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Abstract. In this paper, we introduce a programming language for an
abductive reasoner. We propose the syntax for an imperative language
in the usual manner and its semantics as a mapping from the language
statements to an abductive logic program. The design is such that any
semantics for abductive logic programs could be taken as the basic se-
mantics for the programming language that we propose. In this way, we
build upon existing formalizations of abductive reasoning and abductive
logic programming. One innovative aspect of this work is that the agent
processing and executing OPENLOG programs will stay open to the en-
vironment and will allow for changes in its environment and assimilation
of new information generated by these changes.

1 Introduction

Abduction is a non-valid form of reasoning in which one infers the premises of
a rule given the consequent. This form of reasoning is not valid in classical first
order logic since, for instance, one is not allow us to deduce the atom b from
the clause h « b and the atom h. However, in general, in the presence of h
and this clause, our intuition allows us to say that b could well be the case.
That is, we are allowed to offer b as an explanation or a hypothesis for h in the
context of that clause when we do not have more information. This is abduction.
An abductive reasoner uses abduction as one of its inference rules. Abduction
enables reasoning in the absence of full information about a partlcula.r problem
or domain of knowledge.

In this paper, we introduce a programming language for an abductive rea-
soner. We propose the syntax for an imperative language in the usual manner
(summarized in table 1) and its semantics is defined as a mapping from the lan-
guage statements to an abductive logic program (shown in table 2). The design
is such that any semantics for abductive logic programs could be taken as the
basic semantics for the programming language that we propose. In this way, we
build upon existing formalizations of abductive reasomng and abductive logic
programming.
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A substantial effort has been made to formalize abductive reasoning. Poole’s
Theorist [27] was the first to incorporate the use of abduction for non-monotonic
reasoning. Eshghi and Kowalski [10] have exploited the similarities between ab-
ductjon and negation as failure and provided a proof procedure based on a trans-
formation of logic programs with negation into logic programs with abducible
atoms. de Kleer incorporates abduction into the so-called truth maintenance
systems to obtain the ATMS [7]. Also, in [3], L. Console, D. Theiseider and P.
Torasso analyse the relationships between abduction and deduction and define
what they call an abduction problem as a pair < 7, ¢ > where:

1. T (the domain theory) is a hierarchical logic program! whose abducible
atoms are the ones not occurring in the head of any clause.

2. ¢ (the observations to be explained) is a consistent conjunction of literals
with no occurrence of abducible atoms.

A solution to the abduction problem is a set of abducible atoms that, together
with 7 , can be used to explain ¢.

The purpose of imposing structures such as < 7,4 > upon a reasoning
problem is to create frameworks in which the semantics of each component
and its relationships with other components can be established in a declarative
manner. A framework is a structure that distinguishes between types of elements
in a formalization. For instance, the framework < T, ¢, Ab > could be used to say
that one has a theory T, a set of observations ¢ and that these observations can
be explained by abducing predicates in 7' whose names appear in Ab (abducible
predicates). These distinctions are then used to justify differential treatment of
each type of component. In the cases considered here, for instance, abducible
predicates and non-abducible predicates, so separated by the framework, are
processed differently. The distinction captures the fact that the former, unlike
the latter, denote uncertain or incomplete information.

The use of frameworks has been taken further by Kakas and Mancarella 17,
Denecker and De Schreye [9], Toni [33], Fung [14] and more recently, Wetzel et al
[36], [35] in the context of incorporating abduction into constraint logic program-
ming. In [16] there is an overview of the first efforts to incorporate abduction
into logic programs. In [13] there is a preliminary description of the abductive
framework that we have used (in [6]) to formalize the reasoning mechanism of
an agent. In this work, the agent is as an abductive reasoner that uses abduction
to plan its actions to achieve its goals.

