TPEX: Turbo Pascal Emulation for UNIX

Version 2.0 Reference Guide

GLIDER Development Group
January 2000

Contents
1 Introduction 2
2 TPEX Library components 3
3 Using the TPEX Library 4
31 SunPascal Users i 4
3.11 Howtocompileandlink, 4
3.1.2 Compile and link example 5
32 CUSErS . . v v v ittt it et e e e 5
4 Porting a Turbo Pascal program to SPARC Pascal 5
5 TPEX Library Reference 10
5.1 Types . . . o i e 10
5.2 Constantso e e e e e 11
5.2.1 Constants for specifying variable type in procedure val call 11
522 Colors 11
5.2.3 Line types for graphics 11
5.2.4 Text justification options 11
5.2.5 Text orientation options 12
526 Typesoffonts 12
527 Event Types 12
5.2.8 Visibility Types. o oo oo 12
5.29 Mouse Event Types 12
5.2.10 Mouse Cursor Types« oo v v 12
5.2.11 Numerical constants 12
6 Global variables 13
7 Functions and Procedures 14

1 Introduction

Sun Pascal [7] ! is an implementation of the Pascal language [4] for compatible
platforms with SunSoft UNIX operating system 2. Sun Pascal implementation
includes several important extensions to the standard Pascal definition, adding
capabilities that are needed or useful for developing complex applications.

The fundamental extensions are the following:

o Separated construction and compilation of Modules or libraries containing
function and procedure declarations.

¢ Availability of the standard C and FORTRAN libraries.

¢ Feagibility for linking with libraries programmed in other languages like
C, C++ or FORTRAN.

These extended facilities have been applied for building a library package
for emulating BORLAND TURBOPascal ? [1] Run-Time Library, including the
GRAPH Library. TURBOPascal is another powerful Pascal extension by Bor-
land International for IBM/PC and compatible platforms. TURBOPascal is
partially based on ObjectPascal, the Pascal Object-Oriented extension by Ap-
ple for Macintosh. [6]

We are offering to TURBOPascal users these libraries as an easy option for
converting their applications to platforms based on the SunSoft Solaris version
of the UNIX operating system. That the conversion could be relatively easy does
not mean that it would be immediate. There exist syntactical and implementa-
tion differences between both extensions that must be translated independently
of the package use.

In particular, TURBOPascal users will miss the interface and implementa-
tion Unit concepts that lack in the SPARCPascal modules. The interface role is
managed using the same system provided precompiler for C programming. The
interface contents may be implemented with files for use in #include statements
for the precompiler, as those usually named with .h extension by C programmers.
However, the precompiler adds a benefit, the macro substitution capability.

The emulation is not 100% compatible in all of the included functions and
procedures in the package. In some cases it was necessary to change the number
of parameters and/or their types or new names have been added leaving unre-
solved the original ones or the behavior does not correspond exactly with the
original. These anomalies are reported in the detailed documentation bellow.

L All SPARC trademarks are trademarks or registered trademarks of SPARC International
Inc. licensed exclusively to Sun Microsystems Inc.

2UNIX is registered trademark of UNTX System Laboratories, Inc. Solaris and all SunSoft
products are trademarks or registered trademarks of Sun Microsystems, Inc

3 All Borland products are trademarks or registered trademarks of Borland International,
Inc.

Besides the emulated set of TurboPascal functions and procedures, some
useful procedures for the UNIX environment have been added. The TPEX
Library, in particular GRAPH library emulation, may be used as well by C
programmers for porting MSDOS/TURBO C applications.

This a first version of the emulation package. After this statement we apolo-
gize for not having a complete version accomplishing the intended purpose and
for the implementation errors that could remain besides the incompatibility
problems already mentioned.

Further more, no intention have been done until present for emulating the
capabilities of TurboPascal as Object-Oriented language. The development of
a precompiler with this purpose has been left as a future project.

2 TPEX Library components

The TURBOPascal Emulation Library for UNIX consists of the following com-
ponent files:

¢ ptipos.h: File for inclusion in SPARCPascal modules and programs con-
taining definitions of TURBOPascal types. It also contains some emula-
tion cases that were implemented by simple macro substitution.

¢ globals.h: File for inclusion in SPARCPascal modules and programs con-
taining declarations of constants and variables belonging to the TUR-
BOPascal environment.

e pturbo.h: File for inclusion in SPARCPascal modules and programs con-
taining the prototypes or headers of the functions and procedures in the
pturbo library. The pturbo library is the subset of emulated routines
implemented in SPARCPascal language itself. It also contains prototypes
of a subset of functions and procedures belonging to standard C libraries.

¢ cturbo.h: File for inclusion in SPARCPascal modules and programs con-
taining the prototypes or headers of the functions and procedures in the
cturbo library. The cturbo library is the subset of emulated routines
implemented in C language. [3]

¢ pxgraph.h: File for inclusion in SPARCPascal modules and programs
containing the prototypes or headers of the functions and procedures in the
xgraph library. The xgraph library is the subset of emulated routines be-
longing to the TURBOPascal GRAPH library. They were implemented
in C language using the X11 library for XWindow presentation.

¢ xgraph.h: File for inclusion in C source files containing the prototypes or
headers of the functions and procedures in the xgraph library.

3

ccturbo.h: File for inclusion in C source files containing the prototypes
or headers of the functions and procedures in the cturbo library.

pturbo.o: Object file containing the pturbo library.
cturbo.o: Object file containing the cturbo library.

xgraph.o: Object file containing the xgraph library. This library may
also be used by C programmers. The corresponding header file in this case
is xgraph.h.

Using the TPEX Library

3.1 Sun Pascal Users

3.1.1 How to compile and link

e In each Sun Pascal source file -module or program- put a precompiler

directive #include followed by the argument component header file for
each TPEX component that has at least one reference in the source file,
be a type, constant, global variable, function or procedure reference. The
#include directive must appear any where before the first reference but
for clarity it is preferable to group all of them by the beginning of the
source file.

NOTE: ptipos.h is already included in the files pturbo.h and cturbo.h.

