
INTERNATIO
CONFERENCE

PROCEEDINGS

UNIVERSIDAD
DE LOS ANDES Association for the Advancement of

Modeling and Simulation

MODEUNO, SIMULATION
AND NEURAL NETWORKS

1 MSNN 2000 1

MERIDA - VENEZUELA 22 - 24 OCTOBER 2000

TOWARDS A LOGIC- BASED , MULTI-
AGENT SIMULATION THEORY

JACINTO DÁVILA'
KAYTUCCI2

ABSTRACT

This paper introduces a multi-agent simulation theory. This theory
is intended to provide a formal specification to guide the development
of a multi-agent simulation platform. We are extending a mature
simulation language : GLIDER [D6596 1 with the abstractions required
to model systems where autonomous entities (agents) perceive and act
upon their environments.To achieve this, we draw directly from AI
mainstream research on multi-agent theories. In particular, the unified
agent architecture described in 1(596 and in, and the model of situated
multi-agent systems presented in F[M96] are employed in the extended
framework . Languages of diverse nature (ranging from procedural,
network -oriented to Iogic based programming) are, we believe, an
important contribution to a multi-disciplinary approach for modelling
and simulation.

KEYWORDS: Multi-agent simulation , logic-based agents , influences,
reactions , GLIDER.

CESIMO (Simulation and Modelling Research Center),
2CESIMO (Simulation and Modelling Research Center),SUMA Sistema Unificado
de Microcomputación Aplicada), Universidad de Los Andes, Mérida 5101,
Venezuela

200 SIMULATION

1 INTRODUCTION

This paper introduces a multiagent simulation theory. This theory is
intended to provide a formal specification to guide the development of
a multi-agent simulation platform. We are extending a mature simulation
language: GLIDER [D6596], with the abstractions required te model
systems where autonomous entities (agents) perceive and act upon their
environments. In GLIDER, a system is conceived as a structured
collection of objects that exchange messages. Such message exchange
and processing is closely related te the scheduling and occurrence of
events as in DEVS [Zei76], the conceptual framework en which GLIDER
is based. Modelling a system (for simulation purposes) amounts te write
a GLIDER code describing a network of nodes. Those nodes state the
behaviors of the objects in the system and how, when and with which
they exchange messages. GLIDER offers te the programmer a set of
nade types (bate, Line, Input, Decision, Exit and Resources give its
nome te the language, but there are others) which the programmer
instantiates to represents the objects he or she wants te simulate.

In the work presented here, we are enriching GLIDER's semantics
(and syntax) to accommodate the description of agents. Agents will
correspond to those entities in the modelled system that can perceive
their environment, have goals and beliefs and act, according te those
beliefs, to achieve those goals, presumably changing the environment
in the process.

This enriching of GLIDER requires more than an additional set of
language elements. We have to extend its current framework to included
the behavior of the new, specialized objects: the agents. Te achieve
this, we draw directly from AI mainstream research on multi-agent
theories. In particular, the unified agent architecture described in
K596] and in Dáv97], and the model of situated multiagent systems

presented in [FM96] are employed in the extended framework. In the
end, we expect te have a family of languages, supported by a unique
platform , to model and simulate multi -agent systems . Languages of
diverse nature (ranging from procedural, network -oriented te logic
based abstractions) are, we believe, an important contribution te a
multi-disciplinary approach for modelling and simulation.

This paper is organized as follows: The first section offers a review
of Ferber and Müller's multi-agent theory F[M96]. We recoll what
influences and reactions are and how they support en action model
that Ferber and Müller use te found their theory. In the second section,
again by referring te F[M961, we re-introduce the hierarchy of models

TOWARD A LOGIC- BA5ED, MULTI-AGENT 201

of agents proposed by Genesereth and Nillson in GN88J, thet Ferber
and Müller use te create a corresponding hierarchy of multi-agent
systems. We extend those hierarchies by describing en agent that is
both reactive and rational (not accounted for by Genesereth and
Ni llson s work) and its corresponding multi-agent system. In the thid
section, we use the foundations led in the previous sections to sketch
en example that illustrates en operational semantics for our family of
languages: GALATEA.

