
From a Multi-agent Simulation Theory to GALATEA
Jacinto Dávila1, Mayerlin Uzcátegui1,2 and Kay Tucci1,2

1 CeSiMo. Facultad de Ingenierı́a
2 SUMA. Facultad de Ciencias

Universidad de Los Andes
Mérida, 5101. Venezuela

email: {jacinto,maye,kay}@ula.ve

Keywords
Multi-agent simulation, Agent Directed Simulation, Mod-

eling and Simulation Languages

Abstract
This paper discusses a simulation theory with learning agents
which is serving as a formal specification to guide the de-
velopment of GALATEA, a multi-agent simulation platform.
We have extended an existing simulation language: GLIDER,
with abstractions to model systems where autonomous enti-
ties (agents) perceive and act upon their environments. We
are now applying it to the study of multi-agent systems. In
particular, an implementation on Biocomplexity [1] is briefly
discussed in the paper. We also show how an Inductive Logic
Programming system can be used to learn rules in a repre-
sentation very close to the one used to guide the simulation in
the biocomplex system. This establishes the feasibility of em-
bedding (resource-bounded) learners as agents that take part
in simulating a complex system, as defined by the theory.

1. INTRODUCTION
This paper discusses a multi-agent simulation theory

which is serving as a formal specification to guide the de-
velopment of GALATEA, a multi-agent simulation plat-
form [2] [3] [4] [5].

We started by extending existing an simulation language:
GLIDER [6] [7] [8], with abstractions to model systems
where autonomous entities (agents) perceive and act upon
their environments. Those abstractions are based on the sim-
ulation theory and provide the semantics for a new family of
multi-agent, simulation languages.

For mathematicians, a theory is “A collection of proposi-
tions to illustrate the principles of a subject” (Oxford Dictio-
nary). In the more accepted simulation theory [9], one finds a
general explanation of what a system is, its components and
its transitions rules, stated all as a collection of formalized,
mathematical propositions. The goal of [9] and the others
with that formalization (.ibid), besides supporting the expla-
nations that are expected from a theory, was to provide the de-
velopers of systems simulators with a specification that says
what a simulator must do and how it must behave to simulate
a system.

The multi-agent system simulation theory discussed in
this paper has exactly those purposes and is specified
with similar style. This theory has served as the ba-
sic specification for the computing simulation platform
GALATEA [3] [2] [10] [11] [12].

The papers is organized as follows: The section 2 briefly
describes the basic simulation framework: GLIDER. The sec-
tion 3 offers a review of Feber and Müller’s multi-agent the-
ory [13] (hereafter F&M). In section 4, we present an ab-
stract machine as the specification of a learning agent type
and briefly explain how this specification has been integrated
into the multi-agent simulation theory. We also develop, in
section 5, the mathematical description of a multi-agent, ra-
tional system which serves as the specification for the simu-
lation platform. In section 6, we sketch an example from the
domain of Biocomplexity in which GALATEA has been used
to model a system in which human and natural dynamics are
combined. The final section 7 presents a learning experiment,
in which an agent learns its rules of behaviour out of a simu-
lated history of the system (an some auxiliary concepts).

2. A BRIEFING ON GLIDER
In GLIDER a system is conceived as a structured collection

of objects that exchange messages. Such message exchange
and processing is closely related to the scheduling and oc-
currence of events as in DEVS [9]. Modelling a system (for
simulation purposes) amounts to write a code describing a
network of nodes. Those nodes state the behaviours of the
objects in the system and how, when and with which they
exchange messages. GLIDER offers to the modeller a set of
node types (Gate, Line, Input, Decision, Exit and Resources
give its name to the language, but there are others) which
the modeller instantiates to represent the objects she wants
to simulate.

In GALATEA, we have enriched GLIDER semantics to
accommodate the description of agents. Agents correspond
to those entities in the modelled system that can perceive
their environment, have goals and beliefs and act, according
to those beliefs, to achieve those goals, presumably changing
the environment in the process.

