-stage least squares refers to an instrumental variables procedure for esti-
mating nonlinear regression models involving functions of endogenous and exogenous 
variables and parameters. Suppose we have the usual nonlinear regression model:

, (12.32)

where  is a -dimensional vector of parameters, and  contains both exogenous and 
endogenous variables. In matrix form, if we have  instruments , nonlinear two-
stage least squares minimizes

(12.33)

with respect to the choice of .

While there is no closed form solution for the parameter estimates, the parameter esti-
mates satisfy the first-order conditions:

(12.34)

with estimated covariance given by

. (12.35)

How to Estimate Nonlinear TSLS in EViews

EViews performs the estimation procedure in a single step so that you don’t have to per-
form the separate stages yourself. Simply select Object/New Object/Equation… or Quick/
Estimate Equation… Choose TSLS from the Method: combo box, enter your nonlinear 
specification and the list of instruments. Click OK.

With nonlinear two-stage least squares estimation, you have a great deal of flexibility with 
your choice of instruments. Intuitively you want instruments that are correlated with 

. Since  is nonlinear, you may begin to think about using more than just the exog-
enous and predetermined variables as instruments. Various nonlinear functions of these 
variables, for example, cross-products and powers, may also be valid instruments. One 
should be aware, however, of the possible finite sample biases resulting from using too 
many instruments.
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Weighted Nonlinear Two-stage Least Squares

Weights can be used in nonlinear two-stage least squares estimation. Simply add weighting 
to your nonlinear TSLS specification above by pressing the Options button, selecting 
Weighted LS/TSLS option, and entering the name of the weight series.

The objective function for weighted TSLS is,

. (12.36)

The reported standard errors are based on the covariance matrix estimate given by

(12.37)

where . Note that if you add AR or MA terms to a weighted specification, 
the weighting series will be ignored.

Nonlinear Two-stage Least Squares with AR errors

While we will not go into much detail here, note that EViews can estimate non-linear TSLS 
models where there are autoregressive error terms. EViews does not currently estimate 
nonlinear models with MA errors.

To estimate your model, simply open your equation specification window, and enter your 
nonlinear specification, including all AR terms, and provide your instrument list. For 
example, you could enter the regression specification

cs = exp(c(1) + gdp^c(2)) + [ar(1)=c(3)]

with the instrument list

c gov

EViews will transform the nonlinear regression model as described in “Estimating AR Mod-
els” on page 307, and then estimate nonlinear TSLS on the transformed specification using 
the instruments C and GOV. For nonlinear models with AR errors, EViews uses a Gauss-
Newton algorithm. See “Optimization Algorithms” on page 663 for further details.

Solving Estimation Problems

EViews may not be able to estimate your nonlinear equation on the first attempt. Some-
times, the nonlinear least squares procedure will stop immediately. Other times, EViews 
may stop estimation after several iterations without achieving convergence. EViews might 
even report that it cannot improve the sums-of-squares. While there are no specific rules 
on how to proceed if you encounter these estimation problems, there are a few general 
areas you might want to examine.
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Starting Values

If you experience problems with the very first iteration of a nonlinear procedure, the prob-
lem is almost certainly related to starting values. See the discussion above for how to 
examine and change your starting values. 

Model Identification

If EViews goes through a number of iterations and then reports that it encounters a “Near 
Singular Matrix”, you should check to make certain that your model is identified. Models 
are said to be non-identified if there are multiple sets of coefficients which identically yield 
the minimized sum-of-squares value. If this condition holds, it is impossible to choose 
between the coefficients on the basis of the minimum sum-of-squares criterion.

For example, the nonlinear specification,

(12.38)

is not identified, since any coefficient pair  is indistinguishable from the pair 
 in terms of the sum-of-squared residuals. 

For a thorough discussion of identification of nonlinear least squares models, see Davidson 
and MacKinnon (1993, Sections 2.3, 5.2 and 6.3). 

Convergence Criterion

EViews may report that it is unable to improve the sums-of-squares. This result may be evi-
dence of non-identification or model misspecification. Alternatively, it may be the result of 
setting your convergence criterion too low, which can occur if your nonlinear specification 
is particularly complex.

If you wish to change the convergence criterion, enter the new value in the Options dialog. 
Be aware that increasing this value increases the possibility that you will stop at a local 
minimum, and may hide misspecification or non-identification of your model. 

See “Setting Estimation Options” on page 666, for further details.

Generalized Method of Moments (GMM)

The starting point of GMM estimation is a theoretical relation that the parameters should 
satisfy. The idea is to choose the parameter estimates so that the theoretical relation is sat-
isfied as “closely” as possible. The theoretical relation is replaced by its sample counterpart 
and the estimates are chosen to minimize the weighted distance between the theoretical 
and actual values. GMM is a robust estimator in that, unlike maximum likelihood estima-
tion, it does not require information of the exact distribution of the disturbances. In fact, 
many common estimators in econometrics can be considered as special cases of GMM. 

yt β1β2 β2
2
xt εt+ +=
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The theoretical relation that the parameters should satisfy are usually orthogonality condi-
tions between some (possibly nonlinear) function of the parameters  and a set of 
instrumental variables :

, (12.39)

where  are the parameters to be estimated. The GMM estimator selects parameter esti-
mates so that the sample correlations between the instruments and the function  are as 
close to zero as possible, as defined by the criterion function:

, (12.40)

where  and  is a weighting matrix. Any symmetric positive definite 
matrix  will yield a consistent estimate of . However, it can be shown that a necessary 
(but not sufficient) condition to obtain an (asymptotically) efficient estimate of  is to set 

 equal to the inverse of the covariance matrix of the sample moments .

Many standard estimators, including all of the system estimators provided in EViews, can 
be set up as special cases of GMM. For example, the ordinary least squares estimator can 
be viewed as a GMM estimator, based upon the conditions that each of the right-hand vari-
ables is uncorrelated with the residual.

Estimation by GMM in EViews

To estimate an equation by GMM, either create a new equation object by selecting Object/
New Object/Equation, or press the Estimate button in the toolbar of an existing equation. 
From the Equation Specification dialog choose Estimation Method: GMM. The estimation 
specification dialog will change as depicted below.

To obtain GMM esti-
mates in EViews, you 
need to write the 
moment condition as an 
orthogonality condition 
between an expression 
including the parameters 
and a set of instrumen-
tal variables. There are 
two ways you can write 
the orthogonality condi-
tion: with and without a 
dependent variable. 

If you specify the equa-
tion either by listing vari-
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able names or by an expression with an equal sign, EViews will interpret the moment 
condition as an orthogonality condition between the instruments and the residuals defined 
by the equation. If you specify the equation by an expression without an equal sign, 
EViews will orthogonalize that expression to the set of instruments. 

You must also list the names of the instruments in the Instrument list field box of the 
Equation Specification dialog box. For the GMM estimator to be identified, there must be at 
least as many instrumental variables as there are parameters to estimate. EViews will 
always include the constant in the list of instruments. 

For example, if you type

Equation Specification: y c x

Instrument list: c z w

the orthogonality conditions given by

(12.41)

If you enter an expression

Equation Specification: c(1)*log(y)+x^c(2)

Instrument list: c z z(-1)

the orthogonality conditions are

(12.42)

On the right part of the Equation Specification dialog are the options for selecting the 
weighting matrix  in the objective function. If you select Weighting Matrix: Cross sec-
tion (White Cov), the GMM estimates will be robust to heteroskedasticity of unknown 
form. 

If you select Weighting Matrix: Time series (HAC), the GMM estimates will be robust to 
heteroskedasticity and autocorrelation of unknown form. For the HAC option, you have to 
specify the kernel type and bandwidth.

• The Kernel Options determine the functional form of the kernel used to weight the 
autocovariances in computing the weighting matrix. 
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• The Bandwidth Selection option determines how the weights given by the kernel 
change with the lags of the autocovariances in the computation of the weighting 
matrix. If you select Fixed bandwidth, you may either enter a number for the band-
width or type nw to use Newey and West’s fixed bandwidth selection criterion. 

• The Prewhitening option runs a preliminary VAR(1) prior to estimation to “soak 
up” the correlation in the moment conditions.

The technical notes in “Generalized Method of Moments (GMM)” on page 515 describe 
these options in more detail.

Example

Tauchen (1986) considers the problem of estimating the taste parameters ,  from the 
Euler equation

(12.43)

where we use instruments . To estimate the parameters , 
 by GMM, fill in the Equation Specification dialog as

Equation Specification: c(1)*r(+1)*w(+1)^(-c(2))-1

Instrument list: c w w(-1) r r(-1)

The estimation result using the default HAC Weighting Matrix option looks as follows:

Note that when you specify an equation without a dependent variable, EViews does not 
report some of the regression statistics such as the R-squared. The J-statistic reported at 
the bottom of the table is the minimized value of the objective function. The J-statistic can 
be used to carry out hypothesis tests from GMM estimation; see Newey and West (1987a). 
A simple application of the J-statistic is to test the validity of overidentifying restrictions 
when you have more instruments than parameters to estimate. In this example, we have 

β γ

βRt 1+ wt 1+
γ− 1−( )′zt 0=
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γ

Dependent Variable: Implicit Equation
Method: Generalized Method of Moments
Date: 09/26/97   Time: 14:02
Sample(adjusted): 1891 1982
Included observations: 92 after adjusting endpoints
No prewhitening
Bandwidth: Fixed (3)
Kernel: Bartlett
Convergence achieved after: 7 weight matricies, 7 total coef iterations
C(1)*R(+1)*W(+1)^(-C(2))-1
Instrument list: C W W(-1) R R(-1)

Coefficient Std. Error t-Statistic Prob.

C(1)  0.934096  0.018751  49.81600  0.0000
C(2)  1.366396  0.741802  1.841995  0.0688

S.E. of regression  0.154084     Sum squared resid  2.136760
Durbin-Watson stat  1.903837     J-statistic  0.054523
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five instruments to estimate two parameters and so there are three overidentifying restric-
tions. Under the null hypothesis that the overidentifying restrictions are satisfied, the J-sta-
tistic times the number of regression observations is asymptotically with degrees of 
freedom equal to the number of overidentifying restrictions. You can compute the test sta-
tistic as a named scalar in EViews using the commands

scalar overid=eq_gmm.@regobs*eq_gmm.@jstat

scalar overid_p=1-@cchisq(overid,3)

where EQ_GMM is the name of the equation containing the GMM estimates. The second 
command computes the p-value of the test statistic as a named scalar OVERID_P. To view 
the value of OVERID_P, double click on its name; the value will be displayed in the status 
line at the bottom of the EViews window. 

Commands

To estimate an equation by weighted least squares, specify the weighting series in paren-
theses with the w= option after the ls command:

eq1.ls(w=1/pop) cs c gdp cpi

To estimate an equation by two-stage least squares, follow the tsls command with the 
dependent variable, the independent variables, an @ sign, and a list of instruments:

equation eq2.tsls cs c gdp @ c cs(-1) gdp(-1)

To estimate an equation by GMM, follow the gmm command with the dependent variable, 
the independent variables, an @ sign, and a list of instruments that define the orthogonal-
ity conditions:

equation eq3.gmm cs c gdp @ c cs(-1) gdp(-1)

You can set the starting values prior to nonlinear estimation by the command

param c(1) 1.5 c(2) 1

or 

c(1) = 1.5

c(2) = 1

To declare a coefficient vector, specify the number of rows in parentheses and provide a 
name:

coef(4) beta

declares a four element coefficient vector named BETA filled with zeros.

χ
2
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See “Equation” on page 21 of the Command and Programming Reference for a complete list 
of commands and options for single equation estimation in EViews.



Chapter 13.  Time Series Regression

In this section we discuss single equation regression techniques that are important for the 
analysis of time series data: testing for serial correlation, estimation of ARMA models, 
using polynomial distributed lags, and testing for unit roots in potentially nonstationary 
time series.

The chapter focuses on the specification and estimation of time series models. A number 
of related topics are discussed elsewhere: standard multiple regression techniques are dis-
cussed in Chapters 11 and 12, forecasting and inference are discussed extensively in 
Chapters 14 and 15, vector autoregressions are discussed in Chapter 20, and state space 
models and the Kalman filter are discussed in Chapter 22. 

Serial Correlation Theory

A common finding in time series regressions is that the residuals are correlated with their 
own lagged values. This serial correlation violates the standard assumption of regression 
theory that disturbances are not correlated with other disturbances. The primary problems 
associated with serial correlation are:

• OLS is no longer efficient among linear estimators. Furthermore, since prior residu-
als help to predict current residuals, we can take advantage of this information to 
form a better prediction of the dependent variable.

• Standard errors computed using the textbook OLS formula are not correct, and are 
generally understated.

• If there are lagged dependent variables on the right-hand side, OLS estimates are 
biased and inconsistent.

EViews provides tools for detecting serial correlation and estimation methods that take 
account of its presence. 

In general, we will be concerned with specifications of the form:

(13.1)

where  is a vector of explanatory variables observed at time ,  is a vector of vari-
ables known in the previous period,  and  are vectors of parameters,  is a distur-
bance term, and  is the innovation in the disturbance. The vector  may contain 
lagged values of , lagged values of , or both.
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The disturbance  is termed the unconditional residual. It is the residual based on the 
structural component ( ) but not using the information contained in . The innova-
tion  is also known as the one-period ahead forecast error or the prediction error. It is the 
difference between the actual value of the dependent variable and a forecast made on the 
basis of the independent variables and the past forecast errors. 

The First-Order Autoregressive Model

The simplest and most widely used model of serial correlation is the first-order autoregres-
sive, or AR(1), model. The AR(1) model is specified as

(13.2)

The parameter  is the first-order serial correlation coefficient. In effect, the AR(1) model 
incorporates the residual from the past observation into the regression model for the cur-
rent observation. 

Higher-Order Autoregressive Models

More generally, a regression with an autoregressive process of order , AR( ) error is 
given by

(13.3)

The autocorrelations of a stationary AR( ) process gradually die out to zero, while the 
partial autocorrelations for lags larger than  are zero. 

Testing for Serial Correlation

Before you use an estimated equation for statistical inference (e.g. hypothesis tests and 
forecasting), you should generally examine the residuals for evidence of serial correlation. 
EViews provides several methods of testing a specification for the presence of serial corre-
lation.

The Durbin-Watson Statistic

EViews reports the Durbin-Watson (DW) statistic as a part of the standard regression out-
put. The Durbin-Watson statistic is a test for first-order serial correlation. More formally, 
the DW statistic measures the linear association between adjacent residuals from a regres-
sion model. The Durbin-Watson is a test of the hypothesis  in the specification:

. (13.4)
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If there is no serial correlation, the DW statistic will be around 2. The DW statistic will fall 
below 2 if there is positive serial correlation (in the worst case, it will be near zero). If 
there is negative correlation, the statistic will lie somewhere between 2 and 4. 

Positive serial correlation is the most commonly observed form of dependence. As a rule of 
thumb, with 50 or more observations and only a few independent variables, a DW statistic 
below about 1.5 is a strong indication of positive first order serial correlation. See Johnston 
and DiNardo (1997, Chapter 6.6.1) for a thorough discussion on the Durbin-Watson test 
and a table of the significance points of the statistic.

There are three main limitations of the DW test as a test for serial correlation. First, the dis-
tribution of the DW statistic under the null hypothesis depends on the data matrix . The 
usual approach to handling this problem is to place bounds on the critical region, creating 
a region where the test results are inconclusive. Second, if there are lagged dependent vari-
ables on the right-hand side of the regression, the DW test is no longer valid. Lastly, you 
may only test the null hypothesis of no serial correlation against the alternative hypothesis 
of first-order serial correlation. 

Two other tests of serial correlation—the Q-statistic and the Breusch-Godfrey LM test—
overcome these limitations, and are preferred in most applications.

Correlograms and Q-statistics 

If you select View/Residual Tests/Correlogram-Q-statistics on the equation toolbar, 
EViews will display the autocorrelation and partial autocorrelation functions of the residu-
als, together with the Ljung-Box Q-statistics for high-order serial correlation. If there is no 
serial correlation in the residuals, the autocorrelations and partial autocorrelations at all 
lags should be nearly zero, and all Q-statistics should be insignificant with large p-values. 

Note that the p-values of the Q-statistics will be computed with the degrees of freedom 
adjusted for the inclusion of ARMA terms in your regression. There is evidence that some 
care should be taken in interpreting the results of a Ljung-Box test applied to the residuals 
from an ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite 
sample performance of the test in this setting).

Details on the computation of correlograms and Q-statistics are provided in greater detail 
in Chapter 7, “Series”, on page 169.

Serial Correlation LM Test 

Selecting View/Residual Tests/Serial Correlation LM Test… carries out the Breusch-God-
frey Lagrange multiplier test for general, high-order, ARMA errors. In the Lag Specification 
dialog box, you should enter the highest order of serial correlation to be tested. 

The null hypothesis of the test is that there is no serial correlation in the residuals up to the 
specified order. EViews reports a statistic labeled “F-statistic” and an “Obs*R-squared” 

x
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( —the number of observations times the R-square) statistic. The statistic has 
an asymptotic distribution under the null hypothesis. The distribution of the F-statistic 
is not known, but is often used to conduct an informal test of the null.

See “Serial Correlation LM Test” on page 305 for further discussion of the serial correlation 
LM test.

Example

As an example of the application of these testing procedures, consider the following results 
from estimating a simple consumption function by ordinary least squares:

A quick glance at the results reveals that the coefficients are statistically significant and the 
fit is very tight. However, if the error term is serially correlated, the estimated OLS standard 
errors are invalid and the estimated coefficients will be biased and inconsistent due to the 
presence of a lagged dependent variable on the right-hand side. The Durbin-Watson statis-
tic is not appropriate as a test for serial correlation in this case, since there is a lagged 
dependent variable on the right-hand side of the equation. 

Selecting View/Residual Tests/Correlogram-Q-statistics from this equation produces the 
following view:

NR
2

NR
2

χ
2

Dependent Variable: CS
Method: Least Squares
Date: 08/19/97   Time: 13:03
Sample: 1948:3 1988:4
Included observations: 162

Variable Coefficient Std. Error t-Statistic Prob.

C -9.227624  5.898177 -1.564487  0.1197
GDP  0.038732  0.017205  2.251193  0.0257

CS(-1)  0.952049  0.024484  38.88516  0.0000

R-squared  0.999625     Mean dependent var  1781.675
Adjusted R-squared  0.999621     S.D. dependent var  694.5419
S.E. of regression  13.53003     Akaike info criterion  8.066045
Sum squared resid  29106.82     Schwarz criterion  8.123223
Log likelihood -650.3497     F-statistic  212047.1
Durbin-Watson stat  1.672255     Prob(F-statistic)  0.000000
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The correlogram has spikes at lags up to three and at lag eight. The Q-statistics are signifi-
cant at all lags, indicating significant serial correlation in the residuals. 

Selecting View/Residual Tests/Serial Correlation LM Test… and entering a lag of 4 yields 
the following result: 

The test rejects the hypothesis of no serial correlation up to order four. The Q-statistic and 
the LM test both indicate that the residuals are serially correlated and the equation should 
be re-specified before using it for hypothesis tests and forecasting. 

Estimating AR Models

Before you use the tools described in this section, you may first wish to examine your 
model for other signs of misspecification. Serial correlation in the errors may be evidence 
of serious problems with your specification. In particular, you should be on guard for an 
excessively restrictive specification that you arrived at by experimenting with ordinary 
least squares. Sometimes, adding improperly excluded variables to your regression will 
eliminate the serial correlation.

For a discussion of the efficiency gains from the serial correlation correction and some 
Monte-Carlo evidence, see Rao and Griliches (l969).

Breusch-Godfrey Serial Correlation LM Test:

F-statistic  3.654696     Probability  0.007109
Obs*R-squared  13.96215     Probability  0.007417
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First-Order Serial Correlation

To estimate an AR(1) model in EViews, open an equation by selecting Quick/Estimate 
Equation… and enter your specification as usual, adding the expression “AR(1)” to the 
end of your list. For example, to estimate a simple consumption function with AR(1) 
errors,

(13.5)

you should specify your equation as

cs c gdp ar(1)

EViews automatically adjusts your sample to account for the lagged data used in estima-
tion, estimates the model, and reports the adjusted sample along with the remainder of the 
estimation output.

Higher-Order Serial Correlation

Estimating higher order AR models is only slightly more complicated. To estimate an 
AR( ), you should enter your specification, followed by expressions for each AR term you 
wish to include. If you wish to estimate a model with autocorrelations from one to five:

(13.6)

you should enter

cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5)

By requiring that you enter all of the autocorrelations you wish to include in your model, 
EViews allows you great flexibility in restricting lower order correlations to be zero. For 
example, if you have quarterly data and want to include a single term to account for sea-
sonal autocorrelation, you could enter

cs c gdp ar(4)

Nonlinear Models with Serial Correlation

EViews can estimate nonlinear regression models with additive AR errors. For example, 
suppose you wish to estimate the following nonlinear specification with an AR(2) error:

(13.7)
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Simply specify your model using EViews expressions, followed by an additive term 
describing the AR correction enclosed in square brackets. The AR term should contain a 
coefficient assignment for each AR lag, separated by commas:

cs = c(1) + gdp^c(2) + [ar(1)=c(3), ar(2)=c(4)]

EViews transforms this nonlinear model by differencing, and estimates the transformed 
nonlinear specification using a Gauss-Newton iterative procedure (see “How EViews Esti-
mates AR Models” on page 310).

Two-Stage Regression Models with Serial Correlation

By combining two-stage least squares or two-stage nonlinear least squares with AR terms, 
you can estimate models where there is correlation between regressors and the innovations 
as well as serial correlation in the residuals.

If the original regression model is linear, EViews uses the Marquardt algorithm to estimate 
the parameters of the transformed specification. If the original model is nonlinear, EViews 
uses Gauss-Newton to estimate the AR corrected specification.

For further details on the algorithms and related issues associated with the choice of 
instruments, see the discussion in “TSLS with AR errors” beginning on page 286.

Output from AR Estimation

When estimating an AR model, some care must be taken in interpreting your results. 
While the estimated coefficients, coefficient standard errors, and t-statistics may be inter-
preted in the usual manner, results involving residuals differ from those computed in OLS 
settings.

To understand these differences, keep in mind that there are two different residuals associ-
ated with an AR model. The first are the estimated unconditional residuals, 

, (13.8)

which are computed using the original variables, and the estimated coefficients, . These 
residuals are the errors that you would observe if you made a prediction of the value of  
using contemporaneous information, but ignoring the information contained in the lagged 
residual. 

Normally, there is no strong reason to examine these residuals, and EViews does not auto-
matically compute them following estimation.

The second set of residuals are the estimated one-period ahead forecast errors, . As the 
name suggests, these residuals represent the forecast errors you would make if you com-
puted forecasts using a prediction of the residuals based upon past values of your data, in 
addition to the contemporaneous information. In essence, you improve upon the uncondi-
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tional forecasts and residuals by taking advantage of the predictive power of the lagged 
residuals.

For AR models, the residual-based regression statistics—such as the , the standard 
error of regression, and the Durbin-Watson statistic— reported by EViews are based on the 
one-period ahead forecast errors, .

A set of statistics that is unique to AR models is the estimated AR parameters, . For the 
simple AR(1) model, the estimated parameter  is the serial correlation coefficient of the 
unconditional residuals. For a stationary AR(1) model, the true  lies between –1 (extreme 
negative serial correlation) and +1 (extreme positive serial correlation). The stationarity 
condition for general AR( ) processes is that the inverted roots of the lag polynomial lie 
inside the unit circle. EViews reports these roots as Inverted AR Roots at the bottom of the 
regression output. There is no particular problem if the roots are imaginary, but a station-
ary AR model should have all roots with modulus less than one. 

How EViews Estimates AR Models

Textbooks often describe techniques for estimating AR models. The most widely discussed 
approaches, the Cochrane-Orcutt, Prais-Winsten, Hatanaka, and Hildreth-Lu procedures, 
are multi-step approaches designed so that estimation can be performed using standard 
linear regression. All of these approaches suffer from important drawbacks which occur 
when working with models containing lagged dependent variables as regressors, or models 
using higher-order AR specifications; see Davidson and MacKinnon (1994, pp. 329–341), 
Greene (1997, p. 600–607).

EViews estimates AR models using nonlinear regression techniques. This approach has the 
advantage of being easy to understand, generally applicable, and easily extended to non-
linear specifications and models that contain endogenous right-hand side variables. Note 
that the nonlinear least squares estimates are asymptotically equivalent to maximum likeli-
hood estimates and are asymptotically efficient.

To estimate an AR(1) model, EViews transforms the linear model

(13.9)

into the nonlinear model,

, (13.10)

by substituting the second equation into the first, and rearranging terms. The coefficients 
 and  are estimated simultaneously by applying a Marquardt nonlinear least squares 

algorithm to the transformed equation. See Appendix D, “Estimation Algorithms and 
Options”, on page 663 for details on nonlinear estimation.
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For a nonlinear AR(1) specification, EViews transforms the nonlinear model

(13.11)

into the alternative nonlinear specification

(13.12)

and estimates the coefficients using a Marquardt nonlinear least squares algorithm. 

Higher order AR specifications are handled analogously. For example, a nonlinear AR(3) is 
estimated using nonlinear least squares on the equation

(13.13)

For details, see Fair (1984, pp. 210–214), and Davidson and MacKinnon (1996, pp. 331–
341).

ARIMA Theory

ARIMA (autoregressive integrated moving average) models are generalizations of the sim-
ple AR model that use three tools for modeling the serial correlation in the disturbance: 

• The first tool is the autoregressive, or AR, term. The AR(1) model introduced above 
uses only the first-order term but, in general, you may use additional, higher-order 
AR terms. Each AR term corresponds to the use of a lagged value of the residual in 
the forecasting equation for the unconditional residual. An autoregressive model of 
order , AR( ) has the form

. (13.14)

• The second tool is the integration order term. Each integration order corresponds to 
differencing the series being forecast. A first-order integrated component means that 
the forecasting model is designed for the first difference of the original series. A sec-
ond-order component corresponds to using second differences, and so on. 

• The third tool is the MA, or moving average term. A moving average forecasting 
model uses lagged values of the forecast error to improve the current forecast. A 
first-order moving average term uses the most recent forecast error, a second-order 
term uses the forecast error from the two most recent periods, and so on. An MA( ) 
has the form:

. (13.15)
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Please be aware that some authors and software packages use the opposite sign con-
vention for the  coefficients so that the signs of the MA coefficients may be 
reversed.

The autoregressive and moving average specifications can be combined to form an 
ARMA( ) specification

(13.16)

Although econometricians typically use ARIMA models applied to the residuals from a 
regression model, the specification can also be applied directly to a series. This latter 
approach provides a univariate model, specifying the conditional mean of the series as a 
constant, and measuring the residuals as differences of the series from its mean.

Principles of ARIMA Modeling (Box-Jenkins 1976)

In ARIMA forecasting, you assemble a complete forecasting model by using combinations 
of the three building blocks described above. The first step in forming an ARIMA model for 
a series of residuals is to look at its autocorrelation properties. You can use the correlogram 
view of a series for this purpose, as outlined in “Correlogram” on page 167.

This phase of the ARIMA modeling procedure is called identification (not to be confused 
with the same term used in the simultaneous equations literature). The nature of the corre-
lation between current values of residuals and their past values provides guidance in 
selecting an ARIMA specification.

The autocorrelations are easy to interpret—each one is the correlation coefficient of the 
current value of the series with the series lagged a certain number of periods. The partial 
autocorrelations are a bit more complicated; they measure the correlation of the current 
and lagged series after taking into account the predictive power of all the values of the 
series with smaller lags. The partial autocorrelation for lag 6, for example, measures the 
added predictive power of  when  are already in the prediction model. 
In fact, the partial autocorrelation is precisely the regression coefficient of  in a 
regression where the earlier lags are also used as predictors of .

If you suspect that there is a distributed lag relationship between your dependent (left-
hand) variable and some other predictor, you may want to look at their cross correlations 
before carrying out estimation.

The next step is to decide what kind of ARIMA model to use. If the autocorrelation func-
tion dies off smoothly at a geometric rate, and the partial autocorrelations were zero after 
one lag, then a first-order autoregressive model is appropriate. Alternatively, if the autocor-
relations were zero after one lag and the partial autocorrelations declined geometrically, a 
first-order moving average process would seem appropriate. If the autocorrelations appear 

θ

p q,

ut ρ1ut 1− ρ2ut 2− …+ + ρput p−+ εt
θ1εt 1− θ2εt 2− … θqεt q−

+
+ + + +

=

ut 6− u1 … ut 5−, ,
ut 6−

ut



Estimating ARIMA Models—313
to have a seasonal pattern, this would suggest the presence of a seasonal ARMA structure 
(see “Seasonal ARMA Terms” on page 316).

For example, we can examine the correlogram of the DRI Basics housing series in the 
HS.WF1 workfile by selecting View/Correlogram… from the HS series toolbar:

The “wavy” cyclical correlo-
gram with a seasonal frequency 
suggests fitting a seasonal 
ARMA model to HS.

The goal of ARIMA analysis is a 
parsimonious representation of 
the process governing the resid-
ual. You should use only 
enough AR and MA terms to fit 
the properties of the residuals. 
The Akaike information crite-
rion and Schwarz criterion pro-
vided with each set of estimates 
may also be used as a guide for 
the appropriate lag order selec-
tion.

After fitting a candidate ARIMA 
specification, you should verify that there are no remaining autocorrelations that your 
model has not accounted for. Examine the autocorrelations and the partial autocorrelations 
of the innovations (the residuals from the ARIMA model) to see if any important forecast-
ing power has been overlooked. EViews provides views for diagnostic checks after estima-
tion.

Estimating ARIMA Models

EViews estimates general ARIMA specifications that allow for right-hand side explanatory 
variables. Despite the fact that these models are sometimes termed ARIMAX specifications, 
we will refer to this general class of models as ARIMA.

To specify your ARIMA model, you will:

• Difference your dependent variable, if necessary, to account for the order of integra-
tion.

• Describe your structural regression model (dependent variables and regressors) and 
add any AR or MA terms, as described above.
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Differencing

The d operator can be used to specify differences of series. To specify first differencing, 
simply include the series name in parentheses after d. For example, d(gdp) specifies the 
first difference of GDP, or GDP–GDP(–1).

More complicated forms of differencing may be specified with two optional parameters,  
and . d(x,n) specifies the -th order difference of the series X:

, (13.17)

where  is the lag operator. For example, d(gdp,2) specifies the second order difference 
of GDP:

d(gdp,2) = gdp – 2*gdp(–1) + gdp(–2)

d(x,n,s) specifies -th order ordinary differencing of X with a seasonal difference at lag 
: 

. (13.18)

For example, d(gdp,0,4) specifies zero ordinary differencing with a seasonal difference 
at lag 4, or GDP–GDP(–4).

If you need to work in logs, you can also use the dlog operator, which returns differences 
in the log values. For example, dlog(gdp) specifies the first difference of log(GDP) or 
log(GDP)–log(GDP(–1)). You may also specify the  and  options as described for the 
simple d operator, dlog(x,n,s).

There are two ways to estimate integrated models in EViews. First, you may generate a 
new series containing the differenced data, and then estimate an ARMA model using the 
new data. For example, to estimate a Box-Jenkins ARIMA(1, 1, 1) model for M1, you can 
enter:

series dm1 = d(m1)

ls dm1 c ar(1) ma(1)

Alternatively, you may include the difference operator d directly in the estimation specifi-
cation. For example, the same ARIMA(1,1,1) model can be estimated by the one-line com-
mand

ls d(m1) c ar(1) ma(1)

The latter method should generally be preferred for an important reason. If you define a 
new variable, such as DM1 above, and use it in your estimation procedure, then when you 
forecast from the estimated model, EViews will make forecasts of the dependent variable 
DM1. That is, you will get a forecast of the differenced series. If you are really interested in 
forecasts of the level variable, in this case M1, you will have to manually transform the 
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forecasted value and adjust the computed standard errors accordingly. Moreover, if any 
other transformation or lags of M1 are included as regressors, EViews will not know that 
they are related to DM1. If, however, you specify the model using the difference operator 
expression for the dependent variable, d(m1), the forecasting procedure will provide you 
with the option of forecasting the level variable, in this case M1.

The difference operator may also be used in specifying exogenous variables and can be 
used in equations without ARMA terms. Simply include them in the list of regressors in 
addition to the endogenous variables. For example,

d(cs,2) c d(gdp,2) d(gdp(-1),2) d(gdp(-2),2) time 

is a valid specification that employs the difference operator on both the left-hand and right-
hand sides of the equation.

ARMA Terms

The AR and MA parts of your model will be specified using the keywords ar and ma as 
part of the equation. We have already seen examples of this approach in our specification 
of the AR terms above, and the concepts carry over directly to MA terms.

For example, to estimate a second-order autoregressive and first-order moving average 
error process ARMA(2,1), you would include expressions for the AR(1), AR(2), and MA(1) 
terms along with your other regressors:

c gov ar(1) ar(2) ma(1)

Once again, you need not use the AR and MA terms consecutively. For example, if you 
want to fit a fourth-order autoregressive model to take account of seasonal movements, 
you could use AR(4) by itself:

c gov ar(4)

You may also specify a pure moving average model by using only MA terms. Thus,

c gov ma(1) ma(2)

indicates an MA(2) model for the residuals.

The traditional Box-Jenkins or ARMA models do not have any right-hand side variables 
except for the constant. In this case, your list of regressors would just contain a C in addi-
tion to the AR and MA terms. For example, 

c ar(1) ar(2) ma(1) ma(2)

is a standard Box-Jenkins ARMA (2,2).
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Seasonal ARMA Terms

Box and Jenkins (1976) recommend the use of seasonal autoregressive (SAR) and seasonal 
moving average (SMA) terms for monthly or quarterly data with systematic seasonal 
movements. A SAR( ) term can be included in your equation specification for a seasonal 
autoregressive term with lag . The lag polynomial used in estimation is the product of 
the one specified by the AR terms and the one specified by the SAR terms. The purpose of 
the SAR is to allow you to form the product of lag polynomials. 

Similarly, SMA( ) can be included in your specification to specify a seasonal moving aver-
age term with lag . The lag polynomial used in estimation is the product of the one 
defined by the MA terms and the one specified by the SMA terms. As with the SAR, the 
SMA term allows you to build up a polynomial that is the product of underlying lag poly-
nomials.

For example, a second-order AR process without seasonality is given by

, (13.19)

which can be represented using the lag operator ,  as

. (13.20)

You can estimate this process by including ar(1) and ar(2) terms in the list of regres-
sors. With quarterly data, you might want to add a sar(4) expression to take account of 
seasonality. If you specify the equation as

sales c inc ar(1) ar(2) sar(4)

then the estimated error structure would be:

. (13.21)

The error process is equivalent to:

. (13.22)

The parameter  is associated with the seasonal part of the process. Note that this is an 
AR(6) process with nonlinear restrictions on the coefficients.

As another example, a second-order MA process without seasonality may be written

, (13.23)

or using lag operators,

. (13.24)

You can estimate this second-order process by including both the MA(1) and MA(2) terms 
in your equation specification.
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With quarterly data, you might want to add sma(4) to take account of seasonality. If you 
specify the equation as 

cs c ad ma(1) ma(2) sma(4) 

then the estimated model is:

(13.25)

The error process is equivalent to 

. (13.26)

The parameter  is associated with the seasonal part of the process. This is just an MA(6) 
process with nonlinear restrictions on the coefficients. You can also include both SAR and 
SMA terms. 

Output from ARIMA Estimation

The output from estimation with AR or MA specifications is the same as for ordinary least 
squares, with the addition of a lower block that shows the reciprocal roots of the AR and 
MA polynomials. If we write the general ARMA model using the lag polynomial  and 

 as

, (13.27)

then the reported roots are the roots of the polynomials

. (13.28)

The roots, which may be imaginary, should have modulus no greater than one. The output 
will display a warning message if any of the roots violate this condition.

If  has a real root whose absolute value exceeds one or a pair of complex reciprocal roots 
outside the unit circle (that is, with modulus greater than one), it means that the autore-
gressive process is explosive. 

If  has reciprocal roots outside the unit circle, we say that the MA process is noninvert-
ible, which makes interpreting and using the MA results difficult. However, noninvertibility 
poses no substantive problem, since as Hamilton (1994a, p. 65) notes, there is always an 
equivalent representation for the MA model where the reciprocal roots lie inside the unit 
circle. Accordingly, you should re-estimate your model with different starting values until 
you get a moving average process that satisfies invertibility. Alternatively, you may wish to 
turn off MA backcasting (see “Backcasting MA terms” on page 320).
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If the estimated MA process has roots with modulus close to one, it is a sign that you may 
have over-differenced the data. The process will be difficult to estimate and even more dif-
ficult to forecast. If possible, you should re-estimate with one less round of differencing.

Consider the following example output from ARMA estimation:

This estimation result corresponds to the following specification: 

(13.29)

or equivalently, to

(13.30)

Note that the signs of the MA terms may be reversed from those in textbooks. Note also 
that the inverted roots have moduli very close to one, which is typical for many macro 
time series models. 

Estimation Options

ARMA estimation employs the same nonlinear estimation techniques described earlier for 
AR estimation. These nonlinear estimation techniques are discussed further in Chapter 12, 
“Additional Regression Methods”, on page 290.

Dependent Variable: R
Method: Least Squares
Date: 08/14/97   Time: 16:53
Sample(adjusted): 1954:06 1993:07
Included observations: 470 after adjusting endpoints
Convergence achieved after 25 iterations
Backcast: 1954:01 1954:05

Variable Coefficient Std. Error t-Statistic Prob.

C  8.614804  0.961559  8.959208  0.0000
AR(1)  0.983011  0.009127  107.7077  0.0000

SAR(4)  0.941898  0.018788  50.13275  0.0000
MA(1)  0.513572  0.040236  12.76402  0.0000

SMA(4) -0.960399  0.000601 -1598.423  0.0000

R-squared  0.991557     Mean dependent var  6.978830
Adjusted R-squared  0.991484     S.D. dependent var  2.919607
S.E. of regression  0.269420     Akaike info criterion  0.225489
Sum squared resid  33.75296     Schwarz criterion  0.269667
Log likelihood -47.98992     F-statistic  13652.76
Durbin-Watson stat  2.099958     Prob(F-statistic)  0.000000

Inverted AR Roots        .99        .98
Inverted MA Roots        .99   -.00+.99i   -.00 -.99i       -.51
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You may need to use the Estimation Options dialog box to control the iterative process. 
EViews provides a number of options that allow you to control the iterative procedure of 
the estimation algorithm. In general, you can rely on the EViews choices but on occasion 
you may wish to override the default settings. 

Iteration Limits and Convergence Criterion

Controlling the maximum number of iterations and convergence criterion are described in 
detail in “Iteration and Convergence Options” on page 669.

Derivative Methods

EViews always computes the derivatives of AR coefficients analytically and the derivatives 
of the MA coefficients using finite difference numeric derivative methods. For other coeffi-
cients in the model, EViews provides you with the option of computing analytic expres-
sions for derivatives of the regression equation (if possible) or computing finite difference 
numeric derivatives in cases where the derivative is not constant. Furthermore, you can 
choose whether to favor speed of computation (fewer function evaluations) or whether to 
favor accuracy (more function evaluations) in the numeric derivative computation.

Starting Values for ARMA Estimation

As discussed above, models with AR or MA terms are estimated by nonlinear least squares. 
Nonlinear estimation techniques require starting values for all coefficient estimates. Nor-
mally, EViews determines its own starting values and for the most part this is an issue that 
you need not be concerned about. However, there are a few times when you may want to 
override the default starting values. 

First, estimation will sometimes halt when the maximum number of iterations is reached, 
despite the fact that convergence is not achieved. Resuming the estimation with starting 
values from the previous step causes estimation to pick up where it left off instead of start-
ing over. You may also want to try different starting values to ensure that the estimates are 
a global rather than a local minimum of the squared errors. You might also want to supply 
starting values if you have a good idea of what the answers should be, and want to speed 
up the estimation process. 

To control the starting values for ARMA estimation, click on the Options button in the 
Equation Specification dialog. Among the options which EViews provides are several alter-
natives for setting starting values that you can see by accessing the drop-down menu 
labeled Starting Coefficient Values for ARMA.

EViews’ default approach is OLS/TSLS, which runs a preliminary estimation without the 
ARMA terms and then starts nonlinear estimation from those values. An alternative is to 
use fractions of the OLS or TSLS coefficients as starting values. You can choose .8, .5, .3, or 
you can start with all coefficient values set equal to zero. 



320—Chapter 13. Time Series Regression
The final starting value option is User Supplied. Under this option, EViews uses the coeffi-
cient values that are in the coefficient vector. To set the starting values, open a window for 
the coefficient vector C by double clicking on the icon, and editing the values. 

To properly set starting values, you will need a little more information about how EViews 
assigns coefficients for the ARMA terms. As with other estimation methods, when you 
specify your equation as a list of variables, EViews uses the built-in C coefficient vector. It 
assigns coefficient numbers to the variables in the following order:

• First are the coefficients of the variables, in order of entry. 

• Next come the AR terms in the order you typed them.

• The SAR, MA, and SMA coefficients follow, in that order.

Thus the following two specifications will have their coefficients in the same order:

y c x ma(2) ma(1) sma(4) ar(1)

y sma(4)c ar(1) ma(2) x ma(1)

You may also assign values in the C vector using the param command:

param c(1) 50 c(2) .8 c(3) .2 c(4) .6 c(5) .1 c(6) .5

The starting values will be 50 for the constant, 0.8 for X, 0.2 for AR(1), 0.6 for MA(2), 0.1 
for MA(1) and 0.5 for SMA(4). Following estimation, you can always see the assignment of 
coefficients by looking at the Representations view of your equation.

You can also fill the C vector from any estimated equation (without typing the numbers) by 
choosing Procs/Update Coefs from Equation in the equation toolbar. 

Backcasting MA terms

By default, EViews backcasts MA terms (Box and Jenkins, 1976). Consider an MA( ) 
model of the form

(13.31)

Given initial values,  and , EViews first computes the unconditional residuals  for 
, and uses the backward recursion:

(13.32)

to compute backcast values of  to . To start this recursion, the  values for the 
innovations beyond the estimation sample are set to zero:

. (13.33)

Next, a forward recursion is used to estimate the values of the innovations

q

yt Xt′β ut+=

ut εt θ1εt 1− θ2εt 2− … θqεt q−+ + + +=

β� φ� u� t
t 1 2 … T, , ,=

ε� t u� t φ� 1ε�t 1+− …− φ� qε� t q+−=

ε ε q 1−( )− q

ε�T 1+ ε�T 2+ … ε�T q+ 0= = = =



Estimating ARIMA Models—321
, (13.34)

using the backcasted values of the innovations (to initialize the recursion) and the actual 
residuals. If your model also includes AR terms, EViews will -difference the  to elimi-
nate the serial correlation prior to performing the backcast.

Lastly, the sum of squared residuals (SSR) is formed as a function of the  and , using 
the fitted values of the lagged innovations:

. (13.35)

This expression is minimized with respect to  and . 

The backcast step, forward recursion, and minimization procedures, are repeated until the 
estimates of  and  converge. 

If backcasting is turned off, the values of the pre-sample  are set to zero:

, (13.36)

and forward recursion is used to solve for the remaining values of the innovations.

Dealing with Estimation Problems

Since EViews uses nonlinear least squares algorithms to estimate ARMA models, all of the 
discussion in Chapter 12, “Solving Estimation Problems” on page 296, is applicable, espe-
cially the advice to try alternative starting values.

There are a few other issues to consider that are specific to estimation of ARMA models.

First, MA models are notoriously difficult to estimate. In particular, you should avoid high 
order MA terms unless absolutely required for your model as they are likely to cause esti-
mation difficulties. For example, a single large spike at lag 57 in the correlogram does not 
necessarily require you to include an MA(57) term in your model unless you know there is 
something special happening every 57 periods. It is more likely that the spike in the corre-
logram is simply the product of one or more outliers in the series. By including many MA 
terms in your model, you lose degrees of freedom, and may sacrifice stability and reliabil-
ity of your estimates.

If the underlying roots of the MA process have modulus close to one, you may encounter 
estimation difficulties, with EViews reporting that it cannot improve the sum-of-squares or 
that it failed to converge in the maximum number of iterations. This behavior may be a 
sign that you have over-differenced the data. You should check the correlogram of the 
series to determine whether you can re-estimate with one less round of differencing.

Lastly, if you continue to have problems, you may wish to turn off MA backcasting.
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TSLS with ARIMA errors

Two-stage least squares or instrumental variable estimation with ARIMA poses no particu-
lar difficulties. 

For a detailed discussion of how to estimate TSLS specifications with ARMA errors, see 
“Two-stage Least Squares” on page 283.

Nonlinear Models with ARMA errors

EViews will estimate nonlinear ordinary and two-stage least squares models with autore-
gressive error terms. For details, see the extended discussion in “Nonlinear Least Squares” 
beginning on page 289.

EViews does not currently estimate nonlinear models with MA errors. You can, however, 
use the state space object to specify and estimate these models (see “ARMAX(2, 3) with a 
Random Coefficient” on page 586).

Weighted Models with ARMA errors

EViews does not have procedures to automatically estimate weighted models with ARMA 
error terms—if you add AR terms to a weighted model, the weighting series will be 
ignored. You can, of course, always construct the weighted series and then perform estima-
tion using the weighted data and ARMA terms.

Diagnostic Evaluation

If your ARMA model is correctly specified, the residuals from the model should be nearly 
white noise. This means that there should be no serial correlation left in the residuals. The 
Durbin-Watson statistic reported in the regression output is a test for AR(1) in the absence 
of lagged dependent variables on the right-hand side. As discussed above, more general 
tests for serial correlation in the residuals can be carried out with View/Residual Tests/
Correlogram-Q-statistic and View/Residual Tests/Serial Correlation LM Test….

For the example seasonal ARMA model, the residual correlogram looks as follows:
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The correlogram has a significant spike at lag 5 and all subsequent Q-statistics are highly 
significant. This result clearly indicates the need for respecification of the model. 

Polynomial Distributed Lags (PDLs)

A distributed lag is a relation of the type

(13.37)

The coefficients  describe the lag in the effect of  on . In many cases, the coefficients 
can be estimated directly using this specification. In other cases, the high collinearity of 
current and lagged values of  will defeat direct estimation. 

You can reduce the number of parameters to be estimated by using polynomial distributed 
lags (PDLs) to impose a smoothness condition on the lag coefficients. Smoothness is 
expressed as requiring that the coefficients lie on a polynomial of relatively low degree. A 
polynomial distributed lag model with order  restricts the  coefficients to lie on a -th 
order polynomial of the form

(13.38)

for , where  is a pre-specified constant given by

(13.39)

The PDL is sometimes referred to as an Almon lag. The constant  is included only to 
avoid numerical problems that can arise from collinearity and does not affect the estimates 
of . 
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This specification allows you to estimate a model with  lags of  using only  parame-
ters (if you choose , EViews will return a “Near Singular Matrix” error). 

If you specify a PDL, EViews substitutes Equation (13.38) into Equation (13.37) yielding 

(13.40)

where

(13.41)

Once we estimate from Equation (13.40), we can recover the parameters of interest , 
and their standard errors using the relationship described in Equation (13.38). This proce-
dure is straightforward since  is a linear transformation of . 

The specification of a polynomial distributed lag has three elements: the length of the lag 
, the degree of the polynomial (the highest power in the polynomial) , and the con-

straints that you want to apply. A near end constraint restricts the one-period lead effect of 
 on  to be zero:

. (13.42)

A far end constraint restricts the effect of  on  to die off beyond the number of specified 
lags:

. (13.43)

If you restrict either the near or far end of the lag, the number of  parameters estimated 
is reduced by one to account for the restriction; if you restrict both the near and far end of 
the lag, the number of  parameters is reduced by two. 

By default, EViews does not impose constraints.

How to Estimate Models Containing PDLs

You specify a polynomial distributed lag by the pdl term, with the following information 
in parentheses, each separated by a comma in this order:

• The name of the series. 

• The lag length (the number of lagged values of the series to be included).

• The degree of the polynomial.

• A numerical code to constrain the lag polynomial (optional):
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You may omit the constraint code if you do not want to constrain the lag polynomial. Any 
number of pdl terms may be included in an equation. Each one tells EViews to fit distrib-
uted lag coefficients to the series and to constrain the coefficients to lie on a polynomial. 

For example, 

ls sales c pdl(orders,8,3)

fits SALES to a constant, and a distributed lag of current and eight lags of ORDERS, where 
the lag coefficients of ORDERS lie on a third degree polynomial with no endpoint con-
straints. Similarly,

ls div c pdl(rev,12,4,2)

fits DIV to a distributed lag of current and 12 lags of REV, where the coefficients of REV lie 
on a 4th degree polynomial with a constraint at the far end.

The pdl specification may also be used in two-stage least squares. If the series in the pdl 
is exogenous, you should include the PDL of the series in the instruments as well. For this 
purpose, you may specify pdl(*) as an instrument; all pdl variables will be used as 
instruments. For example, if you specify the TSLS equation as

sales c inc pdl(orders(-1),12,4) 

with instruments

fed fed(-1) pdl(*)

the distributed lag of ORDERS will be used as instruments together with FED and FED(–1). 

Polynomial distributed lags cannot be used in nonlinear specifications.

Example

The distributed lag model of industrial production (IP) on money (M1) yields the following 
results:

1 constrain the near end of the lag to zero.

2 constrain the far end.

3 constrain both ends.
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Taken individually, none of the coefficients on lagged M1 are statistically different from 
zero. Yet the regression as a whole has a reasonable with a very significant F-statistic 
(though with a very low Durbin-Watson statistic). This is a typical symptom of high col-
linearity among the regressors and suggests fitting a polynomial distributed lag model.

To estimate a fifth-degree polynomial distributed lag model with no constraints, enter the 
commands:

smpl 59.1 89.12

ls ip c pdl(m1,12,5)

The following result is reported at the top of the equation window:

Dependent Variable: IP
Method: Least Squares
Date: 08/15/97   Time: 17:09
Sample(adjusted): 1960:01 1989:12
Included observations: 360 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C  40.67568  0.823866  49.37171  0.0000
M1  0.129699  0.214574  0.604449  0.5459

M1(-1) -0.045962  0.376907 -0.121944  0.9030
M1(-2)  0.033183  0.397099  0.083563  0.9335
M1(-3)  0.010621  0.405861  0.026169  0.9791
M1(-4)  0.031425  0.418805  0.075035  0.9402
M1(-5) -0.048847  0.431728 -0.113143  0.9100
M1(-6)  0.053880  0.440753  0.122245  0.9028
M1(-7) -0.015240  0.436123 -0.034944  0.9721
M1(-8) -0.024902  0.423546 -0.058795  0.9531
M1(-9) -0.028048  0.413540 -0.067825  0.9460
M1(-10)  0.030806  0.407523  0.075593  0.9398
M1(-11)  0.018509  0.389133  0.047564  0.9621
M1(-12) -0.057373  0.228826 -0.250728  0.8022

R-squared  0.852398     Mean dependent var  71.72679
Adjusted R-squared  0.846852     S.D. dependent var  19.53063
S.E. of regression  7.643137     Akaike info criterion  6.943606
Sum squared resid  20212.47     Schwarz criterion  7.094732
Log likelihood -1235.849     F-statistic  153.7030
Durbin-Watson stat  0.008255     Prob(F-statistic)  0.000000

R
2
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This portion of the view reports the estimated coefficients  of the polynomial in 
Equation (13.38) on page 323. The terms PDL01, PDL02, PDL03, …, correspond to 

 in Equation (13.40). 

The implied coefficients of interest  in equation (1) are reported at the bottom of the 
table, together with a plot of the estimated polynomial:

The Sum of Lags reported at the bottom of the table is the sum of the estimated coefficients 
on the distributed lag and has the interpretation of the long run effect of M1 on IP, assum-
ing stationarity. 

Note that selecting View/Coefficient Tests for an equation estimated with PDL terms tests 
the restrictions on , not on . In this example, the coefficients on the fourth- (PDL05) 
and fifth-order (PDL06) terms are individually insignificant and very close to zero. To test 

Dependent Variable: IP
Method: Least Squares
Date: 08/15/97   Time: 17:53
Sample(adjusted): 1960:01 1989:12
Included observations: 360 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C  40.67311  0.815195  49.89374  0.0000
PDL01 -4.66E-05  0.055566 -0.000839  0.9993
PDL02 -0.015625  0.062884 -0.248479  0.8039
PDL03 -0.000160  0.013909 -0.011485  0.9908
PDL04  0.001862  0.007700  0.241788  0.8091
PDL05  2.58E-05  0.000408  0.063211  0.9496
PDL06 -4.93E-05  0.000180 -0.273611  0.7845

R-squared  0.852371 Mean dependent var  71.72679
Adjusted R-squared  0.849862 S.D. dependent var  19.53063
S.E. of regression  7.567664 Akaike info criterion  6.904899
Sum squared resid  20216.15 Schwarz criterion  6.980462
Log likelihood -1235.882 F-statistic  339.6882
Durbin-Watson stat  0.008026 Prob(F-statistic)  0.000000

γ

z1 z2 …, ,

βj

γ β
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the joint significance of these two terms, click View/Coefficient Tests/Wald-Coefficient 
Restrictions… and type

c(6)=0, c(7)=0

in the Wald Test dialog box (see “Wald Test (Coefficient Restrictions)” on page 368 for an 
extensive discussion of Wald tests in EViews). EViews displays the result of the joint test:

There is no evidence to reject the null hypothesis, suggesting that you could have fit a 
lower order polynomial to your lag structure. 

Nonstationary Time Series

The theory behind ARMA estimation is based on stationary time series. A series is said to 
be (weakly or covariance) stationary if the mean and autocovariances of the series do not 
depend on time. Any series that is not stationary is said to be nonstationary. 

A common example of a nonstationary series is the random walk:

, (13.44)

where  is a stationary random disturbance term. The series  has a constant forecast 
value, conditional on , and the variance is increasing over time. The random walk is a 
difference stationary series since the first difference of  is stationary:

. (13.45)

A difference stationary series is said to be integrated and is denoted as I( ) where  is the 
order of integration. The order of integration is the number of unit roots contained in the 
series, or the number of differencing operations it takes to make the series stationary. For 
the random walk above, there is one unit root, so it is an I(1) series. Similarly, a stationary 
series is I(0). 

Standard inference procedures do not apply to regressions which contain an integrated 
dependent variable or integrated regressors. Therefore, it is important to check whether a 

Wald Test: 
Equation: IP_PDL 

Test Statistic Value df Probability 

F-statistic 0.039852 (2, 353) 0.9609 
Chi-square 0.079704 2 0.9609 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

C(6) 2.58E-05 2448.827 
C(7) -4.93E-05 5550.537 

Restrictions are linear in coefficients. 

yt yt 1− εt+=

ε y
t

y
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series is stationary or not before using it in a regression. The formal method to test the sta-
tionarity of a series is the unit root test. 

Unit Root Tests

EViews provides you with a variety of powerful tools for testing a series (or the first or sec-
ond difference of the series) for the presence of a unit root. In addition to the existing Aug-
mented Dickey-Fuller (1979) and Phillips-Perron (1998) tests, EViews now allows you to 
compute the GLS-detrended Dickey-Fuller (Elliot, Rothenberg, and Stock, 1996), Kwiat-
kowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg, and Stock Point 
Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests. All of these tests are 
available as a view of a series.

Performing Unit Root Tests in EViews

The following discussion assumes that 
you are familiar with the basic forms of 
the unit root tests, and the associated 
options. We provide theoretical back-
ground for these tests in “Basic Unit Root 
Theory” beginning on page 333, and doc-
ument the settings used when performing 
these tests. 

To begin, double click on the series name 
to open the series window, and choose 
View/Unit Root Test…

You must specify four sets of options to 
carry out a unit root test. The first three settings (on the left-hand side of the dialog) deter-
mine the basic form of the unit root test. The fourth set of options (on the right-hand side 
of the dialog) consist of test specific advanced settings. You only need concern yourself 
with these settings if you wish to customize the calculation of your unit root test. 

First, you should use the topmost combo box to select the type of unit root test that you 
wish to perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP.

Next, specify whether you wish to test for a unit root in the level, first difference, or second 
difference of the series. 

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant 
and linear trend, or neither (there are limitations on these choices for some of the tests). 

You can click on OK to compute the test using the specified settings, or you can customize 
your test using the advanced settings portion of the dialog.
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The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged 
difference terms  are to be included in the ADF test equation. You may choose to let 
EViews automatically select , or you may specify a fixed positive integer value (if you 
choose automatic selection, you are given the additional option of selecting both the infor-
mation criterion and maximum number of lags to be used in the selection procedure).

In this case, we have chosen to estimate an ADF test that includes a constant in the test 
regression and employs automatic lag length selection using a Schwarz Information Crite-
rion (BIC) and a maximum lag length of 14. Applying these settings to data on the U. S. 
one-month Treasury bill rate for the period from March 1953 to July 1971, we can replicate 
Example 9.2 of Hayashi (2000, p. 596). The results are described below.

The first part of the unit root output provides information about the form of the test (the 
type of test, the exogenous variables, and lag length used), and contains the test output, 
associated critical values, and in this case, the p-value:

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221 
observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and 
10% levels. Notice here that the statistic  value is greater than the critical values so that 
we do not reject the null at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to 
calculate the ADF statistic:

p
p

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Lag Length: 1 (Automatic based on SIC, MAXLAG=14) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.417410  0.5734 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 

tα
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If you had choosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the 
right side of the dialog would show the different options associated with the specified test. 
The options are associated with the method used to estimate the zero frequency spectrum 
term, , that is used in constructing the particular test statistic. As before, you only need 
pay attention to these settings if you wish to change from the EViews defaults.

Here we have selected the PP test in the 
combo box. Note that the right-hand side 
of the dialog has changed, and now fea-
tures a combo box for selecting the spec-
tral estimation method. You may use this 
combo box to choose between various ker-
nel or AR regression based estimators for 

. The entry labeled “Default” will show 
you the default estimator for the specific 
unit root test—here we see that the PP 
default uses a kernel sum-of-covariances 
estimator with Bartlett weights. If, instead, 
you had selected a NP test, the default 
entry would be “AR spectral-GLS”. 

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you 
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dia-
log will give you a choice between using Newey-West or Andrews automatic bandwidth 
selection methods, or providing a user specified bandwidth. If, instead, you choose one of 
the AR spectral density estimation methods (AR Spectral - OLS, AR Spectral - OLS 
detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose from vari-
ous automatic lag length selection methods (using information criteria) or to provide a 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(TBILL) 
Method: Least Squares 
Date: 02/07/02   Time: 12:29 
Sample: 1953:03 1971:07 
Included observations: 221 

Variable Coefficient Std. Error t-Statistic Prob. 

TBILL(-1) -0.022951 0.016192 -1.417410 0.1578 
D(TBILL(-1)) -0.203330 0.067007 -3.034470 0.0027 

C 0.088398 0.056934 1.552626 0.1220 

R-squared 0.053856     Mean dependent var 0.013826 
Adjusted R-squared 0.045175     S.D. dependent var 0.379758 
S.E. of regression 0.371081     Akaike info criterion 0.868688 
Sum squared resid 30.01882     Schwarz criterion 0.914817 
Log likelihood -92.99005     F-statistic 6.204410 
Durbin-Watson stat 1.976361     Prob(F-statistic) 0.002395 

f0

f0
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user specified lag length. See “Automatic Bandwidth and Lag Length Selection” on 
page 340.

Once you have chosen the appropriate settings for your test, click on the OK button. 
EViews reports the test statistic along with output from the corresponding test regression. 
For these tests, EViews reports the uncorrected estimate of the residual variance and the 
estimate of the frequency zero spectrum  (labeled as the “HAC corrected variance”) in 
addition to the basic output. Running a PP test using the TBILL series yields:

As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series 
at conventional significance levels.

Note that your test output will differ somewhat for alternative test specifications. For 
example, the KPSS output only provides the asymptotic critical values tabulated by KPSS:

Similarly, the NP test output will contain results for all four test statistics, along with the 
NP tabulated critical values.

A word of caution. You should note that the critical values reported by EViews are valid 
only for unit root tests of a data series, and will be invalid if the series is based on esti-
mated values. For example, Engle and Granger (1987) proposed a two-step method to test 

f0

Null Hypothesis: TBILL has a unit root 
Exogenous: Constant 
Bandwidth: 3.82 (Andrews using Bartlett kernel) 

   Adj. t-Stat   Prob.* 

Phillips-Perron test statistic -1.519035  0.5223 
Test critical values: 1% level  -3.459898  

 5% level  -2.874435  
 10% level  -2.573719  

*MacKinnon (1996) one-sided p-values. 
     

Residual variance (no correction)  0.141569 
HAC corrected variance (Bartlett kernel)  0.107615 

Null Hypothesis: TBILL is stationary 
Exogenous: Constant 
Bandwidth: 11 (Newey-West Fixed using Bartlett kernel) 

    LM-Stat. 

Kwiatkowski-Phillips-Schmidt-Shin test statistic  1.537310 
Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 
  10% level   0.347000 

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  
     

Residual variance (no correction)  2.415060 
HAC corrected variance (Bartlett kernel)  26.11028 
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for cointegration. The test amounts to testing for a unit root in the residuals of a first stage 
regression. Since these residuals are estimates of the disturbance term, the asymptotic dis-
tribution of the test statistic differs from the one for ordinary series. The correct critical val-
ues for a subset of the tests may be found in Davidson and MacKinnon (1993, Table 20.2).

Basic Unit Root Theory

The following discussion outlines the basics features of unit root tests. By necessity, the 
discussion will be brief. Users who require detail should consult the original sources and 
standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamil-
ton, 1994, Chapter 17, and Hayashi, 2000, Chapter 9).

Consider a simple AR(1) process:

, (13.46)

where  are optional exogenous regressors which may consist of constant, or a constant 
and trend,  and  are parameters to be estimated, and the  are assumed to be white 
noise. If ,  is a nonstationary series and the variance of  increases with time and 
approaches infinity. If ,  is a (trend-)stationary series. Thus, the hypothesis of 
(trend-)stationarity can be evaluated by testing whether the absolute value of  is strictly 
less than one. 

The unit root tests that EViews provides generally test the null hypothesis  
against the one-sided alternative . In some cases, the null is tested against a 
point alternative. In contrast, the KPSS Lagrange Multiplier test evaluates the null of 

 against the alternative .

The Augmented Dickey-Fuller (ADF) Test

The standard DF test is carried out by estimating Equation (13.46) after subtracting  
from both sides of the equation:

, (13.47)

where . The null and alternative hypotheses may be written as

(13.48)

and evaluated using the conventional -ratio for :

(13.49)

where  is the estimate of , and  is the coefficient standard error.

Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic 
does not follow the conventional Student’s t-distribution, and they derive asymptotic 
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results and simulate critical values for various test and sample sizes. More recently, 
MacKinnon (1991, 1996) implements a much larger set of simulations than those tabulated 
by Dickey and Fuller. In addition, MacKinnon estimates response surfaces for the simula-
tion results, permitting the calculation of Dickey-Fuller critical values and -values for 
arbitrary sample sizes. The more recent MacKinnon critical value calculations are used by 
EViews in constructing test output.

The simple Dickey-Fuller unit root test described above is valid only if the series is an 
AR(1) process. If the series is correlated at higher order lags, the assumption of white noise 
disturbances  is violated. The Augmented Dickey-Fuller (ADF) test constructs a paramet-
ric correction for higher-order correlation by assuming that the  series follows an AR( ) 
process and adding  lagged difference terms of the dependent variable  to the right-
hand side of the test regression:

. (13.50)

This augmented specification is then used to test (13.48) using the -ratio (13.49). An 
important result obtained by Fuller is that the asymptotic distribution of the -ratio for  
is independent of the number of lagged first differences included in the ADF regression. 
Moreover, while the assumption that  follows an autoregressive (AR) process may seem 
restrictive, Said and Dickey (1984) demonstrate that the ADF test is asymptotically valid in 
the presence of a moving average (MA) component, provided that sufficient lagged differ-
ence terms are included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose 
whether to include exogenous variables in the test regression. You have the choice of 
including a constant, a constant and a linear time trend, or neither, in the test regression. 
One approach would be to run the test with both a constant and a linear trend since the 
other two cases are just special cases of this more general specification. However, includ-
ing irrelevant regressors in the regression will reduce the power of the test to reject the null 
of a unit root. The standard recommendation is to choose a specification that is a plausible 
description of the data under both the null and alternative hypotheses. See, Hamilton 
(1994a, p. 501) for discussion.

Second, you will have to specify the number of lagged difference terms (which we will 
term the “lag length”) to be added to the test regression (0 yields the standard DF test; 
integers greater than 0 correspond to ADF tests). The usual (though not particularly use-
ful) advice is to include a number of lags sufficient to remove serial correlation in the 
residuals. EViews provides both automatic and manual lag length selection options. For 
details, see “Automatic Bandwidth and Lag Length Selection” beginning on page 340.

Dickey-Fuller Test with GLS Detrending (DFGLS)

As noted above, you may elect to include a constant, or a constant and a linear time trend, 
in your ADF test regression. For these two cases, ERS (1996) propose a simple modification 
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of the ADF tests in which the data are detrended so that explanatory variables are “taken 
out” of the data prior to running the test regression.

ERS define a quasi-difference of  that depends on the value  representing the specific 
point alternative against which we wish to test the null:

(13.51)

Next, consider an OLS regression of the quasi-differenced data  on the quasi-dif-
ferenced :

(13.52)

where  contains either a constant, or a constant and trend, and let  be the OLS esti-
mates from this regression.

All that we need now is a value for . ERS recommend the use of , where

(13.53)

We now define the GLS detrended data,  using the estimates associated with the :

(13.54)

Then the DFGLS test involves estimating the standard ADF test equation, (13.50), after 
substituting the GLS detrended  for the original :

(13.55)

Note that since the  are detrended, we do not include the  in the DFGLS test equa-
tion. As with the ADF test, we consider the -ratio for  from this test equation.

While the DFGLS -ratio follows a Dickey-Fuller distribution in the constant only case, the 
asymptotic distribution differs when you include both a constant and trend. ERS (1996, 
Table 1, p. 825) simulate the critical values of the test statistic in this latter setting for 

. Thus, the EViews lower tail critical values use the MacKinnon 
simulations for the no constant case, but are interpolated from the ERS simulated values 
for the constant and trend case. The null hypothesis is rejected for values that fall below 
these critical values.

The Phillips-Perron (PP) Test

Phillips and Perron (1988) propose an alternative (nonparametric) method of controlling 
for serial correlation when testing for a unit root. The PP method estimates the non-aug-
mented DF test equation (13.47), and modifies the -ratio of the  coefficient so that 
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serial correlation does not affect the asymptotic distribution of the test statistic. The PP test 
is based on the statistic:

(13.56)

where  is the estimate, and  the -ratio of ,  is coefficient standard error, and 
 is the standard error of the test regression. In addition,  is a consistent estimate of the 

error variance in (13.47) (calculated as , where  is the number of regres-
sors). The remaining term, , is an estimator of the residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First, you must 
choose whether to include a constant, a constant and a linear time trend, or neither, in the 
test regression. Second, you will have to choose a method for estimating . EViews sup-
ports estimators for  based on kernel-based sum-of-covariances, or on autoregressive 
spectral density estimation. See “Frequency Zero Spectrum Estimation” beginning on 
page 338 for details.

The asymptotic distribution of the PP modified -ratio is the same as that of the ADF sta-
tistic. EViews reports MacKinnon lower-tail critical and p-values for this test.

The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test

The KPSS (1992) test differs from the other unit root tests described here in that the series 
 is assumed to be (trend-) stationary under the null. The KPSS statistic is based on the 

the residuals from the OLS regression of  on the exogenous variables :

(13.57)

The LM statistic is be defined as:

(13.58)

where , is an estimator of the residual spectrum at frequency zero and where  is a 
cumulative residual function:

(13.59)

based on the residuals . We point out that the estimator of  used in 
this calculation differs from the estimator for  used by GLS detrending since it is based on 
a regression involving the original data, and not on the quasi-differenced data.

To specify the KPSS test, you must specify the set of exogenous regressors  and a 
method for estimating . See “Frequency Zero Spectrum Estimation” on page 338 for dis-
cussion.

t�α tα
γ0
f0
����� 
  1 2⁄ T f0 γ0−( ) se α�( )( )

2f0
1 2⁄

s
����������������������������������������������−=

α� tα t α se α�( )
s γ0

T k−( )s2 T⁄ k

f0

f0
f0

t

yt
yt xt

yt xt′δ ut+=

LM S t( )2 T
2
f0( )⁄

t
Σ=

f0 S t( )

S t( ) u� r
r 1=

t

Σ=

u� t yt xt′δ� 0( )−= δ
δ

xt
f0



Unit Root Tests—337
The reported critical values for the LM test statistic are based upon the asymptotic results 
presented in KPSS (Table 1, p. 166).

Elliot, Rothenberg, and Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equa-
tions (13.52). Define the residuals from (13.52) as , and 
let  be the sum-of-squared residuals function. The ERS (feasible) 
point optimal test statistic of the null that  against the alternative that , is 
then defined as

(13.60)

where , is an estimator of the residual spectrum at frequency zero.

To compute the ERS test you must specify the set of exogenous regressors  and a 
method for estimating  (see “Frequency Zero Spectrum Estimation” on page 338).

Critical values for the ERS test statistic are computed by interpolating the simulation 
results provided by ERS (1996, Table 1, p. 825) for .

Ng and Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended 
data . These test statistics are modified forms of Phillips and Perron  and  statis-
tics, the Bhargava (1986)  statistic, and the ERS Point Optimal statistic. First, define the 
term:

(13.61)

The modified statistics may then be written as

(13.62)
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(13.63)

The NP tests require a specification for  and a choice of method for estimating  (see 

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistent estimate of the residual 
spectrum at frequency zero. EViews supports two classes of estimators for : kernel-
based sum-of-covariances estimators, and autoregressive spectral density estimators.

Kernel Sum-of-Covariances Estimation

The kernel-based estimator of the frequency zero spectrum is based on a weighted sum of 
the autocovariances, with the weights are defined by a kernel function. The estimator 
takes the form

(13.64)

where  is a bandwidth parameter (which acts as a truncation lag in the covariance 
weighting),  is a kernel function, and where , the j-th sample autocovariance of the 
residuals , is defined as

 (13.65)

Note that the residuals  that EViews uses in estimating the autocovariance functions in 
(13.65) will differ depending on the specified unit root test:

EViews supports the following kernel functions:

Unit root test Source of  residuals for kernel estimator

ADF, DFGLS not applicable.

PP, ERS Point 
Optimal, NP

residuals from the Dickey-Fuller test equation, (13.47).

KPSS residuals from the OLS test equation, (13.57).
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The properties of these kernels are described in Andrews (1991).

As with most kernel estimators, the choice of the bandwidth parameter  is of consider-
able importance. EViews allows you to specify a fixed parameter, or to have EViews select 
one using a data-dependent method. Automatic bandwidth parameter selection is dis-
cussed in “Automatic Bandwidth and Lag Length Selection” beginning on page 340.

Autoregressive Spectral Density Estimator

The autoregressive spectral density estimator at frequency zero is based upon the residual 
variance and estimated coefficients from the auxiliary regression:

(13.66)

EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS 
detrending, corresponding to difference choices for the data . The following table sum-
marizes the auxiliary equation estimated by the various AR spectral density estimators:

where  are the coefficient estimates from the regression defined in (13.52).

The AR spectral estimator of the frequency zero spectrum is defined as:

(13.67)

Bartlett:

Parzen:

Quadratic Spectral

AR spectral method Auxiliary AR regression specification

OLS , and , .
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where  is the residual variance, and  are the estimates from (13.66). We 
note here that EViews uses the non-degree-of-freedom estimator of the residual variance. 
As a result, spectral estimates comuted in EViews may differ slightly from those obtained 
from other sources.

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference 
terms in the auxiliary equation. You may either specify a fixed parameter, or to have 
EViews automatically select one based on an information criterion. Automatic lag length 
selection is examined in “Automatic Bandwidth and Lag Length Selection” on page 340.

Default Settings

By default, EViews will choose the estimator of  used by the authors of a given test 
specification. You may, of course, override the default settings and choose from either fam-
ily of estimation methods. The default settings are listed below:

Automatic Bandwidth and Lag Length Selection

There are three distinct situations in which EViews can automatically compute a band-
width or a lag length parameter. 

The first situation occurs when you are selecting the bandwidth parameter  for the ker-
nel-based estimators of . For the kernel estimators, EViews provides you with the option 
of using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth 
parameter methods. See the original sources for details. For those familiar with the Newey-
West procedure, we note that EViews uses the lag selection parameter formulae given in 
the corresponding first lines of Table II-C. The Andrews method is based on an AR(1) spec-
ification.

The latter two occur when the unit root test requires estimation of a regression with a 
parametric correction for serial correlation as in the ADF and DFGLS test equation regres-
sions, and in the AR spectral estimator for . In all of these cases,  lagged difference 
terms are added to a regression equation. The automatic selection methods choose  (less 
than the specified maximum) to minimize one of the following criteria:

Unit root test Frequency zero spectrum default method

ADF, DFGLS not applicable

PP, KPSS Kernel (Bartlett) sum-of-covariances

ERS Point Optimal AR spectral regression (OLS)

NP AR spectral regression (GLS-detrended)

σ� u
2

u� t
2

Σ T⁄= β�

f0

l
f0

f0 p
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where the modification factor  is computed as

(13.68)

for , when computing the ADF test equation, and for  as defined in “Autore-
gressive Spectral Density Estimator” on page 339, when estimating . NP (2001) propose 
and examine the modified criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to 
the lag length. By default, EViews chooses a maximum lag of 

(13.69)

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.

Commands

The command

equation eq_gdp.ls gdp c ar(1) ar(2) ma(1) ma(2)

fits an ARMA(2,2) model to the GDP series and stores the results in the equation object 
named EQ_GDP.

eq1.auto(4)

tests for serial correlation of up to order four in the residuals from equation EQ1.

eq1.correlogram(12)

displays the correlogram for the residuals in EQ1 up to lag 12.

equation eq2.ls gdp c pdl(m1,12,3)

fits a third degree polynomial to the coefficients of M1 up to twelve lags.

Information criterion Definition

Akaike (AIC)

Schwarz (SIC)

Hannan-Quinn (HQ)

Modified AIC (MAIC)

Modified SIC (MSIC)

Modified Hannan-Quinn 
(MHQ)

2 l T⁄( )− 2k T⁄+

2 l T⁄( )− k T( )log T⁄+

2 l T⁄( )− 2k T( )log( )log T⁄+
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gdp.uroot(lag=4,const)

runs the ADF unit root test including a constant and four lags of first differences.

gdp.uroot(pp,trend,hac=bt,b=4.2)

runs the Phillips-Perron unit root test including a constant and linear trend with a Bartlett 
kernel and bandwidth of 4.2.



Chapter 14.  Forecasting from an Equation

This chapter describes procedures for forecasting and computing fitted values from a single 
equation. The techniques described here are for forecasting with equation objects esti-
mated using regression methods. Forecasts from equations estimated by specialized tech-
niques, such as ARCH, binary, ordered, tobit, and count methods, are discussed in the 
corresponding chapters. Forecasting from a series using exponential smoothing methods is 
explained in “Exponential Smoothing” on page 190, and forecasting using multiple equa-
tions and models is described in Chapter 23, “Models”, on page 601. 

Forecasting from Equations in EViews

To illustrate the process of forecasting from an estimated equation, we begin with a simple 
example. Suppose we have data on the logarithm of monthly housing starts (HS) and the 
logarithm of the S&P index (SP) over the period 1959:01–1996:01. The data are contained 
in a workfile with range 1959:01–1998:12.

We estimate a regression of HS on a constant, SP, and the lag of HS, with an AR(1) to cor-
rect for residual serial correlation, using data for the period 1959:01–1990:12, and then use 
the model to forecast housing starts under a variety of settings. Following estimation, the 
equation results are held in the equation object EQ01:

Note that the estimation sample is adjusted by two observations to account for the first dif-
ference of the lagged endogenous variable used in deriving AR(1) estimates for this model.

Dependent Variable: HS
Method: Least Squares
Date: 10/18/97   Time: 12:44
Sample(adjusted): 1959:03 1990:01
Included observations: 371 after adjusting endpoints
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C  0.321924  0.117278  2.744975  0.0063
HS(-1)  0.952653  0.016218  58.74157  0.0000

SP  0.005222  0.007588  0.688249  0.4917
AR(1) -0.271254  0.052114 -5.205027  0.0000

R-squared  0.861373     Mean dependent var  7.324051
Adjusted R-squared  0.860240     S.D. dependent var  0.220996
S.E. of regression  0.082618     Akaike info criterion -2.138453
Sum squared resid  2.505050     Schwarz criterion -2.096230
Log likelihood  400.6830     F-statistic  760.1338
Durbin-Watson stat  2.013460     Prob(F-statistic)  0.000000

Inverted AR Roots       -.27
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To get a feel for the fit of the model, select View/Actual, Fitted, Residual…, then choose 
Actual, Fitted, Residual Graph:

The actual and fitted values depicted on the upper portion of the graph are virtually indis-
tinguishable. This view provides little control over the process of producing fitted values, 
and does not allow you to save your fitted values. These limitations are overcome by using 
EViews built-in forecasting procedures to compute fitted values for the dependent variable.

How to Perform a Forecast

To forecast HS from this equation, push the Forecast button on the equation toolbar, or 
select Procs/Forecast…

You should provide the following information:

• Series names.

• Forecasted series. Fill in the edit box 
with the name to be given to the fore-
casted dependent variable. EViews sug-
gests a name, but you can change it to 
any valid series name. The name should 
be different from the name of the depen-
dent variable, since the forecast proce-
dure will overwrite the data in the 
specified series.

• S.E. (optional). If desired, you may pro-
vide a name for the series to be filled with the forecast standard errors. If you do not 
provide a name, no forecast errors will be saved. 
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• GARCH (optional). For models estimated by ARCH, you will be given a further 
option of saving forecasts of the conditional variances (GARCH terms). See 
Chapter 16 for a discussion of GARCH estimation.

• Forecasting method. You have a choice between the following methods:

Dynamic—calculates multi-step forecasts starting from the first period in the forecast 
sample.

Static—calculates a sequence of one-step ahead forecasts, using actual, rather than 
forecasted values for lagged dependent variables. 

and you can set the following options:

1. Structural—instructs EViews to ignore any ARMA terms in the equation when 
forecasting. By default, when your equation has ARMA terms, both dynamic 
and static solution methods form forecasts of the residuals. If you select Struc-
tural, all forecasts will ignore the residuals and will form predictions using 
only the structural part of the model.

2. Sample range. You must specify the sample to be used for the forecast. By 
default, EViews sets this sample to be the workfile sample. By specifying a 
sample outside the sample used in estimating your equation (the estimation 
sample), you can instruct EViews to produce out-of-sample forecasts. 

Note that you are responsible for supplying the values for the independent variables 
in the out-of-sample forecasting period. For static forecasts, you must also supply the 
values for any lagged dependent variables.