2 An Abductive Proof Procedure

In [13], Fung and Kowalski introduce an abductive proof procedure aimed at
supporting abductive reasoning on predicate logic and, in particular, on abduc-
tive logic programs. The iff proof procedure, as they call it, (iffPP hereafter), is
an aggregate of the following inference rules: unfolding, propagation, splitting,

! A hierarchical logic program is a logic program without recursive rules.
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case analysis, factoring, logical simplifications and a set of rewriting rules to
deal with equalities plus the abductive rule described above. Fung and Kowalski
also produce soundness and completeness results in [13]. We describe an im-
plementation of iffPP in [6] together with some examples of how it could be
used.

A proof procedure can be seen as specifying an abstract machine that trans-
forms formulae in other formulae. It could even be seen as “an implementation
independent interpreter for” the language of those formulae [34]. That is, a proof
procedure determines an operational semantics for logic programs (.ibid). Thus,
iffPP specifies an operational semantics for abductive logic programs. By relating
this operational semantics to a programming language, one can get to program
the abductive reasoner for particular applications, such as hypothetical reason-
ing and problem solving (e.g. planning) in specific knowledge domains and for
pre-determined tasks. }

In this paper, we go a step further in the definition of a programming language
for the abductive reasoner defined by iffPP. Instead of simply relying on the
procedural interpretation of (abductive) logic programs, we introduce a more
conventional imperative language and explain how this can be mapped onto
abductive logic programs of a special sort. These abductive logic programs lend
themselves to a form of default reasoning that extends the traditional use of
programming languages, i.e., the new definition supposes a re-statemerit of what
a program is.

In the context of this research, a program is seen as a scheme that an agent
uses to generate plans to achieve some specified goal. These plans ought to lead
that agent to display an effective, goal-oriented behaviour that, nevertheless,
caters for changes in the environment due to other independent processes and
agencies. This means that, although the agent would be following a well-defined
program, it would stay open to the environment and allow for changes in its cir-
cumstances and the assimilation of new information generated by these changes.

So defined, a program is not a closed and strict set of instructions but a
list of assertions that can be combined with assertions from other programs.
One advantage of this definition is that the code being executed remains open
to updates required by changes in the circumstances of execution. The other
important advantage is that it allows the executor of the program to perform a
form of default reasoning. By assuming certain set of circumstances, the agent
will execute certain sequence of actions. If the circumstances change, perhaps
another sequence will be offered for execution.

The paper is organized as follows: The next section shows an example to illus-
trate the principles of abductive programming. The following section introduces
the syntax and semantics of a new logic programming language for abductive
programming: OPENLOG. Then, the semantics of OPENLOG and its relation-
ship with background theories based on the Event Calculus [20] is explained. A
discussion of the characteristics and advantages of OPENLOG is also presehted
before concluding with some remarks about future research.
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3 Toy Examples of Abductive Programming with
OPENLOG

e
< O

a) b)
o Fig. 1. Two Blocks-World scenarios for planning

In this section we illustrate with examples the relationship between abduc-
tion and planning based on pre-programmed routines. Consider the scenario in
figure 1:

Ezample 1. An agent is presented with the challenge of climbing a mountain of
blocks to get to the top. The agent can climb one block at a time provided, of
course, that the block is there and at the same level (i.e. just in front). The
planning problem is then to decide which blocks to climb onto and in which
order. An OPENLOG procedure to guide this planning could be:

proc climb
begin
if infront( Block ) and currentlevel( Level )
and Block is_higher_than Level then
begin
step_on( Block ) ; climb

end

end

Given the scenario in figure 1 a) and the OPENLOG code above, an abductive
agent might generate the alternative plans:

do(sel f, step.on(a),t1) A t1 <tz Ado(sel f, step_on(c),t2) and

do(self, step.on(b),t1) Aty <tz A do(self,step.on(c),tz),
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where do(Agent, A,T) can be read as “Agent does action A at time T”. This
can be done by relating every OPENLOG program to an abductive logic pro-
gram that refers to the predicates do and < , and declaring those predicates as
abducibles. This mapping is provided by the definition of the predicate done as
shown in section 6 and in section 7.

