MultiAgent Distributed Simulation with GALATEA

Jacinto Davila,
Erasmo Gémez,

Klaudia Laffaille
CeSiMo. Facultad de Ingenieria.
Universidad de Los Andes.
Mérida, 5101. Venezuela
{jacinto, erasmog, klaudia} @ula.ve

Abstract

In this article we have presented an example that allows
showing the design and implementation details of the mod-
ule gFipaOS that permit incorporate to the simulator of
multiagents systems on GALATEA some platforms of dis-
tributed agents. In this module GALATEA’s agents manage-
ment is based on the multiagent communication standard
called FIPA (Foundation for Intelligent Physical Agents).

The model represents a Patio-like world which changes
because agents change it and also due to natural events
(food appears). The model is implemented on a platform
that distributed agents across several computing hosts.

1. Introduction

GALATEA (GLIDER with Autonomous, Logic-based
Agents, TEmporal reasoning and Abduction) [7, 8, 4] is a
family of simulation languages which allow users to spec-
ify and design multi-agent systems in terms of high-level
concepts such as goals, beliefs, preferences. Additionally,
it will allow a user to model plans, roles, communications,
coordinations, negotiations, and dialogues in order to gener-
ate efficient and effective solutions for complex simulations
models. GALATEA is implemented as a DEVS platform to
simulate multi-agent systems.

GALATEA is the product of two lines of research: sim-
ulation languages based on Zeigler’s theory of simulation
[19, 18] and logic-based agents [5]. There is in GALATEA
a proposal to integrate, in the same simulation platform,
conceptual and concrete tools for multi-agent, distributed,
interactive, continuous and discrete event simulation. It is
also GALATEA a direct descendent of GLIDER [11, 10], a
DEVS-based simulation language which incorporated tools
for continuous modeling as well. In GALATEA, GLIDER

Kay Tucci,

Mayerlin Uzcategui
SUMA. Facultad de Ciencias
CeSiMo. Facultad de Ingenieria.
Universidad de Los Andes.
Mérida, 5101. Venezuela
{kay, maye} @ula.ve

is combined with a family of logic programming languages
specifically designed to model agents [5, 6, 3].

However, we do no aim at replacing traditional modeling
techniques with a new modeling language, but instead we
try to integrate well-known approaches (DEVS modeling
and its extensions) together with a new approach that allow
us to include, in a simulation model, those reasoning-acting
entities: the agents. By appealing to engineering techniques
from Artificial Intelligence and Logic Programming, we are
capable of producing a light, reasoning engine to simulate
each agent’s observe-reason-act cycle. With as many agent
engines as required for the particular application and with
the traditionally conformed simulator for the environment
in which those agents are placed (the main simulator), we
create a federation (In HLA’s sense [9]) which serves as the
simulator for the whole multi-agent system.

GALATEA architecture (Fig. 1) is based on objects.
Both the agents and the main simulator are designed ac-
cording to an OO layout to support distribution (of objects),
modularity, scalability and interactivity as demanded by the
HLA specification. Our aim is a flexible platform from the
software engineering point of view (which is, arguably, in-
accessible to final users: the modelers) but based on a fam-
ily of modeler-friendly languages with enough expressive-
ness to allow the modelers to describe a multi-agent system
in a way that makes feasible its simulation. We think that
this possibility is critically dependent on domain and ap-
plication specific trade-offs. Thus, we allow the modelers
to describe systems in which there are agents, but in which
not everything is an agent and in which traditional discrete-
event or continuous modeling techniques are good enough
for most purposes (such as dealing with subsystems that re-
quired very aggregated models to make their simulation fea-
sible at all).

In this article we present an example which illustrates
one of the newest modules of GALATEA, gFipaOS[13].
By means of this module GALATEA’s agents management

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Figure 1. Architecture of the multiagent sim-
ulation platform GALATEA.

is based on the multiagent communication standard called
FIPA (Foundation for Intelligent Physical Agents)[12]. The
example, however, is a much wider application. We present
another extension of GALATEA to model urban spaces and
simulate the dynamics of agent mobility inside buildings or
open spaces.