• Output. You can choose to see the forecast output as a graph or a numerical forecast 
evaluation, or both. Forecast evaluation is only available if the forecast sample 
includes observations for which the dependent variable is observed.

Illustration

Suppose we produce a dynamic forecast using EQ01 over the sample 1959:01 to 1996:01. 
The forecast values will be placed in the series HSF, and EViews will display both a graph 
of the forecasts and the plus and minus two standard error bands, as well as a forecast 
evaluation:
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As noted in the output, the fore-
cast values are saved in the 
series HSF. Since HSF is a stan-
dard EViews series, you may 
examine your forecasts using all 
of the standard tools for work-
ing with series objects.

We can examine the actual ver-
sus fitted values by creating a 
group containing HS and HSF, 
and plotting the two series. 
Click on Quick/Show… and 
enter HS and HSF. Then select View/Graph/Line to display the two series.

This is a dynamic forecast over the entire period from 1959:01 through 1996:01. For every 
period, the previously forecasted values for HS(-1) are used in forming a forecast of the 
subsequent value of HS. Note the considerable difference between this actual and fitted 
graph and the Actual, Fitted, Residual Graph depicted above.

To perform a series of one-step ahead forecasts, click on Forecast on the equation toolbar, 
and select Static forecasts. EViews will display the forecast results:
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We can also compare the actual and fitted values from the static forecast by examining a 
line graph of a group containing HS and HSF.

The one-step ahead static fore-
casts are more accurate than the 
dynamic forecasts since, for each 
period, the actual value of 
HS(-1) is used in forming the 
forecast of HS. These one-step 
ahead static forecasts are the 
same forecasts used in the 
Actual, Fitted, Residual Graph 
displayed above.

Lastly, we construct a dynamic 
forecast beginning in 1990:02 
(the first period following the 
estimation sample) and ending 
in 1996:01. Keep in mind that data are available for SP for this entire period. The plot of 
the actual and the forecast values for 1989:01 to 1996:01 is given by:
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EViews backfills the forecast series prior to the forecast sample (up through 1990:01) and 
then dynamically forecasts HS for each subsequent period through 1996:01. This is the 
forecast that you would have constructed if, in 1990:01, you predicted values of HS from 
1990:02 through 1996:01, given knowledge about the entire path of SP over that period.

The corresponding static forecast is displayed below:

Again, EViews backfills the values 
of the forecast series, HSF1, 
through 1990:01. This forecast is 
the one you would have con-
structed if, in 1990:01, you used all 
available data to estimate a model, 
and then used this estimated 
model to perform one-step ahead 
forecasts every month for the next 
six years.

The remainder of this chapter 
focuses on the details associated 
with the construction of these fore-
casts, and the corresponding fore-
cast evaluations.
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Forecast Basics

EViews stores the forecast results in the series specified in the Forecast name field. We will 
refer to this series as the forecast series. 

The forecast sample specifies the observations for which EViews will try to compute fitted 
or forecasted values. If the forecast is not computable, a missing value will be returned. In 
some cases, EViews will carry out automatic adjustment of the sample to prevent a fore-
cast consisting entirely of missing values (see “Adjustment for Missing Values” on 
page 350, below). Note that the forecast sample may or may not overlap with the sample 
of observations used to estimate the equation.

For values not included in the forecast sample, there are two options. By default, EViews 
fills in the actual values of the dependent variable. If you turn off the Insert actuals for 
out-of-sample option, out-of-forecast-sample values will be filled with NAs.

As a consequence of these rules, all data in the forecast series will be overwritten during the 
forecast procedure. Existing values in the forecast series will be lost.

Computing Forecasts

For each observation in the forecast sample, EViews computes the fitted value of the 
dependent variable using the estimated parameters, the right-hand side exogenous vari-
ables, and, either the actual or estimated values for lagged endogenous variables and resid-
uals. The method of constructing these forecasted values depends upon the estimated 
model and user specified settings.

To illustrate the forecasting procedure, we begin with a simple linear regression model with 
no lagged endogenous right-hand side variables, and no ARMA terms. Suppose that you 
have estimated the following equation specification:

y c x z

Now click on Forecast, specify a forecast period, and click OK.

For every observation in the forecast period, EViews will compute the fitted value of Y 
using the estimated parameters and the corresponding values of the regressors, X and Z:

. (14.1)

You should make certain that you have valid values for the exogenous right-hand side vari-
ables for all observations in the forecast period. If any data are missing in the forecast sam-
ple, the corresponding forecast observation will be an NA.

y� t c� 1( ) c� 2( )xt c� 3( )zt+ +=
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Adjustment for Missing Values

There are two cases when a missing value will be returned for the forecast value. First, if 
any of the regressors have a missing value, and second, if any of the regressors are out of 
the range of the workfile. This includes the implicit error terms in AR models.

In the case of forecasts with no dynamic components in the specification (i.e. with no 
lagged endogenous or ARMA error terms), a missing value in the forecast series will not 
affect subsequent forecasted values. In the case where there are dynamic components, 
however, a single missing value in the forecasted series will propagate throughout all 
future values of the series.

As a convenience feature, EViews will move the starting point of the sample forward 
where necessary, until a valid forecast value is obtained. Without these adjustments, the 
user would have to figure out the appropriate number of presample values to skip, other-
wise the forecast would consist entirely of missing values. For example, suppose you 
wanted to forecast dynamically from the following equation specification:

y c y(-1) ar(1)

If you specified the beginning of the forecast sample to the beginning of the workfile range, 
EViews will adjust forward the forecast sample by 2 observations, and will use the pre-
forecast-sample values of the lagged variables (the loss of 2 observations occurs because 
the residual loses one observation due to the lagged endogenous variable so that the fore-
cast for the error term can begin only from the third observation.)

Forecast Errors and Variances

Suppose the “true” model is given by:

, (14.2)

where  is an independent, and identically distributed, mean zero random disturbance, 
and  is a vector of unknown parameters. Below, we relax the restriction that the ’s be 
independent.

The true model generating  is not known, but we obtain estimates  of the unknown 
parameters . Then, setting the error term equal to its mean value of zero, the (point) 
forecasts of are obtained as

. (14.3)

Forecasts are made with error, where the error is simply the difference between the actual 
and forecasted value . Assuming that the model is correctly specified, 
there are two sources of forecast error: residual uncertainty and coefficient uncertainty.
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Residual Uncertainty

The first source of error, termed residual or innovation uncertainty, arises because the 
innovations  in the equation are unknown for the forecast period, and are replaced with 
their expectations. While the residuals are zero in expected value, the individual values are 
non-zero; the larger the variation in the individual errors, the greater the overall error in 
the forecasts. 

The standard measure of this variation is the standard error of the regression (labeled “S.E. 
of regression” in the equation output). Residual uncertainty is usually the largest source of 
forecast error.

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged depen-
dent variables and ARMA terms depend on lagged innovations. EViews also sets these 
equal to their expected values, which differ randomly from realized values. This additional 
source of forecast uncertainty tends to rise over the forecast horizon, leading to a pattern 
of increasing forecast errors. Forecasting with lagged dependent variables and ARMA terms 
is discussed in more detail below.

Coefficient Uncertainty

The second source of forecast error is coefficient uncertainty. The estimated coefficients  
of the equation deviate from the true coefficients  in a random fashion. The standard 
error of the estimated coefficient, given in the regression output, is a measure of the preci-
sion with which the estimated coefficients measure the true coefficients. 

The effect of coefficient uncertainty depends upon the exogenous variables. Since the esti-
mated coefficients are multiplied by the exogenous variables  in the computation of fore-
casts, the more the exogenous variables deviate from their mean values, the greater is the 
forecast uncertainty.

Forecast Variability

The variability of forecasts is measured by the forecast standard errors. For a single equa-
tion without lagged dependent variables or ARMA terms, the forecast standard errors are 
computed as

(14.4)

where  is the standard error of regression. These standard errors account for both inno-
vation (the first term) and coefficient uncertainty (the second term). Point forecasts made 
from linear regression models estimated by least squares are optimal in the sense that they 
have the smallest forecast variance among forecasts made by linear unbiased estimators. 
Moreover, if the innovations are normally distributed, the forecast errors have a t-distribu-
tion and forecast intervals can be readily formed.
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If you supply a name for the forecast standard errors, EViews computes and saves a series 
of forecast standard errors in your workfile. You can use these standard errors to form fore-
cast intervals. If you choose the Do graph option for output, EViews will plot the forecasts 
with plus and minus two standard error bands. These two standard error bands provide an 
approximate 95% forecast interval; if you (hypothetically) make many forecasts, the actual 
value of the dependent variable will fall inside these bounds 95 percent of the time.

Additional Details

EViews accounts for the additional forecast uncertainty generated when lagged dependent 
variables are used as explanatory variables (see “Forecasts with Lagged Dependent Vari-
ables” on page 355).

There are several other special cases, involving dependent variables that are defined by 
expression, where coefficient uncertainty is ignored. These cases are described in “Fore-
casting Equations with Formulas” on page 359.

Forecast standard errors derived from equations estimated by nonlinear least squares and 
equations that include PDL (polynomial distributed lag) terms only account for the resid-
ual uncertainty (“Forecasting with Nonlinear and PDL Specifications” on page 364). 

Forecast Evaluation

Suppose we construct a dynamic forecast for HS over the period 1990:02 to 1996:01 using 
our estimated housing equation. If the Forecast evaluation option is checked, and there 
are actual data for the forecasted variable for the forecast sample, EViews reports a table of 
statistical results evaluating the forecast:

Note that EViews cannot compute a forecast evaluation if there are no data for the depen-
dent variable for the forecast sample.

The forecast evaluation is saved in one of two formats. If you turn on the Do graph option, 
the forecasts are included along with a graph of the forecasts. If you wish to display the 
evaluations in their own table, you should turn off the Do graph option in the Forecast dia-
log box.

Forecast: HSF
Actual: HS
Sample: 1990:02 1996:01
Include observations: 72

Root Mean Squared Error  0.318700
Mean Absolute Error  0.297261
Mean Absolute Percentage Error  4.205889
Theil Inequality Coefficient  0.021917
      Bias Proportion  0.869982
      Variance Proportion  0.082804
      Covariance Proportion  0.047214
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Suppose the forecast sample is , and denote the actual and 
forecasted value in period  as  and , respectively. The reported forecast error statis-
tics are computed as follows:

The first two forecast error statistics depend on the scale of the dependent variable. These 
should be used as relative measures to compare forecasts for the same series across differ-
ent models; the smaller the error, the better the forecasting ability of that model according 
to that criterion. The remaining two statistics are scale invariant. The Theil inequality coef-
ficient always lies between zero and one, where zero indicates a perfect fit.

The mean squared forecast error can be decomposed as

(14.5)

where , , ,  are the means and (biased) standard deviations of  and , 
and  is the correlation between  and . The proportions are defined as: 
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• The bias proportion tells us how far the mean of the forecast is from the mean of the 
actual series.

• The variance proportion tells us how far the variation of the forecast is from the vari-
ation of the actual series.

• The covariance proportion measures the remaining unsystematic forecasting errors.

Note that the bias, variance, and covariance proportions add up to one.

If your forecast is “good”, the bias and variance proportions should be small so that most 
of the bias should be concentrated on the covariance proportions. For additional discussion 
of forecast evaluation, see Pindyck and Rubinfeld (1991, Chapter 12).

For the example output, the bias proportion is large, indicating that the mean of the fore-
casts does a poor job of tracking the mean of the dependent variable. To check this, we will 
plot the forecasted series together with the actual series in the forecast sample with the 
two standard error bounds. Suppose we saved the forecasts and their standard errors as 
HSF and HSFSE, respectively. Then the plus and minus two standard error series can be 
generated by the commands

smpl 1990:02 1996:01

series hsf_high = hsf + 2*hsfse

series hsf_low = hsf - 2*hsfse

Create a group containing the four 
series. You can highlight the four 
series HS, HSF, HSF_HIGH, and 
HSF_LOW, double click on the 
selected area, and select Open 
Group, or you can select Quick/
Show… and enter the four series 
names. Once you have the group 
open, select View/Graph/Line.

The forecasts completely miss the 
downturn at the start of the 
1990’s, but, subsequent to the 
recovery, track the trend reason-
ably well from 1992 to 1996.
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Forecasts with Lagged Dependent Variables

Forecasting is complicated by the presence of lagged dependent variables on the right-hand 
side of the equation. For example, we can augment the earlier specification to include the 
first lag of Y:

y c x z y(-1)

and click on the Forecast button and fill out the series names in the dialog as above. There 
is some question, however, as to how we should evaluate the lagged value of Y that 
appears on the right-hand side of the equation. There are two possibilities: dynamic fore-
casting and static forecasting.

Dynamic Forecasting

If you select dynamic forecasting, EViews will perform a multi-step forecast of Y, beginning 
at the start of the forecast sample. For our single lag specification above:

• The initial observation in the forecast sample will use the actual value of lagged Y. 
Thus, if  is the first observation in the forecast sample, EViews will compute

, (14.6)

where  is the value of the lagged endogenous variable in the period prior to the 
start of the forecast sample. This is the one-step ahead forecast.

• Forecasts for subsequent observations will use the previously forecasted values of Y:

. (14.7)

• These forecasts may differ significantly from the one-step ahead forecasts.

If there are additional lags of Y in the estimating equation, the above algorithm is modified 
to account for the non-availability of lagged forecasted values in the additional period. For 
example, if there are three lags of Y in the equation:

• The first observation ( ) uses the actual values for all three lags, , , and 
.

• The second observation ( ) uses actual values for  and,  and the 
forecasted value  of the first lag of .

• The third observation ( ) will use the actual values for , and forecasted 
values  and  for the first and second lags of .

• All subsequent observations will use the forecasted values for all three lags.

The selection of the start of the forecast sample is very important for dynamic forecasting. 
The dynamic forecasts are true multi-step forecasts (from the start of the forecast sample), 
since they use the recursively computed forecast of the lagged value of the dependent vari-

S
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able. These forecasts may be interpreted as the forecasts for subsequent periods that would 
be computed using information available at the start of the forecast sample.

Dynamic forecasting requires that data for the exogenous variables be available for every 
observation in the forecast sample, and that values for any lagged dependent variables be 
observed at the start of the forecast sample (in our example, , but more generally, 
any lags of ). If necessary, the forecast sample will be adjusted.

Any missing values for the explanatory variables will generate an NA for that observation 
and in all subsequent observations, via the dynamic forecasts of the lagged dependent 
variable.

Static Forecasting

Static forecasting performs a series of one-step ahead forecasts of the dependent variable:

• For each observation in the forecast sample, EViews computes

(14.8)

always using the actual value of the lagged endogenous variable.

Static forecasting requires that data for both the exogenous and any lagged endogenous 
variables be observed for every observation in the forecast sample. As above, EViews will, 
if necessary, adjust the forecast sample to account for pre-sample lagged variables. If the 
data are not available for any period, the forecasted value for that observation will be an 
NA. The presence of a forecasted value of NA does not have any impact on forecasts for 
subsequent observations.

A Comparison of Dynamic and Static Forecasting

Both methods will always yield identical results in the first period of a multi-period fore-
cast. Thus, two forecast series, one dynamic and the other static, should be identical for 
the first observation in the forecast sample.

The two methods will differ for subsequent periods only if there are lagged dependent vari-
ables or ARMA terms.

Forecasting with ARMA Errors

Forecasting from equations with ARMA components involves some additional complexi-
ties. When you use the AR or MA specifications, you will need to be aware of how EViews 
handles the forecasts of the lagged residuals which are used in forecasting.

yS 1−
y

y�S k+ c� 1( ) c� 2( )xS k+ c� 3( )zS k+ c� 4( )yS k 1−++ + +=
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Structural Forecasts

By default, EViews will forecast values for the residuals using the estimated ARMA struc-
ture, as described below.

For some types of work, you may wish to assume that the ARMA errors are always zero. If 
you select the structural forecast option by checking Structural (ignore ARMA), EViews 
computes the forecasts assuming that the errors are always zero. If the equation is esti-
mated without ARMA terms, this option has no effect on the forecasts.

Forecasting with AR Errors

For equations with AR errors, EViews adds forecasts of the residuals from the equation to 
the forecast of the structural model that is based on the right-hand side variables. 

In order to compute an estimate of the residual, EViews requires estimates or actual values 
of the lagged residuals. For the first observation in the forecast sample, EViews will use 
pre-sample data to compute the lagged residuals. If the pre-sample data needed to compute 
the lagged residuals are not available, EViews will adjust the forecast sample, and backfill 
the forecast series with actual values (see the discussion of “Adjustment for Missing Val-
ues” on page 350).

If you choose the Dynamic option, both the lagged dependent variable and the lagged 
residuals will be forecasted dynamically. If you select Static, both will be set to the actual 
lagged values. For example, consider the following AR(2) model:

(14.9)

Denote the fitted residuals as , and suppose the model was estimated using 
data up to . Then, provided that the  values are available, the static and 
dynamic forecasts for , are given by:

where the residuals  are formed using the forecasted values of . For sub-
sequent observations, the dynamic forecast will always use the residuals based upon the 
multi-step forecasts, while the static forecast will use the one-step ahead forecast residuals.
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Forecasting with MA Errors

In general, you need not concern yourselves with the details of MA forecasting, since 
EViews will do all of the work for you. For those of you who are interested in the details of 
dynamic forecasting, however, the following discussion should aid you in relating EViews 
results with those obtained from other sources.

The first step in computing forecasts using MA terms is to obtain fitted values for the inno-
vations in the pre-forecast sample period. For example, if you are forecasting the values of 

, beginning in period , with a simple MA( ),

, (14.10)

you will need values for the lagged innovations, .

To compute these pre-forecast innovations, EViews will first assign values for the  inno-
vations prior to the start of the estimation sample, . If your equation is 
estimated with backcasting turned on, EViews will perform backcasting to obtain these 
values. If your equation is estimated with backcasting turned off, or if the forecast sample 
precedes the estimation sample, the initial values will be set to zero. 

Given the initial values, EViews will fit the values of subsequent innovations, 
, using forward recursion. The backcasting and recursion proce-

dures are described in detail in the discussion of backcasting in ARMA models in “Back-
casting MA terms” on page 320. 

Note the difference between this procedure and the approach for AR errors outlined above, 
in which the forecast sample is adjusted forward and the pre-forecast values are set to 
actual values.

The choice between dynamic and static forecasting has two primary implications:

• Once the  pre-sample values for the innovations are computed, dynamic forecast-
ing sets subsequent innovations to zero. Static forecasting extends the forward recur-
sion through the end of the estimation sample, allowing for a series of one-step 
ahead forecasts of both the structural model and the innovations. 

• When computing static forecasts, EViews uses the entire estimation sample to back-
cast the innovations. For dynamic MA forecasting, the backcasting procedure uses 
observations from the beginning of the estimation sample to either the beginning of 
the forecast period, or the end of the estimation sample, whichever comes first.

Example

As an example of forecasting from ARMA models, consider forecasting the monthly new 
housing starts (HS) series. The estimation period is 1959:01–1984:12 and we forecast for 
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the period 1985:01–1991:12. We estimated the following simple multiplicative seasonal 
autoregressive model:

hs c ar(1) sar(12)

To forecast from this estimated model, click Forecast on the equation toolbar. The forecast 
evaluation statistics for the model are shown below:

The large variance proportion indicates that the forecasts are not tracking the variation in 
the actual HS series. To plot the actual and forecasted series together with the two standard 
error bands, you can type

smpl 1985:01 1991:12

plot hs hs_f hs_f+2*hs_se hs_f-2*hs_se 

where HS_F and HS_SE are the forecasts and standard errors of HS.

As indicated by the large vari-
ance proportion, the forecasts 
track the seasonal movements in 
HS only at the beginning of the 
forecast sample and quickly flat-
tens out to the mean forecast 
value.

Forecasting Equations with 
Formulas

EViews allows estimation and 
forecasting with equations where 
the left-hand variable is a trans-
formation specified by a formula. When forecasting from equations with formulas on the 
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left-hand side, three things determine the forecasting procedures and options that are avail-
able:

• whether the formula is linear or nonlinear

• whether the formula includes lagged variables

• whether the formula includes estimated coefficients

Point Forecasts

EViews always provides you with the option to forecast the transformed dependent vari-
able. If the transformation can be normalized and solved for the first series in the formula, 
then EViews also provides you with the option to forecast the normalized series. 

For example, suppose you estimated an equation with the specification

(log(x)+z) c y 

If you press the Forecast button, the Forecast dialog looks like this:

Notice that the dialog provides you with two choices for the series to forecast: the normal-
ized series, X, and the dependent variable, LOG(X)+Z. X is the normalized series since it 
is the first series that appears on the left-hand side of the equation.

However, if you specify the equation as

x+1/x = c(1) + c(2)*y

EViews will not be able to normalize the dependent variable and the Forecast dialog looks 
like this:
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The dialog only allows you to forecast the transformed dependent variable, since EViews 
does not know how to normalize and solve for X. Note also that only static forecasts are 
available for this case. This restriction holds since EViews will not be able to solve for any 
lagged values of X on the right hand-side. 

If the formula can be normalized, EViews will compute the forecasts of the transformed 
dependent variable by transforming the forecasts of the normalized series. This has impor-
tant consequences when the formula includes lagged series. For example, consider the fol-
lowing two models:

series dy = d(y)

equation eq1.ls d(y) c x

equation eq2.ls dy c x

The dynamic forecasts of the first difference D(Y) from the first equation will be numeri-
cally identical to those for DY from the second equation. However, the static forecasts for 
D(Y) from the two equations will not be identical. This is because in the first equation, 
EViews knows that the dependent variable is a transformation of Y, so it will use the actual 
lagged value of Y in computing the static forecast of the first difference D(Y). In the second 
equation, EViews simply views DY as an ordinary series, so that C and X are used to com-
pute the static forecast.

Plotted Standard Errors

When you select Do graph in the forecast dialog, EViews will plot the forecasts, along with 
plus and minus two standard error bands. When you estimate an equation with an expres-
sion for the left-hand side, EViews will plot the standard error bands for either the normal-
ized or the unnormalized expression, depending upon which term you elect to forecast.
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If you elect to predict the normalized dependent variable, EViews will automatically 
account for the nonlinearity in the standard error transformation. The next section pro-
vides additional details on the procedure used to normalize the upper and lower bounds.

Saved Forecast Standard Errors

If you provide a name in this edit box, EViews will store the standard errors of the underly-
ing series or expression that you chose to forecast. 

When the dependent variable of the equation is a simple series or a formula involving only 
linear transformations, the saved standard errors will be exact (except where the forecasts 
do not account for coefficient uncertainty, as described below). If the dependent variable 
involves nonlinear transformations, the saved forecast standard errors will be exact if you 
choose to forecast the entire formula. If you choose to forecast the underlying endogenous 
series, the forecast uncertainty cannot be computed exactly, and EViews will provide a lin-
ear (first-order) approximation to the forecast standard errors.

Consider the following equations involving a formula dependent variable:

d(y) c x

log(y) c x

For the first equation you may choose to forecast either Y or D(Y). In both cases, the fore-
cast standard errors will be exact, since the expression involves only linear transforma-
tions. The two standard errors will, however, differ in dynamic forecasts since the forecast 
standard errors for Y take into account the forecast uncertainty from the lagged value of Y. 
In the second example, the forecast standard errors for log(Y) will be exact. If, however, 
you request a forecast for Y itself, the standard errors saved in the series will be the 
approximate (linearized) forecast standard errors for Y.

Note that when EViews displays a graph view of the forecasts together with standard error 
bands, the standard error bands are always exact. Thus, in forecasting the underlying 
dependent variable in a nonlinear expression, the standard error bands will not be the 
same as those you would obtain by constructing series using the linearized standard errors 
saved in the workfile.

Suppose in our second example above that you store the forecast of Y and its standard 
errors in the workfile as the series YHAT and SE_YHAT. Then the approximate two stan-
dard error bounds can be generated manually as:

series yhat_high1 = yhat + 2*se_yhat

series yhat_low1 = yhat - 2*se_yhat

These forecast error bounds will be symmetric about the point forecasts YHAT.
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On the other hand, when EViews plots the forecast error bounds of Y, it proceeds in two 
steps. It first obtains the forecast of log(Y) and its standard errors (say LYHAT and 
SE_LYHAT) and forms the forecast error bounds on log(Y):

lyhat + 2*se_lyhat

lyhat - 2*se_lyhat

It then normalizes (inverts the transformation) of the two standard error bounds to obtain 
the prediction interval for Y:

series yhat_high2 = exp(lyhat + 2*se_lyhat)

series yhat_low2 = exp(lyhat - 2*se_lyhat)

Because this transformation is a non-linear transformation, these bands will not be sym-
metric around the forecast. 

To take a more complicated example, suppose that you generate the series DLY and LY, and 
then estimate three equivalent models:

series dly =dlog(y)

series ly = log(y)

equation eq1.ls dlog(y) c x

equation eq2.ls d(ly) c x

equation eq3.ls dly c x

The estimated equations from the three models are numerically identical. If you choose to 
forecast the underlying dependent (normalized) series from each model, EQ1 will forecast 
Y, EQ2 will forecast LY (the log of Y), and EQ3 will forecast DLY (the log of the first differ-
ence of Y, log(Y)–logY(–1)). The forecast standard errors saved from EQ1 will be linearized 
approximations to the forecast standard error of Y, while those from the latter two will be 
exact for the forecast standard error of log Y and the log of the first difference of Y.

Static forecasts from all three models are identical because the forecasts from previous 
periods are not used in calculating this period's forecast when performing static forecasts. 
For dynamic forecasts, the log of the forecasts from EQ1 will be identical to those from EQ2 
and the log first difference of the forecasts from EQ1 will be identical to the first difference 
of the forecasts from EQ2 and to the forecasts from EQ3. For static forecasts, the log first 
difference of the forecasts from EQ1 will be identical to the first difference of the forecasts 
from EQ2. However, these forecasts differ from those obtained from EQ3 because EViews 
does not know that the generated series DLY is actually a difference term so that it does 
not use the dynamic relation in the forecasts.

A final word of caution: when you have lagged dependent variables, you should avoid 
referring to the lagged series before the current series in a dependent variable expression. 
For example, consider the two equation specifications:
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d(y) c x

-y(-1)+y c x

Both models have the first difference of Y as the dependent variable and the estimation 
results are identical for the two models. However, if you forecast Y from the second model, 
EViews will try to calculate the forecasts of Y using leads of the actual series Y. These fore-
casts of Y will differ from those produced by the first model, and may not be what you 
expected.

Forecasting with Nonlinear and PDL Specifications

As explained above, forecast errors can arise from two sources: coefficient uncertainty and 
innovation uncertainty. For linear regression models, the forecast standard errors account 
for both coefficient and innovation uncertainty. However, if the model is nonlinear in the 
parameters (or if it contains a PDL specification), then the standard errors ignore coeffi-
cient uncertainty. EViews will display a message in the status line at the bottom of the 
EViews window when forecast standard errors only account for innovation uncertainty. 

For example, consider the three specifications

log(y) c x

y = c(1) + c(2)*x

y = exp(c(1)*x)

y c x pdl(z, 4, 2)

Forecast standard errors from the first and second models account for both coefficient and 
innovation uncertainty since both models are linear in the coefficients. The third and 
fourth specifications have forecast standard errors that account only for residual uncer-
tainty.

One additional case requires mention. Suppose you have the specification:

y-c(1) = c(3) + c(2)*x

Despite the fact that this specification is linear in the parameters, EViews will ignore coef-
ficient uncertainty. Forecast standard errors for any specification that contains coefficients 
on the left-hand side of the equality will only reflect residual uncertainty.

Commands

To obtain static (one-step ahead) forecasts, follow the name of the estimated equation, a 
dot, the command fit, a name for the fitted series, and optionally a name for the standard 
errors of the fitted values:
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eq1.fit yhat yhat_se

To obtain dynamic forecasts, follow the name of the estimated equation, a period, the com-
mand forecast, a name for the forecasts, and optionally a name for the standard errors 
of the forecasts:

eq1.forecast yh yh_se

See the Command and Programming Reference for a complete list of commands and 
options available for forecasting.
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Chapter 15.  Specification and Diagnostic Tests

Empirical research is usually an interactive process. The process begins with a specifica-
tion of the relationship to be estimated. Selecting a specification usually involves several 
choices: the variables to be included, the functional form connecting these variables, and if 
the data are time series, the dynamic structure of the relationship between the variables.

Inevitably, there is uncertainty regarding the appropriateness of this initial specification. 
Once you estimate your equation, EViews provides tools for evaluating the quality of your 
specification along a number of dimensions. In turn, the results of these tests influence the 
chosen specification, and the process is repeated.

This chapter describes the extensive menu of specification test statistics that are available 
as views or procedures of an equation object. While we attempt to provide you with suffi-
cient statistical background to conduct the tests, practical considerations ensure that many 
of the descriptions are incomplete. We refer you to standard statistical and econometric ref-
erences for further details.

Background

Each test procedure described below involves the specification of a null hypothesis, which 
is the hypothesis under test. Output from a test command consists of the sample values of 
one or more test statistics and their associated probability numbers (p-values). The latter 
indicate the probability of obtaining a test statistic whose absolute value is greater than or 
equal to that of the sample statistic if the null hypothesis is true. Thus, low p-values lead to 
the rejection of the null hypothesis. For example, if a p-value lies between 0.05 and 0.01, 
the null hypothesis is rejected at the 5 percent but not at the 1 percent level. 

Bear in mind that there are different assumptions and distributional results associated with 
each test. For example, some of the test statistics have exact, finite sample distributions 
(usually t or F-distributions). Others are large sample test statistics with asymptotic 

distributions. Details vary from one test to another and are given below in the descrip-
tion of each test. 

Types of Tests

The View button on the equation toolbar gives you a choice among three categories of 
tests to check the specification of the equation. 

Additional tests are discussed elsewhere in the User’s Guide. These 
tests include unit root tests (“Performing Unit Root Tests in EViews” 
on page 329), the Granger causality test (“Granger Causality” on 

χ
2
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page 222), tests specific to binary, order, censored, and count models (Chapter 17, “Dis-
crete and Limited Dependent Variable Models”, on page 421), and the Johansen test for 
cointegration (“How to Perform a Cointegration Test” on page 538). 

Coefficient Tests 

These tests evaluate restrictions on the estimated coefficients, including the special case of 
tests for omitted and redundant variables.

Wald Test (Coefficient Restrictions)

The Wald test computes a test statistic based on the unre-
stricted regression. The Wald statistic measures how close 
the unrestricted estimates come to satisfying the restrictions under the null hypothesis. If 
the restrictions are in fact true, then the unrestricted estimates should come close to satis-
fying the restrictions. 

How to Perform Wald Coefficient Tests

To demonstrate the calculation of Wald tests in EViews, we consider simple examples. Sup-
pose a Cobb-Douglas production function has been estimated in the form:

, (15.1)

where ,  and  denote value-added output and the inputs of capital and labor 
respectively. The hypothesis of constant returns to scale is then tested by the restriction: 

.

Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971 
provided the following result:

Qlog A α Llog β Klog ε+ + +=

Q K L

α β+ 1=

Dependent Variable: LOG(Q)
Method: Least Squares
Date: 08/11/97  Time: 16:56
Sample: 1947 1971
Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.

C -2.327939  0.410601 -5.669595  0.0000
LOG(L)  1.591175  0.167740  9.485970  0.0000
LOG(K)  0.239604  0.105390  2.273498  0.0331

R-squared  0.983672   Mean dependent var  4.767586
Adjusted R-squared  0.982187   S.D. dependent var  0.326086
S.E. of regression  0.043521   Akaike info criterion -3.318997
Sum squared resid  0.041669   Schwarz criterion -3.172732
Log likelihood  44.48746   F-statistic  662.6819
Durbin-Watson stat  0.637300   Prob(F-statistic)  0.000000
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The sum of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to 
determine whether the difference is statistically relevant, we will conduct the hypothesis 
test of constant returns.

To carry out a Wald test, choose View/Coefficient Tests/Wald-Coefficient Restrictions… 
from the equation toolbar. Enter the restrictions into the edit box, with multiple coefficient 
restrictions separated by commas. The restrictions should be expressed as equations 
involving the estimated coefficients and constants (you may not include series names). 
The coefficients should be referred to as C(1), C(2), and so on, unless you have used a dif-
ferent coefficient vector in estimation.

To test the hypothesis of constant returns to scale, type the following restriction in the dia-
log box:

c(2) + c(3) = 1

and click OK. EViews reports the following result of the Wald test:

EViews reports an F-statistic and a Chi-square statistic with associated p-values. See “Wald 
Test Details” on page 371 for a discussion of these statistics. In addition, EViews reports 
the value of the normalized (homogeneous) restriction and an associated standard error. In 
this example, we have a single linear restriction so the two test statistics are identical, with 
the p-value indicating that we can decisively reject the null hypothesis of constant returns 
to scale.

To test more than one restriction, separate the restrictions by commas. For example, to test 
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity 
with respect to capital is 1/3, enter the restrictions as

c(2)=2/3, c(3)=1/3

and EViews reports

Wald Test: 
Equation: EQ1 

Test Statistic Value df Probability 

Chi-square 120.0177 1 0.0000 
F-statistic 120.0177 (1, 22) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2) + C(3) 0.830779 0.075834 

Restrictions are linear in coefficients. 
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Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix).

As an example of a nonlinear model with a nonlinear restriction, we estimate a production 
function of the form

(15.2)

and test the constant elasticity of substitution (CES) production function restriction 
. This is an example of a nonlinear restriction. To estimate the (unrestricted) 

nonlinear model, you should select Quick/Estimate Equation… and then enter the follow-
ing specification:

log(q) = c(1) + c(2)*log(c(3)*k^c(4)+(1-c(3))*l^c(4))

To test the nonlinear restriction, choose View/Coefficient Tests/Wald-Coefficient Restric-
tions… from the equation toolbar and type the following restriction in the Wald Test dialog 
box:

c(2)=1/c(4)

The results are presented below:

Wald Test: 
Equation: EQ1 

Test Statistic Value df Probability 

Chi-square 53.99105 2 0.0000 
F-statistic 26.99553 (2, 22) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-2/3 + C(2) 0.924508 0.167740 
-1/3 + C(1) -2.661272 0.410601 

Restrictions are linear in coefficients. 

 

Qlog β1 β2 β3K
β4 1 β3−( )Lβ4+( )log ε+ +=

β2 1 β4⁄=

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)=1/C(4)

F-statistic  0.028507 Probability  0.867539
Chi-square  0.028507 Probability  0.865923

Wald Test: 
Equation: EQ2 

Test Statistic Value df Probability 

Chi-square 0.028508 1 0.8659 
F-statistic 0.028508 (1, 21) 0.8675 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

C(2) - 1/C(4) 1.292163 7.653088 

Delta method computed using analytic derivatives. 
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Since this is a nonlinear equation, we focus on the Chi-square statistic which fails to reject 
the null hypothesis. Note that EViews reports that it used the delta method (with analytic 
derivatives) to compute the Wald restriction variance for the nonlinear restriction.

It is well-known that nonlinear Wald tests are not invariant to the way that you specify the 
nonlinear restrictions. In this example, the nonlinear restriction  may equiva-
lently be written as  or  (for nonzero  and ). For example, 
entering the restriction as

c(2)*c(4)=1

yields:

so that the test now decisively rejects the null hypothesis. We hasten to add that type of 
inconsistency is not unique to EViews, but is a more general property of the Wald test. 
Unfortunately, there does not seem to be a general solution to this problem (see Davidson 
and MacKinnon, 1993, Chapter 13).

Wald Test Details

Consider a general nonlinear regression model

(15.3)

where  and  are -vectors and  is a -vector of parameters to be estimated. Any 
restrictions on the parameters can be written as 

, (15.4)

where  is a smooth function, , imposing  restrictions on . The Wald sta-
tistic is then computed as

 (15.5)

β2 1 β4⁄=
β2β4 1= β4 1 β2⁄= β2 β4

Wald Test:
Equation: EQ2

Null Hypothesis: C(2)*C(4)=1

F-statistic  104.5599 Probability  0.000000
Chi-square  104.5599 Probability  0.000000

Wald Test: 
Equation: EQ2 

Test Statistic Value df Probability 

Chi-square 104.5599 1 0.0000 
F-statistic 104.5599 (1, 21) 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

-1 + C(2)*C(4) 0.835330 0.081691 

Delta method computed using analytic derivatives. 
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where  is the number of observations and  is the vector of unrestricted parameter esti-
mates, and where  is an estimate of the  covariance. In the standard regression case,  
is given by

(15.6)

where  is the vector of unrestricted residuals, and  is the usual estimator of the unre-
stricted residual variance, , but the estimator of  may differ. For 
example,  may be a robust variance matrix estimator computing using White or Newey-
West techniques.

More formally, under the null hypothesis , the Wald statistic has an asymptotic  
distribution, where  is the number of restrictions under . 

For the textbook case of a linear regression model

(15.7)

and linear restrictions

, (15.8)

where  is a known  matrix, and  is a -vector, respectively. The Wald statistic in 
Equation (15.5) reduces to

, (15.9)

which is asymptotically distributed as  under . 

If we further assume that the errors  are independent and identically normally distrib-
uted, we have an exact, finite sample F-statistic:

, (15.10)

where  is the vector of residuals from the restricted regression. In this case, the F-statis-
tic compares the residual sum of squares computed with and without the restrictions 
imposed. 

We remind you that the expression for the finite sample F-statistic in (15.10) is for stan-
dard linear regression, and is not valid for more general cases (nonlinear models, ARMA 
specifications, or equations where the variances are estimated using other methods such 
as Newey-West or White). In non-standard settings, the reported F-statistic (which EViews 
always computes computes as ), does not possess the desired finite-sample proper-
ties. In these cases, while asymptotically valid, the F-statistic results should be viewed as 
illustrative and for comparison purposes only.
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Omitted Variables

This test enables you to add a set of variables to an existing equation and to ask whether 
the set makes a significant contribution to explaining the variation in the dependent vari-
able. The null hypothesis  is that the additional set of regressors are not jointly signifi-
cant. 

The output from the test is an F-statistic and a likelihood ratio (LR) statistic with associ-
ated p-values, together with the estimation results of the unrestricted model under the 
alternative. The F-statistic is based on the difference between the residual sums of squares 
of the restricted and unrestricted regressions and is only valid in linear regression based 
settings. The LR statistic is computed as

(15.11)

where  and  are the maximized values of the (Gaussian) log likelihood function of the 
unrestricted and restricted regressions, respectively. Under , the LR statistic has an 
asymptotic distribution with degrees of freedom equal to the number of restrictions 
(the number of added variables).

Bear in mind that:

• The omitted variables test requires that the same number of observations exist in the 
original and test equations. If any of the series to be added contain missing observa-
tions over the sample of the original equation (which will often be the case when 
you add lagged variables), the test statistics cannot be constructed.

• The omitted variables test can be applied to equations estimated with linear LS, 
TSLS, ARCH (mean equation only), binary, ordered, censored, truncated, and count 
models. The test is available only if you specify the equation by listing the regres-
sors, not by a formula. 

To perform an LR test in these settings, you can estimate a separate equation for the unre-
stricted and restricted models over a common sample, and evaluate the LR statistic and p-
value using scalars and the @cchisq function, as described above.

How to Perform an Omitted Variables Test

To test for omitted variables, select View/Coefficient Tests/Omitted Variables-Likelihood 
Ratio… In the dialog that opens, list the names of the test variables, each separated by at 
least one space. Suppose, for example, that the initial regression is 

ls log(q) c log(l) log(k)

If you enter the list
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log(m) log(e)

in the dialog, then EViews reports the results of the unrestricted regression containing the 
two additional explanatory variables, and displays statistics testing the hypothesis that the 
coefficients on the new variables are jointly zero. The top part of the output depicts the 
test results:

The F-statistic has an exact finite sample F-distribution under  for linear models if the 
errors are independent and identically distributed normal random variables. The numera-
tor degrees of freedom is the number of additional regressors and the denominator degrees 
of freedom is the number of observations less the total number of regressors. The log like-
lihood ratio statistic is the LR test statistic and is asymptotically distributed as a with 
degrees of freedom equal to the number of added regressors.

In our example, the tests reject the null hypothesis that the two series do not belong to the 
equation at a 5% significance level, but cannot reject the hypothesis at a 1% significance 
level. 

Redundant Variables

The redundant variables test allows you to test for the statistical significance of a subset of 
your included variables. More formally, the test is for whether a subset of variables in an 
equation all have zero coefficients and might thus be deleted from the equation. The 
redundant variables test can be applied to equations estimated by linear LS, TSLS, ARCH 
(mean equation only), binary, ordered, censored, truncated, and count methods. The test 
is available only if you specify the equation by listing the regressors, not by a formula.

How to Perform a Redundant Variables Test

To test for redundant variables, select View/Coefficient Tests/Redundant Variables-Like-
lihood Ratio… In the dialog that appears, list the names of each of the test variables, sep-
arated by at least one space. Suppose, for example, that the initial regression is 

ls log(q) c log(l) log(k) log(m) log(e)

If you type the list

log(m) log(e)

in the dialog, then EViews reports the results of the restricted regression dropping the two 
regressors, followed by the statistics associated with the test of the hypothesis that the 
coefficients on the two variables are jointly zero. 

Omitted Variables: LOG(M) LOG(E)

F-statistic  4.267478   Probability  0.028611
Log likelihood ratio  8.884940   Probability  0.011767
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The test statistics are the F-statistic and the Log likelihood ratio. The F-statistic has an 
exact finite sample F-distribution under  if the errors are independent and identically 
distributed normal random variables and the model is linear. The numerator degrees of 
freedom are given by the number of coefficient restrictions in the null hypothesis. The 
denominator degrees of freedom are given by the total regression degrees of freedom. The 
LR test is an asymptotic test, distributed as a with degrees of freedom equal to the num-
ber of excluded variables under . In this case, there are two degrees of freedom.

Residual Tests

EViews provides tests for serial correlation, normality, heteroskedasticity, and autoregres-
sive conditional heteroskedasticity in the residuals from your estimated equation. Not all 
of these tests are available for every specification.

Correlograms and Q-statistics 

This view displays the autocorrelations and partial auto-
correlations of the equation residuals up to the specified 
number of lags. Further details on these statistics and the 
Ljung-Box Q-statistics that are also computed are pro-
vided in Chapter 7, “Q-Statistics” on page 169.

This view is available for the residuals from least squares, two-stage least squares, nonlin-
ear least squares and binary, ordered, censored, and count models. In calculating the prob-
ability values for the Q-statistics, the degrees of freedom are adjusted to account for 
estimated ARMA terms.

To display the correlograms and Q-statistics, push View/Residual Tests/Correlogram-Q-
statistics on the equation toolbar. In the Lag Specification dialog box, specify the number 
of lags you wish to use in computing the correlogram.

Correlograms of Squared Residuals

This view displays the autocorrelations and partial autocorrelations of the squared residu-
als up to any specified number of lags and computes the Ljung-Box Q-statistics for the cor-
responding lags. The correlograms of the squared residuals can be used to check 
autoregressive conditional heteroskedasticity (ARCH) in the residuals; see also “ARCH LM 
Test” on page 377, below. 

If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations 
should be zero at all lags and the Q-statistics should not be significant; see Chapter 7, 
page 167, for a discussion of the correlograms and Q-statistics. 
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This view is available for equations estimated by least squares, two-stage least squares, 
and nonlinear least squares estimation. In calculating the probability for Q-statistics, the 
degrees of freedom are adjusted for the inclusion of ARMA terms.

To display the correlograms and Q-statistics of the squared residuals, push View/Residual 
Tests/Correlogram Squared Residuals on the equation toolbar. In the Lag Specification 
dialog box that opens, specify the number of lags over which to compute the correlograms.

Histogram and Normality Test 

This view displays a histogram and descriptive statistics of the residuals, including the 
Jarque-Bera statistic for testing normality. If the residuals are normally distributed, the his-
togram should be bell-shaped and the Jarque-Bera statistic should not be significant; see 
Chapter 7, page 153, for a discussion of the Jarque-Bera test. This view is available for 
residuals from least squares, two-stage least squares, nonlinear least squares, and binary, 
ordered, censored, and count models.

To display the histogram and Jarque-Bera statistic, select View/Residual Tests/Histogram-
Normality. The Jarque-Bera statistic has a distribution with two degrees of freedom 
under the null hypothesis of normally distributed errors.

Serial Correlation LM Test 

This test is an alternative to the Q-statistics for testing serial correlation. The test belongs 
to the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests. 

Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for 
higher order ARMA errors and is applicable whether or not there are lagged dependent 
variables. Therefore, we recommend its use (in preference to the DW statistic) whenever 
you are concerned with the possibility that your errors exhibit autocorrelation.

The null hypothesis of the LM test is that there is no serial correlation up to lag order , 
where  is a pre-specified integer. The local alternative is ARMA( ) errors, where the 
number of lag terms = max( ). Note that this alternative includes both AR( ) and 
MA( ) error processes, so that the test may have power against a variety of alternative 
autocorrelation structures. See Godfrey (1988), for further discussion.

The test statistic is computed by an auxiliary regression as follows. First, suppose you have 
estimated the regression

(15.12)

where  are the estimated coefficients and  are the errors. The test statistic for lag order 
 is based on the auxiliary regression for the residuals :
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. (15.13)

Following the suggestion by Davidson and MacKinnon (1993), EViews sets any presample 
values of the residuals to 0. This approach does not affect the asymptotic distribution of 
the statistic, and Davidson and MacKinnon argue that doing so provides a test statistic 
which has better finite sample properties than an approach which drops the initial obser-
vations.

This is a regression of the residuals on the original regressors  and lagged residuals up to 
order . EViews reports two test statistics from this test regression. The F-statistic is an 
omitted variable test for the joint significance of all lagged residuals. Because the omitted 
variables are residuals and not independent variables, the exact finite sample distribution 
of the F-statistic under  is still not known, but we present the F-statistic for compari-
son purposes.

The Obs*R-squared statistic is the Breusch-Godfrey LM test statistic. This LM statistic is 
computed as the number of observations, times the (uncentered) from the test regres-
sion. Under quite general conditions, the LM test statistic is asymptotically distributed as a 

.

The serial correlation LM test is available for residuals from either least squares or two-
stage least squares estimation. The original regression may include AR and MA terms, in 
which case the test regression will be modified to take account of the ARMA terms. Testing 
in 2SLS settings involves additional complications, see Wooldridge (1990) for details. 

To carry out the test, push View/Residual Tests/Serial Correlation LM Test… on the 
equation toolbar and specify the highest order of the AR or MA process that might describe 
the serial correlation. If the test indicates serial correlation in the residuals, LS standard 
errors are invalid and should not be used for inference.

ARCH LM Test

This is a Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity 
(ARCH) in the residuals (Engle 1982). This particular specification of heteroskedasticity 
was motivated by the observation that in many financial time series, the magnitude of 
residuals appeared to be related to the magnitude of recent residuals. ARCH in itself does 
not invalidate standard LS inference. However, ignoring ARCH effects may result in loss of 
efficiency; see Chapter 16 for a discussion of estimation of ARCH models in EViews. 

The ARCH LM test statistic is computed from an auxiliary test regression. To test the null 
hypothesis that there is no ARCH up to order  in the residuals, we run the regression
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, (15.14)

where  is the residual. This is a regression of the squared residuals on a constant and 
lagged squared residuals up to order . EViews reports two test statistics from this test 
regression. The F-statistic is an omitted variable test for the joint significance of all lagged 
squared residuals. The Obs*R-squared statistic is Engle’s LM test statistic, computed as the 
number of observations times the from the test regression. The exact finite sample dis-
tribution of the F-statistic under  is not known but the LM test statistic is asymptoti-
cally distributed  under quite general conditions. The ARCH LM test is available for 
equations estimated by least squares, two-stage least squares, and nonlinear least squares.

To carry out the test, push View/Residual Tests/ARCH LM Test… on the equation toolbar 
and specify the order of ARCH to be tested against.

White's Heteroskedasticity Test 

This is a test for heteroskedasticity in the residuals from a least squares regression (White, 
1980). Ordinary least squares estimates are consistent in the presence heteroskedasticity, 
but the conventional computed standard errors are no longer valid. If you find evidence of 
heteroskedasticity, you should either choose the robust standard errors option to correct 
the standard errors (see “Heteroskedasticity Consistent Covariances (White)” on page 281) 
or you should model the heteroskedasticity to obtain more efficient estimates using 
weighted least squares.

White’s test is a test of the null hypothesis of no heteroskedasticity against heteroskedas-
ticity of some unknown general form. The test statistic is computed by an auxiliary regres-
sion, where we regress the squared residuals on all possible (nonredundant) cross 
products of the regressors. For example, suppose we estimated the following regression:

(15.15)

where the  are the estimated parameters and  the residual. The test statistic is then 
based on the auxiliary regression:

. (15.16)

EViews reports two test statistics from the test regression. The F-statistic is an omitted 
variable test for the joint significance of all cross products, excluding the constant. It is pre-
sented for comparison purposes.

The Obs*R-squared statistic is White’s test statistic, computed as the number of observa-
tions times the centered  from the test regression. The exact finite sample distribution 
of the F-statistic under  is not known, but White’s test statistic is asymptotically dis-
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tributed as a with degrees of freedom equal to the number of slope coefficients (exclud-
ing the constant) in the test regression.

White also describes this approach as a general test for model misspecification, since the 
null hypothesis underlying the test assumes that the errors are both homoskedastic and 
independent of the regressors, and that the linear specification of the model is correct. Fail-
ure of any one of these conditions could lead to a significant test statistic. Conversely, a 
non-significant test statistic implies that none of the three conditions is violated.

When there are redundant cross-products, EViews automatically drops them from the test 
regression. For example, the square of a dummy variable is the dummy variable itself, so 
that EViews drops the squared term to avoid perfect collinearity.

To carry out White’s heteroskedasticity test, select View/Residual Tests/White Heterosk-
edasticity. EViews has two options for the test: cross terms and no cross terms. The cross 
terms version of the test is the original version of White’s test that includes all of the cross 
product terms (in the example above, ). However, with many right-hand side vari-
ables in the regression, the number of possible cross product terms becomes very large so 
that it may not be practical to include all of them. The no cross terms option runs the test 
regression using only squares of the regressors.

Specification and Stability Tests

EViews provides a number of test statistic views that examine whether the parameters of 
your model are stable across various subsamples of your data.

One recommended empirical technique is to split the  
observations in your data set of observations into  observa-
tions to be used for estimation, and  observa-
tions to be used for testing and evaluation. Using all available 
sample observations for estimation promotes a search for a specification that best fits that 
specific data set, but does not allow for testing predictions of the model against data that 
have not been used in estimating the model. Nor does it allow one to test for parameter 
constancy, stability and robustness of the estimated relationship. In time series work you 
will usually take the first  observations for estimation and the last  for testing. With 
cross section data you may wish to order the data by some variable, such as household 
income, sales of a firm, or other indicator variables and use a sub-set for testing. 

There are no hard and fast rules for determining the relative sizes of  and . In some 
cases there may be obvious points at which a break in structure might have taken place—
a war, a piece of legislation, a switch from fixed to floating exchange rates, or an oil shock. 
Where there is no reason a priori to expect a structural break, a commonly used rule-of-
thumb is to use 85 to 90 percent of the observations for estimation and the remainder for 
testing.
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EViews provides built-in procedures which facilitate variations on this type of analysis.

Chow's Breakpoint Test

The idea of the breakpoint Chow test is to fit the equation separately for each subsample 
and to see whether there are significant differences in the estimated equations. A signifi-
cant difference indicates a structural change in the relationship. For example, you can use 
this test to examine whether the demand function for energy was the same before and after 
the oil shock. The test may be used with least squares and two-stage least squares regres-
sions.

To carry out the test, we partition the data into two or more subsamples. Each subsample 
must contain more observations than the number of coefficients in the equation so that the 
equation can be estimated. The Chow breakpoint test compares the sum of squared residu-
als obtained by fitting a single equation to the entire sample with the sum of squared resid-
uals obtained when separate equations are fit to each subsample of the data.

EViews reports two test statistics for the Chow breakpoint test. The F-statistic is based on 
the comparison of the restricted and unrestricted sum of squared residuals and in the sim-
plest case involving a single breakpoint, is computed as

, (15.17)

where  is the restricted sum of squared residuals,  is the sum of squared residu-
als from subsample ,  is the total number of observations, and  is the number of 
parameters in the equation. This formula can be generalized naturally to more than one 
breakpoint. The F-statistic has an exact finite sample F-distribution if the errors are inde-
pendent and identically distributed normal random variables.

The log likelihood ratio statistic is based on the comparison of the restricted and unre-
stricted maximum of the (Gaussian) log likelihood function. The LR test statistic has an 
asymptotic distribution with degrees of freedom equal to  under the null 
hypothesis of no structural change, where  is the number of subsamples. 

One major drawback of the breakpoint test is that each subsample requires at least as 
many observations as the number of estimated parameters. This may be a problem if, for 
example, you want to test for structural change between wartime and peacetime where 
there are only a few observations in the wartime sample. The Chow forecast test, discussed 
below, should be used in such cases. 

To apply the Chow breakpoint test, push View/Stability Tests/Chow Breakpoint Test… 
on the equation toolbar. In the dialog that appears, list the dates or observation numbers 
for the breakpoints. For example, if your original equation was estimated from 1950 to 
1994, entering 
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1960 

in the dialog specifies two subsamples, one from 1950 to 1959 and one from 1960 to 1994. 
Typing 

1960 1970 

specifies three subsamples, 1950 to 1959, 1960 to 1969, and 1970 to 1994.

Chow's Forecast Test

The Chow forecast test estimates two models—one using the full set of data , and the 
other using a long subperiod . A long difference between the two models casts doubt on 
the stability of the estimated relation over the sample period. The Chow forecast test can 
be used with least squares and two-stage least squares regressions.

EViews reports two test statistics for the Chow forecast test. The F-statistic is computed as

, (15.18)

where  is the residual sum of squares when the equation is fitted to all  sample 
observations,  is the residual sum of squares when the equation is fitted to  obser-
vations, and  is the number of estimated coefficients. This F-statistic follows an exact 
finite sample F-distribution if the errors are independent, and identically, normally distrib-
uted.

The log likelihood ratio statistic is based on the comparison of the restricted and unre-
stricted maximum of the (Gaussian) log likelihood function. Both the restricted and unre-
stricted log likelihood are obtained by estimating the regression using the whole sample. 
The restricted regression uses the original set of regressors, while the unrestricted regres-
sion adds a dummy variable for each forecast point. The LR test statistic has an asymptotic 

distribution with degrees of freedom equal to the number of forecast points  under 
the null hypothesis of no structural change. 

To apply Chow’s forecast test, push View/Stability Tests/Chow Forecast Test… on the 
equation toolbar and specify the date or observation number for the beginning of the fore-
casting sample. The date should be within the current sample of observations. 

As an example, suppose we estimate a consumption function using quarterly data from 
1947:1 to 1994:4 and specify 1973:1 as the first observation in the forecast period. The test 
reestimates the equation for the period 1947:1 to 1972:4, and uses the result to compute 
the prediction errors for the remaining quarters, and reports the following results:
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Neither of the forecast test statistics reject the null hypothesis of no structural change in 
the consumption function before and after 1973:1. 

If we test the same hypothesis using the Chow breakpoint test, the result is

Note that both of the breakpoint test statistics decisively reject the hypothesis from above. 
This example illustrates the possibility that the two Chow tests may yield conflicting 
results.

Ramsey's RESET Test

RESET stands for Regression Specification Error Test and was proposed by Ramsey (1969). 
The classical normal linear regression model is specified as 

, (15.19)

where the disturbance vector  is presumed to follow the multivariate normal distribution 
. Specification error is an omnibus term which covers any departure from the 

assumptions of the maintained model. Serial correlation, heteroskedasticity, or non-nor-
mality of all violate the assumption that the disturbances are distributed . Tests 
for these specification errors have been described above. In contrast, RESET is a general 
test for the following types of specification errors:

• Omitted variables;  does not include all relevant variables.

• Incorrect functional form; some or all of the variables in  and  should be trans-
formed to logs, powers, reciprocals, or in some other way.

• Correlation between  and , which may be caused, among other things, by mea-
surement error in , simultaneity, or the presence of lagged  values and serially 
correlated disturbances.

Under such specification errors, LS estimators will be biased and inconsistent, and conven-
tional inference procedures will be invalidated. Ramsey (1969) showed that any or all of 
these specification errors produce a non-zero mean vector for . Therefore, the null and 
alternative hypotheses of the RESET test are

Chow Forecast Test: Forecast from 1973:1 to 1994:4

F-statistic  0.708348   Probability  0.951073
Log likelihood ratio  91.57088   Probability  0.376108

Chow Breakpoint Test: 1973:1

F-statistic  38.39198   Probability  0.000000
Log likelihood ratio  65.75468   Probability  0.000000
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(15.20)

The test is based on an augmented regression

. (15.21)

The test of specification error evaluates the restriction . The crucial question in 
constructing the test is to determine what variables should enter the  matrix. Note that 
the  matrix may, for example, be comprised of variables that are not in the original spec-
ification, so that the test of  is simply the omitted variables test described above. 

In testing for incorrect functional form, the nonlinear part of the regression model may be 
some function of the regressors included in . For example, if a linear relation

, (15.22)

is specified instead of the true relation 

(15.23)

the augmented model has  and we are back to the omitted variable case. A more 
general example might be the specification of an additive relation

(15.24)

instead of the (true) multiplicative relation

. (15.25)

A Taylor series approximation of the multiplicative relation would yield an expression 
involving powers and cross-products of the explanatory variables. Ramsey's suggestion is 
to include powers of the predicted values of the dependent variable (which are, of course, 
linear combinations of powers and cross-product terms of the explanatory variables) in :

(15.26)

where  is the vector of fitted values from the regression of  on . The superscripts 
indicate the powers to which these predictions are raised. The first power is not included 
since it is perfectly collinear with the  matrix. 

Output from the test reports the test regression and the F-statistic and log likelihood ratio 
for testing the hypothesis that the coefficients on the powers of fitted values are all zero. A 
study by Ramsey and Alexander (1984) showed that the RESET test could detect specifica-
tion error in an equation which was known a priori to be misspecified but which nonethe-
less gave satisfactory values for all the more traditional test criteria—goodness of fit, test 
for first order serial correlation, high t-ratios. 
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To apply the test, select View/Stability Tests/Ramsey RESET Test… and specify the num-
ber of fitted terms to include in the test regression. The fitted terms are the powers of the 
fitted values from the original regression, starting with the square or second power. For 
example, if you specify 1, then the test will add  in the regression and if you specify 2, 
then the test will add  and  in the regression and so on. If you specify a large number 
of fitted terms, EViews may report a near singular matrix error message since the powers 
of the fitted values are likely to be highly collinear. The Ramsey RESET test is applicable 
only to an equation estimated by least squares.

Recursive Least Squares

In recursive least squares the equation is estimated repeatedly, using ever larger subsets of 
the sample data. If there are  coefficients to be estimated in the  vector, then the first  
observations are used to form the first estimate of . The next observation is then added to 
the data set and  observations are used to compute the second estimate of . This 
process is repeated until all the  sample points have been used, yielding  esti-
mates of the  vector. At each step the last estimate of  can be used to predict the next 
value of the dependent variable. The one-step ahead forecast error resulting from this pre-
diction, suitably scaled, is defined to be a recursive residual.

More formally, let  denote the  matrix of the regressors from period 1 to 
period , and  the corresponding vector of observations on the dependent vari-
able. These data up to period  give an estimated coefficient vector, denoted by . 
This coefficient vector gives you a forecast of the dependent variable in period . The fore-
cast is , where  is the row vector of observations on the regressors in period . The 
forecast error is , and the forecast variance is given by:

. (15.27)

The recursive residual  is defined in EViews as 

. (15.28)

These residuals can be computed for . If the maintained model is valid, 
the recursive residuals will be independently and normally distributed with zero mean and 
constant variance .

y�
2

y�
2

y�
3

k b k
b

k 1+ b
T T k− 1+

b b

Xt 1− t 1−( ) k×
t 1− yt 1−

t 1− bt 1−
t

xt
′
b xt

′
t

yt xt
′
b−

σ
2 1 xt′ Xt′Xt( ) 1−

xt+( )

wt

wt
yt xt′b−( )

1 xt′ Xt′Xt( ) 1−
xt+( )

1 2⁄�������������������������������������������������������������=

t k 1 … T, ,+=

σ
2



Specification and Stability Tests—385
To calculate the recursive residuals, press 
View/Stability Tests/Recursive Estimates 
(OLS only)… on the equation toolbar. 
There are six options available for the recur-
sive estimates view. The recursive estimates 
view is only available for equations esti-
mated by ordinary least squares without AR 
and MA terms. The Save Results as Series 
option allows you to save the recursive 
residuals and recursive coefficients as 
named series in the workfile; see “Save Results as Series” on page 388.

Recursive Residuals

This option shows a plot of the recursive residuals about the zero line. Plus and minus two 
standard errors are also shown at each point. Residuals outside the standard error bands 
suggest instability in the parameters of the equation. 

CUSUM Test

The CUSUM test (Brown, Durbin, and Evans, 1975) is based on the cumulative sum of the 
recursive residuals. This option plots the cumulative sum together with the 5% critical 
lines. The test finds parameter instability if the cumulative sum goes outside the area 
between the two critical lines.

The CUSUM test is based on the statistic

, (15.29)

for , where  is the recursive residual defined above, and s is the stan-
dard error of the regression fitted to all  sample points. If the  vector remains constant 
from period to period, , but if  changes,  will tend to diverge from the 
zero mean value line. The significance of any departure from the zero line is assessed by 
reference to a pair of 5% significance lines, the distance between which increases with . 
The 5% significance lines are found by connecting the points

. (15.30)

Movement of  outside the critical lines is suggestive of coefficient instability. A sample 
CUSUM test is given below.
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The test clearly indicates instability in the equation during the sample period.

CUSUM of Squares Test

The CUSUM of squares test (Brown, Durbin, and Evans, 1975) is based on the test statistic

. (15.31)

The expected value of  under the hypothesis of parameter constancy is 

(15.32)

which goes from zero at  to unity at . The significance of the departure of  
from its expected value is assessed by reference to a pair of parallel straight lines around 
the expected value. See Brown, Durbin, and Evans (1975) or Johnston and DiNardo (1997, 
Table D.8) for a table of significance lines for the CUSUM of squares test. 

The CUSUM of squares test provides a plot of  against  and the pair of 5 percent criti-
cal lines. As with the CUSUM test, movement outside the critical lines is suggestive of 
parameter or variance instability.
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The cumulative sum of squares is gener-
ally within the 5% significance lines, sug-
gesting that the residual variance is 
somewhat stable.

One-Step Forecast Test

If you look back at the definition of the 
recursive residuals given above, you will 
see that each recursive residual is the error 
in a one-step ahead forecast. To test 
whether the value of the dependent vari-
able at time  might have come from the 
model fitted to all the data up to that 
point, each error can be compared with its standard deviation from the full sample.

The One-Step Forecast Test option produces a plot of the recursive residuals and standard 
errors and the sample points whose probability value is at or below 15 percent. The plot 
can help you spot the periods when your equation is least successful. For example, the 
one-step ahead forecast test might look like this:

The upper portion of the plot (right verti-
cal axis) repeats the recursive residuals 
and standard errors displayed by the 
Recursive Residuals option. The lower 
portion of the plot (left vertical axis) 
shows the probability values for those 
sample points where the hypothesis of 
parameter constancy would be rejected at 
the 5, 10, or 15 percent levels. The points 
with p-values less the 0.05 correspond to 
those points where the recursive residuals 
go outside the two standard error bounds. 

For the test equation, there is evidence of 
instability early in the sample period. 

N-Step Forecast Test

This test uses the recursive calculations to carry out a sequence of Chow Forecast tests. In 
contrast to the single Chow Forecast test described earlier, this test does not require the 
specification of a forecast period— it automatically computes all feasible cases, starting 
with the smallest possible sample size for estimating the forecasting equation and then 
adding one observation at a time. The plot from this test shows the recursive residuals at 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

50 55 60 65 70 75 80 85 90 95

CUSUM of Squares 5% Significance
t

0.15

0.10

0.05

0.00
-0.10

-0.05

0.00

0.05

0.10

50 55 60 65 70 75 80 85 90 95

One-Step Probability Recursive Residuals



388—Chapter 15. Specification and Diagnostic Tests
the top and significant probabilities (based on the F-statistic) in the lower portion of the 
diagram. 

Recursive Coefficient Estimates

This view enables you to trace the evolution of estimates for any coefficient as more and 
more of the sample data are used in the estimation. The view will provide a plot of 
selected coefficients in the equation for all feasible recursive estimations. Also shown are 
the two standard error bands around the estimated coefficients. 

If the coefficient displays significant variation as more data is added to the estimating 
equation, it is a strong indication of instability. Coefficient plots will sometimes show dra-
matic jumps as the postulated equation tries to digest a structural break.

To view the recursive coefficient estimates, click the Recursive Coefficients option and list 
the coefficients you want to plot in the Coefficient Display List field of the dialog box. The 
recursive estimates of the marginal propensity to consume (coefficient C(2)), from the 
sample consumption function are provided below:

The estimated propensity to consume rises 
steadily as we add more data over the sam-
ple period, approaching a value of one. 

Save Results as Series

The Save Results as Series checkbox will 
do different things depending on the plot 
you have asked to be displayed. When 
paired with the Recursive Coefficients 
option, Save Results as Series will instruct 
EViews to save all recursive coefficients and 
their standard errors in the workfile as 
named series. EViews will name the coeffi-
cients using the next available name of the form, R_C1, R_C2, …, and the corresponding 
standard errors as R_C1SE, R_C2SE, and so on. 

If you check the Save Results as Series box with any of the other options, EViews saves 
the recursive residuals and the recursive standard errors as named series in the workfile. 
EViews will name the residual and standard errors as R_RES and R_RESSE, respectively.

Note that you can use the recursive residuals to reconstruct the CUSUM and CUSUM of 
squares series. 
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Applications

In this section, we show how to carry out other specification tests in EViews. For brevity, 
the discussion is based on commands, but most of these procedures can also be carried out 
using the menu system.

A Wald test of structural change with unequal variance

The F-statistics reported in the Chow tests have an F-distribution only if the errors are 
independent and identically normally distributed. This restriction implies that the residual 
variance in the two subsamples must be equal. 

Suppose now that we wish to compute a Wald statistic for structural change with unequal 
subsample variances. Denote the parameter estimates and their covariance matrix in sub-
sample  as  and  for . Under the assumption that  and  are indepen-
dent normal, the difference  has mean zero and variance . Therefore, a 
Wald statistic for the null hypothesis of no structural change and independent samples can 
be constructed as

, (15.33)

which has an asymptotic distribution with degrees of freedom equal to the number of 
estimated parameters in the  vector. 

To carry out this test in EViews, we estimate the model in each subsample and save the 
estimated coefficients and their covariance matrix. For example, suppose we have a quar-
terly sample of 1947:1–1994:4 and wish to test whether there was a structural change in 
the consumption function in 1973:1. First, estimate the model in the first sample and save 
the results by the commands

coef(2) b1

smpl 1947:1 1972:4

equation eq_1.ls log(cs)=b1(1)+b1(2)*log(gdp)

sym v1=eq_1.@cov

The first line declares the coefficient vector, B1, into which we will place the coefficient 
estimates in the first sample. Note that the equation specification in the third line explicitly 
refers to elements of this coefficient vector. The last line saves the coefficient covariance 
matrix as a symmetric matrix named V1. Similarly, estimate the model in the second sam-
ple and save the results by the commands

coef(2) b2

smpl 1973.1 1994.4

equation eq_2.ls log(cs)=b2(1)+b2(2)*log(gdp)

sym v2=eq_2.@cov

i bi Vi i 1 2,= b1 b2
b1 b2− V1 V2+

W b1 b2−( )′ V1 V2+( ) 1−
b1 b2−( )=

χ
2

b
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To compute the Wald statistic, use the command

matrix wald=@transpose(b1-b2)*@inverse(v1+v2)*(b1-b2)

The Wald statistic is saved in the  matrix named WALD. To see the value, either dou-
ble click on WALD or type “show wald”. You can compare this value with the critical val-
ues from the distribution with 2 degrees of freedom. Alternatively, you can compute the 
p-value in EViews using the command

scalar wald_p=1-@cchisq(wald(1,1),2)

The p-value is saved as a scalar named WALD_P. To see the p-value, double click on 
WALD_P or type “show wald_p”. The p-value will be displayed in the status line at the bot-
tom of the EViews window. 

The Hausman test

A widely used class of tests in econometrics is the Hausman test. The underlying idea of 
the Hausman test is to compare two sets of estimates, one of which is consistent under 
both the null and the alternative and another which is consistent only under the null 
hypothesis. A large difference between the two sets of estimates is taken as evidence in 
favor of the alternative hypothesis. 

Hausman (1978) originally proposed a test statistic for endogeneity based upon a direct 
comparison of coefficient values. Here we illustrate the version of the Hausman test pro-
posed by Davidson and MacKinnon (1989, 1993), which carries out the test by running an 
auxiliary regression. 

The following equation was estimated by OLS:

1 1×

χ
2

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 08/13/97  Time: 14:12
Sample(adjusted): 1959:02 1995:04
Included observations: 435 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C -0.022699  0.004443 -5.108528  0.0000
LOG(IP)  0.011630  0.002585  4.499708  0.0000

DLOG(PPI) -0.024886  0.042754 -0.582071  0.5608
TB3 -0.000366  9.91E-05 -3.692675  0.0003

LOG(M1(-1))  0.996578  0.001210  823.4440  0.0000

R-squared  0.999953   Mean dependent var  5.844581
Adjusted R-squared  0.999953   S.D. dependent var  0.670596
S.E. of regression  0.004601   Akaike info criterion -7.913714
Sum squared resid  0.009102   Schwarz criterion -7.866871
Log likelihood  1726.233   F-statistic  2304897.
Durbin-Watson stat  1.265920   Prob(F-statistic)  0.000000
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Suppose we are concerned that industrial production (IP) is endogenously determined 
with money (M1) through the money supply function. If this were the case, then OLS esti-
mates will be biased and inconsistent. To test this hypothesis, we need to find a set of 
instrumental variables that are correlated with the “suspect” variable IP but not with the 
error term of the money demand equation. The choice of the appropriate instrument is a 
crucial step. Here we take the unemployment rate (URATE) and Moody’s AAA corporate 
bond yield (AAA) as instruments. 

To carry out the Hausman test by artificial regression, we run two OLS regressions. In the 
first regression, we regress the suspect variable (log) IP on all exogenous variables and 
instruments and retrieve the residuals: 

ls log(ip) c dlog(ppi) tb3 log(m1(-1)) urate aaa

series res_ip=resid

Then in the second regression, we re-estimate the money demand function including the 
residuals from the first regression as additional regressors. The result is:

If the OLS estimates are consistent, then the coefficient on the first stage residuals should 
not be significantly different from zero. In this example, the test (marginally) rejects the 
hypothesis of consistent OLS estimates (to be more precise, this is an asymptotic test and 
you should compare the t-statistic with the critical values from the standard normal).

Non-nested Tests

Most of the tests discussed in this chapter are nested tests in which the null hypothesis is 
obtained as a special case of the alternative hypothesis. Now consider the problem of 
choosing between the following two specifications of a consumption function:

Dependent Variable: LOG(M1)
Method: Least Squares
Date: 08/13/97  Time: 15:28
Sample(adjusted): 1959:02 1995:04
Included observations: 435 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C -0.007145  0.007473 -0.956158  0.3395
LOG(IP)  0.001560  0.004672  0.333832  0.7387

DLOG(PPI)  0.020233  0.045935  0.440465  0.6598
TB3 -0.000185  0.000121 -1.527775  0.1273

LOG(M1(-1))  1.001093  0.002123  471.4894  0.0000
RES_IP  0.014428  0.005593  2.579826  0.0102

R-squared  0.999954   Mean dependent var  5.844581
Adjusted R-squared  0.999954   S.D. dependent var  0.670596
S.E. of regression  0.004571   Akaike info criterion -7.924512
Sum squared resid  0.008963   Schwarz criterion -7.868300
Log likelihood  1729.581   F-statistic  1868171.
Durbin-Watson stat  1.307838   Prob(F-statistic)  0.000000
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(15.34)

These are examples of non-nested models since neither model may be expressed as a 
restricted version of the other. 

The J-test proposed by Davidson and MacKinnon (1993) provides one method of choosing 
between two non-nested models. The idea is that if one model is the correct model, then 
the fitted values from the other model should not have explanatory power when estimating 
that model. For example, to test model  against model , we first estimate model  
and retrieve the fitted values:

equation eq_cs2.ls cs c gdp cs(-1)

eq_cs2.fit cs2

The second line saves the fitted values as a series named CS2. Then estimate model  
including the fitted values from model . The result is:

The fitted values from model  enter significantly in model  and we reject model 
. 

We must also test model  against model . Estimate model , retrieve the fitted 
values, and estimate model  including the fitted values from model . The results of 
this “reverse” test are given by:

H1: CSt α1 α2GDPt α3GDPt 1− εt+ + +=

H2: CSt β1 β2GDPt β3CSt 1− εt+ + +=

H1 H2 H2

H1
H2

Dependent Variable: CS
Method: Least Squares
Date: 8/13/97  Time: 00:49
Sample(adjusted): 1947:2 1994:4
Included observations: 191 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C  7.313232  4.391305  1.665389  0.0975
GDP  0.278749  0.029278  9.520694  0.0000

GDP(-1) -0.314540  0.029287 -10.73978  0.0000
CS2  1.048470  0.019684  53.26506  0.0000

R-squared  0.999833   Mean dependent var  1953.966
Adjusted R-squared  0.999830   S.D. dependent var  848.4387
S.E. of regression  11.05357   Akaike info criterion  7.664104
Sum squared resid  22847.93   Schwarz criterion  7.732215
Log likelihood -727.9219   F-statistic  373074.4
Durbin-Watson stat  2.253186   Prob(F-statistic)  0.000000

H2 H1
H1

H2 H1 H1
H2 H1
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The fitted values are again statistically significant and we reject model . 

In this example, we reject both specifications, against the alternatives, suggesting that 
another model for the data is needed. It is also possible that we fail to reject both models, 
in which case the data do not provide enough information to discriminate between the two 
models. 

Commands

All of the specification and diagnostic tests explained in this chapter are available in com-
mand form as views of a named equation. Follow the equation name with a dot and the 
view name of the test. For example, to carry out the Wald test of whether the third and 
fourth coefficients of the equation object EQ1 are both equal to zero, type

eq1.wald c(3)=0,c(4)=0

To carry out the serial correlation LM test of the residuals in equation EQ_Y up to 4 lags, 
type

eq_y.auto(4)

To display the recursive residuals of equation EQM1, type

eqm1.rls(r)

See “Equation” on page 21 of the Command and Programming Reference for a complete list 
of commands and options available for equation objects.

Dependent Variable: CS
Method: Least Squares
Date: 08/13/97   Time: 16:58
Sample(adjusted): 1947:2 1994:4
Included observations: 191 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C -1427.716  132.0349 -10.81318  0.0000
GDP  5.170543  0.476803  10.84419  0.0000

CS(-1)  0.977296  0.018348  53.26506  0.0000
CS1 -7.292771  0.679043 -10.73978  0.0000

R-squared  0.999833     Mean dependent var  1953.966
Adjusted R-squared  0.999830     S.D. dependent var  848.4387
S.E. of regression  11.05357     Akaike info criterion  7.664104
Sum squared resid  22847.93     Schwarz criterion  7.732215
Log likelihood -727.9219     F-statistic  373074.4
Durbin-Watson stat  2.253186     Prob(F-statistic)  0.000000

H2
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Part IV.  Advanced Single Equation Analysis

The following sections describe EViews tools for the estimation and analysis of advanced 
single equation models.

• Chapter 16, “ARCH and GARCH Estimation”, beginning on page 397, outlines the 
EViews tools for ARCH and GARCH modeling of the conditional variance, or volatil-
ity, of a variable.

• Chapter 17, “Discrete and Limited Dependent Variable Models”, on page 421 docu-
ments EViews tools for estimating qualitative and limited dependent variable mod-
els. EViews provides estimation routines for binary or ordered (probit, logit, gompit), 
censored or truncated (tobit, etc.), and integer valued (count data).

• Chapter 18, “The Log Likelihood (LogL) Object”, beginning on page 471 describes 
techniques for using EViews to estimate the parameters of maximum likelihood 
models where you may specify the form of the likelihood.

Multiple equation models and forecasting are described in Part V. “Multiple Equation Anal-
ysis” beginning on page 493.
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Chapter 16.  ARCH and GARCH Estimation

Most of the statistical tools in EViews are designed to model the conditional mean of a ran-
dom variable. The tools described in this chapter differ by modeling the conditional vari-
ance, or volatility, of a variable.

There are several reasons that you may want to model and forecast volatility. First, you 
may need to analyze the risk of holding an asset or the value of an option. Second, forecast 
confidence intervals may be time-varying, so that more accurate intervals can be obtained 
by modeling the variance of the errors. Third, more efficient estimators can be obtained if 
heteroskedasticity in the errors is handled properly.

Autoregressive Conditional Heteroskedasticity (ARCH) models are specifically designed to 
model and forecast conditional variances. The variance of the dependent variable is mod-
eled as a function of past values of the dependent variable and independent, or exogenous 
variables.

ARCH models were introduced by Engle (1982) and generalized as GARCH (Generalized 
ARCH) by Bollerslev (1986). These models are widely used in various branches of econo-
metrics, especially in financial time series analysis. See Bollerslev, Chou, and Kroner 
(1992) and Bollerslev, Engle, and Nelson (1994) for recent surveys.

In the next section, the basic ARCH model will be described in detail. In subsequent sec-
tions, we consider the wide range of specifications available in EViews for modeling vola-
tility. For brevity of discussion, we will use ARCH to refer to both ARCH and GARCH 
models, except where there is the possibility of confusion.

The ARCH Specification

In developing an ARCH model, you will have to provide two distinct specifications—one 
for the conditional mean and one for the conditional variance. 

The GARCH(1,1) Model

In the standard GARCH(1,1) specification:

(16.1)

(16.2)

the mean equation given in (16.1) is written as a function of exogenous variables with an 
error term. Since  is the one-period ahead forecast variance based on past information, 
it is called the conditional variance. The conditional variance equation specified in (16.2) 
is a function of three terms:

yt xt′γ ε+ t=

σt
2

ω αεt 1−
2

βσt 1−
2+ +=

σt
2
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• The mean: .

• News about volatility from the previous period, measured as the lag of the squared 
residual from the mean equation:  (the ARCH term).

• Last period’s forecast variance:  (the GARCH term).

The (1,1) in GARCH(1,1) refers to the presence of a first-order GARCH term (the first term 
in parentheses) and a first-order ARCH term (the second term in parentheses). An ordinary 
ARCH model is a special case of a GARCH specification in which there are no lagged fore-
cast variances in the conditional variance equation.

