
Proceedings of the Workshop at FAPR'96

Reasoning About Actions and
Planning in Complex

Environments

Ute C. Sigmund and Michael Thielscher

(Editors)

Technical Report AIDA-96-11

Darmstadt, June 1996

Fachgebiet Intellektik, Fachbereich Informatik
Technische Hochschule Darmstadt

Alexanderstrafie 10
D--64283 Darmstadt

Germany

Table of Contents

Schedule

Preface

Comparative assessment of update methods using static domain constraints

Erik Sandewall

3

5

1

SPEEDY: monitoring the execution in dynamic environments

Christine Bastie and Pierre Regnier II

An Object-Oriented Approach to Planning in Integrated Architectures
Umberto Fonda, Antonio Atatli and Andrea Omicini III

CLASSIC planning for mobile robots
Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi and Riccardo Rosati IV

Fuzziness in Decision-theoretic Planning
Jean MarcGuinnebault V

A Fibered Approach to Modeling Space-Time Dependent Cooperating Agents Scenarios
Jochen Pfalzgraf, Viorica Sofronie and Karel Stokkermans VI

Occurrences in the Hypothetical Worlds of the Situation Calculus: Extended Abstract
Javier A. Pinto VII

Reactive Pascal and the Event Calculus: A platform to program reactive, rational agents

Jacinto A. Davila Quintero VIII

A Formal Account of Planning with Concurrency, Continous Time and Natural Actions
Ray Reiter Ix

7

REACTIVE PASCAL and the Event Calculus:
A platform to program reactive, rational agents

Extended Abstract

Jacinto A. Dávila Quintero
j.davilaCdoc.ic.ac.uk

Logic Programming Section
Department of Computing. Imperial College
180 Queen's Gate. London. SW7 2BZ. UN

http://laotzu.doc.ic.ac.uk
Phone: 0171-5948232 Fax: 0171-5891552

Abstract

This paper describes a language to program an "intelligent" (reactive. rational)
agent as that described by Kowalski in [5]. The new programming language,
called REACTIVE PASCAL, is part of a specification platform that can be
based on either the Situation Calculus [9] or the Event Calculus [7]. Some
mechanisms for common-sense reasoning are, therefore, directl}, available. The
programmer/designer can complete a background theory describing the relevant
dyynamics of the universe in which the agent will operate. The Eleralor example
is borrowed from [8] to illustrate the expressiveness of the platform. The combi-
nation of REACTIVE PASCAL programs and a background theory then enables
the agent to perform temporal reasoning such as that required for planning.

1 Introduction : From Structured to Logic Pro-
gramming

A program can be seen as a scheme that can be used by an agent to generate
plans to achieve some goal . Those plans should lead that agent to display an
effective , goal-oriented behaviour that, nevertheless , caters for changes in the
environment due to other independent , processes and agencies . In the work
discussed here, a well-known programming language (STANDARD PASCAL)
has been selected and extended with some useful tools to model those problem-
solving and planning strategies . The new language inherits its semantics from

'This author is supported by a grant from CONICIT- University of Los Andes. Venezuela.

VIII-1

logic programming. In addition, the implementation of an interpreter for the
language is specified by means of a normal logic program.

REACTIVE PASCAL is aimed at the same applications as GOLOG [8]. The

language has been called reactive because its semantics embodies the principie
of decomposition of goals into subgoals called progression '. Notice that this

strategy fits nicely in an agent 's architecture where planning can be interrupted

at any time to be interleaved with execution and sensing . as described in ([5],

[1]).
Our approach is different from Levesque et al's in that there is no commit-

ment to a particular logical formalism. One can employ the Situation Calculus
or the Event Calculus depending on the requirements of one's architecture.
However, the Event Calculus has turned out to be more expressive and useful
in the reactive architecture described in [5] and [1]. Our approach also regards
standard programming constructs as macros . However, here they are treated as
special predicates or terms 2.

The syntax and semantics of REACTIVE PASCAL s are presented in ta-
bles 1 4 and 2 5 6 respectively. The syntax is left "open- to accommodate, in
suitable syntactic categories, those symbols designated by the programmer to
represent fluenis, primilire actions and complez actions . In this initial formal-
ization PASCAL syntax is "reduced" to the least number of structures required
for structured programming (`, ", "if.. then.. else.. ", "u-hile"). On the other
hand. the syntax allows the representation of parallel actions through the com-
positional operators par ' and + 8.