In the main file -program- put the precompiler definition directive
#define MAIN

as the first in the group of precompiler directives.

In the SPARC Pascal compile command for each module, include the
argument -1~ sananes/tpex2 for the compiler can find the TPEX Library
header files.

In the Sun Pascal compile command for the main program besides the -1
argument, include the list of TPEX object file components used in any of
the source files for the compiler can build the executable file linking the
program object file with all of the referenced module object files.

If the xgraph component is used, then include also the argument -1X11
for linking also with the xlib Library.

3.1.2 Compile and link example

Suppose you have a program comprising the program or main module and two li-
braries modules, named myexample.p, modulel.p and module2.p, contain-
ing calls to TPEX routines and all of them syntactically correct. The following
UNIX commands will compile and link the modules to build the executable,
named myexample:

pc —¢ —-w -P -I”sananes/tpex2 modulel.p
pc —¢ —-w -P -I”sananes/tpex2 module2.p
pc —-w -P -I"sananes/tpex2 -1X11 “sananes/tpex2/cturbo.o \
“sananes/tpex2/pturbo.o \
“sananes/tpex2/xgraph.o \
modulel.o module2.0 -o myexample myexample.p

3.2 C Users

C users have to follow the same steps as Pascal users, but including in their
source files the C versions of the heading or prototype files instead of the Pascal
versions. The compile command is cc instead of pc, the -P option does not
apply (it has a different meaning for the cc compiler).

NOTE:

The use of the pturbo.o component has not yet been tested in C programs

4 Porting a Turbo Pascal program to SPARC
Pascal

A list of possible changes to be made in the source modules follows:

¢ Be sure all Pascal keywords are written in lower case and that all SP iden-
tifiers are written exactly as they are documented in the SPARC Pascal
Compiler Reference Manual.

¢ Be sure all TPEX identifiers (for types, constants, variables, function and
procedures) are written exactly as they are documented in the section
TPEX Library Reference.

o All type string declarations have to be changed into
varying[<length>] of char
because string type in SP is a fixed length array of 80 characters.

e String variables used to store file names for arguments in assign, open,

reset or rewrite must be declared of type SP string (remember that SP
string type is a fixed character array of size 80).

Calls to routine wval have to be changed to conform with the number and
type of the arguments in SP version. In SP version the third parameter is
a code for the numeric type of the second argument.

Calls to routine str have to be changed to conform with the number and
type of the arguments in SP version. In SP version the second argument is
a constant or expression string of type ¢_formato (see content of ptipos.h
in section TPEX Library Reference) that must be a C-type format for
output. The TPEX functions mkeformat and mkfformat may be used to
build the desired format for floating point variables.

TP typed constants: In SP there aren’t Typed constants. Instead, SP
allows for initialization of variables in any war declaration. For variable
initialization, the assignment operator := must follow the type specifica-
tion and then it must follow the value, simple or structured. The character
pair for delimiting structured values are [] instead of (). Values for record
fields do not require the names but have to be specified according to the
record declaration order, separated by commas.

To prevent program crashes due to input/output errors, instead of using
the TP directives for enabling/disabling error trapping, SP provides the
following mechanism:

Near the beginning of the main program or anywhere before the statement
that could cause an input or output (I0) error, call the SP procedure:

set_ioerr_handler (addr(I0err_£f))

IOerr fis a TPEX function that the execution program will invoke in case
of an IO error occurrence. IOQerr_f sets the value of the global variable
IOResult to the error code of the IO error and then, control returns to
the statement following the one that caused the error. The value returned
in TOResult is an integer corresponding to the relative position -order-
of the error in the SP type IOerror_codes. This is an enumerated type,
the list of its values may be found in the SP Reference Manual. A zero
value means that no error occurred.

For this mechanism to work properly, the user must reset the global vari-
able IOResul to zero before the IO statement that could cause error.

If you want to disable the error trapping mechanism, call again the
set_ioerr_handler

procedure but with the nil value as argument. After that, the program
will crash in case of any 10 error.

Direct access processing of binary -not text- files, may be converted to the
TPEX implemented abstract type tpFile. SP doesn’t have a procedure
equivalent to the TP procedure seek for positioning a file at a specified

record number for reading or writing. The user may also use the C file
processing functions and procedures whose prototypes are included in the
pturbo.h header file, in particular, the fseek function. If the file has been
already opened for SP, the corresponding SP file variable need to be con-
verted to a C file pointer variable using the SP function getfile.

¢ TP units requires special work.

— Duplicate the unit into two files, one with .h extension and the other
with .p or .pas extension.

— In the .h file remove all of the TP implementation part.

— In the .h file add the attribute extermal; to each procedure or
function declaration in the ex-interface part.

— In the .p or .pas file remove all the TP interface part. In its place
put the compiler directive

#include "<unit_name>.h"

— In the .p file change the TP reserved word wunit for the equivalent
SPARC Pascal module.

— TP Uses clausule: For each unit name in a wuses clausule, put a
corresponding

#include "<unit_name>.h"

. This rule is valid also for uses clauseles contained in the implemen-
tation part of an unit.

— Global variables: All types, variables and constants declared in a .h
file and included in any module and in the main or program mod-
ule, are global. But initialized variables must be declared as extern
for the modules. The extern declaration requires to precede the type
declaration with the reserved word extern. This difference may be re-
solved setting a precompiler variable with the precompiler statement
#define having no value for the main or program module and the
value extern for the rest of the modules. Accordingly, a precompiler
variable, MAIN for instance, must be defined in the program module
and undefined in the rest of the modules for proper compilation.

e Procedural types and variables: In SP procedural types are defined as
pointer types. For example, instead of this TP piece of code:

type funcion = function(x: real):real;
function escalal(x: real): real;

end;
function escala2(x: real): real;

end;

var unaFuncion: funcion;

unaFuncion:=escala?2;

the following code will have to be placed instead:

type funcion = “function(x: real):real;
function escalal(x: real): real;

end;
function escala2(x: real): real;

end;

var unaFuncion: funcion;

The nil value may be assigned to procedural variables.