2 A THEORY OF INFLUENCES AND REACTIONS

In F[M96J, Ferber and Müller (hereafter F-M) present a theory of
multi-agent systems. They describe dynamics systems with a sort of
exhancedstate in which the universe being modelled is described vio
two types of "state components": inf/uencesand environn►enta/variables.
The later correspond te what is commonly known as state variables.
Whereas influences are "what come from inside the agents and are
attempts to modify a course of events that would have taken place
otherwise" [FM96) (Pg. 73). By using influences, F-M provide for the
description of concurrent events and state transitions.

Influences are a convenient way to cater for that intermediate notion
of en agent "trying" te cause some change in its environment, es
separated from the actual occurrence of such a change. The actual
occurrence is regarded as a reaction of the environment to al¡ the
influences presented at a particular time. That is how they talk about
influences and reactions. F-M declare that their model of action relies
on three main concepts:
1. A distinction between influences and reactions, te deal with

simultaneous actions.
2. A decomposition of a whole system dynamics, d, into two parts: the

dynamics of the environment (s, the environmento/stote) and the
dynamics of the agents situated in this environment (9, the set of al¡
their inf/uences). s i 5, the set of al¡ the posible environmental
stotesand g 16, the set of al¡ the possible sets of influences.

3. A description of the different dynamics by abstract state machines,
which we use in the specification of the operational semantics of
the languages in section three. Typically, en agent is characterized
es tuple of attributes and a set of functions that transform that
tuple. Similarly, a whole system is also characterized es a tuple
(that includes its agents' tuples) and a set of transformation
functions.

202
SIMULATION

An important effect of F-M's approach is that, even thought agents

cause influences, these are not olways caused by what we would cal¡
agents: Objects in the environment may become producers of inf luences,
while having nothing else in common with agents.

The other important element in F-M's approach is the way they
capture the knowi edge of how, when and why the system evolves. F-M
cal¡ lows the rules of transition towerds a new environmental state,
given the current environmental state and the new set of influences
just generated by oil the agents. Those inf luences hove been generated
by applying another type of rules: operators, te the previous exhanced
state.

In the work presented here, we are taking en F-M's notions of
influences and reactions and their propase¡ te describe dynamical
systems vio that exhanced stote. However, we drop the use of operators
and modify and extend their theory so that laws con be used as
influence generators , among other uses . With this movement, we also
establish the base for en operotional semantics for our simulation
language, es discussed in section theee.

3 A HIERARCHY OF AGENT ARCHITECTURES

To illustrate the expressive power of inf/uences, F-M adopt a
classical work on agent technology te their theory . This work is
Genesereth and Nilsson's hierarchy of agent ' s architectures [GN88}.
In that work , Generesereth and Ni ¡ sson (hereafter G-N) offered a
description of a hierarchy of agent architectures ranging from a non-
rational , purely reactive TROPISTIC agent te a rational,
DELIBERA TIVEagent, vio HYSTERECTICSagents which are the first

A~ t~ Main feature

FZEACTIVE-R4TIONAL Iterativel seres moords reasons and the envirorvnent

DIELIBERATNE Senses , records , reasons and the envirorvnent

HYSTERECTICS Senses , records and cha nq% the envirorment

HYSTERECT!CS Seres and cha rKm de environment

OPERATORS Changes the environment

Figure 1: A hierarchy of agent orchitectures

TOWARD A LOGIC-BASED, MULTI-AGENT 203

F-M use this hierarchy te define a corresponding hierarchy of multi-
agent systems in which the agents of each type are embedded in en
environment. Notice that te be faithfull to their own theory F-M should
hove odded OPERATORs as the lowest leve ¡ in G-N's hierarchy. As we
explained aboye, OPERATORs (and in our case LAWS, as we explain
below) also produce inf/uencesand these should be regarded as the
marks of agency, because they represent whot each agent tries to do.

In this paper, we will concentrote on describing just one type of
agent: REACTIVE-RATIONAL agent. We odd this one to the hierarchy
with the intention of combining the best of al¡ the other agent classes
(nomely, reoctivity and rationality). We also hope that, by describing
this agent, we will convey the fundamental notions behind this style of
agent specification and multi-agent system specification.

