
A Theory for Simulations with Learning Agents

Jacinto D́avila1, Mayerlin Uzćategui1,2 and Kay Tucci1,2

Universidad de Los Andes
Mérida, 5101. Venezuela

1 CESIMO. ULA - jacinto@ula.ve
2 CESIMO–SUMA. ULA -maye@ula.ve,kay@ula.ve

ABSTRACT This paper discusses a simulation theory with learning agents which
is serving as a formal specification to guide the development of a multi-agent sim-
ulation platform. We have extended an existing simulation language: GLIDER,
with abstractions to model systems where autonomous entities (agents) perceive
and act upon their environments. We are now applying it to the study of multi-
agent systems. In particular, an implementation on Biocomplexity is briefly dis-
cussed in the paper. We also show how an Inductive Logic Programming sys-
tem can be used to learn rules in a representation very close to the one used to
guide the simulation in the biocomplex system. This establishes the feasibility of
embedding (resource-bounded) learners as agents that take part in simulating a
complex system, as defined by the theory.

KEYWORDS

Multi-agent simulation

1 Introduction

This paper discusses a multi-agent simulation theory which is serving as a formal spec-
ification to guide the development of a multi-agent simulation platform [9,4].

We started by extending existing simulation language: GLIDER [1],[8], with ab-
stractions to model systems where autonomous entities (agents) perceive and act upon
their environments. Those abstractions are based on the simulation theory and provide
the semantics for a new family of multi-agent, simulation languages.

For mathematicians, a theory is“A collection of propositions to illustrate the prin-
ciples of a subject”(Oxford Dictionary). In the more acceptedsimulation theory[2],
one finds a general explanation of what a system is, its components and its transitions
rules, stated all as a collection of formalized, mathematical propositions. The goal of [2]
and the others with that formalization (.ibid), besides supporting the explanations that
are expected from a theory, was to provide the developers ofsystems simulatorswith a
specification that says what a simulator must do and how it must behave to simulate a
system.

The multi-agent, system-simulation theory discussed in this paper has exactly those
purposes and is specified with similar style. This theory has served as the basic specifi-
cation for the computing simulation platform GALATEA [8,9,6,3].

The papers is organized as follows: The section 2 briefly describes the basic simu-
lation framework: GLIDER. The section 3 offers a review of Feber and Müller’s multi-
agent theory [12] (hereafter F&M). In section 4, we present an abstract machine as
the specification of a learning agent type and briefly explain how this specification has
been integrated into the multi-agent simulation theory. We also develop, in section 5, the
mathematical description of a multi-agent, rational system which serves as the specifica-
tion for the simulation platform. In section 6, we sketch an example from the domain of
Biocomplexity in which GALATEA has been used to model a system in which human
and natural dynamics are combined. The final section 7 presents a learning experiment,
in which an agent learns its rules of behaviour out of a simulated history of the system
(an some auxiliary concepts).

2 A briefing on GLIDER

In GLIDER a system is conceived as a structured collection of objects that exchange
messages. Such message exchange and processing is closely related to the scheduling
and occurrence of events as in DEVS [2]. Modelling a system (for simulation purposes)
amounts to write a code describing a network of nodes. Those nodes state the behaviours
of the objects in the system and how, when and with which they exchange messages.
GLIDER offers to the modeller a set of node types (Gate, Line, Input, Decision, Exit
and Resources give its name to the language, but there are others) which the modeller
instantiates to represents the objects she wants to simulate.

In GALATEA, we have enriched GLIDER semantics to accommodate the descrip-
tion of agents. Agents correspond to those entities in the modelled system that can
perceive their environment, have goals and beliefs and act, according to those beliefs,
to achieve those goals, presumably changing the environment in the process.