Untyped var parameters: TP accepts procedure and function parameters
preceded by the reserved word var without type specification. In this case
the compiler do not perform any type checking, it just pass the address of
the referred variable. SP also offers the same feature, but you have to pre-
cede the complete type declaration with the SP reserved word univ. For in-
stance, instead of declaring in TP: procedure convert(var a; var b);
In SP you could write:

procedure convert(var a: univ real; var b: univ char);

5 TPEX Library Reference

5.1 Types

Defined in file ptipos.h

It follows the list in alphabetical order of the SPARCPascal type decla-
rations. Comments indicates whether the type identifier is a TURBOPascal
predefined type or a new type added by the TPEX library.

byte
EventStructure =

nwindow

X

y

button

key

visibility :

mouseevent
File =
longint =

QUTPUT =

PChar =
STRING =

t_formato =

tpFile =

0..255; {*TP typex}
record {*TPEX type.

For handling user events*}

: integer; {*Window in which the event occurred*}
: integer; {*Mouse x Coordinatex}

: integer; {*Mouse y Coordinatex}

: integer; {+#Mouse Button pressedx}

: integer; {*Key pressed*}

For use in GLIDER programs,

otherwise is not defined *}

Synonimum for the predefined
SPARCPascal type
’string=array[1..80] of char’
Must be used in GLIDER programs
to avoid the incompatibility with
the same type identifier that
translates to SP type
’varying[255] of char’ *}

type of the C-style output format
in procedure SP str *}

integer; {*Type of visibilityx*}
: integer; {#Type of Mouse Eventx*}
end;
file of char; {*TPEX typex*}
integer; {*TP type *}
output; {*TPEX type.
“char; {*TPEX typex*}
string; {*TPEX type.
string; {*TPEX type;
record {*TPEX type,

name: varying[80] of char;
pName: “char;

recSize: integer;

varstring =

word

cFile: univ_ptr;

end;

varying[255]

of char; {*TPEX type,
0..65536; {*TP type *}

10

for emulating record
oriented file processing in
TURBOPascal *}

equivalent to the predefined
TP type ’string’ *}

5.2 Constants
Defined in file globals.h

5.2.1 Constants for specifying variable type in procedure val call

PINTEGER = 0;
PLONGINT = 1;
PSINGLE = 2;
pDOUBLE = 3;

5.2.2 Colors

BLACK = 0;
BLUE 1;
GREEN 2;
CYAN 3;
RED = 4;
MAGENTA = b;
BROWN = 6;
LIGHTGRAY = 7;
DARKGRAY = 8;
LIGHTBLUE = 9;
LIGHTGREEN = 10;
LIGHTCYAN = 11;
LIGHTRED = 12;
LIGHTMAGENTA = 13;
YELLOW = 14;
WHITE = 15;

5.2.3 Line types for graphics

SolidLn = 0;

DottedLn ; {*no correspondent in XLib%*}
CenterLn ; {*no correspondent in XLibx}
DashedLn
UserBitLn
NormWidth
ThickWidth

2
2
1
0; {*no correspondent in XLib%*}
1
3

5.2.4 Text justification options

LeftText = 0;
CenterText = 1;
RightText = 2;
BottomText = 0;
TopText =1;

11

5.2.5 Text orientation options

HorizDir = 0;
VertDir 1;

5.2.6 Types of fonts

DefaultFont = 0;

TriplexFont = 1; {#not defined for
SmallFont = 2; {*not defined for
SansSerifFont = 3; {*not defined for
GothicFont = 4; {*not defined for

5.2.7 Event Types

VisibilityEvent = 1;
KeyboardEvent = 2;
MouseEvent = 3;

5.2.8 Visibility Types

TotalVisibility = 0;
PartialVisibility = 1;
NoVisibility = 2;

5.2.9 Mouse Event Types

ButtonDown = 1;
ButtonUp = 2;
ButtonMotion = 3;

5.2.10 Mouse Cursor Types

TargetCursor = 128;
TcrossCursor = 130;
Left_ptrCursor = 132;
WatchCursor = 150;
XtermCursor = 152;

5.2.11 Numerical constants

maxreal = 1.7E+38;
maxinteger = 32767;
maxlongint = 2147483647;
maxword = 65535;

Pi = 3.14159265358979;

12

SP*}
SP*}
SP*}
SP*}

6 (Global variables

Defined in file globals.h

I0_ERROR : IDerror_codes;

I0Result : integeri6; {#For compatibility with TURBOPascalx}
tpI0Result : integer; {#For tpFile processing*}

wherex, {*See gotoxy procedure in the next section*}
wherey : integer16:=0;

reversevideo: boolean:=false;

13

7 Functions and Procedures

This section documents the functions and procedures currently implemented in the
TPEX Library. The documentation style follows that of Borland and in many cases
the function descriptions are identical to those of the Turbo Pascal Library Reference
[2]. However, functions and procedures that do not have correspondent in the TP Run-
Time Library or those that have syntactical or semantical differences have appropriated
descriptions.

This documentations also contains descriptions for the C functions whose pro-
totypes are included in some of the TPEX Library header files. The C function

description are partially taken from the book: C A Reference Manual. [3]

append procedure

pturbo.h
Function Opens a file for appending.
Declaration procedure append(var f: univ File; nom: string);

Remarks Note the difference with the TP version, that requires the file already
opened, ie., assignned.

See also assign.

Arc procedure

xgraph.h

Function Draws a circular arc from start angle to end angle, using (x,y) as the
center point and radius given.

Declaration
procedure Arc(x, y:integer; StAngle, EndAngle, radius: word);
external c;

Remarks StAngle and EndAngle are the values of start and end angles
respectively. The circular arc is drawn in the current drawing color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Circle, SetColor.

14

assign procedure

pturbo.h
Function Assigns the name of an external file to a file variable.
Declaration procedure assign(var f: univ File; nom: string);

Remarks fis a file variable of any type, and nom is a SP string type variable, ie.,
fixed string of 80 characters. It is equivalent to the SP procedure:
open(f,nom, unknown’)

See also append.