2. A distributed simulation of urban spaces

Today, it is possible to develop computational models,
using modeling and simulation techniques, which allow
for proving and comparing the feasibility and effectiveness
of designs for the evacuation of mobile agents in case of
catastrophes. There are two classic ways to define a model
for this kind of systems. One way is using cellular au-
tomata [1, 16, 17], where space, states, and movement rules
are discrete. The second one is modeling the system using
continuous space, states, and movement rules [14] to ob-
tain more realistic models. In both cases the system evolves
in constant discrete time steps. In this example we used
gSpaces[15], a hybrid and flexible GALATEA’s module to
develop and simulate models for this systems, that combine
characteristics of both classical paradigms.

With gFipaOS we offer a communication protocol for
the agents embedded in a GALATEA model, allowing for
interoperability of these agents in a distributed platform,
using a group of services and formats previously estab-
lished by FIPA. The current implementation uses the agent
management system of FIPA-OS (FIPA-Open Source), with
high level communications systems and agent management
services, which facilitates the associated tasks of creating
and manage multiagents systems in GALATEA.

3. GALATEA'’s gFipaOS Module

This section presents the design and implementation de-
tails of gFipaOS. Figure 2 shows the agent-oriented, distrib-
uted architecture based on Fipa-OS conformed by multiple
hosts: Main Host is where the base Simulator, which
controls the simulation model (environment variables, sim-
ulation time, synchronization of the agents, etc.), is lo-
cated. There is also GInterface, an interface controller
that permits interactions between GALATEA Agents and
the simulation model. Additionally, Main Host also
hosts a group of communication-supporting fipa agents
(SeudoAgent, GalServer, ServerRemote)

Figure 2. gFipaOS Design. Agents Distrib-
uted Architecture.

SeudoAgent coordinates requests between
GInterface and Agents. GalServer controls
the status of the hosts in the distribution architecture and
maintains the registration of the Agents into the Hosts.
ServerRemote initializes the Agents and extract their
influences as demanded by GInterface.

The distribution architecture may be constituted by many
Hosts in each of which there is a ServerRemote which
controls the communications with Main Host and the
Agents of the GALATEA Model.

Implementations details are shown with the class dia-
grams in (Fig. 3), where:

e Ag and Agent are basic classes for
GALATEA’s agents. GALATEA
GInterface is in charge of commu-
nications between each agent and the
simulator.

e GFipaOS incorporate FipaOS specifica-
tions into GALATEA agents.

e InfoHost and ListHost store hosts in-
formation.

e SeudoAgent, GalServer and
ServerRemote are the communication-
supporting agents.

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Figure 3. gFipaOS implementation. Class Di-
agram.

e DF, AMS, MTS and
AgentComponentFactory are the
FipaOS components

e StartFipaos and
StartFipaosRemote start the agent
supporting platforms.

e Contenedor and ContAgent control
the agent messaging systems.

The main tasks performed by gFipaOS are
Agent_Initiation, assigning the parameters to
configure the agents, Agent_Request, to consult an
agent, and Add_Host, to add a host to the platform.
Figure 4 include the communication model to a simple
agent request which includes eight steps:

1. The simulation Model invokes
GInterface in order to start a request.

2. GInterface invokes SeudoAgent to
consult the location of an agent.

3. SeudoAgent invokes GalServer to ob-
tain the host IDs.

4. Depending on GalServer’s response,
SeudoAgent sends the request to the spe-
cific host. As shown in Fig. 4, there exist
three types of requests. One is chosen de-
pending on the class-location of the method
to be invoked. It can be an Ag associated
method, or Agent associated method, or a
method in model-specific subclass of those
classes.

Figure 4. Request Communication Model.

5. SeudoAgent sends the corresponding
method to the GALATEA Agent.

6. GALATEA Agent
SeudoAgent

replies to

7. SeudoAgent, in turn,
GInterface.

replies to

8. Finally, GInterface sends the reply to
the simulation Model.

4. Example

Figure 5 shows the space for the example. For the sake
of space, we will use that display both to explain the process
of developing a model of mobile agents and of simulat-
ing with it. The model represents a Patio-like world which
changes because agents change it and also due to natural
events (food appears). The model is implemented on a plat-
form that distributed agents across several computing hosts.

The environment of the multiagent system is a cell-like
world where agents can move from one cell to a neighbor-
ing cell if there is no agent already in that cell. In this envi-
ronment, food can appear in all but one of these cells. The
special cell, in which no food can appear, is considered as
a warehouse where the agents can bring and collect their
food. An agent can observe if there is food in the cell it
is currently visiting. Initially, food is placed in some ran-
domly selected cell. During the execution, additional food
can appear dynamically in randomly selected cells except

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Figure 5. Example model. Different agents are
represented by circles, cells with food are rep-
resented by remarked cells and warehouse is
represented by the X cell

the warehouse cell. The agents may play different roles
(such as explorer or collector), communicate and cooperate
in order to find and collect food in an efficient and effective
way[2].

