
AGENTS THAT LEARN TO BEHAVE IN MULTI-AGENT SIMULATIONS

Jacinto D́avila1 and Mayerlin Uzćategui1,2

1 CeSiMo. Facultad de Ingenierı́a
2 SUMA. Facultad de Ciencias

Universidad de Los Andes
Mérida, 5101. Venezuela

email:{jacinto,maye}@ula.ve

ABSTRACT

This paper illustrates the use of Inductive Logic Program-
ming to program agents that learn rules of behaviour from
simulated histories of their embedding systems. We have
shown how a ILP system can be used to learn rules in a
representation very close to the one used to guide the sim-
ulation of a multi-agent system. This establishes the feasi-
bility of embedding (resource-bounded) learners as agents
that take part in simulating a complex system.

KEY WORDS

ILP, Multi-agent simulation, logic-based agents

1 Introduction

This paper illustrates the use of Inductive Logic
Programming[13, 10] to program agents that learn rules
of behaviour from simulated histories of their embedding
systems. We are building upon previous work in which
we sketched a multi-agent theory for simulation [4, 16],
which is being used as the specification of an actual sim-
ulation platform, GALATEA [5, 16]. GALATEA is being
used to model and simulate the complex dynamics (social,
economics and ecological processes) of a forest reserve in
Venezuela [1, 14, 8].

The paper is organized as follows: Section 3 briefly
shows a computational, multi-agent model of that forest re-
serve (explained at length in [14]) and explains the context
in which the learning agent will function. In Section 4,
we describe a simplified learning experiment on that multi-
agent context, explaining some of the preliminar results in
section 5. Section 6 concludes. However, before all that,
we start in section 2 with a briefing of the agent theory on
which we are working.

2 What is an agent

We, preliminary, describe an agent as a 7-tuple, state-
machine:

< Pa,Ka, Ga, P erceptiona,

Updatea, P lanninga, Learninga > (1)

wherePa andPerceptiona are the percepts domain and
the perception function which we will not explain for the
sake of space. The setKa andGa are, respectively, the
agent’s knowledge base and the agent’s goals.Updatea

add observations intoKa, preserving them as a collection
of logical formulae. Similarly,Planninga, derives new
goals and influences (actions descriptions), taking into ac-
count the previous goals and the knowledge base. Finally,
Learninga produces new, possibly partially refined, rules
to be added toKa.

2.1 The behaviour of an agent as a mathe-
matical function

The behaviour of that state-machine can be compactly de-
scribed as follows:

< k′
a, g′

a, γ′
a > = Behavioura(t, ra, ka, ga, γ) (2)

k′
a = Learninga(Updatea(t,

Perceptiona(γ), ka), . . .) (3)

< γ′
a, g′

a > = Planninga(t, ra, k′
a, ga) (4)

wheret is the current simulation time,ra is a bound for
the time allocated to reasoning in the agent,ka ∈ Ka,
ga ∈ Ga, γ is the history of actions, this far, andγa is
the set of actions this agent will try to execute. Notice that
theLearning function is not specified here for the sake of
space.

2.2 A multi-agent system

On that brief description of an agent and anTransition
function modelling the global behaviour of the simulator,
we can build the mathematical description of a system pop-
ulated by many of such agents. We only need to connect
Transition with theBehaviour function for each agent,
as follows:

< σ′, γ′ >= Transition(t, σ, γ ∪a γa) (5)

and

< s′
a, γa >= Behavioura(t, ra, ka, ga, γ) (6)

471-038 51

debbie




wheres′
a is an abbreviation of< k′

a, g′
a >, the knowledge

base and goals of agenta, t andγ as before andσ represents
the state variables of the system as a whole. This links
the influences from the agents’ behaviour to the reaction of
the environment and completes the definition of the multi-
agent system.

3 An example of a MAS model

What follows is the basic layout of a model of a multi-agent
system coupled with a natural dynamics.

3.1 Agent Modelling of a Forest Reserve

The model here described is an outcome of the project Bio-
complexity: Integrating Models of Natural and Human Dy-
namics in Forest Landscapes Across Scales and Cultures
[12]. It aims to model and simulate land use and changes
in vegetation cover as a consequence of human actions.

As it has been explained in [1], we have being devis-
ing a collection of toy models to cater for 1) the human dy-
namics, using the set of conceptual tools and data structures
provided by GALATEA and 2) the environmental dynam-
ics, by integrating a cellular automaton from the SpaSim
[9, 7] library into the actual simulator of a forest reserve.
The data structures of GALATEA provide for the represen-
tation of the agents’ goals, beliefs and observations, and,
also, for a very elementary reasoning engine to deduce ac-
tions for each agent, according to its circumstances.