ARCH models in EViews are estimated by the method of maximum likelihood under the 
assumption that the errors are conditionally normally distributed. For example, for the 
GARCH(1,1) model, the contribution to the log likelihood from observation  is

, (16.3)

where 

. (16.4)

This specification is often interpreted in a financial context, where an agent or trader pre-
dicts this period’s variance by forming a weighted average of a long term average (the con-
stant), the forecasted variance from last period (the GARCH term), and information about 
volatility observed in the previous period (the ARCH term). If the asset return was unex-
pectedly large in either the upward or the downward direction, then the trader will 
increase the estimate of the variance for the next period. This model is also consistent with 
the volatility clustering often seen in financial returns data, where large changes in returns 
are likely to be followed by further large changes.

There are two alternative representations of the variance equation that may aid in the 
interpretation of the model:

• If we recursively substitute for the lagged variance on the right-hand side of (16.2), 
we can express the conditional variance as a weighted average of all of the lagged 
squared residuals:

. (16.5)

• We see that the GARCH(1,1) variance specification is analogous to the sample vari-
ance, but that it down-weights more distant lagged squared errors.
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• The error in the squared returns is given by . Substituting for the vari-
ances in the variance equation and rearranging terms we can write our model in 
terms of the errors:

. (16.6)

• Thus, the squared errors follow a heteroskedastic ARMA(1,1) process. The autore-
gressive root which governs the persistence of volatility shocks is the sum of  plus 

. In many applied settings, this root is very close to unity so that shocks die out 
rather slowly.

Regressors in the Variance Equation

Equation (16.2) may be extended to allow for the inclusion of exogenous or predetermined 
regressors, , in the variance equation:

. (16.7)

Note that the forecasted variances from this model are not guaranteed to be positive. You 
may wish to introduce regressors in a form where they are always positive to minimize the 
possibility that a single, large negative value generates a negative forecasted value. For 
example, you may want to set

 . (16.8)

The ARCH-M Model

The  in equation (16.2) represent exogenous or predetermined variables that are 
included in the mean equation. If we introduce the conditional variance into the mean 
equation, we get the ARCH-in-Mean (ARCH-M) model (Engle, Lilien and Robins, 1987):

. (16.9)

The ARCH-M model is often used in financial applications where the expected return on an 
asset is related to the expected asset risk. The estimated coefficient on the expected risk is 
a measure of the risk-return tradeoff.

A variant of the ARCH-M specification uses the conditional standard deviation in place of 
the conditional variance in Equation (16.9).

The GARCH(p, q) Model

Higher order GARCH models, denoted GARCH( ), can be estimated by choosing either 
 or  greater than 1. The representation of the GARCH( ) variance is

(16.10)

where  is the order of the GARCH terms and  is the order of the ARCH term. 
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Estimating ARCH models in EViews

To estimate an ARCH or GARCH model, open the equation specification dialog by selecting 
Quick/Estimate Equation… or by selecting Object/New Object/Equation…. Select ARCH 
from the method combo box.

You will need to specify both the 
mean and the variance equations, 
as well as the estimation tech-
nique and sample.

The Mean Equation

In the dependent variable edit 
box, you should enter the specifi-
cation of the mean equation. You 
can enter the specification in list 
form by listing the dependent vari-
able followed by the regressors. 
You should add the C to your spec-
ification if you wish to include a 
constant. If you have a more complex mean specification, you can enter your mean equa-
tion using a formula.

If your specification includes an ARCH-M term, you should click on the appropriate radio 
button in the upper right-hand side of the dialog.

The Variance Equation

ARCH Specification

Under the ARCH Specification label, you should choose the number of ARCH and GARCH 
terms. The default is to estimate with one ARCH and one GARCH term. This is by far the 
most popular specification.

To estimate the standard GARCH model as described above, click on the GARCH radio but-
ton. The other entries describe more complicated variants of the GARCH specification. We 
discuss each of these models later in the chapter.

Variance Regressors

In the edit box labeled Variance Regressors, you may optionally list variables you wish to 
include in the variance specification. Note that EViews will always include a constant as a 
variance regressor so that you do not need to add C to the list. 
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The distinction between the permanent and transitory regressors is discussed in “The 
Component ARCH Model” on page 412.

Estimation Options 

EViews provides you with access to a number of optional estimation settings. Simply click 
on the Options button and fill out the dialog as required.

Backcasting

By default, both the innovations used in initializing MA estimation and the initial variance 
required for the GARCH terms are computed using backcasting methods. Details on the MA 
backcasting procedure are provided in “Backcasting MA terms” on page 320. 

When computing backcast initial variances for GARCH, EViews first uses the coefficient 
values to compute the residuals of the mean equation, and then computes an exponential 
smoothing estimator of the initial values:

, (16.11)

where  are the residuals from the mean equation,  is the unconditional variance esti-
mate

(16.12)

and the smoothing parameter . Alternatively, you can choose to initialize the 
GARCH process using the unconditional variance:

. (16.13)

If you turn off backcasting, EViews will set the presample values of the residual to zero to 
initialize an MA, if present, and will set the presample values of the variance and squared 
residual to the unconditional variance using (16.13). 

Our experience has been that GARCH models initialized using backcast exponential 
smoothing often outperform models initialized using the unconditional variance.

Heteroskedasticity Consistent Covariances

Click on the check box labeled Heteroskedasticity Consistent Covariance to compute the 
quasi-maximum likelihood (QML) covariances and standard errors using the methods 
described by Bollerslev and Wooldridge (1992).

You should use this option if you suspect that the residuals are not conditionally normally 
distributed. When the assumption of conditional normality does not hold, the ARCH 
parameter estimates will still be consistent, provided the mean and variance functions are 
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correctly specified. The estimates of the covariance matrix will not be consistent unless 
this option is specified, resulting in incorrect standard errors.

Note that the parameter estimates will be unchanged if you select this option; only the esti-
mated covariance matrix will be altered.

Derivative Methods

EViews currently uses numeric derivatives in estimating ARCH models. You can control the 
method used in computing these derivatives to favor speed (fewer function evaluations) or 
to favor accuracy (more function evaluations).

Iterative Estimation Control

The likelihood functions of ARCH models are not always well-behaved so that convergence 
may not be achieved with the default estimation settings. You can use the options dialog to 
select the iterative algorithm (Marquardt, BHHH/Gauss-Newton), change starting values, 
increase the maximum number of iterations, or adjust the convergence criterion. 

Starting Values

As with other iterative procedures, starting coefficient values are required. EViews will 
supply its own starting values for ARCH procedures using OLS regression for the mean 
equation. Using the Options dialog, you can also set starting values to various fractions of 
the OLS starting values, or you can specify the values yourself by choosing the User Speci-
fied option, and placing the desired coefficients in the default coefficient vector.

Examples

To estimate a standard GARCH(1,1) model with no regressors in the mean and variance 
equations,

(16.14)

you should enter the various parts of your specification:

• Fill in the Mean Equation Specification edit box as

r c

• Enter 1 for the number of ARCH terms, and 1 for the number of GARCH terms, and 
select GARCH (symmetric).

• Select None for the ARCH-M term.

• Leave blank the Variance Regressors edit box.

To estimate the ARCH(4)-M model

Rt c εt+=

σt
2

ω αεt 1−
2

βσt 1−
2+ +=



Estimating ARCH models in EViews—403
(16.15)

you should fill out the dialog in the following fashion:

• Enter the mean equation specification,

r c dum 

• Enter “4” for the ARCH term and “0” for the GARCH term, and select GARCH (sym-
metric).

• Select Std. Dev. for the ARCH-M term.

• Enter DUM in the Variance Regressors edit box.

Once you have filled in the Equation Specification dialog, click OK to estimate the model. 
ARCH models are estimated by the method of maximum likelihood, under the assumption 
that the errors are conditionally normally distributed. Because the variance appears in a 
non-linear way in the likelihood function, the likelihood function must be estimated using 
iterative algorithms. In the status line, you can watch the value of the likelihood as it 
changes with each iteration. When estimates converge, the parameter estimates and con-
ventional regression statistics are presented in the ARCH object window.

ARCH Estimation Output

As an example, we fit a GARCH(1,1) model to the first difference of log daily U.S. Dollar/
Japanese Yen exchange rates (R) using backcast values for the initial variances and Boller-
slev-Wooldridge standard errors. The output is presented below.

By default, the estimation output header describes the estimation sample, and the methods 
used for computing the coefficient standard errors and the initial variance terms. 

The main output from ARCH estimation is divided into two sections—the upper part pro-
vides the standard output for the mean equation, while the lower part, labeled “Variance 
Equation” contains the coefficients, standard errors, z-statistics and p-values for the coeffi-
cients of the variance equation. The ARCH parameters correspond to  and the GARCH 
parameters to  in Equation (16.2) on page 397. The bottom panel of the output presents 
the standard set of regression statistics using the residuals from the mean equation. Note 
that measures such as  may not be meaningful if there are no regressors in the mean 
equation. Here, for example, the  is negative.
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In this example, the sum of the ARCH and GARCH coefficients ( ) is very close to 
one, indicating that volatility shocks are quite persistent. This result is often observed in 
high frequency financial data.

Working with ARCH Models

Once your model has been estimated, EViews provides a variety of views and procedures 
for inference and diagnostic checking. 

Views of ARCH Models

• Actual, Fitted, Residual view displays the residuals in various forms, such as table, 
graphs, and standardized residuals. You can save the residuals as a named series in 
your workfile using a procedure (see below).

• Conditional SD Graph plots the one-step ahead standard deviation  for each 
observation in the sample. The observation at period  is the forecast for  made 
using information available in . You can save the conditional standard devia-
tions as named series in your workfile using a procedure (see below).

• Covariance Matrix displays the estimated coefficient covariance matrix. Most ARCH 
models (except ARCH-M models) are block diagonal so that the covariance between 
the mean coefficients and the variance coefficients is very close to zero. If you 
include a constant in the mean equation, there will be two C’s in the covariance 
matrix; the first C is the constant of the mean equation, and the second C is the con-
stant of the variance equation. 

Dependent Variable: R 
Method: ML - ARCH 
Date: 10/16/00   Time: 10:13 
Sample(adjusted): 2 5758 
Included observations: 5757 after adjusting endpoints 
Convergence achieved after 335 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

C -0.005032 0.005324 -0.945073 0.3446 

        Variance Equation 

C 0.015617 0.008729 1.788987 0.0736 
ARCH(1) 0.208221 0.051805 4.019331 0.0001 

GARCH(1) 0.785165 0.045302 17.33167 0.0000 

R-squared -0.000632     Mean dependent var -0.020218 
Adjusted R-squared -0.001154     S.D. dependent var 0.604167 
S.E. of regression 0.604515     Akaike info criterion 1.596745 
Sum squared resid 2102.368     Schwarz criterion 1.601371 
Log likelihood -4592.231     Durbin-Watson stat 1.914803 

α β+

σt
t t

t 1−
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• Coefficient Tests carries out standard hypothesis tests on the estimated coefficients. 
See “Coefficient Tests” on page 368 for details. Note that the likelihood ratio tests are 
not appropriate under a quasi-maximum likelihood interpretation of your results. 

• Residual Tests/Correlogram–Q-statistics displays the correlogram (autocorrelations 
and partial autocorrelations) of the standardized residuals. This view can be used to 
test for remaining serial correlation in the mean equation and to check the specifica-
tion of the mean equation. If the mean equation is correctly specified, all Q-statistics 
should not be significant. See “Correlogram” on page 167 for an explanation of cor-
relograms and Q-statistics.

• Residual Tests/Correlogram Squared Residuals displays the correlogram (autocor-
relations and partial autocorrelations) of the squared standardized residuals. This 
view can be used to test for remaining ARCH in the variance equation and to check 
the specification of the variance equation. If the variance equation is correctly speci-
fied, all Q-statistics should not be significant. See “Correlogram” on page 167 for an 
explanation of correlograms and Q-statistics. See also Residual Tests/ARCH LM 
Test.

• Residual Tests/Histogram–Normality Test displays descriptive statistics and a his-
togram of the standardized residuals. You can use the Jarque-Bera statistic to test 
whether the standardized residuals are normally distributed. If the standardized 
residuals are normally distributed, the Jarque-Bera statistic should not be significant. 
See “Descriptive Statistics” beginning on page 152 for an explanation of the Jarque-
Bera test. For example, the histogram of the standardized residuals from the 
GARCH(1,1) model fit to the daily exchange rate looks as follows:

The residuals are highly leptokurtic 
and the Jarque-Bera statistic deci-
sively rejects the hypothesis of nor-
mal distribution. 

• Residual Tests/ARCH LM Test car-
ries out Lagrange multiplier tests to 
test whether the standardized resid-
uals exhibit additional ARCH. If the 
variance equation is correctly speci-
fied, there should be no ARCH left in 
the standardized residuals. See 
“ARCH LM Test” on page 377 for a 
discussion of testing. See also Resid-
ual Tests/Correlogram Squared Residuals. 
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ARCH Model Procedures

• Make Residual Series saves the residuals as named series in your workfile. You 
have the option to save the ordinary residuals, , or the standardized residuals, 

. The residuals will be named RESID1, RESID2, and so on; you can rename 
the series with the name button in the series window. 

• Make GARCH Variance Series saves the conditional variances  as named series 
in your workfile. The conditional variance series will be named GARCH01, 
GARCH02, and so on. Take the square root to get the conditional standard deviations 
as displayed by the View/Conditional SD Graph.

• Forecast uses the estimated ARCH model to compute static and dynamic forecasts of 
the mean, its forecast standard error, and the conditional variance. To save any of 
these forecasts in your workfile, type a name in the corresponding dialog box. If you 
choose the Do graph option, EViews displays the graphs of the forecasts and two 
standard deviation bands for the mean forecast. For example, suppose we estimated 
the following GARCH(1,1)-M model:

To construct dynamic forecasts of R using this model, click Forecast and fill in the 
Forecast dialog setting the sample after the estimation period. If you choose Do 
graph, the equation view changes to display the forecast results.

εt
εt σt⁄

σt
2

Dependent Variable: R 
Method: ML - ARCH 
Date: 10/16/00   Time: 11:12 
Sample(adjusted): 2 5758 
Included observations: 5757 after adjusting endpoints 
Convergence achieved after 403 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

SQR(GARCH) -0.021288 0.038087 -0.558935 0.5762 
C 0.004083 0.017338 0.235492 0.8138 

        Variance Equation 

C 0.016429 0.009140 1.797553 0.0722 
ARCH(1) 0.214350 0.051698 4.146199 0.0000 

GARCH(1) 0.778253 0.046152 16.86295 0.0000 

R-squared 0.000081     Mean dependent var -0.020218 
Adjusted R-squared -0.000615     S.D. dependent var 0.604167 
S.E. of regression 0.604352     Akaike info criterion 1.599669 
Sum squared resid 2100.870     Schwarz criterion 1.605451 
Log likelihood -4599.646     F-statistic 0.116199 
Durbin-Watson stat 1.917673     Prob(F-statistic) 0.976830 
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This graph is the fore-
cast of R from the 
mean equation 
together with the two 
standard deviation 
bands. Although, the 
point forecasts look 
constant, they are in 
fact declining over 
the forecast period 
because of the nega-
tive sign of the GARCH term in the mean equation (you can check this by looking at 
the spreadsheet view of the point forecasts.) The right graph is the forecast of the 
conditional variance . Since the sum of the ARCH and GARCH terms ( ) is 
close to one, the volatility shocks are persistent, so that the forecasts of the condi-
tional variance converge to the steady state quite slowly.

Additional Comments

Several of the test results described above are formulated in terms of standardized residu-
als, , which are defined as the conventional mean equation residuals divided by the 
conditional standard deviation.

If the model is correctly specified, the standardized residuals should be independent, and 
identically distributed random variables with mean zero and variance one. If the standard-
ized residuals are also normally distributed, then the estimates are maximum likelihood 
estimates which are asymptotically efficient. However, even if the distribution of the resid-
uals is not normal, the estimates are still consistent under quasi-maximum likelihood 
(QML) assumptions. 

To carry out valid inference with QML, you should make certain to use the Heteroskedas-
ticity Consistent Covariance option to estimate the standard errors.

Asymmetric ARCH Models

For equities, it is often observed that downward movements in the market are followed by 
higher volatilities than upward movements of the same magnitude. To account for this 
phenomenon, Engle and Ng (1993) describe a News Impact Curve with asymmetric 
response to good and bad news.
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EViews estimates two models that allow for asymmetric shocks to volatility: TARCH and 
EGARCH.

The TARCH Model 

TARCH or Threshold ARCH was introduced independently by Zakoïan (1994) and Glosten, 
Jaganathan, and Runkle (1993). The specification for the conditional variance is given by

(16.16)

where  if , and 0 otherwise.

In this model, good news , and bad news , have differential effects on the 
conditional variance—good news has an impact of , while bad news has an impact of 
( ). If  we say that a leverage effect exists in that bad news increases volatility. 
If , the news impact is asymmetric.

For higher order specifications of the TARCH model, EViews estimates

. (16.17)

To estimate this model, specify your ARCH model in the usual fashion, but instead of 
selecting a GARCH specification, you should click on the TARCH (asymmetric) radio but-
ton listed under ARCH Specification.

The TARCH(1,1) model fitted to the daily exchange rate returns gives:

σt
2

ω αεt 1−
2

γεt 1−
2

dt 1− βσt 1−
2+ + +=

dt 1= εt 0<

εt 0>( ) εt 0<( )
α

α γ+ γ 0>
γ 0≠

σt
2

ω αiεt i−
2

i 1=

q

Σ γεt 1−
2

dt 1− βjσt j−
2

j 1=

p

Σ+ + +=



Asymmetric ARCH Models—409
The leverage effect term, , represented by (RESID<0)*ARCH(1) in the output, is not sig-
nificantly positive (even with a one-sided test) so there does not appear to be an asymmet-
ric effect. Note that it is important that we use the quasi-likelihood robust standard errors 
since the residuals are highly leptokurtic.

Note that when forecasting with this model, EViews assumes that the distribution of the 
residuals is symmetric so that  half of the time. Since we cannot identify when this 
occurs, we arbitrarily set for all observations.

The EGARCH Model

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). The specifica-
tion for the conditional variance is

. (16.18)

Note that the left-hand side is the log of the conditional variance. This implies that the 
leverage effect is exponential, rather than quadratic, and that forecasts of the conditional 
variance are guaranteed to be nonnegative. The presence of leverage effects can be tested 
by the hypothesis that . The impact is asymmetric if . 

There are two differences between the EViews specification of the EGARCH model and the 
original Nelson model. First, Nelson assumes that the  follows a generalized error distri-
bution, while EViews assumes normally distributed errors. Second, Nelson’s specification 
for the log conditional variances differs slightly from the specification above:

Method: ML - ARCH 
Date: 10/16/00   Time: 11:25 
Sample(adjusted): 2 5758 
Included observations: 5757 after adjusting endpoints 
Convergence achieved after 438 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

C -0.005262 0.005778 -0.910734 0.3624 

        Variance Equation 

C 0.015643 0.008727 1.792541 0.0730 
ARCH(1) 0.206231 0.056786 3.631712 0.0003 

(RESID<0)*ARCH(1) 0.004252 0.050441 0.084304 0.9328 
GARCH(1) 0.784890 0.045006 17.43957 0.0000 

R-squared -0.000613     Mean dependent var -0.020218 
Adjusted R-squared -0.001309     S.D. dependent var 0.604167 
S.E. of regression 0.604562     Akaike info criterion 1.597084 
Sum squared resid 2102.328     Schwarz criterion 1.602867 
Log likelihood -4592.206     Durbin-Watson stat 1.914840 
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. (16.19)

Estimating this model under the assumption of normal errors will yield identical estimates 
to those reported by EViews except for the intercept term , which differ by . 

. (16.20)

To estimate an EGARCH model, simply select the EGARCH radio button under the ARCH 
specification settings. Applying this method to data on daily bond futures gives the follow-
ing results:

The leverage effect term, , denoted as RES/SQR[GARCH](1) in the output, is negative 
and statistically different from zero, indicating the existence of the leverage effect in future 
bonds returns during the sample period. 

Plotting the Estimated News Impact Curve

What does the estimated news impact curve look like? Here we illustrate one method of 
using EViews to plot this curve. Our goal is to plot the volatility , against the impact 

, where

. (16.21)

We will fix last period’s volatility  to the median of the estimated conditional vari-
ance series and estimate the one-period impact, conditional on last period’s volatility. 

σt
2log ω β σt 1−

2log+ α
εt 1−

σt 1−
�����������

2
π
���− γ

εt 1−

σt 1−
�����������+ +=

w α 2 π⁄

σt
2log ω βi σt 1−

2log
i 1=

p

Σ αj
εt j−

σt j−
�����������

2
π
���− γj

εt j−

σt j−
�����������+ 

 
j 1=

q

Σ+ +=

Dependent Variable: BF 
Method: ML - ARCH 
Date: 10/16/00   Time: 11:47 
Sample: 1 2114 
Included observations: 2114 
Convergence achieved after 15 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

C 8.63E-05 0.000134 0.641819 0.5210 

        Variance Equation 

C -0.129288 0.034851 -3.709784 0.0002 
|RES|/SQR[GARCH](1) 0.062530 0.015138 4.130533 0.0000 
RES/SQR[GARCH](1) -0.025617 0.011189 -2.289447 0.0221 

EGARCH(1) 0.991846 0.002925 339.0410 0.0000 

R-squared 0.000000     Mean dependent var  
Adjusted R-squared -0.001897     S.D. dependent var  
S.E. of regression 0.007024     Akaike info criterion  
Sum squared resid 0.104050     Schwarz criterion  
Log likelihood 7637.979     Durbin-Watson stat  
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Suppose you estimated the above EGARCH model in an undated workfile and saved the 
equation as an object named EQ1. First, generate the conditional variance series by click-
ing Procs/Make GARCH Variance Series. Next, store the median by entering the following 
command in the command window:

scalar med = @median(garch01)

where GARCH1 is the name of the conditional variance series.

Generate the  series, which will be the -axis of the news impact curve, using the fol-
lowing commands:

smpl 1 100

series z = -10 + @trend(1)*20/100

This generates an equispaced  series between –10 and 10. Then generate the series by 
the command

series log(sig2) = eq1.c(2) + eq1.c(5)*log(med) + 

eq1.c(3)*abs(z) + eq1.c(4)*z 

where SIG2 is the name for the series. Note that EViews will automatically create the 
series SIG2 from the log specification. 

Finally, highlight the two series Z and SIG2 (in order to get the axis right), double click, 
Open/as Group, and View/Graph/XY line/One X against all Y’s. Below we show a cus-
tomized graph depicting the estimated news impact curves from TARCH and EGARCH 
models fitted to the daily futures return: 
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Checking for Asymmetry Using Cross Correlations

Estimating the TARCH and EGARCH models and testing the significance of the asymmetric 
terms is one way to test for asymmetric effects. Alternatively, we can look at the cross cor-
relation between the squared standardized residuals  and lagged standardized residuals 

. These cross correlations should be zero for a symmetric GARCH model and negative 
for a TARCH or EGARCH asymmetric model. 

To display the cross correlogram between  and , first save the standardized residu-
als from the estimated model in a series named STDRES1. Then type the command:

show stdres1^2 stdres1

where RESID1 is the name of the standardized residuals. Then View/Cross Correlation 
(2) … and specify the lags to display the cross correlogram. The cross correlogram for the 
simple GARCH(1,1) model fit to future bonds returns is displayed below.

Because of the large sample size, the approximate two standard error bands (the dotted 
lines) are very tight around the estimated values. Note that the cross correlation only picks 
up linear associations between the two series and may miss nonlinear dependence 
between the two series. 

The Component ARCH Model

The conditional variance in the GARCH(1,1) model: 

. (16.22)

shows mean reversion to  which is a constant for all time. By contrast, the component 
model allows mean reversion to a varying level , modeled as:
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(16.23)

Here  is still the volatility, while  takes the place of  and is the time varying long 
run volatility. The first equation describes the transitory component, , which con-
verges to zero with powers of ( ). The second equation describes the long run com-
ponent , which converges to  with powers of . Typically  is between 0.99 and 1 so 
that  approaches  very slowly. We can combine the transitory and permanent equa-
tions and write

(16.24)

which shows that the component model is a (nonlinear) restricted GARCH(2,2) model. 

You can include exogenous variables in the conditional variance equation of component 
models, either in the permanent or transitory equation (or both). The variables in the tran-
sitory equation will have an impact on the short run movements in volatility, while the 
variables in the permanent equation will affect the long run levels of volatility.

The Asymmetric Component option in the Equation Specification dialog combines the 
component model with the asymmetric TARCH model. This specification introduces asym-
metric effects in the transitory equation and estimates models of the form:

(16.25)

where  are the exogenous variables and  is the dummy variable indicating negative 
shocks.  indicates the presence of transitory leverage effects in the conditional vari-
ance. 

Estimating and Interpreting Models in EViews

To estimate component models in EViews, choose either the Component ARCH or Asym-
metric Component option in the Equation Specification dialog. The estimation results of 
fitting the asymmetric component model to the bond futures return data are shown below:
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The coefficients labeled “Perm:” are the coefficients for the permanent equation and those 
labeled “Trans:” correspond to the transitory equation. The estimate of the persistence in 
the long run component is , indicating that the long run component converges 
very slowly to the steady state. The short run volatility component appears to be signifi-
cantly different from zero. After setting the asymmetric effect to its mean, we can test the 
joint hypothesis that ( ), by selecting View/Coefficient Tests/Wald - 
Coefficient Restrictions… and entering 

c(5) + 0.5*c(6) + c(7) = 0

in the Wald Test dialog box. The result is given by:

To forecast from the component model, click Forecast, enter “2115 2170” as the forecast 
interval, and make certain that Do Graph, and is selected. Click OK. Here we have copy-
and-pasted the customized graph output into our word processor.

Dependent Variable: BF 
Method: ML - ARCH 
Date: 10/16/00   Time: 12:41 
Sample: 1 2114 
Included observations: 2114 
Convergence achieved after 19 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

C 0.000120 0.000133 0.899130 0.3686 

        Variance Equation 

Perm: C 2.99E-05 6.66E-06 4.485359 0.0000 
Perm: [Q-C] 0.998114 0.001278 781.1750 0.0000 
Perm: [ARCH-GARCH] -0.004590 0.004750 -0.966355 0.3339 
Tran: [ARCH-Q] 0.018299 0.012540 1.459306 0.1445 
Tran: (RES<0)*[ARCH-Q] 0.030781 0.014738 2.088588 0.0367 
Tran: [GARCH-Q] 0.939780 0.021482 43.74633 0.0000 

R-squared -0.000021     Mean dependent var 8.78E-05 
Adjusted R-squared -0.002868     S.D. dependent var 0.007017 
S.E. of regression 0.007027     Akaike info criterion -7.221226 
Sum squared resid 0.104052     Schwarz criterion -7.202497 
Log likelihood 7639.836     Durbin-Watson stat 1.934630 

ρ� 0.998=

α 0.5γ β+ + 0=

Wald Test: 
Equation: BF_ACOMPONENT 

Test Statistic Value df Probability 

F-statistic 4613.622 (1, 2107) 0.0000 
Chi-square 4613.622 1 0.0000 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

C(5) + 0.5*C(6) + C(7) 0.973469 69.77481 

Restrictions are linear in coefficients. 
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Notice that the volatility forecast from the component model need not be monotonic. In 
this example, there is a short run fluctuating component which dies out in the long run.

To include exogenous regressors in the variance equation, type the names of the regressors 
in the Variance Regressors box in the following order: first list the series names to include 
in the permanent equation, followed by an @ sign, and then list the series names to include 
in the transitory equation. For example, to include HOL in the permanent equation and 
JAN, END in the transitory equation, type

hol @ jan end

and to include JAN in the transitory equation, type

@ jan 

Examples

Modeling the volatility in the US Dollar/Deutschmark exchange rates 

As an illustration of ARCH modeling 
in EViews, we use daily US Dollar/
Deutschmark exchange rate from 
1971 to 1993. The dependent vari-
able is the daily nominal return, 

, where  is 
the spot rate. The return series 
clearly shows volatility clustering, 
especially early in the sample.

We start from a general 
GARCH(1,1)-M model of the follow-
ing form:

rt st st 1−⁄( )log= s
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(16.26)

The mean equation includes the conditional variance and MA(1) errors. The MON series is 
a dummy variable for Monday, which is meant to capture weekend non-trading.

To check whether there are any ARCH effects left in the residuals, click View/Residual 
Tests/ARCH LM Test… and specify the order to test. The top part of the output from test-
ing up to an ARCH(7) is given by

indicating that there does not appear to be any ARCH up to order 7. 

To check whether the distribution of the standardized residuals look normal, click View/
Residual Tests/Histogram:

rt π0 π1σt
2

εt θεt 1−+ + +=

σt
2

ω αεt 1−
2

βσt 1−
2

γMONt.+ + +=

Dependent Variable: R 
Method: ML - ARCH 
Date: 10/16/00   Time: 13:34 
Sample(adjusted): 2 5764 
Included observations: 5763 after adjusting endpoints 
Estimation settings: tol= 1.0E-06, derivs=fast mixed (linear) 
Initial Values: C(1)=-2.18649, C(2)=-3.2E-05, C(3)=0.00500, C(4)=4.4E 
        -05, C(5)=0.15000, C(6)=0.60000, C(7)=0.00000 
Convergence achieved after 251 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 
MA backcast: 1, Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 

GARCH -0.860947 2.763612 -0.311530 0.7554 
C -7.31E-05 0.000103 -0.706830 0.4797 

MA(1) 0.020325 0.015719 1.293035 0.1960 

        Variance Equation 

C 1.86E-06 3.02E-07 6.144539 0.0000 
ARCH(1) 0.121845 0.022167 5.496754 0.0000 

GARCH(1) 0.865308 0.014842 58.29979 0.0000 
MON -4.37E-06 6.28E-07 -6.956371 0.0000 

R-squared 0.001056     Mean dependent var -0.000128 
Adjusted R-squared 0.000015     S.D. dependent var 0.006628 
S.E. of regression 0.006628     Akaike info criterion -7.404132 
Sum squared resid 0.252876     Schwarz criterion -7.396043 
Log likelihood 21342.01     F-statistic 1.014057 
Durbin-Watson stat 1.973046     Prob(F-statistic) 0.413930 
Inverted MA Roots       -.02 

ARCH Test: 

F-statistic 0.125147     Probability 0.996585 
Obs*R-squared 0.877118     Probability 0.996575 
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The residuals are highly leptokurtic and the Jarque-Bera test decisively rejects the normal 
distribution. An alternative way to check the distribution of the residuals is to plot the 
quantiles. First save the residuals by clicking Procs/Make Residual Series… and choose 
standardized. In our example, EViews created a series named RESID02 containing the 
standardized residuals. Then in the residual series window choose View/Distribution/
Quantile-Quantile Graphs… and plot against Quantiles of the normal distribution.

If the residuals are normally distributed, the QQ-plots should lie on a straight line; see 
“Quantile-Quantile” on page 227 for details on QQ-plots. The plot shows that it is primarily 
a few large outliers that are driving the departure from normality. You can also experiment 
with other distributions. For example, in the ARCH literature, the t-distribution is com-
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monly used to capture the thick tails in the distribution. Although there is no option for the 
t-distribution in the Quantile-Quantile view, you can simulate a draw from a t-distribution 
and check whether the distribution matches with the residuals. The command

series tdist5 = @qtdist(rnd,5)

simulates a random draw from the t-distribution with 5 degrees of freedom. Then in the 
QQ Plot dialog box choose Series or Group and type the name of the series (in this case 
tdist5).

The QQ-plot now lies mostly on a straight line, except for the two outlier observations. 

The departure from normality of the residuals suggests using the robust standard errors 
option.

Commands

The ARCH procedure estimates GARCH models:

equation eq1.arch(1,1) sp500 c

estimates a GARCH(1,1) model with only a constant in the conditional mean equation.

eq1.arch(1,1) sp500 c @ d_mon

estimates a GARCH(1,1) model with a constant in the conditional mean equation and 
D_MON in the conditional variance equation.

eq1.makegarch garch1

stores the estimated conditional variance series from EQ1 as a series named GARCH1. 
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Chapter 18, “The Log Likelihood (LogL) Object”, beginning on page 471 contains examples 
of using logl objects for estimating other univariate and multivariate GARCH models.

See the Command and Programming Reference for a complete list of commands and 
options available in ARCH estimation. 
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Chapter 17.  Discrete and Limited Dependent Variable 
Models

The regression methods described in Chapter 11, “Basic Regression” and Chapter 12, 
“Additional Regression Methods” require that the dependent variable be observed on a 
continuous and unrestricted scale. It is quite common, however, for this condition to be 
violated, resulting in a non-continuous, or a limited dependent variable. We will distin-
guish between three types of these variables:

• qualitative (observed on a discrete or ordinal scale)

• censored or truncated

• integer valued

In this chapter we discuss estimation methods for several qualitative and limited depen-
dent variable models. EViews provides estimation routines for binary or ordered (probit, 
logit, gompit), censored or truncated (tobit, etc.), and integer valued (count data) models.

Standard introductory discussion for the models presented in this chapter may be found in 
Greene (1997), Johnston and DiNardo (1997), and Maddala (1983). Wooldridge (1996) 
provides an excellent reference for quasi-likelihood methods and count models. 

Binary Dependent Variable Models

In this class of models, the dependent variable,  may take on only two values—  might 
be a dummy variable representing the occurrence of an event, or a choice between two 
alternatives. For example, you may be interested in modeling the employment status of 
each individual in your sample (whether employed or not). The individuals differ in age, 
educational attainment, race, marital status, and other observable characteristics, which 
we denote as . The goal is to quantify the relationship between the individual character-
istics and the probability of being employed.

Theory

Suppose that a binary dependent variable, , takes on values of zero and one. A simple 
linear regression of  on  is not appropriate, since among other things, the implied 
model of the conditional mean places inappropriate restrictions on the residuals of the 
model. Furthermore, the fitted value of  from a simple linear regression is not restricted 
to lie between zero and one. 

Instead, we adopt a specification that is designed to handle the specific requirements of 
binary dependent variables. Suppose that we model the probability of observing a value of 
one as: 

y y

x

y
y x

y
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, (17.1)

where  is a continuous, strictly increasing function that takes a real value and returns a 
value ranging from zero to one. The choice of the function  determines the type of 
binary model. It follows that

. (17.2)

Given such a specification, we can estimate the parameters of this model using the method 
of maximum likelihood. The likelihood function is given by:

. (17.3)

The first order conditions for this likelihood are nonlinear so that obtaining parameter esti-
mates requires an iterative solution. By default, EViews uses a second derivative method 
for iteration and computation of the covariance matrix of the parameter estimates. As dis-
cussed below, EViews allows you to override these defaults using the Options dialog (see 
“Second Derivative Methods” on page 664 for additional details on the estimation meth-
ods). 

There are two alternative interpretations of this specification that are of interest. First, the 
binary model is often motivated as a latent variables specification. Suppose that there is an 
unobserved latent variable  that is linearly related to 

(17.4)

where  is a random disturbance. Then the observed dependent variable is determined 
by whether  exceeds a threshold value:

(17.5)

In this case, the threshold is set to zero, but the choice of a threshold value is irrelevant, so 
long as a constant term is included in . Then 

 (17.6)

where  is the cumulative distribution function of . Common models include probit 
(standard normal), logit (logistic), and gompit (extreme value) specifications for the  
function.

In principle, the coding of the two numerical values of  is not critical since each of the 
binary responses only represents an event. Nevertheless, EViews requires that you code  
as a zero-one variable. This restriction yields a number of advantages. For one, coding the 
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variable in this fashion implies that expected value of  is simply the probability that 
: 

(17.7)

This convention provides us with a second interpretation of the binary specification: as a 
conditional mean specification. It follows that we can write the binary model as a regres-
sion model:

, (17.8)

where  is a residual representing the deviation of the binary  from its conditional 
mean. Then

(17.9)

We will use the conditional mean interpretation in our discussion of binary model residu-
als (see “Make Residual Series” on page 434).

Estimating Binary Models in EViews

To estimate a binary dependent variable model, choose Objects/New Object… from the 
main menu and select the Equation object from the main menu. From the Equation Speci-
fication dialog, select the BINARY estimation method. The dialog will change to reflect 
your choice. 

There are two parts to the binary model specification. First, in the Equation Specification 
field, you should type the name of the binary dependent variable followed by a list of 
regressors. You may not enter an explicit equation since binary estimation only supports 
specification by list. Next, select from among the three distributions for your error term: 

y
y 1=

E yi xi β,( ) 1 Pr yi 1= xi β,( )⋅ 0 Pr yi 0= xi β,( )⋅+=

Pr yi 1= xi β,( ).=

yi 1 F xi′β−( )−( ) εi+=

εi yi

E εi xi β,( ) 0=
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For example, consider the probit specification example described in Greene (1997, p. 876) 
where we analyze the effectiveness of teaching methods on grades. The variable GRADE 
represents improvement on grades following exposure to the new teaching method PSI. 
Also controlling for alternative measures of knowledge (GPA and TUCE), we have the spec-
ification:

Once you have specified the model, click OK. EViews estimates the parameters of the 
model using iterative procedures, and will display information in the status line. EViews 
requires that the dependent variable be coded with the values zero-one with all other 
observations dropped from the estimation.

Probit

where  is the cumulative distribution function of the 
standard normal distribution.

Logit

which is based upon the cumulative distribution function 
for the logistic distribution.

Extreme value 
(Gompit)

which is based upon the CDF for the Type-I extreme value 
distribution. Note that this distribution is skewed.
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Following estimation, EViews displays results in the equation window. The top part of the 
estimation output is given by:

The header contains basic information regarding the estimation technique (ML for maxi-
mum likelihood) and the sample used in estimation, as well as information on the number 
of iterations required for convergence, and on the method used to compute the coefficient 
covariance matrix.

Displayed next are the coefficient estimates, asymptotic standard errors, z-statistics and 
corresponding p-values. 

Interpretation of the coefficient values is complicated by the fact that estimated coefficients 
from a binary model cannot be interpreted as the marginal effect on the dependent vari-
able. The marginal effect of  on the conditional probability is given by:

, (17.10)

where  is the density function corresponding to . Note that  is 
weighted by a factor  that depends on the values of all of the regressors in . The direc-
tion of the effect of a change in  depends only on the sign of the  coefficient. Positive 
values of  imply that increasing  will increase the probability of the response; nega-
tive values imply the opposite.

While marginal effects calculation is not provided as a built-in view or procedure, in “Fore-
cast” on page 434, we show you how to use EViews to compute the marginal effects.

An alternative interpretation of the coefficients results from noting that the ratios of coeffi-
cients provide a measure of the relative changes in the probabilities:

. (17.11)

In addition to the summary statistics of the dependent variable, EViews also presents the 
following summary statistics:

Dependent Variable: GRADE 
Method: ML - Binary Probit 
Date: 07/31/00   Time: 15:57 
Sample: 1 32 
Included observations: 32 
Convergence achieved after 5 iterations 
Covariance matrix computed using second derivatives 

Variable Coefficient Std. Error z-Statistic Prob. 

C -7.452320 2.542472 -2.931131 0.0034 
GPA 1.625810 0.693882 2.343063 0.0191 
TUCE 0.051729 0.083890 0.616626 0.5375 
PSI 1.426332 0.595038 2.397045 0.0165 
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First, there are several familiar summary descriptive statistics: the mean and standard devi-
ation of the dependent variable, standard error of the regression, and the sum of the 
squared residuals. The latter two measures are computed in the usual fashion using the 
residuals:

(17.12)

Additionally, there are several likelihood based statistics:

• Log likelihood is the maximized value of the log likelihood function .

• Avg. log likelihood is the log likelihood  divided by the number of observa-
tions .

• Restr. log likelihood is the maximized log likelihood value, when all slope coeffi-
cients are restricted to zero, . Since the constant term is included, this specifica-
tion is equivalent to estimating the unconditional mean probability of “success”.

• The LR statistic tests the joint null hypothesis that all slope coefficients except the 
constant are zero and is computed as . This statistic, which is only 
reported when you include a constant in your specification, is used to test the over-
all significance of the model. The number in parentheses is the degrees of freedom, 
which is the number of restrictions under test.

• Probability(LR stat) is the p-value of the LR test statistic. Under the null hypothesis, 
the LR test statistic is asymptotically distributed as a variable, with degrees of 
freedom equal to the number of restrictions under test. 

• McFadden R-squared is the likelihood ratio index computed as , 
where  is the restricted log likelihood. As the name suggests, this is an analog 
to the  reported in linear regression models. It has the property that it always lies 
between zero and one.

• The various information criteria are detailed in Appendix F, “Information Criteria”, 
beginning on page 683. For additional discussion, see Grasa (1989). 

Mean dependent var 0.343750     S.D. dependent var 0.482559 
S.E. of regression 0.386128     Akaike info criterion 1.051175 
Sum squared resid 4.174660     Schwarz criterion 1.234392 
Log likelihood -12.81880     Hannan-Quinn criter. 1.111907 
Restr. log likelihood -20.59173     Avg. log likelihood -0.400588 
LR statistic (3 df) 15.54585     McFadden R-squared 0.377478 
Probability(LR stat) 0.001405    

Obs with Dep=0 21      Total obs 32 
Obs with Dep=1 11    
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Estimation Options

The iteration limit and convergence criterion may be set in the usual fashion from the 
Options dialog. In addition, there are options that are specific to binary models. These 
options are described below.

Robust Standard Errors

For binary dependent variable models, EViews allows you to estimate the standard errors 
using quasi-maximum likelihood (Huber/White) or generalized linear model (GLM) 
methods. See “Technical Notes” on page 467 for a discussion of these two methods.

Click Options in the Equation Specification dialog box and check the Robust Covariance 
box and select one of the two methods. When you estimate the binary model using this 
option, the header in the equation output will indicate the method used to compute the 
coefficient covariance matrix.

Starting Values

As with other estimation procedures, EViews allows you to specify starting values. In the 
options menu, select one of the items from the combo box. You can use the default EViews 
values, or you can choose a fraction of those values, zero coefficients, or user supplied val-
ues. To employ the latter, enter the coefficients in the C coefficient vector, and select User 
Supplied in the combo box.

The EViews default values are selected using a sophisticated algorithm that is specialized 
for each type of binary model. Unless there is a good reason to choose otherwise, we rec-
ommend that you use the default values.

Estimation Algorithm

By default, EViews uses quadratic hill-climbing to obtain parameter estimates. This algo-
rithm uses the matrix of analytic second derivatives of the log likelihood in forming itera-
tion updates and in computing the estimated covariance matrix of the coefficients.

If you wish, you can employ a different estimation algorithm: Newton-Raphson also 
employs second derivatives (without the diagonal weighting); BHHH uses first derivatives 
to determine both iteration updates and the covariance matrix estimates (see Appendix D, 
“Estimation Algorithms and Options”, on page 663). To employ one of these latter meth-
ods, click on Options in the Equation specification dialog box, and select the desired 
method. 
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Estimation Problems

In general, estimation of binary models is quite straightforward, and you should experi-
ence little difficulty in obtaining parameter estimates. There are a few situations, however, 
where you may experience problems.

First, you may get the error message “Dependent variable has no variance.” This error 
means that there is no variation in the dependent variable (the variable is always one or 
zero for all valid observations). This error most often occurs when EViews excludes the 
entire sample of observations for which  takes values other than zero or one, leaving too 
few observations for estimation.

You should make certain to recode your data so that the binary indicators take the values 
zero and one. This requirement is not as restrictive at it may first seem, since the recoding 
may easily be done using auto-series. Suppose, for example, that you have data where  
takes the values 1000 and 2000. You could then use the boolean auto-series, “y=1000”, or 
perhaps, “y<1500”, as your dependent variable.

Second, you may receive an error message of the form “[xxxx] perfectly predicts binary 
response [success/failure]”, where xxxx is a sample condition. This error occurs when one 
of the regressors contains a separating value for which all of the observations with values 
below the threshold are associated with a single binary response, and all of the values 
above the threshold are associated with the alternative response. In this circumstance, the 
method of maximum likelihood breaks down.

For example, if all values of the explanatory variable  are associated with , 
then  is a perfect predictor of the dependent variable, and EViews will issue an error 
message and stop the estimation procedure.

The only solution to this problem is to remove the offending variable from your specifica-
tion. Usually, the variable has been incorrectly entered in the model, as when a researcher 
includes a dummy variable that is identical to the dependent variable (for discussion, see 
Greene, 1997).

Thirdly, you may experience the error, “Non-positive likelihood value observed for obser-
vation [xxxx].” This error most commonly arises when the starting values for estimation 
are poor. The default EViews starting values should be adequate for most uses. You may 
wish to check the Options dialog to make certain that you are not using user specified 
starting values, or you may experiment with alternative user-specified values.

Lastly, the error message “Near-singular matrix” indicates that EViews was unable to 
invert the matrix required for iterative estimation. This will occur if the model is not iden-
tified. It may also occur if the current parameters are far from the true values. If you 
believe the latter to be the case, you may wish to experiment with starting values or the 
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estimation algorithm. The BHHH and quadratic hill-climbing algorithms are less sensitive 
to this particular problem than is Newton-Raphson.

Views of Binary Equations

EViews provides a number of standard views and procedures for binary models. For exam-
ple, you can easily perform Wald or likelihood ratio tests by selecting View/Coefficient 
Tests, and then choosing the appropriate test. In addition, EViews allows you to examine 
and perform tests using the residuals from your model. The ordinary residuals used in 
most calculations are described above—additional residual types are defined below. Note 
that some care should be taken in interpreting test statistics that use these residuals since 
some of the underlying test assumptions may not be valid in the current setting.

There are a number of additional specialized views and procedures which allow you to 
examine the properties and performance of your estimated binary model.

Categorical Regressor Stats 

This view displays descriptive statistics (mean and standard deviation) for each regressor. 
The descriptive statistics are computed for the whole sample, as well as the sample broken 
down by the value of the dependent variable . 

Expectation-Prediction (Classification) Table 

This view displays  tables of correct and incorrect classification based on a user spec-
ified prediction rule, and on expected value calculations. Click on View/Expectation-Pre-
diction Table. EViews opens a dialog prompting you to specify a prediction cutoff value, 

, lying between zero and one. Each observation will be classified as having a predicted 
probability that lies above or below this cutoff. 

After you enter the cutoff value and click on OK, EViews will display four (bordered) 
 tables in the equation window. Each table corresponds to a contingency table of the 

predicted response classified against the observed dependent variable. The top two tables 
and associated statistics depict the classification results based given the specified cutoff 
values.

y

2 2×
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In the left-hand table, we classify observations as having predicted probabilities 
that are above or below the specified cutoff value (here set to the 

default of 0.5). In the upper right-hand table, we classify observations using , the sample 
proportion of  observations. This probability, which is constant across individuals, 
is the value computed from estimating a model that includes only the intercept term, C.

“Correct” classifications are obtained when the predicted probability is less than or equal 
to the cutoff and the observed , or when the predicted probability is greater than 
the cutoff and the observed . In the example above, 18 of the Dep=0 observations 
and 8 of the Dep=1 observations are correctly classified by the estimated model.

It is worth noting that in the statistics literature, what we term the expectation-prediction 
table is sometimes referred to as the classification table. The fraction of  observa-
tions that are correctly predicted is termed the sensitivity, while the fraction of  
observations that are correctly predicted is known as specificity. In EViews, these two val-
ues, expressed in percentage terms, are labeled “% Correct”. Overall, the estimated model 
correctly predicts 81.25% of the observations (85.71% of the Dep=0 and 72.73% of the 
Dep=1 observations).

The gain in the number of correct predictions obtained in moving from the right table to 
the left table provides a measure of the predictive ability of your model. The gain measures 
are reported in both absolute percentage increases (Total Gain), and as a percentage of the 
incorrect classifications in the constant probability model (Percent Gain). In the example 
above, the restricted model predicts that all 21 individuals will have Dep=0. This predic-
tion is correct for the 21  observations, but is incorrect for the 11  observa-
tions. 

The estimated model improves on the Dep=1 predictions by 72.73 percentage points, but 
does more poorly on the Dep=0 predictions (-14.29 percentage points). Overall, the esti-
mated equation is 15.62 percentage points better at predicting responses than the constant 

Dependent Variable: GRADE 
Method: ML - Binary Probit 
Date: 07/31/00   Time: 15:57 
Sample: 1 32 
Included observations: 32 
Prediction Evaluation (success cutoff C = 0.5) 

            Estimated Equation            Constant Probability 
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total 

P(Dep=1)<=C 18 3 21 21 11 32 
P(Dep=1)>C 3 8 11 0 0 0 

Total 21 11 32 21 11 32 
Correct 18 8 26 21 0 21 

% Correct 85.71 72.73 81.25 100.00 0.00 65.62 
% Incorrect 14.29 27.27 18.75 0.00 100.00 34.38 
Total Gain* -14.29 72.73 15.62    

Percent Gain**  NA 72.73 45.45    

p� i 1 F xi′β�−( )−=
p
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probability model. This change represents a 45.45 percent improvement over the 65.62 
percent correct prediction of the default model.

The bottom portion of the equation window contains analogous prediction results based 
upon expected value calculations.

In the left-hand table, we compute the expected number of  and  observa-
tions in the sample. For example, E(# of Dep=0) is computed as

, (17.13)

where the cumulative distribution function  is for the normal, logistic, or extreme value 
distribution. 

In the lower right-hand table, we compute the expected number of  and  
observations for a model estimated with only a constant. For this restricted model, E(# of 
Dep=0) is computed as , where  is the sample proportion of  observa-
tions. EViews also reports summary measures of the total gain and the percent (of the 
incorrect expectation) gain.

Among the 21 individuals with , the expected number of  observations in 
the estimated model is 16.89. Among the 11 observations with , the expected num-
ber of  observations is 6.86. These numbers represent roughly a 19.32 percentage 
point (42.82 percent) improvement over the constant probability model.

Goodness-of-Fit Tests

This view allows you to perform Pearson -type tests of goodness-of-fit. EViews carries 
out two goodness-of-fit tests: Hosmer-Lemeshow (1989) and Andrews (1988a, 1988b). The 
idea underlying these tests is to compare the fitted expected values to the actual values by 
group. If these differences are “large”, we reject the model as providing an insufficient fit 
to the data.

            Estimated Equation            Constant Probability 
 Dep=0 Dep=1 Total Dep=0 Dep=1 Total 

E(# of Dep=0) 16.89 4.14 21.03 13.78 7.22 21.00 
E(# of Dep=1) 4.11 6.86 10.97 7.22 3.78 11.00 

Total 21.00 11.00 32.00 21.00 11.00 32.00 
Correct 16.89 6.86 23.74 13.78 3.78 17.56 

% Correct 80.42 62.32 74.20 65.62 34.38 54.88 
% Incorrect 19.58 37.68 25.80 34.38 65.62 45.12 
Total Gain* 14.80 27.95 19.32    

Percent Gain** 43.05 42.59 42.82    
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Details on the two tests are described in the “Tech-
nical Notes” on page 467. Briefly, the tests differ in 
how the observations are grouped and in the 
asymptotic distribution of the test statistic. The Hos-
mer-Lemeshow test groups observations on the 
basis of the predicted probability that . The 
Andrews test is a more general test that groups 
observations on the basis of any series or series 
expression.

To carry out the test, select View/Goodness-of-Fit 
Test… 

You must first decide on the grouping variable. You 
can select Hosmer-Lemeshow (predicted probability) grouping by clicking on the corre-
sponding radio button, or you can select series grouping, and provide a series to be used in 
forming the groups. 

Next, you need to specify the grouping rule. EViews allows you to group on the basis of 
either distinct values or quantiles of the grouping variable. 

If your grouping variable takes relatively few distinct values, you should choose the Dis-
tinct values grouping. EViews will form a separate group for each distinct value of the 
grouping variable. For example, if your grouping variable is TUCE, EViews will create a 
group for each distinct TUCE value and compare the expected and actual numbers of 

 observations in each group. By default, EViews limits you to 100 distinct values. If 
the distinct values in your grouping series exceeds this value, EViews will return an error 
message. If you wish to evaluate the test for more than 100 values, you must explicitly 
increase the maximum number of distinct values. 

If your grouping variable takes on a large number of distinct values, you should select 
Quantiles, and enter the number of desired bins in the edit field. If you select this method, 
EViews will group your observations into the number of specified bins, on the basis of the 
ordered values of the grouping series. For example, if you choose to group by TUCE, select 
Quantiles, and enter 10, EViews will form groups on the basis of TUCE deciles.

If you choose to group by quantiles and there are ties in the grouping variable, EViews may 
not be able to form the exact number of groups you specify unless tied values are assigned 
to different groups. Furthermore, the number of observations in each group may be very 
unbalanced. Selecting the randomize ties option randomly assigns ties to adjacent groups 
in order to balance the number of observations in each group. 

y 1=

y 1=
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Since the properties of the test statistics require that the number of observations in each 
group is “large”, some care needs to be taken in selecting a rule so that you do not end up 
with a large number of cells, each containing small numbers of observations.

By default, EViews will perform the test using Hosmer-Lemeshow grouping. The default 
grouping method is to form deciles. The test result using the default specification is given 
by:

The columns labeled “Quantiles of Risk” depict the high and low value of the predicted 
probability for each decile. Also depicted are the actual and expected number of observa-
tions in each group, as well as the contribution of each group to the overall Hosmer-Leme-
show (H-L) statistic—large values indicate large differences between the actual and 
predicted values for that decile. 

The statistics are reported at the bottom of the table. Since grouping on the basis of the 
fitted values falls within the structure of an Andrews test, we report results for both the H-
L and the Andrews test statistic. The p-value for the HL test is large while the value for the 
Andrews test statistic is small, providing mixed evidence of problems. Furthermore, the rel-
atively small sample sizes suggest that caution is in order in interpreting the results.

Procedures for Binary Equations

In addition to the usual procedures for equations, EViews allows you to forecast the depen-
dent variable and linear index, or to compute a variety of residuals associated with the 
binary model.

Dependent Variable: GRADE 
Method: ML - Binary Probit 
Date: 07/31/00   Time: 15:57 
Sample: 1 32 
Included observations: 32 
Andrews and Hosmer-Lemeshow Goodness-of-Fit Tests 
Grouping based upon predicted risk (randomize ties) 

   Quantile of Risk Dep=0 Dep=1 Total H-L 
 Low High Actual Expect Actual Expect Obs Value 

1 0.0161 0.0185 3 2.94722 0 0.05278 3 0.05372 
2 0.0186 0.0272 3 2.93223 0 0.06777 3 0.06934 
3 0.0309 0.0457 3 2.87888 0 0.12112 3 0.12621 
4 0.0531 0.1088 3 2.77618 0 0.22382 3 0.24186 
5 0.1235 0.1952 2 3.29779 2 0.70221 4 2.90924 
6 0.2732 0.3287 3 2.07481 0 0.92519 3 1.33775 
7 0.3563 0.5400 2 1.61497 1 1.38503 3 0.19883 
8 0.5546 0.6424 1 1.20962 2 1.79038 3 0.06087 
9 0.6572 0.8342 0 0.84550 3 2.15450 3 1.17730 

10 0.8400 0.9522 1 0.45575 3 3.54425 4 0.73351 

  Total 21 21.0330 11 10.9670 32 6.90863 

H-L Statistic: 6.9086   Prob. Chi-Sq(8) 0.5465 
Andrews Statistic: 20.6045   Prob. Chi-Sq(10) 0.0240 

χ
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Forecast

EViews allows you to compute either the fitted probability, , or the fit-
ted values of the index . From the equation toolbar select Procs/Forecast (Fitted 
Probability/Index)…, and then click on the desired entry.

As with other estimators, you can select a forecast sample, and display a graph of the fore-
cast. If your explanatory variables, , include lagged values of the binary dependent vari-
able , forecasting with the Dynamic option instructs EViews to use the fitted values 

, to derive the forecasts, in contrast with the Static option, which uses the actual 
(lagged) .

Neither forecast evaluations nor automatic calculation of standard errors of the forecast are 
currently available for this estimation method. The latter can be computed using the vari-
ance matrix of the coefficients displayed by View/Covariance Matrix, or using the 
@covariance function.

You can use the fitted index in a variety of ways, for example, to compute the marginal 
effects of the explanatory variables. Simply forecast the fitted index and save the results in 
a series, say XB. Then the auto-series @dnorm(-xb), @dlogistic(-xb), or @dex-
treme(-xb) may be multiplied by the coefficients of interest to provide an estimate of the 
derivatives of the expected value of  with respect to the j-th variable in :

. (17.14)

Make Residual Series 

Procs/Make Residual Series gives you the option of generating one of the following three 
types of residuals:

where  is the fitted probability, and the distribution and density func-
tions  and , depend on the specified distribution.

The ordinary residuals have been described above. The standardized residuals are simply 
the ordinary residuals divided by an estimate of the theoretical standard deviation. The 
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generalized residuals are derived from the first order conditions that define the ML esti-
mates. The first order conditions may be regarded as an orthogonality condition between 
the generalized residuals and the regressors .

. (17.15)

This property is analogous to the orthogonality condition between the (ordinary) residuals 
and the regressors in linear regression models.

The usefulness of the generalized residuals derives from the fact that you can easily obtain 
the score vectors by multiplying the generalized residuals by each of the regressors in . 
These scores can be used in a variety of LM specification tests (see Chesher, Lancaster and 
Irish (1985), and Gourieroux, Monfort, Renault, and Trognon (1987)). We provide an 
example below.

Demonstrations

You can easily use the results of a binary model in additional analysis. Here, we provide 
demonstrations of using EViews to plot a probability response curve and to test for het-
eroskedasticity in the residuals.

Plotting Probability Response Curves

You can use the estimated coefficients from a binary model to examine how the predicted 
probabilities vary with an independent variable. To do so, we will use the EViews built-in 
modeling features.

For the probit example above, suppose we are interested in the effect of teaching method 
(PSI) on educational improvement (GRADE). We wish to plot the fitted probabilities of 
GRADE improvement as a function of GPA for the two values of PSI, fixing the values of 
other variables at their sample means.

We will perform the analysis using a grid of values for GPA from 2 to 4. First, we will cre-
ate a series containing the values of GPA for which we wish to examine the fitted probabil-
ities for GRADE. The easiest way to do this is to use the @trend function to generate a 
new series:

series gpa_plot=2+(4-2)*@trend/(@obs(@trend)-1)

@trend creates a series that begins at 0 in the first observation of the sample, and 
increases by 1 for each subsequent observation, up through @obs-1. 
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Next, we will use a model object to 
define and perform the desired computa-
tions. The following discussion skims 
over many of the useful features of 
EViews models. Those wishing greater 
detail should consult Chapter 23, “Mod-
els”, beginning on page 601.

First, we create a model out of the esti-
mated equation by selecting Procs/Make Model from the equation toolbar. EViews will 
create an untitled model object containing a link to the estimated equation and will open 
the model window.

Next we want to edit this model specification so that calculations are performed using our 
simulation values. To do so we must first break the link between the original equation and 
the model specification by selecting Procs/Links/Break All Links. Next, click on the Text 
button or select View/Source Text to display the text editing screen.

We wish to create two separate equations: one with the value of PSI set to 0 and one with 
the value of PSI set to 1 (you can, of course, use copy-and-paste to aid in creating the addi-
tional equation). We will also edit the specification so that references to GPA are replaced 
with the series of simulation values GPA_PLOT, and references to TUCE are replaced with 
the calculated mean, “@MEAN(TUCE)”. The GRADE_0 equation sets PSI to 0, while the 
GRADE_1 contains an additional expression, 1.426332342, which is the coefficient on the 
PSI variable.

Once you have edited your model, click 
on Solve and set the “Active” solution 
scenario to “Actuals”. This tells EViews 
that you wish to place the solutions in 
the series “GRADE_0” and “GRADE_1” 
as specified in the equation definitions. 
You can safely ignore the remaining solu-
tion settings and simply click on OK. 
EViews will report that your model has 
solved successfully.

You are now ready to plot results. Select Object/New Object/Group, and enter

 gpa_plot grade_0 grade_1

EViews will open an untitled group window containing these two series. Select View/
Graph/XY line to display the probability of GRADE improvement plotted against GPA for 
those with and without PSI (and with the TUCE evaluated at means). 
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EViews will open a group window containing these series. Select View/Graph/XY line 
from the group toolbar to display a graph of your results.

We have annotated the graph slightly 
so that you can better judge the effect 
of the new teaching methods (PSI) on 
the GPA—Grade Improvement rela-
tionship. 

Testing for Heteroskedasticity

As an example of specification tests 
for binary dependent variable models, 
we carry out the LM test for heterosk-
edasticity using the artificial regres-
sion method described by Davidson 
and MacKinnon (1993, section 15.4). 
We test the null hypothesis of 
homoskedasticity against the alternative of heteroskedasticity of the form

, (17.16)

where  is an unknown parameter. In this example, we take PSI as the only variable in . 
The test statistic is the explained sum of squares from the regression

, (17.17)

which is asymptotically distributed as a with degrees of freedom equal to the number 
of variables in  (in this case 1).

To carry out the test, we first retrieve the fitted probabilities  and fitted index . 
Click on the Forecast button and first save the fitted probabilities as P_HAT and then the 
index as XB (you will have to click Forecast twice to save the two series). 

Next, the dependent variable in the test regression may be obtained as the standardized 
residual. Select Procs/Make Residual Series… and select Standardized Residual. We will 
save the series as BRMR_Y.

Lastly, we will use the built-in EViews functions for evaluating the normal density and 
cumulative distribution function to create a group object containing the independent vari-
ables:

series fac=@dnorm(-xb)/@sqrt(p_hat*(1-p_hat))

group brmr_x fac (gpa*fac) (tuce*fac) (psi*fac)
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Then run the artificial regression by clicking on Quick/Estimate Equation…, selecting 
Least Squares, and entering:

brmr_y brmr_x (psi*(-xb)*fac)

You can obtain the fitted values by clicking on the Forecast button in the equation toolbar 
of this artificial regression. The LM test statistic is the sum of squares of these fitted values. 
If the fitted values from the artificial regression are saved in BRMR_YF, the test statistic can 
be saved as a scalar named LM_TEST:

scalar lm_test=@sumsq(brmr_yf) 

which contains the value 1.5408. You can compare the value of this test statistic with the 
critical values from the chi-square table with one degree of freedom. To save the p-value as 
a scalar, enter the command:

scalar p_val=1-@cchisq(lm_test,1)

To examine the value of LM_TEST or P_VAL, double click on the name in the workfile win-
dow; the value will be displayed in the status line at the bottom of the EViews window. 
The p-value in this example is roughly 0.21, so we have little evidence against the null 
hypothesis of homoskedasticity. 

Ordered Dependent Variable Models

EViews estimates the ordered-response model of Aitchison and Silvey (1957) under a vari-
ety of assumptions about the latent error distribution. In ordered dependent variable mod-
els, the observed  denotes outcomes representing ordered or ranked categories. For 
example, we may observe individuals who choose between one of four educational out-
comes: less than high school, high school, college, advanced degree. Or we may observe 
individuals who are employed, partially retired, or fully retired.

As in the binary dependent variable model, we can model the observed response by con-
sidering a latent variable  that depends linearly on the explanatory variables :

(17.18)

where is  are independent and identically distributed random variables. The observed 
 is determined from  using the rule:

y
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(17.19)

It is worth noting that the actual values chosen to represent the categories in  are com-
pletely arbitrary. All the ordered specification requires is for ordering to be preserved so 
that  implies that .

It follows that the probabilities of observing each value of  are given by

(17.20)

where  is the cumulative distribution function of . 

The threshold values  are estimated along with the  coefficients by maximizing the log 
likelihood function: 

(17.21)

where  is an indicator function which takes the value 1 if the argument is true, and 0 
if the argument is false. By default, EViews uses analytic second derivative methods to 
obtain parameter and variance matrix of the estimated coefficient estimates (see “Qua-
dratic hill-climbing (Goldfeld-Quandt)” on page 664).

Estimating Ordered Models in EViews

Suppose that the dependent variable DANGER is an index ordered from 1 (least dangerous 
animal) to 5 (most dangerous animal). We wish to model this ordered dependent variable 
as a function of the explanatory variables, BODY, BRAIN and SLEEP. Note that the values 
that we have assigned to the dependent variable are not relevant, only the ordering implied 
by those values. EViews will estimate an identical model if the dependent variable is 
recorded to take the values 1, 2, 3, 4, 5 or 10, 234, 3243, 54321, 123456.
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To estimate this model, choose Objects/New Object… from the main menu and select the 
Equation object from the main menu. From the Equation Specification dialog, select esti-
mation method ORDERED. The standard estimation dialog will change to match this spec-
ification.

There are three parts to specifying an ordered variable model: the equation specification, 
the error specification, and the sample specification. First, in the Equation Specification 
field you should type the name of the ordered dependent variable followed by the list of 
your regressors. In our example, you will enter:

danger body brain sleep

Ordered estimation only supports specification by list so you may not enter an explicit 
equation. 

Also keep in mind that:

• A separate constant term is not separately identified from the limit points , so 
EViews will ignore any constant term in your specification. Thus, the model

danger c body brain sleep

is equivalent to the specification above.

• EViews requires the dependent variable to be integer valued, otherwise you will see 
an error message, and estimation will stop. This is not, however, a serious restric-
tion, since you can easily convert the series into an integer using @round, @floor 
or @ceil in an auto-series expression.

Next, select between the ordered logit, ordered probit, and the ordered extreme value mod-
els by choosing one of the three distributions for the latent error term. 

Lastly, specify the estimation sample. 

Now click on OK, EViews will estimate the parameters of the model using iterative proce-
dures. 

Once the estimation procedure converges, EViews will display the estimation results in the 
equation window. The first part of the table contains the usual header information, includ-
ing the assumed error distribution, estimation sample, iteration and convergence informa-
tion, number of distinct values for , and the method of computing the coefficient 
covariance matrix.

γ

y
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Below the header information are the coefficient estimates and asymptotic standard errors, 
and the corresponding z-statistics and significance levels. The estimated coefficients of the 
ordered model must be interpreted with care (see Greene (1997, section 19.8) or Johnston 
and DiNardo (1997, section 13.9)).

The sign of  shows the direction of the change in the probability of falling in the end-
point rankings (  or ) when  changes. Pr( ) changes in the oppo-
site direction of the sign of  and Pr( ) changes in the same direction as the sign 
of . The effects on the probability of falling in any of the middle rankings are given by:

(17.22)

for . It is impossible to determine the signs of these terms, a priori.

The lower part of the estimation output, labeled “Limit Points”, presents the estimates of 
the  coefficients and the associated standard errors and probability values:

Note that the coefficients are labeled both with the identity of the limit point, and the coef-
ficient number. Just below the limit points are the summary statistics for the equation.

Dependent Variable: DANGER
Method: ML - Ordered Probit
Date: 09/13/97   Time: 10:00
Sample(adjusted): 1 61
Included observations: 58
Excluded observations: 3 after adjusting endpoints
Number of ordered indicator values: 5
Convergence achieved after 5 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

BODY  0.006346  0.003262  1.945385  0.0517
BRAIN -0.003506  0.001822 -1.924244  0.0543
SLEEP -0.158596  0.040440 -3.921741  0.0001
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Limit_2:C(4) -2.382697  0.512993 -4.644695  0.0000
Limit_3:C(5) -1.598777  0.484884 -3.297237  0.0010
Limit_4:C(6) -1.028655  0.465433 -2.210104  0.0271
Limit_5:C(7) -0.241152  0.445500 -0.541307  0.5883

Akaike info criterion  11.74480     Schwarz criterion  11.99348
Log likelihood -333.5993     Hannan-Quinn criter.  11.84167
Avg. log likelihood -5.751712
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Estimation Problems

Most of the previous discussion of estimation problems for binary models (page 428) also 
holds for ordered models. In general, these models are well-behaved and will require little 
intervention.

There are cases, however, where problems will arise. First, EViews currently has a limit of 
750 total coefficients in an ordered dependent variable model. Thus, if you have 25 right-
hand side variables, and a dependent variable with 726 distinct values, you will be unable 
to estimate your model using EViews.

Second, you may run into identification problems and estimation difficulties if you have 
some groups where there are very few observations. If necessary, you may choose to com-
bine adjacent groups and re-estimate the model.

EViews may stop estimation with the message “Parameter estimates for limit points are 
non-ascending”, most likely on the first iteration. This error indicates that parameter val-
ues for the limit points were invalid, and that EViews was unable to adjust these values to 
make them valid. Make certain that if you are using user defined parameters, the limit 
points are strictly increasing. Better yet, we recommend that you employ the EViews start-
ing values since they are based on a consistent first-stage estimation procedure, and should 
therefore be quite well-behaved.

Views of Ordered Equations

EViews provides you with several views of an ordered equation. As with other equations, 
you can examine the specification and estimated covariance matrix as well as perform 
Wald and likelihood ratio tests on coefficients of the model. In addition, there are several 
views that are specialized for the ordered model:

• Dependent Variable Frequencies — computes a one-way frequency table for the 
ordered dependent variable for the observations in the estimation sample. EViews 
presents both the frequency table and the cumulative frequency table in levels and 
percentages.

• Expectation-Prediction Table — classifies observations on the basis of the predicted 
response. EViews performs the classification on the basis of maximum predicted 
probability as well as the expected probability.
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There are two columns labeled “Error”. The first measures the difference between 
the observed count and the number of observations where the probability of that 
response is highest. For example, 18 individuals reported a value of 1 for DANGER, 
while 27 individuals had predicted probabilities that were highest for this value. The 
actual count minus the predicted is –9. The second error column measures the dif-
ference between the actual number of individuals reporting the value, and the sum 
of all of the individual probabilities for that value. 

Procedures for Ordered Equations 

Make Ordered Limit Vector/Matrix

The full set of coefficients and the covariance matrix may be obtained from the estimated 
equation in the usual fashion (see “Working With Equation Statistics” on page 270). In 
some circumstances, however, you may wish to perform inference using only the estimates 
of the  coefficients and the associated covariances.

The Make Ordered Limit Vector and Make Ordered Limit Covariance Matrix procedures 
provide a shortcut method of obtaining the estimates associated with the  coefficients. 
The first procedure creates a vector (using the next unused name of the form LIMITS01, 
LIMITS02, etc.) containing the estimated  coefficients. The latter procedure creates a 
symmetric matrix containing the estimated covariance matrix of the . The matrix will be 
given an unused name of the form VLIMITS01, VLIMITS02, etc., where the “V” is used to 
indicate that these are the variances of the estimated limit points.

Forecasting using Models

You cannot forecast directly from an estimated ordered model since the dependent variable 
represents categorical or rank data. EViews does, however, allow you to forecast the prob-
ability associated with each category. To forecast these probabilities, you must first create a 

Dependent Variable: DANGER
Method: ML - Ordered Probit
Date: 09/13/97   Time: 10:00
Sample(adjusted): 1 61
Included observations: 58
Excluded observations: 3 after adjusting endpoints
Prediction table for ordered dependent variable

Count of obs Sum of all
Value Count with Max Prob Error Probabilities Error

 1  18  27 -9  18.571 -0.571
 2  14  16 -2  13.417  0.583
 3  10  0  10  9.163  0.837
 4  9  8  1  8.940  0.060
 5  7  7  0  7.909 -0.909

γ

γ

γ
γ
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model. Choose Procs/Make Model and EViews will open an untitled model window con-
taining a system of equations, with a separate equation for the probability of each ordered 
response value.

To forecast from this model, simply click the Solve button in the model window toolbar. If 
you select Scenario 1 as your solution scenario, the default settings will save your results 
in a set of named series with “_1” appended to the end of the each underlying name. See 
Chapter 23, “Models”, beginning on page 601 for additional detail on modifying and solv-
ing models. 

For this example, the series I_DANGER_1 will contain the fitted linear index . The fit-
ted probability of falling in category 1 will be stored as a series named DANGER_1_1, the 
fitted probability of falling in category 2 will be stored as a series named DANGER_2_1, 
and so on. Note that for each observation, the fitted probability of falling in each of the cat-
egories sums up to one. 

Make Residual Series

The generalized residuals of the ordered model are the derivatives of the log likelihood 
with respect to a hypothetical unit-  variable. These residuals are defined to be uncorre-
lated with the explanatory variables of the model (see Chesher and Irish (1987), and Gou-
rieroux, Monfort, Renault and Trognon (1987) for details), and thus may be used in a 
variety of specification tests.

To create a series containing the generalized residuals, select View/Make Residual 
Series…, enter a name or accept the default name, and click OK. The generalized residuals 
for an ordered model are given by:

, (17.23)

where , and .

Censored Regression Models

In some settings, the dependent variable is only partially observed. For example, in survey 
data, data on incomes above a specified level are often top-coded to protect confidentiality. 
Similarly desired consumption on durable goods may be censored at a small positive or 
zero value. EViews provides tools to perform maximum likelihood estimation of these 
models and to use the results for further analysis. 

Theory

Consider the following latent variable regression model

, (17.24)
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where  is a scale parameter. The scale parameter  is identified in censored and trun-
cated regression models, and will be estimated along with the . 

In the canonical censored regression model, known as the tobit, the observed data  are 
given by

(17.25)

In other words, all negative values of  are coded as 0. We say that these data are left 
censored at 0. Note that this situation differs from a truncated regression model where neg-
ative values of  are dropped from the sample. More generally, EViews allows for both 
left and right censoring at arbitrary limit points so that

(17.26)

where ,  are fixed numbers representing the censoring points. If there is no left cen-
soring, then we can set . If there is no right censoring, then . The 
canonical tobit model is a special case with  and .

The parameters ,  are estimated by maximizing the log likelihood function

(17.27)

where ,  are the density and cumulative distribution functions of . 

Estimating Censored Models in EViews

Consider the model

, (17.28)

where hours worked (HRS) is left censored at zero. To estimate this model, select Quick/
Estimate Equation… from the main menu. Then from the Equation Specification dialog, 
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select the CENSORED estimation method. The dialog will change to provide a number of 
different input options.

Specifying the Regression Equation

In the Equation Specification field, enter the name of the censored dependent variable fol-
lowed by a list of regressors. In our example, you will enter 

hrs c age edu kid 

Censored estimation only supports specification by list so you may not enter an explicit 
equation. 

Next, select one of the three distributions for the error term. EViews allows you three pos-
sible choices for the distribution of : 

Specifying the Censoring Points

You must also provide information about the censoring points of the dependent variable. 
There are two cases to consider: (1) where the limit points are known for all individuals, 
and (2) where the censoring is by indicator and the limit points are known only for indi-
viduals with censored observations.

Limit Points Known

You should enter an expressions for the left and right censoring points in the edit fields as 
required. Note that if you leave an edit field blank, EViews will assume that there is no 
censoring of observations of that type.

For example, in the canonical tobit model the data are censored on the left at zero, and are 
uncensored on the right. This case may be specified as:

Left edit field: 0

Right edit field: [blank]

Similarly, top-coded censored data may be specified as:

Left edit field: [blank]

Right edit field: 20000

Standard normal , 

Logistic
, 

Extreme value (Type I)   (Euler’s constant), 

ε

E ε( ) 0= var ε( ) 1=

E ε( ) 0= var ε( ) π
2 3⁄=

E ε( ) 0.5772≈

var ε( ) π
2 6⁄=
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while the more general case of left and right censoring is given by: 

Left edit field: 10000

Right edit field: 20000

EViews also allows more general specifications where the censoring points are known but 
differ across observations. Simply enter the name of the series or auto-series containing the 
censoring points in the appropriate edit field. For example,

Left edit field: lowinc

Right edit field: vcens1+10

specifies a model with LOWINC censoring on the left-hand side, and right censoring at the 
value of VCENS1+10.

Limit Points Not Known

In some cases, the hypothetical censoring point is unknown for some individuals (  and 
 are not observed for all observations). This situation often occurs with data where cen-

soring is indicated with a zero-one dummy variable, but no additional information is pro-
vided about potential censoring points.

EViews provides you an alternative method of describing data censoring that matches this 
format. Simply select the Field is zero/one indicator of censoring option in the estima-
tion dialog, and enter the series expression for the censoring indicator(s) in the appropriate 
edit field(s). Observations with a censoring indicator of one are assumed to be censored 
while those with a value of zero are assumed to be actual responses.

For example, suppose that we have observations on the length of time that an individual 
has been unemployed (U), but that some of these observations represent ongoing unem-
ployment at the time the sample is taken. These latter observations may be treated as right 
censored at the reported value. If the variable RCENS is a dummy variable representing 
censoring, you can click on the Field is zero/one indicator of censoring setting and enter:

Left edit field: [blank]

Right edit field: rcens

in the edit fields. If the data are censored on both the left and the right, use separate binary 
indicators for each form of censoring:

Left edit field: lcens

Right edit field: rcens

where LCENS is also a binary indicator.

Once you have specified the model, click OK. EViews will estimate the parameters of the 
model using appropriate iterative techniques.

ci
ci
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A Comparison of Censoring Methods

An alternative to specifying index censoring is to enter a very large positive or negative 
value for the censoring limit for non-censored observations. For example, you could enter -
”1e-100” and “1e100” as the censoring limits for an observation on a completed unemploy-
ment spell. In fact, any limit point that is “outside” the observed data will suffice.

While this latter approach will yield the same likelihood function and therefore the same 
parameter values and coefficient covariance matrix, there is a drawback to the artificial 
data approach. The presence of a censoring value implies that you can evaluate the condi-
tional mean of the observed dependent variable, as well as the ordinary and standardized 
residuals. All of the calculations that use residuals will, however, be based upon the arbi-
trary artificial data and will be invalid. 

If you specify your censoring by index, you are telling EViews that you do not have infor-
mation about the censoring for those observations that are not censored. And if an obser-
vation is left censored, you may not have information about the right censoring limit. In 
these circumstances, you should specify your censoring by index so that EViews will pre-
vent you from computing the conditional mean of the dependent variable and the associ-
ated residuals.

Interpreting the Output

If your model converges, EViews will display the estimation results in the equation win-
dow. The first part of the table presents the usual header information, including informa-
tion about the assumed error distribution, estimation sample, estimation algorithms, and 
number of iterations required for convergence. 

EViews also provides information about the specification for the censoring. If the esti-
mated model is the canonical tobit with left-censoring at zero, EViews will label the 
method as a TOBIT. For all other censoring methods, EViews will display detailed informa-
tion about form of the left and/or right censoring.

Here, we have the header output from a left censored model where the censoring is speci-
fied by value:

Dependent Variable: Y_PT 
Method: ML - Censored Normal (TOBIT) 
Date: 09/14/97   Time: 08:27 
Sample: 1 601 
Included observations: 601 
Convergence achieved after 8 iterations 
Covariance matrix computed using second 
derivatives 
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Below the header are the usual results for the coefficients, including the asymptotic stan-
dard errors, z-statistics, and significance levels. As in other limited dependent variable 
models, the estimated coefficients do not have a direct interpretation as the marginal effect 
of the associated regressor  for individual , . In censored regression models, a 
change in  has two effects: an effect on the mean of , given that it is observed, and an 
effect on the probability of  being observed (see McDonald and Moffitt, 1980).

In addition to results for the regression coefficients, EViews reports an additional coeffi-
cient named SCALE, which is the estimated scale factor . This scale factor may be used 
to estimate the standard deviation of the residual, using the known variance of the 
assumed distribution. For example, if the estimated SCALE has a value of 0.446 for a 
model with extreme value errors, the implied standard error of the error term is 

. 

Most of the other output is self-explanatory. As in the binary and ordered models above, 
EViews reports summary statistics for the dependent variable and likelihood based statis-
tics. The regression statistics at the bottom of the table are computed in the usual fashion, 
using the residuals  from the observed .