To develop this multiagent system, some gSpaces and
gFipaOS components are used in order to build models.
These components are shown and explained in what fol-
lows.

gSpaces is a module of the GALATEA platform for sim-
ulating agent mobility in urban or architectonic designs.
The spatial characteristics of the system are added to or
deleted from the model at execution time, allowing the sim-
ulation of events that change the structure. This module
allows for the development of complex models of architec-
tonic or urban spaces with several types of mobile agents in
them. For users who are not familiarized with GALATEA is
relatively easy to create models using tools like dxf2g, thus
avoiding its spatial aspects, as well as programming details
of the model.

This space is divided in two Spaces: Warehouse, and
Patio. In the model they are declared as follows:

public static Space Warehouse =
new Space ("Warehouse", 0, 1.0, 20.0,
1.0, 0.1,"Quiet");
public static Space Patio =
new Space ("Patio", 4, 8.0, 6.0,
1.0, 0.1, "MovementRule") ;

where, the Space methods’ arguments are: name of the
space, number of mobile agents at starting time, an internal
point coordinates, spatial resolution, and time step. In the
Warehouse declaration there is one more argument nor-
mally used to select the movement function in the space. In

this case "Quiet" means that no agent can stand on this
space.

Figure 6, shows snapshots of the status for four differ-
ent simulation times in the same execution. Tree different
types of mobile agents are represented with different cir-
cles in black (visitor agent) grey (explorer agent) or white
(collector agent). Each color represents a particular type of
agent, characterized by its own goals and rules of behavior,
also regarded as beliefs. We are, of course, distributing the
agents across several hosts profiting on FIPA’s support. The
actual encoding of this is as follows:

Patio.addAgMovil (2,white) ;
Patio.addAgMovil (1,grey) ;
Patio.addAgMovil (1,black) ;

Class MovementRule
public double [] move (Move e, Message m,
Cell c){
double [] nCoord = new doublel[4];
in type = m.getIntValue("type") ;
switch (type) {
case white:
nCoord = collector (m) ;
break;
case grey:
nCoord = explorer (m) ;
break;
case black:
nCoord = visit (m) ;
break;

}

return e.checking(m,c,nCoord) ;

Figure 6(a) shows the initial state of the simulation, with
the four agents (two white, one black and one grey) ran-
domly distributed, as it is also the case with the nineteen
cells with food.

Figure 6(b) displays a state, no long after the initial state,
in which the first agent (ag [4]) find food. The remaining
food-cells are, therefore, the same.

In Fig. 6(c) more agents have found and taken food to
the warehouse (which explains the lower number of food-
cells). One of the agents is shown while carrying food to
the warehouse, but not quite there.

Figure 6(d) shows an agent leaving food in the ware-
house.

Finally, the standard GALATEA code to complete the
model is:

Glider.setTsim(100) ;

Glider.act (creator, 0) ;

Glider.act (Warehouse.getMove (), 0) ;
Glider.act (Patio.getMove (), 0);

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

(a) (b)

© (d)

Figure 6. Snapshots of the simulation of the
example model. a) represents the initial state
of the simulation, b) shows an instant in
which an agent finds food, c) shows a state
in which an agent is leaving food in the ware-
house.

Notice that a skeleton of the model can be generated, by
means of the dxf2g tool, from a Drawing Interchange For-
mat (DXF) ASCII file, with the drawing of the space. This
way, the modelist would only have to establish the resolu-
tion of each space and set some parameters like the amount
and type of mobile agents in each Space as we did be-
fore, but also the capacity and delay time associated with
Doors and Walls; the movement rules of the different mo-
bile agents types; and the simulation time.

5. Conclusions and Future works

We have used any implementation of the FIPA standard
to build a distributed simulator of multiagent systems. In
particular, we have used the FIPA-OS agent management
system, with fipa’s performative acts supporting the interac-
tions between GALATEA agents and GlInterface, the main
system simulator. Additionally, FIPA-OS is responsible for
the distribution of the agents into the different computers of
a networked architecture.

gFipaOS’s design prescribes a centralized structure for
a set of communication-supporting agents (SeudoAgent,
GalServer, ServerRemote) and an interface (Glnterface)

which is responsible for negotiating all the interactions be-
tween agents and the simulation model.