This enriching of GLIDER required more than an additional set of language el-
ements. We had to extend its current simulation framework to include the behaviour
of the new, specialized objects: the agents. We aim to have a family of languages,
supported by a unique computing platform, to model and simulate multi-agent sys-
tems. Languages of diverse nature (ranging from procedural, object-oriented, network-
oriented to logic-based languages[10,7]) are, we believe, an important contribution to
a multi-disciplinary approach for modelling and simulation, especially when they are
mapped against the same explanatory device: a common theory.

3 A theory of influences and reactions

In [12] F&M present a theory of multi-agent systems. They describe dynamics systems
with a sort ofenhancedstate in which the universe being modelled is described via two
types of “state components”:influencesandenvironmental variables. The later corre-
spond to what is commonly known as state variables. Whereas influences are “what
comes from inside the agents and are attempts to modify a course of events that would
have taken place otherwise” [12](p73). The influence concept in the theory of F&M
allows to describe the concurrence of events and the transition of states.

F&M declare that their model of action relies on three main concepts:

1. A distinction between influences and reactions, to deal with simultaneous actions.
2. A decomposition of a whole system dynamics,δ, into two parts: the dynamics of the

environment (σ, theenvironmental state) and the dynamics of the agents situated in
this environment (γ, the set of all theirinfluences). Σ is the set of all the possible
environmental statesandΓ is the set of all the possible sets of influences, with
γ ∈ Γ andσ ∈ Σ.

3. A description of the different dynamics by abstract state machines, which we use
in the specification of the operational semantics of the languages illustrated in sec-
tion five. Typically, an agent is characterized as tuple of attributes and functions.
Similarly, a whole system is also characterized as a tuple (that includes its agents’
tuples) and a set of transformation functions.

In the work presented here, we are taking on F&M’s notions of influences and re-
actions and their proposal to describe dynamical systems via that enhanced state. How-
ever, we drop the use ofoperatorsand modify and extend their theory so thatlawscan
be used as influence generators. With this movement, we also establish the base for an
operational semantics for our simulation languages.

To illustrate the expressive power ofinfluences, F&M adapt a classical work on
agent technology to their theory. This work is G&N’s hierarchy of agent’s architectures
[13]. In that work, offered a description of a hierarchy of agent architectures ranging
from a non-rational, purely reactive TROPISTIC agent to a rational, DELIBERATIVE

agent, via HYSTERETICagents which are the first type of agent in the hierarchy with an
internal, “mental” state. Each type of agent is, again, modelled as a tuple which includes
a number of transforming functions. The whole hierarchy from G&N, enhanced with
F&M’s operators and our REACTIVE AND RATIONAL agent is displayed in figure 1,
the elements of this description are:

Sa: The set of states the agent may be in.
Pa: Partial descriptions of the environment.
Actions: The set of actions the agent might perform.
Knowledge andInternalS: The set of possible internal states the agent may be in.
Perception: The agent sensory function.
EffectorandDecision: These functions encode the agent’s action-selection mechanism

which decides the action the agent will execute.
Memory: This function encodes the agent assimilation mechanism by means of which

it updates its knowledge base, with information from the environment (including
the feedback obtained when the actions are tried).

4 Our reactive and rational agent

We now describe an agent as a 7-tuple which subsumes the one at the top of that hier-
archy:

< Pa,Ka, Ga, P erceptiona,

Updatea, P lanninga, Learninga > (1)

Agent type specification Main features
REACTIVE AND RATIONAL

〈Sa, Pa, Knowledge, Actions,
Perception, Memory, Decision〉

Iteratively senses, records, reasons and acts, changing the environment
KNOWLEDGE LEVEL AND DELIBERATIVE