3.1 Three views on perception

To exploin en agent model, we need first to clarify the notions of
perception and interna¡ state proposed by G-N and the chonges
introduced by F-M. Te model the notion of perception, G-N use a function
Perception,: 5® P, which maps the set of posible states of the
environment (5) te a set of percepts (P) for each agent a. In G-N, P
is a partition of S. For instante, if 5 = {(on,hot), (on,co%), (off hot),
(off,co/a)}, they could have P = {on,off) meaning that agent acon only
distinguish two different states of the environment through two
corresponding percepts. Interestingly, F-M comment that this "realistic
point of view" supposes that the agents are directly concerned with
the whole state of the environment. However , one can see aboye that
the agent has no access te certain properties of the world and, therefore,
it cannot be concerned with them. Moreover, it could well be P = {oti,
aboye, in whose case the agent cannot even perceive a "partition" of 5
but just a portion of ¡t.

None the less, F-M adopt a different perception function from thai
of &-N, Perception : G® P,, which maps the set of oil the possible
inf/uencesto the perceptora. F-M claim that, by doing this, they preserve
the separation between "influences and reactions" and produce a moda
which "includes automatically the locality of perception ": "Agen
perceive what influences them and are not influenced by the whole
state of the environment". For this te be true, though , influences woulh
have to annotote somehow not "the source of the influence " (the agen
that causes it) but its "destinotion" (inciuding the agents thet ar,
offected by that influence). F-M give no indicotion of the actual wa

204 SIMULATION

of representing those influences.
Our perception function has, as F-M's, the form Perception,: G® P,

However, we accompany that function with a prescription of the
representation to allow a agent te perceive what is in S. This form is
very convenient at the representational leve) because allows us te state
that the agent perceives both the static environment (modelled by 5)
and the dynamic component of the system (modelled by G). For example,
with the 5 aboye and with 6 = {turra on, turra off}, one could hove P =
{obs on,obs ,off,turn_on,turn off}, meaning that agent atan perceive
the light on, the light off and the actions of turning the Iight en and
of f. The /aws(introduced below), let the modeller link 5 te the extended
set of influences.

Another important change (w.r.t. F-M), which we expond below, it is
that influences will not be linked te one point in time only. This has
effects en perception, as what the agents perceive can be configurad
from the whole history of post influences.

Having defined the generic perceptive mechanism, we can now
concentrate en the interna¡ details of en agent.

4. A REACTIVE AND RATIONAL AGENT
At the top of the 6-N's agent hierarchy, shown aboye, one find

deliberative, knowledge leve) and hysteretics agents, described
(approximately)' es a 5-tuple:

< P,, Perception,,Memorization,,Decision,> (1)

where Pand Perception,are define as at the beginning of the previous
section. The term 5 represents the set of internal states of the agent
o. And the functions Memorization,:P®5--> S and Decision,:5,^ G
specify: 1) how that agent aregisters, in its memory, what it perceives
(theref ore changing its interno¡ state) and 2) how it decides, taking
finto account thet memory, what it will be trying te do (upon its
environment) in its immediate future. It is worth noticing that the main
«elements» proposed for en agent desctiption are: The perceptual
mechanism, the memorization mechanism and the reasoning engine.

F-M then take the agent so described and «places» it into the evolving
dynamical system described by mean of a tuple contoining: An infinite
recursive function Evo/utio#. E01--> 'r which describes how the system

1 This is for hysteretic agent , but the points are equally illustroted.

TOWARD A LOGIC-BASED , MULTI-A6ENT,.. 205

progresses through (infinite) time (the range of the function is a set o
impossible values denoted by t) and a cycle function CycleE®r-> E®
which describes how the whole system changes from one dynamicc
state te the next one. Cycle, in turn, is defined by means of two mor
functions: React , which generates the new static state (from th
previous state, the previous set of influences and the laws that w
explain below) and Exec, which generates a new set of influence
(from the whole dynamical state and operators, which we do not nee,
to discuss further here). Finally, agents also contribute te this new se
of influences by means of a function Behaviour, specific for eacl
agent and which characterizes its internal working and produces it
influences. This collection of tuples and functions constitute a whol,
multi-agent system description.

We should soy at this point that we preserve almost oil the previou
structures (only operators are deprecated). We, however , reorganize4
the basic structures and introduce a few new elements te helps u
combine the features of rationality, those agent already have, with th,
reactive features we want them te have.

