HIDRÁULICA FLUVIAL

Prof. Ada Moreno Barrios

ANÁLISIS DE ESTABILIDAD DE TALUDES. EJERCICIO APLICADO

Para el sistema presa fundación de la Figura Nº 1, calcular el factor de seguridad actuante para el círculo de falla mostrado y bajo la condición embalse lleno. Utilice los ensayos de suelos presentados en la Tabla Nº 1.

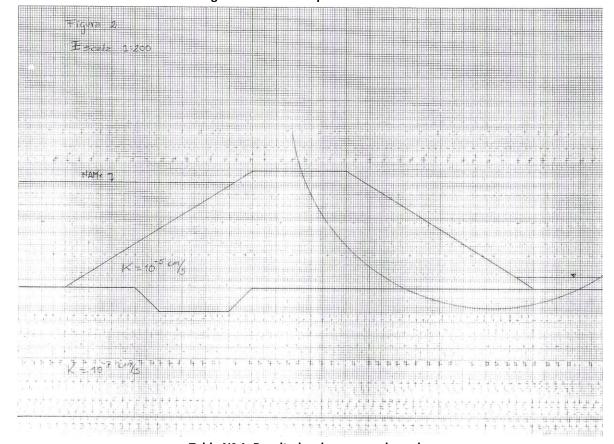
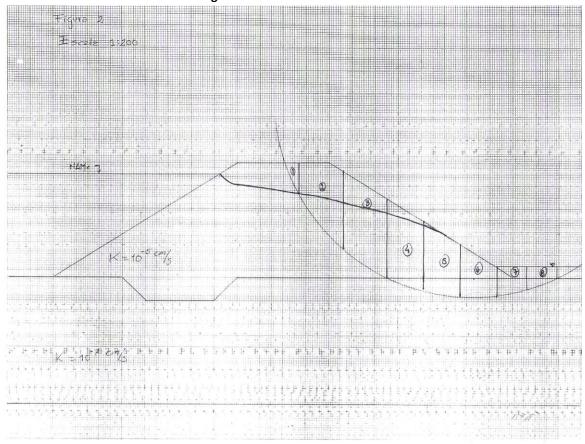


Figura Nº 1. Sistema presa – fundación.

Tabla Nº 1. Resultados de ensayos de suelo.


Parámetro	Terraplén	Fundación
Peso específico saturado (T/m³)	2,20	2,30
Cohesión Ensayo "S" (T/m²)	0	0
Φ_{S}	30º	35⁰
Cohesión Ensayo "R" (T/m²)	4,10	4,50
Φ_{R}	22º	27º
Cohesión Ensayo "Q" (T/m²)	6,90	7,20
Φ_{Q}	10⁰	12º

SOLUCIÓN.

- 1. Se traza la línea superior de flujo y se divide en dovelas o "tajadas" la superficie de falla a analizar, cumpliendo con lo siguiente:
 - a. Trazar verticales por donde el círculo cambia de un material a otro.
 - b. Subdividir las secciones del paso anterior en:
 - i. Donde la línea superior de flujo se corte con la superficie circular de falla.
 - ii. Donde el nivel de aguas abajo se intercepte con el talud de aguas abajo del suelo infiltrado.
 - c. Dividir las secciones anteriores en "tajadas" que presenten un ancho constante Δx , siempre y cuando sea posible.
 - d. Identificar las "tajadas" sin flujo, con flujo y en estática.

De este paso se obtiene la figura Nº 2.