〈Sa, Pa, Knowledge, Actions,
Perception, Memory, Decision〉

Senses, records, reasons and acts, changing the environment
HYSTERECTIC

〈Sa, Pa, InternalS, Actions,
Perception, Decision〉

Senses, records and changes the environment
TROPISTIC

〈Sa, Pa, Actions, Perception, Effector〉
Senses and changes the environment

OPERATOR OR COMPONENT

〈Sa, Pa, Actions, Effector〉
Changes the environment

Fig. 1.The extended hierarchy of agent types

wherePa andPerceptiona are the percept’s domain and the perception function ex-
plained below. The setKa andGa roughly correspond toSa above. We want to state
that a rational agent has a knowledge base,Ka, and a set of goals,Ga, that, together,
characterize its internal state.Updatea : = × Pa × Ka → Ka takes the place of
Memorya in the memorization mechanism but it now has to ensure that the addition
of new information preserves the internal structure of the knowledge base (and its con-
sistency) becauseKa is a collection of logical formulae with a well-defined syntax and
semantics. Similarly,Planninga : = × < × Ka × Ga → Ga × Γ , substitutes the
function Decisiona and, instead of just producing influences from the internal state,
the new reasoning function derives new goals and influences, taking into account the
previous goals and the knowledge base. Notice that bothUpdatea andPlanninga in-
troduce an argument (with domain=, the set of all the possible time points) to indicate
the time at which each process (updating and planning) takes place. The introduction of
explicit time is another major change in our proposal with respect to F&M (and G&N).

With Planninga, we want to model the process by means of which an agent de-
rives, from a set of high level goals, a set of lower level goals, some of which are actions
that can be tried for execution. This view of an agent reducing goals to sub-goals has
been studied in [14] in the context of agents in logic programming. This agent model
also specifies a way to deal with the problem of bounded rationality. It basically says
that an agent must interleave reasoning and acting, so there must exist time (or space)
bounds for the reasoning and, then, it may be that the agent acts with no-completely-
refined reasons. We mark that limit with a resource (time or space to compute) counter.
For this, the agent machine is regarded as resource bounded.

Finally, Learninga is a function which produces new, possibly partially refined,
rules to be added toKa. We explore possible ways to implement this function towards
the end of this paper.

4.1 The behaviour of an agent as a mathematical function

Following F&M, we characterize an agenta as a mathematical functionBehavioura :
= × <×Ka ×Ga × Γ → Ka ×Ga × Γ that maps the resource limits for reasoning,
the agent internal state and the set of influences to a new internal state and a set of
influences produced by this agent. Unlike, F&M, our agent internal state contains a
knowledge base and a set of goals, as we described above.

The behaviour of that state-machine can be compactly described as follows:

< k′
a, g′

a, γ′
a > = Behavioura(t, ra, ka, ga, γ) (2)

k′
a = Learninga(Updatea(t,

Perceptiona(γ), ka), . . .) (3)

< γ′
a, g′

a > = Planninga(t, ra, k′
a, ga) (4)

wheret is the current simulation time,ra is a bound for the time allocated to reasoning
in the agent,ka ∈ Ka, ga ∈ Ga, γ is the history of actions, this far, andγa is the set of
actions this agent will try to execute.

The Updatea function will simply add the set of percepts observed by agenta
into its knowledge base. In particular, inPerceptiona, obs(P, t) could stand for the
fact that the agent observed the propertyP at timet. As said above, thePlanninga

function specifies an inference engine which transforms goalsga into goalsg′
a and

influencesγ′
a, using the rules and factual information ink′

a, starting at timet and taking
no more thanra units of time to do it. TheLearning function can be specified by means
of generalization and specialization operators applied to the knowledge base after the
update to yieldk′

a.
A theory generalization operatorγρ,g, employing the clausal generalization refine-

ment operatorρg, could be defined as follows[20]:

γρ,g(K) = {K − {r} ∪ {r′}|r′ ∈ ρg(r) ∧ r ∈ K}
⋃
{K ∪ {r}|r ∈ Lh} (5)

Similarly, a theory specialization operatorγρ,s, employing the clausal specializa-
tion operatorρs, could be defined as follows:

γρ,g(K) = {K − {r} ∪ {r′}|r′ ∈ ρg(r) ∧ r ∈ K}
⋃
{T ∪ {r}|r ∈ Lh} (6)

whereK is a knowledge base, or theory, to be revised,r andr′ represent rules andLh

is the language from which those rules are written.
To implement these operators into the agent architecture, one could attempt to em-

bed an existing ILP system, such as PROGOL, as we explain in the following sections.