The original model[1] considers several instances of
“settler” agents and a lumber “concessionary” agent. For
the sake of space, we will only consider here a simplified
version of one behavior of the settler agents in the For-
est Reserve. The settlers are people of limited econom-
ical resources that arrive at the reserve aiming to improve
their economical status. Initially they dedicated themselves
to subsistence agriculture: they just try to maximize the
benefits from their occupation of the area, without consid-
ering soil exhaustion due to poor management practices,
and without much regard for ecological damage. After five
years aproximately, the land loses its fertility, and the set-
tler must move to another available place (i.e. an area not
under government supervision) or expand his farm by de-
foresting some adjacent area. In that context, cattle-raising
is always the best strategy to success, provided that they
secure resources to start with. This can be done by selling
the lands they have occupied. The agent rules of behaviour
can be formalized as shown in figure 1. This is the nor-
mal layout of a simulation model in GALATEA’s ancestor
language GLIDER[15, 6], but here enriched with a logic-
based description for each agent[3, 2].

4 Agents that learns how to behave

Figure 2 shows a fragment of the code provided to the
learning system PROGOL[11] as background knowledge.

NETWORK
LANDSCAPE (A) ::
// Environment model. Not shown

AGENTS
Settler (AGENT) ::
GOALS

if not(occupied_land, now),
not(supervised, now),
abandoned_land(now)

then be_successful(self, now+5).
if land_does_not_produce(now),

not(occupied_land_next(now)),
then expand(self, now).

BELIEFS
to be_successful(A,T) do

settle(A,T1),
T1=<T, plant(A,T).

to be_successful(A,T) do
settle(A,T1),
plant(A,T2),
sale(A,T3),
cattle(A,T).

to be_successful(A,T) do
settle(A,T1),
plant(A,T2),
cattle(A,T).

INTERFACE
// Here goes code to explain
// the effects of the agents’
// actions on the environment.
// Not shown.

INIT
// Here the initiation services.

time_step := 10;
ACT(LANDSCAPE, 0);

DECL
// The data structures.
// Not shown.

END.

Figure 1. Partial view of the Caparo MAS Model in
GALATEA

52



Notice that it corresponds to a simplified, partial history
with the actions of 10 agents. Each action is described by
a predicate-like entry with its name that also annotates the
performing agent and the time of execution, just like the
ones in the rules in figure 1.

5 Results

Depending upon the set of learning examples (see figure 31)
and computing resources, PROGOL starts by producing the
the following outputs:

[Generalising successful(ag8,5).]
[Most specific clause is]

successful(A,B) :- B=<B,
settle(A,C),
plant(A,D), expand(A,E),
sale(A,E), cattle(A,B),
cattle(A,E), cattle(A,F),
C=<B, C=<C, C=<D, C=<E,
C=<F, D=<B, D=<D, D=<E,
D=<F, E=<B, E=<E, E=<F,
F=<B, F=<F.

which says thatan agent A is successful at time B if she
settles down, plants, expands, sales and do cattle-raising in
the order indicated by the=< conditions. This shows how
the system is able to generalize from examples to rules,
that will then be checked to see if they cover (positive and
not negative) teaching examples. The final outcome of the
learning process looks like:

...
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C),cattle(A,D).]
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C), cattle(A,D).]
[60 explored search nodes]
f=1,p=3,n=0,h=0
[Result of search is]

successful(A,B) :- sale(A,C), C=<B.

[3 redundant clauses retracted]
successful(A,B) :-

sale(A,C), C=<B.
[Total number of clauses = 1]

[Time taken 0.060s]

which basically says thatAgent A is successful at B if she
sales at C and C is before or at B. Notice that this rule is
produced after exploring many alternatives (60 nodes, or
alternative rules, in this case) and choosing the one with
the best evaluation score (not explained here for the lack of
space, but related to the numbers accompanying the rules
above).

1:- b stands for not b, to annotate the negative examples

% ag1
settle(ag1, 0).
plant(ag1, 0).
expand(ag1, 1).
plant(ag1, 1).
expand(ag1, 2).
plant(ag1, 2).
expand(ag1, 3).

% ag2
settle(ag2, 0).
expand(ag2, 0).
expand(ag2, 1).
plant(ag2, 2).
plant(ag2, 3).
expand(ag2, 4).
plant(ag2, 4).
plant(ag2, 5).