Still in this scenario, it might be the case that the agent interpreting this
code learns that at some time t;:

t1 <t; <tz A do(somebodyelse,remove(c),t;),

i.e. an event happens that terminates the block ¢ being where it is. The agent
ought then to predict that its action step_on(c) will fail. This could be done,
for instance, if the agent represented and, of course, processed an integrity con-
straint such as: (do(Ag, Ac,T) — preconds(Ac,T)), where preconds verifies the
preconditions of each action.

This type of reasoning that combines abduction with integrity constraints is
the main feature of iffPP. The agent using iffPP as is reasoning procedure may
predict that an action of type Action will fail and then either dismiss the corre-
sponding plan (i.e. no longer consider it for execution) or repair the plan by ab-
ducing the (repairing) actions required to make preconds(Action, T') hold at the
right time. Transforming iffPP in a planner that allows replanning must be done
with care, however, because, as we argue below, it may lead to “over-generation”
of abducibles, i.e. to produce too many “repairing” alternatives (some of them
with there own problems due to ramifications).

What we have done to tackle the original problem (transforming iffPP in the
planner for an open agent) is to combine OPENLOG (with its solution for over-
generation of abduction) with another programming language, this one based on
integrity constraint, which we call ACTILOG [6]. We focus this paper on OPEN-
LOG, due to space constraints and because integrity constraints equivalent to
the one above (that involves the predicated preconds) can also be produced from
OPENLOG code.

3.1 Over-Generation of Abducibles

As we said, one has to be careful with the generation of abducible predicates.
Notice, for instance, that in figure 1 b) the only feasible plan is:

do(sel f, step_on(b),t1) A t1 < ta A do(self, step.on(c), t2),
because the block a is not there. The agent may know about actions that cause
infront(a) to be the case (such as, say, put_block_in_front(a)). It could there-
fore schedule one of these actions to repair the plan, In (the more usual) case
where the agent cannot actually perform the action, the only way to prevent the
scheduling of the repairing action is to perform some (non-trivial) extra compu-
tation to establish, for instance, that the agent will not be able to “move the
block a” in the current circumstances.

This type of behaviour is what one would get from a general purpose, ab-
ductive reasoner like iffPP. It will “generate” all the possible combinations of
abducibles actions to satisfy its goals. And these may be too many, irrelevant
or impossible. Observe that this general reasoner will generate the same sets of
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step_on actions for both situations a) and b) in figure 1. Moreover, it will add
actions to repair the plans (all of them) in all the possible ways (e.g. moving
blocks so that infront holds for all of them). The problem becomes even more
complex if one considers other physical or spatial effects the agent should be
taking care of (like how many blocks should be regarded as being in front of the
agent).

We want to save the extra-computation forced on the agent by these repairing
actions and other effects. We want to use the structures in the program (climb in
this case) to decide when the agent should be testing the environment and when
it should be abducing actions to achieve its goals. This is a form of interleaving
testing and planning.

One of the advantages of our approach is that, as part of defining the map-
ping procedural code — abductive logic programs, we can inhibit that “over-
generation” of abducible predicates. The strategy for this is simple: an expres-
sion C appearing in if C then ... will not lead to the abduction of atoms. Any
other statement in a program will. We have modified iffPP (and therefore the
related operational semantics of abductive logic programs) to support a differ-
ential treatment of certain predicate definitions. When unfolding the expression
C, in if C then ..., the involved predicates are not allowed to contribute with
more abducibles, but simply to test those previously collected in order to satisfy
the definitions. Thus, the expression if C then ... in OPENLOG is more than
a mere shorthand to a set of clauses in an abductive logic program. It is a way
for the OPENLOG programmer to state which part of the code must carry out
tests (on the agent’s knowledge) and which must lead to actions by the agent.
This strategy adds expressiveness to the programming language and makes of
abduction a practical approach for the planning module of an agent [6].