5 A multi-agent rational system (MARS): a specification for a
simulation language

Up until now, we have been describing one agent. To specify the behaviour of a multi-
agent system, we need to define the functions that account for the evolution of the
whole system dynamics. Let us, therefore, defineEvolution : = × S × Σ × Γ → τ
andCycle : S×=×Σ×Γ → S×=×Σ×Γ , the same kind of functions introduced
by F&M, but each one with a new argument representing time; whereS represents the
set of all the possible mental states of all the agents.

Evolution(t, < s1, s2, .., sn >, σ, γ) =
Evolution(Cycle(< s1, s2, .., sn >, t, σ, γ)) (7)

sa =< ka, ga > (8)

Cycle, the function that steps from one global situation into the next, is defined as:

< t′, < s′
1, s

′
2, .., s

′
n >, σ′, γ′ >=

Cycle(< s1, s2, .., sn >, t, σ, γ) (9)

< σ′, γ′ >= React(Λ, β, t, σ, γ ∪a γa) (10)

in which the newly introduced symbols are explained as follows:

t: Current time.
sa: Agenta’s internal state.
σ: System “static” state: The environmental variables.
γ: Set of previous influences on the environment.
γa: Set of Agenta’s new influences.
Λ: The laws of the system.
β: Background knowledge that supports the description of the system.

This description of the system must also include the equations:

Λ = Select(Network, ξ) (11)

ξ = NextEvent(γ) (12)

t′ = TimeOf(ξ) (13)

β = Interpret(InitDecl) (14)

where,

Select represents the process that extracts the laws of the system from the code pro-
vided by the modeller in theNETWORKsection of a GALATEA model (illustrated
in the last section within the example).

NextEvent obtains the next event that will occur in the system from the list of in-
fluences.TimeOf produces the time of that event. AndInterpret, like Select,
represents an interpreter that extracts background knowledge and initial settings of
variables from the code that the modeller creates (also shown with the example).

5.1 The whole description of MARS

On that brief description of an reactive and rational agent and a modifiedReact func-
tion, we can build the mathematical description of a system populated by many of such
agents. We only need to connectReact with theBehaviour function for each agent,
as follows:

< σ′, γ′ >= React(Λ, Λ, scan, β, t, σ, γ ∪a γa) (15)

< s′
a, γa >= Behavioura(t, ra, ka, ga, γ) (16)

where, in turn,s′
a is an abbreviation of< k′

a, g′
a >, the knowledge base and goals

of agenta. This links the influences from the agents’ behaviour to the reaction of the
environment and completes the definition of the multi-agent system.

6 An example: Agent Modelling of a Forest Reserve

What follows is the basic layout of a GALATEA simulation model of a multi-agent
system coupled with a natural dynamics.

The model here described is an outcome of the project Biocomplexity: Integrating
Models of Natural and Human Dynamics in Forest Landscapes Across Scales and Cul-
tures (http://www.geog.unt.edu/biocomplexity). It aims to model and
simulate land use and changes in vegetation cover as a consequence of human actions.

As it has been explained in [11,15], we have being devising a collection of toy
models to cater for 1) the human dynamics, using the set of conceptual tools and data
structures provided by GALATEA and 2) the environmental dynamics, by integrating
a cellular automaton from the SpaSim [16] library into the actual simulator of a forest
reserve. The data structures of GALATEA provide for the representation of the agents’
goals, beliefs and observations, and, also, for a reasoning engine to deduce actions for
each agent, according to its circumstances.

The simplified model considers several instances of “settler” agents and a lumber
“concessionary” agent. For the sake of space, we will only consider here the behaviours
of the first. For a complete account the reader is referred to [11].