% ag3
settle(ag3, 0).
expand(ag3, 1).
plant(ag3, 1).
expand(ag3, 2).
plant(ag3, 2).
expand(ag3, 3).
plant(ag3, 3).
plant(ag3, 4).
plant(ag3, 5).

% ag4
settle(ag4, 1).
expand(ag4, 1).
plant(ag4, 1).
expand(ag4, 2).
plant(ag4, 2).
expand(ag4, 3).
plant(ag4, 3).
plant(ag4, 4).
plant(ag4, 5).

% ag5
settle(ag5, 0).
expand(ag5, 1).
plant(ag5, 1).
expand(ag5, 2).
plant(ag5, 2).
expand(ag5, 3).
cattle(ag5, 3).
cattle(ag5, 4).
cattle(ag5, 5).

% ag6
settle(ag6, 0).
plant(ag6, 1).
expand(ag6, 3).
sale(ag6, 3).
cattle(ag6, 3).
cattle(ag6, 4).
cattle(ag6, 5).

% ag7
settle(ag7, 0).
plant(ag7, 1).
expand(ag7, 3).
sale(ag7, 3).
cattle(ag7, 3).
cattle(ag7, 4).
cattle(ag7, 5).

% ag8
settle(ag8, 0).
plant(ag8, 1).
expand(ag8, 3).
sale(ag8, 3).
cattle(ag8, 3).
cattle(ag8, 4).
cattle(ag8, 5).

% ag9
settle(ag9, 0).
plant(ag9, 1).
expand(ag9, 3).
buy(ag9, 3).
cattle(ag9, 3).
cattle(ag9, 4).
cattle(ag9, 5).

% ag0
settle(ag0, 0).
plant(ag0, 1).
expand(ag0, 3).
cattle(ag0, 3).
cattle(ag0, 4).
cattle(ag0, 5).
sale(ag0, 6).

Figure 2. A simplified history in a MAS: Agents acting in
a Forest Reserve. Which one is more successful?

53



successful(ag8,5).
successful(ag8,6).
successful(ag7,5).
successful(ag7,6).
successful(ag6,5).
successful(ag6,6).

:- successful(ag0,5).
:- successful(ag9,5).
:- successful(ag1,5).
:- successful(ag2,5).
:- successful(ag3,5).
:- successful(ag4,5).
:- successful(ag5,5).

Figure 3. Some examples to teach the agents

With a bigger training set (using 9 positive examples),
the same outcome is produced. A much bigger space is
explored and the systems hits some predefined limits:

Resource limit exceeded
[10000 explored search nodes]
f=7,p=9,n=0,h=0
[Result of search is]

successful(A,B) :- sale(A,C), C=<B.

[9 redundant clauses retracted]
successful(A,B) :- sale(A,C),
C=<B. [Total number of clauses = 1]

[Time taken 12.190s]

The effect of negative examples is also meaningful,
as shown by the following different output from an experi-
ment with the same 9 positive examples, and the 7 negative
examples in figure 3:

[7421 explored search nodes]
f=7,p=9,n=0,h=0
[Result of search is]

successful(A,B) :-
sale(A,C), cattle(A,C).

[9 redundant clauses retracted]
successful(A,B) :-

sale(A,C),
cattle(A,C).

[Total number of clauses = 1]

[Time taken 5.100s]

Notice that, in all cases, the learner does not produce
a whole plan (a complete program) but only points to cru-
cial actions or conditions. This is due to PROGOL learning

strategy of maximal compression[11] and it is certainly not
a constraint if one builds in the learner within the simula-
tion system, as we intend to do. On the contrary, it could
be an useful strategy for learners that have to face an enor-
mous store of information in the (simulated) history of the
system.

6 Conclusions

We have shown how a ILP system can be used to learn
rules in a representation very close to the one used to simu-
late a multi-agent system. This establishes the feasibility of
embedding (resource-bounded) learners as agents that take
part in simulating a complex system.

Acknowledgements

This work has been partially funded by CDCHT-University
of Los Andes projects I-666-99-02-E and Fonacit S1-
2000000819.

References

[1] M. Ablan, J. D́avila, N. Moreno, R. Quintero, and
M. Uzcátegui. Agent modeling of the caparo forest
reserve. InEUROSIS 2003, pages 367–372, Naples,
Italy, October 2003.

[2] Jacinto D́avila. Actilog: An agent activation lan-
guage. InPADL2003, LNCS, New Orleans, USA,
2003.

[3] Jacinto A. D́avila. Openlog: A logic program-
ming language based on abduction. InPPDP’99,
Lecture Notes in Computer Science. 1702, Paris,
France, 1999. Springer. Available from:http:
//citeseer.nj.nec.com/64163.html .