4.1 Our reactive and rational agent

We describe en agent es a 6-tuple:

< P,,Ka,G,,Perception,, Update,,P/anning, > (2)

where P and Perception, are defined es at the end of section 3.'
The set K, and 6, roughly correspond to S aboye. We want te stat
that a rational agent has a knowiedge base , K,, and a set of goois (o
intentions), 6, that, together, characterize its interna¡ stati
Updote,:3017®K-* K takes the place of Memorization, in th
memorization mechanism but it now has te ensure that the addition c
new information preserves the internal structure of the knowiedge bes
(and its consistency) because K. is a collection of logical formula
with a well-defined syntax and semantics . 5imilarh
Pr(vng,:3®93i®Ka®Ga-+ Ga®r, substitutes the function Oecision,ani
instead of just producing influences from the internal state, the ne
reasoning function derives new goals and influences, taking into accoui
the previous goals and the knowledge base . Notice that both Updat
and P/ann ng, introduce en argument (with domain Á, the set of al¡ ti
possible time points) te indicate the time at which each process (updatit
and planning) takes place . The introduction of time is another maje

206 SIMULATION TOWARD A LOGIC- BASED, MULTI-AGENT ... 207

change in our proposal with respect to F-M (and G-N).
With Planning,, we want to model the process by mean of which an

agent derives, from a set of high leve) goals , a set of lower level goals,
some of which are actions that can be tried for execution. This view
of an agent reducing goals to subgoals has been studied in [K596] and
Dóv971 in the context of agents in logic programming. We are using

this logical model of an agent as the base of our proposal. This model
also specifies a way to deal with the problem of bounded rationality, a
key element of our proposal to bu¡ Id a reactive agent.

4.2 An agent with bounded rationality
Bounded rationolity refers to the fact that en agent has limited

resources, typically time o memory space, to reason. The concept was
used by Simon [Sim] as port of an attempt to model people as agents in
an economy. He said that the perfect rational man, proposed by
traditional economic modeis, does not represent the behaviour of real
human beings because these do not reason and act that way. Human
beings are influenced by a number of other variables, such a tirning,
and normally do not display the mathematically perfect behaviour of
those models.

There have been severa), recent attempts to model an agent with
bounded [HMP92]. Our own proposal is part of the model of an agent
presented in Dóv971. It basically says that an agent must interleave
reasoning and acting, so there must exist time (or space) bounds for
the reasoning and, then, it may be that the agent acts with no-completely-
refined reasons. Should it has more time to reason, the agent might
take another course of actions. The key idea is that this kind of agent
will be ready to (re)actsooner than an agent that tríes to complete its
reasoning process. The price to pay is that our "reactive" agent may not
alwoys take the "best" course of action.

Formelly, we translate that limit into o restriction to the time the
agent allocate to reasoning. Once it reoches that limit, it must switch
its «locus of control» and try whatever action it had decided (if any)
after that «truncated», reasoning process. The reader may have notice
that the second argument of the planning function
P/onning,, 3®9 ®Ka®Ga-3 GO®f, is a real number (A): the time allocate
to the planning (reasoning) process. In the first approximation, however,
that number is an integer and it counts the number of «step of
reasoning » accomplished during the last slice of time conceded to
reasoning . This extension, together with the structure of the function
thet describe the behaviour of the agent (described immediately below)

is our first proposal to model agents with bounded rationality.

4.3 The behaviour of en agent as a mathematical function
Following F-M, we characterize an agent aas a mathematical function

Behaviou 3®93i®Ka®Ga®I7 -> kb0~1' that maps the resource limits,
the agent interna) state and the set of influences to a new interna)
state and a set of influences produced by this agent. Unlike, F-M, of
course, our agent interna¡ state contains a knowledge base and a set
of goals, as we described aboye.
This function Behaviour is defined as follows:

a

where
Behaviou;(t,ro,k,g,g) _ < (3)

ke = Update,(t,Perception,(y),k) (4)

< y1,gF > = P/anning,(t,r,,k`,g) (5)

The Update,function will simply add the set of percepts observed
by agent a into its knowledge base. In particular, obs(P, t) could stand
for the fact that the agent observed the property Pat time t.

The P/anning, function is more complicated. It specifies an inference
engine which transforms goals g into goals g4 and influences g1, using
the Tules and factual information in /e, starting at time tand taking no
more than rrunits of time to do it. In Dóv97], we describe, in details,
a logic program (the demo predicate) which could be seen as an
implementation of this function. We give some further comments on the
structure of that solution in the following sections.