The semantics of REACTIVE PASCAL is defined in terms of the predicate
done °. The definition can also function as an interpreter for the language. Infor-
mally, done(A, T0, Tj) reads "An action of type A is started at, T. and completed
at Tf''. Because the definition of done is a logic program. any semantics of nor-
mal logic programming can be used to give meaning to REACTIVE PASCAL
programs.

t The first action to be performed is generated first.
2See [DN-01 f below , proc can be regarded as a two-argument predicate , the following

symbol is a term , and begin and end are bracketing a more complex term.
'In addition to those syntactic rules, thé system must provide translation from the "surface

syntax", that the programmer will use to write atemporal queries and the actual logical
notation.

4 S_, means an instante of S of sub-type j
5PROLOG-like syntax is being used.
6Eb (B') in [DN-07] is equal to Eb (B) except that all their existentially quantified variables

have been renamed. This is crucial to preserve the semantics of while.
7Unlike those semantics of interleaving [4], this is a form of real parallelism . Actions start

simultaneously although they can finish at different times. Notice . however , that this kind of
parallelism requires another cycle, different from those presented in [5] and [1].

8 used as well to express real parallelism . Actions are start and finish at the same time.
This allows the progranuner to represent actions that interact with each other so that the
finishing time of one constraints the finishing time of the other. For instante , taking a bowl
full of soup with both hands and avoiding spilling [11].

9 The definitions of rigid, rtonrigid and other predicates are also required.

VIII-2

Table 1 REACTIVE PASCAL: Syntax
Program = Proc 1 Proc Program A program

Proc = proc Funcproc
begin Commands end Procedure definilion

Block ..= begin Commands end Block
Commands = Block Block call

Funcproc Procedure call

Funcaction Primilive aclion call
Commands ; Commands Sequential composilion
Commands par Commands Parallel composilion
Commands + Commands Sirici parallel

composilion
if Exprboolean then Commands Tesi
if Exprboolean then Commands

else Commands Choice
while Exprboolean do Block Ileralion

Query ... Logical expressions
Exprj ..= Funcj(Func, Func, ..., Func) Expressions (as funclion

applicalions)
Func ..= Funcproc

Funcaction
FunCfluent

FunCboolean Funclors
Funcproc ..= serve (Term), build(Term), ... User-defined complex ac-

tions or procedures'
names

Funcaction = nil Null aclion
up 1 move (Term, Term) ^ ... User-defined primilive

aciions' names
Fu ncfluent ••= at(Term) 1 on(Term, FunCfluent) 1 • • • User-defined fluents

Funcboolean = and(Funefluent , FunCboolean)

or(FunCfluent, FunCboolean)

not (FunCboolean)

Func fluent Boolean funclions
Query Tests on "rigid"

information

Term = Ind 1 Var Terms can be individuals
or variables

Ind ... Individuals identified by

ihe usen

Var ... Soried Variables

Table 1: Syntax of REACTIVE PASCAL.

VIII-3

Table 2 REACTIVE PASCAL : Semantics (and implementation)

done (Pr. T0. Tj)

done ((Cl : C2),To,Tj)
done ((C1 par C2), Ti, Tj)

done ((Ci + C2),T.,Tj)
done ((if E then C1).To.Tj)
done ((if E then Cl

else C2),T,,Tj)

done ((while Eb do B).T,.Tj)

done ((begin C end), To, Tj)
done (nil. To, T0)

holdsAt (and(X, Y), T)
h.oldsAt (or(X, Y), T)
holdsAt(not(X), T)
holdsAl(X. T)
holdsAt(Q. T)

nonrigid(X)

rigid(X)

- proc Pr begin C end
A done (C,T,,Tj)

done (Ci,T0,Ti) A done(C2,Ti,Tj)

- done (Ci,T0,Ti) A done (C2iTa,Tj)
A Ti < Tj

V done (Ci,T0,Tj) A done (C2,To,Ti)

[DN - 01]
[DN - 02]

A Ti < Tj [DN - 031
.- done (Ci,T0,Tj) A done (C2,To,Tj) [DN-04]
•- holdsAt (E,T0) A done(Ci,T0,Tf) [DN-05]

holdsAt (E,T0) A done (Ci,T0,Tj)
V -'holdsAt (E,T0) A done (C2,To,Tj)
«- (-lholdsAt(Eb,T0) A To = Tj)

[DN - 06]

V (holdsAt(Eb, T.) A done(B, T., Ti)
A done((while Eb' do B'),Ti,Tj)) [DN - 07]

done (C,To,Tj) [DN - 08]
[DN - 09]

4--

4--

holdsAi(l, T) A holdsAt(Y, T) [DN - 10]
h.oldsAt(X,Y) V holdsAi(}';T) [DN - 11]
-'holdsAt(X,T) [DN - 12]
nonrigid(X) A holds(X,T) [DN - 13]
rigid(Q) A Q [DN - 14]

isflueni(X)

4- -'isflueni(X)

[DN - 15]

(DN - 16]

Table 2: Semantics of REACTIVE PASCAL.