Figura Nº 2. División de dovelas

- 2. Construir la hoja de datos para el caso sin sismo (Ver archivo ESTABILIDAD DE TALUDES.XLS, Hoja de datos sin sismo) sabiendo que:
 - a. ΔX : Ancho de la dovela (m)
 - b. Yi: Altura a la izquierda de la dovela i (m)
 - c. Yd: Altura a la derecha de la dovela i (m)
 - d. Volumen: Área de la dovela i para los distintos materiales que la componen (m³)
 - e. γ s: Peso específico del material a utilizar en el cálculo del peso total, elegido según la condición de la dovela (sin flujo $\rightarrow \gamma$ sat, con flujo $\rightarrow \gamma$ sat y en estática $\rightarrow \gamma$ sat o γ s')
 - f. Wi: Peso total de la dovela i (ton/m)
 - g. θi: Ángulo de la base de la tajada con respecto a la horizontal
 - h. hi: Altura de la LSF a la izquierda de la dovela i (m)
 - i. hd: Altura de la LSF a la derecha de la dovela i (m)
 - j. Δ Li: Longitud de la cuerda en la base de la dovela i (m)
 - k. Ui: Fuerza de Filtración a la izquierda de la dovela i (ton/m)

- I. Ud: Fuerza de Filtración a la derecha de la dovela i (ton/m)
- m. Ub: Fuerza de Filtración en la base de la dovela i (ton/m)
- n. σ cr: Esfuerzo normal crítico en la base de la dovela (ton/m²) depende del material que se encuentra en la base de la tajada.
- 3. Construir la tabla del método de Bishop modificado, para estimar el FACTOR DE SEGURIDAD ACTUANTE EN EL CÍRCULO DE FALLA. (Ver archivo ESTABILIDAD DE TALUDES.XLS, Bishop modificado)
 - a. Las columnas de 4, 8, 9 y 10 se obtienen de la hoja de datos previamente construida
 - b. Se supone un Factor de Seguridad (FSsupuesto, Ver archivo ESTABILIDAD DE TALUDES.XLS, Bishop modificado)
 - c. Se asume, para cada una de las "tajadas" a utilizar, y tomando en cuenta el material de la base de la dovela, el ensayo de trabajo para la misma. En el caso de la dovela 1 se supone el ensayo S (columna 2). Según el ensayo asumido se elegirá el valor de Ci y Φi (columnas 5 y 6)
 - d. Se calcula Mθi según la ecuación 9.49 (Columna 7 Bishop Modificado)

$$M\theta i = \cos\theta i \left(1 + \frac{tg0 i \cdot tg\theta i}{FSsupuesto}\right) \tag{9.49}$$

e. Calcular Ni a partir de la ec. 9.48, para cada una de las dovelas

$$Ni = \left(Wi - Ubi \cdot cos\theta i - \frac{ci \cdot \Delta Li \cdot sen\theta i}{FSsunuesto}\right) \frac{1}{M\theta i}$$
(9.48)

f. Calcular el σ_{actuante} en cada "tajada" a partir de la ec. 9.48'.

$$\sigma i = \frac{Ni}{Ni} \tag{9.48'}$$

- g. Comparar el $\sigma_{actuante}$ con $\sigma_{critico}$ y chequear en cuáles dovelas no se verifica la suposición hecha en el paso c (columna 2), debiendo cambiar el ensayo supuesto repitiendo el proceso de cálculo para dichas "tajadas", hasta que todas verifiquen la suposición del tipo de ensayo.
 - i. Si $\sigma_{actuante} < \sigma_{critico} \rightarrow Ensayo S$
 - ii. Si $\sigma_{\text{actuante}} > \sigma_{\text{critico}} \rightarrow \text{Ensayo (R+S)/2}$
- h. Calcular FScalculado a partir de la ec. 9.52'.

$$FScalculado = \frac{\sum_{i=1}^{n} (Ci \cdot \Delta Li + Ni \cdot tg\theta i)}{\sum_{i=1}^{n} Wi \cdot sen\theta i}$$
(9.52')

- i. Comparar el FScalculado con el FSsupuesto, si son diferentes, volver al paso b y repetir todo el proceso, hasta lograr: **FScalculado = FSsupuesto**. Ver archivo ESTABILIDAD DE TALUDES.XLS, Bishop modificado 2da ITERACIÓN)
 - i. Comparar el FScalculado, el cual pasa a ser FSactuante con el FSadmisible:

FSactuante = 0,88 < FSadmisible = 1,4; existe riesgo de falla, se debe acostar el talud y realizar todo el análisis desde el **paso 1**, hasta que FSactuante ≥ FSadmisible.