GALATEA allows for a seamless integration of
gFipaOS[13] with the model generator gSpace[15], which
allows for the creation of models of urban spaces with mo-
bile agents.

One of the most important future works to be carried
out on GALATEA’s distribution platform, is to extend the
implementation of the FIPA standards. This way, it could
interoperate with others agents management systems that
support FIPA protocols, incorporate the use of the different
services that they can offer, and, as a whole, increase the in-
teroperability of our agents with existing simulating, agent
communities.

6. Acknowledgements

This work was supported in part by a grant from the
CDCHT-ULA.

References

[1] O. Biham, A. A. Middleton, and D. Levine. Self-
organization and dynamical transition in traffic-flow models.
Phys. Rev. A, (46), 1992.

[2] CLIMA. The first clima contest, 2005.

[3] J. Davila. Actilog: An agent activation language. In
PADL2003, LNCS, New Orleans, USA, 2003.

[4] J. Davila and M. Uzcdtegui. Gloria: An agent’s exe-
cutable specification. Collegium Logicum. Kurt Godel So-
ciety, VIII:35-44, 2004. Vien, Austria.

[5] J. A. Davila. Agents in Logic Programming. PhD thesis, Im-
perial College of Science, Technology and Medicine, Lon-
don, UK, June 1997.

[6] J. A. Davila. Openlog: A logic programming language
based on abduction. In PPDP’99, Lecture Notes in Com-
puter Science. 1702, Paris, France, 1999. Springer.

[7] J. A. Déavila and K. A. Tucci. Towards a logic-based, multi-
agent simulation theory. AMSE Special Issue 2000. Associ-
ation for the advancement of Modelling & Simulation tech-
niques in Enterprises, pages 37-51, 2002. Lion, France.

[8] J. A. Ddvila and M. Uzcétegui. Galatea: A multi-agent sim-
ulation platform. AMSE Special Issue 2000. Association for
the advancement of Modelling & Simulation techniques in
Enterprises, pages 52—67, 2002. Lion, France.

[9] DoD DMSO. High level architecture (HLA). Technical re-
port, Departament of Defense. Defense Modeling and Sim-
ulation Office, 1995.

[10] C. Domingo. GLIDER, a network oriented simulation lan-
guage for continuous and discrete event simulation. In In-
ternational Conference on Mathematical Models, Madras,
India, August, 11-14 1988.

[11] C. Domingo and M. Herndndez. Ideas bdsicas del lenguaje
GLIDER. Technical report, Instituto de Estadistica Apli-
cada en Computacién, Universidad de Los Andes. Mérida.
Venezuela, October 1985.

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

[12] FIPA. The foundation for intelligent physical agents.

[13] E. Goméz. Disefio e implementacion de la plataforma dis-
tribuible para el simulador multiagentes galatea. Master’s
thesis, Maestria en Modelado y Simulacién de Sistemas,
Universidad de Los Andes. Mérida. Venezuela, May 2005.
Tutor: Tucci, Kay.

[14] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical
features of escape panic. Nature, (407):487-490, 2000.

[15] K. Laffaille. Gspaces, meta-modelo para simular desalo-
jos de espacios urbanos y arquitecténicos basado en galatea.
Master’s thesis, Maestria en Modelado y Simulacién de Sis-
temas, Universidad de Los Andes. Mérida. Venezuela, 2005.
Tutor: Tucci, Kay.

[16] K. Nagel and J. H. Herrmann. Deterministic models for traf-
fic jams. Physica A, (199), 1993.

[17] D. E. Wolf, M. Schreckenberg, and A. e. Bachem. Traffic
and Granular Flow. World Scientific, 1996.

[18] B. Zeigler. Object-oriented simulation with hierarchical,
Modular models (Intelligent agents and endomorphic sys-
tems). Academic Press, Inc (Harcourt Brace Jovanovich,
Publishers), Boston-Sydney, 1990.

[19] B. P. Zeigler. Theory of modelling and simulation. Inter-
science. Jhon Wiley& Sons, New York, 1976.

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

	MultiAgent Distributed Simulation with GALATEA
	1. Introduction
	2. A distributed simulation of urban spaces
	3. GALATEA’s gFipaOS Module
	4. Example
	5. Conclusions and Future works
	6. Acknowledgements
	References