The semantics definition in table 2 needs to be completed with a "base case'

clause for the predicate don¿ and the definition of holds. These two elements

are also part of the semantics. but more important, they are the key elements

of a background theory B.

2 Background theories

A background theory consists of two sub-theories: A set of domain independent

axioms (D1B) (notably the base case of done and the definition of holds) stating
how actions and properties interact. These domain independent axioms also
describe how persistence of properties is cared for in the formalism.

The other component of the background theory is a set of domain depen-
den¡ axioms (DDB), describing the particular properties, actions and inter-
relationships that characterize a domain of application (including the definitions

of initiates , terminales and isfluent).
The semantics for REACTIVE PASCAL and DDB can be isolated from the

decision about what formalism to use to represent actions and to solee the frame
problem (the problem of persistence of properties) in DIE?. The formulation
presented in the following section is based on the Event Calculus [7]. Other
formulations based on, for instance, the Situation Calculus [9] 10. are equally
well possible. Probably, the most important, element in DIB is the definition of
the temporal projection predicate: holds.

3 Background theories in the Event Calculus

The paper in which the Event Calculus (EC) was presented ([7]) offers, not
only a set of inference rules, but also an ontology based on properties and the
notions of initiation and termination of properties. The intuitive idea behind
that formulation is: A propert}. (in the world) holds if an event has happened
to initiate it and, after the event, nothing has happened that terminates the
property. «We use the following axioms to formalize that:

holds(P,T)

clipped(T1. P, T2)

«- do(.9,T',T1) A initiates (A. Ti, P)
A T1 < T A -clipped(T1, P. T)

do(A, T', T) A terminates (.4. T, P)
AT1 < T A T< T2

[EC1]

[EC2]

These axioms are different from most formulations of the EC (in particular
[6]) in that the well-known predicate happens(Event,Time) is replaced by the

20with certain sacrifice in expressiveness , however. The operators + and par would have to

be excluded from the language as it is.

VIII-5

predicate do(Aciion.Starting.Tiene, Finishing_Time) I.

«Ve use a abductive thcorem prover for interpreting REACTIVE PASCAL
programs and generating plans. The execution of those plans is interleaved with
their generation and also with the assimilation of inputs from the environment
[5]. It is known ([2], [12], [10]) that to make an abductive iheorem prover [13]
behave as a planner, one has to define the set of abducibles, say Ab. In the
present context one can make Ab = Ido,<,<,=}. The domain-independent
background theory can then be completed with the following definition (base
case of done) 12:

done (A,T0,Tj) -- primitive (A) A do(A,T0,Tj) [DN - ECO]

By using an abductive proof- procedure (like the one by Fung [3]) with these
definitions , the result of successively unfolding a done goal will be a set of do's
that can be regarded as the steps of the plans to achieve the goal plus a minimal
set of "{<, <, =}" required to correctly order the do's.

4 The Elevator Example

This example is borrowed from [8] where a GOLOG program is offered as a
solution. Our solution is a program written in REACTIVE PASCAL.

The purpose of the program is to control an elevator. The problem of con-
trolling elevators has been attacked by control engineers in many ways. Yet, it
still seems to be an open problem because of the diversity of optirnality criteria.
There are several variables that can be optimized. Observe that this has to be
done constantly over the working hours of the device, while the elevator keeps
providing an adequate service for a highly uncertain set of clients.

In order to build the controller-program, [8] employs several abstractions
that we preserve. The elevator is an agent that can perform the following prim-
itive actions: up(N): go up to floor N, down(N): go down to floor N, turnoff(N):
wwitch off the cal] signal at floor N, open: open the door, and close: close the
door. In addition, the agent knows about the following fluents : currentfloor(C):
the current floor is C 13, on(N): the signal-cal] is on at floor N.