Bar procedure

xgraph.h
Function Draws a bar using the current fill style and color.

Declaration procedure Bar(xl, yl, x2, y2: integer); external c;
Remarks

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Bar3D, GraphResult, SetFillStyle, SetLineStyle.

Bar3D procedure

xgraph.h
Function Draws a 3-D bar using the current fill style and color.

Declaration procedure Bar3D(x1, yl, x2, y2: integer; Depth: word;
Top: boolean); external c;

Remarks

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Bar, GraphResult, SetFillStyle, SetLineStyle.

blockread procedure

pturbo.h
Function Reads one or more bytes into a variable.

Declaration procedure blockread(var f: univ File; var b: univ string;
len: integer);

Remarks Note the differences with the TP version: instead of specifying the
number of records to be read, the total number of bytes have to be specified.
The value of the len parameter has to be the number of records to be read
times the size of the type associated to the file variable.

See also blockwrite.

15

blockwrite procedure

pturbo.h
Function Writes one or more bytes from a variable.

Declaration procedure blockwrite(var f: univ File; var b: univ string;
len: integer);

Remarks Note the differences with the TP version: instead of specifying the
number of records to be written, the total number of bytes have to be
specified. The value of the len parameter has to be the number of records to
be written times the size of the type associated to the file variable.

See also blockread.

Circle procedure

xgraph.h
Function Draws a circle using (x,y) as the center point with the given radius.
Declaration procedure Circle(x, y: integer; radius: word); external c;
Remarks The circle is drawn in the current drawing color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Are, SetColor, SetLineStyle.

ClearDevice procedure

xgraph.h
Function Clears the graphic window.using the background color.

Declaration procedure ClearDevice; external c;

Remarks Clears the window using the background color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before. than a window werw opened.

See also CloseGraph, CloseWindow, InitGraph, InitWindow, SelectWindow,
SetBkColor.

16

CloseGraph procedure

xgraph.h
Function Closes the graphic mode.

Declaration procedure CloseGraph; external c;

Remarks

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also InitGraph.

CloseWindow procedure

xgraph.h
Function Closes a graphic window.
Declaration procedure CloseWindow(aWin: integer); external c;

Remarks

aWin is the identification number of the Window to be closed.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before and InitWindow if more than one window werw
opened.

See also InitGraph, InitWindow.
clrscr procedure

cturbo.h
Function Clears the terminal window or screen.
Declaration procedure clrscr; external c;
copy function
ptipos.h

Function Returns a substring of a string.
Declaration
copy(X: varstring;Y: integer;Z:integer):varstring;
Remarks
It is a macro substitution for the original substr() function in SP Pascal.

See also delete, insert, pos

17

delay procedure
cturbo.h

Function Delays a specified number of seconds.
Declaration procedure delay(x: double); external c;

Remarks Note the difference with TP version: The elapsed time is specified in
seconds, not in milliseconds.

delete procedure

pturbo.h
Function Deletes a substring from a string.

Declaration
procedure delete(var s: univ varstring; desde, cuantos: byte);

Remarks Note that the procedure applies only to varying types in SP Pascal, not
to SP string and alfa types. s is a varstring type of any maximum length.
desde is the position in the string of the first character to be deleted and
cuantos is the total number of characters to be deleted.

See also copy, insert, pos

fclose function

pturbo.h
Function Closes a file opened with the fopen C function.
Declaration function fclose(f: univ_ptr): integer; external c;

Remarks fclose belongs to the standard C Library. Note that f has to be a C
pointer file value. See fopen Remarks before using.

See also fopen, fread, fwrite, fseek

fopen function

pturbo.h
Function Opens a stream file for IO operation with the C file stream functions.

Declaration
function fopen(pname, pmodo: univ_ptr): univ_ptr; external c;

Remarks fopen belongs to the standard C Library. Note that f has to be a C
pointer file value. The SP function getfile performs the conversion from a
Pascal file type value to the equivalent C value. Before calling fopen, a call to
the SP Pascal open procedure have to be done in order to define value to a
previously declared Pascal file type variable, if it is the case. Then a call to the
Pascal conversion function getfile must follow in order to define the value for
the C compatible file pointer.
pname and pmode are pointers that point to the first character of null
terminated strings -SP alfa, string or varying. The SP constant minchar is

18

the null value that must be appended at the end of the string to conform with
C style strings. pname has to point to the external name of the file and pmode
has to point to a string having one of the following values:

'r’ Open an existing file for Input

'w’ Create a new file, or truncate an existing one, for Output

’a’ Create a new file, or append to an existing one, for output

r+’ Open an existing file for update, starting at the beginning of the file
'w+’ Create a new file, or truncate an existing one, for update

’a+’ Create a new file, or append to an existing one, for update

See also fclose, fread, fwrite, fseek

fread function

pturbo.h
Function Reads a file in binary mode.

Declaration
function fread(var b: univ string; esize: integer; len: integer; f: univ_ptr)
: integer; external c;

Remarks fread belongs to the standard C Library. Note that f has to be a C
pointer file value. See fopen Remarks before using. fread reads up to len
elements of the esize element size into the address pointed by b. The actual
number of items read is the value returned as function, 0 in case of error.

See also fopen, fclose, fwrite, fseek

freemem procedure
cturbo.h

Function Disposes a dynamic variable of a given size.

Declaration procedure freemem(var p: univ_ptr; nbytes: integer16);
external c;

Remarks p is a pointer variable of any pointer type that had to be previously
assigned with a call to the procedure getmem.

See also getmem.

19

fseek function
pturbo.h

Function Prepares a file to perform the next read or write from or to a specified
position.

Declaration function fseek(f: univ_ptr; nr_offset: integer;
seek_modo:integer): integer; external c;

Remarks fseek belongs to the standard C Library. Note that fhas to be a C
pointer file value. See fopen Remarks before using. fseek allows random access
within the file. nr_offset specifies the number of bytes to be skipped.
seek_mode is a seek code that indicates from what point the nr_offset should be
measured. The valid options for this code are:

0: from the beginning of the file
1: from the current position of the file

2: from the end of the file (negative values of nr_offset specifies positions
before the end; positive values extend the file with unspecified content)

See also fopen, fclose, fwrite, fread

fwrite function
pturbo.h

Function Writes a file in binary mode.

