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ABSTRACT

This paper discusses a multi-agent simulation theory which
is serving as a formal specification to guide the develop-
ment of a multi-agent simulation platform. We have ex-
tended an existing simulation language: GLIDER, with
abstractions to model systems where autonomous entities
(agents) perceive and act upon their environments. Thus
far, we have completed the development of the platform
that implements the theory and we are now applying it to
the study of multi-agent systems. In particular, an Imple-
mentation on Biocomplexity is briefly discussed in the pa-
per.
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1 Introduction

This paper discusses a multi-agent simulation theory which
is serving as a formal specification to guide the develop-
ment of a multi-agent simulation platform.

We have extended an existing simulation language:
GLIDER [1], with abstractions to model systems where
autonomous entities (agents) perceive and act upon their
environments. Those abstractions are based on the simula-
tion theory and provide the semantics for a new family of
multi-agent, simulation languages.

A theory is a“supposition or system of ideas explain-
ing something, esp. one based on general principles inde-
pendent of the particular things to be explained”(Oxford
Dictionary). Mathematicians have another definition:“A
collection of propositions to illustrate the principles of a
subject” (.ibid). In the more acceptedsimulation theory
[2], one finds a general explanation of what a system is, its
components and its transitions rules, stated all as a collec-
tion of formalized, mathematical propositions. The goal of
[2] and the others with that formalization (.ibid), besides
supporting the explanations that are expected from a the-
ory, was to provide the developers ofsystems simulators
with a specification that says what a simulator must do and
how it must behave to simulate a system.

In this paper, we present a multi-agent, system-
simulation theory with exactly those purposes and with
similar style. This theory has served as the basic specifi-
cation for the computing simulation platform GALATEA
[3, 4, 5] and we also expect it to enrich the foundations
for our studies on the problem of structural change, where
agents are regarded as important sources of change in the
structure of systems.

The presentation of the theory is organized as follows:
The section 2 briefly describes the basic simulation frame-
work we are extending: GLIDER. The section 3 offers a
review of Feber and M̈uller’s multi-agent theory [6] (here-
after F&M). In the same section, we re-introduce the hi-
erarchy of models of agents proposed by Genesereth and
Nilson[7] (hereafter G&N). We combine and extend both
hierarchies by describing, following [8], an agent that is
both reactive and rational (not accounted for by G&N[7]).
In the section 4, we present an abstract machine as the
specification of that agent type and briefly explain how this
specification has been integrated into the multi-agent sim-
ulation theory. We also develop, in section 5, the mathe-
matical description of a multi-agent, rational system which
serves as the specification for the simulation platform. Fi-
nally, in the section 6, we sketch an example to illustrate
the family of multi-agent, programming languages used in
GALATEA[3] and whose semantics is provided by the the-
ory.

2 GLIDER: The starting point

In GLIDER a system is conceived as a structured collec-
tion of objects that exchange messages. Such message ex-
change and processing is closely related to the scheduling
and occurrence of events as in DEVS [2]. Modelling a
system (for simulation purposes) amounts to write a code
describing a network of nodes. Those nodes state the
behaviours of the objects in the system and how, when
and with which they exchange messages. GLIDER of-
fers to the modeller-programmer a set of node types (Gate,
Line, Input, Decision, Exit and Resources give its name
to the language, but there are others) which the modeller-
programmer instantiates to represents the objects he or she
wants to simulate.

In GALATEA, we have enriched GLIDER semantics



(and syntax, although a full compiler is still pending) to ac-
commodate the description of agents. Agents correspond to
those entities in the modelled system that can perceive their
environment, have goals and beliefs and act, according to
those beliefs, to achieve those goals, presumably changing
the environment in the process.

This enriching of GLIDER required more than an ad-
ditional set of language elements. We had to extend its cur-
rent simulation framework to include the behaviour of the
new, specialized objects: the agents. To achieve this, we
have drawn directly from AI mainstream research on multi-
agent theories. In particular, the unified agent architecture
described in [8], and the model of situated multi-agent sys-
tems presented in [6] are employed in the extended frame-
work. We aim to have a family of languages, supported
by a unique computing platform, to model and simulate
multi-agent systems. Languages of diverse nature (rang-
ing from procedural, object-oriented, network-oriented to
logic-based languages[9, 10]) are, we believe, an important
contribution to a multi-disciplinary approach for modelling
and simulation, especially when they are mapped against
the same explanatory device: a common theory.