[4] Jacinto A. D́avila and Kay A. Tucci. Towards
a logic-based, multi-agent simulation theory. In
International Conference on Modelling, Simulation
and Neural Networks [MSNN-2000], pages 199–215,
Mérida, Venezuela, October, 22-24 2000. AMSE &
ULA. Available from: http://citeseer.nj.
nec.com/451592.html .

[5] Jacinto A. D́avila and Mayerlin Uzćategui. Galatea:
A multi-agent simulation platform. InInternational
Conference on Modelling, Simulation and Neural
Networks [MSNN-2000], pages 217–233, Ḿerida,
Venezuela, October, 22-24 2000. AMSE & ULA.
Available from: http://citeseer.nj.nec.
com/451467.html .

[6] GLIDER Development Group.GLIDER Reference
Manual, Versíon 5.0. Cesimo & IEAC, Universidad
de Los Andes, Ḿerida, Venezuela, 2000. CESIMO

54

http://citeseer.nj.nec.com/64163.html
http://citeseer.nj.nec.com/64163.html
http://citeseer.nj.nec.com/451592.html
http://citeseer.nj.nec.com/451592.html
http://citeseer.nj.nec.com/451467.html
http://citeseer.nj.nec.com/451467.html


IT-02-00. Available from: http://afrodita.
faces.ula.ve/Glider/ .

[7] N. Moreno, M. Ablan, and G. Tonella. Spasim: A
software to simulate cellular automata models. In
IEMSs 2002, First Biennial Meeting of the Interna-
tional Environmental Modeling and Software Society,
Lugano, Switzerland, 2002. Available from:http:
//mistoy.ing.ula.ve/INVESTIGACION/
PROYECTOS/SpaSim/SpaSim/ .

[8] Niandry Moreno, Raquel Quintero, Magdiel Ablan,
Rodrigo Barros, Jacinto D́avila, Hirma Raḿırez,
Giorgio Tonella, and Miguel F. . Acevedo. Biocom-
plexity of deforestation in the caparo tropical forest
reserve in venezuela: an integrated multi-agent and
cellular automata model.Environmental Modelling
and Software. to be published.

[9] Niandry L. Moreno. Disẽno e implementación de una
estructura, para el soporte de simulación espacial en
GLIDER. Master’s thesis, Maestrı́a en Computación,
Universidad de Los Andes. Ḿerida. Venezuela, 2001.
Tutor: Ablan, Magdiel.

[10] Stephen Muggleton. Inverse entailment and progol.
Technical report, The University of York, York, UK,
2002.

[11] Stephen Muggleton and Jhon Firth.Cprogol4.4: A
tutorial introduction. Department of Computer Sci-
ences, The University of York, United Kingdom,
2002.

[12] NSF. Biocomplexity: Integrating mod-
els of natural and human dynamics in for-
est landscapes across scales and cultures.
http://www.geog.unt.edu/biocomplexity, 2002.

[13] David Page. Ilp: Just do it.Lectures Notes in Artificial
Intelligence, (1866):3–18, 2000.

[14] R. Quintero, R. Barros, J. D́avila, N. Moreno, Tonella
G., and M. Ablan. A model of the biocomplex-
ity of deforestation in tropical forest: Caparo case
study. In Schmidt S. Pahl, C. and T. Jakeman, edi-
tors, iEMSs 2004, Osnabrueck, Germany, June 2004.
http://www.iemss.org/iemss2004/proceedings.

[15] G. Tonella, M. Acevedo, M. Ablan, C. Domingo,
H. Hoeger, and C. Sananes. The use of glider as a
tool for the simulation of ecological systems. In M.H.
Hamza, editor,Proceedings of the IASTED Inter-
national Conference, number ISBN 0-88986-196-X,
pages 463–367, Anaheim, California, October 1995.
Acta Press.

[16] Mayerlin Y. Uzćategui. Disẽno de la plataforma de
simulacíon de sistemas multi-agentes galatea. Mas-
ter’s thesis, Maestrı́a en Computación, Universidad de
Los Andes. Ḿerida. Venezuela, 2002. Tutor: Dávila,
Jacinto.

55

http://afrodita.faces.ula.ve/Glider/
http://afrodita.faces.ula.ve/Glider/
http://mistoy.ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/
http://mistoy.ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/
http://mistoy.ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/

	Introduction.
	What is an agent
	The behaviour of an agent as a mathematical function
	A multi-agent system

	An example of a MAS model
	Agent Modelling of a Forest Reserve

	Agents that learns how to behave
	Results
	Conclusions

