Teoría de la Computación y Lenguajes Formales

Prof. Hilda Y. Contreras

Departamento de Computación

hyelitza@ula.ve

hildac.teoriadelacomputacion@gmail.com

Contenido

Tema 2: Autómatas con salidas y aplicaciones:

- Máquina de Moore
- Máquina de Mealy
- Autómatas estocásticos
- Autómata Celulares de McCulloch-Pitts
- Paradigma de programación orientado a autómata
- Ejemplos de aplicación

¿Por qué con Salidas?

- Autómatas finitos (Determinista, No Determinista y con transiciones nulas) -> Problemas de decisión
- Ejemplos de problemas:
 - Cálculo matemático
 - Transformación, traducción
 - Contador, etc.

AF sin salida

Un AF M esta definido como:

$$M = (Q, \Sigma, q_0, \delta, F)$$

- Q es el conjunto de estados
- Σ es el alfabeto del lenguaje
- q₀ es el estado inicial
- δ es la función de transición
- F es el conjunto de estados de aceptación.

AF con salida

Un AF S con salida esta definido como:

S = (Q,
$$\Sigma$$
, Δ , q₀, δ , γ)

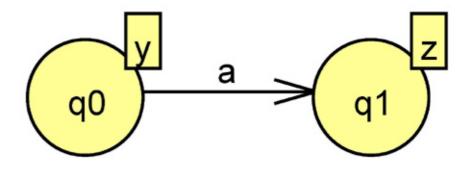
- Q es el conjunto de estados
- Σ es el alfabeto del lenguaje
- Δ es el alfabeto de salida
- q₀ es el estado inicial
- δ es la función de transición
- γ es la función de salida (estado o transición)

AF con salida

• $\Sigma = \{a,b\}$ y $\Delta = \{y,z\}$

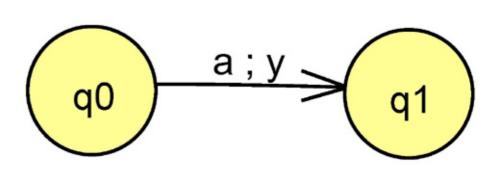
Moore:

 $\gamma: Q \rightarrow \Delta$



Mealy:

$$\gamma: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{\Delta}$$



Máquina de Moore

Salida – Estado γ : Q → Δ

- El nombre "Máquina de Moore" viene de su promotor: Edward F. Moore, pionero en el estudios de Autómatas, 1956.
- La mayoría de los componentes electrónicos están diseñadas como sistemas secuenciales síncronos (forma restringida de máquinas de Moore)
- p.e. Un Autómata para calcular el residuo de la división por 3 de un número binario, máquina expendedora de café, etc.

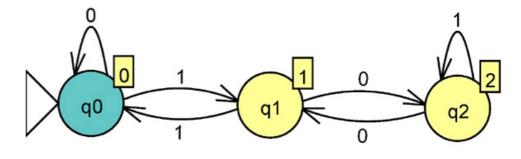
Máquina de Moore

Si \mathbf{m} se divide entre 3 y su resultado es \mathbf{x} y su residuo es \mathbf{p} , entonces $\mathbf{x} * \mathbf{3} + \mathbf{p} = \mathbf{m}$

Decimal de m	Binario de m	Decimal de p
0	0	0
1	1	1
2	10	2
3	11	0
4	100	1
5	101	2
6	110	0
7	111	1

