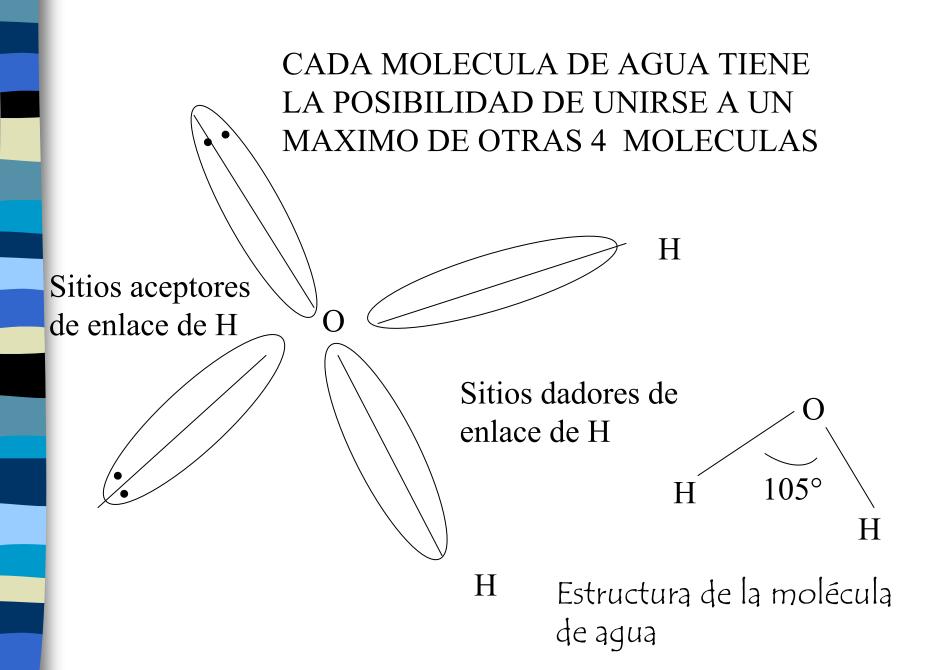

EL AGUA


- -aproximadamente 60% del organismo humano
- -componente mas abundante en la mayoría de los alimentos
- -responsable del carácter apetecible de muchos alimentos y también de la aptitud al deterioro de estos

ESTRUCTURA Y PROPIEDADES

Configuración electrónica del átomo de oxígeno:

SP³: Presenta un arreglo tetraédrico

Según Lowry-Bronsted:

 $\acute{A}cido$ es una sustancia que entrega un protón y una base una que lo acepta :

la molécula de agua presenta ambos comportamientos: anfótera

<u>Polaridad</u> : el centro de carga + no coincide con el - ; esto hace que el H de una molécula atraiga el O de la molécula vecina.

La unión de las moléculas como resultado de esta fuerza de atracción recibe el nombre de <u>Puente de H</u>

Al comparar las propiedades del agua con las de moléculas de similar PM y composición atómica (CH₄, NH₃, H₂S), se observa que el agua presenta valores MAS ALTOS de: punto de fusión, punto de ebullición, calor específico, calor de fusión, vaporización, sublimación, tensión superficial, constante dieléctrica.

Estas propiedades <u>sugieren la existencia de intensas fuerzas</u> <u>atractivas entre sus moléculas</u>, que presentan unas estructuras anormales y diferentes para el agua y el hielo

Debido a su geometría y a la repartición de cargas, la molécula de agua presenta:

MOMENTO BIPOLAR PERMANENTE

FUERTE TENDENCI A FORMAR PUENTES DE H

MOLECULAS APOLARES:

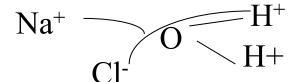
- •Contacto soluto soluto se ve favorecido en detrimento contacto soluto agua.
- •Se induce una disminución de la movilidad de las moléculas de agua, efecto que disminuye cuando aumenta la concentración de solutos apolares.