5.A MULTI-AGENT RATIONAL SYSTEM: A
SPECIFICATION FOR A SIMULATION LANGUAGE

Up until now , we have been describing one agent . To specify the
behaviour of a multi-agent system, we need to define the functions
that account for the evolution of the whole system dynamics. Let us,
theref ore , define Evo/utio'r.3®E®f- z and Cyc1e.3®E®f-> 30E®r,
the some kind of functions introduced by F-M (see aboye), but each
with a new argument to represent time:

Evolution(t,a,y) = Evolution(Cycle(t,a,y)) (6)

208 SIMULATION

where

Cyc/e(r,a,y) = < > (7)

where , in turn

< v,y' > = React(Sequence , 5equence , scan ,a,y, r) (8)

Sequence = Se/ect(Network,F) (9)

= NextEvent(y) (10)

i = TimeOf{I) (11)

In what follows, we explain what the React , Se/ectand NextEvent
functions are.

5.1 A (new) React function (Laws as influence generators)

The key function in this description is React. In F-M , React is the
overol ¡ transition function that describe how the environment changes,
according to its current state , the current set of inf luences and certain
/aws of change . These /aws are , precisely , a set of domoin specific
ru/es that the modeller introduces in a model of a certain system in
order to specify the conditions and mechanism the change that system.

In our proposal , Reoct is, again , the transition function that
processes the /awsof chonge . This time , however , we allow the React
function to generate , not just the new static state , but a new set of
influences , i.e. the whole system dynamics . What we are doing is
combining the function Reactand Exec , from F- M's proposal, into one
and dispensing with their notion of Operators. Our laws capture the
function of both laws and operator in F-M's design, without any lost of
generality and with some advantage , as we explain below . So, now
laws are , as operators in F-M, influencegenerators

Defining Lawsas the set of al¡ the possib l e laws of change , we have
React (Laws){;)) (Lowsv{; }) 0 (scan ,noscon) ® BO 3 0 E 0 r- E ®
r, defined es follows:

React(e,Lows,nosean , p, r,a,y) _ < a,y > (12)

and:

TOWARD A LOGIC- BASED, MULTI-AGENT ... 209

React(c,Laws,scan ,p,i,a,y) = React(Laws,Laws, noscan ,p,t,o,y) (13)

where e is an empty sequence of laws and scan and noscan are flags'

values and

React((X;R),Laws , Flag, P,t,a,y) = < o-,y'« >

where

<á,y>=^ 1

Reduce(name ,Toreduee,l3,t,a,y)
If

PL = < narre,preconds,preinfluences,Toreduce>
and

preconds(a)
and

preinfluences(y)

< a,y > otherwise

and

scan ifprecau6(a) or prei►Yluences(y)

Flag Flag otherwise

and

(14)

(16)

< a-,y' > = Reaet(R,Laws,Flag,a,t,refresh(a,a'),yL/) (17)

React is the instontaneousreaction of the environment. We cou/d
add de/ays but, observe, thot in simu/otion, beloted effects moy be
introducedbypostingnew events in the future event list (FEL).

k is a Iaw , a set of instructions, to produce a certain set of state
variables and influences , given that certain preconditions for those
states and influences hold (preconds() and (preinf/uences{)).

Our contribution is Toreduce, a fragment of code that can be
reduced to a set of atomic actions that transform the system ' s state.
This reductive strotegy is very similar to the reduction of logic clauses

210 SIMULATION

to constraints and abductive atoms as in abductive logic programming
This reductive strategy may also allow for the specification of the

operational semantics of the language used to write the instructions in
Toreduce, as we hove done in [bóv99].

5.2 THE WHOLE DESCRIPTION OF MARS ANb ITS
RELATIONSHIP TO GLIDER

On that brief description of an reactive and rational agent and the
Reoctfunction, we can built the mathematical description of a system
populated by many of such agents. The only extra devices we need are
the set ofall thepossib/e menta/states ofall the agents(5) anda new
definition of the function Cyc/e 5ti^3®E®I -^.5^3®E®i

Cycle(< s1,s2,...,5,E > 0J) = «si ,S2,...,S. > (18)

where

< a ,y > = React(Laws,Laws, sean ,BackgroundKnowledge,t,a,yu y,) (19)

and

< s; ,y, > = Behavioura (t,ra,k ,g,y) = < k',g ',y > (20)

where , in turn , s' is an abbreviation of < k4,g7 > , the knowledge base

and goals of agent i, and , as bef ore,

Laws = Select(Network , E) (21)

