by Gilberto Gonzalez-Parra, Miguel Diaz-Rodriguez, Victor Comezaquira
Abstract:
In this work we propose a nonstandard numerical scheme in order to study the dynamic behavior of a fractional-order epidemic model. The Grünwald–Letnikov method is used to approxi- mate the fractional derivatives. We found some interesting dynamics behaviors and the numerical results show that the proposed nonstandard finite difference scheme is accurate when applied to the epidemic model of fractional order.
Reference:
Nonstandard Finite Difference Scheme for an Epidemic Model of Fractional Order (Gilberto Gonzalez-Parra, Miguel Diaz-Rodriguez, Victor Comezaquira), Chapter in Avances en Simulación Computacional y Modelado Numérico, Sociedad venezolana de metodos numericos en ingenieria, 2012.
Bibtex Entry:
@incollection{gonzalez2012,
title={Nonstandard Finite Difference Scheme for an Epidemic Model of Fractional Order},
author={Gonzalez-Parra, Gilberto and Diaz-Rodriguez, Miguel and Comezaquira , Victor},
booktitle={Avances en Simulación Computacional y Modelado Numérico},
pages={MM79-MM84},
year={2012},
publisher={Sociedad venezolana de metodos numericos en ingenieria},
abstract={In this work we propose a nonstandard numerical scheme in order to study the dynamic
behavior of a fractional-order epidemic model. The Grünwald–Letnikov method is used to approxi-
mate the fractional derivatives. We found some interesting dynamics behaviors and the numerical
results show that the proposed nonstandard finite difference scheme is accurate when applied to the
epidemic model of fractional order.},
keywords={Nonstandard finite difference method, Derivative of fractional order},
url={https://www.researchgate.net/publication/293334878_A_Nonstandard_Finite_Difference_Scheme_for_an_Epidemic_Model_Of_Fractional_Order},
doi={https://www.researchgate.net/publication/293334878_A_Nonstandard_Finite_Difference_Scheme_for_an_Epidemic_Model_Of_Fractional_Order},
}