With the inhibited platform and the code in example 1 above we state that,
at that stage, the agent is just interested in testing whether in front(A) actually
holds for some block A. If the programmer decides that the agent must also build
the mountain to be climbed, then she will have to write for the “climber-builder”
agent a program such as this:

Ezample 2. proc climb
begin !
if infront( Block ) and currentlevel( Level )
and Block is_higher_than Level then
begin
step_on( Block ) ; climb
end
else
if available( Block ) and not infront( Block ) then
put_block_in_front( Block ) ; climb
end

In this second program, when the agent has no block in front (so that the
first test fails) and there is some block available in the neighbourhood, then
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the agent will indeed schedule (abduce) the action put_block.in. front(A) for
execution (provided that action is a primitive action).

Thus, with inhibited abduction the agent is interleaving the “testing” of
properties with the “planning” of actions. This testing is program-driven, i.e. the
programs and the goals establish when the system will be testing and when it will
be planning (abducing). Moreover, notice that the “testing” is not restricted to
the current state of the world. Earlier actions in a plan can be used to establish
that some property holds at a certain time-point. For instance, the climbing
agent above may be able to deduce that after do( step-on(a),t1), infront(c) will
hold.

4 OPENLOG: From Structured to Logic Programming

In the following, a well-known programming language (STANDARD PASCAL)
Is used as the basis to create a language that supports the kind of open problem-
solving and planning behaviour mentioned above. The semantics of the resulting
language (OPENLOG) is based on a logic of actions and events that caters for
input assimilation and reactivity. In combination with the reactive architecture
described in [6], where the interleaving of planning and execution is clearly de-
fined, this language can provide a solution to the problem of agent specification
and programming.

OPENLOG is aimed at the same applications as the language GOLOG of
Levesque et al [21] i.e. agent programming. Our approach differs from Levesque
et al’s in that there is no commitment to a particular logical formalism. One can
employ the Situation Calculus or the Event Calculus depending on the require-
ments of one’s architecture. However, the Event Calculus has turned out to be
more expressive and useful for the reactive architecture described in [6).

Like GOLOG, our approach also regards standard programming constructs
as macros. However, here they are treated as special predicates or terms2. There
is no problem with recursive or global procedures. Procedures are like predi-
cates that can be referred to (globally and recursively or non-recursively) from
within other procedures. Interpreting these macros is, in a sense, like translating
traditional structured programs into normal logic programs.

The following section 5 describes the syntax of the language which is, ba-
sically, a subset of PASCAL extended with operators for parallel execution,
Section 6 explains the semantics of OPENLOG by means of a logic program
(defining the predicate done). In section 7, we introduce the background theo-
ries: the temporal reasoning platform on which OPENLOG semantics in based.
In [6], we illustrate the use of OPENLOG and the background theories with a
more elaborated example: The Elevator Controller.

2 See [DNO1] in table 2 below: proc can be regarded as a two-argument predicate,
the following symbol is a term, and begin and end are bracketing a more complex
term.

-
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5 The Syntax of OPENLOG %

The syntax of OPENLOG is described in BNF form?® in table 1.

The syntax is left “open” to accommodate, in suitable syntactic categories,
those symbols designated by the programmer to represent fluents, primitive ac-
tions and complex actions. In addition to the syntactic rules, the system must
also provide translations between the “surface syntax”, that the programmer
will use to write each Query, and the underlining logical notation.

In this initial formalization, PASCAL syntax is limited to the least num-
ber of structures required for structured programming: ( %”, “f.. then.. else..”,
“while”). On the other hand, the syntax supports the representation of parallel
actions through the compositional operators par 4 and + .

6 The Semantics of OPENLOG

The semantics of the language is stated in table® 2 by means of the predicate
done”. The definition of done can also function as an interpreter for the language.
Declaratively, done(A, T,,Ts) reads “an action of type A is started at T, and
completed at T;”. As the definition of done is a logic program, any semantics of
normal logic programming can be used to give meaning to OPENLOG programs.

One of the innovations in OPENLOG is that between any two actions in a
sequence it is always possible to “insert” a third event without disrupting the
semantics of the programming language. Axiom [DN02] formalizes this possibil-
ity. This is what we mean by plans (derived from OPENLOG programs) as being
open to updates. _

The definition of semantics in table 2 needs to be completed with a “base
case” clause for the predicate done and the definition of holds. These two ele-
‘ments are part of the semantics, but they are also the key elements of a back-
ground theory B.