Views of Censored Equations

Most of the views that are available for a censored regression are familiar from other set-
tings. The residuals used in the calculations are defined below.

The one new view is the Categorical Regressor Stats view, which presents means and 
standard deviations for the dependent and independent variables for the estimation sam-
ple. EViews provides statistics computed over the entire sample, as well as for the left cen-
sored, right censored and non-censored individuals.

Procedures for Censored Equations

EViews provides several procedures which provide access to information derived from 
your censored equation estimates.

Make Residual Series

Select Procs/Make Residual Series, and select from among the three types of residuals. 
The three types of residuals for censored models are defined as:

j i xij
xij y

y

σ

0.5977 0.466π 6⁄=

ε�i yi E yi xi β� σ�, ,( )−= y
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where ,  are the density and distribution functions, and where 1 is an indicator func-
tion which takes the value 1 if the condition in parentheses is true, and 0 if it is false. All of 
the above terms will be evaluated at the estimated  and . See the discussion of fore-
casting for details on the computation of .

The generalized residuals may be used as the basis of a number of LM tests, including LM 
tests of normality (see Lancaster, Chesher and Irish (1985), Chesher and Irish (1987), and 
Gourioux, Monfort, Renault and Trognon (1987); Greene (1997), provides a brief discus-
sion and additional references).

Forecasting

EViews provides you with the option of forecasting the expected dependent variable, 
, or the expected latent variable, . Select Forecast from the 

equation toolbar to open the forecast dialog. 

To forecast the expected latent variable, click on Index - Expected latent variable, and 
enter a name for the series to hold the output. The forecasts of the expected latent variable 

 may be derived from the latent model using the relationship

. (17.29)

To forecast the expected observed dependent variable, you should select Expected depen-
dent variable, and enter a series name. These forecasts are computed using the relation-
ship:
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Generalized 
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(17.30)

Note that these forecasts always satisfy . The probabilities associated with 
being in the various classifications are computed by evaluating the cumulative distribution 
function of the specified distribution. For example, the probability of being at the lower 
limit is given by:

. (17.31)

Censored Model Illustration

As an example, we replicate Fair’s (1978) tobit model that estimates the incidence of extra-
marital affairs. The dependent variable, number of extramarital affairs (Y_PT), is left cen-
sored at zero and the errors are assumed to be normally distributed. The bottom portion of 
the output is presented below:

Tests of Significance

EViews does not, by default, provide you with the usual likelihood ratio test of the overall 
significance for the tobit and other censored regression models. There are several ways to 
perform this test (or an asymptotically equivalent test).

y� i E yi xi β� σ�, ,( ) ci Pr yi ci= xi β� σ�, ,( )⋅
E yi∗ ci yi∗ ci xi β� σ�, ,;< <( ) Pr ci yi∗ ci< < xi β� σ�, ,( )⋅
ci Pr yi ci= xi β� σ�, ,( )⋅

+

+

= =

ci y� i ci≤ ≤

Pr yi ci= xi β� σ�, ,( ) Pr yi∗ ci≤ xi β� σ�, ,( ) F ci xi′β�−( ) σ�⁄( )= =

Coefficient Std. Error z-Statistic Prob.

C  7.608487  3.905837  1.947979  0.0514
Z1  0.945787  1.062824  0.889881  0.3735
Z2 -0.192698  0.080965 -2.380015  0.0173
Z3  0.533190  0.146602  3.636997  0.0003
Z4  1.019182  1.279524  0.796532  0.4257
Z5 -1.699000  0.405467 -4.190231  0.0000
Z6  0.025361  0.227658  0.111399  0.9113
Z7  0.212983  0.321145  0.663198  0.5072
Z8 -2.273284  0.415389 -5.472657  0.0000

         Error Distribution

SCALE:C(10)  8.258432  0.554534  14.89256  0.0000

R-squared  0.151569     Mean dependent var  1.455907
Adjusted R-squared  0.138649     S.D. dependent var  3.298758
S.E. of regression  3.061544     Akaike info criterion  2.378473
Sum squared resid  5539.472     Schwarz criterion  2.451661
Log likelihood -704.7311     Hannan-Quinn criter.  2.406961
Avg. log likelihood -1.172597

Left censored obs  451      Right censored obs  0
Uncensored obs  150      Total obs  601
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First, you can use the built-in coefficient testing procedures to test the exclusion of all of 
the explanatory variables. Select the redundant variables test and enter the names of all of 
the explanatory variables you wish to exclude. EViews will compute the appropriate likeli-
hood ratio test statistic and the p-value associated with the statistic.

To take an example, suppose we wish to test whether the variables in the Fair tobit, above, 
contribute to the fit of the model. Select View/Coefficient Tests/Redundant Variables - 
Likelihood Ratio… and enter all of the explanatory variables:

z1 z2 z3 z4 z5 z6 z7 z8

EViews will estimate the restricted model for you and compute the LR statistic and p-
value. In this case, the value of the test statistic is 80.01, which for eight degrees-of-free-
dom, yields a p-value of less than 0.000001.

Alternatively, you could test the restriction using the Wald test by selecting View/Coeffi-
cient Tests/Wald - Coefficient Restrictions…, and entering the restriction that:

c(2)=c(3)=c(4)=c(5)=c(6)=c(7)=c(8)=c(9)=0

The reported statistic is 68.14, with a p-value of less than 0.000001.

Lastly, we demonstrate the direct computation of the LR test. Suppose the Fair tobit model 
estimated above is saved in the named equation EQ_TOBIT. Then you could estimate an 
equation containing only a constant, say EQ_RESTR, and place the likelihood ratio statistic 
in a scalar:

scalar lrstat=-2*(eq_restr.@logl-eq_tobit.@logl)

Next, evaluate the chi-square probability associated with this statistic:

scalar lrprob=1-@cchisq(lrstat, 8)

with degrees of freedom given by the number of coefficient restrictions in the constant 
only model. You can double click on the LRSTAT icon or the LRPROB icon in the workfile 
window to display the results in the status line.

A Specification Test for the Tobit

As a rough diagnostic check, Pagan and Vella (1989) suggest plotting Powell’s (1986) sym-
metrically trimmed residuals. If the error terms have a symmetric distribution centered at 
zero (as assumed by the normal distribution), so should the trimmed residuals. To con-
struct the trimmed residuals, first save the forecasts of the index (expected latent variable): 
click Forecast, choose Index-Expected latent variable, and provide a name for the fitted 
index, say XB. The trimmed residuals are obtained by dropping observations for which 

, and replacing with  for all observations where . The 
trimmed residuals RES_T can be obtained by the commands
xi′β� 0< yi 2 xi′β�( ) yi 2 xi′β�( )<
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series res_t=(y_pt<=2*xb)*(y_pt-xb) +(y_pt>2*xb)*xb

smpl if xb<0

series res_t=na

smpl @all

The histogram of the trimmed residual is depicted below.

This example illustrates the possibility 
that the number of observations that 
are lost by trimming can be quite 
large; out of the 601 observations in 
the sample, only 47 observations are 
left after trimming. 

The tobit model imposes the restric-
tion that the coefficients that deter-
mine the probability of being censored 
are the same as those that determine 
the conditional mean of the uncen-
sored observations. To test this restric-
tion, we carry out the LR test by 
comparing the (restricted) tobit to the 
unrestricted log likelihood that is the sum of a probit and a truncated regression (we dis-
cuss truncated regression in detail in the following section). Save the tobit equation in the 
workfile by pressing the Name button, and enter a name, say EQ_TOBIT. 

To estimate the probit, first create a dummy variable indicating uncensored observations 
by the command

series y_c=(y_pt>0)

Then estimate a probit by replacing the dependent variable Y_PT by Y_C. A simple way to 
do this is to press Objects/Copy Object… from the tobit equation toolbar. From the new 
untitled equation window that appears, press Estimate, replace the dependent variable 
with Y_C and choose Method: BINARY and click OK. Save the probit equation by pressing 
the Name button, say as EQ_BIN. 

To estimate the truncated model, press Objects/Copy Object… from the tobit equation 
toolbar again. From the new untitled equation window that appears, press Estimate, mark 
the Truncated sample option, and click OK. Save the truncated regression by pressing the 
Name button, say as EQ_TR. 

Then the LR test statistic and its p-value can be saved as a scalar by the commands

scalar lr_test=2*(eq_bin.@logl+eq_tr.@logl-eq_tobit.@logl)
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scalar lr_pval=1-@cchisq(lr_test,eq_tobit.@ncoef)

Double click on the scalar name to display the value in the status line at the bottom of the 
EViews window. For the example data set, the p-value is 0.066 which rejects the tobit 
model at the 10% level but not at the 5% level. 

For other specification tests for the tobit, see Greene (1997, 20.3.4) or Pagan and Vella 
(1989).

Truncated Regression Models

A close relative of the censored regression model is the truncated regression model. Sup-
pose that an observation is not observed whenever the dependent variable falls below one 
threshold, or exceeds a second threshold. This sampling rule occurs, for example, in earn-
ings function studies for low-income families that exclude observations with incomes 
above a threshold, and in studies of durables demand among individuals who purchase 
durables. 

The general two-limit truncated regression model may be written as:

(17.32)

where  is only observed if:

. (17.33)

If there is no lower truncation, then we can set . If there is no upper truncation, 
then we set .

The log likelihood function associated with these data is given by

(17.34)

The likelihood function is maximized with respect to  and , using standard iterative 
methods.

Estimating a Truncated Model in EViews

Estimation of a truncated regression model follows the same steps as estimating a censored 
regression:

• Select Quick/Estimate Equation… from the main menu, and in the Equation Speci-
fication dialog, select the CENSORED estimation method. The censored and trun-
cated regression dialog will appear.
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• Enter the name of the truncated dependent variable and the list of the regressors in 
the Equation Specification field, and select one of the three distributions for the 
error term. You must enter your specification by list. 

• Indicate that you wish to estimate the truncated model by checking the Truncated 
sample option.

• Specify the truncation points of the dependent variable by entering the appropriate 
expressions in the two edit fields. If you leave an edit field blank, EViews will 
assume that there is no truncation along that dimension.

You should keep a few points in mind. First, truncated estimation is only available for 
models where the truncation points are known, since the likelihood function is not other-
wise defined. If you attempt to specify your truncation points by index, EViews will issue 
an error message indicating that this selection is not available.

Second, EViews will issue an error message if any values of the dependent variable are 
outside the truncation points. Furthermore, EViews will automatically exclude any obser-
vations that are exactly equal to a truncation point. Thus, if you specify zero as the lower 
truncation limit, EViews will issue an error message if any observations are less than zero, 
and will exclude any observations where the dependent variable exactly equals zero.

The cumulative distribution function and density of the assumed distribution will be used 
to form the likelihood function, as described above.

Procedures for Truncated Equations

EViews provides the same procedures for truncated equations as for censored equations. 
The residual and forecast calculations differ to reflect the truncated dependent variable 
and the different likelihood function.

Make Residual Series

Select Procs/Make Residual Series, and select from among the three types of residuals. 
The three types of residuals for censored models are defined as:
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where , , are the density and distribution functions. Details on the computation of 
 are provided below.

The generalized residuals may be used as the basis of a number of LM tests, including LM 
tests of normality (see Chesher and Irish (1984, 1987), and Gourieroux, Monfort and Trog-
non (1987); Greene (1997) provides a brief discussion and additional references).

Forecasting

EViews provides you with the option of forecasting the expected observed dependent vari-
able, , or the expected latent variable, . 

To forecast the expected latent variable, select Forecast from the equation toolbar to open 
the forecast dialog, click on Index - Expected latent variable, and enter a name for the 
series to hold the output. The forecasts of the expected latent variable  are 
computed using

. (17.35)

To forecast the expected observed dependent variable for the truncated model, you should 
select Expected dependent variable, and enter a series name. These forecasts are com-
puted using: 

(17.36)

so that the expectations for the latent variable are taken with respect to the conditional (on 
being observed) distribution of the . Note that these forecasts always satisfy the ine-
quality . 

It is instructive to compare this latter expected value with the expected value derived for 
the censored model in Equation (17.30) above (repeated here for convenience):
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(17.37)

The expected value of the dependent variable for the truncated model is the first part of 
the middle term of the censored expected value. The differences between the two expected 
values (the probability weight and the first and third terms) reflect the different treatment 
of latent observations that do not lie between  and . In the censored case, those obser-
vations are included in the sample and are accounted for in the expected value. In the trun-
cated case, data outside the interval are not observed and are not used in the expected 
value computation.

Illustration

As an example, we reestimate the Fair tobit model from above, truncating the data so that 
observations at or below zero are removed from the sample. The output from truncated 
estimation of the Fair model is presented below:

y� i E yi xi β� σ�, ,( ) ci Pr yi ci= xi β� σ�, ,( )⋅
E yi∗ ci yi∗ ci xi β� σ�, ,;< <( ) Pr ci yi∗ ci< < xi β� σ�, ,( )⋅
ci Pr yi ci= xi β� σ�, ,( ).⋅

+

+

= =

ci ci

Dependent Variable: Y_PT
Method: ML - Censored Normal (TOBIT)
Date: 10/13/97   Time: 22:45
Sample(adjusted): 452 601
Included observations: 150 after adjusting endpoints
Truncated sample
Left censoring (value) at zero
Convergence achieved after 8 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C  12.37288  5.178306  2.389368  0.0169
Z1 -1.336872  1.453133 -0.919993  0.3576
Z2 -0.044792  0.116141 -0.385670  0.6997
Z3  0.544182  0.220119  2.472218  0.0134
Z4 -2.142896  1.787720 -1.198675  0.2307
Z5 -1.423128  0.600472 -2.370014  0.0178
Z6 -0.316721  0.322327 -0.982609  0.3258
Z7  0.621428  0.478827  1.297813  0.1944
Z8 -1.210037  0.552131 -2.191578  0.0284

         Error Distribution

SCALE:C(10)  5.379557  0.688875  7.809196  0.0000

R-squared  0.654664     Mean dependent var  1.455907
Adjusted R-squared  0.649405     S.D. dependent var  3.298758
S.E. of regression  1.953229     Akaike info criterion  1.333891
Sum squared resid  2254.726     Schwarz criterion  1.407079
Log likelihood -390.8342     Hannan-Quinn criter.  1.362379
Avg. log likelihood -0.650306

Left censored obs  0      Right censored obs  0
Uncensored obs  150      Total obs  150
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Note that the header information indicates that the model is a truncated specification, and 
that the sample information at the bottom of the screen shows that there are no left and 
right censored observations.

Count Models

Count models are employed when  takes integer values that represent the number of 
events that occur—examples of count data include the number of patents filed by a com-
pany, and the number of spells of unemployment experienced over a fixed time interval. 

EViews provides support for the estimation of several models of count data. In addition to 
the standard poisson and negative binomial maximum likelihood (ML) specifications, 
EViews provides a number of quasi-maximum likelihood (QML) estimators for count data.

Estimating Count Models in EViews 

To estimate a count data model, select Quick/Estimate Equation… from the main menu, 
and select COUNT as the estimation method. EViews displays the count estimation dialog 
into which you will enter the dependent and explanatory variable regressors, select a type 
of count model, and if desired, set estimation options.

There are three parts to the specification of the count model:

• In the upper edit field, you should list the dependent variable and the independent 
variables. You must specify your model by list. The list of explanatory variables 
specifies a model for the conditional mean of the dependent variable:

. (17.38)

y

m xi β,( ) E yi xi β,( ) xi′β( )exp= =
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• Next, click on Options and, if desired, change the default estimation algorithm, con-
vergence criterion, starting values, and method of computing the coefficient covari-
ance.

• Lastly, select one of the entries listed under count estimation method, and if appro-
priate, specify a value for the variance parameter. Details for each method are pro-
vided in the following discussion.

Poisson Model

For the Poisson model, the conditional density of  given  is

(17.39)

where  is a non-negative integer valued random variable. The maximum likelihood esti-
mator (MLE) of the parameter  is obtained by maximizing the log likelihood function

. (17.40)

Provided the conditional mean function is correctly specified and the conditional distribu-
tion of  is Poisson, the MLE  is consistent, efficient, and asymptotically normally dis-
tributed, with variance matrix consistently estimated by

(17.41)

where .

The Poisson assumption imposes restrictions that are often violated in empirical applica-
tions. The most important restriction is the equality of the (conditional) mean and vari-
ance:

. (17.42)

If the mean-variance equality does not hold, the model is misspecified. EViews provides a 
number of other estimators for count data which relax this restriction.

We note here that the Poisson estimator may also be interpreted as a quasi-maximum like-
lihood estimator. The implications of this result are discussed below.

Negative Binomial (ML)

One common alternative to the Poisson model is to estimate the parameters of the model 
using maximum likelihood of a negative binomial specification. The log likelihood for the 
negative binomial distribution is given by
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(17.43)

where  is a variance parameter to be jointly estimated with the conditional mean 
parameters . EViews estimates the log of , and labels this parameter as the “SHAPE” 
parameter in the output. Standard errors are computed using the inverse of the information 
matrix.

The negative binomial distribution is often used when there is overdispersion in the data, 
so that , since the following moment conditions hold:

(17.44)

 is therefore a measure of the extent to which the conditional variance exceeds the con-
ditional mean. 

Consistency and efficiency of the negative binomial ML requires that the conditional distri-
bution of  be negative binomial.

Quasi-maximum Likelihood (QML)

We can perform maximum likelihood estimation under a number of alternative distribu-
tional assumptions. These quasi-maximum likelihood (QML) estimators are robust in the 
sense that they produce consistent estimates of the parameters of a correctly specified con-
ditional mean, even if the distribution is incorrectly specified.

This robustness result is exactly analogous to the situation in ordinary regression, where 
the normal ML estimator (least squares) is consistent, even if the underlying error distribu-
tion is not normally distributed. In ordinary least squares, all that is required for consis-
tency is a correct specification of the conditional mean . For QML count 
models, all that is required for consistency is a correct specification of the conditional 
mean .

The estimated standard errors computed using the inverse of the information matrix will 
not be consistent unless the conditional distribution of  is correctly specified. However, it 
is possible to estimate the standard errors in a robust fashion so that we can conduct valid 
inference, even if the distribution is incorrectly specified. 
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EViews provides options to compute two types of robust standard errors. Click Options in 
the Equation Specification dialog box and mark the Robust Covariance option. The 
Huber/White option computes QML standard errors, while the GLM option computes 
standard errors corrected for overdispersion. See “Technical Notes” on page 467 for details 
on these options.

Further details on QML estimation are provided by Gourioux, Monfort, and Trognon 
(1994a, 1994b). Wooldridge (1996) provides an excellent summary of the use of QML tech-
niques in estimating parameters of count models. See also the extensive related literature 
on Generalized Linear Models (McCullagh and Nelder, 1989). 

Poisson

The Poisson MLE is also a QMLE for data from alternative distributions. Provided that the 
conditional mean is correctly specified, it will yield consistent estimates of the parameters 

 of the mean function. By default, EViews reports the ML standard errors. If you wish to 
compute the QML standard errors, you should click on Options, select Robust Covari-
ances, and select the desired covariance matrix estimator.

Exponential 

The log likelihood for the exponential distribution is given by

. (17.45)

As with the other QML estimators, the exponential QMLE is consistent even if the condi-
tional distribution of  is not exponential, provided that  is correctly specified. By 
default, EViews reports the robust QML standard errors.

Normal 

The log likelihood for the normal distribution is

. (17.46)

For fixed  and correctly specified , maximizing the normal log likelihood function 
provides consistent estimates even if the distribution is not normal. Note that maximizing 
the normal log likelihood for a fixed  is equivalent to minimizing the sum of squares for 
the nonlinear regression model:

. (17.47)

EViews sets  by default. You may specify any other (positive) value for  by 
changing the number in the Fixed variance parameter field box. By default, EViews 
reports the robust QML standard errors when estimating this specification.
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Negative Binomial

If we maximize the negative binomial log likelihood, given above, for fixed , we obtain 
the QMLE of the conditional mean parameters . This QML estimator is consistent even if 
the conditional distribution of  is not negative binomial, provided that  is correctly 
specified. 

EViews sets  by default, which is a special case known as the geometric distribu-
tion. You may specify any other (positive) value by changing the number in the Fixed vari-
ance parameter field box. For the negative binomial QMLE, EViews by default reports the 
robust QMLE standard errors. 

Views of Count Models

EViews provides a full complement of views of count models. You can examine the estima-
tion output, compute frequencies for the dependent variable, view the covariance matrix, 
or perform coefficient tests. Additionally, you can select View/Actual, Fitted, Residual… 
and pick from a number of views describing the ordinary residuals , 
or you can examine the correlogram and histogram of these residuals. For the most part, all 
of these views are self-explanatory. 

Note, however, that the LR test statistics presented in the summary statistics at the bottom 
of the equation output, or as computed under the View/Coefficient Tests/Redundant 
Variables - Likelihood Ratio… have a known asymptotic distribution only if the condi-
tional distribution is correctly specified. Under the weaker GLM assumption that the true 
variance is proportional to the nominal variance, we can form a quasi-likelihood ratio, 

, where  is the estimated proportional variance factor. This QLR sta-
tistic has an asymptotic distribution under the assumption that the mean is correctly 
specified and that the variances follow the GLM structure. EViews does not compute the 
QLR statistic, but it can be estimated by computing an estimate of  based upon the stan-
dardized residuals. We provide an example of the use of the QLR test statistic below.

If the GLM assumption does not hold, then there is no usable QLR test statistic with a 
known distribution; see Wooldridge (1996). 

Procedures for Count Models

Most of the procedures are self-explanatory. Some details are required for the forecasting 
and residual creation procedures.

• Forecast… provides you the option to forecast the dependent variable  or the pre-
dicted linear index . Note that for all of these models the forecasts of  are 
given by  where .
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• Make Residual Series… provides the following three types of residuals for count 
models:

where the  represents any additional parameters in the variance specification. Note 
that the specification of the variances may vary significantly between specifications. 
For example, the Poisson model has , while the exponential 
has .

The generalized residuals can be used to obtain the score vector by multiplying the 
generalized residuals by each variable in . These scores can be used in a variety of 
LM or conditional moment tests for specification testing; see Wooldridge (1996).

Demonstrations

A Specification Test for Overdispersion

Consider the model

, (17.48)

where the dependent variable NUMB is the number of strikes, IP is a measure of industrial 
production, and FEB is a February dummy variable, as reported in Kennan (1985, Table 1). 

The results from Poisson estimation of this model are presented below:

Ordinary

Standardized (Pearson)

Generalized
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Cameron and Trivedi (1990) propose a regression based test of the Poisson restriction 
. To carry out the test, first estimate the Poisson model and obtain 

the fitted values of the dependent variable. Click Forecast and provide a name for the fore-
casted dependent variable, say NUMB_F. The test is based on an auxiliary regression of 

 on  and testing the significance of the regression coefficient. For this example, 
the test regression can be estimated by the command

ls (numb-numb_f)^2-numb numb_f^2 

yielding the following results:

Dependent Variable: NUMB
Method: ML/QML - Poisson Count
Date: 09/14/97   Time: 10:58
Sample: 1 103
Included observations: 103
Convergence achieved after 4 iterations
Covariance matrix computed using second derivatives

Variable Coefficient Std. Error z-Statistic Prob.

C  1.725630  0.043656  39.52764  0.0000
IP  2.775334  0.819104  3.388254  0.0007

FEB -0.377407  0.174520 -2.162539  0.0306

R-squared  0.064502     Mean dependent var  5.495146
Adjusted R-squared  0.045792     S.D. dependent var  3.653829
S.E. of regression  3.569190     Akaike info criterion  5.583421
Sum squared resid  1273.912     Schwarz criterion  5.660160
Log likelihood -284.5462     Hannan-Quinn criter.  5.614503
Restr. log likelihood -292.9694     Avg. log likelihood -2.762584
LR statistic (2 df)  16.84645     LR index (Pseudo-R2)  0.028751
Probability(LR stat)  0.000220

v xi β,( ) m xi β,( )=

eoi
2

yi− y� i
2

Dependent Variable: (NUMB-NUMB_F)^2-NUMB
Method: Least Squares
Date: 09/14/97   Time: 11:05
Sample: 1 103
Included observations: 103

Variable Coefficient Std. Error t-Statistic Prob.

NUMB_F^2  0.238874  0.052115  4.583571  0.0000

R-squared  0.043930     Mean dependent var  6.872929
Adjusted R-squared  0.043930     S.D. dependent var  17.65726
S.E. of regression  17.26506     Akaike info criterion  8.544908
Sum squared resid  30404.41     Schwarz criterion  8.570488
Log likelihood -439.0628     Durbin-Watson stat  1.711805
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The t-statisticof the coefficient is highly significant, leading us to reject the Poisson restric-
tion. Moreover, the estimated coefficient is significantly positive, indicating overdispersion 
in the residuals.

An alternative approach, suggested by Wooldridge (1996) is to regress , on . To 
perform this test, select Procs/Make Residual Series… and select Standardized. Save the 
results in a series, say SRESID. Then estimating the regression specification:

sresid^2-1 numbf

yields the results:

Both tests suggest the presence of overdispersion, with the variance approximated by 
.

Given the evidence of overdispersion and the rejection of the Poisson restriction, we will 
re-estimate the model, allowing for mean-variance inequality. Our approach will be to esti-
mate the two-step negative binomial QMLE specification (termed the quasi-generalized 
pseudo-maximum likelihood estimator by Gourieroux, Monfort, and Trognon (1984a, b)) 
using the estimate of derived above. To compute this estimator, simply select Negative 
Binomial (QML) and enter 0.22124 in the edit field for Fixed variance parameter.

We will use the GLM variance calculations, so you should click on Option in the Equation 
Specification dialog and mark the Robust Covariance and GLM options. The estimation 
results are shown below:

esi 1− y� i

Dependent Variable: SRESID^2-1
Method: Least Squares
Date: 10/06/97   Time: 16:05
Sample: 1 103
Included observations: 103

Variable Coefficient Std. Error t-Statistic Prob.

NUMBF  0.221238  0.055002  4.022326  0.0001

R-squared  0.017556     Mean dependent var  1.161573
Adjusted R-squared  0.017556     S.D. dependent var  3.138974
S.E. of regression  3.111299     Akaike info criterion  5.117619
Sum squared resid  987.3786     Schwarz criterion  5.143199
Log likelihood -262.5574     Durbin-Watson stat  1.764537

v m 1 0.23m+( )=

η�
2
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The header indicates that the estimated GLM variance factor is 2.4, suggesting that the 
negative binomial ML would not have been an appropriate specification. Nevertheless, the 
negative binomial QML should be consistent, and under the GLM assumption, the stan-
dard errors should be consistently estimated. It is worth noting that the coefficients on IP 
and FEB, which were strongly statistically significant in the Poisson specification, are no 
longer significantly different from zero at conventional significance levels.

Quasi-likelihood Ratio Statistic

As described by Wooldridge (1996), specification testing using likelihood ratio statistics 
requires some care when based upon QML models. We illustrate here the differences 
between a standard LR test for significant coefficients and the corresponding QLR statistic.

From the results above, we know that the overall likelihood ratio statistic for the Poisson 
model is 16.85, with a corresponding p-value of 0.0002. This statistic is valid under the 
assumption that  is specified correctly and that the mean-variance equality 
holds.

We can decisively reject the latter hypothesis, suggesting that we should derive the QML 
estimator with consistently estimated covariance matrix under the GLM variance assump-
tion. While EViews does not automatically adjust the LR statistic to reflect the QML 
assumption, it is easy enough to compute the adjustment by hand. Following Wooldridge, 
we construct the QLR statistic by dividing the original LR statistic by the estimated GLM 
variance factor. 

Dependent Variable: NUMB
Method: QML - Negative Binomial Count
Date: 10/11/97   Time: 23:53
Sample: 1 103
Included observations: 103
QML parameter used in estimation: 0.22124
Convergence achieved after 3 iterations
GLM Robust Standard Errors & Covariance
Variance factor estimate = 2.465660162
Covariance matrix computed using second derivatives

Variable Coefficient Std. Error z-Statistic Prob.

C  1.724906  0.102543  16.82135  0.0000
IP  2.833103  1.919447  1.475999  0.1399

FEB -0.369558  0.377376 -0.979285  0.3274

R-squared  0.064374     Mean dependent var  5.495146
Adjusted R-squared  0.045661     S.D. dependent var  3.653829
S.E. of regression  3.569435     Akaike info criterion  5.174385
Sum squared resid  1274.087     Schwarz criterion  5.251125
Log likelihood -263.4808     Hannan-Quinn criter.  5.205468
Restr. log likelihood -522.9973     Avg. log likelihood -2.558066
LR statistic (2 df)  519.0330     LR index (Pseudo-R2)  0.496210
Probability(LR stat)  0.000000

m xi β,( )
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Suppose that the estimated QML equation is named EQ1. Then you can use EViews to 
compute p-value associated with this statistic, placing the results in scalars using the fol-
lowing commands:

scalar qlr = eq1.@logl/2.226420477

scalar qpval = 1-@cchisq(qlr, 2)

You can examine the results by clicking on the scalar objects in the workfile window and 
viewing the results in the status line. The QLR statistic is 7.5666, and the p-value is 0.023. 
The statistic and p-value are valid under the weaker conditions that the conditional mean 
is correctly specified, and that the conditional variance is proportional (but not necessarily 
equal) to the conditional mean.

Commands

The following are some examples of carrying out the above procedures using commands. 

To estimate a logit of LFP on a constant, AGE, EDU, and EDU squared, type

equation eq1.binary(d=l) lfp c age edu edu^2

To carry out the Hosmer-Lemeshow goodness-of-fit test for the estimated equation EQ1, 
type

eq1.fittest(h)

To save the generalized residuals of EQ1 as named series RES_G, type

eq1.makeresid(g) res_g

To forecast (static) from EQ1 the index  as named series XB, type 

eq1.fit(i) xb

For a complete list of commands and options available for estimation methods in this 
chapter, see the Command and Programming Reference.

Technical Notes

Huber/White (QML) Standard Errors

The Huber/White options for robust standard errors computes the quasi-maximum likeli-
hood (or pseudo-ML) standard errors

, (17.49)

where  and  are the gradient (or score) and Hessian of the log likelihood evaluated 
at the ML estimates. 
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Note that these standard errors are not robust to heteroskedasticity in binary dependent 
variable models. They are robust to certain misspecifications of the underlying distribution 
of .

GLM Standard Errors

Many of the discrete and limited dependent variable models described in this chapter 
belong to a class of models known as generalized linear models (GLM). The assumption of 
GLM is that the distribution of the dependent variable  belongs to the exponential family 
and that the conditional mean of  is a (smooth) nonlinear transformation of the linear 
part :

. (17.50)

Even though the QML covariance is robust to general misspecification of the conditional 
distribution of , it does not possess any efficiency properties. An alternative consistent 
estimate of the covariance is obtained if we impose the GLM condition that the (true) vari-
ance of  is proportional to the variance of the distribution used to specify the log likeli-
hood:

. (17.51)

In other words, the ratio of the (conditional) variance to the mean is some constant  
that is independent of . The most empirically relevant case is , which is known as 
overdispersion. If this proportional variance condition holds, a consistent estimate of the 
GLM covariance is given by

, (17.52)

where 

. (17.53)

If you select GLM standard errors, the estimated proportionality term  is reported as the 
variance factor estimate in EViews. 

For more discussion on GLM and the phenomenon of overdispersion, see McCullaugh and 
Nelder (1989) or Fahrmeir and Tutz (1994). 

The Hosmer-Lemeshow Test

Let the data be grouped into  groups, and let  be the number of obser-
vations in group . Define the number of  observations and the average of pre-
dicted values in group  as
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(17.54)

The Hosmer-Lemeshow test statistic is computed as

. (17.55)

The distribution of the HL statistic is not known, however Hosmer and Lemeshow (1989, 
p.141) report evidence from extensive simulation indicating that when the model is cor-
rectly specified, the distribution of the statistic is well approximated by a distribution 
with  degrees of freedom. Note that these findings are based on a simulation where 

 is close to .

The Andrews Test 

Let the data be grouped into  groups. Since  is binary, there are  cells 
into which any observation can fall. Andrews (1988a, 1988b) compares the  vector of 
the actual number of observations in each cell to those predicted from the model, forms a 
quadratic form, and shows that the quadratic form has an asymptotic distribution if the 
model is specified correctly. 

Andrews suggests three tests depending on the choice of the weighting matrix in the qua-
dratic form. EViews uses the test that can be computed by an auxiliary regression as 
described in Andrews (1988a, 3.18) or Andrews (1988b, 17). 

Briefly, let  be an  matrix with element , where the indicator 
function  takes the value one if observation  belongs to group  with , 
and zero otherwise (we drop the columns for the groups with  to avoid singular-
ity). Let  be the  matrix of the contributions to the score . The 
Andrews test statistic is  times the  from regressing a constant (one) on each column 
of  and . Under the null hypothesis that the model is correctly specified, is 
asymptotically distributed with  degrees of freedom. 
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Chapter 18.  The Log Likelihood (LogL) Object

EViews contains customized procedures which help solve the majority of the estimation 
problems that you might encounter. On occasion, however, you may come across an esti-
mation specification which is not included among these specialized routines. This specifi-
cation may be an extension of an existing procedure, or it could be an entirely new class of 
problem.

Fortunately, EViews provides you with tools to estimate a wide variety of specifications 
through the log likelihood (logl) object. The logl object provides you with a general, open-
ended tool for estimating a broad class of specifications by maximizing a likelihood func-
tion with respect to parameters.

When working with a log likelihood object, you will use EViews’ series generation capabil-
ities to describe the log likelihood contribution of each observation in your sample as a 
function of unknown parameters. You may supply analytical derivatives of the likelihood 
for one or more parameters, or you can simply let EViews calculate numeric derivatives 
automatically. EViews will search for the parameter values that maximize the specified 
likelihood function, and will provide estimated standard errors for these parameter esti-
mates.

In this chapter we provide an overview and describe the general features of the logl object. 
We also give examples of specifications which may be estimated using the object. The 
examples include: multinomial logit, unconditional maximum likelihood AR(1) estimation, 
Box-Cox regression, disequilibrium switching models, least squares with multiplicative 
heteroskedasticity, probit specifications with heteroskedasticity, probit with grouped data, 
nested logit, zero-altered Poisson models, Heckman sample selection models, Weibull haz-
ard models, GARCH(1,1) with t-distributed errors, GARCH with coefficient restrictions, 
EGARCH with a generalized error distribution, and multivariate GARCH.

Overview

Most of the work in estimating a model using the logl object is in creating the text specifi-
cation which will be used to evaluate the likelihood function.

If you are familiar with the process of generating series in EViews, you should find it easy 
to work with the logl specification, since the likelihood specification is merely a list of 
series assignment statements which are evaluated iteratively during the course of the max-
imization procedure. All you need to do is write down a set of statements which, when 
evaluated, will describe a series containing the contributions of each observation to the log 
likelihood function.
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To take a simple example, suppose you believe that your data are generated by the condi-
tional heteroskedasticity regression model:

(18.1)

where , , and  are the observed series (data) and  are the parameters 
of the model. The log likelihood function (the log of the density of the observed data) for a 
sample of  observations can be written as

(18.2)

where  is the standard normal density function.

Note that we can write the log likelihood function as a sum of the log likelihood contribu-
tions for each observation :

(18.3)

where the individual contributions are given by

(18.4)

Suppose that you know the true parameter values of the model, and you wish to generate 
a series in EViews which contains the contributions for each observation. To do this, you 
could assign the known values of the parameters to the elements C(1) to C(5) of the coeffi-
cient vector, and then execute the following list of assignment statements as commands or 
in an EViews program:

series res = y - c(1) - c(2)*x - c(3)*z

series var = c(4) * z^c(5)

series logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

The first two statements describe series which will contain intermediate results used in the 
calculations. The first statement creates the residual series, RES, and the second statement 
creates the variance series, VAR. The series LOGL1 contains the set of log likelihood contri-
butions for each observation.
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Now suppose instead that you do not know the true parameter values of the model, and 
would like to estimate them from the data. The maximum likelihood estimates of the 
parameters are defined as the set of parameter values which produce the largest value of 
the likelihood function evaluated across all the observations in the sample.

The logl object makes finding these maximum likelihood estimates easy. Simply create a 
new log likelihood object, input the assignment statements above into the logl specifica-
tion view, then ask EViews to estimate the specification. 

In entering the assignment statements, you need only make two minor changes to the text 
above. First, the series keyword must be removed from the beginning of each line (since 
the likelihood specification implicitly assumes it is present). Second, an extra line must be 
added to the specification which identifies the name of the series in which the likelihood 
contributions will be contained. Thus, you should enter the following into your log likeli-
hood object:

@logl logl1

res = y - c(1) - c(2)*x - c(3)*z

var = c(4) * z^c(5)

logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

The first line in the log likelihood specification, @logl logl1, tells EViews that the series 
LOGL1 should be used to store the likelihood contributions. The remaining lines describe 
the computation of the intermediate results, and the actual likelihood contributions.

When you tell EViews to estimate the parameters of this model, it will execute the assign-
ment statements in the specification repeatedly for different parameter values, using an 
iterative algorithm to search for the set of values that maximize the sum of the log likeli-
hood contributions. When EViews can no longer improve the overall likelihood, it will stop 
iterating and will report final parameter values and estimated standard errors in the esti-
mation output.

The remainder of this chapter discusses the rules for specification, estimation and testing 
using the likelihood object in greater detail.

Specification

To create a likelihood object, choose Objects/New Object…/LogL or type “logl” in the 
command window. The likelihood window will open with a blank specification view. The 
specification view is a text window into which you enter a list of statements which 
describe your statistical model, and in which you set options which control various aspects 
of the estimation procedure. 
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Specifying the Likelihood

As described in the overview above, the core of the likelihood specification is a set of 
assignment statements which, when evaluated, generate a series containing the log likeli-
hood contribution of each observation in the sample. There can be as many or as few of 
these assignment statements as you wish.

Each likelihood specification must contain a control statement which provides the name of 
the series which is used to contain the likelihood contributions. The format of this state-
ment is

@logl series_name

where series_name is the name of the series which will contain the contributions. This 
control statement may appear anywhere in the logl specification.

Whenever the specification is evaluated, whether for estimation or for carrying out a View 
or Proc, each assignment statement will be evaluated at the current parameter values, and 
the results stored in a series with the specified name. If the series does not exist, it will be 
created automatically. If the series already exists, EViews will use the existing series for 
storage, and will overwrite the data contained in the series. 

If you would like to remove one or more of the series used in the specification after evalu-
ation, you can use the @temp statement:

@temp series_name1 series_name2 …

This statement tells EViews to delete any series in the list after evaluation of the specifica-
tion is completed. Deleting these series may be useful if your logl creates a lot of interme-
diate results, and you do not want the series containing these results to clutter your 
workfile.

Parameter Names

In the example above, we used the coefficients C(1) to C(5) as names for our unknown 
parameters. More generally, any element of a named coefficient vector which appears in 
the specification will be treated as a parameter to be estimated.

In the conditional heteroskedasticity example, you might choose to use coefficients from 
three different coefficient vectors: one vector for the mean equation, one for the variance 
equation, and one for the variance parameters. You would first create three named coeffi-
cient vectors by the commands

coef(3) beta

coef(1) scale

coef(1) alpha
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You could then write the likelihood specification as

@logl logl1

res = y - beta(1) - beta(2)*x - beta(3)*z

var = scale(1)*z^alpha(1)

logl1 = log(@dnorm(res/@sqrt(var))) - log(var)/2

Since all elements of named coefficient vectors in the specification will be treated as 
parameters, you should make certain that all coefficients really do affect the value of one 
or more of the likelihood contributions. If a parameter has no effect upon the likelihood, 
you will experience a singularity error when you attempt to estimate the parameters. 

Note that all objects other than coefficient elements will be considered fixed and will not 
be updated during estimation. For example, suppose that SIGMA is a named scalar in your 
workfile. Then if you redefine the subexpression for VAR as

var = sigma*z^alpha(1)

EViews will not estimate SIGMA. The value of SIGMA will remain fixed at its value at the 
start of estimation.

Order of Evaluation

The logl specification contains one or more assignment statements which generate the 
series containing the likelihood contributions. EViews always evaluates from top to bottom 
when executing these assignment statements, so expressions which are used in subse-
quent calculations should always be placed first.

EViews must also iterate through the observations in the sample. Since EViews iterates 
through both the equations in the specification and the observations in the sample, you 
will need to specify the order in which the evaluation of observations and equations 
occurs.

By default, EViews evaluates the specification by observation so that all of the assignment 
statements are evaluated for the first observation, then for the second observation, and so 
on across all the observations in the estimation sample. This is the correct order for recur-
sive models where the likelihood of an observation depends on previously observed 
(lagged) values, as in AR or ARCH models.

You can change the order of evaluation so EViews evaluates the specification by equation, 
so the first assignment statement is evaluated for all the observations, then the second 
assignment statement is evaluated for all the observations, and so on for each of the 
assignment statements in the specification. This is the correct order for models where 
aggregate statistics from intermediate series are used as input to subsequent calculations.
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You can explicitly select which method of evaluation you would like by adding a statement 
to the likelihood specification. To force evaluation by equation, simply add a line contain-
ing the keyword “@byeqn”. To explicitly state that you require evaluation by observation, 
the “@byobs” keyword can be used. If no keyword is provided, @byobs is assumed.

In the conditional heteroskedasticity example above, it does not matter whether the assign-
ment statements are evaluated by equation (line by line) or by observation, since the 
results do not depend upon the order of evaluation.

However, if the specification has a recursive structure, or if the specification requires the 
calculation of aggregate statistics based on intermediate series, you must select the appro-
priate evaluation order if the calculations are to be carried out correctly.

As an example of the @byeqn statement, consider the following specification:

@logl robust1

@byeqn

res1 = y-c(1)-c(2)*x

delta = @abs(res1)/6/@median(@abs(res1))

weight = (delta<1)*(1-delta^2)^2

robust1 = -(weight*res1^2)

This specification performs robust regression by downweighting outlier residuals at each 
iteration. The assignment statement for DELTA computes the median of the absolute value 
of the residuals in each iteration, and this is used as a reference point for forming a weight-
ing function for outliers. The @byeqn statement instructs EViews to compute all residuals 
RES1 at a given iteration before computing the median of those residuals when calculating 
the DELTA series.

Analytic Derivatives

By default, when maximizing the likelihood and forming estimates of the standard errors, 
EViews computes numeric derivatives of the likelihood function with respect to the param-
eters. If you would like to specify an analytic expression for one or more of the derivatives, 
you may use the @deriv statement. The @deriv statement has the form:

@deriv pname1 sname1 pname2 sname2 …

where pname is a parameter in the model and sname is the name of the corresponding 
derivative series generated by the specification. 

For example, consider the following likelihood object that specifies a multinomial logit 
model:

' multinomial logit with 3 outcomes

@logl logl1
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xb2 = b2(1)+b2(2)*x1+b2(3)*x2

xb3 = b3(1)+b3(2)*x1+b3(3)*x2

denom = 1+exp(xb2)+exp(xb3)

' derivatives wrt the 2nd outcome params

@deriv b2(1) grad21 b2(2) grad22 b2(3) grad23

grad21 = d2-exp(xb2)/denom

grad22 = grad21*x1

grad23 = grad21*x2

' derivatives wrt the 3rd outcome params

@deriv b3(1) grad31 b3(2) grad32 b3(3) grad33

grad31 = d3-exp(xb3)/denom

grad32 = grad31*x1

grad33 = grad31*x2

' specify log likelihood

logl1 = d2*xb2+d3*xb3-log(1+exp(xb2)+exp(xb3))

See Greene (1997), Chapter 19.7.1 for a discussion of multinomial logit models. There are 
three possible outcomes, and the parameters of the three regressors (X1, X2 and the con-
stant) are normalized relative to the first outcome. The analytic derivatives are particularly 
simple for the multinomial logit model and the two @deriv statements in the specification 
instruct EViews to use the expressions for GRAD21, GRAD22, GRAD23, GRAD31, GRAD32, 
and GRAD33, instead of computing numeric derivatives.

When working with analytic derivatives, you may wish to check the validity of your 
expressions for the derivatives by comparing them with numerically computed derivatives. 
EViews provides you with tools which will perform this comparison at the current values 
of parameters or at the specified starting values. See the discussion of the Check Deriva-
tives view of the likelihood object in the Command Reference at the end of this Chapter.

Derivative Step Sizes

If analytic derivatives are not specified for any of your parameters, EViews numerically 
evaluates the derivatives of the likelihood function for those parameters. The step sizes 
used in computing the derivatives are controlled by two parameters:  (relative step size) 
and m (minimum step size). Let  denote the value of the parameter  at iteration . 
Then the step size at iteration  is determined by

(18.5)

The two-sided numeric derivative is evaluated as
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(18.6)

while the one-sided numeric derivative is evaluated as

(18.7)

where  is the likelihood function. Two-sided derivatives are more accurate, but require 
roughly twice as many evaluations of the likelihood function and so take about twice as 
long to evaluate.

The @derivstep statement can be used to control the step size and method used to eval-
uate the derivative at each iteration. The @derivstep keyword should be followed by sets 
of three arguments: the name of the parameter to be set (or the keyword @all), the rela-
tive step size, and the minimum step size.

The default setting is (approximately):

@derivstep(1) @all 1.49e-8 1e-10

where “1” in the parentheses indicates that one-sided numeric derivatives should be used 
and @all indicates that the following setting applies to all of the parameters. The first 
number following @all is the relative step size and the second number is the minimum 
step size. The default relative step size is set to the square root of machine epsilon 

 and the minimum step size is set to . 

The step size can be set separately for each parameter in a single or in multiple 
@derivstep statements. The evaluation method option specified in parentheses is a glo-
bal option; it cannot be specified separately for each parameter. 

For example, if you include the line

@derivstep(2) c(2) 1e-7 1e-10

the relative step size for coefficient C(2) will be increased to  and a two-sided 
derivative will be used to evaluate the derivative. In a more complex example,

@derivstep(2) @all 1.49e-8 1e-10 c(2) 1e-7 1e-10 c(3) 1e-5 1e-8

computes two-sided derivatives using the default step sizes for all coefficients except C(2) 
and C(3). The values for these latter coefficients are specified directly.
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Estimation

Once you have specified the logl object, you can ask EViews to find the parameter values 
which maximize the likelihood parameters. Simply click the Estimate button in the likeli-
hood window toolbar to open the Estimation Options dialog.

There are a number of options which allow 
you to control various aspects of the estimation 
procedure. See “Setting Estimation Options” on 
page 666 for a discussion of these options. The 
default settings, however, should provide a 
good start for most problems. When you click 
on OK, EViews will begin estimation using the 
current settings.

Starting Values

Since EViews uses an iterative algorithm to 
find the maximum likelihood estimates, the choice of starting values is important. For 
problems in which the likelihood function is globally concave, it will influence how many 
iterations are taken for estimation to converge. For problems where the likelihood function 
is not concave, it may determine which of several local maxima is found. In some cases, 
estimation will fail unless reasonable starting values are provided.

By default, EViews uses the values stored in the coefficient vector or vectors prior to esti-
mation. If a @param statement is included in the specification, the values specified in the 
statement will be used instead.

In our conditional heteroskedasticity regression example, one choice for starting values for 
the coefficients of the mean equation coefficients are the simple OLS estimates, since OLS 
provides consistent point estimates even in the presence of (bounded) heteroskedasticity. 
To use the OLS estimates as starting values, first estimate the OLS equation by the com-
mand

equation eq1.ls y c x z

After estimating this equation, the elements C(1), C(2), C(3) of the C coefficient vector will 
contain the OLS estimates. To set the variance scale parameter C(4) to the estimated OLS 
residual variance, you can type the assignment statement in the command window

c(4) = eq1.@se^2

For the final heteroskedasticity parameter C(5), you can use the residuals from the original 
OLS regression to carry out a second OLS regression, and set the value of C(5) to the 
appropriate coefficient. Alternatively, you can arbitrarily set the parameter value using a 
simple assignment statement:
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c(5) = 1

Now, if you estimate the logl specification immediately after carrying out the OLS estima-
tion and subsequent commands, it will use the values that you have placed in the C vector 
as starting values. 

As noted above, an alternative method of initializing the parameters to known values is to 
include a @param statement in the likelihood specification. For example, if you include the 
line

@param c(1) 0.1 c(2) 0.1 c(3) 0.1 c(4) 1 c(5) 1

in the specification of the logl, EViews will always set the starting values to 
C(1)=C(2)=C(3)=0.1, C(4)=C(5)=1.

See also the discussion of starting values in “Starting Coefficient Values” on page 667.

Estimation Sample

EViews uses the sample of observations specified in the Estimation Options dialog when 
estimating the parameters of the log likelihood. EViews evaluates each expression in the 
logl for every observation in the sample at current parameter values, using the by observa-
tion or by equation ordering. All of these evaluations follow the standard EViews rules for 
evaluating series expressions. 

If there are missing values in the log likelihood series at the initial parameter values, 
EViews will issue an error message and the estimation procedure will stop. In contrast to 
the behavior of other EViews built-in procedures, logl estimation performs no endpoint 
adjustments or dropping of observations with missing values when estimating the parame-
ters of the model.

LogL Views

• Likelihood Specification: displays the window where you specify and edit the likeli-
hood specification.

• Estimation Output: displays the estimation results obtained from maximizing the 
likelihood function.

• Covariance Matrix: displays the estimated covariance matrix of the parameter esti-
mates. These are computed from the inverse of the sum of the outer product of the 
first derivatives evaluated at the optimum parameter values. To save this covariance 
matrix as a (SYM) MATRIX, you may use the @cov function.

• Wald Coefficient Tests…: performs the Wald coefficient restriction test. See Chapter 
14, Coefficient Tests, for a discussion of Wald tests.
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• Gradients: displays view of the gradients (first derivatives) of the log likelihood at 
the current parameter values (if the model has not yet been estimated), or at the 
converged parameter values (if the model has been estimated). These views may 
prove to be useful diagnostic tools if you are experiencing problems with conver-
gence.

• Check Derivatives: displays the values of the numeric derivatives and analytic 
derivatives (if available) at the starting values (if a @param statement is included), 
or at current parameter values (if there is no @param statement).

LogL Procs

• Estimate…: brings up a dialog to set estimation options, and to estimate the param-
eters of the log likelihood.

• Make Model: creates an untitled model object out of the estimated likelihood speci-
fication.

• Make Gradient Group: creates an untitled group of the gradients (first derivatives) 
of the log likelihood at the estimated parameter values. These gradients are often 
used in constructing Lagrange multiplier tests.

• Update Coefs from LogL: updates the coefficient vector(s) with the estimates from 
the likelihood object. This procedure allows you to export the maximum likelihood 
estimates for use as starting values in other estimation problems. 

Most of these procedures should be familiar to you from other EViews estimation objects. 
We describe below the features that are specific to the logl object.

Estimation Output

In addition to the coefficient and standard error estimates, the standard output for the logl 
object describes the method of estimation, sample used in estimation, date and time that 
the logl was estimated, evaluation order, and information about the convergence of the 
estimation procedure.
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EViews also provides the log likelihood value, average log likelihood value, number of 
coefficients, and three Information Criteria. By default, the starting values are not dis-
played. Here we have used the Estimation Options dialog to instruct EViews to display the 
estimation starting values in the output.

Gradients

The gradient summary, table and graph view allow you to examine the gradients of the 
likelihood. These gradients are computed at the current parameter values (if the model has 
not yet been estimated), or at the converged parameter values (if the model has been esti-
mated). See Appendix E, “Gradients and Derivatives”, on page 675 for additional details.

You may find this view to be a useful 
diagnostic tool when experiencing 
problems with convergence or singu-
larity. One common problem leading 
to singular matrices is a zero deriva-
tive for a parameter due to an incor-
rectly specified likelihood, poor 
starting values, or a lack of model 
identification. See the discussion 
below for further details.

LogL: MLOGIT 
Method: Maximum Likelihood (Marquardt) 
Date: 10/19/00   Time: 14:26 
Sample: 1 1000 
Included observations: 1000 
Evaluation order: By observation 
Estimation settings: tol= 1.0E-09 
Initial Values: B2(1)=-1.08356, B2(2)=0.90467, B2(3)=-0.06786, B3(1)= 
        -0.69842, B3(2)=-0.33212, B3(3)=0.32981 
Convergence achieved after 7 iterations 

 Coefficient Std. Error z-Statistic Prob. 

B2(1) -0.521793 0.205568 -2.538302 0.0111 
B2(2) 0.994358 0.267963 3.710798 0.0002 
B2(3) 0.134983 0.265655 0.508115 0.6114 
B3(1) -0.262307 0.207174 -1.266122 0.2055 
B3(2) 0.176770 0.274756 0.643371 0.5200 
B3(3) 0.399166 0.274056 1.456511 0.1453 

Log likelihood -1089.415     Akaike info criterion 2.190830 
Avg. log likelihood -1.089415     Schwarz criterion 2.220277 
Number of Coefs. 6     Hannan-Quinn criter. 2.202022 
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Check Derivatives

You can use the Check Derivatives view to examine your numeric derivatives or to check 
the validity of your expressions for the analytic derivatives. If the logl specification con-
tains a @param statement, the derivatives will be evaluated at the specified values, other-
wise, the derivatives will be computed at the current coefficient values.

The first part of this view displays the 
names of the user supplied derivatives, 
step size parameters, and the coeffi-
cient values at which the derivatives 
are evaluated. The relative and mini-
mum step sizes shown in this example 
are the default settings. 

The second part of the view computes 
the sum (over all individuals in the 
sample) of the numeric and, if applica-
ble, the analytic derivatives for each 
coefficient. If appropriate, EViews will 
also compute the largest individual dif-
ference between the analytic and the 
numeric derivatives in both absolute, 
and percentage terms. 

Troubleshooting

Because the logl object provides a great deal of flexibility, you are more likely to experience 
problems with estimation using the logl object than with EViews’ built-in estimators. 

If you are experiencing difficulties with estimation the following suggestions may help you 
in solving your problem:

• Check your likelihood specification. A simple error involving a wrong sign can 
easily stop the estimation process from working. You should also verify that the 
parameters of the model are really identified (in some specifications you may have 
to impose a normalization across the parameters). Also, every parameter which 
appears in the model must feed directly or indirectly into the likelihood contribu-
tions. The Check Derivatives view is particularly useful in helping you spot the lat-
ter problem.

• Choose your starting values. If any of the likelihood contributions in your sample 
cannot be evaluated due to missing values or because of domain errors in mathe-
matical operations (logs and square roots of negative numbers, division by zero, 
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etc.) the estimation will stop immediately with the message: “Cannot compute 
@logl due to missing values”. In other cases, a bad choice of starting values may 
lead you into regions where the likelihood function is poorly behaved. You should 
always try to initialize your parameters to sensible numerical values. If you have a 
simpler estimation technique available which approximates the problem, you may 
wish to use estimates from this method as starting values for the maximum likeli-
hood specification. 

• Make sure lagged values are initialized correctly. In contrast to most other estima-
tion routines in EViews, the logl estimation procedure will not automatically drop 
observations with NAs or lags from the sample when estimating a log likelihood 
model. If your likelihood specification involves lags, you will either have to drop 
observations from the beginning of your estimation sample, or you will have to care-
fully code the specification so that missing values from before the sample do not 
cause NAs to propagate through the entire sample (see the AR(1) and GARCH exam-
ples for a demonstration). 

Since the series used to evaluate the likelihood are contained in your workfile (unless you 
use the @temp statement to delete them), you can examine the values in the log likelihood 
and intermediate series, to find problems involving lags and missing values.

• Verify your derivatives. If you are using analytic derivatives, use the Check Deriva-
tives view to make sure you have coded the derivatives correctly. If you are using 
numerical derivatives, consider specifying analytic derivatives or adjusting the 
options for derivative method or step size. 

• Reparametrize your model. If you are having problems with parameter values caus-
ing mathematical errors, you may wish to consider reparameterizing the model to 
restrict the parameter within its valid domain. See the discussion below for exam-
ples. 

Most of the error messages you are likely to see during estimation are self-explanatory. The 
error message “near singular matrix” may be less obvious. This error message occurs 
when EViews is unable to invert the matrix of the sum of the outer product of the deriva-
tives so that it is impossible to determine the direction of the next step of the optimization. 
This error may indicate a wide variety of problems, including bad starting values, but will 
almost always occur if the model is not identified, either theoretically, or in terms of the 
available data. 

Limitations

The likelihood object can be used to estimate parameters that maximize (or minimize) a 
variety of objective functions. Although the main use of the likelihood object will be to 
specify a log likelihood, you can specify least squares and minimum distance estimation 
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problems with the likelihood object as long as the objective function is additive over the 
sample.

You should be aware that the algorithm used in estimating the parameters of the log likeli-
hood is not well suited to solving arbitrary maximization or minimization problems. The 
algorithm forms an approximation to the Hessian of the log likelihood, based on the sum 
of the outer product of the derivatives of the likelihood contributions. This approximation 
relies on both the functional form and statistical properties of maximum likelihood objec-
tive functions, and may not be a good approximation in general settings. Consequently, 
you may or may not be able to obtain results with other functional forms. Furthermore, the 
standard error estimates of the parameter values will only have meaning if the series 
describing the log likelihood contributions are (up to an additive constant) the individual 
contributions to a correctly specified, well-defined theoretical log likelihood.

Currently, the expressions used to describe the likelihood contribution must follow the 
rules of EViews series expressions. This restriction implies that we do not allow matrix 
operations in the likelihood specification. In order to specify likelihood functions for multi-
ple equation models, you may have to write out the expression for the determinants and 
quadratic forms. Although possible, this may become tedious for models with more than 
two or three equations. See the multivariate GARCH sample programs for examples of this 
approach.

Additionally, the logl object does not directly handle optimization subject to general ine-
quality constraints. There are, however, a variety of well-established techniques for impos-
ing simple inequality constraints. We provide examples below. The underlying idea is to 
apply a monotonic transformation to the coefficient so that the new coefficient term takes 
on values only in the desired range. The commonly used transformations are the @exp for 
one-sided restrictions and the @logit and @arctan for two-sided restrictions.

You should be aware of the limitations of the transformation approach. First, the approach 
only works for relatively simple inequality constraints. If you have several cross-coefficient 
inequality restrictions, the solution will quickly become intractable. Second, in order to 
perform hypothesis tests on the untransformed coefficient, you will have to obtain an esti-
mate of the standard errors of the associated expressions. Since the transformations are 
generally nonlinear, you will have to compute linear approximations to the variances your-
self (using the delta method). Lastly, inference will be poor near the boundary values of 
the inequality restrictions.

Simple One-Sided Restrictions

Suppose you would like to restrict the estimate of the coefficient of X to be no larger than 
1. One way you could do this is to specify the corresponding subexpression as follows: 

' restrict coef on x to not exceed 1
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res1 = y - c(1) - (1-exp(c(2)))*x

Note that EViews will report the point estimate and the standard error for the parameter 
C(2), not the coefficient of X. To find the standard error of the expression 1-exp(c(2)), 
you will have to use the delta method; see for example Greene (1997), Theorems 4.15 and 
4.16.

Simple Two-Sided Restrictions

Suppose instead that you want to restrict the coefficient for X to be between -1 and 1. Then 
you can specify the expression as:

' restrict coef on x to be between -1 and 1

res1 = y - c(1) - (2*@logit(c(2))-1)*x

Again, EViews will report the point estimate and standard error for the parameter C(2). 
You will have to use the delta method to compute the standard error of the transformation 
expression 2*@logit(c(2))-1.

More generally, if you want to restrict the parameter to lie between L and H, you can use 
the transformation

(H-L)*@logit(c(1)) + L

where C(1) is the parameter to be estimated. In the above example, L = -1 and H = 1.

Examples

In this section, we provide extended examples of working with the logl object to estimate a 
multinomial logit and a maximum likelihood AR(1) specification. Example programs for 
these and several other specifications are provided in your default EViews data directory. If 
you set your default directory to point to the EViews data directory, you should be able to 
issue a RUN command for each of these programs to create the logl object and to estimate 
the unknown parameters.

Multinomial Logit (mlogit1.prg)

In this example, we demonstrate how to specify and estimate a simple multinomial logit 
model using the logl object. Suppose the dependent variable Y can take one of three cate-
gories 1, 2, and 3. Further suppose that there are data on two regressors, X1 and X2 that 
vary across observations (individuals). Standard examples include variables such as age 
and level of education. Then the multinomial logit model assumes that the probability of 
observing each category in Y is given by:



Examples—487
(18.8)

for . Note that the parameters  are specific to each category so there are 
 parameters in this specification. The parameters are not all identified unless 

we impose a normalization (see for example Greene, 1997, chapter 19.7), so we normalize 
the parameters of the first choice category  to be all zero: 

. 

The log likelihood function for the multinomial logit can be written as

(18.9)

where  is a dummy variable that takes the value 1 if observation  has chosen alterna-
tive  and 0 otherwise. The first-order conditions are 

(18.10)

for  and . 

We have provided, in the Example Files subdirectory of your default EViews directory, a 
workfile MLOGIT.WK1 containing artificial multinomial data. The program begins by load-
ing this workfile.

' load artificial data

%evworkfile = @evpath + "\example files\logl\mlogit"

load "{%evworkfile}"

from the EViews example directory.

Next, we declare the coefficient vectors that will contain the estimated parameters for each 
choice alternative. 

' declare parameter vector

coef(3) b2

coef(3) b3

As an alternative, we could have used the default coefficient vector C.

We then set up the likelihood function by issuing a series of append statements:

mlogit.append xb2 = b2(1)+b2(2)*x1+b2(3)*x2

mlogit.append xb3 = b3(1)+b3(2)*x1+b3(3)*x2
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' define prob for each choice

mlogit.append denom = 1+exp(xb2)+exp(xb3)

mlogit.append pr1 = 1/denom

mlogit.append pr2 = exp(xb2)/denom

mlogit.append pr3 = exp(xb3)/denom

' specify likelihood

mlogit.append logl1 = (1-dd2-dd3)*log(pr1) 
+dd2*log(pr2)+dd3*log(pr3)

Since the analytic derivatives for the multinomial logit are particularly simple, we also 
specify the expressions for the analytic derivatives to be used during estimation and the 
appropriate @deriv statements: 

' specify analytic derivatives

for!i = 2 to 3

mlogit.append @deriv b{!i}(1) grad{!i}1 b{!i}(2) grad{!i}2 
b{!i}(3) grad{!i}3

mlogit.append grad{!i}1 = dd{!i}-pr{!i}

mlogit.append grad{!i}2 = grad{!i}1*x1

mlogit.append grad{!i}3 = grad{!i}1*x2

next

Note that if you were to specify this likelihood interactively, you would simply type the 
expression that follows each append statement directly into the MLOGIT object.

This concludes the actual specification of the likelihood object. Before estimating the 
model, we get the starting values by estimating a series of binary logit models.

' get starting values from binomial logit

equation eq2.binary(d=l) dd2 c x1 x2

b2 = eq2.@coefs

equation eq3.binary(d=l) dd3 c x1 x2

b3 = eq3.@coefs

To check whether you have specified the analytic derivatives correctly, choose View/
Check Derivatives or use the command

show mlogit.checkderiv

If you have correctly specified the analytic derivatives, they should be fairly close to the 
numeric derivatives.
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We are now ready to estimate the model. Either click the Estimate button or use the com-
mand

' do MLE

mlogit.ml(showopts, m=1000, c=1e-5)

show mlogit.output

Note that you can examine the derivatives for this model using the Gradient Table view, or 
you can examine the series in the workfile containing the gradients. You can also look at 
the intermediate results, and log likelihood values. For example, to look at the likelihood 
contributions for each individual, simply double click on the LOGL1 series.

AR(1) Model (ar1.prg)

In this example, we demonstrate how to obtain full maximum likelihood estimates of an 
AR(1). The maximum likelihood procedure uses the first observation in the sample, in con-
trast to the built-in AR(1) procedure in EViews which treats the first observation as fixed 
and maximizes the conditional likelihood for the remaining observations by nonlinear 
least squares.

As an illustration, we first generate data that follows an AR(1) process:

' make up data

create m 80 89

rndseed 123

series y=0

smpl @first+1 @last

y = 1+0.85*y(-1) + nrnd

The exact Gaussian likelihood function for an AR(1) model is given by

(18.11)

where  is the constant term,  is the AR(1) coefficient, and  is the error variance, all 
to be estimated (see for example Hamilton, 1994a, chapter 5.2). 

Since the likelihood function evaluation differs for the first observation in our sample, we 
create a dummy variable indicator for the first observation:

' create dummy variable for first obs
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series d1 = 0

smpl @first @first 

d1 = 1

smpl @all

Next, we declare the coefficient vectors to store the parameter estimates and initialize 
them with the least squares estimates.

' set starting values to LS (drops first obs)

equation eq1.ls y c ar(1)

coef(1) rho = c(2)

coef(1) s2 = eq1.@se^2

We then specify the likelihood function. We make use of the @recode function to differen-
tiate the evaluation of the likelihood for the first observation from the remaining observa-
tions. Note: the @recode function used here uses the updated syntax for this function—
please double-check the current documentation for details.

' set up likelihood

' uses new @recode syntax 6/98

logl ar1

ar1.append @logl logl1

ar1.append var = @recode(d1=1,s2(1)/(1-rho(1)^2),s2(1))

ar1.append res = @recode(d1=1,y-c(1)/(1-rho(1)),y-c(1)-
rho(1)*y(-1))

ar1.append sres = res/@sqrt(var)

ar1.append logl1 = log(@dnorm(sres))-log(var)/2

The likelihood specification uses the built-in function @dnorm for the standard normal 
density. The second term is the Jacobian term that arises from transforming the standard 
normal variable to one with non-unit variance. (You could, of course, write out the likeli-
hood for the normal distribution without using the @dnorm function.)

The program displays the MLE together with the least squares estimates

' do MLE

ar1.ml(showopts, m=1000, c=1e-5)

show ar1.output

' compare with EViews AR(1) which ignores first obs

show eq1.output



Examples—491
Additional Examples

The following additional example programs can be found in the “Example Files” subdirec-
tory of your default EViews directory.

• Conditional logit (clogit1.prg): estimates a conditional logit with 3 outcomes and 
both individual specific and choice specific regressors. The program also displays the 
prediction table and carries out a Hausman test for independence of irrelevant alter-
natives (IIA). See Greene (1997, chapter 19.7) for a discussion of multinomial logit 
models. 

• Box-Cox transformation (boxcox1.prg): estimates a simple bivariate regression with 
an estimated Box-Cox transformation on both the dependent and independent vari-
ables. Box-Cox transformation models are notoriously difficult to estimate and the 
results are very sensitive to starting values.

• Disequilibrium switching model (diseq1.prg): estimates the switching model in 
exercise 15.14–15.15 of Judge et al. (1985, pages 644–646). Note that there are some 
typos in Judge et al. (1985, pages 639–640). The program uses the likelihood specifi-
cation in Quandt (1988, page 32, equations 2.3.16–2.3.17).

• Multiplicative heteroskedasticity (hetero1.prg): estimates a linear regression model 
with multiplicative heteroskedasticity. Replicates the results in Greene (1997, exam-
ple 12.14).

• Probit with heteroskedasticity (hprobit1.prg): estimates a probit specification with 
multiplicative heteroskedasticity. See Greene (1997, example 19.7). 

• Probit with grouped data (gprobit1.prg): estimates a probit with grouped data (pro-
portions data). Estimates the model in Greene (1997, exercise 19.6).

• Nested logit (nlogit1.prg): estimates a nested logit model with 2 branches. Tests the 
IIA assumption by a Wald test. See Greene (1997, chapter 19.7.4) for a discussion of 
nested logit models.

• Zero-altered Poisson model (zpoiss1.prg): estimates the zero-altered Poisson 
model. Also carries out the non-nested LR test of Vuong (1989). See Greene (1997, 
chapter 19.9.6) for a discussion of zero-altered Poisson models and Vuong’s non-
nested likelihood ratio test.

• Heckman sample selection model (heckman1.prg): estimates Heckman’s two 
equation sample selection model by MLE using the two-step estimates as starting 
values.

• Weibull hazard model (weibull1.prg): estimates the uncensored Weibull hazard 
model described in Greene (1997, example 20.18). The program also carries out one 
of the conditional moment tests in Greene (1997, example 20.19).
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• GARCH(1,1) with t-distributed errors (arch_t1.prg): estimates a GARCH(1,1) model 
with t-distribution. The log likelihood function for this model can be found in 
Hamilton (1994a, equation 21.1.24, page 662). 

• GARCH with coefficient restrictions (garch1.prg): estimates an MA(1)-GARCH(1,1) 
model with coefficient restrictions in the conditional variance equation. This model 
is estimated by Bollerslev, Engle, and Nelson (1994, equation 9.1, page 3015) for dif-
ferent data. 

• EGARCH with generalized error distributed errors (egarch1.prg): estimates Nel-
son’s (1991) exponential GARCH with generalized error distribution. The specifica-
tion and likelihood is described in Hamilton (1994a, pages 668–669).

• Multivariate GARCH (bv_garch.prg and tv_garch.prg): estimates the bi- or the tri-
variate version of the BEKK GARCH specification (Engle and Kroner, 1995).



Part V.  Multiple Equation Analysis

In this section, we document EViews tools for multiple equation estimation, forecasting 
and data analysis. 

• Chapters 19–22 describe estimation techniques for systems of equations (“System 
Estimation” on page 495), VARs and VECs (“Vector Autoregression and Error Correc-
tion Models” on page 519), and state space models (“State Space Models and the 
Kalman Filter” beginning on page 577). 

• Chapter 21, “Pooled Time Series, Cross-Section Data”, on page 551 outlines tools for 
working with pooled time series, cross-section data, and estimating standard equa-
tion specifications which account for the pooled structure of the data.

• Chapter 22, “State Space Models and the Kalman Filter”, on page 577 describes the 
use of EViews’ state space and Kalman filter tools for modeling structural time series 
models.

• Chapter 23, “Models”, beginning on page 601 describes the use of model objects to 
forecast from multiple equation estimates, or to perform multivariate simulation.
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Chapter 19.  System Estimation

This chapter describes methods of estimating the parameters of systems of equations. We 
describe least squares, weighted least squares, seemingly unrelated regression (SUR), 
weighted two-stage least squares, three-stage least squares, full-information maximum 
likelihood (FIML), and generalized method of moments (GMM) estimation techniques.

Once you have estimated the parameters of your system of equations, you may wish to 
forecast future values or perform simulations for different values of the explanatory vari-
ables. Chapter 23, “Models”, on page 601 describes the use of models to forecast from an 
estimated system of equations or to perform single and multivariate simulation.

Background

A system is a group of equations containing unknown parameters. Systems can be esti-
mated using a number of multivariate techniques that take into account the interdepen-
dencies among the equations in the system. 

The general form of a system is

, (19.1)

where  is a vector of endogenous variables,  is a vector of exogenous variables, and 
 is a vector of possibly serially correlated disturbances. The task of estimation is to find 

estimates of the vector of parameters .

EViews provides you with a number of methods of estimating the parameters of the sys-
tem. One approach is to estimate each equation in the system separately, using one of the 
single equation methods described earlier in this manual. A second approach is to esti-
mate, simultaneously, the complete set of parameters of the equations in the system. The 
simultaneous approach allows you to place constraints on coefficients across equations 
and to employ techniques that account for correlation in the residuals across equations. 

While there are important advantages to using a system to estimate your parameters, they 
do not come without cost. Most importantly, if you misspecify one of the equations in the 
system and estimate your parameters using single equation methods, only the misspecified 
equation will be poorly estimated. If you employ system estimation techniques, the poor 
estimates for the misspecification equation may “contaminate” estimates for other equa-
tions.

At this point, we take care to distinguish between systems of equations and models. A 
model is a group of known equations describing endogenous variables. Models are used to 
solve for values of the endogenous variables, given information on other variables in the 
model.

f yt xt β, ,( ) εt=

yt xt
εt

β
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Systems and models often work together quite closely. You might estimate the parameters 
of a system of equations, and then create a model in order to forecast or simulate values of 
the endogenous variables in the system. We discuss this process in greater detail in 
Chapter 23, “Models”, on page 601.

System Estimation Methods

EViews will estimate the parameters of a system of equations using:

• Ordinary least squares.

• Equation weighted regression.

• Seemingly unrelated regression (SUR).

• System two-state least squares.

• Weighted two-stage least squares.

• Three-stage least squares.

• Full information maximum likelihood (FIML).

• Generalized method of moments (GMM).

The equations in the system may be linear or nonlinear, and may contain autoregressive 
error terms.

In the remainder of this section, we describe each technique at a general level. Users who 
are interested in the technical details are referred to the “Technical Discussion” on 
page 511.

Ordinary Least Squares

This technique minimizes the sum-of-squared residuals for each equation, accounting for 
any cross-equation restrictions on the parameters of the system. If there are no such 
restrictions, this method is identical to estimating each equation using single-equation 
ordinary least squares.

Cross-Equation Weighting

This method accounts for cross-equation heteroskedasticity by minimizing the weighted 
sum-of-squared residuals. The equation weights are the inverses of the estimated equation 
variances, and are derived from unweighted estimation of the parameters of the system. 
This method yields identical results to unweighted single-equation least squares if there 
are no cross-equation restrictions.
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Seemingly Unrelated Regression 

The seemingly unrelated regression (SUR) method, also known as the multivariate regres-
sion, or Zellner's method, estimates the parameters of the system, accounting for heterosk-
edasticity, and contemporaneous correlation in the errors across equations. The estimates 
of the cross-equation covariance matrix are based upon parameter estimates of the 
unweighted system. 

Note that EViews estimates a more general form of SUR than is typically described in the 
literature, since it allows for cross-equation restrictions on parameters.

Two-Stage Least Squares

The system two-stage least squares (STSLS) estimator is the system version of the single 
equation two-stage least squares estimator described above. STSLS is an appropriate tech-
nique when some of the right-hand side variables are correlated with the error terms, and 
there is neither heteroskedasticity, nor contemporaneous correlation in the residuals. 
EViews estimates STSLS by applying TSLS equation by equation to the unweighted system, 
enforcing any cross-equation parameter restrictions. If there are no cross-equation restric-
tions, the results will be identical to unweighted single-equation TSLS.

Weighted Two-Stage Least Squares

The weighted two-stage least squares (WTSLS) estimator is the two-stage version of the 
weighted least squares estimator. WTSLS is an appropriate technique when some of the 
right-hand side variables are correlated with the error terms, and there is heteroskedastic-
ity, but no contemporaneous correlation in the residuals.

EViews first applies STSLS to the unweighted system. The results from this estimation are 
used to form the equation weights, based upon the estimated equation variances. If there 
are no cross-equation restrictions, these first-stage results will be identical to unweighted 
single-equation TSLS.

Three-Stage Least Squares

Three-stage least squares (3SLS) is the two-stage least squares version of the SUR method. 
It is an appropriate technique when right-hand side variables are correlated with the error 
terms, and there is both heteroskedasticity, and contemporaneous correlation in the residu-
als.

EViews applies TSLS to the unweighted system, enforcing any cross-equation parameter 
restrictions. These estimates are used to form an estimate of the full cross-equation covari-
ance matrix which, in turn, is used to transform the equations to eliminate the cross-equa-
tion correlation. TSLS is applied to the transformed model.
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Full Information Maximum Likelihood (FIML)

Full Information Maximum Likelihood (FIML) estimates the likelihood function under the 
assumption that the contemporaneous errors have a joint normal distribution. Provided 
that the likelihood function is correctly specified, FIML is fully efficient.

Generalized Method of Moments (GMM)

The GMM estimator belongs to a class of estimators known as M-estimators that are 
defined by minimizing some criterion function. GMM is a robust estimator in that it does 
not require information of the exact distribution of the disturbances. 

GMM estimation is based upon the assumption that the disturbances in the equations are 
uncorrelated with a set of instrumental variables. The GMM estimator selects parameter 
estimates so that the correlations between the instruments and disturbances are as close to 
zero as possible, as defined by a criterion function. By choosing the weighting matrix in 
the criterion function appropriately, GMM can be made robust to heteroskedasticity and/or 
autocorrelation of unknown form.

Many standard estimators, including all of the system estimators provided in EViews, can 
be set up as special cases of GMM. For example, the ordinary least squares estimator can 
be viewed as a GMM estimator, based upon the conditions that each of the right-hand side 
variables is uncorrelated with the residual.

How to Create and Specify a System

To estimate the parameters of your system of equations, you should first create a system 
object and specify the system of equations. Click on Objects/New Object/System or type 
system in the command window. The system object window should appear. When you 
first create the system, the window will be blank. You will fill the system specification win-
dow with text describing the equations, and potentially, lines describing the instruments 
and the parameter starting values.

Equations

Enter your equations, by formula, using standard EViews expressions. The equations in 
your system should be behavioral equations with unknown coefficients and an implicit 
error term. 
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Consider the specification of a simple two 
equation system. You can use the default 
EViews coefficients, C(1), C(2), and so on, 
or you can use other coefficient vectors, in 
which case you should first declare them by 
clicking Objects/New Object/Matrix-Vec-
tor-Coef/Coefficient Vector in the main 
menu. 

There are some general rules for specifying 
your equations:

• Equations can be nonlinear in their variables, coefficients, or both. Cross equation 
coefficient restrictions may be imposed by using the same coefficients in different 
equations. For example, 

y = c(1) + c(2)*x

z = c(3) + c(2)*z + (1-c(2))*x

• You may also impose adding up constraints. Suppose for the equation

y = c(1)*x1 + c(2)*x2 + c(3)*x3

you wish to impose C(1)+C(2)+C(3)=1. You can impose this restriction by specify-
ing the equation as

y = c(1)*x1 + c(2)*x2 + (1-c(1)-c(2))*x3

• The equations in a system may contain autoregressive (AR) error specifications, but 
not MA, SAR, or SMA error specifications. You must associate coefficients with each 
AR specification. Enclose the entire AR specification in square brackets and follow 
each AR with an “=”-sign and a coefficient. For example,

cs = c(1) + c(2)*gdp + [ar(1)=c(3), ar(2)=c(4)]

You can constrain all of the equations in a system to have the same AR coefficient by 
giving all equations the same AR coefficient number, or you can estimate separate 
AR processes, by assigning each equation its own coefficient.

• Equations in a system need not have a dependent variable followed by an equal sign 
and then an expression. The “=”-sign can be anywhere in the formula, as in:

log(unemp/(1-unemp)) = c(1) + c(2)*dmr

You can also write the equation as a simple expression without a dependent vari-
able, as in

(c(1)*x + c(2)*y + 4)^2
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When encountering an expression that does not contain an equal sign, EViews sets 
the entire expression equal to the implicit error term.

If an equation should not have a disturbance, it is an identity, and should not be 
included in a system. If necessary, you should solve out for any identities to obtain 
the behavioral equations.

You should make certain that there is no identity linking all of the disturbances in 
your system. For example, if each of your equations describes a fraction of a total, 
the sum of the equations will always equal one, and the sum of the disturbances will 
identically equal zero. You will need to drop one of these equations to avoid numer-
ical problems.