Declaration function fwrite(var b: univ string; esize: integer;
len: integer; f: univ_ptr) : integer; external c;

Remarks furite belongs to the standard C Library. Note that fhas to be a C
pointer file value. See fopen Remarks before using. fwrite writes len elements
of the esize element size from the address pointed by b. The actual number of
items written is the value returned as function, 0 in case of error.

See also fopen, fclose, fread, fseek

GetBkColor function

xgraph.h

Function Returns the number of the current background color.
Declaration function GetBkColor: word; external c;
Remarks See subsection Colors for the list of color numbers.
See also GetColor, InitGraph, SetBkColor, SetColor

20

getc function

pturbo.h
Function Takes the next character from the input stream f
Declaration function getc(f: univ_ptr): integer; external c;

Remarks getc belongs to the standard C Library. Note that f has to be a C
pointer file value. See fopen Remarks before using.

See also fopen, fclose, fread, fwrite, fseek

getchar function

pturbo.h
Function Takes the next character from the standard input stream.
Declaration function getchar: char; external c;

Remarks getc belongs to the standard C Library.

GetColor function

xgraph.h
Function Returns the number of the current color value.

Declaration function GetColor: word; external c;

Remarks See subsection Colors for the list of color numbers.

See also GetBkColor, InitGraph, SetBkColor, SetColor

getdate procedure

pturbo.h
Function Returns the current date set in the operating system.

Declaration procedure getdate(var a,m,d,ds: word);

Remarks a: year; m: month; d: day; ds: day of week (0 correspond to Sunday)

See also GetTime

GetMaxColor function

xgraph.h

Function Returns the highest color number that can be passed to the SetColor
procedure.

Declaration function GetMaxColor: word; external c;
Remarks

See also GetColor, InitGraph, SetBkColor, SetColor

21

GetMaxX function

xgraph.h
Function Returns the maximum X value for the current graphic window.
Declaration function GetMaxX: word; external c;

Remarks

See also InitGraph, GetMazY, MoveTo

GetMaxyY function

xgraph.h
Function Returns the maximum Y value for the current graphic window.
Declaration function GetMaxY: word; external c;

Remarks

See also InitGraph, GetMazX, MoveTo

getmem procedure
cturbo.h

Function Creates a new dynamic variable of the specified size, and puts the
address of the block in a pointer variable.

Declaration procedure getmem(var p: univ_ptr; nbytes: integer16);
external c;

Remarks p is a pointer variable of any pointer type. nbytes specifies the size in
bytes of the dynamic variable to allocate.

See also freemem

gettime procedure

pturbo.h
Function Returns the current time set in the operating system.
Declaration procedure gettime(var h,m,s,d: word);

Remarks Ranges of the values returned are h: 0..23, m: 0..59, s: 0..59, d:
(hundredth of seconds) 0..99.

See also getdate

22

gotoxy procedure
cturbo.h

Function Positions the cursor in the terminal screen.
Declaration procedure gotoxy(x, y: byte); external c;

Remarks The coordinates are adjusted to the size of the window. The last
position of the cursor in the screen or terminal window are stored in the global
variables wherez, wherey. Note the difference with the original TP version. In
this version wherez, wherey are global variables, not functions. They are not
updated after read o write operations.

See also Global variables wherez, wherey in the Global variables section.

InitGraph procedure
xgraph.h

Function Sets the X Window graphic mode and open the first graphic window..

Declaration procedure InitGraph(x, y: integer; WinNamePtr: univ_ptr);
external c;

Remarks

z, y are the width and height of the first window that is created after
initialization of the X graph mode. WinNamePtr must be a pointer or Pchar
reference to a C-type string that contains a caption or title to that window.

See also CloseGraph, CloseWindow, InitWindow

InitWindow function
xgraph.h

Function Opens a new window for graphic output.

Declaration
function InitWindow(x,y: integer; WinNamePtr: univ_ptr): integer;
external c;

Remarks
The returned value is an integer that identifies the created Window. The user
must use this value for selecting the Window as active window. After
execution the created window is automatically selected as the active window.
z, y are the width and height of the window that is created. WinNamePtr
must a pointer or Pchar reference to a C-type string that contains a caption or
title to that window.

See also Close Window, CloseGraph, Select Window

23

insert procedure

pturbo.h
Function Inserts a substring into a string.

Declaration
procedure insert(si: varstring; var s: univ varstring; en: byte);

Remarks si is the substring to be inserted into the string s at position en. Note
that s has to be of varstring type.

See also copy, delete, pos

IOerr_f function

pturbo.h
Function Implements the IO error recovery capability.

Declaration
function IOerr_f(in errcod:I0error_codes; fp:univ_ptr):boolean;

Remarks This function is exclusive to the TPEX Library. The user must never
call this function directly, instead the user may just enable or disable its use,
as follows.

The function implements the IO error recovery capability returning always
true to its caller, the system IOerror handling routine. In this way, if the
function has been enabled, after an IO error occurrence the execution resumes
at the point following the file routine invocation that caused the error and the
predefined global variable IOResult contains the system error code value,
that is an integer corresponding to the relative position -order- of the error in
the SP type IOerror_codes, which list may be found in the SP Reference
Manual. A zero value means that no error occurred.

For this mechanism to work properly, the user must reset the global variable
IOResul to zero before the IO statement that could cause error.

For enabling the IO error recovery capability, prior to the execution of the
instruction that could raise an IO error, the SP set_ioerr_handler procedure
had to called with the expression addr(IOerr_f) as its only parameter. To
disable the error trapping mechanism, call again the set_ioerr_handler
procedure with the nil value as argument. After that, the program will crash
in case of any IO error.