% In the table, S; means an instance of S of sub-type j. (A)* indicates zero or more
occurrences of category A within the brackets.

4 Unlike those semantics of interleaving ([15], [24]) this is a form of real parallelism.
Actions start simultaneously, although they may finish at different times. Notice that
when all the actions have the same duration (or when they all are “instantaneous”)
this operator is equivalent to 4. Also, observe that the agent architecture described
in [18] only handle actions which last for one unit of time. We relax this limitation
in [6].

5 used as well to express real parallelism. Actions start and finish at the same time.
This allows the programmer to represent actions that interact with each other so
that the finishing time of one constraints the finishing time of the other. For instance,
taking a bowl full of soup with both hands and avoiding spilling [32].

8 PROLOG-like syntax is being used.

" The definitions of other predicates are also required but are not problematic.
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Table 1 OPENLOG: Syntaz
Program = Proc ( Program )* A program
Proc = proc Funcproc
begin Commands end Procedure definition
Block = begin Commands end Block
Commands ::= Block Block call
Funcproc Procedure call
Funcaction Primitive action call

Query
Ezpr;
Func

Funeproc

Term

Ind

Var

I
|
I
|
F
|

Funcection 2

1

Funcrivent i
Funcbaalaan =

I

Commands ; Commands
Commands par Commands
Commands + Commands

if ETpTiootean then Commands
if Exprocotean then Commands
else Commands

while Ewprbonlean. do Block

Func; (Fune, Fune, ..., Func)
Funcproc

F UNCaction

Fune fluent

d UNChoolean

serve( Term ), build( Term ), ...

nil
up | move(Term, Term) | ...

at(Term) | on( Term, Funcsiuens ) | ...

ﬂfld( Fuﬂcfluent 3 Funcboolenn )
01"( F‘unc;;umt, Fuﬂcboolenn )
’I’I-Ot( Fﬂﬂcbooteun )

F UNCfiluent

Query

Ind | Var

Sequential composition
Parallel composition
Strict parallel composition
Test

Choice

Iteration

Logical expressions
Ezpressions

Functors

User-defined names

Null action 3
User-defined pﬁmits‘%e ac-
tions’ names

User-defined fluents

Boolean functions

Tests on “rigid” informa-
tion

Terms can be individuals ori
veriables

Individuals identified by the
user :
Sorted Variables

Table 1. The Syntax of OPENLOG.
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-

Table 2 OPENLOG : Semantics and interpreter

done(Pr,T,,Ty) « proc Pr begin C end

A done(C,To, Ty) [DNO1]
done(( Cy ; C2),Ts,T¢) «— done(C1,To, i) A Ty < T2
N dO‘nE(Oz, T, T_f) [DNO:Z]
done(( C par C2),
To; T#) «— done(C1,To,T1) A done(Ca, T,,T¥)
ATy £ Ty
A d.one(C],T.,,Tf} N dane(Cz,Ta,Tx)
A<l [DNO3]
done(( Cy + C2),To,Ty) — done(C1,To,Ts) A done(Cz,To, Ty) [DNO4]
done((if E then Ci),

To,T%) — holdsAt(E,T,) A done(Ci1,To,Ty)

V —holdsAt(E,T,) NT, =T} [DNO5]
done((if E then C,
else C3), T, T5) + holdsAt(E,T,) A done(Cy,To,Ty)
v —holdsAt(E,T,) A done(Cz,To,Ty) [DNOE]
done((while
: 3L (Es(L)
do B(L)))
To. T} — (—3L holdsAt(Es(L),Ts)
ANTsl= Tf)
vV (holdsAt(Es(L'),Ts)
A done(B(L'), To,T1)
ATe <Th
A done((while
; 3L (Ey(L) do B(L)) ),T1,Ty)) [DNOT7]
done((begin C end),