The settler agent rules of behaviour can be put as shown in figure 2. The settlers
are people of limited economical resources that arrive at the reserve aiming to improve
their economical status and to get the property of the land that they get to occupy.
Initially they dedicated themselves to subsistence agriculture: they just try to maximize
the benefits from their occupation of the area, without considering soil exhaustion due
to poor management practices, and without much regard for ecological damage. After
five years, the land loses its fertility, and the settler must move to another available place
(i.e. an area not under government supervision) or expand his farm by deforesting some
adjacent land.

Figure 2 partially depicts a GALATEA model of this system[15]. This is the normal
layout of a simulation model in GLIDER now enriched with a logic-based description
for each agent[10,7].

Simulation results are portrayed as graphs (Figure 3) that show the percentage of
total forest area by each of the policy scenarios (whose features are related to the be-
haviour of the Government Agent: Agroforestry, Forestry, Hands-off) and maps that

http://www.geog.unt.edu/biocomplexity

show the spatial distribution of land-use types obtained in each of the scenarios at each
time step.

Figure 4 shows the final state of the Caparo Forest Reserve for each policy scenario.
Our theory allows for modularity by means of a functionBehavioura for each agent
but also a conceptually higher modularity by distinguishing the agents from the natural
system of the forest reserve. Moreover, the theory also prescribes a role for learning in
the system: to allow the agent to adapt themselves to their circunstances and change
their rules of behaviour.

7 Agents that learn how to behave

The simulation theory, presented above, allows for one step further in the implementa-
tion of a platform that, not only simulates a system, but also helps to elicit knowledge
from the simulations.

Let us depict a situation in which a “settler” agent is trying to learn how to be
successful in a simplified version of one of the scenarios of the aforementioned bio-
complex model. Figure 5 shows a fragment of the code provided to the learning system
PROGOL[19] as background knowledge. Notice that it corresponds to a simplified, par-
tial history with the actions of 10 agents. Each action is described by a predicate with
the name of the action and the performing agent and the time of execution as arguments,
similar to the ones in the rules in figure 2.

Working from the following set of learning examples of the concept “being success-
ful as a settler agent A at time T”,successful(A, T)3:

successful(ag8,5).
successful(ag8,6).
successful(ag7,5).
successful(ag7,6).
successful(ag6,5).
successful(ag6,6).

:- successful(ag0,5).
:- successful(ag9,5).
:- successful(ag1,5).
:- successful(ag2,5).
:- successful(ag3,5).
:- successful(ag4,5).
:- successful(ag5,5).

the Inductive logic programing engine PROGOL starts by producing the the following
outputs:

3 :- b stands for not b, to annotate the negative examples

[Generalising successful(ag8,5).]
[Most specific clause is]

successful(A,B) :- B=<B,
settle(A,C),
plant(A,D), expand(A,E),
sale(A,E), cattle(A,B),
cattle(A,E), cattle(A,F),
C=<B, C=<C, C=<D, C=<E,
C=<F, D=<B, D=<D, D=<E,
D=<F, E=<B, E=<E, E=<F,
F=<B, F=<F.

which says thatan agent A is successful at time B if she settles down, plants, expands,
sales and do cattle-raising in the order indicated by the=< conditions. This shows
how the system is able to generalize from examples to rules, that will be checked to see
if they cover (positive and not negative) teaching examples. The final outcome of the
learning process looks like:

...
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C),cattle(A,D).]
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C), cattle(A,D).]
[60 explored search nodes]
f=1,p=3,n=0,h=0
[Result of search is]

successful(A,B) :- sale(A,C), C=<B.

[3 redundant clauses retracted]
successful(A,B) :-

sale(A,C), C=<B.
[Total number of clauses = 1]

[Time taken 0.060s]

which basically says thatAgent A is successful at B if she sales at C and C is before or
at B. Notice that this rule is produced after exploring many alternatives (60 nodes, or
alternative rules, in this case) and choosing the one with the best evaluation score (not
explained here for the lack of space, but related to the numbers accompanying the rules
above).