3 A theory of influences and reactions

In [6] F&M present a theory of multi-agent systems. They
describe dynamics systems with a sort ofenhancedstate
in which the universe being modelled is described via two
types of “state components”:influencesandenvironmen-
tal variables. The later correspond to what is commonly
known as state variables. Whereas influences are “what
come from inside the agents and are attempts to modify a
course of events that would have taken place otherwise”
[6](p73). The influence concept in the theory of F&M al-
lows to describe the concurrence of events and the transi-
tion of states.

F&M declare that their model of action relies on three
main concepts:

1. A distinction between influences and reactions, to deal
with simultaneous actions.

2. A decomposition of a whole system dynamics,δ, into
two parts: the dynamics of the environment (σ, the
environmental state) and the dynamics of the agents
situated in this environment (γ, the set of all theirin-
fluences). Σ is the set of all the possibleenvironmental
statesandΓ is the set of all the possible sets of influ-
ences, withγ ∈ Γ andσ ∈ Σ.

3. A description of the different dynamics by abstract
state machines, which we use in the specification of
the operational semantics of the languages illustrated
in section five. Typically, an agent is characterized as
tuple of attributes and a set of functions that transform
that tuple. Similarly, a whole system is also character-
ized as a tuple (that includes its agents’ tuples) and a
set of transformation functions.

Agent type specification Main features
REACTIVE AND RATIONAL

〈Sa, Pa,Knowledge, Actions,
Perception, Memory, Decision〉

Iteratively senses, records, reasons and acts,
changing the environment
KNOWLEDGE LEVEL AND DELIBERATIVE

〈Sa, Pa,Knowledge, Actions,
Perception, Memory, Decision〉

Senses, records, reasons and acts, changing
the environment
HYSTERECTIC

〈Sa, Pa, InternalS, Actions,
Perception, Decision〉

Senses, records and changes the environment
TROPISTIC

〈Sa, Pa, Actions, Perception, Effector〉
Senses and changes the environment

OPERATOR OR COMPONENT

〈Sa, Pa, Actions, Effector〉
Changes the environment

Figure 1. The extended hierarchy of agent types

In the work presented here, we are taking on F&M’s
notions of influences and reactions and their proposal to
describe dynamical systems via that enhanced state. How-
ever, we drop the use ofoperatorsand modify and extend
their theory so thatlaws can be used as influence genera-
tors. With this movement, we also establish the base for an
operational semantics for our simulation languages.

To illustrate the expressive power ofinfluences, F&M
adapt a classical work on agent technology to their theory.
This work is G&N’s hierarchy of agent’s architectures [7].
In that work, offered a description of a hierarchy of agent
architectures ranging from a non-rational, purely reactive
TROPISTICagent to a rational, DELIBERATIVE agent, via
HYSTERETIC agents which are the first type of agent in
the hierarchy with an internal, “mental” state. Each type of
agent is, again, modelled as a tuple which includes a num-
ber of transforming functions. The whole hierarchy from
G&N, enhanced with F&M’s operators and our REACTIVE

AND RATIONAL agent is displayed in figure 1, the elements
of this description are:

Sa: The set of states the agent may be in.

Pa: Partial descriptions of the environment.

Actions: The set of actions the agent might perform.

Knowledge andInternalS: The set of possible internal
states the agent may be in.

Perception: The agent sensory function.

EffectorandDecision: These functions encode the agent’s
action-selection mechanism which decides the action
the agent will execute.



Memory: This function encodes the agent assimilation
mechanism by means of which it updates its knowl-
edge base, with information from the environment (in-
cluding the feedback obtained when the actions are
tried).

4 Our reactive and rational agent

To implement the type of agent at the top of that hierarchy,
we describe an agent as a 6-tuple:

< Pa,Ka, Ga, P erceptiona, Updatea, P lanninga >
(1)

wherePa andPerceptiona are the percept’s domain and
the perception function which we will not explain for the
sake of space. The setKa and Ga roughly correspond
to Sa above. We want to state that a rational agent has
a knowledge base,Ka, and a set of goals (or intentions),
Ga, that, together, characterize its internal state.Updatea :
= × Pa × Ka → Ka takes the place ofMemorya in the
memorization mechanism but it now has to ensure that the
addition of new information preserves the internal structure
of the knowledge base (and its consistency) becauseKa is
a collection of logical formulae with a well-defined syntax
and semantics. Similarly,Planninga : =×<×Ka×Ga →
Ga×Γ, substitutes the functionDecisiona and, instead of
just producing influences from the internal state, the new
reasoning function derives new goals and influences, tak-
ing into account the previous goals and the knowledge base.
Notice that bothUpdatea andPlanninga introduce an ar-
gument (with domain=, the set of all the possible time
points) to indicate the time at which each process (updat-
ing and planning) takes place. The introduction of explicit
time is another major change in our proposal with respect
to F&M (and G&N).