T lr) + done(C,To, T¥) [DNO08]
done(nil, T, T5) [DIN09]
holdsAt(and(X,Y),T) « holdsAt(X,T) A holdsAt(Y,T) [DN10]
holdsAt(or(X,Y),T)  « holdsAt(X,T) V holdsAt(Y,T) [DN11]
holds At(not(X),T) +— —holdsAt(X,T) [DN12]
holdsAt(X,T) +— nonrigid(X) A holds(X,T) [DN13]
holdsAt(Q,T) — rigid(@) N Q [DN14]
nonrigid(X) — isfluent(X) [DN15]
rigid(X) — —isfluent(X) [DN16]

Table 2. The Semantics of OPENLOG

287
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7 Background Theories

Roughly, a background theory (B) is a formal description of actions and properties
and the relationships between action-types and property-types.

A background theory consists of two sub-theories: A set of domain indepen-
dent azioms (DIB) (notably the base case of done and the definition of holds)
stating how actions and properties interact. These domain independent axioms
also describe how persistence of properties is cared for in the formalism.

The other component of the background theory is a set of domain depen-
dent azioms (DDB), describing the particular properties, actions and inter-
relationships that characterize a domain of application (including the definitions
of initiates, terminates and isfluent ).

The semantics for OPENLOG can be isolated from the decision about what
formalism to use to represent actions and to solve the frame problem (the prob-
lem of persistence of properties) in the background theory. Formulations based
on the Event Calculus [20] and on the Situation Calculus [22]® are equally well
possible. The following one is based on the Event Calculus.

Probably, the most important element in a background theory is the defini-
tion of the temporal projection predicate: holds.

7.1 The Projection Predicate in the Event Calculus

holds(P,T) — do(A,T',T1) A initiates(A, Ty, P)
ATy < T A =clipped(Ty, P,T) [EC1]

clipped(Ty, P,T5) «— do(A,T',T) A terminates(A,T,P)
ATi< TAT< T [EC2]

These axioms are different from most formulations of the EC (in particular
[19]) in that the well-known predicate happens(Event, Time) is replaced by the
predicate do(Action, Starting Time, Finishing Time)®.

7.2 The Base-Case of done in the Event Calculus

As we said before, we use iff PP for interpreting OPENLOG programs and gen-
erating plans. The execution of those plans is interleaved with their generation
and also with the assimilation of inputs from the environment([18], [6]). It is
known ([11], [31], [25]) that to make an abductive theorem prover [33] behave
as a planner, one has to define properly the set of abducibles, say Ab. In the

8 in this case with certain sacrifice in expressiveness, however. The operators + and

par would have to be excluded from the language as it is. !

9 The intention is to have the name of the agent also represented by a term in the
predicate: do(Agent, Action, Starting_Time, Finishing_Time). For the sake of sim-
plicity, however, the term for agents is omitted here.
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present context one can make Ab = {do, <, <, :}.‘.‘The background theory can
then be completed with the following definition (the base case of done):

done(A,T,,Ty) + primitive(A) A do(A,T,, T;) [DNECO]

Notice that we do not include the predicate preconds(A,To) in [DNECO).
Strictly speaking, one should be “testing” the preconditions of action A at this
point. We, however, leave to the programmer the job of testing preconditions
within OPENLOG code (i.e. if C then.. expressions).

7.3 How to Achieve the Inhibition of Abduction

As can be seen, the projection predicate holds is involved in the interpretation
of every conditional expression in OPENLOG. Thus, to inhibit abduction, we
simply establish that no do atom “derived” by unfolding a holds atom will be
abduced. In this way, the holds predicate is used for “testing”, whereas the base
case of done is used for generation of plans, as we explained above.

8 Discussion

OPENLOG is a logic programming language that can be used to write procedural
code which can be combined with a declarative specification of a problem domain
(a background theory).

To define the language, logical characterization has been given to the tradi-
tional programming structures (if then else, while, ;, ... ) in such a way that
any program written with those structures can be translated into a set of logical
sentences.