The effect of negative examples is also meaningful, as shown by the following dif-
ferent output from an experiment with 9 positive examples, and the 7 negative examples
above:

[7421 explored search nodes]
f=7,p=9,n=0,h=0
[Result of search is]

successful(A,B) :-
sale(A,C), cattle(A,C).

[9 redundant clauses retracted]
successful(A,B) :-

sale(A,C),
cattle(A,C).

[Total number of clauses = 1]

[Time taken 5.100s]

Notice that, in all cases, the learner agent does not produce a whole plan (a complete
program) but only points to crucial actions or conditions. This is due to PROGOL learn-
ing strategy of maximal compression[19] and it is certainly not a constraint if one builds
in the learner within the simulation system, as we intend to do. On the contrary, it could
be an useful strategy for learners that have to face an enormous store of information in
the (simulated) history of the system.

8 Conclusions

In this paper, we have described a mathematical theory that state what multi-agent sys-
tems are and how they evolve through time. This theory is being used as formal speci-
fication to guide the implementation of a multi-agent simulation platform that we have
called GALATEA. We have completed the development of a platform that implements
the theory and we are now applying it to the study of multi-agent systems. We are ex-
ploring ways to extend the platform to allow for learning agents. We have shown how
a ILP system can be used as a learning agent, in accord with the theory, to learn rules
in a representation very close to the one used to simulate a multi-agent system. This
establishes the feasibility of embedding (resource-bounded) learners as agents that take
part in simulating a complex system.

Acknowledgements

We are very grateful to the CESIMO team and our students for many useful discussion.
This work has been partially funded by CDCHT-ULA project I-886-05-02 and Fonacit
project S1-2000000819. The work on Biocomplexity was also partially supported by an
NSF Biocomplexity in the Environment grant CNH BCS-0216722.

References

1. GLIDER Development Group.GLIDER Reference Manual, Versión 5.0. Cesimo & IEAC,
Universidad de Los Andes, Ḿerida, Venezuela, 2000. CESIMO IT-02-00. Available from:
http://afrodita.faces.ula.ve/Glider/ .

http://afrodita.faces.ula.ve/Glider/

2. Bernard P. Zeigler.Theory of modelling and simulation. Interscience. Jhon Wiley& Sons,
New York, 1976.

3. Jacinto D́avila, Erasmo Ǵomez, Klaudia Laffaille, Kay Tucci and Mayerlin Uzcátegui.
Multi-Agent Distributed Simulations with GALATEA. IEEE Proceedings of Distributed
Simulation and Real-Time Applications.In A. Boukerche, S. Turner, D. Roberts and G.
Theodoropoulos (eds) IEEE Computer Society, pages 165–170, 2005. Aruba.http:
//www.cs.unibo.it/ds-rt2005/

4. Jacinto A. D́avila and Mayerlin Uzćategui and Kay A. Tucci. A Multi-Agent Theory for
Simulation.The Fifth IASTED Internacional Conference on Modelling, Simulation and Op-
timization (MSO 2005), pages 285–290, 2005. Aruba.http://www.actapress.com/
Content_of_Proceeding.aspx?proceedingID=316

5. Jacinto D́avila and Mayerlin Uzćategui. Agents that learn to behave in Multi-Agent Sim-
ulations. The Fifth IASTED Internacional Conference on Modelling, Simulation and Op-
timization (MSO 2005), pages 51–55, 2005. Aruba.http://www.actapress.com/
Content_of_Proceeding.aspx?proceedingID=316

6. Jacinto D́avila and Mayerlin Uzćategui. Gloria: An agent’s executable specification.Col-
legium Logicum. Kurt G̈odel Society, VIII:35–44, 2004. Vien, Austria.

7. Jacinto D́avila. Actilog: An agent activation language. Lecture Notes in Computer Science,
2562. Springer, 2003.

8. Jacinto A. D́avila and Mayerlin Uzćategui. Galatea: A multi-agent simulation platform.
AMSE Special Issue 2000. Association for the advancement of Modelling & Simulation tech-
niques in Enterprises, pages 52–67, 2002. Lion, France.