= NextEvent(y) (22)

t' = TrmeOJ(1) (23)

5.3 GALATEA'S NODES AND THE LAWS: THE ELEVATOR
EXAMPLE

Probably the best way to introduce the semantics of the new
extended &LIDER language is through a simple example . What follows
is the basic layout of a GALATEA simulation model . Unfortunately,
there is not enough space to show it at Iength . It models a system with
a bu¡ Iding that has an elevotor (represented by the elevator nade) that
carnes people up and down , the doors of the elevator at each f loor

TOWARD A LOGIC-BASED, MULTI-AGENT.. 211

(e.g. boorAtOne) and the floors themselves (e.g. FloorOne), where people
stays for a while. There is also a node representing the entrante (i.e.
Entrance) to the building, that `receives" people with a frequency
modelled by a statistical law (exponential, with rate indicated by
intArrivalTime). An finally, there is also a node representing the exit
(i.e. Exit). People in the building are represented by messages traveling
around the nodes.

As it is common in system simulation, this NETWORK describes the
system and each node describes «what happens» to the entities
(messages between nodes). In our context , each node roughly
corresponda to a law of the system.

NETWORK
// A huilding' s layout

Entrance (l):: IT = EXPO(intArrivalTime);

FloorOne (R) :: STAY = 10;
NextFloor = UNIFI(I,4);
if Nextfloor = 4 then SENTO (Exit);

DoorAtOne (G) :: if WhereElevator = 1 & DoorOpen then SENTO(Elevator);

FloorTwo (R) :: S ¡AY = 5;
Nextfloor - UNIFI(1,3);

DoorAtTwo (G) :: if WhereElevator= 2 & DoorOpen then SENTO(Elevator);

Elevator (R) ::

Exit (E)

AGENTS
// Each agent is specified here

ElevatorController (AGENT) static ::
GOALS

(if atFloor (M) at T and
on(N) at T then (
if N = M then (open ; turnoff ; close starting at T)

and if N < M then (down starting at T)
and if M > N then (up starting at T))

and (if true then watchfloors at any T)
and (if true then watchbottons at any T)

SIMULATION TOWARD A LOGIC- BASED , MULTI-AGENT212

INTERFACE
// these are the instructiens to explain the effects of actions cn

the
// environffent.

INIT
// Inicialization activities.

ACr (Entrance, 0) ;

coa.
VAR float intArrivalTime, int nextFloor, int WhereElevator;

r£SSAGES Entrance(int whereAnI, int nextFloor);

D.

The NETWORK section of the code aboye refers to the set of lows
governing this system. As in GLIDER, each entrante in the network
section represents a node: a subsystem of the whole system being
modelled. In GALATEA, following F-M's theory, these nodes
corresponds to lows that state how the system changes. Thus, the
behaviour of the system depends on the scanning of such a network
for each event's occurrence, as shown in the mathematical specification
in the previous section.

The following section, AGENTS, describe the goals and knowledge
base for ench type of agent. The languages used for these descriptions
are logic programming languages , which provides for greater
expressiveness and are more human friendly than other computen
languages. This is particularly useful when one is specifying an agent
behaviour. The formal description of those languages can be found in

[Dáv97].
The remaining sections (INTERFACE, DECL, INIT) provide

background know/edge of the system. The INTERFACE is the code
that describes the actual effects of each agent's actions on the system
dynamics (not shown for lack of space).The section DECL declares the
global variable (VAR) and the structure of the messages (MESS),
generated at I nodes, that travel around the NETWORK. And the section
INIT provides for the initialization of variables and the starting event
in a simulation (ACT(Node, Time)). This is the normal layout of a
simulation model (in GLIDER) now enriched with a logic-based
description for eoch agent.

5.4 GALATEA AT WORK

Operationally , the system will interpreto¡¡ the entries in a GALAT1
code asa progrom (plan) to guide a simulation. Declaratively , one coi
soy that the system has Network = [Entrante (I) :: IT
EXPO (intArrivalTime); FloorOne (R) :: STAY : = 10; ...], as the input
the Se/ect function shown aboye . This function simply reorders ti
'list" so that it starts with the pode that it is being activated. At t
beginning of the simulation , the first activation instruction sa
ACT(Entrance , 0), so that Network = Lawsat that initial time, in ti
example.