24

Line procedure

xgraph.h
Function Draws a line from the point (z1,y1) to (z2,y2)
Declaration procedure Line(xl, yl, x2, y2: integer); external c;

Remarks Draws the line in the thickness and style defined by SetLineStyle and the
current Color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also LineRel, LineTo, MoveTo, Rectangle, SetColor, SetLIneStyle

LineRel procedure

xgraph.h

Function Draws a line from the last point addressed to a point at offsets (dz,dy)
from its x and y coordinates.

Declaration procedure LineRel(dx, dy: integer); external c;

Remarks Draws the line in the thickness and style defined by SetLineStyle and the
current Color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Line, LineTo, MoveTo, Rectangle, SetColor, SetLIneStyle

LineTo procedure

xgraph.h
Function Draws a line from the last point addressed to the point (z,y)
Declaration procedure LineTo(x, y: integer); external c;

Remarks Draws the line in the thickness and style defined by SetLineStyle and the
current Color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Line, LineRel, MoveTo, Rectangle, SetColor, SetLIneStyle

mkeformat function

pturbo.h

Function Returns a ¢_formato type string to use as the f format parameter in calls
to the str procedure. The string returned contains a c-style string format for
outputting floating point variables with exponent notation. ¢ is the minimum
length and d the number of digits to the right of the decimal point.

Declaration function mkeformat(t,d: integer): t_formato;
Remarks It is exclusive to the TPEX Library.
See also mkfformat

25

mkfformat function

pturbo.h

Function Returns a ¢_formato type string to use as the f format parameter in calls
to the str procedure. The string returned contains a c-style string format for
outputting floating point variables with fixed notation. ¢ is the minimum
length and d the number of digits to the right of the decimal point.

Declaration function mkfformat(t,d: integer): t_formato;
Remarks It is exclusive to the TPEX Library.

See also mkeformat

MoveRel procedure

xgraph.h

Function Addresses a new point from the last point addressed with offsets dz, dy
to the x, y coordinates.

Declaration procedure MoveRel(dx, dy: integer); external c;
Remarks

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also LineRel, LineTo, MoveTo.

MoveTo procedure

xgraph.h
Function Addresses the new point (z,y)

Declaration procedure MoveTo(x, y: integer); external c;

Remarks

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also LineRel, LineTo, MoveRel.

26

NextEvent function

xgraph.h
Function Waits for a user event.

Declaration
function NextEvent(EventType: integer; var EventData: EventStructure):
integer; external c;

Remarks

Waits until a user event of the specified EventType occurs. The data associated
to the EventType is saved in the record EventData. See the section Types for
the definition of the type EventStructure and section Constants for the valid
values and meanings of EventType.

Restrictions

See also ThisEvent

GetActiveWindow function

xgraph.h
Function Returns the identification number of the active window.
Declaration function GetActiveWindow: integer; external c;
Remarks
Restrictions
See also GetLastWindow, Close Window, Init Window, Select Window
GetImage procedure
xgraph.h

Function Gets the image contained inside a rectangular area.

Declaration
procedure GetImage(xl, yl1, x2, y2 : integer; var BitMap : univ_ptr);
external c;

Remarks

z1, y1, 2, y2 are the coordinates of the left top and the right bottom corners
of the rectangle. The image is stored in an internal area. The last parameter is
not used in the TPEX version. The image stored may be copied to another
location using the procedure PutImage

Restrictions

See also Putlmage

27

GetLastWindow function

xgraph.h
Function Returns the identification number of the last window opened.
Declaration function GetLastWindow: integer; external c;

Remarks

Restrictions

See also GetActive Window, Close Window, InitWindow, Select Window

OutText procedure

xgraph.h
Function Output the c-style string pointed by Tezto at the last addressed point.
Declaration procedure OutText(Texto: univ_ptr); external c;

Remarks Note the difference with the TP original version. Tezto is a pointer that
must point to the first character of a null terminated string. The SP
predefined constant minchar has the value of the null character. It may be
used to append the null character to a pascal-style string.

The text is written using the font and output options set by SetTextStyle.
After OutText execution, the last addressed point remains the unchanged.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also OutTextXY, SetTextStyle.

OutTextXY procedure

xgraph.h
Function Output the c-style string pointed by Tezto at the new addressed point
(2,9).
Declaration

procedure OutTextXY(x, y: integer; Texto: univ_ptr); external c;

Remarks Note the difference with the TP original version. Tezto is a pointer that
must point to the first character of a null terminated string. The SP
predefined constant minchar has the value of the null character. It may be
used to append the null character to a pascal-style string.

The text is written using the font and output options set by SetTextStyle.
After OutTextXY execution, the last addressed point is the point (z,y).

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also OutText, SetTextStyle.

28

paramcount function

ptipos.h

Function Returns the number of parameters passed to the program in the
command line.

Declaration

paramcount:integer;
Remarks It is a macro substitution for the original arge () function in SPPascal.

See also paramstr.

paramstr function

pturbo.h
Function Returns a specified command line parameter.
Declaration function paramstr(index: word): string;

Remarks Note the difference with the original TP version. The returned value is a
SP string type value (fixed string of 80 characters).

See also paramcount.

pos function

ptipos.h
Function Searches for a substring in a string.
Declaration pos(X,Y)

Remarks Pos searches for X within Y. It is a macro substitution for the original
index (Y,X) function in SPPascal.

See also copy, insert, delete.

PutImage procedure

xgraph.h
Function Copies a rectangular saved image in a new location.

Declaration
procedure PutImage(xl, yl : integer; var BitMap : univ_ptr; BitBlt : word);
external c;

Remarks

The rectangular image saved using the procedure GetImage is copied to the
location at coordinates z1, yI. The other parameters are not used in the
TPEX version.

It is a macro

See also Getlmage.

29

PutPixel procedure

xgraph.h
Function Plots a pixel at point (z,y).
Declaration procedure PutPixel(x, y: integer; Pixel: word); external c;

Remarks (z,y) is set as the last addressed point. Plots the point in the current
color. The last parameter is not used in the TPEX version.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also SetColor

RANDOM function

pturbo.h
Function Returns a real random number between 0 and 1.
Declaration function RANDOM: real;

Remarks Note the difference with the original TP version. This version has no
parameters. The random number generator may be initialized by assigning a
value to the predefined global variable randomize.