9. Jacinto A. D́avila and Kay A. Tucci. Towards a logic-based, multi-agent simulation the-
ory. AMSE Special Issue 2000. Association for the advancement of Modelling & Simulation
techniques in Enterprises, pages 37–51, 2002. Lion, France.

10. Jacinto A. D́avila. Openlog: A logic programming language based on abduction. In
PPDP’99, Lecture Notes in Computer Science, 1702. Springer, 1999. Available from:
http://citeseer.nj.nec.com/64163.html .

11. M. Ablan, J. D́avila, N. Moreno, R. Quintero, and M. Uzcátegui. Agent modeling of the
caparo forest reserve. InEUROSIS 2003, pages 367–372, Napoles, Italy, October 2003.

12. Jacques Ferber and Jean-Pierre Müller. Influences and reaction: a model of situated multia-
gent systems. InICMAS-96, pages 72–79, 1996.

13. Michael R. Genesereth and Nils Nilsson.Logical foundations of Artificial Intelligence. Mor-
gan Kauffman Pub., California. USA, 1988.

14. Robert A. Kowalski and Fariba Sadri. Towards a unified agent architecture that combine
rationality with reactivity. In Dino Pedreschi and Carlos Zaniolo, editors,LID’96 Workshop
on Logic in Databases, San Miniato, Italy, July 1996. Available from:http://www-lp.
doc.ic.ac.uk/UserPages/staff/rak.html .

15. R. Quintero, R. Barros, J. Dávila, N. Moreno, Tonella G., and M. Ablan. A model
of the biocomplexity of deforestation in tropical forest: Caparo case study. In C. Pahl,
S. Schmidt, and T. Jakeman, editors,IEMSs 2004, Osnabrueck, Germany, June 2004.
http://www.iemss.org/iemss2004/proceedings.

16. N. Moreno, M. Ablan, and G. Tonella. Spasim: A software to simulate cellular automata
models. InIEMSs 2002, First Biennial Meeting of the International Environmental Modeling
and Software Society, Lugano, Switzerland, 2002. Available from:http://mistoy.
ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/ .

17. Niandry L. Moreno. Disẽno e implementación de una estructura, para el soporte de simu-
lación espacial en GLIDER. Master’s thesis, Maestrı́a en Computación, Universidad de Los
Andes. Ḿerida. Venezuela, 2001. Tutor: Ablan, Magdiel.

18. Stephen Muggleton. Inverse entailment and progol. Technical report, The University of
York, York, UK, 2002.

http://www.cs.unibo.it/ds-rt2005/
http://www.cs.unibo.it/ds-rt2005/
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=316
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=316
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=316
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=316
http://citeseer.nj.nec.com/64163.html
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak.html
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak.html
http://mistoy.ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/
http://mistoy.ing.ula.ve/INVESTIGACION/PROYECTOS/SpaSim/SpaSim/

19. Stephen Muggleton and Jhon Firth.Cprogol4.4: A tutorial introduction. Department of
Computer Sciences, The University of York, United Kingdom, 2002.

20. de Raedt, Luc.Logical and Relational Learning. From ILP to MRDM. Springer, 2006.
21. NSF. Biocomplexity: Integrating models of natural and human dynamics in forest landscapes

across scales and cultures. http://www.geog.unt.edu/biocomplexity, 2002.
22. G. Tonella, M. Acevedo, M. Ablan, C. Domingo, H. Hoeger, and C. Sananes. The use of

glider as a tool for the simulation of ecological systems. In M.H. Hamza, editor,Proceedings
of the IASTED International Conference, number ISBN 0-88986-196-X, pages 463–367,
Anaheim, California, October 1995. Acta Press.

23. Mayerlin Y. Uzćategui. Disẽno de la plataforma de simulación de sistemas multi-agentes
galatea. Master’s thesis, Maestrı́a en Computación, Universidad de Los Andes. Ḿerida.
Venezuela, 2002. Tutor: D́avila, Jacinto.