The Reactfunction will then reducethe Lowsto a set of instructic
to change the static component of the system (a) and to schedule futu
events (these are added to 1). For instante, the initial Lows in o
example will produce something like:

JX"=[do(simulator , set(IT= EXPO(intArrivalTime),tO),

do(simu/ator, AC7(Entrance, now+ %7), 10+1),

do(simu/ator, AC7(F/oorOne, now+ 10), t 0+2),J] (24

This new set of influences says that: at time t0, the simulator se
the variable IT to a value generated by the statistical function EXP,
then, at time tO+1, the simulator schedule the activation of the no(
Entrante to occurs at a time equal to the current time, t0#1(convenieni
represented by the special term «now») plus the value of the variab
IT; then the simulator schedules the activation of the node F/oorO
in a similar fashion , and so on.

Thus, one ends with a declarative account of the simulator activiti
as it simulates the evolution of a system through time. We believe th
this approech muy formally convey meaning to a simulation languac
like GALATEA , in the sume way a similar mapping from imperative
logical descriptions ' provides the semantical specification of
procedural languege (see [Dáv99]).

Moreover, this approach supports the integration of the simulotc
which controis the evolution of the environment dynamics, with ti
agents . We will need more space to show this, but we are aiming
something like:

X" _ [do(simulator , set(IT = EXPO(intArrivalTime)), t0),

TOWARD A LOGIC-BASEb. MULTI-AGENT ...SIMULATION21 4

do(simulator , ACT(Entrance , now + IT), tO+1),

do(simulator, AC7(F/oorOne , now+ 10), f0+2),

do(E/evatorControl%r, up, /0+3), i] (25)

which accounts not just for the simulator behaviour but for the
agents' intentions (the ElevatorController intends to move the elevator
up a f loor at time tO+3).

6 CONCLUSIONS AND FURTHER WORK

In this paper, we hove introduced a mathematical theory that stote
what multi-agent systems are and how they evolve through time. It is
intended to provide the formal specification to guide the implementation
of a multi-agent simulation platform that we hove called GALATEA.
This is a multi-language platform: we use an extension to a mature
simulation language (GLIDER) to describe "the world" in with the agents
are embedded (the NETWORK section in the example aboye). But, we
also use a set of logic programming languages to specify each agent
goals and beliefs (the AGENTS section).

Thus, GALATEA is a multi-agent platform with a family of language
to describe systems and their agents. In forthcoming work, we intend
to produce both, a formal and detailed description of al¡ those languages
(syntax and semontics) and the architecture of the simulation platform.

7 ACKNOWLEDGMENT

We are very grateful to Mayerlin Uzcátegui, Carlos Domingo and
Martha Sanones for many useful discussion.

REFERENCES

[Dáv97] Jacinto Dávila . Agents in Logic Programming. Phb thesis,
Imperial College , London, May 1997.

[DG596] Carlos Domingo , Tonella Giorgio, and Martha Sananes. 6LID
ReferenceManua/. Mérida, Venezuela , 1 edition, August 1996. CESIA
IT-9608.

[FM96] Jacques Ferber and Jean - Pierre Müller. Influences a
reaction : a model of situated multiagent systems . In ICMAS-96,195

[GN88] Michael R. Genesereth and Nils Nilsson. Logical foundatic
ofArtificiallntel/igence. Morgan Kauffman Pub., California. USA, 19E

[HMP92] Zhisheng Huang, Michael Masuch, and L. Pólos. Aix, an acti
logic for agents with bounded rationality. Ccsom report 92-7
University of Amsterdam (PSCW), 1992.

[K596] Robert Kowalski and Fariba Sadri. Towards a unified age
architecture that combines rationality with reactivity. In Dino Pedresc
and Carlos Zaniolo, editors, L1096. Logic In Dotobases. Inforrr
Proceedings International Workshop on Logic in Databases, San Minial
Italy, July 1996. (Also at http://www-ip .doc.ic.ac.uk/UserPages/staf
rak.html).

[Sim] Herbert A. Simon. A behavioral model of rational choic
Quarterly Journa/of Economics, pagel 99-118.

[Zei76] Bernard P. Zeigler . Theoryofmodellingandsimu/otion. Wile
Interscience , New York, 1976.

[Dáv99] Jacinto Dávila. Openlog : A logic programming language based
on abduction . In Proceedings of PPDP'99, Paris, 1999.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