With Planninga, we want to model the process by
means of which an agent derives, from a set of high level
goals, a set of lower level goals, some of which are ac-
tions that can be tried for execution. This view of an agent
reducing goals to sub-goals has been studied in [8] in the
context of agents in logic programming. This agent model
also specifies a way to deal with the problem of bounded
rationality. It basically says that an agent must interleave
reasoning and acting, so there must exist time (or space)
bounds for the reasoning and, then, it may be that the agent
acts with no-completely-refined reasons. We mark that
limit with a resource (time or space to compute) counter,
as will be shown in the following section.

4.1 The behaviour of an agent

Following F&M, we characterize an agenta as a mathe-
matical functionBehavioura : =×<×Ka ×Ga × Γ →
Ka × Ga × Γ that maps the resource limits for reasoning,
the agent internal state and the set of influences to a new in-
ternal state and a set of influences produced by this agent.

Unlike, F&M, our agent internal state contains a knowl-
edge base and a set of goals, as we described above.

This functionBehavioura is defined as follows (′ im-
plies next time):

< k′
a, g′

a, γ′
a >= Behavioura(t, ra, ka, ga, γ) (2)

where

t: Current time.
ra: Amount of time allocated for reasoning.
ka: Agent’s knowledge base.
ga: Set of agent’s goals.
γ: Past set of influences.
γa: Set of influences that this agent is producing.

The arguments of the functionBehavioura come as
outputs from other functions:

k′
a = Updatea(t, Perceptiona(γ), ka) (3)

< γ′
a, g′

a > = Planninga(t, ra, k′
a, ga) (4)

TheUpdatea function will simply add the set of per-
cepts observed by agenta into its knowledge base. In
particular, inPerceptiona, obs(P, t) could stand for the
fact that the agent observed the propertyP at timet. The
Planninga function specifies an inference engine which
transforms goalsga into goalsg′

a and influencesγ′
a, using

the rules and factual information ink′
a, starting at timet

and taking no more thanra units of time to do it.

5 A multi-agent rational system (MARS): a
specification for a simulation language

Up until now, we have been describing one agent. To spec-
ify the behaviour of a multi-agent system, we need to define
the functions that account for the evolution of the whole
system dynamics. Let us, therefore, defineEvolution :
= × S × Σ × Γ → τ andCycle : S × = × Σ × Γ →
S × = × Σ × Γ, the same kind of functions introduced by
F&M, but each one with a new argument representing time;
whereS represents the set of all the possible mental states
of all the agents.

Evolution(t, < s1, s2, .., sn >, σ, γ) =
Evolution(Cycle(< s1, s2, .., sn >, t, σ, γ)) (5)

sa =< ka, ga > (6)

Cycle, the function that steps from one global situa-
tion into the next, is defined as:

< t′, < s′
1, s

′
2, .., s

′
n >, σ′, γ′ >=

Cycle(< s1, s2, .., sn >, t, σ, γ) (7)

< σ′, γ′ >= React(Λ, β, t, σ, γ ∪a γa) (8)

in which the newly introduced symbols are explained as
follows:



t: Current time.
sa: Agenta’s internal state.
σ: System “static” state: The environmental vari-

ables.
γ: Set of previous influences on the environment.
γa: Set of Agenta’s new influences.
Λ: The laws of the system.
β: Background knowledge that supports the de-

scription of the system.

This description of the system must also include the
equations:

Λ = Select(Network, ξ) (9)

ξ = NextEvent(γ) (10)

t′ = TimeOf(ξ) (11)

β = Interpret(InitDecl) (12)

where,

Select represents the process that extracts the laws of the
system from the code provided by the modeller in the
NETWORKsection of a GALATEA model (illustrated
in the last section within the example).

NextEvent obtains the next event that will occur in the
system from the list of influences.TimeOf pro-
duces the time of that event. AndInterpret, like
Select, represents an interpreter that extracts back-
ground knowledge and initial settings of variables
from the code that the modeller-programmer creates
(also shown with the example).

5.1 The whole description of MARS

On that brief description of an reactive and rational agent
and a modifiedReact function, we can build the math-
ematical description of a system populated by many of
such agents. We only need to connectReact with the
Behaviour function for each agent, as follows:

< σ′, γ′ >= React(Λ,Λ, scan, β, t, σ, γ ∪a γa) (13)

< s′
a, γa >= Behavioura(t, ra, ka, ga, γ) (14)

where, in turn,s′
a is an abbreviation of< k′

a, g′
a >, the

knowledge base and goals of agenta. This links the influ-
ences from the agents’ behaviour to the reaction of the en-
vironment and completes the definition of the multi-agent
system.