The following REACTIVE PASCAL program (ELE_PASCAL) is equivalent
to the GOLOG program in [8] (pg. 10) 14:

11 The intention is to have the name of the agent also represented by a term in the predícate:
do(Agent, Aciion, Starting-Time, Finishing_Time). For the sake of simplicity, however, the

term for agents is omit .t.ed here.
12The definition of primitire must also be provided by the designer. It should correspond

to the list of low- level, indivisible actions that the agent can perform.

13Levesque et al. use current_f loor(S) = M to say that the current floor is M in situation

S. Instead of that, we say holds(current f loor(M), S).

14 Note that addone(X, Y) a assign(Y, X + 1) and subone(X, Y) = assign(Y, X - 1). It is

assumed that there is a built - in mechanism to perform the mathematical operations.

VIII-6

proc serve(N)

begin

if currentfloor(C) then

if C=N then

begin

turnoff(N) par open ; close

end

else

if C<N then

begin

addone(C, Nx); up(Nx); serve(N)

end

else

begin

subone(C, Nx); down(Nx); serve(N)

end

end

proc control

begin

while on(N) do begin serve(N) end

parle

end

proc parle

begin

ii currentfloor(C) then

if C=0 then

open

else begin down (O); open end

end

Proposition 1 Le¡ ELE-PLAN be { do (self,up(5),t4it5). do(self,turnof(5),ís,t7),

do(self, open , t6,t8), do(self, close,t9,t10), do(self. down (/4),t11 , Í12), do (self,down(3),

t12,t13), do(self, open , 114,tls), do(self, turno$(3),t14, t16), do (self,close,t17,tis),

done (self,park, t18,tloo) }.
Leí INEQ = {to < ... < tioo}. Leí ELE_T be the conjunclion of ELE_H,

ELE_PASCAL, ELE_DDG, EC1, EC2, INEQ and DONE 15, then:

ELET U ELE_PLAN Fiff done (control, t4, tloo) [ELEVA]

Proof: See Appendix (In the full paper).
The full paper discusses Chis program and compares it with the GOLOG version.
The final section in the paper summarizes the contribution of the paper in the
context of on going research on logic-based agents

15A11 the symbols and the rest of the example are explained in the full paper.

VIII-7

References

[1] Jacinto A. Dávila Quintero. A logic-based agent. Technical report, Imperial
College, London, February 1996.

[2] Kave Eshghi. Abductive planning with event calculus. In Proceedings 5th
Internacional Conference on Logic Programming, 1988. pg. 562.

[3] Tze Ho Fung. Abduction by deduction. PhD thesis, Imperial College, Lon-
don, January. 1996.

[4] C.A.R. Hoare. Com.municating Sequential Processes. Prentice-Hall, 1985.

[5] Robert Kowalski. Using metalogic to reconcile reactive with ra-
tional agents. In K. Apt and F. Turini, editors, Meta-Logics
and Logic Programming. MIT Press, 1995. (Also at http://www-
¡p.doc.ic.ac.uk/UserPages/staff/rak/recon-abst.html).

[6] Robert Kowalski and Fariba Sadri. The situation calculus and event cal-
culus compared. In M. Bruynooghe, editor, Proc. Internacional Logic
Programming Symposium. pages 539-553. MIT Press, 1994. (Also at
http://www-lp.doc.ic.ac.uk/UserPages/staff/fs/ilps94.ht.ml).

[7] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New
Generaiion Computing, 4:67-95, 1986.

[8] H. Levesque. R. Reiter, Y. Lespérance, L. Fangzhen, and R. B. Scherl.
Golog: A logic programming language for dynamic domains. (forihcom-
ming). (Also at http://www.cs.toronto.edu/- cogrobo/).

[9] J. McCarthy and P. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence. 4:463-502. 1969.

[10] Lode Missiaen. Maurice Bruynooghe, and Marc Denecker. Chica, an ab-
ductive planning system based on event calculus. Journal of Logic and
Computation. 5(5):579-602. October 1995.

[11] Murray Shanahan. Solving ¡he Frame Problem: A Mathematical Investiga-
¡ion of Me Common Sense Law of Inercia. (forthcomming).

[12] Murray Shanahan. Prediction is deduction but explanation is abduction. In
N.S. Sridharan, editor, Proc. Internacional Joint Conference on Artificial
Intelligence, pages 1055-1060. Morgan Kaufrnann, Detroit. Mi. 1989.

[13] Francesca Toni. Abductive Logic Programming. PhD thesis, Imperial Col-
lege, London. July 1995.

1

1

1.1

We

and

sort

VIII-8 1 1