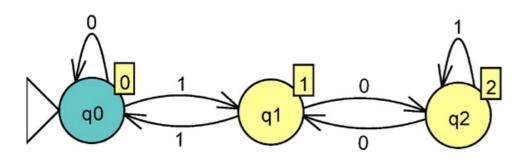
Posibles valores de p

$$\Delta = \{0,1,2\}$$



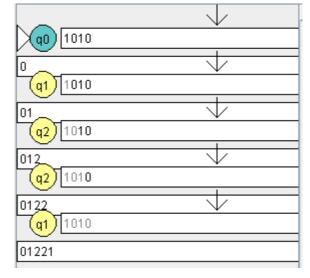
JFALP: moore.jff

Máquina de Moore



Entrada w = 1010 Salida s = 01221 |s| = |w| + 1

δ	0	1
q ₀ /0	q_0	q ₁
q ₁ /1	q ₂	q_0
q ₂ /2	q ₁	q_2



JFLAP

moore.jff

Máquina de Mealy

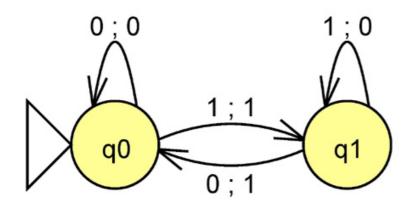
Salida – Transiciones $\gamma : \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{\Delta}$

- El nombre "Máquina de Mealy" viene dado por G. H. Mealy, un pionero de las máquinas de estados, quien escribió un Método para sintetizar Circuitos Secuenciales, 1955.
- Modelo matemático rudimentario para las máquinas de cifrado.
- p.e. Un autómata para aplicar un homomorfismo sobre un lenguaje, filtrar un prefijo específico sobre las palabras, etc.

Máquina de Mealy

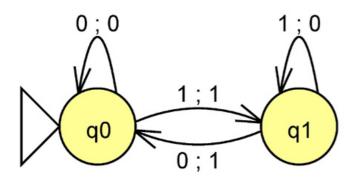
El alfabeto de entrada es {0,1} y el de salida {0,1}. La traducción viene dada por las siguientes reglas:

- Primer símbolo 0 → 0 y 1→1
- Siguientes símbolos
 - Si el anterior es un 0: 0 \rightarrow 0 y 1 \rightarrow 1
 - Si el anterior es un 1: $0 \rightarrow 1$ y $1 \rightarrow 0$



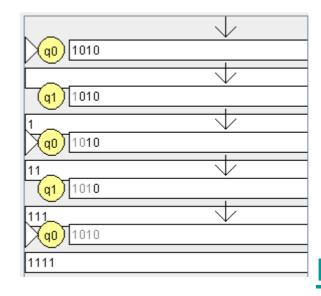
JFLAP mealv.iff

Máquina de Mealy



Entrada w = 1010Salida s = 1111|s| = |w|

δ	0	1
q_0	q ₀ /0	q ₁ /1
q ₁	q ₀ /1	q ₁ /0



JFLAP

mealy.jff

Equivalencia Moore-Mealy

Sea M una máquina de Moore: $M_O=(Q, \Sigma, \Delta, \delta, \gamma, q_0)$ construimos una de Mealy equivalente $M_E=(Q, \Sigma, \Delta, \delta, \gamma', q_0)$ en la que sólo hay que redefinir la función de salida.

Sea: $\delta(p,a)=q$, entonces $\gamma'(p,a)=\gamma(\delta(p,a))=\gamma(q)$

La salida correspondiente a un transición es la salida del estado al que se llega con esa transición.

Equivalencia Mealy-Moore

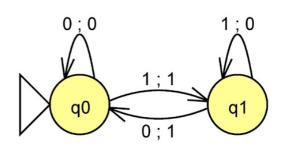
Sea M una máquina de Mealy $M_E=(Q, \Sigma, \Delta, \delta, \gamma, q_0)$ construimos una de Moore equivalente $M_O=(Q', \Sigma, \Delta, \delta', \gamma', q'_0)$

Donde:

- Q'= {todos los pares formados por un estado en Q y un símbolo en Δ}
- q₀= uno de los pares (q₀, A) con A en Δ
- $\delta'([p,A], a) = [\delta(p,a), \gamma(p,a)]$
- y'([p,A)] = A