Instruments

If you plan to estimate your system using two-stage least squares, three-stage least squares, 
or GMM, you must specify the instrumental variables to be used in estimation. There are 
several ways to specify your instruments, with the appropriate form depending on whether 
you wish to have identical instruments in each equation, and whether you wish to com-
pute the projections on an equation-by-equation basis, or whether you wish to compute a 
restricted projection using the stacked system.

In the simplest (default) case, EViews will form your instrumental variable projections on 
an equation-by-equation basis. If you prefer to think of this process as a two-step (2SLS) 
procedure, the first-stage regression of the variables in your model on the instruments will 
be run separately for each equation. 

In this setting, there are two ways to specify your instruments. If you would like to use 
identical instruments in every equations, you should include a line beginning with the key-
word “@INST” or “INST”, followed by a list of all the exogenous variables to be used as 
instruments. For example, the line

@inst gdp(-1 to -4) x gov

instructs EViews to use these six variables as instruments for all of the equations in the 
system. System estimation will involve a separate projection for each equation in your sys-
tem. 

You may also specify different instruments for each equation by appending an “@”-sign at 
the end of the equation, followed by a list of instruments for that equation. For example, 

cs = c(1)+c(2)*gdp+c(3)*cs(-1) @ cs(-1) inv(-1) gov

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

The first equation uses CS(-1), INV(-1), GOV, and a constant as instruments, while the sec-
ond equation uses GDP(-1), GOV, and a constant as instruments.



How to Create and Specify a System—501
Lastly, you can mix the two methods. Any equation without individually specified instru-
ments will use the instruments specified by the @inst statement. The system

@inst gdp(-1 to -4) x gov

cs = c(1)+c(2)*gdp+c(3)*cs(-1) 

inv = c(4)+c(5)*gdp+c(6)*gov @ gdp(-1) gov

will use the instruments GDP(-1), GDP(-2), GDP(-3), GDP(-4), X, GOV, and C, for the CS 
equation, but only GDP(-1), GOV, and C, for the INV equation.

As noted above, the EViews default behavior is to perform the instrumental variables pro-
jection on an equation-by-equation basis. You may, however, wish to perform the projec-
tions on the stacked system. Notably, where the number of instruments is large, relative to 
the number of observations, stacking the equations and instruments prior to performing 
the projection may be the only feasible way to compute 2SLS estimates.

To designate instruments for a stacked projection, you should use the @stackinst state-
ment (note: this statement is only available for systems estimated by 2SLS or 3SLS; it is not 
available for systems estimated using GMM). 

In a @stackinst statement, the “@STACKINST” keyword should be followed by a list of 
stacked instrument specifications. Each specification is a comma delimited list of series 
enclosed in parentheses (one per equation), describing the instruments to be constrained 
in a stacked specification.

For example, the following @stackinst specification creates two instruments in a three 
equation model:

@stackinst (z1,z2,z3) (m1,m1,m1)

This statement instructs EViews to form two stacked instruments, one by stacking the sep-
arate series Z1, Z2, and Z3, and the other formed by stacking M1 three times. The first-
stage instrumental variables projection is then of the variables in the stacked system on the 
stacked instruments.

When working with systems that have a large number of equations, the above syntax may 
be unwieldy. For these cases, EViews provides a couple of shortcuts. First, for instruments 
that are identical in all equations, you may us an “*” after the comma to instruct EViews to 
repeat the specified series. Thus, the above statement is equivalent to

@stackinst (z1,z2,z3) (m1,*)

Second, for non-identical instruments, you may specify a set of stacked instruments using 
an EViews group object, so long as the number of variables in the group is equal to the 
number of equations in the system. Thus, if you create a group Z with
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group z z1 z2 z3

the above statement can be simplified to:

@stackinst z (m1,*)

You can, of course, combine ordinary instrument and stacked instrument specifications. 
This situation is equivalent to having common and equation specific coefficients for vari-
ables in your system. Simply think of the stacked instruments as representing common 
(coefficient) instruments, and ordinary instruments as representing equation specific (coef-
ficient) instruments. For example, consider the system given by

@stackinst (z1,z2,z3) (m1,*)

@inst ia 

y1 = c(1)*x1

y2 = c(1)*x2

y3 = c(1)*x3 @ ic

The stacked instruments for this specification may be represented as:

(19.2)

so it is easy to see that this specification is equivalent to the following stacked specification

@stackinst (z1, z2, z3) (m1, *) (ia, 0, 0) (0, ia, 0) (0, 0, ia) 

(0, 0, ic)

since the common instrument specification

@inst ia 

is equivalent to

@stackinst (ia, 0, 0) (0, ia, 0) (0, 0, ia) 

Additional Comments

• If you include a “C” in the stacked instrument list, it will not be included in the indi-
vidual equations. If you do not include the “C” as a stacked instrument, it will be 
included as an instrument in every equation, whether specified explicitly or not. 

• You should list all exogenous right-hand side variables as instruments for a given 
equation.

Z1 M1 IA 0 0 0
Z2 M1 0 IA 0 0
Z3 M1 0 0 IA IC
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• Identification requires that there should be at least as many instruments (including 
the constant) in each equation as there are right-hand side variables in that equa-
tion.

• The @stackinst statement is only available for estimation by 2SLS and 3SLS. It is 
not currently supported for GMM.

• If you estimate your system using a method that does not use instruments, all instru-
ment specification lines will be ignored. 

Starting Values

For systems that contain nonlinear equations, you can include a line that begins with 
param to provide starting values for some or all of the parameters. List pairs of parameters 
and values. For example,

param  c(1) .15  b(3) .5

sets the initial values of C(1) and B(3). If you do not provide starting values, EViews uses 
the values in the current coefficient vector. 

How to Estimate a System

Once you have created and specified your system, push the Estimate button on the tool-
bar. 

First select the estimation method. The GMM-Cross section option uses a weighting 
matrix that is robust to heteroskedasticity and contemporaneous correlation of unknown 
form, while the GMM-Time series (HAC) option extends this robustness to autocorrela-
tion of unknown form. 
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When you select the GMM-Time 
series (HAC) option, the dialog box 
expands to display additional 
options for specifying the weighting 
matrix. The new options will appear 
at the lower right part of the dialog 
control. These options control the 
computation of the heteroskedastic-
ity and autocorrelation robust (HAC) 
weighting matrix. See “Technical 
Discussion” on page 511 for a more 
detailed discussion of these options.

The Kernel Options determines the 
functional form of the kernel used to 
weight the autocovariances to compute the weighting matrix. The Bandwidth Selection 
option determines how the weights given by the kernel change with the lags of the autoco-
variances in the computation of the weighting matrix. If you select Fixed bandwidth, you 
may enter a number for the bandwidth or type nw to use Newey and West’s fixed band-
width selection criterion. 

The Prewhitening option runs a preliminary VAR(1) prior to estimation to “soak up” the 
correlation in the moment conditions. 

Iteration Control

For weighted least squares, SUR, weighted TSLS, 3SLS, GMM, and nonlinear systems of 
equations, there is an additional estimation issue involving the procedure for computing 
the GLS weighting matrix and the coefficient vector. In general, you can elect to use the 
EViews default option with no additional difficulties, but there may be times when you 
wish to exercise greater control over the computation.

The estimation option controls the method of iterating over coefficients, over the weighting 
matrices, or both:

• One-Step Weighting Matrix—Iterate Coefs is the default method.

By default, EViews carries out a first-stage estimation of the coefficients using no 
weighting matrix (the identity matrix). Using starting values obtained from OLS (or 
TSLS, if there are instruments), EViews iterates until the coefficients converge. If the 
model is linear, this procedure involves a single OLS or TSLS regression. 

The residuals from this first-stage iteration are used to form a consistent estimate of 
the weighting matrix. 
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In the second stage of the procedure, EViews uses the estimated weighting matrix in 
forming new estimates of the coefficients. If the model is nonlinear, EViews iterates 
the coefficient estimates until convergence.

• One-Step Weighting Matrix—One-Step Coefs performs the first-stage estimation of 
the coefficients, and constructs an estimate of the weighting matrix. In the second 
stage, EViews does not iterate the coefficients to convergence, instead performing a 
single coefficient iteration step. 

• Iterate Weights and Coefs—Sequential repeats the default method, described 
above, until both the coefficients and the weighting matrix converge. 

• Iterate Weights and Coefs—Simultaneous updates both the coefficients and the 
weighting matrix at each iteration. These steps are then repeated until both the coef-
ficients and weighting matrix converge. This is the iteration method employed in 
previous versions of EViews.

Note that all four of the estimation techniques yield results that are asymptotically effi-
cient. For linear models, the two Iterate Weights and Coefs options are equivalent to each 
other, and the two One-Step Weighting Matrix options are equivalent to each other, since 
obtaining coefficient estimates does not require iteration.

There is a last technique which is not fully efficient, but which does produce estimated 
covariances and standard errors which are robust to heteroskedasticity or heteroskedastic-
ity and serial correlation.

• The 2SLS Estimates/GMM S.E. computes first-stage estimates of the parameters 
assuming an identity weighting matrix. These estimates are then used to compute a 
coefficient covariance matrix that is robust to cross-section heteroskedasticity 
(White) or heteroskedasticity and autocorrelation (Newey-West).

Other Options

The Options button in the System Estimation dialog allows you to set a number of options 
for estimation, including convergence criterion, maximum number of iterations, and deriv-
ative calculation settings. See “Setting Estimation Options” on page 666 for additional dis-
cussion of estimation options.

Estimation Output

The system estimation output contains parameter estimates, standard errors, and t-statis-
tics for each of the coefficients in the system. Additionally, EViews reports the determinant 
of the residual covariance matrix, and, for FIML estimates, the maximized likelihood 
value.
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In addition, EViews reports a set of summary statistics for each equation. The statistic, 
Durbin-Watson statistic, standard error of the regression, sum-of-squared residuals, etc., 
are computed for each equation using the standard definitions, based on the residuals from 
the system estimation procedure.

You may access most of these results using regression statistics functions. See Chapter 11, 
page 270 for a discussion of the use of these functions, and Chapter 3, “Object, View and 
Procedure Reference”, on page 19 of the Command and Programming Reference for a full 
listing of the available functions for systems.

Working With Systems

After obtaining estimates, the system object provides a number of tools for examining the 
equation results, and performing inference and specification testing. 

System Views

Some of the system views are familiar from the discussion in previous chapters:

• You can examine the estimated covariance matrix by selecting the Coefficient Cova-
riance Matrix view.

• Wald Coefficient Tests… performs hypothesis tests on the coefficients. These views 
are discussed in greater depth in “Wald Test (Coefficient Restrictions)” on page 368.

• The Estimation Output view displays the coefficient estimates and summary statis-
tics for the system. You may also access this view by pressing Stats on the system 
toolbar.

Other views are very familiar, but differ slightly in name or output, from their single equa-
tion counterparts:

• System Specification displays the specification window for the system. The specifi-
cation window may also be displayed by pressing Spec on the toolbar.

• Residual Graphs displays a separate graph of the residuals from each equation in 
the system.

• Endogenous Table presents a spreadsheet view of the endogenous variables in the 
system.

• Endogenous Graph displays graphs of each of the endogenous variables.

The last two views are specific to systems:

• Residual Correlation Matrix computes the contemporaneous correlation matrix for 
the residuals of each equation.

R
2
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• Residual Covariance Matrix computes the contemporaneous covariance matrix for 
the residuals. See also the function @residcova in Chapter 3, “Object, View and 
Procedure Reference”, on page 45 of the Command and Programming Reference.

System Procs

One notable difference between systems and single equation objects is that there is no 
forecast procedure for systems. To forecast or perform simulation using an estimated sys-
tem, you must use a model object.

EViews provides you with a simple method of incorporating the results of a system into a 
model. If you select Procs/Make Model, EViews will open an untitled model object con-
taining the estimated system. This model can be used for forecasting and simulation. An 
alternative approach, creating the model and including the system object by name, is 
described in “Building a Model” on page 618.

There are other procedures for working with the system:

• Estimate… opens the dialog for estimating the system of equations. It may also be 
accessed by pressing Estimate on the system toolbar.

• Make Residuals creates a number of series containing the residuals for each equa-
tion in the system. The residuals will be given the next unused name of the form 
RESID01, RESID02, etc., in the order that the equations are specified in the system.

• Make Endogenous Group creates an untitled group object containing the endoge-
nous variables.

Example

As an illustration of the process of estimating a system of equations in EViews, we estimate 
a translog cost function using data from Berndt and Wood (1975) as tabulated in Greene 
(1997). The translog cost function has four factors with three equations of the form:

 (19.3)

where  and  are the cost share and price of factor , respectively.  and  are the 
parameters to be estimated. Note that there are cross equation coefficient restrictions that 
ensure symmetry of the cross partial derivatives. 
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We first estimate this system without imposing the cross equation restrictions and test 
whether the symmetry restrictions hold. Create a system by clicking Objects/New Object/
System in the main toolbar or type system in the command window. Press the Name but-
ton and type in the name “SYS_UR” to name the system. 

Next, type in the system window and specify the system as:

We estimate this model by full information maximum likelihood (FIML). FIML is invariant 
to the equation that is dropped. Press the Estimate button and choose Full Information 
Maximum Likelihood. EViews presents the estimated coefficients and regression statistics 
for each equation. 

To test the symmetry restrictions, select View/Wald Coefficient Tests…, fill in the dialog:

and click OK. The result:

Wald Test: 
System: SYS_UR 

Test Statistic Value df Probability 

Chi-square 0.431610 3 0.9336 

    
Null Hypothesis Summary: 

Normalized Restriction (= 0) Value Std. Err. 

C(3) - C(6) -0.010891 35.74745 
C(4) - C(10) 0.030891 23.35663 
C(8) - C(11) 0.057997 21.16539 

Restrictions are linear in coefficients. 
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fails to reject the symmetry restrictions. To estimate the system imposing the symmetry 
restrictions, copy the object using Objects/Copy Object, click View/System Specification 
and modify the system.

We have named the system 
SYS_TLOG. Note that to impose sym-
metry in the translog specification, we 
have restricted the coefficients on the 
cross-price terms to be the same (we 
have also renumbered the 9 remaining 
coefficients so that they are consecu-
tive). The restrictions are imposed by using the same coefficients in each equation. For 
example, the coefficient on the log(P_L/P_M) term in the C_K equation, C(3), is the same 
as the coefficient on the log(P_K/P_M) term in the C_L equation. 

To estimate this model using FIML, click Estimate and choose Full Information Maxi-
mum Likelihood. The top part of the equation describes the estimation specification, and 
provides coefficient and standard error estimates, t-statistics, p-values, and summary sta-
tistics:

The log likelihood value reported at the bottom of the first part of the table can be used to 
construct likelihood ratio tests. 

Since maximum likelihood assumes the errors are multivariate normal, we may wish to 
test whether the residuals are normally distributed. Click Procs/Make Residuals and 
EViews opens an untitled group window containing the residuals of each equation in the 
system. Then to compute descriptive statistics for each residual in the group, select View/
Descriptive Stats from the group window toolbar:

System: SYS_TLOG
Estimation Method: Full Information Maximum Likelihood (Marquardt)
Date: 08/07/97   Time: 13:17
Sample: 1947 1971
Convergence achieved after 9 iterations

Coefficient Std. Error t-Statistic Prob.

C(1)  0.056672  0.002803  20.21585  0.0000
C(2)  0.029082  0.008310  3.499789  0.0008
C(3)  0.000274  0.009810  0.027925  0.9778
C(4) -0.010639  0.004931 -2.157489  0.0346
C(5)  0.252923  0.002172  116.4713  0.0000
C(6)  0.076621  0.010717  7.149671  0.0000
C(7) -0.003500  0.007603 -0.460326  0.6468
C(8)  0.043860  0.002651  16.54573  0.0000
C(9)  0.020018  0.011049  1.811797  0.0746

Log Likelihood  344.4730
Determinant residual covariance  2.16E-16
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The Jarque-Bera statistic rejects the 
hypothesis of normal distribution for 
the second equation but not for the 
other equations. 

The estimated coefficients of the 
translog cost function can be used to 
construct estimates of the elasticity of 
substitution between factors of pro-
duction. For example, the elasticity of 
substitution between capital and 
labor is given by 1+c(3)/(C_K*C_L). 
Note that the elasticity of substitution 
is not a constant, and depends on the values of C_K and C_L. To create a series containing 
the elasticities computed for each observation, select Quick/Generate Series…, and enter:

es_kl = 1 + sys1.c(3)/(c_k*c_l) 

To plot the series of elasticity of substitution between capital and labor for each observa-
tion, double click on the series name ES_KL in the workfile and select View/Line Graph:

While it varies over the sample, the elasticity of substitution is generally close to one, 
which is consistent with the assumption of a Cobb-Douglas cost function. 

Commands

To create a new system, follow the system command with a name for the system:
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system demand1

creates and opens the window for a new system named DEMAND1. 

To estimate a system, follow the name of the system with a dot and the name of the esti-
mation procedure. For example,

sys1.fiml

estimates SYS1 by full information maximum likelihood.

See “System” on page 45 of the Command and Programming Reference for a complete list 
of commands and options available for system objects.

Technical Discussion

While the discussion to follow is expressed in terms of a balanced system of linear equa-
tions, the analysis carries forward in a straightforward way to unbalanced systems contain-
ing nonlinear equations.

Denote a system of m equations, in stacked form, as

(19.4)

where  is  vector,  is a  matrix, and  is a  vector of coefficients. 
The error terms  have an  covariance matrix . The system may be written in 
compact form as:

. (19.5)

Under the standard assumptions, the residual variance matrix from this stacked system is 
given by

. (19.6)

Other residual structures are of interest. First, the errors may be heteroskedastic across the 
 equations. Second, they may be heteroskedastic and contemporaneously correlated. 

We can characterize both of these cases by defining the  matrix of contemporane-
ous correlations, , where the (i,j)-th element of  is given by  for all 

. If the errors are contemporaneously uncorrelated, then,  for , and we can 
write:

(19.7)
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More generally, if the errors are heteroskedastic and contemporaneously correlated:

. (19.8)

Lastly, at the most general level, there may be heteroskedasticity, contemporaneous corre-
lation, and autocorrelation of the residuals. The general variance matrix of the residuals 
may be written:

(19.9)

where  is an autocorrelation matrix for the i-th and j-th equations.

Ordinary Least Squares

The OLS estimator of the estimated variance matrix of the parameters is valid under the 
assumption that . The estimator for  is given by:

, (19.10)

and the variance estimator is given by

, (19.11)

where is the residual variance estimate for the stacked system.

Weighted Least Squares

The weighted least squares estimator is given by:

(19.12)

where  is a consistent estimator of , and  is the 
residual variance estimator, 

(19.13)

where the inner product is taken over the non-missing common elements of  and . The 
max function in Equation (19.13) is designed to handle the case of unbalanced data by 
down-weighting the covariance terms. Provided the missing values are asymptotically neg-
ligible, this yields a consistent estimator of the variance elements. Note also that there is 
no adjustment for degrees-of-freedom.

When specifying your estimation specification, you are given a choice of which coeffi-
cients to use in computing the . If you choose not to iterate the weights, the OLS coeffi-
cient estimates will be used to estimate the variances. If you choose to iterate the weights, 
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the current parameter estimates (which may be based on the previously computed 
weights) are used in computing the . This latter procedure may be iterated until the 
weights and coefficients converge.

The estimator for the coefficient variance matrix is:

. (19.14)

The weighted least squares estimator is efficient, and the variance estimator consistent, 
under the assumption that there is heteroskedasticity, but no serial or contemporaneous 
correlation in the residuals.

It is worth pointing out that if there are no cross-equation restrictions on the parameters of 
the model, weighted LS on the entire system yields estimates that are identical to those 
obtained by equation-by-equation LS. Consider the following simple model:

(19.15)

If  and  are unrestricted, the WLS estimator given in Equation (19.14) yields,

. (19.16)

The expression on the right is equivalent to equation-by-equation OLS. Note, however, that 
even without cross-equation restrictions, the standard errors are not the same in the two 
cases.

Seemingly Unrelated Regression (SUR)

SUR is appropriate when all the right-hand side regressors  are assumed to be exoge-
nous, and the errors are heteroskedastic and contemporaneously correlated so that the 
error variance matrix is given by . Zellner’s SUR estimator of  takes the 
form

, (19.17)

where  is a consistent estimate of  with typical element , for all  and .

If you include AR terms in equation , EViews transforms the model (see “Estimating AR 
Models” on page 307) and estimates the following equation:

(19.18)

where  is assumed to be serially independent, but possibly correlated contemporane-
ously across equations. At the beginning of the first iteration, we estimate the equation by 
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nonlinear LS and use the estimates to compute the residuals . We then construct an esti-
mate of  using  and perform nonlinear GLS to complete 
one iteration of the estimation procedure. These iterations may be repeated until the coeffi-
cients and weights converge.

Two-Stage Least Squares (TSLS) and Weighted TSLS

TSLS is a single equation estimation method that is appropriate when some of the vari-
ables in  are endogenous. Write the j-th equation of the system as

(19.19)

or, alternatively,

(19.20)

where , , and .  
is the matrix of endogenous variables and  is the matrix of exogenous variables.

In the first stage, we regress the right-hand side endogenous variables  on all exogenous 
variables  and get the fitted values

. (19.21)

In the second stage, we regress  on  and  to get

. (19.22)

where .

Weighted TSLS applies the weights in the second stage so that

(19.23)

where the elements of the variance matrix are estimated in the usual fashion using the 
residuals from unweighted TSLS. 

If you choose to iterate the weights,  is estimated at each step using the current values 
of the coefficients and residuals.

Three-Stage Least Squares (3SLS)

Since TSLS is a single equation estimator that does not take account of the covariances 
between residuals, it is not, in general, fully efficient. 3SLS is a system method that esti-
mates all of the coefficients of the model, then forms weights and reestimates the model 
using the estimated weighting matrix. It should be viewed as the endogenous variable ana-
logue to the SUR estimator described above. 
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The first two stages of 3SLS are the same as in TSLS. In the third stage, we apply feasible 
generalized least squares (FGLS) to the equations in the system in a manner analogous to 
the SUR estimator.

SUR uses the OLS residuals to obtain a consistent estimate of the cross-equation covari-
ance matrix . This covariance estimator is not, however, consistent if any of the right-
hand side variables are endogenous. 3SLS uses the 2SLS residuals to obtain a consistent 
estimate of .

, (19.24)

where  has typical element

. (19.25)

If you choose to iterate the weights, the current coefficients and residuals will be used to 
estimate .

Generalized Method of Moments (GMM)

The basic idea underlying GMM is simple and intuitive. We have a set of theoretical 
moment conditions that the parameters of interest  should satisfy. We denote these 
moment conditions as

. (19.26)

The method of moments estimator is defined by replacing the moment condition (19.26) 
by its sample analog

. (19.27)

However, condition (19.27) will not be satisfied for any when there are more restrictions 
 than there are parameters . To allow for such overidentification, the GMM estimator 

is defined by minimizing the following criterion function:

(19.28)

which measures the “distance” between  and zero.  is a weighting matrix that 
weights each moment condition. Any symmetric positive definite matrix  will yield a 
consistent estimate of . However, it can be shown that a necessary (but not sufficient) 
condition to obtain an (asymptotically) efficient estimate of  is to set  equal to the 
inverse of the covariance matrix  of the sample moments . This follows intuitively, 
since we want to put less weight on the conditions that are more imprecise. 

To obtain GMM estimates in EViews, you must be able to write the moment conditions in 
Equation (19.26) as an orthogonality condition between the residuals of a regression equa-
tion, , and a set of instrumental variables, , so that 

(19.29)
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For example, the OLS estimator is obtained as a GMM estimator with the orthogonality 
conditions

. (19.30)

For the GMM estimator to be identified, there must be at least as many instrumental vari-
ables  as there are parameters . See the section on “Generalized Method of Moments 
(GMM)” beginning on page 297 for additional examples of GMM orthogonality conditions.

An important aspect of specifying a GMM problem is the choice of the weighting matrix 
. EViews uses the optimal , where  is the estimated covariance matrix of 

the sample moments . EViews uses the consistent TSLS estimates for the initial estimate 
of  in forming the estimate of . 

White’s Heteroskedasticity Consistent Covariance Matrix

If you choose the GMM-Cross section option, EViews estimates  using White’s het-
eroskedasticity consistent covariance matrix 

(19.31)

where  is the vector of residuals, and  is a  matrix such that the  moment con-
ditions at  may be written as .

Heteroskedasticity and Autocorrelation Consistent (HAC) Covariance 
Matrix 

If you choose the GMM-Time series option, EViews estimates  by

(19.32)

where 

. (19.33)

You also need to specify the kernel  and the bandwidth . 

Kernel Options

The kernel  is used to weight the covariances so that  is ensured to be positive semi-
definite. EViews provides two choices for the kernel, Bartlett and quadratic spectral (QS). 
The Bartlett kernel is given by
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(19.34)

while the quadratic spectral (QS) kernel is given by

(19.35)

where . The QS has a faster rate of convergence than the Bartlett and is smooth 
and not truncated (Andrews 1991). Note that even though the QS kernel is not truncated, it 
still depends on the bandwidth  (which need not be an integer). 

Bandwidth Selection

The bandwidth  determines how the weights given by the kernel change with the lags in 
the estimation of . Newey-West fixed bandwidth is based solely on the number of obser-
vations in the sample and is given by

(19.36)

where int( ) denotes the integer part of the argument. 

EViews also provides two “automatic”, or data dependent bandwidth selection methods 
that are based on the autocorrelations in the data. Both methods select the bandwidth 
according to

(19.37)

The two methods, Andrews and Variable-Newey-West, differ in how they estimate  
and . 

Andrews (1991) is a parametric method that assumes the sample moments follow an 
AR(1) process. We first fit an AR(1) to each sample moment (19.29) and estimate the auto-
correlation coefficients  and the residual variances  for , where  
is the number of instrumental variables and  is the number of equations in the system. 
Then  and  are estimated by

(19.38)
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Note that we weight all moments equally, including the moment corresponding to the con-
stant. 

Newey-West (1994) is a nonparametric method based on a truncated weighted sum of the 
estimated cross-moments .  and  are estimated by

(19.39)

where  is a vector of ones and 

, (19.40)

for .

One practical problem with the Newey-West method is that we have to choose a lag selec-
tion parameter . The choice of  is arbitrary, subject to the condition that it grow at a 
certain rate. EViews sets the lag parameter to

(19.41)

Prewhitening

You can also choose to prewhiten the sample moments  to “soak up” the correlations in 
 prior to GMM estimation. We first fit a VAR(1) to the sample moments

. (19.42)

Then the variance  of  is estimated by  where  is 
the variance of the residuals  and is computed using any of the above methods. The 
GMM estimator is then found by minimizing the criterion function:

(19.43)

Note that while Andrews and Monahan (1992) adjust the VAR estimates to avoid singular-
ity when the moments are near unit root processes, EViews does not perform this eigen-
value adjustment. 

Γ� j( ) α� 1( ) α� 2( )

α� p( ) l′F p( )l
l′F 0( ) l
������������������ 

 =

l

F p( ) Γ 0( ) i
p
Γ� i( ) Γ� ′ i( )+( )

i 1=

L

Σ+=

p 1 2,=

L L

L
int 4 T 100⁄( )2 9⁄( ) for the Bartlett kernel
T for the QS kernel




=

m
m

mt Amt 1− vt+=

Ω� m Ω� I A−( ) 1−
Ω� ∗ I A−( ) 1−= Ω� ∗

vt

u′ZΩ�
1−
Z ′u



Chapter 20.  Vector Autoregression and Error Correction 
Models

The structural approach to time series modeling uses economic theory to model the rela-
tionship among the variables of interest. Unfortunately, economic theory is often not rich 
enough to provide a dynamic specification that identifies all of these relationships. Further-
more, estimation and inference are complicated by the fact that endogenous variables may 
appear on both the left and right sides of equations.

These problems lead to alternative, non-structural approaches to modeling the relationship 
among several variables. This chapter describes the estimation and analysis of vector 
autoregression (VAR) and the vector error correction (VEC) models. We also describe tools 
for testing the presence of cointegrating relationships among several non-stationary vari-
ables.

Vector Autoregressions (VARs)

The vector autoregression (VAR) is commonly used for forecasting systems of interrelated 
time series and for analyzing the dynamic impact of random disturbances on the system of 
variables. The VAR approach sidesteps the need for structural modeling by treating every 
endogenous variable in the system as a function of the lagged values of all of the endoge-
nous variables in the system.

The mathematical representation of a VAR is

(20.1)

where  is a  vector of endogenous variables,  is a  vector of exogenous variables, 
 and  are matrices of coefficients to be estimated, and  is a vector of inno-

vations that may be contemporaneously correlated but are uncorrelated with their own 
lagged values and uncorrelated with all of the right-hand side variables. 

Since only lagged values of the endogenous variables appear on the right-hand side of the 
equations, simultaneity is not an issue and OLS yields consistent estimates. Moreover, 
even though the innovations  may be contemporaneously correlated, OLS is efficient 
and equivalent to GLS since all equations have identical regressors.

As an example, suppose that industrial production (IP) and money supply (M1) are jointly 
determined by a VAR and let a constant be the only exogenous variable. Assuming that the 
VAR contains two lagged values of the endogenous variables, it may be written as

(20.2)
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where , ,  are the parameters to be estimated.

How to Estimate a VAR

To specify a VAR in EViews, you must first create a var object. Select Quick/Estimate 
VAR... or type var in the command window. The Basics tab of the VAR Specification dia-
log will prompt you to define the structure of your VAR.

You should fill out the dialog with the 
appropriate information:

• Select the VAR type: Unrestricted 
VAR or Vector Error Correction 
(VEC). What we have been call-
ing a VAR is actually an unre-
stricted VAR. VECs are explained 
below.

• Set the estimation sample.

• Enter the lag specification in the 
appropriate edit box. This infor-
mation is entered in pairs: each 
pair of numbers defines a range of lags. For example, the lag pair shown above

 1 4

tells EViews to use the first through fourth lags of all the endogenous variables in the 
system as right-hand side variables.

You can add any number of lag intervals, all entered in pairs. The lag specification

 2 4 6 9 12 12 

uses lags 2–4, 6–9, and 12.

• Enter the names of endogenous and exogenous series in the appropriate edit boxes. 
Here we have listed M1, IP, and TB3 as endogenous series, and have used the special 
series C as the constant exogenous term. If either list of series was longer, we could 
have created a named group object containing the list and then entered the group 
name.

The remaining dialog tabs (Cointegration and Restrictions) are relevant only for VEC 
models and are explained below.

aij bij ci
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VAR Estimation Output

Once you have specified the VAR, click OK. EViews will display the estimation results in 
the VAR window.

Each column in the table corre-
sponds to an equation in the VAR. 
For each right-hand side variable, 
EViews reports the estimated 
coefficient, its standard error, and 
the t-statistic. For example, the 
coefficient for IP(-1) in the TB3 
equation is 0.095984.

EViews displays additional infor-
mation below the coefficient sum-
mary. The first part of the 
additional output presents stan-
dard OLS regression statistics for 
each equation. The results are 
computed separately for each equation, using the appropriate residuals and are displayed 
in the corresponding column. The numbers at the very bottom of the table are the sum-
mary statistics for the VAR system as a whole. 

The determinant of the residual covariance is computed as

(20.3)

where  is the number of parameters per equation in the VAR. The log likelihood value is 
computed assuming a multivariate normal (Gaussian) distribution as

 R-squared  0.999221  0.999915  0.968018
 Adj. R-squared  0.999195  0.999912  0.966937
 Sum sq. resids  113.8813  1232.453  98.39849
 S.E. equation  0.566385  1.863249  0.526478
 Log likelihood -306.3509 -744.5662 -279.4628
 Akaike AIC -1.102274  1.279331 -1.248405
 Schwarz SC -0.964217  1.417388 -1.110348
 Mean dependent  70.97919  339.7451  6.333891
 S.D. dependent  19.95932  198.6301  2.895381

 Determinant Residual Covariance  0.259637
 Log Likelihood -1318.390
 Akaike Information Criteria -1.136514
 Schwarz Criteria -0.722342
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 (20.4)

and the two information criteria are computed as

(20.5)

where  is the total number of estimated parameters in the VAR. These 
information criteria can be used for model selection such as determining the lag length of 
the VAR, with smaller values of the information criterion being preferred. It is worth noting 
that some reference sources may define the AIC/SC differently, either omitting the “ines-
sential” constant terms from the likelihood, or not dividing by  (see also Appendix F, 
“Information Criteria”, on page 683 for additional discussion of information criteria).

Views and Procs of a VAR

Once you have estimated a VAR, EViews provides various views to work with the esti-
mated VAR. In this section, we discuss views that are specific to VARs. For other views and 
procedures, see the general discussion of system views in Chapter 19, “System Estima-
tion”, beginning on page 495. 

Diagnostic Views

A set of diagnostic views are provided under the menus View/Lag Structure and View/
Residual Tests in the VAR window. These views should help you check the appropriate-
ness of the estimated VAR.

Lag Structure

AR Roots Table/Graph

Reports the inverse roots of the characteristic AR polynomial; see Lütkepohl (1991). The 
estimated VAR is stable (stationary) if all roots have modulus less than one and lie inside 
the unit circle. If the VAR is not stable, certain results (such as impulse response standard 
errors) are not valid. There will be  roots, where  is the number of endogenous vari-
ables and  is the largest lag. If you estimated a VEC with  cointegrating relations,  
roots should be equal to unity.

Pairwise Granger Causality Tests. 

Carries out pairwise Granger causality tests and tests whether an endogenous variable can 
be treated as exogenous. For each equation in the VAR, the output displays (Wald) sta-
tistics for the joint significance of each of the other lagged endogenous variables in that 
equation. The statistic in the last row (All) is the statistic for joint significance of all 
other lagged endogenous variables in the equation. 

l
T
2
��� k 1 2πlog+( ) Ω�log+{ }−=

AIC 2l T 2n T⁄+⁄−=

SC 2l T n Tlog T⁄+⁄−=

n k d pk+( )=

T

kp k
p r k r−

χ
2

χ
2



Views and Procs of a VAR—523
Warning: if you have estimated a VEC, the lagged variables that are tested for exclusion are 
only those that are first differenced. The lagged level terms in the cointegrating equations 
(the error correction terms) are not tested.

Lag Exclusion Tests. 

Carries out lag exclusion tests for each lag in the VAR. For each lag, the (Wald) statistic 
for the joint significance of all endogenous variables at that lag is reported for each equa-
tion separately and jointly (last column).

Lag Length Criteria. 

Computes various criteria to select the lag order of an unrestricted VAR. You will be 
prompted to specify the maximum lag to “test” for. The table displays various information 
criteria for all lags up to the specified maximum. (If there are no exogenous variables in 
the VAR, the lag starts at 1; otherwise the lag starts at 0.) The table indicates the selected 
lag from each column criterion by an asterisk “*”. For columns 4–7, these are the lags with 
the smallest value of the criterion.

All the criteria are discussed in Lütkepohl (1991, Section 4.3). The sequential modified 
likelihood ratio (LR) test is carried out as follows. Starting from the maximum lag, test the 
hypothesis that the coefficients on lag  are jointly zero using the statistics

(20.6)

where  is the number of parameters per equation under the alternative. Note that we 
employ Sims’ (1980) small sample modification which uses ( ) rather than . We 
compare the modified LR statistics to the 5% critical values starting from the maximum 
lag, and decreasing the lag one at a time until we first get a rejection. The alternative lag 
order from the first rejected test is marked with an asterisk (if no test rejects, the minimum 
lag will be marked with an asterisk). It is worth emphasizing that even though the individ-
ual tests have size 0.05, the overall size of the test will not be 5%; see the discussion in 
Lütkepohl (1991, pp. 125–126).

Residual Tests

Correlograms

Displays the pairwise cross-correlograms (sample autocorrelations) for the estimated resid-
uals in the VAR for the specified number of lags. The cross-correlograms can be displayed 
in three different formats. There are two tabular forms, one ordered by variables (Tabulate 
by Variable) and one ordered by lags (Tabulate by Lag). The Graph form displays a 
matrix of pairwise cross-correlograms. The dotted line in the graphs represent plus or 
minus two times the asymptotic standard errors of the lagged correlations (computed as 

.
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Portmanteau Autocorrelation Test 

Computes the multivariate Box-Pierce/Ljung-Box Q-statistics for residual serial correlation 
up to the specified order (see Lütkepohl, 1991, 4.4.21 & 4.4.23 for details). We report both 
the Q-statistics and the adjusted Q-statistics (with a small sample correction). Under the 
null hypothesis of no serial correlation up to lag , both statistics are approximately dis-
tributed with degrees of freedom  where  is the VAR lag order. The asymp-
totic distribution is approximate in the sense that it requires the MA coefficients to be zero 
for lags . Therefore, this approximation will be poor if the roots of the AR polyno-
mial are close to one and  is small. In fact, the degrees of freedom becomes negative for 

.

Autocorrelation LM Test 

Reports the multivariate LM test statistics for residual serial correlation up to the specified 
order. The test statistic for lag order  is computed by running an auxiliary regression of 
the residuals  on the original right-hand regressors and the lagged residual , where 
the missing first  values of  are filled with zeros. See Johansen (1995a, p. 22) for 
the formula of the LM statistic. Under the null hypothesis of no serial correlation of order 

, the LM statistic is asymptotically distributed with  degrees of freedom.

Normality Test 

Reports the multivariate extensions of the Jarque-Bera residual normality test, which com-
pares the third and fourth moments of the residuals to those from the normal distribution. 
For the multivariate test, you must choose a factorization of the  residuals that are 
orthogonal to each other (see “Impulse Responses” on page 527 for additional discussion 
of the need for orthogonalization).

Let  be a  factorization matrix such that

(20.7)

where  is the demeaned residuals. Define the third and fourth moment vectors 
 and . Then

(20.8)

under the null hypothesis of normal distribution. Since each component is independent of 
each other, we can form a statistic by summing squares of any of these third and fourth 
moments.

EViews provides you with choices for the factorization matrix :
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• Cholesky (Lütkepohl 1991, pp. 155-158):  is the inverse of the lower triangular 
Cholesky factor of the residual covariance matrix. The resulting test statistics depend 
on the ordering of the variables in the VAR.

• Inverse Square Root of Residual Correlation Matrix (Doornik and Hansen 1994): 
 where  is a diagonal matrix containing the eigenvalues of the 

residual correlation matrix on the diagonal,  is a matrix whose columns are the 
corresponding eigenvectors, and  is a diagonal matrix containing the inverse 
square root of the residual variances on the diagonal. This  is essentially the 
inverse square root of the residual correlation matrix. The test is invariant to the 
ordering and to the scale of the variables in the VAR. As suggested by Doornik and 
Hansen (1994), we perform a small sample correction to the transformed residuals 

 before computing the statistics. 

• Inverse Square Root of Residual Covariance Matrix (Urzua 1997): 
 where  is the diagonal matrix containing the eigenvalues of the 

residual covariance matrix on the diagonal and  is a matrix whose columns are 
the corresponding eigenvectors. This test has a specific alternative, which is the 
quartic exponential distribution. According to Urzua, this is the “most likely” alter-
native to the multivariate normal with finite fourth moments since it can approxi-
mate the multivariate Pearson family “as close as needed.” As recommended by 
Urzua, we make a small sample correction to the transformed residuals  before 
computing the statistics. This small sample correction differs from the one used by 
Doornik and Hansen (1994); see Urzua (1997, Section D).

• Factorization from Identified (Structural) VAR:  where ,  are 
estimated from the structural VAR model. This option is available only if you have 
estimated the factorization matrices  and  using the structural VAR (see 
page 531, below).

EViews reports test statistics for each orthogonal component (labeled RESID1, RESID2, and 
so on) and for the joint test. For individual components, the estimated skewness  and 
kurtosis are reported in the first two columns together with the p-values from the 

 distribution (in square brackets). The Jarque-Bera column reports

(20.9)

with p-values from the  distribution. Note: in contrast to the Jarque-Bera statistic 
computed in the series view, this statistic is not computed using a degrees of freedom correc-
tion.

For the joint tests, we will generally report
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(20.10)

If, however, you choose Urzua’s (1997) test,  will not only use the sum of squares of the               
“pure” third and fourth moments but will also include the sum of squares of all cross third 
and fourth moments. In this case,  is asymptotically distributed as a with 

 degrees of freedom.

White Heteroskedasticity Test

These tests are the extension of White’s (1980) test to systems of equations as discussed by 
Kelejian (1982) and Doornik (1995). The test regression is run by regressing each cross 
product of the residuals on the cross products of the regressors and testing the joint signif-
icance of the regression. The No Cross Terms option uses only the levels and squares of 
the original regressors, while the With Cross Terms option includes all non-redundant 
cross-products of the original regressors in the test equation. The test regression always 
includes a constant term as a regressor.

The first part of the output displays the joint significance of the regressors excluding the 
constant term for each test regression. You may think of each test regression as testing the 
constancy of each element in the residual covariance matrix separately. Under the null of 
no heteroskedasticity or (no misspecification), the non-constant regressors should not be 
jointly significant.

The last line of the output table shows the LM chi-square statistics for the joint significance 
of all regressors in the system of test equations (see Doornik, 1995, for details). The system 
LM statistic is distributed as a with degrees of freedom , where 

 is the number of cross-products of the residuals in the system and  
is the number of the common set of right-hand side variables in the test regression.

Notes on Comparability

Many of the diagnostic tests given above may be computed “manually” by estimating the 
VAR using a system object and selecting View/Wald Coefficient Tests... We caution you 
that the results from the system will not match those from the VAR dlogistic views for a 
various reasons:

• The system object will, in general, use the maximum possible observations for each 
equation in the system. By contrast, VAR objects force a balanced sample in case 
there are missing values.

• The estimates of the weighting matrix used in system estimation do not contain a 
degrees of freedom correction (the residual sums-of-squares are divided by  rather 

λ3 Tm3′m3 6 χ2 k( )→⁄=

λ4 T m4 3−( )′ m4 3−( ) 24 χ2 k( )→⁄=

λ λ3 λ4 χ2 2k( ).→+=

λ

λ χ
2

k k 1+( ) k 2+( ) k 7+( ) 24⁄

χ
2

mn

m k k 1+( ) 2⁄= n

T



Views and Procs of a VAR—527
than by ), while the VAR estimates do perform this adjustment. Even though 
estimated using comparable specifications and yielding identifiable coefficients, the 
test statistics from system SUR and the VARs will show small (asymptotically insig-
nificant) differences.

Impulse Responses

A shock to the i-th variable not only directly affects the i-th variable but is also transmitted 
to all of the other endogenous variables through the dynamic (lag) structure of the VAR. 
An impulse response function traces the effect of a one-time shock to one of the innova-
tions on current and future values of the endogenous variables. 

If the innovations  are contemporaneously uncorrelated, interpretation of the impulse 
response is straightforward. The i-th innovation  is simply a shock to the i-th endoge-
nous variable . Innovations, however, are usually correlated, and may be viewed as 
having a common component which cannot be associated with a specific variable. In order 
to interpret the impulses, it is common to apply a transformation  to the innovations so 
that they become uncorrelated

(20.11)

where  is a diagonal covariance matrix. As explained below, EViews provides several 
options for the choice of .

To obtain the impulse response functions, first estimate a VAR. Then select View/Impulse 
Response... from the VAR toolbar. You will see a dialog box with two tabs: Display and 
Impulse Definition.

The Display tab provides the follow-
ing options:

• Display Format: displays 
results as a table or graph. 
Keep in mind that if you 
choose the Combined Graphs 
option, the Response Standard 
Errors option will be ignored 
and the standard errors will not 
be displayed. Note also that the 
output table format is ordered 
by response variables, not by 
impulse variables.

• Display Information: you should enter the variables for which you wish to generate 
innovations (Impulses) and the variables for which you wish to observe the 
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responses (Responses). You may either enter the name of the endogenous variables 
or the numbers corresponding to the ordering of the variables. For example, if you 
specified the VAR as GDP, M1, CPI, then you may either type

 GDP CPI M1 

or

 1 3 2 

The order in which you enter these variables only affects the display of results.

You should also specify a positive integer for the number of periods to trace the 
response function. To display the accumulated responses, check the Accumulate 
Response box. For stationary VARs, the impulse responses should die out to zero 
and the accumulated responses should asymptote to some (non-zero) constant.

• Response Standard Errors: provides options for computing the response standard 
errors. Note that analytic and/or Monte Carlo standard errors are currently not avail-
able for certain Impulse options and for vector error correction (VEC) models. If you 
choose Monte Carlo standard errors, you should also specify the number of repeti-
tions to use in the appropriate edit box.

If you choose the table format, the estimated standard errors will be reported in 
parentheses below the responses. If you choose to display the results in multiple 
graphs, the graph will contain the plus/minus two standard error bands about the 
impulse responses. The standard error bands are not displayed in combined graphs.

The Impulse tab provides the following options for transforming the impulses:

• Residual—One Unit sets the impulses to one unit of the residuals. This option 
ignores the units of measurement and the correlations in the VAR residuals so that 
no transformation is performed. The responses from this option are the MA coeffi-
cients of the infinite MA order Wold representation of the VAR.

• Residual—One Std. Dev. sets the impulses to one standard deviation of the residu-
als. This option ignores the correlations in the VAR residuals.

• Cholesky uses the inverse of the Cholesky factor of the residual covariance matrix to 
orthogonalize the impulses. This option imposes an ordering of the variables in the 
VAR and attributes all of the effect of any common component to the variable that 
comes first in the VAR system. Note that responses can change dramatically if you 
change the ordering of the variables. You may specify a different VAR ordering by 
reordering the variables in the Cholesky Ordering edit box.

The (d.f. adjustment) option makes a small sample degrees of freedom correction 
when estimating the residual covariance matrix used to derive the Cholesky factor. 
The (i,j)-th element of the residual covariance matrix with degrees of freedom cor-
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rection is computed as  where  is the number of parameters 
per equation in the VAR. The (no d.f. adjustment) option estimates the (i,j)-th ele-
ment of the residual covariance matrix as . Note: previous versions of 
EViews computed the impulses using the Cholesky factor from the residual covariance 
matrix with no degrees of freedom adjustment.

• Generalized Impulses as described by Pesaran and Shin (1998) constructs an 
orthogonal set of innovations that does not depend on the VAR ordering. The gener-
alized impulse responses from an innovation to the j-th variable are derived by 
applying a variable specific Cholesky factor computed with the j-th variable at the 
top of the Cholesky ordering.

• Structural Decomposition uses the orthogonal transformation estimated from the 
structural factorization matrices. This approach is not available unless you have esti-
mated the structural factorization matrices as explained in “Structural (Identified) 
VARs” on page 531.

• User Specified allows you to specify your own impulses. Create a matrix (or vector) 
that contains the impulses and type the name of that matrix in the edit box. If the 
VAR has  endogenous variables, the impulse matrix must have  rows and 1 or  
columns, where each column is a impulse vector.

For example, say you have a  variable VAR and wish to apply simultaneously 
a positive one unit shock to the first variable and a negative one unit shock to the 
second variable. Then you will create a  impulse matrix containing the values 
1, -1, and 0. Using commands, you can enter:

 matrix(3,1) shock 

 shock.fill(by=c) 1,-1,0 

and type the name of the matrix SHOCK in the edit box.

Variance Decomposition

While impulse response functions trace the effects of a shock to one endogenous variable 
on to the other variables in the VAR, variance decomposition separates the variation in an 
endogenous variable into the component shocks to the VAR. Thus, the variance decompo-
sition provides information about the relative importance of each random innovation in 
affecting the variables in the VAR.

To obtain the variance decomposition, select View/Variance Decomposition... from the 
var object toolbar. You should provide the same information as for impulse responses 
above. Note that since non-orthogonal factorization will yield decompositions that do not 
satisfy an adding up property, your choice of factorization is limited to orthogonal factor-
izations.
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The table format displays a separate variance decomposition for each endogenous variable. 
The second column, labeled “S.E.”, contains the forecast error of the variable at the given 
forecast horizon. The source of this forecast error is the variation in the current and future 
values of the innovations to each endogenous variable in the VAR. The remaining columns 
give the percentage of the forecast variance due to each innovation, with each row adding 
up to 100.

As with the impulse responses, the variance decomposition based on the Cholesky factor 
can change dramatically if you alter the ordering of the variables in the VAR. For example, 
the first period decomposition for the first variable in the VAR ordering is completely due 
to its own innovation.

Factorization based on structural orthogonalization is available only if you have estimated 
the structural factorization matrices as explained in “Structural (Identified) VARs” on 
page 531. Note that the forecast standard errors should be identical to those from the 
Cholesky factorization if the structural VAR is just identified. For over-identified structural 
VARs, the forecast standard errors may differ in order to maintain the adding up property.

Procs of a VAR

Most of the procedures (procs) available for a VAR are common to those available for a sys-
tem object (see “System Procs” on page 507). Here we discuss only those procs that are 
unique to the VAR object.

Make System

This proc creates a system object that contains an equivalent VAR specification. If you 
want to estimate a non-standard VAR, you may use this proc as a quick way to specify a 
VAR in a system object which you can then modify to meet your needs. For example, while 
the VAR object requires each equation to have the same lag structure, you may want to 
relax this restriction. To estimate a VAR with unbalanced lag structure, use the Make Sys-
tem proc to create a VAR system with a balanced lag structure and edit the system specifi-
cation to meet the desired lag specification.

The By Variable option creates a system whose specification (and coefficient number) is 
ordered by variables. Use this option if you want to edit the specification to exclude lags of 
a specific variable from some of the equations. The By Lag option creates a system whose 
specification (and coefficient number) is ordered by lags. Use this option if you want to 
edit the specification to exclude certain lags from some of the equations.

For vector error correction (VEC) models, treating the coefficients of the cointegrating vec-
tor as additional unknown coefficients will make the resulting system unidentified. In this 
case, EViews will create a system object where the coefficients for the cointegrating vectors 
are fixed at the estimated values from the VEC. If you want to estimate the coefficients of 
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the cointegrating vector in the system, you may edit the specification, but you should make 
certain that the resulting system is identified.

You should also note that while the standard VAR can be estimated efficiently by equation-
by-equation OLS, this is generally not the case for the modified specification. You may 
wish to use one of the system-wide estimation methods (e.g. SUR) when estimating non-
standard VARs using the system object.

Estimate Structural Factorization

This procedure is used to estimate the factorization matrices for a structural (or identified) 
VAR. The full details of this procedure is given in “Structural (Identified) VARs” on 
page 531. You must first estimate the structural factorization matrices using this proc in 
order to use the structural options in impulse responses and variance decompositions.

Structural (Identified) VARs

The main purpose of structural VAR (SVAR) estimation is to obtain non-recursive orthogo-
nalization of the error terms for impulse response analysis. This alternative to the recursive 
Cholesky orthogonalization requires the user to impose enough restrictions to identify the 
orthogonal (structural) components of the error terms.

Let  be a -element vector of the endogenous variables and let  be the 
residual covariance matrix. Following Amisano and Giannini (1997), the class of SVAR 
models that we estimate can be written as

(20.12)

where  and  are vectors of length .  is the observed (or reduced form) residuals, 
while  is the unobserved structural innovations.  and  are  matrices to be 
estimated. The structural innovations  are assumed to be orthonormal, i.e. its covari-
ance matrix is an identity matrix . The assumption of orthonormal innova-
tions  imposes the following identifying restrictions on  and :

. (20.13)

Noting that the expression on either side of (20.13) are symmetric, this imposes 
 restrictions on the  unknown elements in  and . Therefore, in order 

to identify  and , you need to supply at least  
additional restrictions.

Specifying the Identifying Restrictions

As explained above, in order to estimate the orthogonal factorization matrices  and , 
you need to provide additional identifying restrictions. We distinguish two types of identi-
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fying restrictions: short-run and long-run. For either type, the identifying restrictions can be 
specified either in text form or by pattern matrices.

Short-run Restrictions by Pattern Matrices

For many problems, the identifying restrictions on the  and matrices are simple zero 
exclusion restrictions. In this case, you can specify the restrictions by creating a named 
“pattern” matrix for  and . Any elements of the matrix that you want to be estimated 
should be assigned a missing value “NA”. All non-missing values in the pattern matrix will 
be held fixed at the specified values.

For example, suppose you want to restrict  to be a lower triangular matrix with ones on 
the main diagonal and  to be a diagonal matrix. Then the pattern matrices (for a  
variable VAR) would be

. (20.14)

You can create these matrices interactively. Simply use Objects/NewObjects... to create 
two new  matrices, A and B, and then use the spreadsheet view to edit the values. 
Alternatively, you can issue the following commands:

matrix(3,3) pata 

’ fill matrix in row major order 

pata.fill(by=r) 1,0,0, na,1,0, na,na,1 

matrix(3,3) patb = 0 

patb(1,1) = na 

patb(2,2) = na 

patb(3,3) = na 

Once you have created the pattern matrices, select Procs/Estimate Structural Factoriza-
tion... from the VAR window menu. In the SVAR Options dialog, click the Matrix button 
and the Short-Run Pattern button and type in the name of the pattern matrices in the rel-
evant edit boxes.

Short-run Restrictions in Text Form

For more general restrictions, you can specify the identifying restrictions in text form. In 
text form, you will write out the relation  as a set of equations, identifying 
each element of the  and  vectors with special symbols. Elements of the  and  
matrices to be estimated must be specified as elements of a coefficient vector.
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To take an example, suppose again that you have a  variable VAR where you want 
to restrict  to be a lower triangular matrix with ones on the main diagonal and  to be 
a diagonal matrix. Under these restrictions, the relation  can be written as

(20.15)

To specify these restrictions in text form, select Procs/Estimate Structural Factorization... 
from the VAR window and click the Text button. In the edit window, you should type the 
following:

@e1 = c(1)*@u1 

@e2 = -c(2)*@e1 + c(3)*@u2 

@e3 = -c(4)*@e1 - c(5)*@e2 + c(6)*@u3 

The special key symbols “@e1”, “@e2”, “@e3,” represent the first, second, and third ele-
ments of the  vector, while “@u1,” “@u2”, “@u3” represent the first, second, and third 
elements of the  vector. In this example, all unknown elements of the  and  matri-
ces are represented by elements of the C coefficient vector.

Long-run Restrictions

The identifying restrictions embodied in the relation  are commonly referred to 
as short-run restrictions. Blanchard and Quah (1989) proposed an alternative identification 
method based on restrictions on the long-run properties of the impulse responses. The 
(accumulated) long-run response  to structural innovations takes the form

(20.16)

where  is the estimated accumulated responses to the 
reduced form (observed) shocks. Long-run identifying restrictions are specified in terms of 
the elements of this  matrix, typically in the form of zero restrictions. The restriction 

 means that the (accumulated) response of the i-th variable to the j-th structural 
shock is zero in the long-run.

It is important to note that the expression for the long-run response (20.16) involves the 
inverse of . Since EViews currently requires all restrictions to be linear in the elements of 

 and , if you specify a long-run restriction, the  matrix must be the identity matrix.

To specify long-run restrictions by a pattern matrix, create a named matrix that contains 
the pattern for the long-run response matrix . Unrestricted elements in the  matrix 
should be assigned a missing value “NA”. For example, suppose you have a  vari-
able VAR where you want to restrict the long-run response of the second endogenous vari-
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able to the first structural shock to be zero . Then the long-run response matrix 
will have the following pattern:

(20.17)

You can create this matrix with the following commands:

matrix(2,2) patc = na 

patc(2,1) = 0 

Once you have created the pattern matrix, select Procs/Estimate Structural Factoriza-
tion... from the VAR window menu. In the SVAR Options dialog, click the Matrix button 
and the Long-Run Pattern button and type in the name of the pattern matrix in the rele-
vant edit box.

To specify the same long-run restriction in text form, select Procs/Estimate Structural Fac-
torization... from the VAR window and click the Text button. In the edit window, you 
would type the following

@lr2(@u1)=0 ’ zero LR response of 2nd variable to 1st shock 

where everything on the line after the apostrophe is a comment. This restriction begins 
with the special keyword “@lr#”, with the number representing the response variable to 
restrict. Inside the parentheses, you must specify the impulse keyword @u and the innova-
tion number, followed by an equal sign and the value of the response (typically 0). We cau-
tion you that while you can list multiple long-run restrictions, you cannot mix short-run 
and long-run restrictions.

Note that it is possible to specify long-run restrictions as short-run restrictions (by obtain-
ing the infinite MA order representation). While the estimated  and  matrices should 
be the same, the impulse response standard errors from the short-run representation would 
be incorrect (since it does not take into account the uncertainty in the estimated infinite 
MA order coefficients).

Some Important Notes

Currently we have the following limitations for the specification of identifying restrictions:

• The  and  matrices must be square and non-singular. In text form, there must 
be exactly as many equations as there are endogenous variables in the VAR. For 
short-run restrictions in pattern form, you must provide the pattern matrices for both 

 and  matrices.
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• The restrictions must be linear in the elements of  and . Moreover, the restric-
tions on  and  must be independent (no restrictions across elements of  and 

).

• You cannot impose both short-run and long-run restrictions.

• Structural decompositions are currently not available for VEC models.

• The identifying restriction assumes that the structural innovations  have unit vari-
ances. Therefore, you will almost always want to estimate the diagonal elements of 
the  matrix so that you obtain estimates of the standard deviations of the struc-
tural shocks. 

• It is common in the literature to assume that the structural innovations have a diag-
onal covariance matrix rather than an identity matrix. To compare your results to 
those from these studies, you will have to divide each column of the  matrix with 
the diagonal element in that column (so that the resulting  matrix has ones on the 
main diagonal). To illustrate this transformation, consider a simple  variable 
model with :

(20.18)

where  and  are independent structural shocks with unit variances as 
assumed in the EViews specification. To rewrite this specification with a  matrix 
containing ones on the main diagonal, define a new set of structural shocks by the 
transformations  and . Then the structural relation 
can be rewritten as

(20.19)

where now

(20.20)

Note that the transformation involves only rescaling elements of the  matrix and 
not on the  matrix. For the case where  is a diagonal matrix, the elements in the 
main diagonal are simply the estimated standard deviations of the structural shocks.

Identification Conditions

As stated above, the assumption of orthonormal structural innovations imposes 
 restrictions on the  unknown elements in  and , where  is the 
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number of endogenous variables in the VAR. In order to identify  and , you need to 
provide at least  additional identifying restrictions. 
This is a necessary order condition for identification and is checked by counting the num-
ber of restrictions provided.

As discussed in Amisano and Giannini (1997), a sufficient condition for local identification 
can be checked by the invertibility of the “augmented” information matrix (see Amisano 
and Giannini, 1997). This local identification condition is evaluated numerically at the 
starting values. If EViews returns a singularity error message for different starting values, 
you should make certain that your restrictions identify the  and  matrices.

We also require the  and  matrices to be square and non-singular. The non-singularity 
condition is checked numerically at the starting values. If the  and  matrix is non-sin-
gular at the starting values, an error message will ask you to provide a different set of start-
ing values.

Sign Indeterminacy

For some restrictions, the signs of the  and  matrices are not identified; see Christiano, 
Eichenbaum, and Evans (1999) for a discussion of this issue. When the sign is indetermi-
nate, we choose a normalization so that the diagonal elements of the factorization matrix 

 are all positive. This normalization ensures that all structural impulses have posi-
tive signs (as does the Cholesky factorization). The default is to always apply this normal-
ization rules whenever applicable. If you do not want to switch the signs, deselect the 
Normalize Sign option from the Optimization Control tab of the SVAR Options dialog.

Estimation of A and B Matrices

Once you provide the identifying restrictions in any of the forms described above, you are 
ready to estimate the  and  matrices. Simply click the OK button in the SVAR Options 
dialog. You must first estimate these matrices in order to use the structural option in 
impulse responses and variance decompositions.

 and  are estimated by maximum likelihood, assuming the innovations are multivari-
ate normal. We evaluate the likelihood in terms of unconstrained parameters by substitut-
ing out the constraints. The log likelihood is maximized by the method of scoring (with a 
Marquardt-type diagonal correction—See “Marquardt” on page 665), where the gradient 
and expected information matrix are evaluated analytically. See Amisano and Giannini 
(1997) for the analytic expression of these derivatives.

Optimization Control

Options for controlling the optimization process are provided in the Optimization Control 
tab of the SVAR Options dialog. You have the option to specify the starting values, maxi-
mum number of iterations, and the convergence criterion.
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The starting values are those for the unconstrained parameters after substituting out the 
constraints. Fixed sets all free parameters to the value specified in the edit box. User Spec-
ified uses the values in the coefficient vector as specified in text form as starting values. 
For restrictions specified in pattern form, user specified starting values are taken from the 
first  elements of the default C coefficient vector, where  is the number of free param-
eters. Draw from... options randomly draw the starting values for the free parameters from 
the specified distributions.

Estimation Output

Once convergence is achieved, EViews displays the estimation output in the VAR window. 
The point estimates, standard errors, and z-statistics of the estimated free parameters are 
reported together with the maximized value of the log likelihood. The estimated standard 
errors are based on the inverse of the estimated information matrix (negative expected 
value of the Hessian) evaluated at the final estimates.

For overidentified models, we also report the LR test for over-identification. The LR test 
statistic is computed as

(20.21)

where . Under the null hypothesis that the restrictions are valid, the 
LR statistic is asymptotically distributed  where  is the number of identifying 
restrictions.

If you switch the view of the VAR window, you can come back to the previous results 
(without reestimating) by selecting View/SVAR Output from the VAR window. In addi-
tion, some of the SVAR estimation results can be retrieved as data members of the VAR; see 
“Var Data Members” on page 50 of the Command and Programming Reference for a list of 
available VAR data members.

Cointegration Test 

The finding that many macro time series may contain a unit root has spurred the develop-
ment of the theory of non-stationary time series analysis. Engle and Granger (1987) 
pointed out that a linear combination of two or more non-stationary series may be station-
ary. If such a stationary linear combination exists, the non-stationary time series are said to 
be cointegrated. The stationary linear combination is called the cointegrating equation and 
may be interpreted as a long-run equilibrium relationship among the variables.

The purpose of the cointegration test is to determine whether a group of non-stationary 
series are cointegrated or not. As explained below, the presence of a cointegrating relation 
forms the basis of the VEC specification. EViews implements VAR-based cointegration tests 
using the methodology developed in Johansen (1991, 1995a). Consider a VAR of order 
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(20.22)

where  is a -vector of non-stationary I(1) variables,  is a -vector of deterministic 
variables, and  is a vector of innovations. We can rewrite this VAR as

(20.23)

where

(20.24)

Granger’s representation theorem asserts that if the coefficient matrix  has reduced rank 
, then there exist  matrices  and  each with rank  such that 

and  is I(0).  is the number of cointegrating relations (the cointegrating 
rank) and each column of  is the cointegrating vector. As explained below, the elements 
of  are known as the adjustment parameters in the VEC model. Johansen’s method is to 
estimate the  matrix from an unrestricted VAR and to test whether we can reject the 
restrictions implied by the reduced rank of .

How to Perform a Cointegration Test

To carry out the Johansen cointegration test, select View/Cointegration Test... from the 
group or VAR window toolbar. Note that since this is a test for cointegration, this test is 
only valid when you are working with series that are known to be nonstationary. You may 
wish first to apply unit root tests to each series in the VAR. See “Unit Root Test” on 
page 170 for details on carrying out unit root tests in EViews. The Cointegration Test 
Specification page prompts you for information about the test.

Deterministic Trend Specifica-
tion

Your series may have nonzero 
means and deterministic trends 
as well as stochastic trends. Sim-
ilarly, the cointegrating equa-
tions may have intercepts and 
deterministic trends. The asymp-
totic distribution of the LR test 
statistic for cointegration does 
not have the usual distribu-
tion and depends on the assump-
tions made with respect to 
deterministic trends. Therefore, 
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in order to carry out the test, you need to make an assumption regarding the trend under-
lying your data.

For each row case in the dialog, the COINTEQ column lists the deterministic variables that 
appear inside the cointegrating relations (error correction term), while the OUTSIDE col-
umn lists the deterministic variables that appear in the VEC equation outside the cointe-
grating relations. Cases 2 and 4 do not have the same set of deterministic terms in the two 
columns. For these two cases, some of the deterministic term is restricted to belong only in 
the cointegrating relation. For cases 3 and 5, the deterministic terms are common in the 
two columns and the decomposition of the deterministic effects inside and outside the 
cointegrating space is not uniquely identified; see the technical discussion below. 

In practice, cases 1 and 5 are rarely used. You should use case 1 only if you know that all 
series have zero mean. Case 5 may provide a good fit in-sample but will produce implausi-
ble forecasts out-of-sample. As a rough guide, use case 2 if none of the series appear to 
have a trend. For trending series, use case 3 if you believe all trends are stochastic; if you 
believe some of the series are trend stationary, use case 4.

If you are not certain which trend assumption to use, you may choose the Summary of all 
5 trend assumptions option (case 6) to help you determine the choice of the trend 
assumption. This option indicates the number of cointegrating relations under each of the 
5 trend assumptions and you will be able to see how sensitive the results of the test are to 
the assumption of trend.

Technical Discussion

EViews considers the following five deterministic trend cases considered by Johansen 
(1995a, pp. 80–84):

1. The level data  have no deterministic trends and the cointegrating equations do 
not have intercepts:

2. The level data  have no deterministic trends and the cointegrating equations have 
intercepts: 

3. The level data  have linear trends but the cointegrating equations have only inter-
cepts: 

4. The level data  and the cointegrating equations have linear trends: 
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5. The level data  have quadratic trends and the cointegrating equations have linear 
trends: 

The terms associated with  are the deterministic terms “outside” the cointegrating rela-
tions. When a deterministic term appears both inside and outside the cointegrating rela-
tion, the decomposition is not uniquely identified. Johansen (1995a) identifies the part 
that belongs inside the error correction term by orthogonally projecting the exogenous 
terms onto the  space so that  is the null space of  such that . EViews 
uses a different identification method so that the error correction term has a sample mean 
of zero. More specifically, we identify the part inside the error correction term by regress-
ing the cointegrating relations  on a constant (and linear trend). 

Exogenous Variables

The test dialog allows you to specify additional exogenous variables  to include in the 
test VAR. The constant and linear trend should not be listed in the edit box since they are 
specified using the five Trend Specification options. If you choose to include exogenous 
variables, be aware that the critical values reported by EViews do not account for these 
variables.

The most commonly added deterministic terms are seasonal dummy variables. Note, how-
ever, that if you include standard 0–1 seasonal dummy variables in the test VAR, this will 
affect both the mean and the trend of the level series . To handle this problem, Johansen 
(1995a, page 84) suggests using centered (orthogonalized) seasonal dummy variables, 
which shift the mean without contributing to the trend. Centered seasonal dummy vari-
ables for quarterly and monthly series can be generated by the commands

series d_q = @seas(q) - 1/4

series d_m = @seas(m) - 1/12

for quarter  and month , respectively.

Lag Intervals

You should specify the lags of the test VAR as pairs of intervals. Note that the lags are spec-
ified as lags of the first differenced terms used in the auxiliary regression, not in terms of 
the levels. For example, if you type “1 2” in the edit field, the test VAR regresses  on 

, , and any other exogenous variables that you have specified. Note that in 
terms of the level series  the largest lag is 3. To run a cointegration test with one lag in 
the level series, type “0 0” in the edit field.
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Interpreting Results of a Cointegration Test

As an example, the first part of the output for a four-variable system used in Johansen and 
Juselius (1990) for the Danish data is shown below.

As indicated in the header of the output, the test assumes no trend in the series with a 
restricted intercept in the cointegration relation (second trend specification in the dialog), 
includes three orthogonalized seasonal dummy variables D1–D3, and uses one lag in dif-
ferences (two lags in levels) which is specified as “1 1” in the edit field.

Number of Cointegrating Relations

The first part of the table reports results for testing the number of cointegrating relations. 
Two types of test statistics are reported. The first block reports the so-called trace statistics 
and the second block (not shown above) reports the maximum eigenvalue statistics. For 
each block, the first column is the number of cointegrating relations under the null hypoth-
esis, the second column is the ordered eigenvalues of the  matrix in (20.24), the third 
column is the test statistic, and the last two columns are the 5% and 1% critical values. 
The (nonstandard) critical values are taken from Osterwald-Lenum (1992), which differ 
slightly from those reported in Johansen and Juselius (1990).

To determine the number of cointegrating relations  conditional on the assumptions 
made about the trend, we can proceed sequentially from  to  until we 
fail to reject. The result of this sequential testing procedure is reported at the bottom of 
each table block.

The trace statistic reported in the first block tests the null hypothesis of  cointegrating 
relations against the alternative of  cointegrating relations, where  is the number of 
endogenous variables, for . The alternative of  cointegrating rela-

Date: 10/17/00   Time: 09:32 
Sample(adjusted): 1974:3 1987:3 
Included observations: 53 after adjusting endpoints 
Trend assumption: No deterministic trend (restricted constant) 
Series: LRM LRY IBO IDE  
Lags interval (in first differences): 1 to 1 

     
Unrestricted Cointegration Rank Test 
     

Hypothesized  Trace 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 

     

None  0.469677  52.71087  53.12  60.16 
At most 1  0.174241  19.09464  34.91  41.07 
At most 2  0.118083  8.947661  19.96  24.60 
At most 3  0.042249  2.287849   9.24  12.97 

     

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Trace test indicates no cointegration at both 5% and 1% levels 
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r
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tions corresponds to the case where none of the series has a unit root and a stationary VAR 
may be specified in terms of the levels of all of the series. The trace statistic for the null 
hypothesis of  cointegrating relations is computed as

(20.25)

where  is the i-th largest eigenvalue of the  matrix in (20.24) which is reported in the 
second column of the output table.

The second block of the output reports the maximum eigenvalue statistic which tests the 
null hypothesis of  cointegrating relations against the alternative of  cointegrating 
relations. This test statistic is computed as

(20.26)

for .

There are a few other details to keep in mind:

• Critical values are available for up to  series. Also note that the critical val-
ues depend on the trend assumptions and may not be appropriate for models that 
contain other deterministic regressors. For example, a shift dummy variable in the 
test VAR implies a broken linear trend in the level series .

• The trace statistic and the maximum eigenvalue statistic may yield conflicting 
results. For such cases, we recommend that you examine the estimated cointegrating 
vector and base your choice on the interpretability of the cointegrating relations; see 
Johansen and Juselius (1990) for an example.

• In some cases, the individual unit root tests will show that some of the series are 
integrated, but the cointegration test will indicate that the  matrix has full rank 
( ). This apparent contradiction may be the result of low power of the cointe-
gration tests, stemming perhaps from a small sample size or serving as an indication 
of specification error.

Cointegrating relations

The second part of the output provides estimates of the cointegrating relations  and the 
adjustment parameters . As is well known, the cointegrating vector  is not identified 
unless we impose some arbitrary normalization. The first block reports estimates of  and 

 based on the normalization , where  is defined in Johansen (1995a). 
Note that the transpose of  is reported under Unrestricted Cointegrating Coefficients so 
that the first row is the first cointegrating vector, the second row is the second cointegrating 
vector, and so on.
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The remaining blocks report estimates from a different normalization for each possible 
number of cointegrating relations . This alternative normalization 
expresses the first  variables as functions of the remaining  variables in the system. 
Asymptotic standard errors are reported in parentheses for the parameters that are identi-
fied.

Imposing Restrictions

Since the cointegrating vector  is not identified, you may wish to impose your own iden-
tifying restrictions. Restrictions can be imposed on the cointegrating vector (elements of 
the  matrix) and/or on the adjustment coefficients (elements of the  matrix). To 
impose restrictions in a cointegration test, select View/Cointegration Test... and specify 
the options in the Trend Specification tab as explained above. Then bring up the VEC 
Restrictions tab and check the Impose Restrictions box. You will enter your restrictions in 
the edit box that appears.

Restrictions on the Cointegrat-
ing Vector

To impose restrictions on the 
cointegrating vector , you must 
refer to the (i,j)-th element of the 
transpose of the  matrix by 
B(i,j). The i-th cointegrating 
relation has the representation

B(i,1)*y1 + 

B(i,2)*y2 + ... + 

B(i,k)*yk 

where y1, y2, ... are the (lagged) 
endogenous variable. Then, if 
you want to impose the restric-
tion that the coefficient on y1 for the second cointegrating equation is 1, you would type 
the following in the edit box:

B(2,1) = 1 

You can impose multiple restrictions by separating each restriction with a comma on the 
same line or typing each restriction on a separate line. For example, if you want to impose 
the restriction that the coefficients on y1 for the first and second cointegrating equations 
are 1, you would type

B(1,1) = 1 

B(2,1) = 1 

r 0 1 … k 1−, , ,=
r k r−
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Currently all restrictions must be linear (or more precisely affine) in the elements of the  
matrix. So for example

B(1,1) * B(2,1) = 1 

will return a syntax error.

Restrictions on the Adjustment Coefficients

To impose restrictions on the adjustment coefficients, you must refer to the (i,j)-th ele-
ments of the  matrix by A(i,j). The error correction terms in the i-th VEC equation 
will have the representation

A(i,1)*CointEq1 + A(i,2)*CointEq2 + ... + A(i,r)*CointEqr 

Restrictions on the adjustment coefficients are currently limited to linear homogeneous 
restrictions so that you must be able to write your restriction as , where  
is a known  matrix. This condition implies, for example, that the restriction

A(1,1) = A(2,1) 

is valid but

A(1,1) = 1 

will return a restriction syntax error.

One restriction of particular interest is whether the i-th row of the matrix is all zero. If 
this is the case, then the i-th endogenous variable is said to be weakly exogenous with 
respect to the  parameters. See Johansen (1992b) for the definition and implications of 
weak exogeneity. For example, if we assume that there is only one cointegrating relation in 
the VEC, to test whether the second endogenous variable is weakly exogenous with respect 
to  you would enter

A(2,1) = 0 

To impose multiple restrictions, you may either separate each restriction with a comma on 
the same line or type each restriction on a separate line. For example, to test whether the 
second endogenous variable is weakly exogenous with respect to  in a VEC with two 
cointegrating relations, you can type

A(2,1) = 0 

A(2,2) = 0 

You may also impose restrictions on both  and . However, the restrictions on  and  
must be independent. So for example,

A(1,1) = 0 

B(1,1) = 1 
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is a valid restriction but

A(1,1) = B(1,1) 

will return a restriction syntax error.

Identifying Restrictions and Binding Restrictions

EViews will check to see whether the restrictions you provided identify all cointegrating 
vectors for each possible rank. The identification condition is checked numerically by the 
rank of the appropriate Jacobian matrix; see Boswijk (1995) for the technical details. 
Asymptotic standard errors for the estimated cointegrating parameters will be reported 
only if the restrictions identify the cointegrating vectors.

If the restrictions are binding, EViews will report the LR statistic to test the binding restric-
tions. The LR statistic is reported if the degrees of freedom of the asymptotic distribu-
tion is positive. Note that the restrictions can be binding even if they are not identifying, 
(e.g. when you impose restrictions on the adjustment coefficients but not on the cointe-
grating vector).

Options for Restricted Estimation

Estimation of the restricted cointegrating vectors  and adjustment coefficients  gener-
ally involves an iterative process. The VEC Restrictions tab provides iteration control for 
the maximum number of iterations and the convergence criterion. EViews estimates the 
restricted  and  using the switching algorithm as described in Boswijk (1995). Each 
step of the algorithm is guaranteed to increase the likelihood and the algorithm should 
eventually converge (though convergence may be to a local rather than a global optimum). 
You may need to increase the number of iterations in case you are having difficulty achiev-
ing convergence at the default settings.

Results of Restricted Cointegration Test

If you impose restrictions in the Cointegration Test view, the output will first display the 
test results without the restrictions as described above. The second part of the output 
begins by displaying the results of the LR test for binding restrictions.

χ2

β α

β α
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If the restrictions are not binding for a particular rank, the corresponding rows will be 
filled with NAs. If the restrictions are binding but the algorithm did not converge, the cor-
responding row will be filled with an asterisk “*”. (You should redo the test by increasing 
the number of iterations or relaxing the convergence criterion.) For the example output dis-
played above, we see that the single restriction  is binding only under the 
assumption that there is one cointegrating relation. Conditional on there being only one 
cointegrating relation, the LR test does not reject the imposed restriction at conventional 
levels.

The output also reports the estimated  and  imposing the restrictions. Since the cointe-
gration test does not specify the number of cointegrating relations, results for all ranks that 
are consistent with the specified restrictions will be displayed. For example, suppose the 
restriction is

B(2,1) = 1 

Since this is a restriction on the second cointegrating vector, EViews will display results for 
ranks  (if the VAR has only  variables, EViews will return an 
error message pointing out that the “implied rank from restrictions must be of reduced 
order”).

For each rank, the output reports whether convergence was achieved and the number of 
iterations. The output also reports whether the restrictions identify all cointegrating param-
eters under the assumed rank. If the cointegrating vectors are identified, asymptotic stan-
dard errors will be reported together with the parameters .

Restrictions:  
     

a(3,1)=0 
     

     
Tests of cointegration restrictions: 

     

Hypothesized Restricted LR Degrees of  
No. of CE(s) Log-likehood Statistic Freedom Probability 

     

1  668.6698  0.891088 1  0.345183 
2  674.2964     NA         NA         NA     
3  677.4677     NA         NA         NA     
     

NA indicates restriction not binding. 
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Vector Error Correction (VEC) Models

A vector error correction (VEC) model is a restricted VAR designed for use with nonstation-
ary series that are known to be cointegrated. The VEC has cointegration relations built into 
the specification so that it restricts the long-run behavior of the endogenous variables to 
converge to their cointegrating relationships while allowing for short-run adjustment 
dynamics. The cointegration term is known as the error correction term since the deviation 
from long-run equilibrium is corrected gradually through a series of partial short-run 
adjustments.

To take the simplest possible example, consider a two variable system with one cointegrat-
ing equation and no lagged difference terms. The cointegrating equation is

(20.27)

and the VEC model is

(20.28)

In this simple model, the only right-hand side variable is the error correction term. In long 
run equilibrium, this term is zero. However, if  and  deviate from the long run equi-
librium, the error correction term will be nonzero and each variable adjusts to partially 
restore the equilibrium relation. The coefficient  measures the speed of adjustment of 
the i-th endogenous variable towards the equilibrium.

How to Estimate a VEC

As the VEC specification only applies to cointegrated series, you should first run the 
Johansen cointegration test as described above and determine the number of cointegrating 
relations. You will need to provide this information as part of the VEC specification.

To set up a VEC, click the Estimate button in the VAR toolbar and choose the Vector Error 
Correction specification from the VAR/VEC Specification tab. In the VAR/VEC Specifica-
tion tab you should provide the same information as for an unrestricted VAR, except that

• The constant or linear trend term should not be included in the Exogenous Series 
edit box. The constant and trend specification for VECs should be specified in the 
Cointegration tab (see below).

• The lag interval specification refers to lags of the first difference terms in the VEC. 
For example, the lag specification “1 1” will include lagged first difference terms on 
the right-hand side of the VEC. Rewritten in levels, this VEC is a restricted VAR with 
two lags. To estimate a VEC with no lagged first difference terms, specify the lag as 
“0 0”.

y2 t, βy1 t,=
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• The constant and trend specification for VECs should be specified in the Cointegra-
tion tab. You must choose from one of the five trend specifications as explained in 
“Deterministic Trend Specification” on page 538. You must also specify the number 
of cointegrating relations in the appropriate edit field. This number should be a pos-
itive integer less than the number of endogenous variables in the VEC.