NETWORK
LANDSCAPE (A) :: // SpaSim’s invocation code

AGENTS
Settler (AGENT) ::
GOALS

if supervised then go_elsewhere;
if not(occupied_land), not(supervised),

abandoned_land
then settle_down_with_strategy_1;
if not(occupied_land), not(supervised),

land_is_forest_without_timber
then settle_down_with_strategy_2;
if not(occupied_land), not(supervised),

land_is_forest_with_timber
then settle_down_with_strategy_3;
if land_does_not_produce,

not(occupied_land_next)
then expand;

BELIEFS
to settle_down_with_strategy_1 do move_in;
to settle_down_with_strategy_2 do move_in,

cut;
to settle_down_with_strategy_3 do move_in,

cut, sale_wood;
INTERFACE
// Code to explain the effects of the agents’
// actions on the environment.
INIT
// Initiation services.

time_step := 10;
ACT(LANDSCAPE, 0);

DECL
// Instructions to declare the data structures
// including those based on the SpaSim library

END.

Fig. 2.Partial view of the Caparo Model in GALATEA

Fig. 3.Percentage of total forest area by each of the policy scenarios

Fig. 4.Resulting maps at the end of the simulation for each one of the policy scenarios

% ag1
settle(ag1, 0).
plant(ag1, 0).
expand(ag1, 1).
plant(ag1, 1).
expand(ag1, 2).
plant(ag1, 2).
expand(ag1, 3).

% ag2
settle(ag2, 0).
expand(ag2, 0).
expand(ag2, 1).
plant(ag2, 2).
plant(ag2, 3).
expand(ag2, 4).
plant(ag2, 4).
plant(ag2, 5).

% ag3
settle(ag3, 0).
expand(ag3, 1).
plant(ag3, 1).
expand(ag3, 2).
plant(ag3, 2).
expand(ag3, 3).
plant(ag3, 3).
plant(ag3, 4).
plant(ag3, 5).

% ag4
settle(ag4, 1).
expand(ag4, 1).
plant(ag4, 1).
expand(ag4, 2).
plant(ag4, 2).
expand(ag4, 3).
plant(ag4, 3).
plant(ag4, 4).
plant(ag4, 5).

% ag5
settle(ag5, 0).
expand(ag5, 1).
plant(ag5, 1).
expand(ag5, 2).
plant(ag5, 2).
expand(ag5, 3).
cattle(ag5, 3).
cattle(ag5, 4).
cattle(ag5, 5).

% ag6
settle(ag6, 0).
plant(ag6, 1).
expand(ag6, 3).
sale(ag6, 3).
cattle(ag6, 3).
cattle(ag6, 4).
cattle(ag6, 5).

% ag7
settle(ag7, 0).
plant(ag7, 1).
expand(ag7, 3).
sale(ag7, 3).
cattle(ag7, 3).
cattle(ag7, 4).
cattle(ag7, 5).

% ag8
settle(ag8, 0).
plant(ag8, 1).
expand(ag8, 3).
sale(ag8, 3).
cattle(ag8, 3).
cattle(ag8, 4).
cattle(ag8, 5).

% ag9
settle(ag9, 0).
plant(ag9, 1).
expand(ag9, 3).
buy(ag9, 3).
cattle(ag9, 3).
cattle(ag9, 4).
cattle(ag9, 5).

% ag0
settle(ag0, 0).
plant(ag0, 1).
expand(ag0, 3).
cattle(ag0, 3).
cattle(ag0, 4).
cattle(ag0, 5).
sale(ag0, 6).

Fig. 5. A simplified history in a MAS: Agents acting in a Forest Reserve. Which one is
more successful?

	A Theory for Simulations with Learning Agents
	Jacinto Dávila1, Mayerlin Uzcátegui1,2 and Kay Tucci1,2 Universidad de Los Andes Mérida, 5101. Venezuela