Equivalencia Mealy-Moore

- $\Delta = \{0,1\}$
- Q'= { $[q_0,0],[q_0,1],[q_1,0],[q_1,1]$ }



• q_0 = uno de los pares (q_0 , A) con A en Δ

$$\delta'([q_0,0], 0) = [q_0,0]$$

$$\delta'([q_0,0], 1) = [q_1,1]$$

$$\delta'([q_0,1], 0) = [q_0,0]$$

$$\delta'([q_0,1], 1) = [q_1,1]$$

$$\delta'([q_1,0], 0) = [q_0,1]$$

$$\delta'([q_1,0], 1) = [q_1,0]$$

$$\delta'([q_1,1], 0) = [q_0,1]$$

$$\delta'([q_1,1], 1) = [q_1,0]$$

$$\gamma'([q_0,0])=0$$

$$\gamma'([q_0,1]) = 1$$

$$\gamma'([q_1,0])=0$$

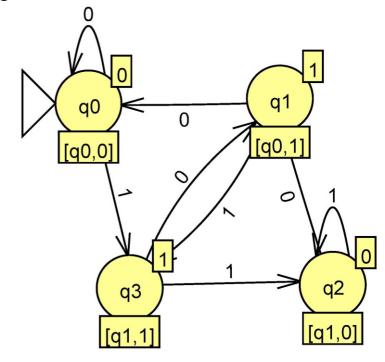
$$\gamma'([q_1,1]) = 1$$

$$[q_0,0] = q_0$$

$$[q_0,1] = q_1$$

$$[q_1,0] = q_2$$

$$[q_1,1] = q_3$$

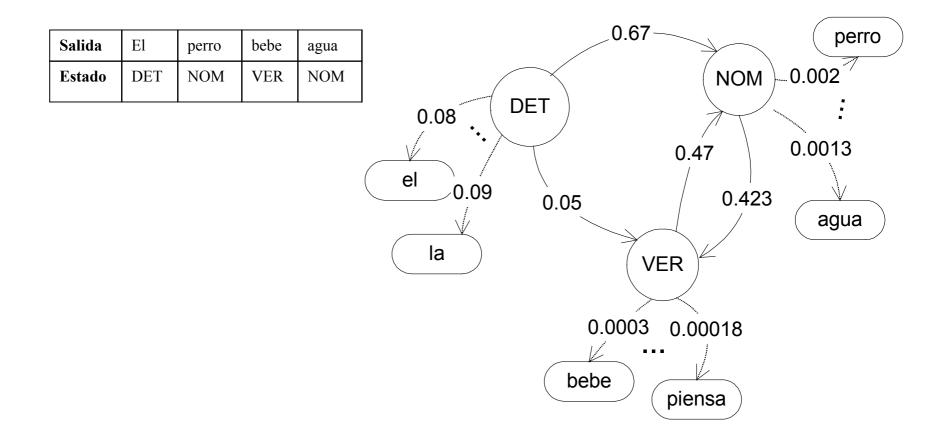


Autómatas Estocásticos

- Autómata finito con probabilidades (transiciones)
- Cadena de Markov, 1907, matemático ruso Andrei Markov
- Usado en modelos de negocios, modelar patrones de procesos, Procesamiento del Lenguaje Natural, etc.

Modelo de Markov

• p.e. Un autómata para etiquetar textos en lenguaje natural. <u>lectura3 JoseTroyano.pdf</u>



Autómatas de células

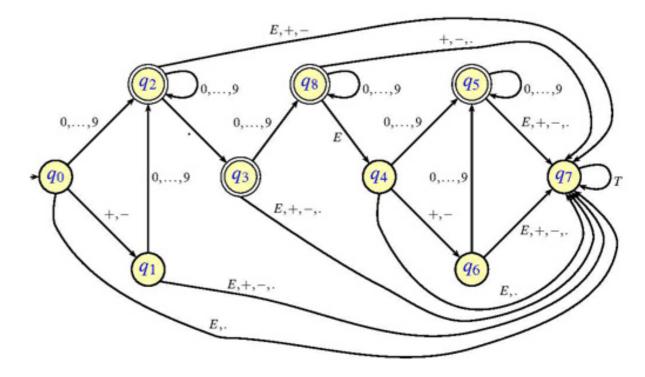
- Origen de la redes neuronales
- Década de los 50, dos neurofisiólogos,
 Warren S. McCulloch y Walter Pitts
- Características:
 - Varias entradas generan una salida
 - Estados activos e inactivos
 - Función de transición depende del tiempo
- Leer: <u>lectura2 CesarGarcia otros-af.pdf</u>