This mapping from procedural code to logical sentences is not only sought
for the sake of clarity. The logic chosen to provide semantics for the procedural
structures can also be used to specify a theory of actions that models dynamic
universes|6]. This theory of actions can be based on Kowalski and Sergot’s Event
Calculus [20], a logical formalism with an ontology based on events and proper-
ties that can be initiated and terminated by events. The Event Calculus provides
a solution to the Frame Problem and also permits the efficient representation of
concurrent activities and continuous domains. This has permitted the extension
of the capabilities of standard PASCAL to allow for the description of parallel
actions in OPENLOG programs.

Thus, the designer /programmer is offered a specification-implementation lan-
guage that can be used to model complex universes and also to write high-level
algorithms to guide the activities of agents acting in a dynamic environment.

As in other logic programming languages, programs in OPENLOG are pro-
cessed by a theorem prover. Unlike in other approaches, however, programs in
OPENLOG are intended to be interpreted!® rather than compiled!!. The reason
'% As in JAVA (23] and other commercial products, where code is pre-compiled to an

intermediate form to be read by an interpreter/executive.
"' As in Situated Agents [29] and GOLOG [21]
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for this is crucial. The process of planning (the theorem prover transforming
goals into plans) must be interleaved with the execution of those plans and the
inputting and assimilation of observations. One has to expect many modifica-
tions and amendments of the plans. The system as a whole will process inputs
as soon as it can, increasing its chances of an opportune response (normally by
an minor adjustment to its plans as illustrated in [6]). The first practical con-
sequence of this is that the system will generate and use partial plans which
it will refine progressively as its knowledge of the environment increases. This
is a crucial difference between OPENLOG’s aims and those of a similar logic-
based programming language: GOLOG [21]. We have explored the similarities
and differences between GOLOG and a previous version of OPENLOG in [5].

Partial planning may seem atypical in the current context because theorem
provers are normally backward-reasoning mechanisms. An interesting aspect of
the representation here discussed is that it supports planning by searching the
time line in a forward direction. This is called progression. The representational
strategy that supports this form of planning is not new. It is at the core of a
well known device to specify grammars and to program their parsers: Definite
Clause Grammar or DCG [26]. OPENLOG programs are like DCGs in that
they both are higher level macros that can be completely and unambiguously
translated into logic programs. Unlike DCG however, OPENLOG provides for
negative literals.

There is another critical difference between OPENLOG and DCG. In DCGs,
the “state of the computation” (which in that case contains the sentence being
parsed) is carried along through arguments as is common in stream logic pro-
gramming. This has the inconvenience of requiring the explicit representation of
all objects in the application domain and is, therefore, cumbersome and lmiting
(we tested the approach in the prototypical implementation of pathfinder reac-
tive automatas that do forward planning, reported in [4]). Background theories
are a flexible and powerful alternative to this approach.

9 Conclusions and Further Research

OPENLOG is a logic programming language. In OPENLOG one can write pro-
cedural code combined with a declarative specification of a dynamic domain (a
background theory) to guide an agent at problem-solving in that domain.

The interpreter of OPENLOG is an abductive proof procedure which can be
used to implement the planning module of an agent [6]. One innovative aspect
of this work is that the agent processing and executing OPENLOG programs
will stay open to the environment and will allow for changes in its environment
and assimilation of new information generated by these changes.

Another novelty in this work is that we use a logic program (the definition
of done and the other predicates) to specify the semantics of an imperative
programming language. The semantics is provided as a mapping that links the
semantics of the imperative code with any semantics for abductive logic pro-
grams. The definition of done has some other operational advantages. It can
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serve as an interpreter for OPENLOG, thus providing its operational seman-
tics as well. And it can be used to “inhibit” the abductive proof procedure and
prevent the over-generation of abducibles which would make of abduction an
impractical approach for building the planning module of an agent.

We are exploring the relationship between OPENLOG and programming
with integrity constraints [6]. Also in [6], “the Elevator example” is borrowed
from [21] and is developed in with OPENLOG. We plan to use OPENLOG as
the programming language for each agent in a platform to simulate multi-agents
systems.
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