• If you want to impose restrictions on the cointegrating relations and/or the adjust-
ment coefficients, use the Restrictions tab. “Restrictions on the Cointegrating Vec-
tor” on page 543 describes this restriction in greater detail. Note that this tab is 
grayed out unless you have clicked the Vector Error Correction specification in the 
VAR/VEC Specification tab.

Once you have filled the dialog, simply click OK to estimate the VEC. Estimation of a VEC 
model is carried out in two steps. In the first step, we estimate the cointegrating relations 
from the Johansen procedure as used in the cointegration test. We then construct the error 
correction terms from the estimated cointegrating relations and estimate a VAR in first dif-
ferences including the error correction terms as regressors.

VEC Estimation Output

The VEC estimation output consists of two parts. The first part reports the results from the 
first step Johansen procedure. If you did not impose restrictions, EViews will use a default 
normalization that identifies all cointegrating relations. This default normalization 
expresses the first  variables in the VEC as functions of the remaining  variables, 
where  is the number of cointegrating relations and  is the number of endogenous vari-
ables. Asymptotic standard errors (corrected for degrees of freedom) are reported for 
parameters that are identified under the restrictions. If you provided your own restrictions, 
standard errors will not be reported unless the restrictions identify all cointegrating vec-
tors.

The second part of the output reports results from the second step VAR in first differences, 
including the error correction terms estimated from the first step. The error correction 
terms are denoted CointEq1, CointEq2, and so on in the output. This part of the output 
has the same format as the output from unrestricted VARs as explained in “VAR Estimation 
Output” on page 521, with one difference. At the bottom of the VEC output table, you will 
see two log likelihood values reported for the system. The first value, labeled Log Likeli-
hood (d.f. adjusted) is computed using the determinant of the residual covariance matrix 
(reported as Determinant Residual Covariance), using small sample degrees of freedom 
correction as in (20.3). This is the log likelihood value reported for unrestricted VARs. The 
Log Likelihood value is computed using the residual covariance matrix without correcting 
for degrees of freedom. This log likelihood value is comparable to the one reported in the 
cointegration test output.

r k r−
r k
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Views and Procs of a VEC

Views and procs available for VECs are mostly the same as those available for VARs as 
explained above. Here we only mention those that are specific to VECs.

Cointegrating Relations

View/Cointegration Graph displays a graph of the estimated cointegrating relations as 
used in the VEC. To store these estimated cointegrating relations as named series in the 
workfile, use Procs/Make Cointegration Group. This proc will create and display an unti-
tled group object containing the estimated cointegrating relations as named series. These 
series are named COINTEQ01, COINTEQ02 and so on.

Forecasting

Currently forecasts from a VAR or VEC are not available from the VAR object. Forecasts can 
be obtained by solving a model created from the estimated VAR/VEC. Click on Procs/
Make Model from the VAR window toolbar to create a model object from the estimated 
VAR/VEC. You may then make any changes to the model specification, including modify-
ing the ASSIGN statement before solving the model to obtain the forecasts. See Chapter 23, 
“Models”, on page 601, for further discussion on how to forecast from model objects in 
EViews.

Data Members

Various results from the estimated VAR/VEC can be retrieved through the command line 
data members. “Var Data Members” on page 50 of the Command and Programming Refer-
ence provides a complete list of data members that are available for a VAR object. Here we 
focus on retrieving the estimated coefficients of a VAR/VEC.

Obtaining Coefficients of a VAR

Coefficients of (unrestricted) VARs can be accessed by referring to elements of a two 
dimensional array C. The first dimension of C refers to the equation number of the VAR, 
while the second dimension refers to the variable number in each equation. For example, 
C(2,3) is the coefficient of the third regressor in the second equation of the VAR. The 
C(2,3) coefficient of a VAR named VAR01 can then be accessed by the command

var01.c(2,3) 

To examine the correspondence between each element of C and the estimated coefficients, 
select View/Representations from the VAR toolbar.

Obtaining Coefficients of a VEC

For VEC models, the estimated coefficients are stored in three different two dimensional 
arrays: A, B, and C. A contains the adjustment parameters , B contains the cointegrating α
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vectors  and C holds the short-run parameters (the coefficients on the lagged first differ-
ence terms). 

• The first index of A is the equation number of the VEC, while the second index is the 
number of the cointegrating equation. For example, A(2,1) is the adjustment coeffi-
cient of the first cointegrating equation in the second equation of the VEC.

• The first index of B is the number of the cointegrating equation, while the second 
index is the variable number in the cointegrating equation. For example, B(2,1) is 
the coefficient of the first variable in the second cointegrating equation. Note that 
this indexing scheme corresponds to the transpose of .

• The first index of C is the equation number of the VEC, while the second index is the 
variable number of the first differenced regressor of the VEC. For example, C(2, 1) is 
the coefficient of the first differenced regressor in the second equation of the VEC.

You can access each element of these coefficients by referring to the name of the VEC fol-
lowed by a dot and coefficient element:

var01.a(2,1) 

var01.b(2,1) 

var01.c(2,1) 

To see the correspondence between each element of A, B, and C and the estimated coeffi-
cients, select View/Representations from the VAR toolbar.

A Note on EViews Backward Compatibility 

The following changes made in Version 4 may yield VAR results that do not match those 
reported from previous versions of EViews:

• The estimated residual covariance matrix is now computed using the finite sample 
adjustment so the sum-of-squares is divided by  where  is the number of 
estimated coefficients in each VAR equation. Previous versions of EViews divided 
the sum-of-squares by . 

• The standard errors for the cointegrating vector are now computed using the more 
general formula in Boswijk (1995), which also covers the restricted case. 
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Chapter 21.  Pooled Time Series, Cross-Section Data

Data often contain information on cross-sectional units observed over time. In many cases, 
a relatively small number of cross-sectional units are observed over a number of periods. 
For example, you may have time series data on GDP for a number of European nations. Or 
perhaps you have state level data on unemployment observed over time. We term such 
data pooled time series, cross-section data.

EViews provides a number of specialized tools to help you work with pooled data. EViews 
will help you manage your data, perform operations in either the time series or the cross-
section dimension, and apply estimation methods that account for the pooled structure of 
your data.

The EViews object that manages time series/cross-section data is called a pool. The 
remainder of this chapter will describe how to set up your data to work with pools, and 
how to define and work with pool objects.

Creating a Workfile for Pooled Data

Your first step will be to create a workfile to hold your pooled data. There is nothing spe-
cial about the creation of this workfile. Simply select File/New/Workfile… and enter the 
frequency and dates for your workfile.

The range of your workfile should represent the earliest and latest dates that you wish to 
consider for any of the cross-section units. For example, if you want to work with data for 
Japan from 1950 to 1993, and data for the United States from 1956 to 1997, you should cre-
ate a workfile ranging from 1950 to 1997.

The Pool Object

At the heart of a pool object is a list of names that you will use to refer to cross-section 
members. For reasons that will become apparent, these names should be relatively short. 
For example, in a cross-country study, you might use “USA” to refer to the United States, 
“CAN” to refer to Canada, “KOR” to identify Korea, “JPN” for Japan, and “UK” for the 
United Kingdom.

Defining the cross-section identifiers in a pool tells EViews about the structure of your 
data. In the example above, EViews will understand that when using this pool, you wish to 
work with separate time series data for each of the countries.

It is important to note that the pool object does not itself contain series or data. A pool 
object is simply a description of the underlying structure of your data. Consequently, delet-
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ing the pool will not delete the series referenced by the pool, and modifying the series ref-
erenced by the pool will modify the data used by the pool.

Creating a Pool Object

To create a pool object, select Objects/New Object/Pool… and enter the identifiers in the 
edit window.

There are no special restrictions on the 
labels that you can use for cross-section 
identifiers, though you must be able to 
form legal EViews series names contain-
ing these identifiers. Here we have 
prepended the “_” character to each of 
the identifiers; this is not necessary, but 
we find that it makes it easier to spot the 
identifier when it is used as part of a 
series name.

Viewing or Editing a Pool Definition

To view the cross-section identifiers in your pool, push the Define button on the toolbar, or 
select View/Cross-Section Identifiers. If desired, you can edit the list of identifiers.

Copying a Pool Object 

Typically, you will work with more than one pool object. Multiple pools are used to define 
various subsamples of cross-section identifiers, or to work with different pooled estimation 
specifications.

To copy a pool object, open the original pool, and select Objects/Copy Object… Alterna-
tively, you can highlight the name of the pool in the workfile window, select Objects/Copy 
Selected… and enter the new name.

Working with Pools and Series

Even though you will be working with pooled data, all of your data will be held in ordinary 
EViews series. These series can be used in the usual ways: among other things, they can be 
tabulated, graphed, used to generate new series, or used in estimation. You can also use 
the pool object to work with the individual series.

Naming Your Series

The key to using series with pools is to name your series using a combination of a base 
name and the cross-section identifier. The cross-section identifier may be embedded at an 
arbitrary location in the series name, so long as this is done consistently across identifiers.
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For example, suppose that you have a pool object that contains the identifiers _JPN, _USA, 
_UK, and that you have time series measurements on GDP for each of the cross-section 
units. We will use “GDP” as the base name for our series.

You can choose to place the identifier at the end of the base name, in which case, you 
should name your series GDP_JPN, GDP_USA, and GDP_UK. Alternatively, you can elect 
to put the section identifiers, JPN_, USA_, UK_, in front of the name, so the series will be 
named JPN_GDP, USA_GDP, UK_GDP. The identifiers may also be placed in the middle of 
series names—for example, GDP_JPNINFO, GDP_USAINFO, GDP_UKINFO.

It really doesn’t matter whether the identifiers are used at the beginning, end, or middle of 
your names; you should pick the naming style that you find easiest to work with. Consis-
tency, however, is absolutely essential. You should not name your three series JPNGDP, 
GDPUSA, UKGDP1, as EViews would be unable to reference these series using a pool 
object.

Pool Series

Once the series names have been chosen to correspond with the identifiers in your pool, 
the pool object can be used to work with a set of series. The key to this processing is the 
concept of a pool series.

A pool series is actually a group of series defined by a base name and the entire list of 
cross-section identifiers. Pool series are specified using the base name, and a “?” character 
placeholder for the cross-section identifier. If your series are named GDPJPN, GDPUSA, 
GDPUK, the corresponding pool series will be referred to as GDP?. If the names of your 
series are JPNGDP, USAGDP, and UKGDP, the pool series will be ?GDP.

When you use a pool series name, EViews understands that you wish to work with all of 
the series in the pool series. EViews loops through the list of cross-section identifiers and 
substitutes each identifier in place of the “?”. EViews will process your instructions using 
the constructed names.

A pool series may only be accessed through the pool object, since the placeholder “?” has 
no meaning without a list of cross-section identifiers. If you attempt to use a pool variable 
outside of a pool object, you will receive an error message saying that your variable is not 
defined, or EViews will interpret the “?” as a wildcard character (see Appendix C, “Wild-
cards”, on page 657).

Importing Pooled Data

There are several ways to import data so that they may be used in pooled data analysis. 
Before considering the various methods, we will need to understand the structure of 
pooled time series, cross-section data, and to distinguish between data that are in 
unstacked and stacked form. 
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A given piece of information in a pooled setting may be indexed along three dimensions: 
the variable, the time period, and the cross-section. For example, you may be interested in 
the value of GDP, in 1989, for Korea.

Working with your data in three dimensions is difficult, so typically you will employ a two-
dimensional representation of your data. There is no unique way to organize three-dimen-
sional data in two-dimensions, but several formats are commonly employed.

Unstacked Data

In this form, observations on a given variable for a given cross-section are grouped 
together, but are separated from observations for other variables and other cross sections. 
For example, suppose the top of our data file contains the following:

Here, the base name C represents consumption, while G represents government expendi-
ture. Each country has its own separately identified column for consumption, and its own 
column for government expenditure.

EViews works naturally with data that are unstacked and will read unstacked data using 
the standard input procedures described in Chapter 4, “Basic Data Handling”, page 64. 
Simply read each cross-section specific variable as an individual series, making certain that 
the names of the series follow the pool naming conventions described above.

Stacked Data

Pooled data can also be arranged in stacked form, where all of the data for a variable are 
grouped together, but separated from data for other variables. In the most common form, 
the data for different cross-sections are stacked on top of one another, with each column 
representing a variable.

year c_usa c_kor c_jpn g_usa g_jpn g_kor 

1954 61.6 77.4 66 17.8 18.7 17.6 

1955 61.1 79.2 65.7 15.8 17.1 16.9 

1956 61.7 80.2 66.1 15.7 15.9 17.5 

1957 62.4 78.6 65.5 16.3 14.8 16.3 

… … … … … … … 
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We say that these data are stacked by cross-section. Alternatively, we may have data that 
are stacked by date. 

id year c g 

_usa 1954 61.6 17.8 

… … … … 

_usa 1992 68.1 13.2 

_uk 1954 62.4 23.8 

… … … … 

_uk 1992 67.9 17.3 

_jpn 1954 66 18.7 

… … … … 

_jpn 1992 54.2 7.6 

_kor 1954 77.4 17.6 

… … … … 

_kor 1992 na na 

per id c g 

1954 _usa 61.6 17.8 

1954 _uk 62.4 23.8 

1954 _jpn 66 18.7 

1954 _kor 77.4 17.6 

… … … … 

1992 _usa 68.1 13.2 

1992 _uk 67.9 17.3 

1992 _jpn 54.2 7.6 

1992 _kor na na 
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Each column again represents a variable, but within each column, the data are arranged by 
year. If data are stacked by year, you should make certain that the ordering of the cross-
sectional identifiers within a year is consistent across years.

Manual Entry/Cut-and-Paste

One way to import data is by manually entering, or copying-and-pasting into a stacked rep-
resentation of your pool series:

• First, specify which time series observations will be included in your stacked spread-
sheet by setting the workfile sample. 

• Next, open the pool, then select View/Spreadsheet View… EViews will prompt you 
for a list of series. You can enter ordinary series names or pool series names. If the 
series exist, then EViews will display the data in the series. If the series do not exist, 
then EViews will create the series or group of series, using the cross-section identifi-
ers if you specify a pool series.

• EViews will open the stacked spreadsheet view of the pool series. If desired, click on 
the Order +/– button to toggle between stacking by cross-section and stacking by 
date.

• Click Edit +/– to turn on edit mode in the spreadsheet window, and enter your 
data, or cut-and-paste from another application.

For example, if we have a pool that contains the identifiers _USA, _UK, _JPN, and _KOR, 
we can instruct EViews to create the series C_USA, C_UK, C_JPN, C_KOR, and G_USA, 
G_UK, G_JPN, G_KOR by entering:

EViews will open a stacked spreadsheet view of the newly created series. Here we see the 
series stacked by cross-section, with the pool series names in the column header, and the 
cross-section/date identifiers labeling each row.
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If desired, click on Order +/– to tog-
gle between stacking methods. Click 
on Edit +/– to turn on edit mode, and 
enter or cut-and-paste into the win-
dow.

File Import

You can import stacked data from a file 
into individual series using a pool 
object. While the data in the file may 
be stacked either by cross-section or by 
period, EViews requires that:

• The stacked data are balanced.

• The cross-sections are ordered in the file in the same way that the cross-sectional 
identifiers are listed in the pool.

By “balanced”, we mean that if the data are stacked by cross-section, each cross-section 
should contain exactly the same number of periods—if the data are stacked by date, each 
date should have exactly the same number of cross-sectional observations arranged in the 
same order.

We emphasize that the underlying data need not be balanced, only the representation in the 
import file. If you have missing values for some observations, you should make certain that 
there are lines in the file representing the missing values. In the two examples above, the 
underlying data are not balanced, since information is not available for Korea in 1992. The 
data in the file have been balanced by including an observation for the missing data.

To read data from a file using a pool object, first open the pool, then select Procs/Import 
Pool data (ASCII, .XLS, .WK?)… It is important that you use the import procedure associ-
ated with the pool object, and not the standard file import procedure.

Select your input file in the usual fashion. If you select a spreadsheet file, EViews will open 
a spreadsheet import dialog prompting you for additional input.
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Much of this dialog should 
be familiar from the discus-
sion in Chapter 4, “Basic 
Data Handling”, on 
page 55. Fill out the various 
parts of the dialog:

• Indicate whether the 
pool series are in 
rows or in columns, 
and whether the data 
are stacked by cross-
section, or stacked by 
date.

• In the edit box, enter the names of the series you wish to import. These series names 
can be ordinary series names or pool names.

• Fill in the sample information, starting cell location, and optionally, the sheet name.

When you specify your series using pool series names, EViews will, if necessary, create 
and name the series using the cross-section identifiers. If you list an ordinary series name, 
EViews will, if needed, create the single series.

EViews will read from your file into the specified variables using the sample information. If 
you enter an ordinary series name, EViews will read multiple values into the series, so 
that, upon completion, the series will contain the last set of values read from the file.

The basics of importing from ASCII files are analogous, but the corresponding dialog con-
tains many additional options to handle the complexity of ASCII files. For details, see 
“Addendum: Reading ASCII Files” on page 76.

Exporting Pooled Data

You can export your data by reversing the procedures described above for data input. Since 
EViews allows you to read and write data that are unstacked, stacked by cross-section, or 
stacked by date, you can use EViews to restructure your data in accordance with your 
needs.

Working with Pooled Data

The underlying series for each cross-section member are ordinary series, so all of the 
EViews tools for working with the individual cross-section series are available. In addition, 
EViews provides you with a number of specialized tools which allow you to work with 
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your pool data. Using EViews, you can perform, in a single step, similar operations on all 
the series corresponding to a particular pooled variable.

Examining Data

As described above, you can view your data in stacked spreadsheet form. Select View/
Spreadsheet View…, and list the series you wish to display. The names can include both 
ordinary and pool series names. Click on the Order +/– button to toggle between stacking 
your observations by cross-section and by date.

We emphasize that stacking your data only provides an alternative view of the data, and 
does not change the structure of the individual series in your workfile. Stacking data is not 
necessary for any of the data management or estimation procedures described below.

Describing Data

You may compute descriptive statistics for your series using a pool object. Select View/
Descriptive Statistics… from the pool toolbar.

In the edit box, you should list the ordinary and 
pooled series for which you want to compute the 
descriptive statistics. EViews will compute the 
mean, median, minimum, maximum, standard 
deviation, skewness, kurtosis, and the Jarque-Bera 
statistic for these series.

Next you should choose between the three sample 
options:

• Individual: uses the maximum number of 
observations available. If an observation on a 
variable is available for a particular cross-sec-
tion, it is used in computation. 

• Common: uses an observation only if data on the variable are available for all cross-
sections in the same period. This method is equivalent to performing listwise exclu-
sion by variable, then cross-sectional casewise exclusion within each variable.

• Balanced: includes observations when data on all variables in the list are available 
for all cross-sections in the same period. The balanced option performs casewise 
exclusion by both variable and cross-section. 

Lastly, you should choose the computational method corresponding to one of the four data 
structures:

• Stacked data: display statistics for each variable in the list, computed over all cross-
sections and periods. These are the descriptive statistics that you would get if you 
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ignored the pooled nature of the data, stacked the data, and computed descriptive 
statistics. 

• Stacked – means removed: compute statistics for each variable in the list after 
removing the cross-sectional means, taken over all cross-sections and periods.

• Cross-section specific: show the descriptive statistics for each cross-sectional vari-
able, computed across all periods. These are the descriptive statistics derived by 
computing statistics for the individual series.

• Time period specific: compute period-specific statistics. For each period, compute 
the statistic using data on the variable from all the cross-sectional units in the pool.

Be aware that the latter two methods may generate a great deal of output. Cross-section 
specific computation generates a set of statistics for each variable/cross-section combina-
tion. If you ask for statistics for three pool variables and there are 20 cross-sections in your 
pool, EViews will compute descriptive statistics for 60 series. For time-period specific com-
putation you will compute a set of statistics for each date/variable combination. If you 
have a sample with 100 periods and you list three pool variables, EViews will compute 300 
sets of statistics.

You can save the period-specific statistics in series objects. Select Procs/Make Period Stat 
Series… from the pool window, and fill out the dialog.

In the edit window, list the series for which you 
wish to calculate period-statistics. Next, select the 
particular statistics you wish to compute, and 
choose a sample option. 

EViews will save your statistics in new series, and 
will open an untitled group window to display the 
results. The series will be named automatically 
using the base name followed by the name of the 
statistic (MEAN, MED, VAR, SD, OBS, SKEW, 
KURT, JARQ, MAX, MIN). In this example, 
EViews will save the statistics using the names 
CMEAN, GMEAN, CVAR, GVAR, CMAX, GMAX, 
CMIN, and GMIN. 

Generating Data

You can generate or modify pool series using the PoolGenr procedure. Click on PoolGenr 
on the pool toolbar and enter your formula as you would for a regular Genr, using pool 
names as appropriate. Using our example from above, entering:
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ratio? = g?/g_usa

is equivalent to entering the following four commands:

ratio_usa = g_usa/g_usa

ratio_uk = g_uk/g_usa

ratio_jpn = g_jpn/g_usa

ratio_kor = g_kor/g_usa

PoolGenr applies the formula you supply using an implicit loop across cross-section iden-
tifiers, creating or modifying series as appropriate. 

You may use PoolGenr and Genr together to generate new variables. For example, to cre-
ate a dummy variable that is equal to 1 for the US and 0 for all other countries, first select 
PoolGenr and enter: 

dum? = 0

to initialize all of the dummy variable series to 0. Then, to set the US values to 1, select 
Quick/Generate Series… from the main menu, and enter:

dum_usa = 1

To modify a set of series using a pool, select PoolGenr, and enter the new pool series 
expression:

dum? = dum? * (g? > c?)

You can also use the implicit looping feature to perform calculations across cross-sectional 
units in a given period. For example, if we have an ordinary series SUM which is initialized 
to zero, then a PoolGenr using the expression:

sum = sum + c?

will calculate the ordinary series given by the ordinary Genr:

sum = c_usa + c_uk + c_jpn + c_kor

Note that this example is merely to illustrate the notion of implicit looping. As we saw 
above, EViews provides you with built-in features to compute period-specific statistics of 
this type.

Make Pool Group

You may wish to work with a set of pool series using standard EViews tools for group 
objects. Select Procs/Make Group… and enter the names of ordinary and pool series. 
EViews will create an untitled group object containing the series.
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Deleting/Storing/Fetching Data

Pools may be used to delete, store, or fetch sets of series. Simply select Procs/Delete pool 
series…, Procs/Store pool series (DB)…, or Procs/Fetch pool series (DB)… as appropri-
ate, and enter the ordinary and pool series names of interest.

If, for example, you instruct EViews to delete the pool series C?, EViews will loop through 
all of the cross-section identifiers and delete all series whose names begin with the letter 
“C” and end with the cross-section identifier.

Pooled Estimation

There are a number of ways that you can use information about the structure of your 
pooled data in estimating an equation. You might estimate a fixed or random intercept 
model, or perhaps a model with selected variables that have different coefficients across 
cross-sections, as well as separate AR(1) coefficients. Or you could estimate a separate 
equation for each cross-sectional unit.

EViews pool objects allow you to estimate your model using least squares, weighted least 
squares with estimated cross-section weights, or seemingly unrelated regressions, all with-
out rearranging or reordering your data.

Below, we describe how you can use pools and systems to estimate more general and com-
plex models, including two-stage least squares and nonlinear specifications, or models 
with complicated cross-section coefficient restrictions.

How to Estimate a Pool Equation

Generally speaking, pool objects can be used to estimate equations of the form:

, (21.1)

for  cross-section units and periods . Further details and 
discussion of various pool equation specifications is provided in “Pooled Estimation” on 
page 562.

Press the Estimate button on your pool toolbar, and the following dialog will open:

yit αit xit′βi εit+ +=

i 1 2 … N, , ,= t 1 2 … T, , ,=
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Dependent Variable

List a pool variable, or an EViews expression containing a pool variable, in the Dependent 
Variable edit box.

Sample

Enter your sample specification in the edit window at the upper right. 

By default, EViews will use the largest sample possible in each cross-section. An observa-
tion will be excluded if any of the explanatory or dependent variables for that cross-section 
are unavailable in that period.

The checkbox for Balanced Sample instructs EViews to perform listwise exclusion over all 
cross-sections. EViews will eliminate an observation if data are unavailable for any cross-
section in that period. This exclusion ensures that estimates for each cross-section will be 
based on a common set of dates.

If all of the observations for a cross-section unit are not available, that unit will temporarily 
be removed from the pool for purposes of estimation. The EViews output will inform you if 
any cross-section units were dropped.

Explanatory Variables

Next, you will list your regressors. There are two edit boxes where you will enter your 
explanatory variables:
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• Common coefficients: — enter variables that are to have the same coefficient across 
all cross-section members of the pool. EViews will include a single coefficient for 
each variable, and will label the output using the ordinary or pool name, as appro-
priate.

• Cross-section specific coefficients: — list variables with different coefficients for 
each member of the pool. EViews will include a different coefficient for each cross-
sectional unit, and will label the output using the cross-section identifier followed by 
“—” and then the ordinary series name.

For example, if you include the ordinary variable TIME and POP? in the common coeffi-
cient list, the output will include estimates for TIME and POP?. If you include these vari-
ables in the cross-section specific list, the output will include coefficients of the form 
_USA—TIME, _UK—TIME, and _USA—POP_USA, _UK—POP_UK, etc.

Be aware that estimating your model with cross-section specific variables may generate 
large numbers of coefficients—the number of these coefficients equals the product of the 
number of pool identifiers and the number of variables in the list.

You may include AR terms in your specification. If the terms are entered in the common 
coefficients list, EViews will estimate the model assuming a common AR error. If the AR 
terms are entered in the cross-section specific list, EViews will estimate separate AR terms 
for each member. See “Estimating AR Models” on page 307 for a description of AR specifi-
cations.

Note that EViews only allows specification by list for pool equations. If you wish to esti-
mate a nonlinear specification, you must first create a system object, and then edit the sys-
tem specification (see “Creating Systems using Pools” on page 570).

Intercept

In the area labeled Intercept: you can choose between alternative specifications for :

You cannot estimate random effects models with cross-section specific coefficients, AR 
terms, or weighting.

None no intercepts: .

Common identical intercept for all pool members: 
.

Fixed effects different intercepts estimated for each pool mem-
ber: .

Random effects treats intercepts as random variables across pool 
members: .

αi

αit 0=

αit α=

αit αi=

αit αi E αiεit( ),= 0=
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Weights

EViews does not weight observations in pooled estimation by default, but you have the 
option of estimating weighted versions of your specifications. There are three options for 
weights:

If you select Cross section weights, EViews will estimate a feasible GLS specification 
assuming the presence of cross-section heteroskedasticity. If you select SUR, EViews esti-
mates a feasible GLS specification correcting for both cross-section heteroskedasticity and 
contemporaneous correlation. This specification is sometimes referred to as the Parks esti-
mator. More detailed descriptions of these methods are provided in the “Technical Discus-
sion” on page 571 below.

Bear in mind that there are a number of potential pitfalls associated with SUR/Parks esti-
mation (see Beck and Katz (1995)). Furthermore, EViews may be unable to compute esti-
mates for this model when you have large numbers of cross-sections or a small number of 
time periods. The average number of periods used in estimation must be at least as large as 
the number of cross-section units. Even if you have a sufficient number of observations, 
the estimated residual correlation matrix must also be nonsingular. If either condition is 
violated, EViews will display a “Near Singular Matrix” error. 

There is a checkbox labeled Iterate to convergence which controls the feasible GLS proce-
dures. If selected, EViews will continue to update the weights and coefficients until they 
converge. This option has no effect if your model includes AR terms since EViews will 
always iterate weights and coefficients to convergence in AR specifications.

Options

Iteration and Convergence Options. If you select weighted estimation and ask EViews to 
iterate to convergence, you can control the iterative process by specifying convergence cri-
terion and the maximum number of iterations. Press the Options button in the equation 
dialog box and enter the desired values.

White Heteroskedasticity Covariance. EViews can estimate covariances that are robust to 
general heteroskedasticity. This form of heteroskedasticity is more general than the cross-
section heteroskedasticity described above, since variances within a cross-section are 
allowed to differ across time.

No weighting all observations are given equal weight.

Cross section 
weights

GLS using estimated cross-section residual vari-
ances.

SUR analogue to Seemingly Unrelated Regression—GLS 
using estimated cross-section residual covariance 
matrix.
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To request White standard errors and covariances, press the Options button, and select 
White Heteroskedasticity Consistent Covariance. Note that this option is not available with 
SUR and random effects estimation.

Pool Equation Examples

As an illustration, we take data from the Penn World Table for GDP for seven countries: 
Canada, France, Germany, Italy, Japan, United Kingdom, and the US. The corresponding 
pool identifiers are _CAN, _FRA, _GER, _ITA, _JPN, _UK, _US.

First, we estimate a model regressing GDP? on GDP?(-1) (note that the ‘?’ precedes the lag 
specification). All coefficients are restricted to be the same across all cross-sections, so this 
is equivalent to estimating a model on the stacked data, ignoring all cross-sectional infor-
mation:

The output from this regression is given by:
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Note that there is a single coefficient for both the constant C, and the pool series for lagged 
GDP.

Next, suppose we estimate the same specification, but select Fixed effects for the intercept 
specification, and select Cross-section weights for our weighting. This implies that each 
pool will have an unrestricted intercept, and that each pool equation is downweighted by 
an estimate of the cross-section residual standard deviation. The results are given by:

Dependent Variable: GDP?
Method: Pooled Least Squares
Date: 10/20/97   Time: 15:45
Sample(adjusted): 1951 1992
Included observations: 42 after adjusting endpoints
Total panel observations 294

Variable Coefficient Std. Error t-Statistic Prob.

C  245.3620  41.47131  5.916428  0.0000
GDP?(-1)  1.000448  0.004083  245.0305  0.0000

R-squared  0.995160     Mean dependent var  9681.432
Adjusted R-squared  0.995144     S.D. dependent var  3786.743
S.E. of regression  263.8918     Sum squared resid  20334560
Log likelihood -1818.911     F-statistic  60039.95
Durbin-Watson stat  1.488062     Prob(F-statistic)  0.000000

Dependent Variable: GDP?
Method: GLS (Cross Section Weights)
Date: 10/20/97   Time: 15:49
Sample: 1951 1992
Included observations: 42
Total panel observations 294
Convergence achieved after 1 iteration(s)

Variable Coefficient Std. Error t-Statistic Prob.

GDP?(-1)  1.004838  0.004088  245.8188  0.0000
Fixed Effects

_CAN--C  189.8252
_FRA--C  197.0985
_GER--C  239.3465
_ITA--C  208.5929
_JPN--C  298.8015
_UK--C  136.0450
_US--C  158.0119

Weighted Statistics

R-squared  0.996134     Mean dependent var  10507.92
Adjusted R-squared  0.996039     S.D. dependent var  4168.432
S.E. of regression  262.3466     Sum squared resid  19684159
Log likelihood -1806.950     Durbin-Watson stat  1.504483

Unweighted Statistics

R-squared  0.995313     Mean dependent var  9681.432
Adjusted R-squared  0.995199     S.D. dependent var  3786.743
S.E. of regression  262.3922     Sum squared resid  19691008
Durbin-Watson stat  1.543536
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Note that EViews displays both the estimates of the fixed effects, and summary statistics 
for the weighted and unweighted models. The estimates of the fixed effects do not have 
reported standard errors since EViews treats them as nuisance parameters for the purposes 
of estimation. If you wish to compute standard errors for the cross-section constants, you 
should estimate a model without a constant and explicitly enter the C in the Cross section 
specific coefficients edit field.

We can generalize this specification by estimating a separate coefficient for lagged GDP in 
each cross section. Simply click on the Estimate button to reestimate the pool, move 
GDP?(-1) to the Cross section specific coefficients edit field, and click OK. The top por-
tion of the output is given below:

The coefficients on GDP? have lengthy labels formed by taking the cross-section specific 
variable (for example GDP_CAN(-1)), and prepending the cross-section identifier to denote 
the equation for which this coefficient is relevant. For example, the first coefficient is the 
coefficient of GDP_CAN(-1) in the _CAN equation. Note that this prepending is necessary 
for identification purposes since you could, for example, have included the GDP_UK(-1) 
variable as an explanatory variable in the _JPN equation.

Lastly, we can estimate a model with random effects

Dependent Variable: GDP?
Method: GLS (Cross Section Weights)
Date: 10/20/97   Time: 15:56
Sample: 1951 1992
Included observations: 42
Total panel observations 294
Convergence achieved after 1 iteration(s)

Variable Coefficient Std. Error t-Statistic Prob.

_CAN--GDP_CAN(-1)  0.998332  0.016368  60.99230  0.0000
_FRA--GDP_FRA(-1)  0.997262  0.008985  110.9879  0.0000
_GER--GDP_GER(-1)  0.996295  0.010610  93.90234  0.0000

_ITA--GDP_ITA(-1)  1.006682  0.008819  114.1450  0.0000
_JPN--GDP_JPN(-1)  1.019567  0.008179  124.6552  0.0000
_UK--GDP_UK(-1)  1.003127  0.015082  66.51012  0.0000
_US--GDP_US(-1)  0.996048  0.018346  54.29327  0.0000

Fixed Effects
_CAN--C  261.2705
_FRA--C  266.0358
_GER--C  318.7881
_ITA--C  194.7066
_JPN--C  192.1386
_UK--C  151.0268
_US--C  273.2745
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We have simplified the specification so that GDP?(-1) has a common coefficient. Note that 
EViews provides estimates of the realization of the random effect components, as well as 
summary statistics for both the transformed and the untransformed data (where the latter 
is evaluated after removing the estimated random component). The details on these com-
putations are presented in the “Technical Discussion” beginning on page 571.

Pool Equation Views and Procedures

Once you have estimated your pool equation, you can examine your output in the usual 
ways:

Representation

Select View/Representations to examine your specification. EViews estimates your pool 
as a system of equations, one for each cross-section unit.

Estimation Output

View/Estimation Output will change the display to show the results from the pooled esti-
mation.

Dependent Variable: GDP?
Method: GLS (Variance Components)
Date: 10/20/97   Time: 16:08
Sample: 1951 1992
Included observations: 42
Total panel observations 294

Variable Coefficient Std. Error t-Statistic Prob.

C  237.1665  43.99291  5.391016  0.0000
GDP?(-1)  1.001317  0.004233  236.5521  0.0000

Random Effects
_CAN--C -2.714267
_FRA--C -2.512245
_GER--C  10.92250
_ITA--C -0.644577
_JPN--C  27.25335
_UK--C -21.98726
_US--C -10.31750

GLS Transformed Regression

R-squared  0.995206     Mean dependent var  9681.432
Adjusted R-squared  0.995190     S.D. dependent var  3786.743
S.E. of regression  262.6320     Sum squared resid  20140863
Durbin-Watson stat  1.503691

Unweighted Statistics including Random Effects

R-squared  0.995238     Mean dependent var  9681.432
Adjusted R-squared  0.995222     S.D. dependent var  3786.743
S.E. of regression  261.7485     Sum squared resid  20005585
Durbin-Watson stat  1.513859
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As with other estimation objects, you can examine the estimates of the coefficient covari-
ance matrix by selecting View/Coef Covariance Matrix.

Testing 

EViews allows you to perform coefficient tests on the estimated parameters of your pool 
equation. Select, View/Wald Coefficient Tests… and enter the restriction to be tested.

Residuals

You can view your residuals in spreadsheet or graphical format by selecting View/Residu-
als/Table or View/Residuals/Graph. EViews will display the residuals for each cross-sec-
tional equation. Each residual will be named using the base name RES, followed by the 
cross-section identifier.

If you wish to save the residuals in series using these names, select Procs/Make Resids.

Residual Covariance/Correlation

You can examine the estimated residual contemporaneous covariance and correlation 
matrices. Select View/Residual and then either Correlation Matrix or Covariance Matrix 
to examine the appropriate matrix.

Forecasting

To perform forecasts using a pool equation you will first make a model. Select Procs/Make 
Model to create an untitled model object that incorporates all of the estimated coefficients. 
If desired, this model can be edited. Solving the model will generate forecasts for the 
dependent variable for each of the cross-section units. For further details, see Chapter 23, 
“Models”, on page 601.

Creating Systems using Pools 

You may have a complex pooled equation specification that cannot be estimated using the 
pool object. To apply more general estimation methods, such as two-stage least squares, 
three-stage least squares, and GMM, or to impose arbitrary coefficient restrictions, you 
should use the pool object to create a system object. You can create a system from an esti-
mated pool, or you can provide information to generate a system from a pool. The system 
object can be further customized, and estimated using advanced techniques.
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Select Procs/Make System… and fill out 
the dialog. You can enter the dependent 
variable, specify the intercept, common 
and cross-section specific variables as 
before. You can also enter a list of instru-
mental variables. Ordinary variables will 
appear as an instrument in each equa-
tion; pool variables will enter cross-sec-
tion specific variables as instruments in 
the corresponding cross-section equa-
tion.

Commands

To create a new pool object, follow the 
pool command keyword with a name for the pool object:

pool g7

creates a new pool object named G7.

To define the cross-section identifiers of the pool, use the define command:

g7.define us uk ita ger fra can jpn

defines the cross section members of the pool object G7 as US, UK, ITA, GER, FRA, CAN, 
and JPN.

To estimate a pool with fixed effects, use the f option:

g7.ls(f) cs? @ gdp?

estimates a fixed effects model without constraining the coefficients on GDP to be the 
same for each pool member (which is the same as running OLS for each member sepa-
rately).

See “Pool” on page 34 of the Command and Programming Reference for a complete list of 
commands and options available for pool objects. 

Technical Discussion

The class of models that can be estimated using a pool object can be written as

, (21.2)yit αit xit′βi εit+ +=
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where  is the dependent variable, and  and  are -vectors of non-constant 
regressors and parameters for  cross-sectional units. Each cross-section 
unit is observed for dated periods .

While most of our discussion will be in terms of a balanced sample, EViews does not 
require that your data be balanced; missing values may be used to represent observations 
that are not available for analysis in a given period. We will describe the behavior of the 
estimator in the presence of missing values only where there is the potential for ambiguity.

We can view these data as a set of cross-section specific regressions so that we have  
cross-sectional equations:

(21.3)

each with  observations, stacked on top of one another. For purposes of discussion we 
will refer to the stacked representation:

(21.4)

where ,  and  are set up to include any restrictions on the parameters between 
cross-sectional units.

The residual covariance matrix for this set of equations is given by:

(21.5)

The basic specification treats the pool specification as a system of equations and estimates 
the model using system OLS. This specification is appropriate when the residuals are con-
temporaneously uncorrelated, and time-period and cross-section homoskedastic:

. (21.6)

The coefficients and their covariances are estimated using the usual OLS techniques 
applied to the stacked model.

Fixed Effects

The fixed effects estimator allows  to differ across cross-section units by estimating dif-
ferent constants for each cross-section. EViews computes the fixed effects by subtracting 
the “within” mean from each variable and estimating OLS using the transformed data:

(21.7)

where , , and .
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The coefficient covariance matrix estimates are given by the usual OLS covariance formula 
applied to the mean differenced model:

(21.8)

where  represents the mean differenced , and

, (21.9)

where  is the SSR from the fixed effects model. If the pool is unbalanced,  is 
replaced by the total number of observations excluding missing values.

The fixed effects themselves are not estimated directly. We report estimated fixed effects 
computed from

(21.10)

Standard errors are not reported for the fixed effects coefficients. If you wish to obtain 
standard errors for the fixed effects, you should re-estimate a model with no intercept, 
including the constant term as a cross-section specific regressor.

You should note that estimating the cross-section specific constant regression model with a 
large number of cross-section units may be time-consuming, and may result in estimates 
that are less accurate than those obtained using the fixed-effects option.

Random Effects

The random effects model assumes that the term  is the sum of a common constant  
and a time-invariant cross-section specific random variable  that is uncorrelated with 
the residual . EViews estimates the random effects model using the following steps:

(1) Use the residuals  from the fixed effects model to estimate the variance of  
using  as described above.

(2) Estimate the between-group (cross-sectional mean) model and compute:

, (21.11)

where  is the SSR from the between-group regression. If the estimated  is nega-
tive, EViews will return an error message.

In the case where there are missing observations so that  varies among cross-sections, 
EViews will use the largest  in computing the variance estimates. This procedure is con-
sistent, provided that the number of missing observations is asymptotically negligible.
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(3) Apply OLS to the GLS transformed variables (  includes the constant term and the 
regressors )

, (21.12)

where . 

The EViews output displays the parameter estimates for the  derived from (3). The stan-
dard errors are computed using the standard estimator of the covariance matrix.

EViews also presents estimates of the values of the random effects. These values are com-
puted using the formula:

, (21.13)

yielding the best linear unbiased predictor of .

(4) Lastly, EViews displays weighted and unweighted summary statistics. The weighted 
statistics are from the GLS equation estimated in step (3). The unweighted statistics are 
derived using residuals from the original model based upon the parameters and the esti-
mated random effect from step (3):

. (21.14)

Cross-Section Weighting

Cross-section weighted regression is appropriate when the residuals are cross-section het-
eroskedastic and contemporaneously uncorrelated:

(21.15)

EViews performs FGLS with  estimated from a first-stage pooled OLS regression. The 
estimated variances are computed as:

, (21.16)

where  are the OLS fitted values.

The estimated coefficients values and covariance matrix are given by the standard GLS 
estimator.
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SUR Weighting

SUR weighted least squares (sometimes referred to as the Parks estimator) is the feasible 
GLS estimator when the residuals are both cross-section heteroskedastic and contempora-
neously correlated (to simplify notation, we assume that  for all ):

, (21.17)

where  is the symmetric matrix of contemporaneous correlations:

, (21.18)

with typical element , which is assumed constant across .

EViews estimates the SUR model using  estimated from a first-stage pooled OLS regres-
sion:

. (21.19)

The use of the max function in the denominator handles the case of unbalanced data by 
down-weighting the covariance terms. Provided that the number of missing values is 
asymptotically negligible, this approach yields a consistent estimator of  that is generally 
invertible.

The parameter estimates and the covariance matrix of the parameters of the model are 
computed using the standard GLS formulae.

White Covariance Estimation

White’s heteroskedasticity consistent covariance estimates may be computed for pooled 
specifications (except for SUR and random effects estimation). In computing the estimates, 
EViews calculates the White covariance matrix using the stacked model:

(21.20)
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where  is the total number of estimated parameters. This variance estimator is robust to 
heteroskedasticity within each cross-section, but does not account for the possibility of 
contemporaneous correlation across cross-sections.

K



Chapter 22.  State Space Models and the Kalman Filter

The EViews sspace object provides a straightforward, easy-to-use interface for specifying, 
estimating, and working with the results of your single or multiple equation dynamic sys-
tem. EViews provides a wide range of specification, filtering, smoothing, and other fore-
casting tools which aid you in working with dynamic systems specified in state space 
form.

A wide range of time series models, including the classical linear regression model and 
ARIMA models, can be written and estimated as special cases of a state space specifica-
tion. State space models have been applied in the econometrics literature to model unob-
served variables: (rational) expectations, measurement errors, missing observations, 
permanent income, unobserved components (cycles and trends), and the non-accelerating 
rate of unemployment. Extensive surveys of applications of state space models in econo-
metrics can be found in Hamilton (1994a, chapter 13; 1994b) and Harvey (1989, chapters 
3, 4). 

There are two main benefits to representing a dynamic system in state space form. First, 
the state space allows unobserved variables (known as the state variables) to be incorpo-
rated into, and estimated along with, the observable model. Second, state space models 
can be analyzed using a powerful recursive algorithm known as the Kalman (Bucy) filter. 
The Kalman filter algorithm has been used, among other things, to compute exact, finite 
sample forecasts for Gaussian ARMA models, multivariate (vector) ARMA models, MIMIC 
(multiple indicators and multiple causes), Markov switching models, and time varying 
(random) coefficient models. 

Those of you who have used previous versions of the sspace object will note that much 
has changed with this release. We strongly recommend that you read “Converting from 
Version 3 Sspace” on page 599 before loading existing workfiles and before beginning to 
work with the new state space routines.

Background

We present here a very brief discussion of the specification and estimation of a linear state 
space model. Those desiring greater detail are directed to Harvey (1989), Hamilton (1994a, 
Chapter 13, 1994b), and especially the excellent treatment of Koopman, Shephard and 
Doornik (1999).

Specification

A linear state space representation of the dynamics of the  vector  is given by the 
system of equations:

n 1× yt
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(22.1)

(22.2)

where  is an  vector of possibly unobserved state variables and where , , 
 and are conformable vectors and matrices, and  and  are vectors of mean zero, 

Gaussian disturbances. Note that the unobserved state vector is assumed to move over 
time as a first-order vector autoregression.

We will refer to the first set of equations as the “signal” or “observation” equations and the 
second set as the “state” or “transition” equations. The disturbance vectors,  and  are 
assumed to be serially independent, with contemporaneous variance structure:

(22.3)

where  is an  symmetric variance matrix,  is an  symmetric variance 
matrix, and  is an  matrix of covariances.

In the discussion that follows, we will generalize the specification given in (22.1)—(22.3) 
by allowing the system matrices and vectors  to depend 
upon observable explanatory variables  and unobservable parameters . Estimation of 
the parameters  is discussed in “Estimation” beginning on page 581.

Filtering

Consider the conditional distribution of the state vector  given information available at 
time . We can define the mean and variance matrix of the conditional distribution as:

(22.4)

(22.5)

where the subscript below the expectation operator indicates that expectations are taken 
using the conditional distribution for that period.

One important conditional distribution is obtained by setting , so that we 
obtain the one-step ahead mean  and one-step ahead variance  of the states 

. Under the Gaussian error assumption,  is also the minimum mean square error 
estimator of  and  is the mean square error (MSE) of . If the normality 
assumption is dropped,  is still the minimum mean square linear estimator of .

Given the one-step ahead state conditional mean, we can also form the (linear) minimum 
MSE one-step ahead estimate of 

(22.6)
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The one-step ahead prediction error is given by

(22.7)

and the prediction error variance is defined as

(22.8)

The Kalman (Bucy) filter is a recursive algorithm for sequentially updating the one-step 
ahead estimate of the state mean and variance given new information. Details on the 
recursion are provided in the references above. For our purposes, it is sufficient to note that 
given initial values for the state mean and covariance, values for the system matrices , 
and observations on  the Kalman filter may be used to compute estimates of the one-
step ahead estimates of the state and the mean square error matrix of the estimates, 

, the contemporaneous or filtered state mean and variance, , 
and the one-step ahead prediction, prediction error, and prediction error variance: 

. Note that we may also obtain the standardized prediction resid-
ual  by dividing  by the square-root of the corresponding diagonal element of 

.

Fixed-Interval Smoothing

Suppose that we observe the sequence of data up to time period . The process of using 
all this information to form expectations at any time period up to  is known as fixed-
interval smoothing. Despite the fact that there a variety of other distinct forms of smooth-
ing (e.g. - fixed-point, fixed-lag), we will use the term smoothing to refer to fixed-interval 
smoothing.

Additional details on the smoothing procedure are provided in the references given above. 
For now, note that smoothing uses all of the information in the sample to provide 
smoothed estimates of the states , and smoothed estimates of the state 
variances, . The matrix  may also be interpreted as the MSE of the 
smoothed state estimate .

As with the one-step ahead states and variances above, we may use the smoothed values 
to form smoothed estimates of the signal variables,

(22.9)

and to compute the variance of the smoothed signal estimates

. (22.10)

Lastly, the smoothing procedure allows us to compute smoothed disturbance estimates, 
 and , and a corresponding smoothed disturbance 

variance matrix,
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(22.11)

Dividing the smoothed disturbance estimates by the square roots of the corresponding 
diagonal elements of the smoothed variance matrix yields the standardized smoothed dis-
turbance estimates  and .

Forecasting

There are a variety of types of forecasting which may be performed with state space mod-
els. These methods differ primarily in what and how information is used. We will focus on 
the three methods that are supported by EViews built-in forecasting routines.

n-Step Ahead Forecasting

Earlier, we examined the notion of one-step ahead prediction. Consider now the notion of 
multi-step ahead prediction of observations, in which we take a fixed set of information 
available at a given period, and forecast several periods ahead. Modifying slightly the 
expressions in (22.4)—(22.8) yields the n-step ahead state conditional mean and variance

, (22.12)

(22.13)

the n-step ahead forecast

(22.14)

and the corresponding n-step ahead forecast MSE matrix

(22.15)

for . As before,  may also be interpreted as the minimum MSE esti-
mate of  based on the information set available at time , and  is the MSE of 
the estimate. 

It is worth emphasizing that the definitions given above for the forecast MSE matrices 
 do not account for extra variability introduced in the estimation of any unknown 

parameters . In this setting, the  will understate the true variability of the fore-
cast, and should be viewed as being computed conditional on the specific value of the esti-
mated parameters.

It is also worth noting that the n-step ahead forecasts may be computed using a slightly 
modified version of the basic Kalman recursion (Harvey 1989). To forecast at period 

, simply initialize a Kalman filter at time  with the values of the pre-
dicted states and state covariances using information at time , and run the filter forward 
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 additional periods using no additional signal information. This procedure is 
repeated for each observation in the forecast sample, .

Dynamic Forecasting

The concept of dynamic forecasting should be familiar to you from other EViews estimation 
objects. In dynamic forecasting, we start at the beginning of the forecast sample , and 
compute a complete set of n-period ahead forecasts for each period  in the 
forecast interval. Thus, if we wish to start at period  and forecast dynamically to , 
we would compute a one-step ahead forecast for , a two-step ahead forecasts for 

, and so forth, up to an -step ahead forecast for . It may be useful to note 
that as with n-step ahead forecasting, we simply initialize a Kalman filter at time  
and run the filter forward additional periods using no additional signal information. For 
dynamic forecasting, however, only one n-step ahead forecast is required to compute all of 
the forecast values since the information set is not updated from the beginning of the fore-
cast period.

Smoothed Forecasting

Alternatively, we can compute smoothed forecasts which use all available signal data over 
the forecast sample (for example, ). These forward looking forecasts may be 
computed by initializing the states at the start of the forecast period, and performing a Kal-
man smooth over the entire forecast period using all relevant signal data. This technique is 
useful in settings where information on the entire path of the signals is used to interpolate 
values throughout the forecast sample.

We make one final comment about the forecasting methods described above. For tradi-
tional n-step ahead and dynamic forecasting, the states are typically initialized using the 
one-step ahead forecasts of the states and variances at the start of the forecast window. For 
smoothed forecasts, one would generally initialize the forecasts using the corresponding 
smoothed values of states and variances. There may, however, be situations where you 
wish to choose a different set of initial values for the forecast filter or smoother. The 
EViews forecasting routines (described in “State Space Procedures” beginning on 
page 595) provide you with considerable control over these initial settings. Be aware, how-
ever, that the interpretation of the forecasts in terms of the available information will 
change if you choose alternative settings.

Estimation

To implement the Kalman filter and the fixed-interval smoother, we must first replace any 
unknown elements of the system matrices by their estimates. Under the assumption that 
the  and  are Gaussian, the sample log likelihood,

(22.16)
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may be evaluated using the Kalman filter. Using numeric derivatives, standard iterative 
techniques may be employed to maximize the likelihood with respect to the unknown 
parameters , see Appendix D, “Estimation Algorithms and Options”, on page 663.

Initial Conditions

Evaluation of the Kalman filter, smoother, and forecasting procedures all require that we 
provide the initial one-step ahead predicted values for the states  and variance matrix 

. With some stationary models, steady-state conditions allow us to use the system 
matrices to solve for the values of  and . In other cases, we may have preliminary 
estimates of , along with measures of uncertainty about those estimates. But in many 
cases, we may have no information, or diffuse priors, about the initial conditions. 

Specifying a State Space Model in EViews

EViews handles a wide range of single and multiple-equation state space models, provid-
ing you with detailed control over the specification of your system equations, covariance 
matrices, and initial conditions.

The first step in specifying and estimating a state space model is to create a state space 
object. Select Objects/New Object/Sspace from the main toolbar or type sspace in the 
command window. EViews will create a state space object and open an empty state space 
specification window.

There are two ways to specify your state space model. The easiest is to use EViews special 
“auto-specification” features to guide you in creating some of the standard forms for these 
models. Simply press the AutoSpec button on the sspace toolbar. Specialized dialogs will 
open to guide you through the specification process. We will describe this method in 
greater detail in “Auto-Specification” on page 590.

The more general method of describing your state space model uses keywords and text to 
describe the signal equations, state equations, error structure, initial conditions, and if 
desired, parameter starting values for estimation. The next section describes the general 
syntax for the state space object.

Specification Syntax

State Equations

A state equation contains the “@STATE” keyword followed by a valid state equation spec-
ification. Bear in mind that:

• Each equation must have a unique dependent variable name; expressions are not 
allowed. Since EViews does not automatically create workfile series for the states, 
you may use the name of an existing (non-series) EViews object.

θ

α1 0
P1 0

α1 0 P1 0
α1 0
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• State equations may not contain signal equation dependent variables, or leads or 
lags of these variables.

• Each state equation must be linear in the one-period lag of the states. Nonlinearities 
in the states, or the presence of contemporaneous, lead, or multi-period lag states 
will generate an error message. We emphasize the point that the one-period lag 
restriction on states is not restrictive since higher order lags may be written as new 
state variables. An example of this technique is provided in the example “ARMAX(2, 
3) with a Random Coefficient” on page 586.

• State equations may contain exogenous variables and unknown coefficients, and 
may be nonlinear in these elements.

In addition, state equations may contain an optional error or error variance specification. If 
there is no error or error variance, the state equation is assumed to be deterministic. Spec-
ification of the error structure of state space models is described in greater detail below in 
“Errors and Variances” on page 584.

Examples

The following two state equations define an unobserved error with an AR(2) process:

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var = exp(c(5))]

@state sv2 = sv1(-1)

The first equation parameterizes the AR(2) for SV1 in terms of an AR(1) coefficient, C(2), 
and an AR(2) coefficient, C(3). The error variance specification is given in square brackets. 
Note that the state equation for SV2 defines the lag of SV1 so that SV2(-1) is the two period 
lag of SV1.

Similarly, the following are valid state equations:

@state sv1 = sv1(-1) + [var = exp(c(3))]

@state sv2 = c(1) + c(2)*sv2(-1) + [var = exp(c(3))]

@state sv3 = c(1) + exp(c(3)*x/z) + c(2)*sv3(-1) + [var = 
exp(c(3))]

describing a random walk, and an AR(1) with drift (without/with exogenous variables).

The following are not valid state equations:

@state exp(sv1) = sv1(-1) + [var = exp(c(3))]

@state sv2 = log(sv2(-1)) + [var = exp(c(3))]

@state sv3 = c(1) + c(2)*sv3(-2) + [var=exp(c(3))]

since they violate at least one of the conditions described above (in order: expression for 
dependent state variable, nonlinear in state, multi-period lag of state variables).
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Observation/Signal Equations

By default, if an equation specification is not specifically identified as a state equation 
using the “@STATE” keyword, it will be treated by EViews as an observation or signal 
equation. Signal equations may also be identified explicitly by the keyword “@SIGNAL”. 
There are some aspects of signal equation specification to keep in mind:

• Signal equation dependent variables may involve expressions.

• Signal equations may not contain current values or leads of signal variables. You 
should be aware that any lagged signals are treated as predetermined for purposes of 
multi-step ahead forecasting (for discussion and alternative specifications, see Har-
vey 1989, pp. 367-368).

• Signal equations must be linear in the contemporaneous states. Nonlinearities in the 
states, or the presence of leads or lags of states will generate an error message. 
Again, the restriction that there are no state lags is not restrictive since additional 
deterministic states may be created to represent the lagged values of the states.

• Signal equations may have exogenous variables and unknown coefficients, and may 
be nonlinear in these elements.

Signal equations may also contain an optional error or error variance specification. If there 
is no error or error variance, the equation is assumed to be deterministic. Specification of 
the error structure of state space models is described in greater detail in “Errors and Vari-
ances” on page 584.

Examples

The following are valid signal equation specifications:

log(passenger) = c(1) + c(3)*x + sv1 + c(4)*sv2

@signal y = sv1 + sv2*x1 + sv3*x2 + sv4*y(-1) + [var=exp(c(1))]

Z = sv1 + sv2*x1 + sv3*x2 + c(1) + [var=exp(c(2))]

The following are invalid equations:

log(passenger) = c(1) + c(3)*x + sv1(-1)

@signal y = sv1*sv2*x1 + [var = exp(c(1))]

z = sv1 + sv2*x1 + z(1) + c(1) + [var = exp(c(2))]

since they violate at least one of the conditions described above (in order: lag of state vari-
able, nonlinear in a state variable, lead of signal variable).

Errors and Variances

While EViews always adds an implicit error term to each equation in an equation or sys-
tem object, the handling of error terms differs in a sspace object. In a sspace object, the 
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equation specifications in a signal or state equation do not contain error terms unless spec-
ified explicitly.

The easiest way to add an error to a state space equation is to specify an implied error term 
using its variance. You can simply add an error variance expression, consisting of the key-
word “VAR” followed by an assignment statement (all enclosed in square brackets), to the 
existing equation:

@signal y = c(1) + sv1 + sv2 + [var = 1]

@state sv1 = sv1(-1) + [var = exp(c(2))]

@state sv2 = c(3) + c(4)*sv2(-1) + [var = exp(c(2)*x)]

The specified variance may be a known constant value, or it can be an expression contain-
ing unknown parameters to be estimated. You may also build time-variation into the vari-
ances using a series expression. Variance expressions may not, however, contain state or 
signal variables.

While straightfoward, this direct variance specification method does not admit correlation 
between errors in different equations (by default, EViews assumes that the covariance 
between error terms is 0). If you require a more flexible variance structure, you will need 
to use the “named error” approach to define named errors with variances and covariances, 
and then to use these named errors as parts of expressions in the signal and state equa-
tions. 

The first step of this general approach is to define your named errors. You may declare a 
named error by including a line with the keyword “@ENAME” followed by the name of 
the error:

@ename e1

@ename e2

Once declared, a named error may enter linearly into state and signal equations. In this 
manner, one can build correlation between the equation errors. For example, the errors in 
the state and signal equations in 

y = c(1) + sv1*x1 + e1

@state sv1 = sv1(-1) + e2 + c(2)*e1

@ename e1

@ename e2

are, in general, correlated since the named error E1 appears in both equations.

In the special case where a named error is the only error in a given equation, you can both 
declare and use the named residual by adding an error expression consisting of keyword 
“ENAME” followed by an assignment and a name identifier.
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y = c(1) + sv1*x1 + [ename = e1]

@state sv1 = sv1(-1) + [ename = e2]

The final step in building a general error structure is to define the variances and covari-
ances associated with your named errors. You should include a sspace line comprised of 
the keyword “@EVAR” followed by an assignment statement for the variance of the error 
or the covariance between two errors:

@evar cov(e1, e2) = c(2)

@evar var(e1) = exp(c(3))

@evar var(e2) = exp(c(4))*x

The syntax for the @EVAR assignment statements should be self-explanatory. Simply indi-
cate whether the term is a variance or covariance, identify the error(s), and enter the spec-
ification for the variance or covariance. There should be a separate line for each named 
error covariance or variance that you wish to specify. If an error term is named, but there 
are no corresponding “VAR=” or @EVAR specifications, the missing variance or covari-
ance specifications will remain at the default values of “NA” and “0”, respectively. 

As you might expect, in the special case where an equation contains a single error term, 
you may combine the named error and direct variance assignment statements:

@state sv1 = sv1(-1) + [ename = e1, var = exp(c(3))]

@state sv2 = sv2(-1) + [ename = e2, var = exp(c(4))]

@evar cov(e1, e2) = c(5)

Specification Examples

ARMAX(2, 3) with a Random Coefficient

We can use the syntax described above to define an ARMAX(2,3) with a random coeffi-
cient for the regression variable X:

y = c(1) + sv5*x + sv1 + c(4)*sv2 + c(5)*sv3 + c(6)*sv4

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var=exp(c(7))]

@state sv2 = sv1(-1)

@state sv3 = sv2(-1)

@state sv4 = sv3(-1)

@state sv5 = sv5(-1) + [var=3]

The AR coefficients are parameterized in terms of C(2) and C(3), while the MA coefficients 
are given by C(4), C(5) and C(6). The variance of the innovation is restricted to be a posi-
tive function of C(7). SV5 is the random coefficient on X, with variance restricted to be 3.
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Recursive and Random Coefficients

The following example describes a model with one random coefficient (SV1), one recursive 
coefficient (SV2), and possible correlation between the errors for SV1 and Y:

y = c(1) + sv1*x1 + sv2*x2 + [ename = e1, var = exp(c(2))]

@state sv1 = sv1(-1) + [ename = e2, var = exp(c(3)*x)]

@state sv2 = sv2(-1)

@evar cov(e1,e2) = c(4)

The variances and covariances in the model are parameterized in terms of the coefficients 
C(2), C(3) and C(4), with the variances of the observed Y and the unobserved state SV1 
restricted to be non-negative functions of the parameters.

Parameter Starting Values

Unless otherwise instructed, EViews will initialize all parameters to the current values in 
the corresponding coefficient vector or vectors. As in the system object, you may override 
this default behavior by specifying explicitly the desired values of the parameters using a 
PARAM or @PARAM statement. For additional details, see “Starting Values” on page 503.

Specifying Initial Conditions

By default, EViews will handle the initial conditions for you. For some stationary models, 
steady-state conditions allow us to solve for the values of  and . For cases where it is 
not possible to solve for the initial conditions, EViews will treat the initial values as diffuse, 
setting , and  to an arbitrarily high number to reflect our uncertainty about 
the values (see “Technical Discussion” on page 600).

You may, however have prior information about the values of  and . In this case, 
you can create a vector or matrix that contains the appropriate values, and use the 
“@MPRIOR” or “@VPRIOR” keywords to perform the assignment. 

To set the initial states, enter “@MPRIOR” followed by the name of a vector object. The 
length of the vector object must match the state dimension. The order of elements should 
follow the order in which the states were introduced in the specification screen.

@mprior v1

@vprior m1

To set the initial state variance matrix, enter “@VPRIOR” followed by the name of a sym 
object (note that it must be a sym object, and not an ordinary matrix object). The dimen-
sions of the sym must match the state dimension, with the ordering following the order in 
which the states appear in the specification. If you wish to set a specific element to be dif-
fuse, simply assign the element the “NA” missing value. EViews will reset all of the corre-
sponding variances and covariances to be diffuse.

α0 P0

α1 0 0= P1 0

α1 0 P1 0
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For example, suppose you have a two equation state space object named SS1 and you want 
to set the initial values of the state vector and the state variance matrix as

(22.17)

First create a named vector object, say SVEC0, to hold the initial values. Click Objects/
New Object, choose Matrix-Vector-Coef and enter the name SVEC0. Click OK, and then 
choose the type Vector and specify the size of the vector (in this case 2 rows). When you 
click OK, EViews will display the spreadsheet view of the vector SVEC0. Click the Edit +/
– button to toggle edit mode and type in the desired values. Then create a named matrix 
object, say SVAR0, in an analogous fashion.

Alternatively, you may find it easier to create and initialize the vector and matrix using 
commands. You can enter the following commands in the command window:

vector(2) svec0

svec0.fill 1, 0

matrix(2,2) svar0

svar0.fill(b=c) 1, 0.5, 0.5, 2

Then, simply add the lines

@mprior svec0

@vprior svar0

to your sspace object by editing the specification window. Alternatively, you can type the 
following commands in the command window:

ss1.append @mprior svec0

ss1.append @vprior svar0

For more details on matrix objects and the fill and append commands, see Chapter 4, 
“Matrix Language”, on page 55 of the Command and Programming Reference.

Specification Views

State space models may be very complex. To aid you in examining your specification, 
EViews provides views which allow you to view the text specification in a more compact 
form, and to examine the numerical values of your system matrices evaluated at current 
parameter values.

Click on the View menu and select Specification... The following Specification views are 
always available, regardless of whether the sspace has previously been estimated:

SV1
SV2

1
0

,= var SV1
SV2

1 0.5
0.5 2

=
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• Text Screen. This is the familiar text 
view of the specification. You should 
use this view when you create or edit 
the state space specification. This 
view may also be accessed by clicking 
on the Spec button on the sspace tool-
bar.

• Coefficient Description. Text descrip-
tion of the structure of your state space specification. The variables on the left-hand 
side, representing  and , are expressed as linear functions of the state vari-
ables , and a remainder term CONST. The elements of the matrix are the corre-
sponding coefficients. For example, the ARMAX example has the following 
Coefficient Description view:

• Covariance Description. Text description of the covariance matrix of the state space 
specification. For example, the ARMAX example has the following Covariance 
Description view:

αt 1+ yt
αt
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• Coefficient Values. Numeric description of the structure of the signal and the state 
equations evaluated at current parameter values. If the system coefficient matrix is 
time-varying, EViews will prompt you for a date/observation at which to evaluate 
the matrix.

• Covariance Values. Numeric description of the structure of the state space specifica-
tion evaluated at current parameter values. If the system covariance matrix is time-
varying, EViews will prompt you for a date/observation at which to evaluate the 
matrix.

Auto-Specification

To aid you in creating a state space specification, EViews provides you with “auto-specifi-
cation” tools which will create the text representation of a model that you specify from dia-
logs. This tool may be very useful if your model is a standard regression with fixed, 
recursive, and various random coefficient specifications, and/or your errors have a general 
ARMA structure.

Click on the AutoSpec button on 
the SSPACE toolbar, or select Procs/
Define State Space... from the 
menu. EViews opens a three tab 
dialog. The first tab is used to 
describe the basic regression portion 
of your specification. Enter the 
dependent variable, and any regres-
sors which have fixed or recursive 
coefficients. You can choose which 
COEF object EViews uses for indi-
cating unknowns when setting up 
the specification. At the bottom, you 
can specify an ARMA structure for 
your errors. Here, we have specified 
a simple ARMA(2,1) from the exam-
ple above.
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The second tab of the dialog is used 
to add any regressors which have 
random coefficients. Simply enter 
the appropriate regressors in each of 
the four edit fields. EViews allows 
you to define regressors with any 
combination of constant mean, 
AR(1), random walk, or random 
walk (with drift) coefficients.

Lastly, the Auto-Specification dialog 
allows you to choose between basic 
variance structures for your state 
space model. Click on the Variance 
Specification tab, and choose 
between an identity matrix, com-
mon diagonal (diagonal with common variances), diagonal, or general (unrestricted) vari-
ance matrix for the signals and for the states. The dialog also allows you to allow the signal 
equation(s) and state equations(s) to have non-zero error covariances. 

We emphasize the fact that your sspace object is not restricted to the choices provided in 
this dialog. If you find that the Auto-Specification is too restrictive, you can simply use it as 
a tool to build a basic specification, and then use the more general text tools to describe 
your model.

Estimating a State Space Model 

Once you have specified a state space model and verified that your specification is correct, 
you are ready to estimate the model. To open the estimation dialog, simply click on the 
Estimate button on the toolbar or select Procs/Estimate…

As with other estimation objects, EViews allows 
you to set the estimation sample, the maximum 
number of iterations, convergence tolerance, the 
estimation algorithm, derivative settings and 
whether to display the starting values. The 
default settings should provide a good start for 
most problems, but if you choose to change the 
settings, be sure to read “Setting Estimation 
Options” on page 666, which provides a 
detailed discussion of these options. When you 
click on OK, EViews will begin estimation using the specified settings.
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There are two additional things to keep in mind when estimating your model:

• Although the EViews Kalman filter routines will automatically handle any missing 
values in your sample, EViews does require that your estimation sample be contigu-
ous, with no gaps between successive observations. 

• If there are no unknown coefficients in your specification, you will still have to “esti-
mate” your sspace to run the Kalman filter and initialize elements that EViews needs 
in order to perform further analysis.

Interpreting the estimation results

After you choose the variance options and click OK, EViews presents the estimation results 
in the state space window. For example, if we specify an ARMA(2,1) for the log of the 
monthly international airline passenger totals from January 1949 to December 1960 (from 
Box and Jenkins, 1976, series G, p. 531):

log(passenger) = c(1) + sv1 + c(4)*sv2

@state sv1 = c(2)*sv1(-1) + c(3)*sv2(-1) + [var=exp(c(5))]

@state sv2 = sv1(-1)

and estimate the model, EViews will open the estimation output view.

The bulk of the output view should be familiar from other EViews estimation objects. The 
information at the top describes the basics of the estimation: the name of the sspace 
object, estimation method, the date and time of estimation, sample, and number of objects 
in the sample, convergence information, and the coefficient estimates. The bottom part of 

Sspace: SS_ARMA21
Estimation Method: Maximum Likelihood (Marquardt)
Date: 11/12/99   Time: 11:58
Sample: 1949M01 1960M12
Included observations: 144
Convergence achieved after 55 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) 5.499767 0.257517 21.35687 0.0000
C(2) 0.409013 0.167201 2.446239 0.0144
C(3) 0.547165 0.164608 3.324055 0.0009
C(4) 0.841481 0.100167 8.400800 0.0000
C(5) -4.589401 0.172696 -26.57501 0.0000

Final State Root MSE z-Statistic Prob.

SV1 0.267125 0.100792 2.650274 0.0080
SV2 0.425488 0.000000    NA 1.0000

Log likelihood 124.3366      Parameters 5
Akaike info criterion -1.629674      Likelihood observations 144
Schwarz criterion -1.485308      Missing observations 0
Hannan-Quinn criter. -1.571012      Partial observations 0

     Diffuse priors 0
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the view reports the maximized log likelihood value, the number of estimated parameters, 
and the associated information criteria.

Some parts of the output, however, are new and may require discussion. The bottom sec-
tion provides additional information about the handling of missing values in estimation. 
“Likelihood observations” reports the actual number of observations that are used in form-
ing the likelihood. This number (which is the one used in computing the information crite-
ria) will differ from the “Included observations” reported at the top of the view when 
EViews drops an observation from the likelihood calculation because all of the signal equa-
tions have missing values. The number of omitted observations is reported in “Missing 
observations”. “Partial observations” reports the number of observations that are included 
in the likelihood, but for which some equations have been dropped. “Diffuse priors” indi-
cates the number of initial state covariances for which EViews is unable to solve and for 
which there is no user initialization. EViews’ handling of initial states and covariances is 
described in greater detail in “Initial Conditions” on page 600.

EViews also displays the final one-step ahead values of the state vector,  and the 
corresponding RMSE values (square roots of the diagonal elements of ). For set-
tings where you may care about the entire path of the state vector and covariance matrix, 
EViews provides you with a variety of views and procedures for examining the state results 
in greater detail.

Working with the State Space

EViews provides a variety of specialized tools for specifying and examining your state 
space specification. As with other estimation objects, the sspace object provides additional 
views and procedures for examining the estimation results, performing inference and spec-
ification testing, and extracting results into other EViews objects.

State Space Views

Many of the state space views should be familiar from previous 
discussion:

• We have already discussed the Specification... views in 
our analysis of “Specification Views” on page 588 above.

• The Estimation Output view displays the coefficient 
estimates and summary statistics as described above in 
“Interpreting the estimation results” on page 592. You 
may also access this view by pressing Stats on the system toolbar.

• The Gradients and Derivatives... view should be familiar from other estimation 
objects. If the sspace contains parameters to be estimated, this view provides sum-

αT 1 T+
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mary and visual information about the gradients of the log likelihood at estimated 
parameters (if the sspace is estimated) or at current parameter vales.

• Actual, Predicted, Residual Graph displays, in graphical form, the actual and one-
step ahead fitted values of the signal dependent variable(s), , and the one-
step ahead standardized residuals, .

• Select Coefficient Covariance Matrix to view the estimated coefficient covariance.

• Wald Coefficient Tests… allows you to perform hypothesis tests on the estimated 
coefficients. For details, see “Wald Test (Coefficient Restrictions)” on page 368.

• Label allows you to annotate your object. See “Labeling Objects” on page 50.

Note that with the exception of the Label and Specification... views, these views are avail-
able only following successful estimation of your state space model.

Signal Views

When you click on View/Signal Views, EViews displays a sub-
menu containing additional view selections. Two of these selec-
tions are always available, even if the state space model has not 
yet been estimated:

• Actual Signal Table and Actual Signal Graph display the dependent signal vari-
ables in spreadsheet and graphical forms. If there are multiple signal equations, 
EViews will display a each series with its own axes.

The remaining views are only available following estimation:

• Graph Signal Series... opens a dialog with 
choices for the results to be displayed. The 
dialog allows you to choose between the one-
step ahead predicted signals, , the cor-
responding one-step residuals,  or stan-
dardized one-step residuals, , the 
smoothed signals, , smoothed signal distur-
bances, , or the standardized smoothed sig-
nal disturbances, .  (root mean square) 
standard error bands are plotted where appropriate.

• Std. Residual Correlation Matrix and Std. Residual Covariance Matrix display the 
correlation and covariance matrix of the standardized one-step ahead signal resid-
ual, .
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State Views

To examine the unobserved state components, click on View/
State Views to display the state submenu. EViews allows you to 
examine the initial or final values of the state components, or to 
graph the full time-path of various filtered or smoothed state 
data.

Two of the views are available either before or after estimation:

• Initial State Vector and Initial State Covariance Matrix display the values of the 
initial state vector, , and covariance matrix, . If the unknown parameters have 
previously been estimated, EViews will evaluate the initial conditions using the esti-
mated values. If the sspace has not been estimated, the current coefficient values 
will be used in evaluating the initial conditions.

This information is especially relevant in models where EViews is using the current 
values of the system matrices to solve for the initial conditions. In cases where you 
are having difficulty starting your estimation, you may wish to examine the values of 
the initial conditions at the starting parameter values for any sign of problems. 

The remainder of the views are only available following successful estimation:

• Final State Vector and Final State Covariance Matrix display the values of the final 
state vector, , and covariance matrix, , evaluated at the estimated parameters.

• Select Graph State Series... to display a dia-
log containing several choices for the state 
information. You can graph the one-step 
ahead predicted states, , the filtered 
(contemporaneous) states, , the smoothed 
state estimates, , smoothed state distur-
bance estimates, , or the standardized 
smoothed state disturbances, . In each 
case, the data are displayed along with corre-
sponding  standard error bands.

State Space Procedures

You can use the EViews procedures to create, estimate, forecast, and generate data from 
your state space specification.
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• Define State Space... calls up the Auto-Specification dialog 
(see “Auto-Specification” on page 590). This feature pro-
vides a method of specifying a variety of common state 
space specifications using interactive menus.

• Select Estimate... to estimate the parameters of the specifi-
cation (see “Estimating a State Space Model” on page 591).

These above items are available both before and after estimation. 
The Auto-Specification tool will replace both the existing state 
space specification and clear any results. Estimation will replace existing results.

Once you have estimated your sspace, EViews provides additional tools for generating 
data:

• The Forecast... dialog allows you to generate forecasts of the states, signals, and the 
associated standard errors using alternative methods and initialization approaches.

First, select the forecast method. You can select between dynamic, smoothed, and 
n-period ahead forecasting, as described in “Forecasting” on page 580. Note that any 
lagged endogenous variables on the right-hand side of your signal equations will be 
treated as predetermined for purposes of forecasting.

EViews allows you to save 
various types of forecast out-
put in series in your workfile. 
Simply check any of the out-
put boxes, and specify the 
names for the series in the 
corresponding edit field. 

You may specify the names 
either as a list, or using a 
wildcard expression. If you 
choose to list the names, the 
number of identifiers must 
match the number of signals in your specification. You should be aware that if an 
output series with a specified name already exists in the workfile, EViews will over-
write the entire contents of the series.

If you use a wildcard expression, EViews will substitute the name of each signal in 
the appropriate position in the wildcard expression. For example, if you have a 
model with signals Y1 and Y2, and elect to save the one-step predictions in 
“PRED*”, EViews will use the series PREDY1 and PREDY2 for output. There are two 
limitations to this feature: (1) you may not use the wildcard expression “*” to save 
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signal results since this will overwrite the original signal data, and (2) you may not 
use a wildcard when any signal dependent variables are specified by expression, or 
when there are multiple equations for a signal variable. In both cases, EViews will 
be unable to create the new series and will generate an error message.

Keep in mind that if your signal dependent variable is an expression, EViews will 
only provide forecasts of the expression. Thus, if your signal variable is LOG(Y), 
EViews will forecast the logarithm of Y.

Now enter a sample and specify the treatment of the initial states, and then click 
OK. EViews will compute the forecast and will place the results in the specified 
series. No output window will open.

There are several options available for setting the initial conditions. If you wish, you 
can instruct the sspace object to use the One-step ahead or Smoothed estimates of 
the state and state covariance as initial values for the forecast period. The two ini-
tialization methods differ in the amount of information used from the estimation 
sample; one-step ahead uses information up to the beginning of the forecast period, 
while smoothed uses the entire estimation period.

Alternatively, you may use EViews computed initial conditions. As in estimation, if 
possible, EViews will solve the Algebraic Riccati equations to obtain values for the 
initial state and state covariance at the start of each forecast interval. If solution of 
these conditions is not possible, EViews will use diffuse priors for the initial values. 

Lastly, you may choose to provide a vector and sym object which contain the values 
for the forecast initialization. Simply select User and enter the name of valid EViews 
objects in the appropriate edit fields.

Note that when performing either dynamic or smoothed forecasting, EViews 
requires that one-step ahead and smoothed initial conditions be computed from the 
estimation sample. If you choose one of these two forecasting methods and your 
forecast period begins either before or after the estimation sample, EViews will issue 
an error and instruct you to select a different initialization method.

When computing n-step ahead forecasting, EViews will adjust the start of the fore-
cast period so that it is possible to obtain initial conditions for each period using the 
specified method. For the one-step ahead and smoothed methods, this means that at 
the earliest, the forecast period will begin  observations into the estimation 
sample, with earlier forecasted values set to NA. For the other initialization methods, 
forecast sample endpoint adjustment is not required.

• Make Signal Series... allows you to create series containing various signal results 
computed over the estimation sample. Simply click on the menu entry to display the 
results dialog.

n 1−
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You may select the one-step ahead 
predicted signals, , one-step 
prediction residuals, , 
smoothed signal, or signal distur-
bance estimates,  or . EViews 
also allows you to save the corre-
sponding standard errors for each 
of these components (square roots 
of the diagonal elements of 

, , and ), or the stan-
dardized values of the one-step 
residuals and smoothed distur-
bances,  or .

Next, specify the names of your series in the edit field using a list or wildcards as 
described above. Click OK to generate a group containing the desired signal series.

As above, if your signal dependent variable is an expression, EViews will only export 
results based upon the entire expression.

• Make State Series... opens a dialog so you can create series containing results for 
the state variables computed over the estimation sample. You can choose to save 
either the one-step ahead state estimate , the filtered state mean , the 
smoothed states , state disturbances, , standardized state disturbances , or 
the corresponding standard error series (square roots of the diagonal elements of 

, ,  and ).

Simply select one of the output 
types, and enter the names of the 
output series in the edit field. The 
rules for specifying the output names 
are the same as for the Forecast... 
procedure described above. Note 
that the wildcard expression “*” is 
permitted when saving state results. 
EViews will simply use the state 
names defined in your specification.