See also randomize.

readkey function

pturbo.h
Function Reads a character from the keyboard.
Declaration function readkey: char;

Remarks Unlike the original TP version, this version echoes to the screen. In the
TPEX Library there is no implementation of the KeyPressed function that
often is used in conjunction with ReadKey.

Rectangle procedure

xgraph.h
Function Draws a rectangle using the current line style and color.
Declaration procedure Rectangle(xl, yl1, x2, y2: integer); external c;

Remarks Draws the rectangle in the thickness and style defined by SetLineStyle
and the current Color.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Bar, Bar3D, SetColor, SetLineStyle

30

seek procedure

pturbo.h
Function Moves the current position of a file to a specified component.

Declaration
procedure seek(var f: univ File; r_size: integer; nr: integer);

Remarks Note the difference with the original TP version that has two parameters
because the component size is implicit to the file type. fis any file type
variable except text, n must be the size of the component type declared for the
file variable and nr is the component number to be positioned. The first
component is the number 0.

Select Window procedure

xgraph.h
Function Sets the active window.

Declaration procedure SelectWindow(aWindow: integer);
external c;

Remarks

aWindow is the identification number of the window selected to be the new
active window.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Close Window, GetActive Window, GetLastWindow, Init Window

SetBkColor procedure

xgraph.h
Function Sets the number of the next current background color.
Declaration procedure SetBkColor(ColorNum: word); external c;

Remarks Color numbers are defined in the file for inclusion globals.h. See Colors
in the subsection Constants in this TPEX Library Reference.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also GetBkColor, GetColor, SetColor

31

SetColor procedure

xgraph.h
Function Sets the next current drawing color.
Declaration procedure SetColor(Color: word); external c;

Remarks Color numbers are defined in the file for inclusion globals.h. See Colors
in the subsection Constants in this TPEX Library Reference.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also GetBkColor, GetColor, SetBkColor

SetFillStyle procedure

xgraph.h
Function Sets the fill color.
Declaration procedure SetFillStyle(Pattern, Color: word); external c;

Remarks Note the difference with the original TP version. In this version the
selection of fill patterns is not yet implemented. Color numbers are defined in
the file for inclusion globals.h. See Colors in the subsection Constants in this
TPEX Library Reference.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Bar, Bar3D

SetLineStyle procedure

xgraph.h
Function Sets the next current line style and thickness.

Declaration
procedure SetLineStyle(LineStyle, pattern, Thickness: word);
external c;

Remarks Note the difference with the original TP version. In this version the
selection of line patterns is not yet implemented. Line style and Thickness
numbers are defined in the file for inclusion globals.h. See Line types for
graphics in the subsection Constants in this TPEX Library Reference.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also Are, Bar, Bar3D, Circle, Line, LineRel, LineTo, Rectangle

32

SetMouseCursor procedure

xgraph.h
Function Sets the Mouse cursor style.
Declaration procedure SetMouseCursor(CursorType: word); external c;

Remarks
This function is exclusive to the TPEX Library.

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

set_normalvideo procedure

cturbo.h

Function Sets the screen or terminal window to the normal background and
foreground colors after setting reverse video for character writing.

Declaration procedure set_normalvideo; external c;

Remarks Note that the TP routines: NormVideo, HighVideo, LowVideo,
TextBackground, TextColor have not been implemented in the TPEX Library.
This procedure is exclusive to the TPEX Library.

See also set_reversevideo

set_reversevideo procedure
cturbo.h

Function Sets the screen or terminal window in reverse video mode, i.e.,
background and foreground colors for character writing are swapped.

Declaration procedure set_reversevideo; external c;

Remarks Note that the TP routines: NormVideo, HighVideo, LowVideo,
TextBackground, TextColor have not been implemented in the TPEX Library.
This procedure is exclusive to the TPEX Library.

See also set_normalvideo

SetTextStyle procedure

xgraph.h

Function Sets the writing direction for OQutText, OutTextXY.

Declaration
procedure SetTextStyle(tipoFont, Direction, CharSize: word);
external c;

Remarks Note the difference with the original TP version. In this version the
selection of Fonts and size are not yet implemented. Color numbers are defined

in the file for inclusion globals.h. See Colors in the subsection Constants in
this TPEX Library Reference.

33

Restrictions Must be in graphic mode: the InitGraph procedure had to be
successfully invoked before.

See also OutText, OutTextXY

str procedure

pturbo.h

Function Converts a numerical value to a string representation. According with
format specification, z is interpreted as an integer, single or double variable.

Declaration
procedure str(var x: univ single; f: t_formato; var s: univ varstring);

Remarks Note the differences with the original TP version. In this version z must
be an integer, single or double type variable. NOT a real type variable.
Instead of two parameters, this version has three parameters. The second
parameter, fis a type SP string, i.e. fixed string of up to 80 characters, may be
a sting constant. It must contain a C style format that tells the type of the
variable, the minimum total length of the converted string and the number of
decimal places. The C style format must start with a % character optionally
followed by the length and decimal places specification, and ended with the
type specification. The length and decimal places specification is formed by
the number of total length followed by the . character followed by the number
of decimal places. The type specification must be one of the following
alphabetical characters:

d for integer

f for single, fixed format

e for single, exponent format
1 for double

The TPEX Library includes the functions mkeformat and mkfformat to
construct a format specification to be used as the f parameters in calls to str.

The third parameter has the meaning of the second parameter in the original
version and must be any SP wvarying declared variable, NOT of SP aifa or
string types.

See also val, mkeformat, mkfformat

34

ThisEvent function

xgraph.h
Function Checks if a user event of the specified type occurred.
Declaration

function ThisEvent(EventType: integer; var EventData: EventStructure):

external c;

Remarks
The function returns the identification number of the window in which the
event occurred or -1 if none. The data associated to the FventType is saved in
the record EventData. See the section Types for the definition of the type
EventStructure and section Constants for the valid values and meanings of
EventType.