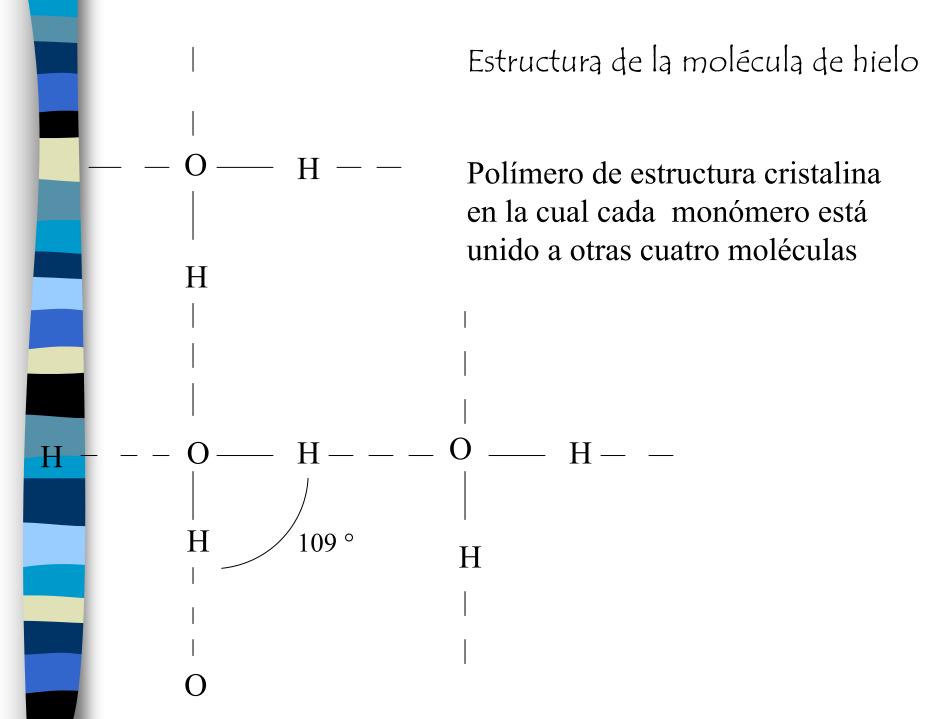
MOLECULAS POLARES:

•orientación de las moléculas de agua en el ambiente próximo al soluto.

NO IONIZADOS:

Red de enlaces de H


Agua – agua


Agua-soluto

Soluto - soluto

ELECTROLITOS:

- •Disminuye N enlaces ptes de H
- Destrucción estructura

En los alimentos congelados pueden ocurrir cambios como :

- deshidratación (debido a la formación del hielo)
- concentración de solutos (ácidos, sales, azúcares)
- concentración de sustancias suspendidas en forma de emulsión (grasas) y
- desnaturalización de proteínas
- disminución de la velocidad de las reacciones químicas, enzimáticas y actividad microbiana
- aumento de volumen (menor densidad) puede ocasionar daño mecánico en el tejido

ACTIVIDAD DE AGUA

$$Aw = \underline{Pw}$$

$$Pw^0$$

Pw = presión parcial de vapor de agua en el alimento

Pw⁰ = presión parcial de vapor de agua en el agua pura

En el equilibrio hay igualdad entre la humedad relativa del aire (HR) y la Aw

ACTIVIDAD DEL AGUA: valores mínimos de Aw para crecimiento de microorganismos en los alimentos

Grupo de microorganismos	Aw minima
bacterias	0,91
levaduras	0,88
hongos	0,80
bacterias halófilas	0,75
hongos xerófitos	0,65
levaduras osmófilas	0,60

Isoterma de Sorción

Curva que indica en el equilibrio y para una temperatura dada la cantidad de agua retenida por un alimento dado en función de la humedad relativa de la atmósfera que lo rodea.

Cómo se obtienen las isotermas?

1.- Colocando un alimento de humedad conocida bajo vacío en un recipiente cerrado y midiendo, después que se establezca el equilibrio, la presión de vapor de agua con ayuda de manómetro.

O TAMBIEN

2. Colocando muestras de un mismo alimento (seco o húmedo) en una serie de recipientes cerrados, en los cuales se mantiene (por ej. por medio de soluciones salinas con frecuencia saturadas; o de ácido sulfúrico de concentraciones variadas) una serie de humedades relativas constantes y se determina en el equilibrio, la humedad del producto (por gravimetría, por ejemplo)