Programación Orientada a Autómata

- Paradigma basado en estados y cambios de estados. http://is.ifmo.ru/english/
- Similar a OxO: Estado, función de transición de estado (tabla de transición)
- Ejemplo: <u>Automata-basedprogramming-</u> <u>Wikipedia.pdf http://en.wikipedia.org/wiki/Automata-Based Programming</u>
- Lenguajes de programación: Refal (Recursive functions algorithmic language) http://www.refal.net/, STATE (State Transition Analysis Technique)
 2000 eckmann vigna kemmerer statl.pdf
 Método Vienna basado en autómata para especificación semántica de L. de programación (Ollongren, 1974).

```
Reconocimiento
de patrones:
constantes
reales
p.e. +0.5E-3
-1248.6171E+2
982
```

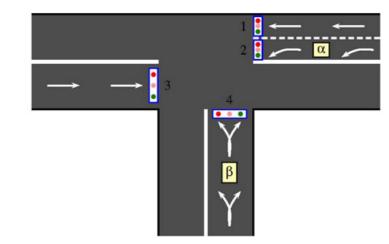
.132E-1

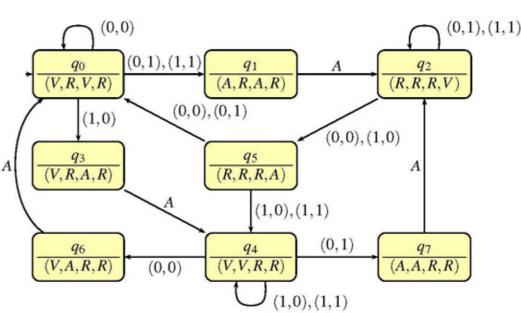


Semáforo:

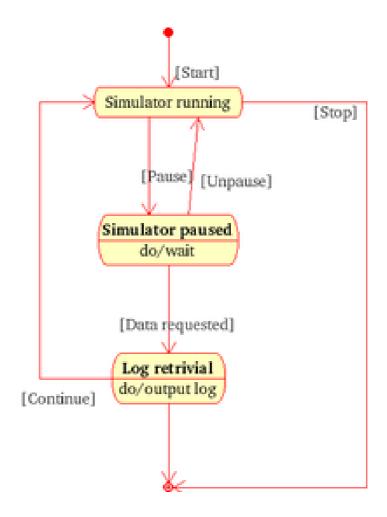
- Sensores α y β indican si hay autos en cola semáforos 2 y 4:1 si hay autos y 0 si no hay
- Entrada (α,β)
- Las salidas

 (a₁;a₂;a₃;a₄) donde
 a_i esta en {R;A;V}





 Especificación formal de arquitectura de software UML → Diagrama de estados

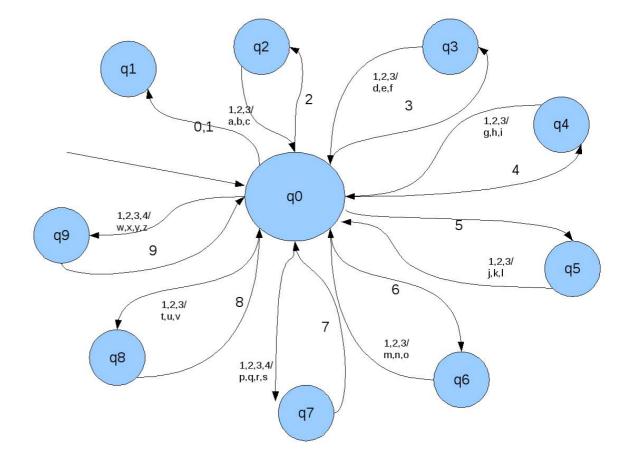


Teclado del Celular

 Considere el envío de mensajes de texto en un celular. Se usarán dos dígitos para codificar cada letra: el primero es la tecla que contiene la letra y el segundo es el índice 1, 2, 3 ó 4 de la letra en la tecla. Por ejemplo, la secuencia 42635321 representa el mensaje "hola".