See also NextEvent

tpAppend procedure

pturbo.h
Function Opens an existing file for appending.
Declaration procedure tpAppend(var tpF: tpFile);

Remarks tpAppends belongs to the TPEX implementation of the ¢pFile type. See
tpFile declaration in the subsection Types. {pF is a tpFile variable that must
have been associated with an external file using tpAssign

See also tpAssign, tpClose, tpUpdate, tpRewrite

tpAssign procedure

pturbo.h
Function Assigns the name of an external file to a tpFile variable.
Declaration
procedure tpAssign(var tpF: tpFile; fName: string; rSize: integer);
Remarks tpAssign belongs to the TPEX implementation of ¢pFile type. See tpFile
declaration in the subsection Types. tpAssign associates the name of the

external file fName with ¢pF and the value of rSize with the size of the
components of the file.

See also tpAppend, tpClose, tpUpdate, tp Rewrite

tpClose procedure

pturbo.h
Function Closes the file associated to the fpFile variable. close el file
Declaration procedure tpClose(var tpF: tpFile);

Remarks ¢pClose belongs to the TPEX implementation of ¢pFile type. See tpFile
declaration in the subsection Types.

See also tpAppend, tpAssign, tpUpdate, tp Rewrite

35

integer;

tpEof function
pturbo.h

Function Returns the end-of-file status of a tpFile variable.
Declaration function tpEof(var tpF: tpFile): boolean;

Remarks tpEof belongs to the TPEX implementation of ¢pFile type. See tpFile
declaration in the subsection Types.

tpRead procedure

pturbo.h

Function Reads a file component of a external file associated to ¢pF into a variable.
Declaration procedure tpRead(var tpF: tpFile; var p: univ char);

Remarks tpRead belongs to the TPEX implementation of ¢pFile type. See tpFile
declaration in the subsection Types. fpF is a tpFile variable that must have
been associated with an external file using ¢pAssign The current component of
the file is transfered to the location in memory of the variable p. The
component size in bytes is set by {pAssign.

See also tpAssign, tp Update, tpWrite, tpSeek

tpRewrite procedure
pturbo.h

Function Creates and opens a new tpFile file.
Declaration procedure tpRewrite(var tpF: tpFile);

Remarks tp Write belongs to the TPEX implementation of TP file management.
See tpFile declaration in the subsection Types. {pF is a tpFile variable that
must have been associated with an external file using tpAssign

See also tpAssign, tpUpdate, tpAppend

tpSeek procedure
pturbo.h

Function Moves the current position of a TP file to a specified component.
Declaration procedure tpSeek(var tpF: tpFile; nr: integer);

Remarks tpSeek belongs to the TPEX implementation of TP file management. See
tpFile declaration in the subsection Types. tpF is a tpFile variable that must
have been associated with an external file using tpAssign The current file
position is moved to component number nr. Components of a file are
numbered starting from 0. The component size in bytes is set by tpAssign.

See also tpAssign, tpUpdate

36

tpUpdate procedure

pturbo.h

Function Opens an existing file.
Declaration procedure tpUpdate(var tpF: tpFile);

Remarks ¢p Update belongs to the TPEX implementation of TP file management.
See tpFile declaration in the subsection Types. {pF is a tpFile variable that
must have been associated with an external file using tpAssign

See also tpAssign, tpRewrite, tpClose

tpWrite procedure

pturbo.h

Function Writes a variable into a file component.
Declaration procedure tpWrite(var tpF: tpFile; var p: univ char);

Remarks ¢p Write belongs to the TPEX implementation of ¢pFile type. See tpFile
declaration in the subsection Types. fpF is a tpFile variable that must have
been associated with an external file using ¢pAssign The number of bytes
specified as component size for the file are transfered from the location in
memory of the variable p to the current position of the file adding or updating
a component. The component size in bytes is set by ¢tpAssign.

See also tpAssign, tpUpdate, tpRead, tpSeck

TTYFileName procedure

pturbo.h

Function Gets from the Operating System the name as file of the keyboard IO
stream.

Declaration procedure TTYFileName(var TTYName: string);

Remarks The name is returned in the variable referenced by TTYName. This
procedure is exclusive to the TPEX Library. The name returned may be used
to assign as value to a string variable used in a rewrite procedure call. Using
the string variable it is possible to switch a text output between the standard
output and an user specified file.

upcase function
ptipos.h

Function Returns the corresponding uppercase character.
Declaration upcase(X)

Remarks It is a macrosubstitution for the equivalent toupper C function.

37

val procedure

pturbo.h
Function Converts a string value to its numeric representation.

Declaration procedure val(var s: univ varstring; var x: univ double;
tipo: integer; var codErr: integer);

Remarks s is a varstring type variable. z is a numeric variable of type in
concordance with the values of the integer parameter ¢ipo. s must contain a
valid character representation of a number of the type specified by tipo. If not,
the procedure returns in codErr the value 1; otherwise it returns 0. The values
for tipo as defined en the Constants section are:

PINTEGER = 0;

pLONGINT = 1;

pSINGLE = 2;

pDOUBLE = 3;
Note the differences with the original TP version. In this SP version the user
has to indicate explicitly the type of the variable, giving a proper value to the
parameter tipo. In the TP version this parameter isn’t needed. That’s why the
SP version has four parameters instead of tree. The last parameter in both
versions is an error code but in the SP version the returned values can be only

0 or 1. In the TP version in case of error, it returns the position of the
offending character in the input string.

38

References

(1]
(2]
(3]
[4]
(5]

(6]
[7]

Borland International, Inc. Turbe Pascal version 6.0 Reference Manual

Borland International, Inc. Turbe Pascal version 6.0 Library Reference

Harbison, S. and Steele, G.: C: A Reference Manual Prentice Hall Software Series.
Jensen, K. and Wirth, N.: Pascal User Manual and Report Springer Verlag.

Kernighan, B. and Ritchie, D.: The C Programming Language Prentice Hall Soft-
ware Series.

Shumucker, Kurt J. Object-Oriented Programming for the Macintosh Hayden
Books, 1986.

Sun Microsystems, Inc SPARC Pascal Compiler 3.0.3, Reference Manual

39