6 An example: Agent Modelling of a Forest
Reserve

Probably the best way to introduce the newly extended
modelling language is through simple examples. What
follows is the basic layout of one GALATEA simulation
model of a real natural system. It is, actually, the model of
a multi-agent system coupled with a natural dynamics.

The model here described is an outcome of the
project Biocomplexity: Integrating Models of Natural
and Human Dynamics in Forest Landscapes Across
Scales and Cultures (http://www.geog.unt.edu/
biocomplexity ). It aims to model and simulate land
use and changes in vegetation cover as a consequence of
human actions.

As it has been explained in [11, 12], we have being
devising a collection of toy models to cater for 1) the hu-
man dynamics, using the set of conceptual tools and data
structures provided by GALATEA and 2) the environmen-
tal dynamics, by integrating a cellular automaton from the
SpaSim [13] library into the actual simulator of a forest re-
serve. The data structures of GALATEA provide for the
representation of the agents’ goals, beliefs and observa-
tions, and, also, for a very elementary reasoning engine
to deduce actions for each agent, according to its circum-
stances.

The simplified model considers several instances of
“settler” agents and a lumber “concessionary” agent. For
the sake of space, we will only consider here the behaviours
of the first. For a complete account the reader is referred to
[11].

NETWORK
LANDSCAPE (A) :: // SpaSim’s invocation code

AGENTS
Settler (AGENT) ::
GOALS

if supervised then go_elsewhere;
if not(occupied_land), not(supervised),

abandoned_land
then settle_down_with_strategy_1;
if not(occupied_land), not(supervised),

land_is_forest_without_timber
then settle_down_with_strategy_2;
if not(occupied_land), not(supervised),

land_is_forest_with_timber
then settle_down_with_strategy_3;
if land_does_not_produce,

not(occupied_land_next)
then expand;

BELIEFS
to settle_down_with_strategy_1 do move_in;
to settle_down_with_strategy_2 do move_in,

cut;
to settle_down_with_strategy_3 do move_in,

cut, sale_wood;
INTERFACE
// Code to explain the effects of the agents’
// actions on the environment.
INIT
// Initiation services.

time_step := 10;
ACT(LANDSCAPE, 0);

DECL
// Instructions to declare the data structures
// including those based on the SpaSim library

END.

Figure 2. Partial view of the Caparo Model in GALATEA

The settler agent rules of behaviour can be put as

http://www.geog.unt.edu/biocomplexity
http://www.geog.unt.edu/biocomplexity


shown in figure 2. The settlers are people of limited eco-
nomical resources that arrive at the reserve aiming to im-
prove their economical status and to get the property of the
land that they get to occupy. Initially they dedicated them-
selves to subsistence agriculture: they just try to maximize
the benefits from their occupation of the area, without con-
sidering soil exhaustion due to poor management practices,
and without much regard for ecological damage. After five
years, the land loses its fertility, and the settler must move
to another available place (i.e. an area not under govern-
ment supervision) or expand his farm by deforesting some
adjacent land.

Figure 2 partially depicts a GALATEA model of this
system[12]. This is the normal layout of a simulation
model in GLIDER now enriched with a logic-based de-
scription for each agent[9, 10].

As it is, it has been very useful to discuss the behav-
iour of the human actors in the reserve as part of validating
exercises. All this, even though we have not finished im-
plementing a higher level translator for the system and we
still cannot provide a structured model like the one in that
figure (but we do have a running example in pure Java).

Simulation results are portrayed as graphs (Figure 3)
that show the percentage of total forest area by each of the
policy scenarios (Agroforestry, Forestry, Hands-off) and
maps that show the spatial distribution of land-use types
obtained in each of the scenarios at each time step.

Figure 3. Percentage of total forest area by each of the
policy scenarios

Figure 4 shows the final state of the Caparo Forest
Reserve for each policy scenario. Our theory allows for
modularity by means of a functionBehavioura for each
agent but also a conceptually higher modularity by distin-
guishing the agents from the natural system of the forest
reserve.

7 Conclusions

In this paper, we have described a mathematical theory that
state what multi-agent systems are and how they evolve
through time. This theory is being used as formal speci-
fication to guide the implementation of a multi-agent sim-
ulation platform that we have called GALATEA. This is a

Figure 4. Resulting maps at the end of the simulation for
each one of the policy scenarios

multi-language platform: we use an extension to a mature
simulation language (GLIDER) to describe “the world”
(the environment) in which the agents are embedded (the
NETWORKsection in the example above). And, we also
use a set of logic programming languages to specify each
agent’s goals and beliefs (theAGENTSsection).

We have completed the development of a platform
that implements the theory and we are now applying it to
the study of multi-agent systems.
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