We again caution you that if an out-
put series exists in the workfile, EViews will overwrite the entire contents of the 
series.

• Click on Make Endogenous Group to create a group object containing the signal 
dependent variable series.
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• Make Gradient Group creates a group object with series containing the gradients of 
the log likelihood. These series are named “GRAD##” where ## is a unique number 
in the workfile.

• Make Kalman Filter creates a new state space object containing the current specifi-
cation, but with all parameters replaced by their estimated values. In this way you 
can “freeze” the current state space for additional analysis. This proc is similar to 
the Make Model proc found in other estimation objects.

• Make Model creates a model object containing the state space equations.

• Update Coefs from Sspace will place the estimated parameters in the appropriate 
coefficient vectors.

Converting from Version 3 Sspace

Those of you who have worked with the EViews Version 3 sspace object will undoubtedly 
be struck by the large number of changes and additional features. In addition to new esti-
mation options, views and procedures, we have changed the underlying specification syn-
tax to provide you with considerable additional flexibility. There are a wide variety of 
models that may be estimated with the current sspace that were not allowed in the earlier 
version.

The cost of these additional features and added flexibility is that Version 3 sspace objects 
are not fully compatible with those in the current version. This has two important practical 
effects: 

• If you load in a workfile which contains a Version 3 sspace object, all previous esti-
mation results will be cleared and the text of the specification will be translated to 
the current syntax. The original text will be retained as comments at the bottom of 
your sspace specification.

• If you take a workfile which contains a new sspace object and attempt to read it into 
an earlier version of EViews, the object will not be read, and EViews will warn you 
that a partial load of the workfile was performed. If you subsequently save the work-
file, the original sspace object will not be saved with the workfile.

Commands

To declare a sspace object, use the keyword sspace followed by a valid EViews name. You 
may then use the append proc to add text lines for each line of the sspace.

sspace tvp

tvp.append cs = c(1) + sv1*inc

tvp.append @state sv1 = sv1(-1) + [var=c(2)]
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To estimate the unknown parameters of the model with convergence criterion 1e-8, maxi-
mum iterations 500, and displaying the starting values and other estimation options, you 
may enter

tvp.ml(m=500, c=1e-8, showopts)

To display the smoothed signals and the one-step ahead state estimates, enter

tvp.signalgraphs(t=smooth)

tvp.stategraphs(t=pred)

Here we save the four-period ahead state forecasts in SV1, and we save the signal forecasts 
in the series CSF:

tvp.forecast(method=n,n=4) @state * @signal csf 

See “Sspace” on page 40 of the Command and Programming Reference for additional 
details.

Technical Discussion

Initial Conditions

If there are no @MPRIOR or @VPRIOR statements in the specification, EViews will either: 
(1) solve for the initial state mean and variance, or (2) initialize the states and variances 
using diffuse priors. 

Solving for the initial conditions is only possible if the state transition matrices , and 
variance matrices  and  are non time-varying and satisfy certain stability conditions 
(see Harvey, p. 121). If possible, EViews will solve for the conditions  using the famil-
iar relationship: . If this is not possible, the states will 
be treated as diffuse unless otherwise specified.

When using diffuse priors, EViews follows the method adopted by Koopman, Shephard 
and Doornik (1999) in setting , and , where the  is an arbitrarily 
chosen large number. EViews uses the authors’ recommendation that one first set 

 and then adjust it for scale by multiplying by the largest diagonal element of the 
residual covariances.

T
P Q

P1 0
I T− T⊗( ) vec P( )× vec Q( )=

α1 0 0= P1 0 κIM= κ

κ 106=
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A model in EViews is a set of one or more equations that jointly describe the relation-
ship between a set of variables. The model equations can come from many sources: 
they can be simple identities, they can be the result of estimation of single equations, 
or they can be the result of estimation using any one of EViews’ multiple equation 
estimators. 

EViews models allow you to combine equations from all these sources inside a single 
object, which may be used to create a deterministic or stochastic joint forecast or 
simulation for all of the variables in the model. In a deterministic setting, the inputs 
to the model are fixed at known values, and a single path is calculated for the output 
variables. In a stochastic environment, uncertainty is incorporated into the model by 
adding a random element to the coefficients, the equation residuals or the exogenous 
variables.

Models also allow you to examine simulation results under different assumptions 
concerning the variables that are determined outside the model. In EViews, we refer 
to these sets of assumptions as scenarios, and provide a variety of tools for working 
with multiple model scenarios.

Even if you are working with only a single equation, you may find that it is worth cre-
ating a model from that equation so that you may use the features provided by the 
EViews Model object.

Overview

The following section provides a brief introduction to the purpose and structure of 
the EViews model object, and introduces terminology that will be used throughout 
the rest of the chapter.

A model consists of a set of equations that describe the relationships between a set of 
variables.

The variables in a model can be divided into two categories: those determined inside 
the model, which we refer to as the endogenous variables, and those determined out-
side the model, which we refer to as the exogenous variables. A third category of vari-
ables, the add factors, are a special case of exogenous variables.

In its most general form, a model can be written in mathematical notation as:

(23.1)F y x,( ) 0=
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where  is the vector of endogenous variables,  is the vector of exogenous variables, 
and  is a vector of real-valued functions . For the model to have a unique solu-
tion, there should typically be as many equations as there are endogenous variables.

In EViews, each equation in the model must have a unique endogenous variable assigned 
to it. That is, each equation in the model must be able to be written in the form

(23.2)

where  is the endogenous variable assigned to equation . EViews has the ability to nor-
malize equations involving simple transformations of the endogenous variable, rewriting 
them automatically into explicit form when necessary. Any variable that is not assigned as 
the endogenous variable for any equation is considered exogenous to the model.

Equations in an EViews model can either be inline or linked. An inline equation contains 
the specification for the equation as text within the model. A linked equation is one that 
brings its specification into the model from an external EViews object such as a single or 
multiple equation estimation object, or even another model. Linking allows you to couple 
a model more closely with the estimation procedure underlying the equations, or with 
another model on which it depends. For example, a model for industry supply and demand 
might link to another model and to estimated equations:

Equations can also be divided into stochastic equations and identities. Roughly speaking, 
an identity is an equation that we would expect to hold exactly when applied to real world 
data, while a stochastic equation is one that we would expect to hold only with random 
error. Stochastic equations typically result from statistical estimation procedures while 
identities are drawn from accounting relationships between the variables.

The most important operation performed on a model is to solve the model. By solving the 
model, we mean that for a given set of values of the exogenous variables, X, we will try to 
find a set of values for the endogenous variables, Y, so that the equations in the model are 
satisfied within some numerical tolerance. Often, we will be interested in solving the 
model over a sequence of periods, in which case, for a simple model, we will iterate 

INDUSTRY SUPPLY AND DEMAND MODEL

link to macro model object for forecasts of total consump-
tion

link to equation object containing industry supply equation

link to equation object containing industry demand equa-
tion

inline identity: supply = demand

y x
F fi y x,( )

yi fi y x,( )=

yi i
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through the periods one by one. If the equations of the model contain future endogenous 
variables we may require a more complicated procedure to solve for the entire set of peri-
ods simultaneously.

In EViews, when solving a model, we must first associate data with each variable in the 
model by binding each of the model variables to a series in the workfile. We then solve the 
model for each observation in the selected sample and place the results in the correspond-
ing series.

When binding the variables of the model to specific series in the workfile, EViews will 
often modify the name of the variable to generate the name of the series. Typically, this 
will involve adding an extension of a few characters to the end of the name. For example, 
an endogenous variable in the model may be called “Y”, but when EViews solves the 
model, it may assign the result into an observation of a series in the workfile called “Y_0”. 
We refer to this mapping of names as aliasing. Aliasing is an important feature of an 
EViews model, as it allows the variables in the model to be mapped into different sets of 
workfile series, without having to alter the equations of the model.

When a model is solved, aliasing is typically applied to the endogenous variables so that 
historical data is not overwritten. Furthermore, for models which contain lagged endoge-
nous variables, aliasing allows us to bind the lagged variables to either the actual historical 
data, which we refer to as a static forecast, or to the values solved for in previous periods, 
which we refer to as a dynamic forecast. In both cases, the lagged endogenous variables 
are effectively treated as exogenous variables in the model when solving the model for a 
single period.

Aliasing is also frequently applied to exogenous variables when using model scenarios. 
Model scenarios allow you to investigate how the predictions of your model vary under 
different assumptions concerning the path of exogenous variables or add factors. In a sce-
nario, you can change the path of an exogenous variable by overriding the variable. When 
a variable is overridden, the values for that variable will be fetched from a workfile series 
specific to that scenario. The name of the series is formed by adding a suffix associated 
with the scenario to the variable name. This same suffix is also used when storing the 
solutions of the model for the scenario. By using scenarios it is easy to compare the out-
comes predicted by your model under a variety of different assumptions without having to 
edit the structure of your model.

The following table gives a typical example of how model aliasing might map variable 
names in a model into series names in the workfile:
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Earlier, we mentioned a third category of variables called add factors. An add factor is a 
special type of exogenous variable that is used to shift the results of a stochastic equation 
to provide a better fit to historical data or to fine-tune the forecasting results of the model. 
While there is nothing that you can do with an add factor that could not be done using 
exogenous variables, EViews provides a separate interface for add factors to facilitate a 
number of common tasks.

An Example Model

In this section we demonstrate how we can use the EViews model object to implement a 
simple macroeconomic model of the U.S. economy. The specification of the model is taken 
from Pindyck and Rubinfeld (1998, p. 390). We have provided the data and other objects 
relating to the model in the sample workfile MACROMOD.WF1. You may find it useful to 
follow along with the steps in the example, and you can use the workfile to experiment fur-
ther with the model object.

The macro model contains three stochastic equations and one identity. In EViews notation, 
these can be written:

cn = c(1) + c(2)*y + c(3)*cn(-1)

i = c(4) + c(5)*(y(-1)-y(-2)) + c(6)*y + c(7)*r(-4)

r = c(8) + c(9)*y + c(10)*(y-y(-1)) + c(11)*(m-m(-1)) + c(12)* 
(r(-1)+r(-2))

y = cn + i + g

where

• CN is real personal consumption

• I is real private investment

Model Variable Workfile Series

endogenous Y Y historical data

Y_0 baseline solution 

Y_1 scenario 1

exogenous X X historical data followed by baseline forecast

X_1 overridden forecast for scenario 1
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• G is real government expenditure

• Y is real GDP less net exports

• R is the interest rate on three-month treasury bills

• M is the real money supply, narrowly defined (M1)

and the C(i) are the unknown coefficients.

The model follows the structure of a simple textbook ISLM macroeconomic model, with 
expenditure equations relating consumption and investment to GDP and interest rates, and 
a money market equation relating interest rates to GDP and the money supply. The fourth 
equation is the national accounts expenditure identity which ensures that the components 
of GDP add to total GDP. The model differs from a typical textbook model in its more 
dynamic structure, with many of the variables appearing in lagged or differenced form.

To begin, we must first estimate the unknown coefficients in the stochastic equations. For 
simplicity, we estimate the coefficients by simple single equation OLS. Note that this 
approach is not strictly valid, since Y appears on the right-hand side of several of the equa-
tions as an independent variable but is endogenous to the system as a whole. Because of 
this, we would expect Y to be correlated with the residuals of the equations, which violates 
the assumptions of OLS estimation. To adjust for this, we would need to use some form of 
instrumental variables or system estimation (for details, see the discussion of single equa-
tion “Two-stage Least Squares” beginning on page 283 and system “Two-Stage Least 
Squares” and related sections beginning on page 497).

To estimate the equations in EViews, we create three new equation objects in the workfile 
(using Objects/New Object/Equation), and then enter the appropriate specifications. 
Since all three equations are linear, we can specify them using list form. To minimize con-
fusion, we will name the three equations according to their endogenous variables. The 
resulting names and specifications are:

The three equations estimate satisfactorily and provide a reasonably close fit to the data, 
although much of the fit probably comes from the lagged endogenous variables. The con-
sumption and investment equations show signs of heteroskedasticity, possibly indicating 
that we should be modeling the relationships in log form. All three equations show signs of 
serial correlation. We will ignore these problems for the purpose of this example, although 
you may like to experiment with alternative specifications and compare their performance.

Equation eqcn: cn c y cn(-1)

Equation eqi: i c y(-1)-y(-2) y r(-4)

Equation eqr: r c y y-y(-1) m-m(-1) r(-1)+r(-2)
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Now that we have estimated the three equations, we can proceed to the model itself. To 
create the model, we simply select Objects/New Object/Model from the menus. To keep 
the model permanently in the workfile, we name the model by clicking on the Name but-
ton, and clicking on OK to accept the suggested name of “MODEL01”.

When first created, the model object defaults to equation view. Equation view allows us to 
browse through the specifications and properties of the equations contained in the model. 
Since we have not yet added any equations to the model, this window will appear empty.

To add our estimated stochastic equations to the model, we can simply copy-and-paste 
them across from the workfile window. To copy-and-paste, first select the objects in the 
workfile window, and then use Edit/Copy or the right mouse button menu to copy the 
objects to the clipboard. Click anywhere in the model object window, and use Edit/Paste 
or the right mouse button menu to paste the objects into the model object window.

.

The three estimated equations 
should now appear in the equa-
tion window. Each equation 
appears on a line with an icon 
showing the type of object, its 
name, its equation number, and 
a symbolic representation of the 
equation in terms of the variables that it contains. Double clicking on any equation will 
bring up a dialog of properties of that equation. For the moment, we do not need to alter 
any of these properties.

We have added our three equations as linked equations. This means if we go back and 
reestimate one or more of the equations, we can automatically update the equations in the 
model to the new estimates by using the procedure Procs/Links/Update All Links.

To complete the model, we must add our final equation, the national accounts expenditure 
identity. There is no estimation involved in this equation, so instead of including the equa-
tion via a link to an external object, we merely add the equation as inline text.

To add the identity, we click with the right mouse button anywhere in the equation win-
dow, and select Insert…. A dialog box will appear titled Model Source Edit which con-
tains a text box with the heading Enter one or more lines. Simply type the identity, “Y = 
CN + I + G”, into the text box, then click on OK to add it to the model.
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The equation should now 
appear in the model window. 
The appearance differs slightly 
from the other equations, 
which is an indicator that the 
new equation is an inline text 
equation rather than a link.

Our model specification is now complete. At this point, we can proceed straight to solving 
the model. To solve the model, simply click on the Solve button in the model window but-
ton bar. 

There are many options available 
from the dialog, but for the 
moment we will consider only 
the basic settings. As our first 
exercise in assessing our model, 
we would like to examine the 
ability of our model to provide 
one-period ahead forecasts of our 
endogenous variables. To do this, 
we can look at the predictions of 
our model against our historical 
data, using actual values for both 
the exogenous and the lagged 
endogenous variables of the 
model. In EViews, we refer to 
this as a static simulation. We can easily perform this type of simulation by choosing Static 
solution in the Dynamics box of the dialog.

We must also adjust the sample over which to solve the model, so as to avoid initializing 
our solution with missing values from our data. Most of our series are defined over the 
range of 1947:1 to 1999:4, but our money supply series is available only from 1959:1. 
Because of this, we set the sample to 1960:1 to 1999:4, allowing a few extra periods prior 
to the sample for any lagged variables.

We are now ready to solve the model. Simply click on OK to start the calculations. The 
model window will switch to the Solution Messages view.
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The output should be fairly self-
explanatory. In this case, the 
solution took less than a second 
and there were no errors while 
performing the calculations.

Now that we have solved the 
model, we would like to look at 
the results. When we solved the 
model, the results for the endog-
enous variables were placed into 
series in the workfile with names determined by the name aliasing rules of the model. 
Since these series are ordinary EViews objects, we could use the workfile window to open 
the series and examine them directly. However, the model object provides a much more 
convenient way to work with the series through a view called the Variable View.

The easiest way to switch to the variable view is to click on the button labeled Variables 
on the model window button bar.

 

In the variable 
view, each line 
in the window is 
used to repre-
sent a variable. 
The line contains 
an icon indicat-
ing the variable 
type (endogenous, exogenous or add factor), the name of the variable, the equation with 
which the variable is associated (if any), and the description field from the label of the 
underlying series (if available). The name of the variable may be colored according to its 
status, indicating whether it is being traced (blue) or whether it has been overridden (red). 
In our model, we can see from the variable view that CN, I, R and Y are endogenous vari-
ables in the model, while G and M are exogenous.

Much of the convenience of the variable view comes from the fact that it allows you to 
work directly with the names of the variables in the model, rather than the names of series 
in the workfile. This is useful because when working with a model, there will often be 
many different series associated with each variable. For endogenous variables there will be 
the actual historical values, and one or more series of solution values. For exogenous vari-
ables, there may be several alternative scenarios for the variable. The variable view and its 
associated procedures help you move between these different sets of series without having 
to worry about the many different names involved.
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For example, to look at graphs 
containing the actual and fit-
ted values for the endoge-
nous variables in our model, 
we simply select the four vari-
ables (by holding down the 
control key and clicking on 
the variable names), then use 
Procs/Make Graph… to enter 
the dialog. Again, the dialog 
has many options, but for our 
current purposes, we can 
leave most settings at their 
default values. Simply make 
sure that the Actuals and 
Active checkboxes are checked, set the sample for the graph to 1960:1 to 1999:4, then click 
on OK. 

The graphs show that as a one-step ahead predictor, the model performs quite well, 
although the ability of the model to predict investment deteriorates during the second half 
of the sample.

An alternative way of 
evaluating the model is 
to examine how the 
model performs when 
used to forecast many 
periods into the future. 
To do this, we must use 
our forecasts from previ-
ous periods, not actual 
historical data, when 
assigning values to the 
lagged endogenous 
terms in our model. In 
EViews, we refer to such 
a forecast as a dynamic 
forecast.

To perform a dynamic 
forecast, we resolve the 
model with a slightly 
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different set of options. Return to the model window and again click on the Solve button. 
In the model solution dialog, choose Dynamic solution in the Dynamics section of the 
dialog, and set the solution sample to 1985:1 to 1999:4. 

Click on OK to solve the model. To examine the results, return to the variable view, select 
the endogenous series again, and use Procs/Make Graph… exactly as above. Make sure 
the sample is set to 1985:1 to 1999:4 then click on OK. The results illustrate how our model 
would have performed if we had used it back in 1985 to make a forecast for the economy 
over the next fifteen years, assuming that we had used the correct paths for the exogenous 
variables. (In reality, we would not have known these values at the time the forecasts were 
generated). Not surprisingly, the results show substantial deviations from the actual out-
comes, although they do seem to follow the general trends in the data.

.

Once we are satisfied 
with the performance of 
our model against his-
torical data, we can use 
the model to forecast 
future values of our 
endogenous variables. 
The first step in produc-
ing such a forecast is to 
decide on values for our 
exogenous variables 
during the forecast 
period. These may be 
based on our best guess 
as to what will actually 
happen, or they may be 
simply one particular 
possibility that we are 
interested in consider-
ing. Often we will be 
interested in construct-
ing several different paths and then comparing the results.

In our model, we must provide future values for our two exogenous variables: government 
expenditure (G), and the real money supply (M). For our example we will try and con-
struct a set of paths that broadly follow the trends of the historical data.
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A quick look at our historical series for 
G suggests that the growth rate of G 
has been fairly constant since 1960, so 
that the log of G roughly follows a lin-
ear trend. Where G deviates from the 
trend, the deviations seem to follow a 
cyclical pattern.

As a simple model of this behavior, we 
can regress the log of G against a con-
stant and a time trend, using an AR(4) 
error structure to model the cyclical 
deviations. This gives the following 
equation, which we save in the work-
file as EQG:

log(g) = 6.252335365 + 0.004716422176*@trend + 

[ar(1)=1.169491542,ar(2)=-0.1986105967,ar(3)=0.2399131262, 

ar(4)=-0.245360709]

To produce a set of future values for G, we can use this equation to perform a dynamic 
forecast from 2000:1 to 2005:4, saving the results back into G itself (see page 621 for 
details).

The historical path of the real M1 
money supply, M, is quite different from 
G, showing spurts of growth followed 
by periods of stability. For now, we will 
assume that the real money supply sim-
ply remains at its last observed histori-
cal value over the entire forecast period.

We can use an EViews series statement 
to fill in this path. The following lines 
will fill the series M from 2000:1 to the 
last observation in the sample with the 
last observed historical value for M:

smpl 2000:1 @last

series m = m(-1)

smpl @all

We now have a set of possible values for our exogenous variables over the forecast period. 
After plotting, we have
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To produce forecasts for our endogenous variables, we return to the model window, click 
on Solve, choose Dynamic Solution, set the forecast sample for 2000:1 to 2005:4, and then 
click on OK. The Solution Messages screen should appear, indicating that the model was 
successfully solved.

To examine the results in a graph, we again use Procs/Make Graph… from the variables 
view, set the sample to 1995:1 to 2005:4 (so that we include five years of historical data), 
then click on OK. After adding a line in 1999:4 to separate historical and actual results, we 
get the graph:
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There is some strange 
behavior in the results. At 
the beginning of the fore-
cast period we see a heavy 
dip in investment, gdp and 
interest rates. This is fol-
lowed by a series of oscil-
lations in these series with 
a period of about a year, 
which die out slowly dur-
ing the forecast period. 
This is not a particularly 
convincing forecast.

There is little in the paths 
of our exogenous variables 
or the history of our 
endogenous variables that 
would lead to this sharp 
dip, suggesting that the 
problem may lie with the residuals of our equations. Our investment equation is the most 
likely candidate, as it has a large, persistent positive residual near the end of the historical 
data (see figure below). This residual will be set to zero over the forecast period when 
solving the model, which might be the cause of the sudden drop in investment at the 
beginning of the forecast.

One way of dealing with this prob-
lem would be to change the specifi-
cation of the investment equation. 
The simplest modification would be 
to add an autoregressive component 
to the equation, which would help 
reduce the persistence of the error. A 
better alternative would be to try to 
modify the variables in the equation 
so that the equation can provide 
some explanation for the sharp rise 
in investment during the 1990s.

An alternative approach to the prob-
lem is to leave the equation as it is, 
but to include an add factor in the equation so that we can model the path of the residual 



614—Chapter 23. Models
by hand. To include the add factor, we switch to the equation view of the model, double 
click on the investment equation, EQI, select the Add factor tab. Under Factor type, 
choose Equation intercept (residual shift). A prompt will appear asking if we would like 
to create the add factor series. Click on Yes to create the series. When you return to the 
variable view, you should see that a new variable, I_A, has been added to the list of vari-
ables in the model.

Using the add factor, we can specify any path we choose for the residual of the investment 
equation during the forecast period. By examining the Actual/Fitted/Residual Graph view 
from the equation object, we see that near the end of the historical data, the residual 
appears to be hovering around a value of about 160. We will assume that this value holds 
throughout the forecast period. We can set the add factor using a few simple EViews com-
mands:

smpl 2000:1 @last

i_a = 161

smpl @all

With the add factor in place, we can follow exactly the same procedure that we followed 
above to produce a new set of solutions for the model and a new graph for the results. 

Including the add factor 
in the model has made 
the results far more 
appealing. The sudden 
dip in the first period of 
the forecast that we saw 
above has been removed. 
The oscillations are still 
apparent, but are much 
less pronounced.

So far, we have been 
working under the 
assumption that our sto-
chastic equations hold 
exactly over the forecast 
period. In reality, we 
would expect to see the 
same sort of errors 
occurring in the future as 
we have seen in history. We have also been ignoring the fact that some of the coefficients 
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in our equations are estimated, rather than fixed at known values. We may like to reflect 
this uncertainty about our coefficients in some way in the results from our model.

We can incorporate these features into our EViews model using stochastic simulation.

Up until now, we have thought of our model as forecasting a single point for each of our 
endogenous variables at each observation. As soon as we add uncertainty to the model, we 
should think instead of our model as predicting a whole distribution of outcomes for each 
variable at each observation. Our goal is to summarize these distributions using appropri-
ate statistics.

If the model is linear (as in our example) and the errors are normal, then the endogenous 
variables will follow a normal distribution, and the mean and standard deviation of each 
distribution should be sufficient to describe the distribution completely. In this case, the 
mean will actually be equal to the deterministic solution to the model. If the model is not 
linear, then the distributions of the endogenous variables need not be normal. In this case, 
the quantiles of the distribution may be more informative than the first two moments, 
since the distributions may have tails which are very different from the normal case. In a 
non-linear model, the mean of the distribution need not match up to the deterministic 
solution of the model.

EViews makes it easy to calculate statistics to describe the distributions of your endoge-
nous variables in an uncertain environment. To simulate the distributions, the model 
object uses a Monte Carlo approach, where the model is solved many times with pseudo-
random numbers substituted for the unknown errors at each repetition. This method pro-
vides only approximate results. However, as the number of repetitions is increased, we 
would expect the results to approach their true values.

To return to our simple macroeconomic model, we can use a stochastic simulation to pro-
vide some measure of the uncertainty in our results by adding error bounds to our predic-
tions. From the model window, click on the Solve button. When the model solution dialog 
appears, choose Stochastic for the simulation type. In the Solution scenarios & output 
box, make sure that the Std. Dev. checkbox in the Active section is checked. Click on OK 
to begin the simulation.

The simulation should take about half a minute. Status messages will appear to indicate 
progress through the repetitions. When the simulation is complete, you may return to the 
variable view, use the mouse to select the variables as discussed above, and then select 
Procs/Make Graph…. When the Make Graph dialog appears, select the option Mean +- 
2 standard deviations in the Solution Series list box in the Graph Series area on the right 
of the dialog. Set the sample to 1995:1 to 2005:4 and click on OK. 
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The error bounds in the 
resulting output graph show 
that we should be reluctant 
to place too much weight on 
the point forecasts of our 
model, since the bounds are 
quite wide on several of the 
variables. Much of the uncer-
tainty is probably due to the 
large residual in the invest-
ment equation, which is cre-
ating a lot of variation in 
investment and interest rates 
in the stochastic simulation.

Another exercise we might 
like to consider when work-
ing with our model is to 
examine how the model 
behaves under alternative 
assumptions with respect to the exogenous variables. One approach to this would be to 
directly edit the exogenous series so that they contain the new values, and then resolve the 
model, overwriting any existing results. The problem with this approach is that it makes it 
awkward to manage the data and to compare the different sets of outcomes.

EViews provides a better way of carrying out exercises such as this through the use of 
model scenarios. Using a model scenario, you can override a subset of the exogenous vari-
ables in a model to give them new values, while using the values stored in the actual series 
for the remainder of the variables. When you solve for a scenario, the values of the endog-
enous variables are assigned into workfile series with an extension specific to that sce-
nario, making it easy to keep multiple solutions for the model within a single workfile.

To create a scenario, we begin by selecting View/Scenarios… from the model object 
menus. The scenario specification dialog will appear with a list of the scenarios currently 
included in the model. There are two special scenarios that are always present in the 
model: Actuals and Baseline. These two scenarios are special in that they cannot contain 
any overridden variables. 
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They differ in that the actuals 
scenario writes its solution val-
ues directly into the workfile 
series with the same names as 
the endogenous variables, while 
the baseline scenario writes its 
solution values back into work-
file series with the extension 
“_0”.

To add a new scenario to the 
model, simply click on the but-
ton labeled Create new sce-
nario. A new scenario will be 
created immediately. You can 
use this dialog to select which 
scenario is currently active, or to rename and delete scenarios.

Once we have created the scenario, we can modify the scenario from the baseline case by 
overriding one of our exogenous variables. To do this, return to the variable window of the 
model, click on the variable M, use the right mouse button to call up the Properties dialog 
for the variable, and then in the Scenario box, click on the checkbox for Use override 
series in scenario. A message will appear asking if you would like to create the new 
series. Click on Yes to create the series, then OK to return to the variable window.

In the variable window, the variable name “M” should now appear in red, indicating that it 
has been overridden in the active scenario. This means that the variable M will now be 
bound to the series M_1 instead of the series M when solving the model. In our previous 
forecast for M, we assumed that the real money supply would be kept at a constant level 
during the forecast period. For our alternative scenario, we are going to assume that the 
real money supply is contracted sharply at the beginning of the forecast period, and held at 
this lower value throughout the forecast. We can set the new values using a few simple 
commands:

smpl 2000:1 2005:4

series m_1 = 900

smpl @all

As before, we can solve the model by clicking on the Solve button. Restore the Simulation 
type to deterministic, make sure that Scenario 1 is the active scenario, then click on OK. 
Once the solution is complete, we can use Procs/Make Graph… to display the results fol-
lowing the same procedure as above. Restore the Solution series list box to the setting 
Deterministic solutions, then check both the Active and Compare solution checkboxes 
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below, making sure that the active scenario is set to Scenario 1, and the comparison sce-
nario is set to Baseline. Again set the sample to 1995:1 to 2005:4. The following graph 
should be displayed:

The simulation results suggest that the cut in the money supply causes a substantial 
increase in interest rates, which creates a small reduction in investment and a relatively 
minor drop in income and consumption. Overall, the predicted effects of changes in the 
money supply on the real economy are relatively minor in this model.

This concludes the discussion of our example model. The remainder of this chapter pro-
vides detailed information about working with particular features of the EViews model 
object.

Building a Model

Creating a Model

The first step in working with a model is to create the model object itself. There are several 
different ways of creating a model:

• You can create an empty model by using Objects/New Object… and then choosing 
Model, or by performing the same operation using the right mouse button menu 
from inside the workfile window.
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• You can select a list of estimation objects in the workfile window (equations, VARs, 
systems), and then select Open as Model from the right mouse button menu. This 
item will create a model which contains the equations from the selected objects as 
links.

• You can use the Make model procedure from an estimation object to create a model 
containing the equation or equations in that object.

Adding Equations to the Model

The equations in a model can be classified into two types: linked equations and inline 
equations. Linked equations are equations that import their specification from other 
objects in the workfile. Inline equations are contained inside the model as text.

There are a number of ways to add equations to your model:

• To add a linked equation: from the workfile window, select the object which con-
tains the equation or equations you would like to add to the model, then copy-and-
paste the object into the model equation view window.

• To add an equation using text: select Insert… from the right mouse button menu. In 
the text box titled: Enter one or more lines…, type in one or more equations in 
standard EViews format. You can also add linked equations from this dialog by typ-
ing a colon followed by the name of the object you would like to link to, for example 
“:EQ1”, because this is the text form of a linked object.

In an EViews model, the first variable that appears in an equation will be considered the 
endogenous variable for that equation. Since each endogenous variable can be associated 
with only one equation, you may need to rewrite your equations to ensure that each equa-
tion begins with a different variable. For example, say we have an equation in the model

x / y = z

EViews will associate the equation with the variable X. If we would like the equation to be 
associated with the variable Y, we would have to rewrite the equation: 

1 / y * x = z

Note that EViews has the ability to handle simple expressions involving the endogenous 
variable. You may use functions like log(), D() and Dlog() on the left-hand side of your 
equation. EViews will normalize the equation into explicit form if the Gauss-Seidel method 
is selected for solving the model.
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Removing equations from the model

To remove equations from the model, simply select the equations using the mouse in 
Equation view, then use Delete from the right mouse button menu to remove the equa-
tions.

Both adding and removing equations from the model will change which variables are con-
sidered endogenous to the model.

Updating Links in the Model

If a model contains linked equations, changes to the specification of the equations made 
outside the model can cause the equations contained in the model to become out of date. 
You can incorporate these changes in the model by using the procedure Update All Links. 
Alternatively, you can update just a single equation using the Update Link item from the 
right mouse button menu. Links are also updated when a workfile is reloaded from disk.

Sometimes, you may want to sever equations in the model from their linked objects. For 
example, you may wish to see the entire model in text form, with all equations written in 
place. To do this, you can use the Break All Links procedure to convert all linked equa-
tions in the model into inline text. You can convert just a single equation by selecting the 
equation, then using Break Link from the right mouse button menu.

When a link is broken, the equation is written in text form with the unknown coefficients 
replaced by their point estimates. Any information relating to uncertainty of the coeffi-
cients will be lost. This will have no effect on deterministic solutions to the model, but 
may alter the results of stochastic simulations if the Include coefficient uncertainty 
option has been selected.

Working with the Model Structure

As with other objects in EViews, we can look at the information contained in the model 
object in several ways. Since a model is a set of equations that describe the relationship 
between a set of variables, the two primary views of a model are the equation view and the 
variable view. EViews also provides two additional views of the structure of the model: the 
block view and the text view.

Equation View

The equation view is used for displaying, selecting, and modifying the equations contained 
in the model. An example of the equation view can be seen on page 607.

Each line of the window is used to represent either a linked object or an inline text equa-
tion. Linked objects will appear similarly to how they do in the workfile, with an icon rep-
resenting their type, followed by the name of the object. Even if the linked object contains 
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many equations, it will use only one line in the view. Inline equations will appear with a 
“TXT” icon, followed by the beginning of the equation text in quotation marks.

The remainder of the line contains the equation number, followed by a symbolic represen-
tation of the equation, indicating which variables appear in the equation.

Any errors in the model will appear as red lines containing an error message describing the 
cause of the problem.

You can open any linked objects directly from the equation view. Simply select the line rep-
resenting the object using the mouse, then choose Open Link from the right mouse button 
menu.

The contents of a line can be examined in more detail using the equation properties dialog. 
Simply select the line with the mouse, then choose Properties… from the right mouse but-
ton menu. Alternatively, simply double click on the object to call up the dialog

For a link to a single equation, 
the dialog shows the func-
tional form of the equation, 
the values of any estimated 
coefficients, and the standard 
error of the equation residual 
from the estimation. If the link 
is to an object containing 
many equations, you can 
move between the different 
equations imported from the 
object using the Endogenous 
list box at the top of the dialog. 
For an inline equation, the dia-
log simply shows the text of 
the equation.

The Edit Equation or Link Specification button allows you to edit the text of an inline 
equation or to modify a link to point to an object with a different name. A link is repre-
sented in text form as a colon followed by the name of the object. Note that you cannot 
modify the specification of a linked object from within the model object, you must work 
directly with the linked object itself.

In the bottom right of the dialog there are a set of fields that allow you to set the stochastic 
properties of the residual of the equation. If you are only performing deterministic simula-
tions, then these settings will not affect your results in any way. If you are performing sto-
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chastic simulations, then these settings are used in conjunction with the solution options 
to determine the size of the random innovations applied to this equation.

The Stochastic with S.D. option for Equation type lets you set a standard deviation for 
any random innovations applied to the equation. If the standard deviation field is blank or 
is set to “NA”, then the standard deviation will be estimated from the historical data. The 
Identity option specifies that the selected equation is an identity, and should hold without 
error even in a stochastic simulation. See “Stochastic Options” on page 634 below for fur-
ther details.

The equation properties dialog also gives you access to the property dialogs for the endog-
enous variable and add factor associated with the equation. Simply click on the appropri-
ate tab. These will be discussed in greater detail below.

Variable View

The variable view is used for adjusting options related to variables and for displaying and 
editing the series associated with the model (see the discussion in “An Example Model”  
(p. 608)). The variable view lists all the variables contained in the model, with each line 
representing one variable. Each line begins with an icon classifying the variable as endoge-
nous, exogenous or an add factor. This is followed by the name of the variable, the equa-
tion number associated with the variable, and the description of the variable. The 
description is read from the associated series in the workfile.

Note that the names and types of the variables in the model are determined fully by the 
equations of the model. The only way to add a variable or to change the type of a variable 
in the model is to modify the model equations.

You can adjust what is displayed in the variable view in a number of ways. By clicking on 
the Filter/Sort button just above the variable list, you can choose to display only variables 
that match a certain name pattern, or to display the variables in a particular order. For 
example, sorting by type of variable makes the division into endogenous and exogenous 
variables clearer, while sorting by override highlights which variables have been overrid-
den in the currently active scenario.

The variable view also allows you to browse through the dependencies between variables 
in the model by clicking on the Dependencies button. Each equation in the model can be 
thought of as a set of links that connect other variables in the model to the endogenous 
variable of the equation. Starting from any variable, we can travel up the links, showing all 
the endogenous variables that this variable directly feeds into, or we can travel down the 
links, showing all the variables upon which this variable directly depends. This may some-
times be useful when trying to find the cause of unexpected behavior. Note, however, that 
in a simultaneous model, every endogenous variable is indirectly connected to every other 
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variable in the same block, so that it may be hard to understand the model as a whole by 
looking at any particular part.

You can quickly view or edit one or more of the series associated with a variable by double 
clicking on the variable. For several variables, simply select each of them with the mouse 
then double click inside the selected area.

Block Structure View

The block structure view of the model analyzes and displays any block structure in the 
dependencies of the model.

Block structure refers to whether the model can be split into a number of smaller parts, 
each of which can be solved for in sequence. For example, consider the system:

Because the variable Z does not appear in either of the first two equations, we can split 
this equation system into two blocks: a block containing the first two equations, and a 
block containing the third equation. We can use the first block to solve for the variables X 
and Y, then use the second block to solve for the variable Z. By using the block structure of 
the system, we can reduce the number of variables we must solve for at any one time. This 
typically improves performance when calculating solutions.

Blocks can be classified further into recursive and simultaneous blocks. A recursive block is 
one which can be written so that each equation contains only variables whose values have 
already been determined. A recursive block can be solved by a single evaluation of all the 
equations in the block. A simultaneous block cannot be written in a way that removes 
feedback between the variables, so it must be solved as a simultaneous system. In our 
example above, the first block is simultaneous, since X and Y must be solved for jointly, 
while the second block is recursive, since Z depends only on X and Y, which have already 
been determined in solving the first block.

The block structure view displays the structure of the model, labeling each of the blocks as 
recursive or simultaneous. EViews uses this block structure whenever the model is solved. 
The block structure of a model may also be interesting in its own right, since reducing the 
system to a set of smaller blocks can make the dependencies in the system easier to under-
stand.

block 1 x = y + 4

y = 2*x – 3

block 2 z = x + y
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Text View

The text view of a model allows you to see the entire structure of the model in a single 
screen of text. This provides a quick way to input small models, or a way to edit larger 
models using copy-and-paste.

The text view consists of a series of lines. In a simple model, each line simply contains the 
text of one of the inline equations of the model. More complicated models may contain one 
of more of the following:

• A line beginning with a colon “:” represents a link to an external object. The colon 
must be followed by the name of an object in the workfile. Equations contained in 
the external object will be imported into the model whenever the model is opened, 
or when links are updated.

• A line beginning with “@ADD” specifies an add factor. The add factor command has 
the form: 

@add(v) endogenous_name add_name 

where endogenous_name is the name of the endogenous variable of the equation to 
which the add factor will be applied, and add_name is the name of the series. The 
option (v) is used to specify that the add factor should be applied to the endogenous 
variable. The default is to apply the add factor to the residual of the equation. See 
“Using Add Factors” on page 626 for details.

• A line beginning with “@INNOV”' specifies an innovation variance. The innovation 
variance has two forms. When applied to an endogenous variable it has the form 

@innov endogenous_name number 

where endogenous name is the name of the endogenous variable and number is the 
standard deviation of the innovation to be applied during stochastic simulation. 
When applied to an exogenous variable, it has the form 

@innov exogenous_name number_or_series

where exogenous name is the name of the exogenous variable and number_or_series 
is either a number or the name of the series that contains the standard deviation to 
be applied to the variable during stochastic simulation. Note that when an equation 
in a model is linked to an external estimation object, the variance from the estimated 
equation will be brought into the model automatically and does not require an 
@innov specification unless you would like to modify its value.

• The keyword “@TRACE”, followed by the names of the endogenous variables that 
you wish to trace may be used to request model solution diagnostics. See “Diagnos-
tics” on page 637.
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Users of earlier versions of EViews should note that two commands that were previously 
available, @assign and @exclude, are no longer part of the text form of the model. These 
commands have been removed because they now address options that apply only to spe-
cific model scenarios rather than to the model as a whole. When loading in models created 
by earlier versions of EViews, these commands will be converted automatically into sce-
nario options in the new model object.

Specifying Scenarios

When working with a model, you will often want to compare model predictions under a 
variety of different assumptions regarding the paths of your exogenous variables, or with 
one or more of your equations excluded from the model. Model scenarios allow you to do 
this without overwriting previous data or changing the structure of your model.

The most important function of a scenario is to specify which series will be used to hold 
the data associated with a particular solution of the model. To distinguish the data associ-
ated with different scenarios, each scenario modifies the names of the model variables 
according to an aliasing rule. Typically, aliasing will involve adding an underline followed 
by a number, such as “_0” or “_1” to the variable names of the model. The data for each 
scenario will be contained in series in the workfile with the aliased names.

Model scenarios support the analysis of different assumptions for exogenous variables by 
allowing you to override a set of variables you would like to alter. Exogenous variables 
which are overridden will draw their values from series with names aliased for that sce-
nario, while exogenous variables which are not overridden will draw their values from 
series with the same name as the variable.

Scenarios also allow you to exclude one or more endogenous variables from the model. 
When an endogenous variable is excluded, the equation associated with that variable is 
dropped from the model and the value of the variable is taken directly from the workfile 
series with the same name. Excluding an endogenous variable effectively treats the vari-
able as an exogenous variable for the purposes of solving the model.

When excluding an endogenous variable, you can specify a sample range over which the 
variable should be excluded. One use of this is to handle the case where more recent his-
torical data is available for some of your endogenous variables than others. By excluding 
the variables for which you have data, your forecast can use actual data where possible, 
and results from the model where data are not yet available.

Each model can contain many scenarios. You can view the scenarios associated with the 
current model by choosing View/Scenario Specification…as shown above on page 617.

There are two special scenarios associated with every model: actuals and baseline. These 
two scenarios have in common the special property that they cannot contain any overrides 
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or excludes. They differ in that the actuals scenario writes the values for endogenous vari-
ables back into the series with the same name as the variables in the model, while the 
baseline scenario modifies the names. When solving the model using actuals as your 
active scenario, you should be careful not to accidentally overwrite your historical data.

The baseline scenario gets its name from the fact that it provides the base case from which 
other scenarios are constructed. Scenarios differ from the baseline by having one or more 
variables overridden or excluded. By comparing the results from another scenario against 
those of the baseline case, we can separate out the movements in the endogenous vari-
ables that are due to the changes made in that particular scenario from movements which 
are present in the baseline itself.

The Select Scenario page of the dialog allows you to select, create, copy, delete and 
rename the scenarios associated with the model. You may also apply the selected scenario 
to the baseline data, which involves copying the series associated with any overridden 
variables in the selected scenario on top of the baseline values. Applying a scenario to the 
baseline is a way of committing to the edited values of the selected scenario making them 
a permanent part of the baseline case.

The Scenario overrides page provides a summary of variables which have been overrid-
den in the selected scenario and equations which have been excluded. This is a useful way 
of seeing a complete list of all the changes which have been made to the scenario from the 
baseline case.

The Aliasing page allows you to examine the name aliasing rules associated with any sce-
nario. The page displays the complete set of aliases that will be applied to the different 
types of variables in the model.

Although the scenario dialog lets you see all the settings for a scenario in one place, you 
will probably alter most scenario settings directly from the variable view instead. For both 
exogenous variables and add factors, you can select the variable from the variable view 
window, then use the right mouse button menu to call up the properties page for the vari-
able. The override status of the variable can be adjusted using the Use override checkbox. 
Once a variable has been overridden, it will appear in red in the variable view.

Using Add Factors

Normally, when a model is solved deterministically, the equations of the model are solved 
so that each of the equations of the model is exactly satisfied. When a model is solved sto-
chastically, random errors are added to each equation, but the random errors are still cho-
sen so that their average value is zero.

If we have no information as to the errors in our stochastic equations that are likely to 
occur during the forecast period, then this behavior is appropriate. If, however, we have 
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additional information as to the sort of errors that are likely during our forecast period, 
then we may incorporate that information into the model using add factors.

The most common use for add factors is to provide a smoother transition from historical 
data into the forecast period. Typically, add factors will be used to compensate for a poor 
fit of one or more equations of the model near the end of the historical data, when we sus-
pect this will persist into the forecast period. Add factors provide an ad hoc way of trying 
to adjust the results of the model without respecifying or reestimating the equations of the 
model.

In reality, an add factor is just an extra exogenous variable which is included in the 
selected equation in a particular way. EViews allows an add factor to take one of two 
forms. If our equation has the form

(23.3)

then we can provide an add factor for the equation intercept or residual by simply includ-
ing the add factor at the end of the equation:

(23.4)

Alternatively we can provide an add factor for the endogenous variable of the model by 
including the add factor next to the endogenous variable:

(23.5)

where the sign of the add factor is reversed so that it acts in the same direction as for the 
previous case.

If the endogenous variable appears by itself on the left hand side of the equal sign, then 
the two types of add factor are equivalent. If the endogenous variable is contained in an 
expression, for example, a log transformation, then this is no longer the case. Although the 
two add factors will have a similar effect, they will be expressed in different units with the 
former in the units of the residual of the equation, and the latter in the units of the endog-
enous variable of the equation.

There are two ways to include add factors. The easiest way is to go to the equation view of 
the model, then double click on the equation in which you would like to include an add 
factor. When the equation properties dialog appears, switch to the Add Factors tab. In the 
Factor type box, select whether you would like an intercept or an endogenous variable 
shift add factor. A message box will prompt for whether you would like to create a series in 
the workfile to hold the add factor values. Click on Yes to create the series.

f yi( ) fi y x,( )=

f yi( ) fi y x,( ) a+=

f yi a−( ) fi y x,( )=
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The series will initially be filled with NAs. 
You can initialize the add factor using one 
of several methods by clicking on the Ini-
tialize Add Factor button. A dialog box will 
come up offering the following options:

• Zero: set the add factor to zero for 
every period.

• So that this equation has no residu-
als at actuals: set the values of the 
add factor so that the equation is 
exactly satisfied without error when 
the variables of the model are set to 
the values contained in the actual series (typically the historical data).

• So that this equation has no residuals at actives: set the values of the add factor so 
that the equation is exactly satisfied without error when the variables of the model 
are set to the values contained in the endogenous and exogenous series associated 
with the active scenario.

• So model solves the target variable to the values of the trajectory series: set the 
values of the add factor so that an endogenous variable of the model follows a par-
ticular target path when the model is solved.

You can also change the sample over which you would like the add factor to be initialized 
by modifying the Initialization sample box. Click on OK to accept the settings.

Once an add factor has been added to an equation, it will appear in the variable view of 
the model as an additional variable. If an add factor is present in any scenario, then it must 
be present in every scenario, although the values of the add factor can be overridden for a 
particular scenario in the same way as for an exogenous variable.

The second way to handle add factors is to assign, initialize or override them for all the 
equations in the model at the same time using the Procs/Add Factors menu from the 
model window. For example, to create a complete set of add factors that make the model 
solve to actual values over history, we can use Add Factors/Equation Assignment... to 
create add factors for every equation, then use Add Factors/Set Values... to set the add 
factors so that all the equations have no residuals at the actual values.

When solving a model with an add factor, any missing values in the add factor will be 
treated as zeros.
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Solving the Model

Once the model specification is complete, you can solve the model. EViews can perform 
both deterministic and stochastic simulations.

A deterministic simulation consists of the following steps:

• The block structure of the model is analyzed.

• The variables in the model are bound to series in the workfile, according to the over-
ride settings and name aliasing rules of the scenario that is being solved. If an 
endogenous variable is being tracked and a series does not already exist in the work-
file, a new series will be created. If an endogenous variable is not being tracked, a 
temporary series will be created to hold the results.

• The equations of the model are solved for each observation in the solution sample, 
using an iterative algorithm to compute values for the endogenous variables.

• Any temporary series which were created are deleted.

• The results are rounded to their final values.

A stochastic simulation follows a similar sequence, with the following differences:

• When binding the variables, a temporary series is created for every endogenous vari-
able in the model. Additional series in the workfile are used to hold the statistics for 
the tracked endogenous variables. If bounds are being calculated, extra memory is 
allocated as working space for intermediate results.

• The model is solved repeatedly for different draws of the stochastic components of 
the model. If coefficient uncertainty is included in the model, then a new set of coef-
ficients is drawn before each repetition. During the repetition, errors are generated 
for each observation in accordance with the residual uncertainty and the exogenous 
variable uncertainty in the model. At the end of each repetition, the statistics for the 
tracked endogenous variables are updated to reflect the additional results.

• If a comparison is being performed with an alternate scenario, then the same set of 
random residuals and exogenous variable shocks are applied to both scenarios dur-
ing each repetition. This is done so that the deviation between the two is based only 
on differences in the exogenous and excluded variables, not on differences in ran-
dom errors.

Models Containing Future Values

So far, we have assumed that the structure of the model allows us to solve each period of 
the model in sequence. This will not be true in the case where the equations of the model 
contain future (as well as past) values of the endogenous variables.
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Consider a model where the equations have the form:

(23.6)

where  is the complete set of equations of the model,  is a vector of all the endogenous 
variables,  is a vector of all the exogenous variables, and the parentheses follow the 
usual EViews syntax to indicate leads and lags.

Since solving the model for any particular period requires both past and future values of 
the endogenous variables, it is not possible to solve the model recursively in one pass. 
Instead, the equations from all the periods across which the model will be solved must be 
treated as a simultaneous system, and we will require terminal as well as initial conditions. 
For example, in the case with a single lead and a single lag and a sample that runs from  
to , we must effectively solve the entire stacked system:

(23.7)

where the unknowns are , ,...  the initial conditions are given by  and the 
terminal conditions are used to determine . Note that if the leads or lags extend more 
than one period, we will require multiple periods of initial or terminal conditions.

To solve models such as these, EViews applies a Gauss-Seidel iterative scheme across all 
the observations of the sample. Roughly speaking, this involves looping repeatedly through 
every observation in the forecast sample, at each observation solving the model while 
treating the past and future values as fixed, where the loop is repeated until changes in the 
values of the endogenous variables between successive iterations become less than a spec-
ified tolerance.

This method is often referred to as the Fair-Taylor method, although the Fair-Taylor algo-
rithm includes a particular handling of terminal conditions (the extended path method) 
that is slightly different from the options provided by EViews. When solving the model, 
EViews allows the user to specify fixed end conditions by providing values for the endoge-
nous variables beyond the end of the forecast sample, or to determine the terminal condi-
tions endogenously by adding extra equations for the terminal periods which impose either 
a constant level, a linear trend, or a constant growth rate on the endogenous variables for 
values beyond the end of the forecast period.

F y maxlag−( ) … y 1−( ) y y 1( ) … y maxlead( ) x, , , , , , ,( ) 0=
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…
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Although this method is not guaranteed to converge, failure to converge is often a sign of 
the instability which results when the influence of the past or the future on the present 
does not die out as the length of time considered is increased. Such instability is often 
undesirable for other reasons and may indicate a poorly specified model.

Model Consistent Expectations

One source of models in which future values of endogenous variables may appear in equa-
tions are models of economic behavior in which expectations of future periods influence 
the decisions made in the current period. For example, when negotiating long term wage 
contracts, employers and employees must consider expected changes in prices over the 
duration of the contract. Similarly, when choosing to hold a security denominated in for-
eign currency, an individual must consider how the exchange rate is expected to change 
over the time that they hold the security.

Although the way that individuals form expectations is obviously complex, if the model 
being considered accurately captures the structure of the problem, we might expect the 
expectations of individuals to be broadly consistent with the outcomes predicted by the 
model. In the absence of any other information, we may choose to make this relationship 
hold exactly. Expectations of this form are often referred to as model consistent expecta-
tions.

If we assume that there is no uncertainty in the model, imposing model consistent expecta-
tions simply involves replacing any expectations that appear in the model with the future 
values predicted by the model. In EViews, we can simply write out the expectation terms 
that appear in equations using the lead operator. A deterministic simulation of the model 
can then be run using EViews ability to solve models with equations which contain future 
values of the endogenous variables.

When we add uncertainty to the model, the situation becomes more complex. In this case, 
instead of the expectations of agents being set equal to the single deterministic outcome 
predicted by the model, the expectations of agents should be calculated based on the entire 
distribution of stochastic outcomes predicted by the model. To run a stochastic simulation 
of a model involving expectations would require a procedure like the following:

1. Take an initial guess as to a path for expectations over the forecast period (for exam-
ple, by calculating a solution for the expectations in the deterministic case)

2. Run a large number of stochastic repetitions of the model holding these expectations 
constant, calculating the mean paths of the endogenous variables over the entire set 
of outcomes.

3. Test if the mean paths of the endogenous variables are equal to the current guess of 
expectations within some tolerance. If not, replace the current guess of expectations 
with the mean of the endogenous variables obtained in step 2, and return to step 2.
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At present, EViews does not have built in functionality for automatically carrying out this 
procedure. Because of this, EViews will not perform stochastic simulations if your model 
contains equations involving future values of endogenous variables. We hope to add this 
functionality to future revisions of EViews.

Basic Options

To begin solving a model, you can use Procs/Solve Model... or you can simply click on the 
Solve button on the model toolbar. EViews will display a tabbed dialog containing the 
solution options.

The basic options page contains 
the most important options for 
the simulation. While the 
options on other pages can often 
be left at their default values, the 
options on this page will need to 
be set appropriately for the task 
you are trying to perform.

At the top left, the Simulation 
type box allows you to determine 
whether the model should be 
simulated deterministically or 
stochastically. In a deterministic 
simulation, all equations in the 
model are solved so that they 
hold without error during the simulation period, all coefficients are held fixed at their point 
estimates, and all exogenous variables are held constant. This results in a single path for 
the endogenous variables which can be evaluated by solving the model once.

In a stochastic simulation, the equations of the model are solved so that they have residu-
als which match to randomly drawn errors, and, optionally, the coefficients and exogenous 
variables of the model are also varied randomly. In this case, the model generates a distri-
bution of outcomes for the endogenous variables in every period. We approximate this dis-
tribution by solving the model many times using different draws for the random 
components in the model then calculating statistics over all the different outcomes.

Typically, you will first analyze a model using deterministic simulation, and then later pro-
ceed to stochastic simulation to get an idea of the sensitivity of the results to various sorts 
of error. You should generally make sure that the model can be solved deterministically 
and is behaving as expected before trying a stochastic simulation, since stochastic simula-
tion can be very time consuming.
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The next option is the Dynamics box. This option determines how EViews uses historical 
data for the endogenous variables when solving the model:

• When Dynamic solution is chosen, only values of the endogenous variables from 
before the solution sample are used when forming the forecast. Lagged endogenous 
variables and ARMA terms in the model are calculated using the solutions calculated 
in previous periods, not from actual historical values. A dynamic solution is typically 
the correct method to use when forecasting values several periods into the future (a 
multi-step forecast), or evaluating how a multi-step forecast would have performed 
historically.

• When Static solution is chosen, values of the endogenous variables up to the previ-
ous period are used each time the model is solved. Lagged endogenous variables 
and ARMA terms in the model are based on actual values of the endogenous vari-
ables. A static solution is typically used to produce a set of one-step ahead forecasts 
over the historical data so as to examine the historical fit of the model. A static solu-
tion cannot be used to predict more than one observation into the future.

• When the Fit option is selected, values of the endogenous variables for the current 
period are used when the model is solved. All endogenous variables except the one 
variable for the equation being evaluated are replaced by their actual values. The fit 
option can be used to examine the fit of each of the equations in the model when 
considered separately, ignoring their interdependence in the model. The fit option 
can only be used for periods when historical values are available for all the endoge-
nous variables.

In addition to these options, the Structural checkbox gives you the option of ignoring any 
ARMA specifications that appear in the equations of the model.

At the bottom left of the dialog is a box for the solution sample. The solution sample is the 
set of observations over which the model will be solved. Unlike in some other EViews pro-
cedures, the solution sample will not be contracted automatically to exclude missing data. 
For the solution to produce results, data must be available for all exogenous variables over 
the course of the solution sample. If you are carrying out a static solution or a fit, data 
must also be available for all endogenous variables during the solution sample. If you are 
performing a dynamic solution, only pre-sample values are needed to initialize any lagged 
endogenous or ARMA terms in the model.

On the right-hand side of the dialog are controls for selecting which scenarios we would 
like to solve. By clicking on one of the Edit Scenario Options buttons, you can quickly 
examine the settings of the selected scenario. The option Solve for Alternate along with 
Active should be used mainly in a stochastic setting, where the two scenarios must be 
solved together to ensure that the same set of random shocks is used in both cases. When-
ever two models are solved together stochastically, a set of series will also be created con-
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taining the deviations between the scenarios (this is necessary because in a non-linear 
model, the difference of the means need not equal the mean of the differences).

When stochastic simulation has been selected, additional checkboxes are available for 
selecting which statistics you would like to calculate for your tracked endogenous vari-
ables. A series for the mean will always be calculated. You can also optionally collect series 
for the standard deviation or quantile bounds. Quantile bounds require considerable work-
ing memory, but are useful if you suspect that your endogenous variables may have 
skewed distributions or fat tails. If standard deviations or quantile bounds are chosen for 
either the active or alternate scenario, they will also be calculated for the deviations series.

Stochastic Options

The stochastic options page contains settings used during stochastic simulation. In many 
cases, you can leave these options at their default settings.

The Repetitions box, in the top 
left corner of the dialog, allows 
you to set the number of repeti-
tions that will be performed dur-
ing the stochastic simulation. A 
higher number of repetitions will 
reduce the sampling variation in 
the statistics being calculated, 
but will take more time. The 
default value of one thousand 
repetitions is generally adequate 
to get a good idea of the underly-
ing values, although there may 
still be some random variation 
visible between adjacent obser-
vations.

Also in the repetitions box is a field labeled % Failed reps before halting. Failed repeti-
tions typically result from random errors driving the model into a region in which it is not 
defined, for example where the model is forced to take the log or square root of a negative 
number. When a repetition fails, EViews will discard any partial results from that repeti-
tion, then check whether the total number of failures exceeds the threshold set in the % 
Failed reps before halting box. The simulation continues until either this threshold is 
exceeded, or the target number of successful repetitions is met.

Note, however, that even one failed repetition indicates that care should be taken when 
interpreting the simulation results, since it indicates that the model is ill-defined for some 
possible draws of the random components. Simply discarding these extreme values may 
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create misleading results, particularly when the tails of the distribution are used to mea-
sure the error bounds of the system.

The Confidence interval box sets options for how confidence intervals should be calcu-
lated, assuming they have been selected. The Calc from entire sample option uses the 
sample quantile as an estimate of the quantile of the underlying distribution. This involves 
storing complete tails for the observed outcomes. This can be very memory intensive since 
the memory used increases linearly in the number of repetitions. The Reduced memory 
approx option uses an updating algorithm due to Jain and Chlamtac (1985). This requires 
much less memory overall, and the amount used is independent of the number of repeti-
tions. The updating algorithm should provide a reasonable estimate of the tails of the 
underlying distribution as long as the number of repetitions is not too small.

The Interval size (2 sided) box lets you select the size of the confidence interval given by 
the upper and lower bounds. The default size of 0.95 provides a 95% confidence interval 
with a weight of 2.5% in each tail. If, instead, you would like to calculate the interquartile 
range for the simulation results, you should input 0.5 to obtain a confidence interval with 
bounds at the 25% and 75% quantiles.

The Innovation covariance box on the right side of the dialog determines how the innova-
tions to stochastic equations will be generated. At each observation of a stochastic simula-
tion, a set of independent random numbers are drawn from the standard normal 
distribution, then these numbers are scaled to match the desired variance-covariance 
matrix of the system. In the general case, this involves multiplying the vector of random 
numbers by the Cholesky factor of the covariance matrix. If the matrix is diagonal, this 
reduces to multiplying each random number by its desired standard deviation.

The Scale variances to match equation specified standard deviations box lets you deter-
mine how the variances of the residuals in the equations are determined. If the box is not 
checked, the variances are calculated from the model equation residuals. If the box is 
checked, then any equation that contains a specified standard deviation will use that num-
ber instead (see page 622 for details on how to specify a standard deviation from the equa-
tion properties page). Note that the sample used for estimation in a linked equation may 
differ from the sample used when estimating the variances of the model residuals.

The Diagonal covariance matrix box lets you determine how the off diagonal elements of 
the covariance matrix are determined. If the box is checked, the off diagonal elements are 
set to zero. If the box is not checked, the off diagonal elements are set so that the correla-
tion of the random draws matches the correlation of the observed equation residuals. If the 
variances are being scaled, this will involve rescaling the estimated covariances so that the 
correlations are maintained.
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The Estimation sample box allows you to specify the set of observations that will be used 
when estimating the variance-covariance matrix of the model residuals. By default, EViews 
will use the default workfile sample.

The Multiply covariance matrix field allows you to set an overall scale factor to be 
applied to the entire covariance matrix. This can be useful for seeing how the stochastic 
behavior of the model changes as levels of random variation are applied which are differ-
ent from those that were observed historically, or as a means of trouble-shooting the model 
by reducing the overall level of random variation if the model behaves badly.

The Include coefficient uncertainty field at the bottom right of the dialog specifies 
whether estimated coefficients in linked equations should be varied randomly during a sto-
chastic simulation. If this option is selected, coefficients are redrawn randomly once at the 
beginning of each repetition. This provides a way of incorporating uncertainty surrounding 
the true values of the coefficients into variation in our forecast results.

Note that the dynamic behavior of a model may be changed considerably when the coeffi-
cients in the model are varied random. A model which is stable may become unstable, or a 
model which converges exponentially may develop cyclical oscillations. One consequence 
of this is that the standard errors from a stochastic simulation of a single equation may 
vary from the standard errors obtained when the same equation is forecast using the 
EViews equation object. This is because the equation object uses an analytic approach to 
calculating standard errors based on a local linear approximation that effectively imposes 
stationarity on the equation.

Tracked Variables

The Tracked Variables page of the dialog lets you examine and modify which endogenous 
variables are being tracked by the model. When a variable is tracked, the results for that 
variable are saved in a series in the workfile after the simulation is complete. No results are 
saved for variables that are not tracked.

Tracking is most useful when working with large models, where keeping the results for 
every endogenous variable in the model would clutter the workfile and use up too much 
memory.

By default, all variables are tracked. You can switch on selective tracking using the radio 
button at the top of the dialog. Once selective tracking is selected, you can type in variable 
names in the dialog below, or use the properties dialog for the endogenous variable to 
switch tracking on and off.

You can also see which variables are currently being tracked using the variable view, since 
the names of tracked variables appear in blue.
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Diagnostics

The Diagnostics dialog page lets you set options to control the display of intermediate out-
put. This can be useful if you are having problems getting your model to solve.

When the Display detailed messages box is checked, extra output will be produced in the 
solution messages window as the model is solved.

The traced variables list lets you specify a list of variables for which intermediate values 
will be stored during the iterations of the solution process. These results can be examined 
by switching to the Trace Output view after the model is complete. Tracing intermediate 
values may give you some idea of where to look for problems when a model is generating 
errors or failing to converge.

Solver

The Solver dialog page sets options relating to the non-linear equation solver which is 
applied to the model.

The Solution algorithm box lets 
you select the algorithm that will 
be used to solve the model for a 
single period. The following 
choices are available:

• Gauss-Seidel: the Gauss-
Seidel algorithm is an itera-
tive algorithm, where at 
each iteration we solve 
each equation in the model 
for the value of its associ-
ated endogenous variable, 
treating all other endoge-
nous variables as fixed. 
This algorithm requires lit-
tle working memory and has fairly low computational costs, but requires the equa-
tion system to have certain stability properties for it to converge. Although it is easy 
to construct models that do not satisfy these properties, in practice, the algorithm 
generally performs well on most econometric models. If you are having difficulties 
with the algorithm, you might like to try reordering the equations, or rewriting the 
equations to change the assignment of endogenous variables, since these changes 
can affect the stability of the Gauss-Seidel iterations.

• Newton: Newton's method is also an iterative method, where at each iteration we 
take a linear approximation to the model, then solve the linear system to find a root 



638—Chapter 23. Models
of the model. This algorithm can handle a wider class of problems than Gauss-
Seidel, but requires considerably more working memory and has a much greater 
computational cost when applied to large models. Newton's method is invariant to 
equation reordering or rewriting.

Note that even if Newton’s method is selected for solving within each period of the model, 
a Gauss-Seidel type method is used between all the periods if the model requires iterative 
forward solution. See “Models Containing Future Values” on page 629.

The Excluded variables/Initialize from Actuals checkbox controls where EViews takes 
values for excluded variables. By default, this box is checked and all excluded observations 
for solved endogenous variables (both in the solution sample and pre-solution observa-
tions) are initialized to the actual values of the endogenous variables prior to the start of a 
model solution. If this box is unchecked, EViews will initialize the excluded variables with 
values from the solution series (aliased series), so that you may set the values manually 
without editing the original series.

The Extended search checkbox tells the solver to try alternative step sizes when searching 
for new values for the endogenous variables during an iteration. This improves the 
chances of convergence, but will generally increase the time taken to solve the model. If 
your model is having difficulty converging, you may like to try this option.

The Preferred solution starting values section lets you select the values to be used as 
starting values in the iterative procedure. When Actuals is selected, EViews will first try to 
use values contained in the actuals series as starting values. If these are not available, 
EViews will try to use the values solved for in the previous period. If these are not avail-
able, EViews will default to using arbitrary starting values of 0.1. When Previous period’s 
solution is selected, the order is changed so that the previous periods values are tried first, 
and only if they are not available, are the actuals used.

The Solution control section allows you to set termination options for the solver. Max iter-
ations sets the maximum number of iterations that the solver will carry out before abort-
ing. Convergence sets the threshold for the convergence test. If the largest relative change 
between iterations of any endogenous variable has an absolute value less than this thresh-
old, then the solution is considered to have converged. Stop on missing data means that 
the solver should stop as soon as one or more exogenous (or lagged endogenous) variables 
is not available. If this option is not checked, the solver will proceed to subsequent peri-
ods, storing NAs for this period's results.

The Forward solution section allows you to adjust options that affect how the model is 
solved when one or more equations in the model contain future (forward) values of the 
endogenous variables. The Terminal conditions section lets you specify how the values of 
the endogenous variables are determined for leads that extend past the end of the forecast 
period. If User supplied in Actuals is selected, the values contained in the Actuals series 
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after the end of the forecast sample will be used as fixed terminal values. If no values are 
available, the solver will be unable to proceed. If Constant level is selected, the terminal 
values are determined endogenously by adding the condition to the model that the values 
of the endogenous variables are constant over the post-forecast period at the same level as 
the final forecasted values (  for ), where  is 
the first observation past the end of the forecast sample, and  is the maximum lead in the 
model). This option may be a good choice if the model converges to a stationary state. If 
Constant difference is selected, the terminal values are determined endogenously by add-
ing the condition that the values of the endogenous variables follow a linear trend over the 
post forecast period, with a slope given by the difference between the last two forecasted 
values

 (23.8)

for ). This option may be a good choice if the model is in log 
form and tends to converge to a steady state. If Constant growth rate is selected, the ter-
minal values are determined endogenously by adding the condition to the model that the 
endogenous variables grow exponentially over the post-forecast period, with the growth 
rate given by the growth between the final two forecasted values

(23.9)

for ). This latter option may be a good choice if the model 
tends to produce forecasts for the endogenous variables which converge to constant 
growth paths.

The Solve in both directions option affects how the solver loops over periods when calcu-
lating forward solutions. When the box is not checked, the solver always proceeds from 
the beginning to the end of the forecast period during the Gauss-Seidel iterations. When 
the box is checked, the solver alternates between moving forwards and moving backwards 
through the forecast period. The two approaches will generally converge at slightly differ-
ent rates depending on the level of forward or backward persistence in the model. You 
should choose whichever setting results in a lower iteration count for your particular 
model.

The Solution round-off section of the dialog controls how the results are rounded after 
convergence has been achieved. Because the solution algorithms are iterative and provide 
only approximate results to a specified tolerance, small variations can occur when compar-
ing solutions from models, even when the results should be identical in theory. Rounding 
can be used to remove some of this minor variation so that results will be more consistent. 
The default settings will normally be adequate, but if your model has one or more endoge-
nous variables of very small magnitude, you will need to switch off the rounding to zero or 
rescale the variables so that their solutions are farther from zero.
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Solve Control for Target

Normally, when solving a model, we start with a set of known values for our exogenous 
variables, then solve for the unknown values of the endogenous variables of the model. If 
we would like an endogenous variable in our model to follow a particular path, we can 
solve the model repeatedly for different values of the exogenous variables, changing the 
values until the path we want for the endogenous variable is produced. For example, in a 
macroeconomic model, we may be interested in examining what value of the personal tax 
rate would be needed in each period to produce a balanced budget over the forecast hori-
zon.

The problem with carrying out this procedure by hand is that the interactions between 
variables in the model make it difficult to guess the correct values for the exogenous vari-
ables. It will often require many attempts to find the values that solve the model to give the 
desired results.

To make this process easier, EViews provides a special procedure for solving a model 
which automatically searches for the unknown values. Simply create a series in the work-
file which contains the values you would like the endogenous variable to achieve, then 
select Procs/Solve Control for Target… from the menus. Enter the name of the exogenous 
variable you would like to modify in the Control Variable box, the name of the endoge-
nous variable which you are targeting in the Target Variable box, and the name of the 
workfile series which contains the target values in the Trajectory Variable box. Set the 
sample to the range for you would like to solve, then click on OK.

The procedure may take some time to complete, since it involves repeatedly solving the 
model to search for the desired solution. It is also possible for the procedure to fail if it can-
not find a value of the exogenous variable for which the endogenous variable solves to the 
target value. If the procedure fails, you may like to try moving the trajectory series closer to 
values that you are sure the model can achieve.

Working with the Model Data

When working with a model, much of your time will be spent viewing and modifying the 
data associated with the model. Before solving the model, you will edit the paths of your 
exogenous variables or add factors during the forecast period. After solving the model, you 
will use graphs or tables of the endogenous variables to evaluate the results. Because there 
is a large amount of data associated with a model, you will also spend time simply manag-
ing the data.

Since all the data associated with a model is stored inside standard series in the workfile, 
you can use all of the usual tools in EViews to work with the data of your model. However, 
it is often more convenient to work directly from the model window.
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Although there are some differences in details, working with the model data generally 
involves following the same basic steps. You will typically first use the variable view to 
select the set of variables you would like to work with, then use either the right mouse but-
ton menu or the model procedure menu to select the operation to perform.

Because there may be several series in the workfile associated with each variable in the 
model, you will then need to select the types of series with which you wish to work. The 
following types will generally be available:

• Actuals: the workfile series with the same name as the variable name. This will typ-
ically hold the historical data for the endogenous variables, and the historical data 
and baseline forecast for the exogenous variables.

• Active: the workfile series that is used when solving the active scenario. For endoge-
nous variables, this will be the series with a name consisting of the variable name 
followed by the scenario extension. For exogenous variables, the actual series will be 
used unless it has been overridden. In this case, the exogenous variable will also be 
the workfile series formed by appending the scenario extension to the variable 
name.

• Alternate: the workfile series that is used when solving the alternate scenario. The 
rules are the same as for active.

In the following sections, we discuss how different operations can be performed on the 
model data from within the variable view.

Editing Data

The easiest way to make simple changes to the data associated with a model is to open a 
series or group spreadsheet window containing the data, then edit the data by hand.

To open a series window from within the model, simply select the variable using the 
mouse in the variable view, then use the right mouse button menu to choose Open 
selected series…, followed by Actuals, Active Scenario or Alternate Scenario. If you 
select several series before using the option, an unnamed group object will be created to 
hold all the series.

To edit the data, click the Edit+/- button to make sure the spreadsheet is in edit mode. 
You can either edit the data directly in levels or use the Units button to work with a trans-
formed form of the data, such as the differences or percentage changes.

To create a group which allows you to edit more than one of the series associated with a 
variable at the same time, you can use the Make Group/Table procedure discussed below 
to create a dated data table, then switch the group to spreadsheet view to edit the data.
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More complicated changes to the data may require using a genr command to calculate the 
series by specifying an expression. Click the Genr button from the series window toolbar 
to call up the dialog, then type in the expression to generate values for the series and set 
the workfile sample to the range of values you would like to modify.

Displaying Data

The EViews model object provides two main forms in which to display data: as a graph or 
as a table. Both of these can be generated easily from the model window.

From the variable view, select 
the variables you wish to dis-
play, then use the right mouse 
button menu or the main 
menu to select Procs and then 
Make Group/Table or Make 
Graph. 

The dialogs for the two procs 
are almost identical. Here we 
see the Make Graph dialog. 
We saw this dialog earlier in 
our macro model example. 
The majority of fields in the 
dialog control which series 
you would like the table or graph to contain. At the top left of the graph is the Model Vari-
ables box, which is used to select the set of variables to place in the graph. By default, the 
table or graph will contain the variables that are currently selected in the variable view. 
You can expand this to include all model variables, or add or remove particular variables 
from the list of selected variables using the radio buttons and text box labeled From. You 
can also restrict the set of variables chosen according to variable type using the list box 
next to Select. By combining these fields, it is easy to select sets of variables such as all of 
the endogenous variables of the model, or all of the overridden variables.

Once the set of variables has been determined, it is necessary to map the variable names 
into the names of series in the workfile. This typically involves adding an extension to 
each name according to which scenario the data is from and the type of data contained in 
the series. The options affecting this are contained in the Graph series (if you are making 
a graph) or Series types (if you are making a group/table) box at the right of the dialog.

The Solution series box lets you choose which solution results you would like to examine 
when working with endogenous variables. You can choose from a variety of series gener-
ated during deterministic or stochastic simulations.
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The series of checkboxes below determine which scenarios you would like to display in the 
graphs, as well as whether you would like to calculate deviations between various scenar-
ios. You can choose to display the actual series, the series from the active scenario, or the 
series from an alternate scenario (labeled “Compare”). You can also display either the dif-
ference between the active and alternate scenario (labeled “Deviations: Active from Com-
pare”), or the ratio between the active and alternate scenario in percentage terms (labeled 
“% Deviation: Active from Compare”).

The final field in the Graph series or Series types box is the Transform listbox. This lets 
you apply a transformation to the data similar to the Transform button in the series 
spreadsheet.

While the deviations and units options allow you to present a variety of transformations of 
your data, in some cases you may be interested in other transformations that are not 
directly available. Similarly, in a stochastic simulation, you may be interested in examining 
standard errors or confidence bounds on the transformed series, which will not be avail-
able when you apply transformations to the data after the simulation is complete. In either 
of these cases, it may be worth adding an identity to the model that generates the series 
you are interested in examining as part of the model solution.

For example, if your model contains a variable GDP, you may like to add a new equation to 
the model to calculate the percentage change of GDP:

pgdp = @pch(gdp)

After you have solved the model, you can use the variable PGDP to examine the percent-
age change in GDP, including examining the error bounds from a stochastic simulation. 
Note that the cost of adding such identities is relatively low, since EViews will place all 
such identities in a final recursive block which is evaluated only once after the main 
endogenous variables have already been solved.

The remaining option, at the bottom left of the dialog, lets you determine how the series 
will be grouped in the output. The options are slightly different for tables and graphs. For 
tables, you can choose to either place all series associated with the same model variable 
together, or to place each series of the same series type together. For graphs, you have the 
same two choices, and one additional choice, which is to place every series in its own 
graph.

In the graph dialog, you also have the option of setting a sample for the graph. This is 
often useful when you are plotting forecast results since it allows you to choose the 
amount of historical data to display in the graph prior to the forecast results. By default, 
the sample is set to the workfile sample.
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When you have finished setting the options, simply click on OK to create the new table or 
graph. All of EViews usual editing features are available to modify the table or graph for 
final presentation.

Managing Data

When working with a model, you will often create many series in the workfile for each 
variable, each containing different types of results or the data from different scenarios. The 
model object provides a number of tools to help you manage these series, allowing you to 
perform copy, fetch, store and delete operations directly from within the model.

Because the series names are related to the variable names in a consistent way, manage-
ment tasks can often also be performed from outside the model by using the pattern 
matching features available in EViews commands (see Appendix C, “Wildcards”, on 
page 657).

The data management opera-
tions from within the model 
window proceed very simi-
larly to the data display opera-
tions. First, select the 
variables you would like to 
work with from the variable 
view, then choose Copy, Store 
series…, Fetch series… or 
Delete series… from the right 
mouse button menu or the 
object procedures menu. A 
dialog will appear, similar to 
the one used when making a table or graph.

In the same way as for the table and graph dialogs, the left side of the dialog is used to 
choose which of the model variables to work with, while the right side of the dialog is 
used to select one or more series associated with each variable. Most of the choices are 
exactly the same as for graphs and tables. One significant difference is that the checkboxes 
for active and comparison scenarios include exogenous variables only if they have been 
overridden in the scenario. Unlike when displaying or editing the data, if an exogenous 
variable has not been overridden, the actual series will not be included in its place. The 
only way to store, fetch or delete any actual series is to use the Actuals checkbox.

After clicking on OK, you will receive the usual prompts for the store, fetch and delete 
operations. You can proceed as usual.
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Commands

To create a model using commands, you should use a model declaration statement, and 
the append command to add equation lines:

model macro

macro.append cs=10+0.8*y(-1)

macro.append i=0.7*(y(-1)-y(-2))

macro.append y=cs+i+g

You can assign and initialize intercept shift add factors to all equations in the model using 
the commands

macro.addassign(i) @all

macro.addinit(v=z) @all

Here, the add factors are all initialized to zero.

To solve the model, use the solve command

macro.solve(m=500,e)

The solution options set the maximum number of iterations to 500, and instruct the solver 
to use Gauss-Seidel with extended search.

For additional details, see “Model” on page 32 of the Command and Programming Refer-
ence.
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Appendix A.  Global Options

EViews employs default settings in most operations. In a wide variety of settings, the 
default settings may be user-specified. For example, you can set global defaults for every-
thing from which font to use in table output to how graphics are exported to other pro-
grams to how to compute derivatives in estimation routines.

Setting Options

The Options menu in the main toolbar allows you to define the default behavior for many 
of the operations in EViews.

Window and Font Options

The window and font options control the display characteristics of various types of EViews 
output.

• The Fonts options allow 
you to change the default 
font styles and sizes for 
each type of window or 
object. Press the button of 
the type of object for which 
you want to change the 
font and select the new 
font from the Font dialog.

• Keyboard Focus controls 
where the keyboard cursor 
is placed when you change 
views or windows. The two 
choices make a difference 
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only when the window is an editable window such as the specification view of sys-
tem objects.

• The Button Bar toggles on and off the display of the button bar in the object win-
dows. The button bar provides shortcuts to frequently used items on the main 
menu. The main menu is always displayed, so that if you turn off the button bar, you 
can still perform all operations from the main menu.

• Warn On Close instructs EViews to provide a warning message when you close an 
untitled object. You may choose to set warnings for various object types. By default, 
EViews warns you that closing an unnamed object without naming it will cause the 
object to be deleted. Along with the warning, you will be given an opportunity to 
name the object. If you turn the warning off, closing an untitled window will auto-
matically delete the object.

• Allow Only One Untitled specifies, for each object type, whether to allow multiple 
untitled objects to be opened at the same time. If only one is allowed, creating a new 
untitled object will cause any existing untitled object of that type to be deleted auto-
matically.

Setting EViews to allow only one untitled object reduces the number of windows 
that you will see on your desktop. By default, only one untitled workfile, group, 
equation, system, model, program or text object can be open, but any number of 
untitled series, matrices, coefficients, tables, or graphs may be open.