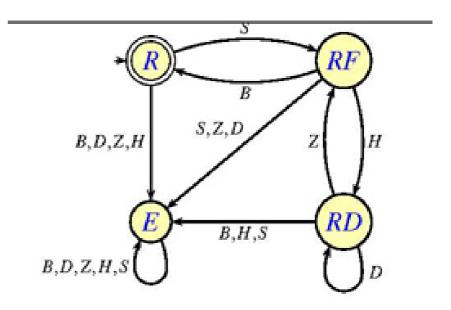
Teclado del Celular: Automata Salida celular.cpp

1	2	3
	abc	def
4	5	6
ghi	jkl	mno
7	8	9
pars	tuv	WXYZ
*	0	#



Especificación de Protocolo Kermit

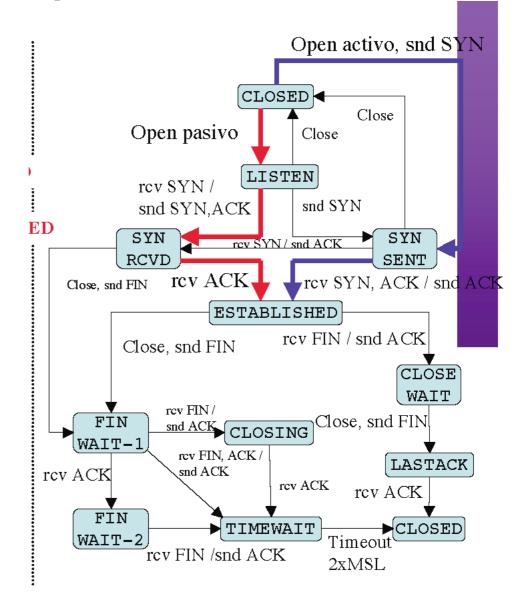
- Estados:
 - R: espera
 - RF: archivo
 - RD: datos
 - E: error



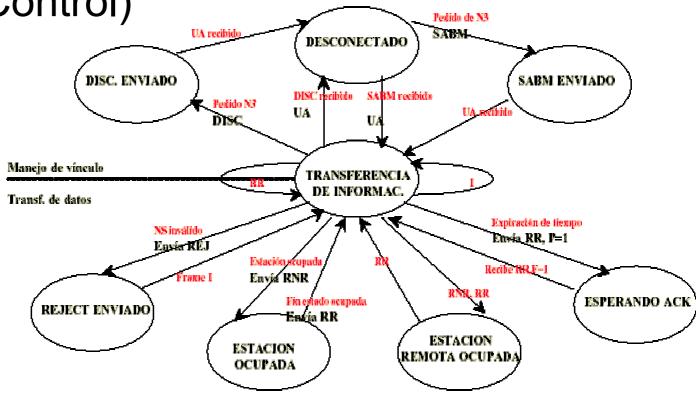
Entradas:

- S: cabecera inicio de transmisión
- B: trama de fin de transmisión
- H: cabecera de archivo
- D: Datos
- Z: fin de archivo

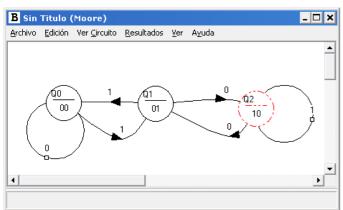
- Especificación de protocolos de comunicación rfc0793-es.pdf
 - → Diagrama de estados de una conexión TCP pag. 25



 Especificación de protocolos de comunicación → HDLC (High-Level Data Link Control)



Circuitos secuenciales



Programa de captura de sistemas digitales "Boole-Deusto": Obtener un circuito flip-flops JK a partir de un diagrama de Moore automáticamente.