If you allow only one untitled object, we strongly recommend that you select Warn 
on Close. With this option set, you will be given the opportunity to name and save 
an existing untitled object, otherwise the object will simply be deleted. 

File Locations

This dialog allows you to set the default working directory, and the locations of the .INI 
file, database registry and alias map, and the temp directory. The dialog also reports the 
location of your EViews executable.

Data Registry / Database Default Storage Options

These entries control the default behavior of EViews when working with databases and 
moving data into and out of databases. You can also control whether data in databases are 
stored in single or double precision. For additional details see “The Database Registry” on 
page 121 and “Store, Fetch, and Copy of Group Objects” on page 117.

Frequency Conversion - Dates

This dialog allows you to set the default frequency conversion method and the method of 
displaying dates.
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The default frequency conversion method tells EViews how to convert data when you 
move data to lower or higher frequency workfiles. The frequency conversion methods are 
discussed in detail in Chapter 6, “EViews Databases”, on page 107.

The default date display controls the text format for dates in tables and other output views. 
For daily and weekly data, you can set the default to American (Month/Day/Year) or you 
can switch to the European notation, where the day precedes the month.

Backup Files

You can choose whether to keep backup copies of 
workfiles, data bank files, and program files. The 
backup copy will have the same name as the file, 
but with the first character in the extension changed 
to ~. For example, if you have a workfile named 
MYDATA.WF1, the backup file will be named 
MYDATA.~F1.

Estimation Defaults

You can set the global defaults for maximum number of iterations and convergence crite-
rion. These settings will be used as the default settings in iterative estimation methods for 
equation, log likelihood, state space, and system objects. Note that previously estimated 
EViews objects that were estimated with the previous default settings will be unchanged, 
unless reestimated.

See “Setting Estimation Options” on 
page 666 for additional details.

Graphics Default

These options control how the graphs appear 
when you first create a graph. The options 
are explained in detail in Chapter 10, 
“Graphs, Tables, and Text Objects”, begin-
ning on page 243.
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Spreadsheet Defaults

These options control the default 
spreadsheet view of series and group 
objects. This is the view that is dis-
played when the object is created.

For series spreadsheet views, the 
default is to display the series for the 
entire workfile range in a single col-
umn. You may change to display the 
series only for the current sample or 
to display the series in multiple col-
umns. You also have the option 
whether to include the series label in 
the spreadsheet view or not and whether to display the view with edit mode enabled. 

For group spreadsheet views, you have the option to display the spreadsheet in transposed 
form, with series arranged in rows instead of columns. You can also choose to open the 
view with edit mode enabled by default.

Note that these options only apply to newly created series or group objects. Once you mod-
ify the view using the Edit, Smpl, Label, Wide, or Transpose options, the object will be 
displayed accordingly.

Program Execution

By default, EViews runs programs in verbose 
mode, listing commands in the status line as 
they are executed. Alternatively, you can 
switch to quiet mode, which suppresses this 
information. EViews will run faster in quiet 
mode since the status line display does not 
need to be updated.

The default may always be overridden from 
the Run Program dialog, or by using the option “Q” in the run statement, as in:

run(q) myprogram

For details see Chapter 6, “EViews Programming”, on page 85 of the Command and Pro-
gramming Reference.
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Print Setup

These options determine the default print behavior when you push the Print button or 
select View/Print Selected from the window toolbar.

The top of the Print Setup Options dialog 
gives you three choices for the destination 
of printed output. The default is to send 
the view or procedure output to the cur-
rent Windows printer. The other two 
options redirect output into graph or table 
objects, or into text files.

Output Redirection

The Frozen Output option saves the views or output from procedures as frozen graphs, 
tables, or text objects in the workfile. No output is sent to the printer. Under this option, 
the Print button behaves as if it were the Freeze button. 

If you choose Frozen Output, you must also supply a base name. Each print command 
will then create a frozen object within the active workfile, naming it with the base name 
followed by a number. For example, if you supply the base name of OUT, the first print 
command will generate a table or graph named OUT01, the second print command will 
generate OUT02, and so on. You can select some or all of the frozen objects in the workfile 
window, open them and copy-and-paste to your word processor, print them (after turning 
off output redirection), store them, or delete them. 

The Text File option redirects printing of output to a file. You may use this option to create 
a log of the results from your EViews session. Note that all print commands of graph views 
or graph objects are still sent to the printer. 

If you choose the Text File option, you must supply a file name. The file will be created in 
the default path with a .TXT extension, unless you explicitly specify the full path name. If 
a file with the same name already exists, EViews will warn you that the file will be over-
written. Any instruction to print tables or text will append the output to the end of the file.

Error Message Display

You can choose to have error messages displayed prominently in a box or, less conspicu-
ously, on the status line at the bottom of the EViews window.

Series Auto Labels

You can elect to have EViews keep a history of the commands that created or modified a 
series as part of the series label. You can choose to turn this option off.
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Appendix B.  Date Formats

One of the more important features of EViews is the ability to process dated data. Once you 
determine the frequency of your data, EViews will use all available calendar information to 
organize and manage your data. 

When using EViews, you must often specify dates. Dates are required when creating a 
workfile, specifying a sample, or specifying periods in hypothesis tests. This chapter dis-
cusses the format for dates in EViews. 

Date Specification

The rules for specifying dates depend on the workfile frequency. Currently, there are eight 
frequencies available in EViews:

Annual

Years from 1930–2029 may be identified using either 2- or 4-
digit identifiers (e.g. “97” or “1997”). All other years must be 
identified with full year identifiers (e.g. “1776”, “2040”, “9789” or “50234”). Note that 
since 2-digit identifiers are assumed to be in either the 20th or 21st century, EViews cannot 
handle dates prior to A.D. 100.

Semi-annual

Follow the year number with a colon and the number 1 for the first half of the year and the 
number 2 for the second half of the year. Examples: “1965:1”, “2010:2”. 

Quarterly

Follow the year number with a colon and the quarter number. The quarter number should 
be 1, 2, 3 or 4. Examples: “1992:1”, “1965:4”, “2002:3”.

Monthly

Follow the year number with a colon and the month number. You may prefix the single 
digit month numbers with a zero, e.g. 01 or 04. Examples: “1956:04”, “1965:10”, “2010:12”. 

Weekly and Daily

By default, the dates are specified in American notation as
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mm/dd/yyyy

where mm, dd, yyyy stand for the month, date, and year numbers, respectively. The month 
and date numbers can be a single digit and the year numbers can be less than four digits. 
Examples: “3/1/1995”, “03/01/1995”, “10/01/2010”, “1/01/1965”. 

With weekly data, the start of the week is identified by the first day specified in the work-
file. All weeks will follow this convention. Thus, if you specify the start of your workfile as 
“10/15/1997”, a Wednesday, all of your weeks will begin on Wednesdays.

In any sample statement, if you specify a date in the middle of a week, EViews will view 
that date as the week containing the specified date. For example, for the Wednesday-based 
workfile above, if you enter:

smpl 10/17/1997 10/30/1997

EViews will display the sample as

10/15/1997 10/29/1997

since October 17 is the Friday of the week beginning on October 15 and October 30 is the 
Thursday of the week beginning on October 29.

You can use European notation by choosing Options/Frequency Conversion–Dates… 
from the main menu. Dates in European notation have the form

dd/mm/yyyy

For example, “8/10/97” in American notation indicates August 10, 1997, while in European 
notation it indicates October 8, 1997.

Undated or Irregular

Simply specify the observation number. 

Implicit Dating

When you first create a workfile, you can specify the workfile range by indicating only the 
year number for any frequency (except undated). EViews will create a workfile that starts 
at the beginning of the specified year and that ends at the end of the specified year. For 
example, if you specify the workfile range as 

60 90 

EViews will create a workfile with range 
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If you want to create a workfile starting or ending in the middle of a year, you should spec-
ify the full date.

Special Date Functions

There are three special functions that provide shortcuts for changing the workfile sample: 
“@all”, “@first”, and “@last”.

The keyword “@all” refers to the entire workfile range, while the keywords “@first” and 
“@last” refer to the first and last observation in the workfile, respectively. For example, 
suppose you have a workfile with range 1953:01–1996:12. Then to reset the sample to 
workfile range, you can use any of the following three commands:

smpl @all

smpl @first 1996:12

smpl 53:1 @last

Sample range elements may contain mathematical expressions to create date offsets. This 
feature can be particularly useful in setting up a fixed width window of observations. For 
example, to set the sample to the last ten observations of the workfile range, you can use 
the command

smpl @last-9 @last

Examples

1989:2

is the second half of 1989 (semi-annual) or the second quarter of 1989 (quar-
terly) or February 1989 (monthly).

1989:02

is the same as “1989:2”.

1960–1990 for annual

1960:1–1990:2 for semi-annual

1960:1–1990:4 for quarterly

1960:01–1990:12 for monthly

1/01/1960–12/28/1990 for weekly

1/01/1960–12/31/1990 for daily

60–90 for undated or irregular
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1992:4

is the fourth quarter of 1992 (quarterly) or April 1992 (monthly).

82

is the year 1982 (annual) or observation number 82 (undated).

1979:02

is the second half of 1979 (semi-annual) or the second quarter of 1979 (quar-
terly) or February 1979 (monthly). 

1882

is the year 1882 (annual) or observation number 1882 (undated).

1968:5

is May 1968 (monthly).

1976:56

is an error since there is no month 56.

9/30/1996

is September 30, 1986 (daily) or the week starting on that day (weekly), if dates 
are in American notation. If dates are set to European, you should use “30/9/
1996”.

2/30/1993

is an error since there is no February 30.
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EViews supports the use of wildcard characters in a variety of situations where you need to 
enter a list of objects or a list of series. For example, you can use wildcards to:

• fetch, store, copy, rename or delete a list of objects

• specify a group object

• query a database by name or filter the workfile display

The following discussion describes some of the issues involved in the use of wildcard char-
acters and expressions.

Wildcard Expressions

There are two wildcard characters: “*” and “?”. The wildcard character “*” matches zero 
or more characters in a name, and the wildcard “?” matches any single character in a 
name.

For example, you can use the wildcard expression “GD*” to refer to all objects whose 
names begin with the characters “GD”. The series GD, GDP, GD_F will be included in this 
list GGD, GPD will not. If you use the expression GD?, EViews will interpret this as a list of 
all objects with three character names beginning with the string “GD”: GDP and GD2 will 
be included, but GD, GD_2 will not.

You can instruct EViews to match a fixed number of characters by using as many “?” wild-
card characters as necessary. For example, EViews will interpret “??GDP” as matching all 
objects with names that begin with any two characters followed by the string “GDP”. 
USGDP and F_GDP will be included but GDP, GGDP, GDPUS will not. 

You can also mix the different wildcard characters in an expression. For example, you can 
use the expression “*GDP?” to refer to any object that ends with the string “GDP” and an 
arbitrary character. Both GDP_1, USGDP_F will be included.

Using Wildcard Expressions

Wildcard expressions may be used in filtering the workfile display (see “Display Filter” on 
page 40), in selected EViews commands, and in creating a group object.

The following commands support the use of wildcards: show, store, fetch, copy, 
rename and delete.
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To create a group using wildcards, simply select Object/New Objects/Group, and enter the 
expression, EViews will first expand the expression, and then attempt to create a group 
using the corresponding list of series. For example, entering the list

y x*

will create a group comprised of Y and all series beginning with the letter X. Alternatively, 
you can enter the command

group g1 x* y?? c

defines a group G1, consisting of all of the series matching X*, and all series beginning 
with the letter Y followed by two arbitrary characters.

When making a group, EViews will only select series objects which match the given name 
pattern and will place these objects in the group.

Once created, these groups may be used anywhere that EViews takes a group as input. For 
example, if you have a series of dummy variables, DUM1, DUM2, DUM3, …, DUM9, that 
you wish to enter in a regression, you can create a group containing the dummy variables, 
and then enter the group in the regression:

group gdum dum?

equation eq1.ls y x z gdum

will run the appropriate regression. Note that we are assuming that the dummy variables 
are the only series objects which match the wildcard expression DUM?.

Source and Destination Patterns

When wildcards are used during copy and rename operations, a pattern must be provided 
for both the source and the destination. The destination pattern must always conform to 
the source pattern in that the number and order of wildcard characters must be exactly the 
same between the two. For example, the following patterns

conform to each other, while these patterns do not

Source Pattern Destination Pattern

x* y*

*c b*

x*12? yz*f?abc



Resolving Ambiguities—659
When using wildcards, the new destination name is formed by replacing each wildcard in 
the destination pattern by the characters from the source name that matched the corre-
sponding wildcard in the source pattern. This allows you to both add and remove charac-
ters from the source name during the copy or rename process. Some examples should 
make this clear:

Note, as shown in the second example, that a simple asterisk for the destination pattern 
will result in characters being removed from the source name when forming the destina-
tion name. To copy objects between containers preserving the existing name, either repeat 
the source pattern as the destination pattern

copy x* db1::x*

or omit the destination pattern entirely

copy x* db1::

Resolving Ambiguities

Note that an ambiguity can arise with wildcard characters since both “*” and “?” have 
multiple uses. The “*” character may be interpreted as either a multiplication operator or a 
wildcard character. The “?” character serves as both the single character wildcard and the 
pool cross section identifier.

Wildcard versus Multiplication

There is a potential for ambiguity in the use of the wildcard character “*”.

Suppose you have a workfile with the series X, X2, Y, XYA, XY2. There are then two inter-
pretations of the wildcard expression “X*2”. The expression may be interpreted as an auto-

Source Pattern Destination Pattern

a* b

*x ?y

x*y* *x*y*

Source Pattern Destination Pattern Source Name Destination Name

*_base *_jan x_base x_jan

us_* * us_gdp gdp

x? x?f x1 x1f

*_* **f us_gdp usgdpf

??*f ??_* usgdpf us_gdp
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series representing X multiplied by 2. Alternatively, the expression may be used as a wild-
card expression, referring to the series X2 and XY2.

Note that there is only an ambiguity when the character is used in the middle of an expres-
sion, not when the wildcard character “*” is used at the beginning or end of an expression. 
EViews uses the following rules to determine the interpretation of ambiguous expressions:

• EViews first tests to see whether the expression represents a valid series expression. 
If so, the expression is treated as an auto-series. If it is not a valid series expression, 
then EViews will treat the “*” as a wildcard character. For example,

y*x

2*x

are interpreted as auto-series, while

*x

x*a

are interpreted as wildcard expressions.

• You can force EViews to treat “*” as a wildcard by preceding the character with 
another “*”. Thus, expressions containing “**” will always be treated as wildcard 
expressions. For example, the expression

x**2

unambiguously refers to all objects with names beginning with “X” and ending with 
“2”. Note that the use of “**” does not conflict with the EViews exponentiation oper-
ator “^”.

• You can instruct EViews to treat “*” as a series expression operator by enclosing the 
expression (or any subexpression) in parentheses. For example,

(y*x)

always refers to X times Y.

We strongly encourage you to resolve the ambiguity by using parentheses to denote series 
expressions, and double asterisks to denote wildcards (in the middle of expressions), 
whenever you create a group. This is especially true when group creation occurs in a pro-
gram; otherwise the behavior of the program will be difficult to predict since it will change 
as the names of other objects in the workfile change.

Wildcard versus Pool Identifier

The “?” wildcard character is used both to match any single character in a pattern and as a 
place-holder for the cross-section identifier in pool objects.
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EViews resolves this ambiguity by not allowing the wildcard interpretation of “?” in any 
expression involving a pool object or entered into a pool dialog. “?” is used exclusively as 
a cross-section identifier. For example, suppose that you have the pool object POOL1. 
Then, the expression

pool1.est y? x? c

is a regression of the pool variable Y? on the pool variable X?, and 

pool1.delete x?

deletes all of the series in the pool series X?. There is no ambiguity in the interpretation of 
these expressions since they both involve POOL1.

Similarly, when used apart from a pool object, the “?” is interpreted as a wildcard charac-
ter. Thus,

delete x?

unambiguously deletes all of the series matching X?.
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Appendix D.  Estimation Algorithms and Options 

EViews estimates the parameters of a wide variety of nonlinear models, from nonlinear 
least squares equations, to maximum likelihood models, to GMM specifications. These 
types of nonlinear estimation problems do not have closed form solutions and must be 
estimated using iterative methods. EViews also solves systems of non-linear equations. 
Again, there are no closed form solutions to these problems, and EViews must use an iter-
ative method to obtain a solution. 

Here, we provide details on the algorithms used by EViews in dealing with these problems, 
and the optional settings that we provide to allow you to control the estimation proce-
dures.

Our discussion here is necessarily brief. For additional details we direct you to the quite 
readable discussions in Press, et al. (1992), Quandt (1983), Thisted (1988), and Amemiya 
(1983).

Optimization Algorithms

Before discussing EViews estimation options, it is useful to review briefly some basic opti-
mization algorithms. Recall that the problem faced in non-linear estimation is to find the 
values of parameters  that optimize (maximize or minimize) an objective function .

Iterative optimization algorithms work by taking an initial set of values for the parameters, 
say , then performing calculations based on these values to obtain a better set of 
parameter values, . This process is repeated for ,  and so on until the objec-
tive function  no longer improves between iterations.

There are three main parts to the optimization process: (1) obtaining the initial parameter 
values, (2) updating the candidate parameter vector  at each iteration, and (3) determin-
ing when we have reached the optimum.

If the objective function is globally concave so that there is a single maximum, any algo-
rithm which improves the parameter vector at each iteration will eventually find this max-
imum (assuming that the size of the steps taken does not become negligible). If the 
objective function is not globally concave, different algorithms may find different local 
maxima, but all iterative algorithms will suffer from the same problem of being unable to 
tell apart a local and a global maximum.

The main thing that distinguishes different algorithms is how quickly they find the maxi-
mum. Unfortunately, there are no hard and fast rules. For some problems, one method 
may be faster, for other problems it may not. EViews provides different algorithms, and 
will often let you choose which method you would like to use.

θ F θ( )

θ 0( )
θ 1( ) θ 2( ) θ 3( )

F

θ
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The following sections outline these methods. The algorithms used in EViews may be 
broadly classified into three types: second derivative methods, first derivative methods, and 
derivative free methods. EViews’ second derivative methods evaluate current parameter 
values and the first and second derivatives of the objective function for every observation. 
First derivative methods use only the first derivatives of the objective function during the 
iteration process. As the name suggests, derivative free methods do not compute deriva-
tives.

Second Derivative Methods

For binary, ordered, censored, and count models, EViews can estimate the model using 
Newton-Raphson or quadratic hill-climbing.

Newton-Raphson

Candidate values for the parameters  may be obtained using the method of Newton-
Raphson by linearizing the first order conditions  at the current parameter values, 

:

 (D.1)

where  is the gradient vector , and  is the Hessian matrix .

If the function is quadratic, Newton-Raphson will find the maximum in a single iteration. 
If the function is not quadratic, the success of the algorithm will depend on how well a 
local quadratic approximation captures the shape of the function.

Quadratic hill-climbing (Goldfeld-Quandt)

This method, which is a straightforward variation on Newton-Raphson, is sometimes 
attributed to Goldfeld and Quandt. Quadratic hill-climbing modifies the Newton-Raphson 
algorithm by adding a correction matrix (or ridge factor) to the Hessian. The quadratic hill-
climbing updating algorithm is given by

(D.2)

where  is the identity matrix and  is a positive number that is chosen by the algorithm.

The effect of this modification is to push the parameter estimates in the direction of the 
gradient vector. The idea is that when we are far from the maximum, the local quadratic 
approximation to the function may be a poor guide to its overall shape, so we may be bet-
ter off simply following the gradient. The correction may provide better performance at 
locations far from the optimum, and allows for computation of the direction vector in cases 
where the Hessian is near singular.
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For models which may be estimated using second derivative methods, EViews uses qua-
dratic hill-climbing as its default method. You may elect to use traditional Newton-Raph-
son, or the first derivative methods described below, by selecting the desired algorithm in 
the Options menu.

Note that asymptotic standard errors are always computed from the unmodified Hessian 
once convergence is achieved.

First Derivative Methods

Second derivative methods may be computationally costly since we need to evaluate the 
 elements of the second derivative matrix at every iteration. Moreover, second 

derivatives calculated may be difficult to compute accurately. An alternative is to employ 
methods which require only the first derivatives of the objective function at the parameter 
values.

For general nonlinear models (nonlinear least squares, ARCH and GARCH, nonlinear sys-
tem estimators, GMM, State Space), EViews provides two first derivative methods: Gauss-
Newton/BHHH or Marquardt.

Gauss-Newton/BHHH

This algorithm follows Newton-Raphson, but replaces the negative of the Hessian by an 
approximation formed from the sum of the outer product of the gradient vectors for each 
observation’s contribution to the objective function. For least squares and log likelihood 
functions, this approximation is asymptotically equivalent to the actual Hessian when eval-
uated at the parameter values which maximize the function. When evaluated away from 
the maximum, this approximation may be quite poor.

The algorithm is referred to as Gauss-Newton for general nonlinear least squares problems, 
and often attributed to Berndt, Hall, Hall, and Hausman (BHHH) for maximum likelihood 
problems.

The advantages of approximating the negative Hessian by the outer product of the gradient 
are that (1) we need to evaluate only the first derivatives, and (2) the outer product is nec-
essarily positive semi-definite. The disadvantage is that, away from the maximum, this 
approximation may provide a poor guide to the overall shape of the function, so that more 
iterations may be needed for convergence. 

Marquardt

The Marquardt algorithm modifies the Gauss-Newton algorithm in exactly the same man-
ner as quadratic hill climbing modifies the Newton-Raphson method (by adding a correc-
tion matrix (or ridge factor) to the Hessian approximation). 

k k 1+( ) 2⁄
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The ridge correction handles numerical problems when the outer product is near singular 
and may improve the convergence rate. As above, the algorithm pushes the updated 
parameter values in the direction of the gradient.

For models which may be estimated using first derivative methods, EViews uses Marquardt 
as its default method. You may elect to use traditional Gauss-Newton via the Options 
menu.

Note that asymptotic standard errors are always computed from the unmodified (Gauss-
Newton) Hessian approximation once convergence is achieved.

Choosing the step size

At each iteration we can search along the given direction for the optimal step size. EViews 
performs a simple trial-and-error search at each iteration to determine a step size  that 
improves the objective function. This procedure is sometimes referred to as squeezing or 
stretching. 

Note that while EViews will make a crude attempt to find a good step,  is not actually 
optimized at each iteration since the computation of the direction vector is often more 
important than the choice of the step size. It is possible, however, that EViews will be 
unable to find a step size that improves the objective function. In this case, EViews will 
issue an error message.

EViews also performs a crude trial-and-error search to determine the scale factor  for 
Marquardt and quadratic hill-climbing methods.

Derivative free methods

Other optimization routines do not require the computation of derivatives. The grid search 
is a leading example. Grid search simply computes the objective function on a grid of 
parameter values and chooses the parameters with the highest values. Grid search is com-
putationally costly, especially for multi-parameter models.

EViews uses (a version of) grid search for the exponential smoothing routine.

Setting Estimation Options

When you estimate an equation in EViews, you enter specification information into the 
Equation Specification dialog. The dialog will differ depending upon the estimation 
method chosen.

λ

λ

α



Setting Estimation Options—667
Clicking on the Options button in the dialog 
opens the Estimation Options dialog, allow-
ing you to set various options to control the 
estimation procedure. The contents of the 
Estimation Options dialog will differ depend-
ing upon the options available for a particu-
lar estimation procedure. The Estimation 
Options dialog for binary models is depicted 
here. For other estimator and estimation 
techniques (e.g. systems) the dialog will dif-
fer as different available estimation options are available.

Starting Coefficient Values

Iterative estimation procedures require starting values for the coefficients of the model. 
There are no general rules for selecting starting values for parameters. Obviously, the 
closer to the true values, the better, so if you have reasonable guesses for parameter val-
ues, these can be useful. In some cases, you can obtain starting values by estimating a 
restricted version of the model. In general, however, you may have to experiment to find 
good starting values.

EViews follows three basic rules for selecting starting values:

• For nonlinear least squares type problems, EViews uses the values in the coefficient 
vector at the time you begin the estimation procedure as starting values.

• For system estimators and ARCH, EViews uses starting values based upon prelimi-
nary single equation OLS or TSLS estimation. In the dialogs for these estimators, the 
drop-down menu for setting starting values will not appear.

• For selected estimation techniques (binary, ordered, count, censored and truncated) 
EViews has built-in algorithms for determining the starting values using specific 
information about the objective function. These will be labeled in the Starting Values 
combo box as EViews Supplied.

In the latter two cases, you may change this default behavior by selecting an item from the 
Starting coefficient values drop down menu. You may choose fractions of the default 
starting values, zero, or arbitrary User Supplied.

If you select User Supplied, EViews will use the values stored in the C coefficient vector at 
the time of estimation as starting values. To see the starting values, double click on the 
coefficient vector in the workfile directory. If the values appear to be reasonable, you can 
close the window and proceed with estimating your model.
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If you wish to change the starting values, first make certain that the spreadsheet view of 
the coefficient vector is in edit mode, then enter the coefficient values. When you are fin-
ished setting the initial values, close the coefficient vector window and estimate your 
model. 

You may also set starting coefficient values from the command window using the PARAM 
command. Simply enter the PARAM keyword, followed by pairs of coefficients and their 
desired values:

param c(1) 153 c(2) .68 c(3) .15

sets C(1)=153, C(2)=.68, and C(3)=.15. All of the other elements of the coefficient vec-
tor are left unchanged.

Lastly, if you want to use estimated coefficients from another equation, select Procs/
Update Coefs from Equation from the equation window toolbar. 

For nonlinear least squares problems or situations where you specify the starting values, 
bear in mind that:

• The objective function must be defined at the starting values. For example, if your 
objective function contains the expression 1/C(1), then you cannot set C(1) to zero. 
Similarly, if the objective function contains LOG(C(2)), then C(2) must be greater 
than zero.

• A poor choice of starting values may cause the nonlinear least squares algorithm to 
fail. EViews begins nonlinear estimation by taking derivatives of the objective func-
tion with respect to the parameters, evaluated at these values. If these derivatives are 
not well behaved, the algorithm may be unable to proceed.

If, for example, the starting values are such that the derivatives are all zero, you will 
immediately see an error message indicating that EViews has encountered a “Near 
Singular Matrix”, and the estimation procedure will stop.

• Unless the objective function is globally concave, iterative algorithms may stop at a 
local optimum. There will generally be no evidence of this fact in any of the output 
from estimation.

If you are concerned with the possibility of local optima, you may wish to select var-
ious starting values and see whether the estimates converge to the same values. One 
common suggestion is to estimate the model and then randomly alter each of the 
estimated coefficients by some percentage, then use these new coefficients as start-
ing values in estimation.
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Iteration and Convergence Options

There are two common iteration stopping rules: based on the change in the objective func-
tion, or based on the change in parameters. The convergence rule used in EViews is based 
upon changes in the parameter values. This rule is generally conservative, since the 
change in the objective function may be quite small as we approach the optimum (this is 
how we choose the direction), while the parameters may still be changing.

The exact rule in EViews is based on comparing the norm of the change in the parameters 
with the norm of the current parameter values. More specifically, the convergence test is:

(D.3)

where  is the vector of parameters,  is the 2-norm of , and tol is the specified tol-
erance. However, before taking the norms, each parameter is scaled based on the largest 
observed norm across iterations of the derivative of the least squares residuals with respect 
to that parameter. This automatic scaling system makes the convergence criteria more 
robust to changes in the scale of the data, but does mean that restarting the optimization 
from the final converged values may cause additional iterations to take place, due to slight 
changes in the automatic scaling value when started from the new parameter values.

The estimation process achieves convergence if the stopping rule is reached using the tol-
erance specified in the Convergence edit box of the Estimation Dialog or the Estimation 
Options Dialog. By default, the box will be filled with the tolerance value specified in the 
global estimation options, or if the estimation object has previously been estimated, it will 
be filled with the convergence value specified for the last set of estimates.

EViews may stop iterating even when convergence is not achieved. This can happen for 
two reasons. First, the number of iterations may have reached the prespecified upper 
bound. In this case, you should reset the maximum number of iterations to a larger num-
ber and try iterating until convergence is achieved. 

Second, EViews may issue an error message indicating a “Failure to improve”after a num-
ber of iterations. This means that even though the parameters continue to change, EViews 
could not find a direction or step size that improves the objective function. This can hap-
pen when the objective function is ill-behaved; you should make certain that your model is 
identified. You might also try other starting values to see if you can approach the optimum 
from other directions.

Lastly, EViews may converge, but warn you that there is a singularity and that the coeffi-
cients are not unique. In this case, EViews will not report standard errors or t-statistics for 
the coefficient estimates.

θ i 1+( ) θ i( )− 2
θ i( ) 2

������������������������������������ tol≤

θ x 2 x
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Derivative Computation Options

In many EViews estimation procedures, you can specify the form of the function for the 
mean equation. For example, when estimating a regression model, you may specify an 
arbitrary nonlinear expression in the coefficients. In these cases, when estimating the 
model, EViews will compute derivatives of the user-specified function.

EViews uses two techniques for evaluating derivatives: numeric (finite difference) and 
analytic. The approach that is used depends upon the nature of the optimization problem 
and any user-defined settings:

• In most cases, EViews offers the user the choice of computing either analytic or 
numeric derivatives. By default, EViews will fill the options dialog with the global 
estimation settings. If the Use numeric only setting is chosen, EViews will only 
compute the derivatives using finite difference methods. If this setting is not 
checked, EViews will attempt to compute analytic derivatives, and will use numeric 
derivatives only where necessary.

• EViews will ignore the numeric derivative setting and use an analytic derivative 
whenever a coefficient derivative is a constant value.

• For some procedures where the range of specifications allowed is limited, EViews 
always uses analytic first and/or second derivatives. VARs, Pools, binary models 
(probit, logit, etc.), count models, censored (tobit) models, and ordered models all 
fall into this category. 

• The derivatives with respect to the AR coefficients in an ARMA specification are 
always computed analytically while those with respect to the MA coefficients are 
computed numerically.

• In a limited number of cases, EViews will always use numeric derivatives. For the 
moment, GARCH and State Space models always use numeric derivatives. As noted 
above, MA coefficient derivatives are always computed numerically.

• Logl objects always use numeric derivatives unless you provide the analytic deriva-
tives in the specification.
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• Where relevant, the estimation 
options dialog allows you to control 
the method of taking derivatives. For 
example, the options dialog for stan-
dard regression allows you to override 
the use of EViews analytic derivatives, 
and to choose between favoring speed 
or accuracy in the computation of any 
numeric derivatives.

Computing the more accurate numeric deriv-
atives requires additional objective function 
evaluations. While the algorithms may 
change in future versions, at present, EViews computes numeric derivatives using either a 
one-sided finite difference (favor speed), or using a four-point routine using Richardson 
extrapolation (favor precision). Additional details are provided in Kincaid and Cheney 
(1996).

Analytic derivatives will often be faster and more accurate than numeric derivatives, espe-
cially if the analytic derivatives have been simplified and carefully optimized to remove 
common subexpressions. Numeric derivatives will sometimes involve fewer floating point 
operations than analytic, and in these circumstances, may be faster.

EViews provides tools for examining the effect of your derivative choices. See Appendix E, 
“Gradients and Derivatives”, on page 675 for additional details.

Nonlinear Equation Solution Methods

When solving a nonlinear equation system, EViews first analyzes the system to determine 
if the system can be separated into two or more blocks of equations which can be solved 
sequentially rather than simultaneously. Technically, this is done by using a graph repre-
sentation of the equation system where each variable is a vertex and each equation pro-
vides a set of edges. A well known algorithm from graph theory is then used to find the 
strongly connected components of the directed graph.

Once the blocks have been determined, each block is solved for in turn. If the block con-
tains no simultaneity, each equation in the block is simply evaluated once to obtain values 
for each of the variables.

If a block contains simultaneity, the equations in that block are solved by either a Gauss-
Seidel or Newton method, depending on how the solver options have been set.
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Gauss-Seidel

By default, EViews uses the Gauss-Seidel method when solving systems of nonlinear equa-
tions. Suppose the system of equations is given by:

(D.4)

where  are the endogenous variables and  are the exogenous variables.

The problem is to find a fixed point such that . Gauss-Seidel uses an iterative 
updating rule of the form:

. (D.5)

to find the solution. At each iteration, EViews solves the equations in the order that they 
appear in the model. If an endogenous variable that has already been solved for in that 
iteration appears later in some other equation, EViews uses the value as solved in that iter-
ation. For example, the k-th variable in the i-th iteration is solved by 

. (D.6)

The performance of the Gauss-Seidel method can be affected be reordering of the equa-
tions. If the Gauss-Seidel method converges slowly or fails to converge, you should try 
moving the equations with relatively few and unimportant right-hand side endogenous 
variables so that they appear early in the model.

Newton's Method

Newton’s method for solving a system of nonlinear equations consists of repeatedly solv-
ing a local linear approximation to the system.

Consider the system of equations written in implicit form:

(D.7)

where  is the set of equations,  is the vector of endogenous variables and  is the vec-
tor of exogenous variables.

In Newton’s method, we take a linear approximation to the system around some values 
 and :

(D.8)
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and then use this approximation to construct an iterative procedure for updating our cur-
rent guess for :

(D.9)

where raising to the power of -1 denotes matrix inversion.

The procedure is repeated until the changes in  between periods are smaller than a 
specified tolerance.

Note that in contrast to Gauss-Seidel, the ordering of equations under Newton does not 
affect the rate of convergence of the algorithm.

x

xt 1+ xt
x∂
∂
F xt z∗,( )

1−
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Appendix E.  Gradients and Derivatives

Many EViews estimation objects provide built-in routines for examining the gradients and 
derivatives of your specifications. You can, for example, use these tools to examine the 
analytic derivatives of your nonlinear regression specification in numeric or graphical 
form, or you can save the gradients from your estimation routine for specification tests.

The gradient and derivative views may be accessed from most estimation objects by select-
ing View/Gradients and Derivatives or, in some cases, View/Gradients, and then select-
ing the appropriate view. 

If you wish to save the numeric values of your gradients and derivatives you will need to 
use the gradient and derivative procedures. These procs may be accessed from the main 
Procs menu.

Note that all views and procs are not available for every estimation object or every estima-
tion technique.

Gradients

EViews provides you with the ability to examine and work with the gradients of the objec-
tive function for a variety of estimation objects. Examining these gradients can provide 
useful information for evaluating the behavior of your nonlinear estimation routine, or can 
be used as the basis of various tests of specification.

Since EViews provides a variety of estimation methods and techniques, the notion of a gra-
dient is a bit difficult to describe in casual terms. EViews will generally report the values of 
the first-order conditions used in estimation. To take the simplest example, ordinary least 
squares minimizes the sum-of-squared residuals:

(E.1)

The first-order conditions for this objective function are obtained by differentiating with 
respect to , yielding

(E.2)

EViews allows you to examine both the sum and the corresponding average, as well as the 
value for each of the individual observations. Furthermore, you can save the individual 
values in series for subsequent analysis.

The individual gradient computations are summarized in the following table:

S β( ) yt Xt�β−( )2
t
Σ=

β

2 yt Xt�β−( )Xt−
t
Σ
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where  and  are the projection matrices corresponding to the expressions for the esti-
mators in Chapter 12, “Additional Regression Methods”, beginning on page 279, and 
where  is the log likelihood contribution function.

Note that the expressions for the regression gradients are adjusted accordingly in the pres-
ence of ARMA error terms.

Gradient Summary

To view the summary of the gradients, select View/Gradients and Derivatives/Gradient 
Summary, or View/Gradients/Summary. EViews will display a summary table showing 
the sum, mean and Newton direction associated with the gradients. Here is an example 
table from a nonlinear least squares estimation equation:

Least squares

Weighted least squares

Two-stage least squares

Weighted two-stage least 
squares

Maximum likelihood

gt 2 yt ft Xt β,( )−( )
∂ft Xt β,( )

∂β
�������������������������� 
 −=

gt 2 yt ft Xt β,( )−( )wt
2 ∂ft Xt β,( )

∂β
�������������������������� 

 −=

gt 2 yt ft Xt β,( )−( )Pt
∂ft Xt β,( )

∂β
�������������������������� 

 −=

gt 2 yt ft Xt β,( )−( )wtP� twt

∂ft Xt β,( )
∂β

�������������������������� 
 −=

gt
∂lt Xt β,( )

∂β
�������������������������=

P P�

l

Gradients of the objective function at estimated 
parameters 
Equation: EQ1 
Method: Least Squares 
Specification: Y = C(1)*EXP(-C(2)*X) + C(3)*EXP( -((X 
        -C(4))^2) / C(5)^2 ) + C(6)*EXP( -((X-C(7))^2) / 
C(8)^2 ) 
Computed using analytic derivatives 

Coefficient Sum Mean Newton Dir. 

C(1) -3.49E-09 -1.40E-11 -2.43E-12 
C(2) -2.72E-06 -1.09E-08 -7.74E-16 
C(3) -7.76E-09 -3.11E-11 -9.93E-12 
C(4) 3.85E-09 1.54E-11 1.04E-14 
C(5) 8.21E-09 3.29E-11 1.97E-13 
C(6) 1.21E-09 4.84E-12 -2.20E-12 
C(7) -9.16E-10 -3.67E-12 3.53E-14 
C(8) 2.85E-08 1.14E-10 3.95E-13 
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There are several things to note about this table. The first line of the table indicates that the 
gradients have been computed at estimated parameters. If you ask for a gradient view for 
an estimation object that has not been successfully estimated, EViews will compute the 
gradients at the current parameter values and will note this in the table. This behavior 
allows you to diagnose unsuccessful estimation problems using the gradient values.

Second, you will note that EViews informs you that the gradients were computed using 
analytic derivatives. EViews will also inform you if the specification is linear, if the deriva-
tives were computed numerically, or if EViews used a mixture of analytic and numeric 
techniques. We remind you that all MA coefficient derivatives are computed numerically.

Lastly, there is a table showing the sum and mean of the gradients as well as a column 
labeled “Newton Dir.”. The column reports the non-Marquardt adjusted Newton direction 
used in first-derivative iterative estimation procedures (see “First Derivative Methods” on 
page 665). 

In the example above, all of the values are “close” to zero. While one might expect these 
values always to be close to zero when evaluated at the estimated parameters, there are a 
number of reasons why this will not always be the case. First, note that the sum and mean 
values are highly scale variant so that changes in the scale of the dependent and indepen-
dent variables may lead to marked changes in these values. Second, you should bear in 
mind that while the Newton direction is related to the terms used in the optimization pro-
cedures, EViews’ test for convergence does not directly use the Newton direction. Third, 
some of the iteration options for system estimation do not iterate coefficients or weights 
fully to convergence. Lastly, you should note that the values of these gradients are sensi-
tive to the accuracy of any numeric differentiation.

Gradient Table and Graph

There are a number of situations in which you may wish to examine the individual contri-
butions to the gradient vector. For example, one source of singularity in nonlinear estima-
tion, or poor starting values is the presence of very small combined with very large 
gradients at a given set of coefficient values.

EViews allows you to examine your gradients in two ways: as a spreadsheet of values, or 
as line graphs, which each set of coefficient gradients plotted in a separate graph. Using 
these tools you can examine your data for observations with outlier values for the gradi-
ents.

Gradient Series

You can save the individual gradient values in series using the Make Gradient Group pro-
cedure. EViews will create a new group containing series with names of the form GRAD## 
where ## is the next available name.
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Note that when you store the gradients, EViews will fill the series for the full workfile 
range. If you view the series, make sure to set the workfile sample to the sample used in 
estimation if you want to reproduce the table displayed in the gradient views.

Application to LM Tests

The gradient series are perhaps most useful for carrying out Lagrange multiplier tests for 
nonlinear models by running what is known as artificial regressions (Davidson and 
MacKinnon 1993, Chapter 6). A generic artificial regression for hypothesis testing takes the 
form of regressing

(E.3)

where  are the estimated residuals under the restricted (null) model, and  are the esti-
mated coefficients. The  are a set of “misspecification indicators” which correspond to 
departures from the null hypothesis.

An example program (“GALLANT2.PRG”) for performing an LM auxiliary regression test is 
provided in your EViews installation directory.

Gradient Availability

The gradient views are currently available for the equation, logl, sspace and system 
objects. The views are not, however, currently available for equations estimated by GMM 
or ARMA equations specified by expression.

Derivatives

EViews employs a variety of rules for computing the derivatives used by iterative estima-
tion procedures. These rules, and the user-defined settings that control derivative taking, 
are described in detail in “Derivative Computation Options” on page 670.

In addition, EViews provides both object views and object procedures which allow you to 
examine the effects of those choices, and the results of derivative taking. These views and 
procedures provide you with quick and easy access to derivatives of your user-specified 
functions.

It is worth noting that these views and procedures are not available for all estimation tech-
niques. For example, the derivative views are currently not available for binary models 
since only a limited set of specifications are allowed.

Derivative Description

The Derivative Description view provides a quick summary of the derivatives used in esti-
mation. 

ut�   on 
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For example, consider the simple nonlinear regression model

(E.4)

Following estimation of this single equation, we can display the description view by select-
ing View/Gradients and Derivatives.../Derivative Description. 

There are three parts to the output from this view. First, the line labeled “Specification:” 
describes the equation specification that we are estimating. You will note that we have 
written the specification in terms of the implied residual from our specification. 

The next line describes the method used to compute the derivatives used in estimation. 
Here, EViews reports that the derivatives were computed analytically. 

Lastly, the bottom portion of the table displays the expressions for the derivatives of the 
regression function with respect to each coefficient. Note that the derivatives are in terms 
of the implied residual so that the signs of the expressions have been adjusted accordingly.

In this example, all of the derivatives were computed analytically. In some cases, however, 
EViews will not know how to take analytic derivatives of your expression with respect to 
one or more of the coefficient. In this situation, EViews will use analytic expressions where 
possible, and numeric where necessary, and will report which type of derivative was used 
for each coefficient. 

Suppose, for example, that we estimate

(E.5)

where  is the standard normal density function. The derivative view of this equation is 

yt c 1( ) 1 c 2( )xt−( )exp−( ) εt+=

Derivatives of the equation specification 
Equation: EQ1 
Method: Least Squares 
Specification: RESID = Y - (C(1)*(1 - EXP(-C(2)*X))) 
Computed using analytic derivatives 

Coefficient  Derivative of Specification 

C(1) -1 + exp(-c(2) * x) 
C(2) -c(1) * x * exp(-c(2) * x) 

yt c 1( ) 1 φ c 2( )xt( )−( )exp−( ) εt+=

φ
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Here, EViews reports that it attempted to use analytic derivatives, but that it was forced to 
use a numeric derivative for C(2) (since it has not yet been taught the derivative of the 
@DNORM function).

If we set the estimation option so that we only compute fast numeric derivatives, the view 
would change to

to reflect the different method of taking derivatives.

If your specification contains autoregressive terms, EViews will only compute the deriva-
tives with respect to the regression part of the equation. The presence of the AR compo-
nents is, however, noted in the description view.

Recall that the derivatives of the objective function with respect to the AR components are 
always computed analytically using the derivatives of the regression specification, and the 
lags of these values.

Derivatives of the equation specification 
Equation: EQ1 
Method: Least Squares 
Specification: RESID = Y - (C(1)*(1 - EXP(-@DNORM(C(2)*X)))) 
Computed using analytic derivatives 
Use accurate numeric derivatives where necessary 

Coefficient  Derivative of Specification 

C(1) -1 + exp(-@dnorm(c(2) * x)) 
C(2) --- accurate numeric --- 

Derivatives of the equation specification 
Equation: EQ1 
Method: Least Squares 
Specification: RESID = Y - (C(1)*(1 - EXP(-C(2)*X))) 
Computed using fast numeric derivatives 

Coefficient  Derivative of Specification 

C(1) --- fast numeric --- 
C(2) --- fast numeric --- 

Derivatives of the equation specification 
Equation: EQ1 
Method: Least Squares 
Specification: [AR(1)=C(3)] = Y - (C(1)*(1 - EXP(-C(2)*X))) 
Computed using analytic derivatives 

Coefficient  Derivative of Specification* 

C(1) -1 + exp(-c(2) * x) 
C(2) -c(1) * x * exp(-c(2) * x) 

*Note: derivative expressions do not account for AR components 
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One word of caution about derivative expressions. For many equation specifications, ana-
lytic derivative expressions will be quite long. In some cases, the analytic derivatives will 
be longer than the space allotted to them in the table output. You will be able to identify 
these cases by the trailing “...” in the expression.

To see the entire expression, you will have to create a table object and then resize the 
appropriate column. Simply click on the Freeze button on the toolbar to create a table 
object, and then highlight the column of interest. Click on Width on the table toolbar and 
enter in a larger number.

Derivative Table and Graph

Once we obtain estimates of the parameters of our nonlinear regression model, we can 
examine the values of the derivatives at the estimated parameter values. Simply select 
View/Gradients and Derivatives... to see a spreadsheet view or line graph of the values of 
the derivatives for each coefficient.

This spreadsheet view displays the value of the derivatives for each observation in the 
standard spreadsheet form. The graph view, plots the value of each of these derivatives for 
each coefficient.

Derivative Series

You can save the derivative values in series for later use. Simply select Procs/Make Deriv-
ative Group and EViews will create an untitled group object containing the new series. 
The series will be named DERIV##, where ## is a number associated with the next avail-
able free name. For example if you have the objects DERIV01 and DERIV02, but not 
DERIV03 in the workfile, EViews will save the next derivative in the series DERIV03.
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Appendix F.  Information Criteria

As part of the output for most regression procedures, EViews reports various information 
criteria. The information criteria are often used as a guide in model selection (see for 
example, Grasa 1989). 

The Kullback-Leibler quantity of information contained in a model is the distance from the 
“true” model and is measured by the log likelihood function. The notion of an information 
criterion is to provide a measure of information that strikes a balance between this mea-
sure of goodness of fit and parsimonious specification of the model. The various informa-
tion criteria differ in how to strike this balance. 

Definitions

The basic information criteria are given by

Let  be the value of the log of the likelihood function with the  parameters estimated 
using  observations. The various information criteria are all based on –2 times the aver-
age log likelihood function, adjusted by a penalty function.

In addition to the information criteria described above, there are specialized information 
criteria that are used in by EViews when computing unit root tests:

where the modification factor  is computed as

(F.1)

for  when computing the ADF test equation (13.50), and for  as defined in 
(“Autoregressive Spectral Density Estimator” beginning on page 339) when estimating the 
frequency zero spectrum (see Ng and Perron, 2002, for a discussion of the modified infor-
mation criteria). 

Note also that:

Akaike info criterion (AIC)

Schwarz criterion (SC)

Hannan-Quinn criterion (HQ)

Modified AIC (MAIC)

Modified SIC (MSIC)

Modified Hannan-Quinn (MHQ)
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• The Hannan-Quinn criterion is reported only for binary, ordered, censored, and 
count models.

• The definitions used by EViews may differ slightly from those used by some authors. 
For example, Grasa (1989, equation 3.21) does not divide the AIC by . Other 
authors omit inessential constants of the Gaussian log likelihood (generally, the 
terms involving ).

While very early versions of EViews reported information criteria that omitted ines-
sential constant terms, the current version of EViews always uses the value of the 
full likelihood function. All of your equation objects estimated in earlier versions of 
EViews will automatically be updated to reflect this change. You should, however, 
keep this fact in mind when comparing results from frozen table objects or printed 
output from previous versions.

• For systems of equations, where applicable, the information criteria are computed 
using the full system log likelihood. The log likelihood value is computed assuming 
a multivariate normal (Gaussian) distribution as:

 (F.2)

where

(F.3)

 is the number of equations. Note that these expressions are only strictly valid 
when you there are equal numbers of observations for each equation. When your 
system is unbalanced, EViews replaces these expressions with the appropriate sum-
mations.

Using Information Criteria as a Guide to Model Selection

As a user of these information criteria as a model selection guide, you select the model 
with the smallest information criterion. 

The information criterion has been widely used in time series analysis to determine the 
appropriate length of the distributed lag. Lütkepohl (1991, Chapter 4) presents a number of 
results regarding consistent lag order selection in VAR models.

You should note, however, that the criteria depend on the unit of measurement of the 
dependent variable . For example, you cannot use information criteria to select between 
a model with dependent variable  and one with log( ).
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Andrews 517
bracket option 231, 237
in kernel fit 239
in nearest neighbor fit 236
Newey-West (fixed) 517
Newey-West (variable) 518
selection in GMM 504, 517

Bar graph 151
Bartlett kernel 516
Bartlett test 163
BDS test 170
Berndt-Hall-Hall-Hausman. See also Optimiza-

tion algorithms.
Bias proportion 353
Binary dependent variable 421

error messages 428
fitted index 434
interpretation of coefficient 425
log likelihood 422

Binary Estimation
perfect predictor 428

Binning option 155, 216
exact 231, 240
linear 231, 240

Binomial sign test 158
Box-Cox transformation 234

Box-Jenkins 312
Bracket bandwidth option

in kernel density 231
in kernel fit 240
in nearest neighbor fit 237

Breusch-Godfrey test 305, 377
Brown-Forsythe test 163
Button bar display option 648

C

C
coef vector 260
constant in regression 260

Cache 143
Categorical regressor stats 429, 449
Causality

Granger's test 223
Censored dependent variable 444

fitted index 450
goodness-of-fit tests 451
interpretation of coefficient 449
log likelihood 445
scale factor 449
specifying the censoring point 446

Census X11
historical 184
limitations 184
using X12 178

Census X12 177
seasonal adjustment options 178

Change default directory 38
Chi-square

independence test in tabulation 217
statistic for Wald test 369
test for independence in n-way table 218
test for the median 162

Cholesky factor
in VAR impulse responses 528
in VAR normality test 525

Chow test
breakpoint 380
forecast 381
n-step forecast 387
one-step forecast 387

Classification table
binary models 429
ordered models 442
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sensitivity 430
specificity 430

Cleveland subsampling 236
Click(ing) 6
Clipboard 252, 255
Close

EViews 12
object 648
window 7

Cochrane-Orcutt 287, 310
Coef (coefficient vector)

default 260
update from equation 273

Coefficient
common (pool) 564
covariance matrix 271
covariance matrix of estimates 272
cross-section specific (pool) 564
estimated from regression 265
maximum number in default 442
recursive estimates 388
restrictions 262
setting initial values 292, 667
standard error 266

Coefficient restriction test 368
Cointegration test 537
Collinearity 323
Column width 254
Command window 10
Comments 41, 50
Common coefficients (pool) 564
Common sample 93
Component GARCH 412

asymmetric component 413
permanent component 413
transitory component 413

Conditional standard deviation
graph 404

Conditional variance 395, 397
forecast 406
in the mean equation 399
make series 406

Confidence interval
for forecast 352
for stochastic model solution 635

Constant
in equation 260, 266

in ordered models 440
in pool estimation 564

Contingency coefficient 218
Contract range of workfile 38
Convergence criterion 669

in nonlinear least squares 293, 297
in pool estimation 565

Copy
and paste 51
data 71
data cut-and-paste 65
database 133
graph 252
object 51
table 254
to and from database 115

Copy and paste 252, 254
Correlation 221
Correlogram 170, 221, 305

autocorrelation function 167
cross 221
partial autocorrelation function 168
Q-statistic 169
squared residuals 375, 405

Count models 458
negative binomial (ML) 459
Poisson 459

Covariance 221
Covariance matrix

HAC (Newey-West) 282
heteroskedasticity consistent of estimated coef-

ficients 281
of estimated coefficients 271

Covariance proportion 353
Cramer's V 218
Cramer-von Mises test 164
Create

database 109
group 59, 102
object 45
series 55, 94
text object 255
workfile 34

Cross correlation 221
test asymmetry 412

Cross correlogram 221
Cross section
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identifiers in pool 552
Cross-equation

coefficient restriction 496, 499
correlation 497, 498
weighting 496

Cross-section
cross-section specific coefficients in pool 564

Cumulative distribution 225
Blom option 227
Ordinary option 227
Rankit option 227
Tukey option 227
Van der Waerden option 227

CUSUM of squares test 386
CUSUM test 385

D

Data
cut and paste 67, 71
export 71
import 68
keyboard entry 65
missing 94
pool 553

Database
alias 122
auto-search 123
auto-series 121
cache 143
copy 133
copy objects 115
create 109
default 112
default in search order 123
delete 133
delete objects 117
export 115
fetch objects 114
field 126
frequency in query 128
link 141
link options 144
match operator in query 128
open 109
packing 134
queries 123
rebuild 135

rename 133
rename object 117
repair 135
sharing violation 111
statistics 134
store objects 113
test integrity 134
window 109

Database registry 121
Date

format 653
notation options 648

Dated data table 200
formatting options 206
frequency conversion 204
row options 206
table options 201
transformation methods 204

Default
database 12, 112
database in search order 123
directory 12, 648
equation 36
set directory 38
setting global options 647
update directory 38

Default equation 273
Delete 51

cells from table 253
database 133
objects from database 117
observation in series 58
series using pool 562

Demonstration 31
creating a workfile 15
estimation 22
forecasting 28
import data 18
specification test 24

Dependent variable
no variance in binary models 428

Derivatives 670, 678
description 678
saving in series 681

Description
field in database query 130

Descriptive statistics
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balanced sample (pool) 559
by classification 154
common sample (group) 214
common sample (pool) 559
cross-section specific 560
for a series 156
group 214
individual samples (group) 214
individual samples (pool) 559
stacked data 559
time period specific 560

Deselect all 45
Dialog box 9
Dickey-Fuller test 333
Difference from moving-average 185
Difference operator 92, 314

seasonal 92, 314
Display filter 36, 41
Display name

field in database query 130
Distribution

empirical distribution function tests 164
tests of 164

Distribution graphs 164, 225
cumulative distribution 225
kernel density 164, 229
QQ-plot 164, 227
quantile 226
survivor 226

Doornik and Hansen factorization matrix 525
Drag(ging) 6

text in graph 249
DRI

frequency 145
queries 145

DRI database
DRIpro 141
illegal names 144
object alias 132
shadowing of object names 132
troubleshooting 146

Dummy variable 98
censoring point 447
dependent 421
pool series 561

Durbin-Watson statistic 304
for regression 268

lagged dependent variable 305
Dynamic forecasting 355

E

Easy query 124
Edit

group 60
series 56, 200
table 254

Elliot, Rothenberg, and Stock point optimal test 
337

Empirical distribution function tests 164
End field 129
Endogeneity 390
Endogenous variable 283
Epanechnikov kernel 230, 239
Equality tests 159

mean 159
median 161
variance 163

Equation
coefficient covariance matrix 271
coefficient covariance scalar 270
coefficient standard error vector 271
coefficient t-statistic scalar 271
coefficient t-statistic vector 271
coefficient vector 271
create 259
default 274
regression coefficients 265
regression summary statistics 267
results 265
retrieve previously estimated 275
saved results 270, 274
scalar results 270
specification 260
specify by formula 261
specify by list 260
specify with non-default coefs 263
specify with restrictions 262
specify without dependent variable 262
specifying a constant 260
store 275
text representation 272
t-statistic 266
vector and matrix results 271

Error bar graph 210
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Error bar graphs 245
Error message display option 651
Estimation

AR specification 307
auto-series 102
binary dependent variable 423
censored models 445
collinearity 276
convergence problems 669
count models 458
derivative computation options 670
failure to improve 669
for pool 562
missing data 264
near singular matrix problems 668
nonlinear least squares 289
options 666
ordered models 439
output 265
problems in convergence 668
residuals from equation 274
sample 263
sample adjustment 264
single equation methods 263
state space 591
systems 503
truncated models 454
two-stage least squares 283
weighted least squares 281

Evaluate
precedence 88

EViews
Enterprise Edition 137, 138

EViews Databases 107
Excel files

reading data from 68
Exogenous variable 283
Expand range 38
Expectation-prediction table

binary models 429
ordered models 442

Expectations consistency in models 631
Expected dependent variable

censored models 450
truncated models 456

Expected latent variable
censored models 450

truncated models 456
Exponential GARCH (EGARCH) 409
Exponential smoothing 195

double 192
Holt-Winters additive 193
Holt-Winters multiplicative 192
Holt-Winters no-seasonal 193
single 191

Export data 71
from pool objects 558
to ASCII files 72
to spreadsheet files 71

Export database 115
Expression 87

for database fields 127
logical 90
parentheses 88

Extended search in models 638
Extract from workfile 39
Extreme value

binary model 424

F

Fair-Taylor model solution 630
Fetch

from database 114
from pool 562

Fields in database 126
description 130
display_name 130
end 129
expressions 127
freq 128
history 130
last_update 129
last_write 129
name 127
remarks 130
source 130
start 129
type 128
units 130

Files
default locations 648

First derivative methods 665
Fitted index

binary models 434



G—699
censored models 450
truncated models 456

Fitted probability
binary models 434

Fitted values
of equation 272

Fixed
decimal 254
digits 254

Fixed effects 564, 572
standard errors 573

Fixed variance parameter
negative binomial QML 462
normal QML 461

Font options 647
table 253
text in graph 248

Forecast
AR specification 357
binary models 434
by exponential smoothing 195
censored models 450
Chow test 381
conditional variance 406
count models 462
dynamic 355, 581
equations with formula 359
error 350
evaluation 352
fitted values 349
from estimated equation 343
interval 352
MA specification 358
n-step ahead 580
n-step test 387
one-step test 387
ordered models 443
out-of-sample 349
smoothed 581
standard error 351, 362
static 356
structural 357
truncated models 456
variance 350
with AR errors 357

Formula
forecast 359
implicit assignment 96

normalize 97
specify equation by 261

Forward solution for models 629
Freeze 51

create graph from view 243
output 651

Freq
field in database query 128

Frequency 653
Frequency conversion 51, 72, 173

DRI database 145
in dated data table 204
propagate NAs 73
undated series 73

F-statistic 369, 373
for regression 269

F-test
for variance equality 163

Full information maximum likelihood 498

G

GARCH
ARCH-M model 399
asymmetric models 407
component models 412
exponential GARCH (EGARCH) 409
GARCH(1,1) model 397
GARCH(p,q) model 399
initialization 401
mean equation 400
multivariate 492
news impact curve 410
QML standard errors 401
standardized residual 407

Gauss-Newton 665
Gauss-Seidel algorithm 637, 672
Generalized ARCH 397
Generalized error distribution 409
Generalized least squares 565
Generalized linear models 468

quasi-likelihood ratio test 462
robust standard errors 468
variance factor 468

Generalized method of moments. See GMM.
Generalized residual

binary models 434
censored models 450
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count models 463
ordered models 444
score vector 435
truncated models 456

Generate series 94
by command 97
dynamic assignment 96
for pool 560
implicit formula 96
using samples 95

Geometric moving average 101
GiveWin data 139
GLM (generalized linear model) 468

standard errors 468
Global optimum 668
GLS detrending 335
GMM

bandwidth selection 504
for systems 498
HAC weighting matrix 516
J-statistic 300
kernel options 504
orthogonality condition 298
overidentifying restrictions 300
prewhitening option 504, 518
single equation 297
system 515
White weighting matrix 516

Goldfeld-Quandt 664
Gompit models 424
Goodness-of-fit

adjusted R-squared 267
Andrews test 431, 469
forecast 352
Hosmer-Lemeshow test 431, 468
R-squared 267

Gradients 675
saving in series 677
summary 676

Granger causality 222
test in VAR 522

Graph
adding lines and shading 249
aspect ratio 246
axes control 246
color settings 246
combining 244

coordinates for positioning elements 248
creating 243
customizing lines and symbols 247
error bar 245
high-low-open-close 245
merging multiple 45
modifying 244
multiple graph options 250
multiple graph positioning 251
print in color 252
printing 252
save as postscript file 252
spike 245
stacked lines and bars 245
templates 249
text justification 248

Grid
in table 254

Grid search 666
Group 104

add member 199
auto-series 101
create 59, 102
creating using wildcards 658
edit series 200
editing 60
element 103
spreadsheet view 199, 650

Group into bins option 155, 216
Groupwise heteroskedasticity 215

H

Hannan-Quinn criterion 683
Hatanaka two step estimator 310
Hausman test 390
Haver Analytics Database 138
Help

help system 13
World Wide Web 13

Heteroskedasticity
binary models 437
groupwise 215
of known form 279
of unknown form 281
White's test 378

Heteroskedasticity and autocorrelation consistent 
covariance (HAC) 282



I—701
Heteroskedasticity consistent covariance matrix 
281

High-Low (Open-Close) graphs 210, 245
Hildreth-Lu 310
Histogram 152, 376
History

field in database query 130
Hodrick-Prescott filter 196
Holt-Winters

additive 193
multiplicative 192
no-seasonal 193

Horizontal line in table 254
Hosmer-Lemeshow test 431, 468
Huber/White standard errors 467
Hypothesis tests

ARCH 377
Bartlett test 163
BDS independence 170
binomial sign test 158
Brown-Forsythe 163
chi-square test 162
Chow breakpoint 380
coefficient p-value 266
CUSUM 385
CUSUM of squares 386
distribution 164
F-test 163
Hausman test 390
heteroskedasticity 378
irrelevant or redundant variable 374
Kruskal-Wallis test 162
Levene test 163
multi-sample equality 159
nonnested 391
normality 376
omitted variables 373
Ramsey RESET 382
Siegel-Tukey test 163
single sample 156
stability test 379
unit root 170, 329
Van der Waerden test 158, 162
Wald coefficient restriction test 368
Wilcoxon signed ranks test 158

I

Icon 43
Identification

Box-Jenkins 312
nonlinear models 297

Identity
in system 500

If condition in samples 62
Import data

for pool objects 553, 557
from ASCII 70, 76
from spreadsheet 68

Impulse response 527
generalized impulses 529
See also VAR.
standard errors 528
structural decomposition 529
transformation of impulses 528
user specified impulses 529

Incorrect functional form 379, 382
Independence test 170
Index

fitted from binary models 434
fitted from censored models 450
fitted from truncated models 456

Individual sample 93
Information criterion

Akaike 269, 683
Hannan-Quinn 683
Schwarz 269, 683

Innovation 303
Insert

cells to table 253
observation 58

Insertion point 11
Instrumental variable 283

for 2SLS with AR specification 287
for GMM 298
for nonlinear 2SLS 295
identification 503
in systems 500
order condition 284

Instruments 283
using PDL specifications 325

Integer dependent variable 458
Integrated series 328
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Integrity (database) 134
Intercept

in pool estimation 564
Intercept in equation 260, 266
Inverted AR roots 310, 317
Inverted MA roots 317
Irrelevant variable test 374
Iteration

failure to improve message 669
in models 638

Iteration option 669
for pool estimation 565
for system estimation 504
in nonlinear least squares 293

J

Jarque-Bera statistic 376, 405
in VAR 524

J-statistic 300
J-test 392
Justification 254

K

Kalman filter 579
Kernel

bivariate fit 238
choice in HAC weighting 504, 516
density estimation 164, 229

Kernel function
in density estimation 230
in kernel regression 239

Keyboard
data entry 64
focus option 647
shortcuts 9

Kolmogorov-Smirnov test 164
KPSS test 336
Kruskal-Wallis test 162
Kullback-Leibler 683
Kurtosis 153
Kwiatkowski, Phillips, Schmidt, and Shin test 336

L

Label 41, 50
automatic update option 651

capitalization 49
pie graph 211
series 174

Lag
dynamic assignment 96
series 91

Lagged dependent variable
and serial correlation 303
Durbin-Watson statistic 305

Lagged series in equation 261
Lagrange multiplier test 305
Large sample test 367
Last_update

field in database query 129
Last_write

field in database query 129
Latent variable

binary model 422
censored models 444
ordered models 438

Lead
series 91

Levene test 163
Leverage effect 408
Likelihood 268
Lilliefors test 164
Limit points 441

make covariance matrix 443
make vector 443
non-ascending 442

Limited dependent variable 421
Line graph 151
Linked equations in models 619
List

specifying equation by 260
Ljung-Box Q-statistic 169

serial correlation test 305
LM test

ARCH 377
artificial regression 678
auxiliary regression 376
serial correlation 305, 376

Load
workfile 37

Local optimum 668
Local regression 236
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Local weighting option 237
LOESS 236, 238
Log likelihood

average 426
censored models 445
exponential 461
for binary models 422
for regression (normal errors) 268
negative binomial 459
normal 461
ordered models 439
Poisson model 459
restricted 426
truncated models 454

Logical expression 90
in easy query 125

Logit models 424
Long name 49

for series 174
LOWESS. See also LOESS
LR statistic 373, 426, 452, 453, 462

QLR 466

M

MA specification
backcasting 320
forecast 358
in ARIMA models 311
in two stage least squares 289

Marginal significance level 266, 367
Marquardt 665
Match operator in database query 128
Maximize window 7
Maximum likelihood

full information 498
quasi-generalized pseudo-maximum likelihood 

465
quasi-maximum likelihood 460
user specified 471

McFadden R-squared 426
Mean 152
Mean absolute error 353
Mean absolute percentage error 353
Measurement equation 578
Measurement error 283, 382
Median 152

Menu 8, 48
main 8
objects 49

Merge
graphs 45
store option 114

Micro TSP
opening workfiles 38

Minimize window 7
Missing values 92

handling in estimation 264
in frequency conversion 73
in models 638
recoding 94

Model consistent expectations 631
Models

add factors 601, 626
aliasing 603, 626
binding variables 603
block structure 623
convergence test 638
creating 618
definition 495
diagnostic messages and iteration history 637
dynamic solution 633
equation view 620
excluding variables 625
extended search 638
Fair-Taylor solution 630
fit option for solution 633
future values 629
Gauss-Seidel solution 672
handling of ARMA terms 633
initialize excluded variables 638
inline equations 619
intercept shift add factor 627
linked equations 619
missing value handling 638
Newton solution 672
overriding variables 603, 626, 629
properties of equations 621
roundoff of solution 639
scenarios 616, 625
simultaneous and recursive blocks 623
solution methods 637
solving 629
solving to match target 640
starting values 638
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static solution 633
stochastic solution 634
text description of 624
text keywords 624
tracking variables 636
updating links 620
variable dependencies 622
variable shift add factor 627
variable view 622

Mouse 6
Move window 8
Moving average

geometric 101
Multicollinearity 276

N

NA 92
NA. See also Missing data.
Nadaraya-Watson 238
Name

display option 41
equation 273
object 49
reserved 49

Name field in database query 127
Near singular matrix 276

binary models 428
nonlinear models 297, 668
polynomial distributed lag 324
pool estimation 565
RESET test 384

Nearest neighbor fit 235
Newey-West

HAC covariance 282
truncation lag 282

News impact curve 410
Newton’s method 637, 672
Newton-Raphson 664
Noninvertible MA process 317, 321
Nonlinear coefficient restriction

Wald test 371
Nonlinear least squares 289

convergence criterion 293
forecast standard errors 352
iteration option 293
specification 291

starting values 292
two stage 295
two stage with AR specification 296
weighted 294
weighted two stage 296
with AR specification 294, 308

Nonnested tests 391
Nonstationary time series 328
Normal distribution

test for 164, 376
Normalize formula 97
N-step forecast test 387
Null hypothesis 367
Number format 254
N-way table 219

chi-square tests 217

O

Object 33
basics 42
copy 51
create 45
data 42
delete 51
freeze 51
icon 43
label 50
naming 50
open 45
print 52
procedure 43
sample 64
show 46
store 52
type 44
window 46

Objects menu 49
Observation equation 578
OLS (ordinary least squares)

adjusted R-squared 267
coefficient standard error 266
coefficient t-statistic 266
coefficients 265
standard error of regression 268
sum of squared residuals 268
system estimation 496, 512

Omitted variables test 373, 382
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One-step forecast test 387
One-way tabulation 166
Open

database 109
multiple objects 45
object 45
options 38
workfile 38

Operator 87
arithmetic 87
comparison 90
conjunction (and, or) 90
difference 92
lag 91
lead 91
parentheses 88

Optimization algorithms
BHHH 665
convergence criterion 669
first derivative methods 665
Gauss-Newton 665
Goldfeld-Quandt 664
grid search 666
iteration control 669
Marquardt 665
Newton-Raphson 664
second derivative methods 664
starting values 667
step size 666

Option settings
allow only one untitled 648
backup files 649
button bar 648
date notation 648
error message display 651
fonts 647
keyboard focus 647
output redirection 651
print setup 651
program execution mode 650
series auto label 651
spreadsheet view option 650
warn on close 648

Or operator 62, 90
Order condition for identification 284
Order of stacked data 556
Ordered dependent variable 438

error messages 442

log likelihood 439
Ordinary residual

binary models 434
censored models 450
count models 463
truncated models 456

Orthogonality condition 298, 515
Output redirection 651
Overdispersion 460, 468

specification test 463
Overidentifying restrictions 300

P

Pack database 134
Packable space 110, 134
Panel data 551
Param (command) 292, 503, 668
Parks estimator 565, 575
Partial autocorrelation 312

function 168
Paste 51

existing series 67
new series 66

PcGive data 139
PDL (polynomial distributed lag)

forecast standard errors 352
instruments 325
near end restriction 324
specification 324

Phi coefficient 218
Phillips-Perron test 335
Pie graph 211
Polynomial distributed lag

far end restriction 324
Polynomial distributed lags 352
Pool

AR specification 564
balanced data 557, 559
balanced sample 563
coefficient test 570
common coefficients 564
cross section identifiers 552
cross-section specific coefficients 564
cross-section weighting 574
dummy variable 561
export data 558
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fixed effects 564, 572
generate series 560
identifier comparison with “?” wildcard 660
import data 553
iteration option 565
make group 561
make system 570
naming series 552
order 556
random effects 564, 573
residuals 570
series 553
stacked data 554
SUR weighting 575
unstacked data 554
White heteroskedasticity covariance 565, 575
workfile 551

Pool (object)
? placeholder 553
base name 552
convergence criterion 565
copy 552
create 552

Postscript file 252
Prais-Winsten 310
Precedence of evaluation 88
Predetermined variable 283
Prediction table

binary models 429
ordered models 442

Prewhitening 504, 518
Principal components 219
Print 52

redirection 651
selected 52
setup options 651

Probability response curve 435
Probit models 424
Procedure 43
Program

execution option 650
p-value 367

for coefficient t-statistic 266

Q

QML 460
QQ-plot (quantile-quantile) 164, 227

multiple 213
Q-statistic

Ljung-Box 169
residual serial correlation test 524
serial correlation test 305

Quadratic hill-climbing 664
Quadratic spectral kernel 517
Qualitative dependent variable 421
Quantile 226
Quasi-generalized pseudo-maximum likelihood 

465
Quasi-likelihood ratio test 462, 466
Quasi-maximum likelihood 460

robust standard errors 467
Queries on database 123

advanced query 126
DRI 145
easy query 124
examples 130
logical expressions 125
wildcard characters 124

Quiet mode 650

R

Ramsey RESET test 382
Random effects 564, 573
Random walk 328
Randomize ties 432
Rank condition for identification 284
Ratio to moving-average 184
RATS data

4.x native format 139
portable format 140

Read 553
Rebuild database 135
Recursive coefficient 388

save as series 388
Recursive estimation

least squares 384
Recursive residual 384, 385

CUSUM 385
CUSUM of squares 386
n-step forecast test 387
one-step forecast test 387
save as series 388

Redirect output to file 651
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Redundant variables test 374
Registry 121
Regression

adjusted R-squared 267
coefficient standard error 266
collinearity 276
forecast 343
F-statistic 269
log likelihood 268
residuals from 274
standard error of 268
sum of squared residuals 268
t-statistic for coefficient 266

Remarks
field in database query 130

Remove 249
Rename 49

database 133
objects in database 117

Repair database 135
Representation view

of equation 272
Reserved names 49
RESET test 382
Residuals

default series RESID 274
from estimated equation 274
from two stage least squares 285
generalized 434, 450, 456, 463
make series 273
of equation 272
ordinary 434, 450, 456, 463
recursive 384, 385
standardized 272, 434, 450, 456, 463
sum of squares 268
symmetrically trimmed 452
tests of 375
unconditional 304, 309

Resize window 8
Restore window 7
Restricted estimation 262
Restricted log likelihood 426
Results

accessing from estimated equation 270
Rich text format 254
Robust standard errors

GLM 468

Huber/White (QML) 467
Robustness iterations

with nearest neighbor fit 237
with regression 235

Root mean squared error 353
R-squared

adjusted 267
for regression 267
from two stage least squares 286
McFadden 426
negative 403
uncentered 377, 378
with AR specification 310

RTF 254

S

Sample
@all 61, 655
@first 61, 655
@last 61, 655
adjustment in estimation 264
balanced 563
change 61
command 64
common 93
current 36
if condition 62
individual 93
selection and missing values 63
specifying sample object 64
used in estimation 263
with expressions 61, 655
workfile 60

SAR specification 316
Save

options 38
save as new workfile 37
workfile 36

Scale factor 449
Scatter diagrams 209, 233

matrix 212
multiple 211
simple 209, 233
with kernel fit 238
with nearest neighbor fit 235
with regression 209, 233, 234

Scenarios in models 616
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Schwarz criterion 683
for equation 269

Score vector 435
Scroll window 6
Seasonal

ARMA terms 316
difference 92, 314

Seasonal adjustment
additive 185
Census X11 (historical) 184
Census X12 177
multiplicative 184
Tramo/Seats 185

Seasonal graphs 152
Second derivative methods 664
Seemingly unrelated regression 497
Select

all 45
multiple items 8
object 45
single item 8

sensitivity 430
Serial correlation

ARIMA models 311
Durbin-Watson statistic 268, 304
first order 304
higher order 304
nonlinear models 308
tests 304, 376
theory 303
two stage regression 309

Series
bar graph view 151
create 55, 94
delete observation 58
descriptive statistics 152
difference 92
edit in differences 200
editing 56
in pool objects 553
insert observation 58
label 174
lag 91
lead 91
line graph view 151
seasonal graph view 152
smpl+/- 57

spike graph view 152
spreadsheet view 151, 650

Shadowing of object names 132
Sharing violation 111
Show 46
Siegel-Tukey test 163
Sign test 158
Simple hypothesis tests 156

mean 156
median 158
variance 157

Simple scatter plot 209, 233
Skewness 153
SMA specification 316
Smoothing

methods 190
parameters 190

Smpl command 64
Smpl+/- 57
Solve

Gauss-Seidel 672
Sort workfile 39
Source

field in database query 130
Sparse label option 154, 217
Specification test

for binary models 437
for overdispersion 463
for tobit 452
RESET (Ramsey) 382
White 379

Specificity 430
Specify an equation 260
Specify equation 367

in systems 499
nonlinear 291

Spike graph 152
Spreadsheet

file export 71
file import 68
view option 650

Stability test 379
Chow breakpoint 380
Chow forecast 381
RESET 382
with unequal variance 389
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Stacked data 554
balanced 557
descriptive statistics 559
order 556

Standard deviation 153
Standard error

for estimated coefficient 266
for fixed effects 573
forecast 351, 362
of the regression 268

Standardized residual 272, 407
binary models 434
censored models 450
count models 463
truncated models 456

Start
field in database query 129

Starting values
(G)ARCH models 401
binary models 427
for ARMA estimation 319
for nonlinear least squares 292
for systems 503
param statement 292
param statements 668
user supplied 320

Starting values for coefficients 292, 667
State equation 578
State space 577

@mprior 587
@vprior 587
estimation 591
observation equation 578
representation 577
state equation 578

State variables 577
Static forecast 356
Stationary time series 328
Status line 11
Step size 666
Store 52

as .DB? file 113
from pool 562
in database 113
merge objects 114

Structural change 379
Structural forecast 357

Structural solution of models 633
Structural VAR 531

estimation 536
factorization matrix 525
identification 535
long-run restrictions 533
short-run restrictions 532

Subset a workfile 39
Sum of squared residuals

for regression 268
Summary statistics

for regression variables 267
SUR 497, 513

in pool estimation 565, 575
Survivor function 226
Symmetrically trimmed residuals 452
System

create 498
definition 495
estimation 496
estimation methods (technical) 511
specification 499

T

Table 253
as unformatted text 255
column width 254
copy to other windows programs 254
delete cells 253
edit 254
font 253
horizontal line 254
insert cells 253
number format 254
objects 253
title 254
views 253

Tabulation
n-way 216
one-way 166

Template 249
Tests. See also Hypothesis tests, Specification test 

and Goodness of fit.
Text (object) 255
Theil inequality coefficient 353
Three stage least squares 497, 514
Threshold ARCH (TARCH) 408
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component model 413
forecast 409

Title 254
Title bar 10, 36, 47
to (lag range) 261
Tobit 445
Toggling 9
Toolbar 36, 47
Tracking model variables 636
Tramo/Seats 185
Transition equation 578
Transpose 199
Trend series 98
Truncated dependent variable 454

fitted index 456
log likelihood 454

Truncation point 455
TSD data format 139
TSP portable data format 140
Two stage least squares 289

in systems 497
nonlinear 295
nonlinear with AR specification 296
order condition 284
rank condition 284
residuals 285
system estimation 514
weighted 286
weighted in systems 497, 514
weighted nonlinear 296
with AR specification 286, 309
with MA specification 289

Type
field in database query 128

U

Unconditional residual 309
Unit root test 170, 329

augmented Dickey-Fuller 333
Dickey-Fuller 333
Dickey-Fuller GLS detrended 334
Elliot, Rothenberg, and Stock 337
KPSS 336
Phillips-Perron 335, 336
trend assumption 334

Units

field in database query 130
Unstacked data 554
Untitled 49, 50

allow only one option 648
Update

coefficient vector 273, 668
group 199

Urzua factorization matrix 525
User supplied starting values 320

V

Van der Waerden test 158, 162
VAR

AR roots 522
autocorrelation LM test 524
decomposition 529
estimation output 521
factorization matrix in normality test 524
Granger causality test 522
impulse response 527
Jarque-Bera normality test 524
lag exclusion test 523
lag length choice 523
mathematical model 519
See also Impulse response.
See also Structural VAR.

Variance decomposition 529
Variance factor 468
Variance proportion 353
VEC 547

estimating 547
Vector autoregression 519
Verbose mode 650
View

default 45
Volatility 398

W

Wald test 368
coefficient restriction 368
formula 371
F-statistic 372
joint restriction 369
nonlinear restriction 371
structural change with unequal variance 389

Warn on close option 648
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Watson test 164
Weighted least squares 281

cross-equation weighting 496
nonlinear 294
nonlinear two stage 296
pool 565
system estimation 512
two stage 286
two stage in systems 497, 514

Weighting matrix
cross-section 574
for GMM 298, 516
heteroskedasticity and autocorrelation consis-

tent 516
kernel options 516
White heteroskedasticity consistent 516

White
heteroskedasticity consistent covariance 281, 

565, 575
Width of table column 254
Wilcoxon signed ranks test 158, 162
Wildcard characters 40, 657

in easy query 124
Window

active 6, 47
database 109
EViews main 9
object 49
scrolling 6
size control 8

Work area 12
Workfile

automatic backup 649
basics 33
create 35
directory 36
extract subset 39
frequency 34, 653
range 34
resize 38
sample 60
save 36
sort 39
window 35

Write 558

X

X11 (historical) 184
limitations 184

X11 using X12 178
X12 177
XY-line

view 210, 213

Y

Yates' continuity correction 162
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