This enriching of GLIDER required more than an addi-
tional set of language elements. We had to extend its cur-

SCSC 2007 923 ISBN # 1-56555-316-0

mailto:jacinto@ula.ve
mailto:maye@ula.ve
mailto:kay@ula.ve


rent simulation framework to include the behaviour of new,
specialized objects: the agents. We aim to have a fam-
ily of languages, supported by a unique computing plat-
form, to model and simulate multi-agent systems. Languages
of diverse nature (ranging from procedural, object-oriented,
network-oriented to logic-based languages [14] [15]) are, we
believe, an important contribution to a multi-disciplinary ap-
proach for modelling and simulation, especially when they
are mapped against the same explanatory device: a common
theory.

3. A THEORY OF INFLUENCES AND RE-
ACTIONS

In [13] F&M present a theory of multi-agent systems. They
describe dynamics systems with a sort of enhanced state in
which the universe being modelled is described via two types
of “state components”: influences and environmental vari-
ables. The later correspond to what is commonly known as
state variables. Whereas influences are “what comes from in-
side the agents and are attempts to modify a course of events
that would have taken place otherwise” [13] (p73). The in-
fluence concept in the theory of F&M allows to describe the
concurrence of events and the transition of states.

F&M declare that their model of action relies on three main
concepts:

1. A distinction between influences and reactions, to deal
with simultaneous actions.

2. A decomposition of a whole system dynamics, δ, into
two parts: the dynamics of the environment (σ, the envi-
ronmental state) and the dynamics of the agents situated
in this environment (γ, the set of all their influences). Σ

is the set of all the possible environmental states and Γ

is the set of all the possible sets of influences, with γ ∈ Γ

and σ ∈ Σ.

3. A description of the different dynamics by abstract state
machines, which we use in the specification of the opera-
tional semantics of the languages illustrated in section 5.
Typically, an agent is characterized as tuple of attributes
and functions. Similarly, a whole system is also charac-
terized as a tuple (that includes its agents’ tuples) and a
set of transformation functions.

In the work presented here, we are taking on F&M’s no-
tions of influences and reactions and their proposal to de-
scribe dynamical systems via that enhanced state. However,
we drop the use of operators and modify and extend their
theory so that laws can be used as influence generators. With
this movement, we also establish the base for an operational
semantics for our simulation languages.

To illustrate the expressive power of influences, F&M adapt
a classical work on agent technology to their theory. This

Agent type specification Main features
REACTIVE AND RATIONAL
〈Sa,Pa,Knowledge,Actions,

Perception,Memory,Decision〉
Iteratively senses, records, reasons and acts,

changing the environment
KNOWLEDGE LEVEL AND DELIBERATIVE
〈Sa,Pa,Knowledge,Actions,

Perception,Memory,Decision〉
Senses, records, reasons and acts, changing the

environment
HYSTERECTIC
〈Sa,Pa, InternalS,Actions,

Perception,Decision〉
Senses, records and changes the environment

TROPISTIC
〈Sa,Pa,Actions,Perception,E f f ector〉
Senses and changes the environment

OPERATOR OR COMPONENT
〈Sa,Pa,Actions,E f f ector〉
Changes the environment

Figure 1. The extended hierarchy of agent types

work is Genesereth and Nilson’s, G&N, hierarchy of agent’s
architectures [16]. In that work, G&N offered a description
of a hierarchy of agent architectures ranging from a non-
rational, purely reactive TROPISTIC agent to a rational, DE-
LIBERATIVE agent, via HYSTERETIC agents which are the
first type of agent in the hierarchy with an internal, “mental”
state. Each type of agent is, again, modelled as a tuple which
includes a number of transforming functions. The whole hi-
erarchy from G&N, enhanced with F&M’s operators and our
REACTIVE AND RATIONAL agent is displayed in figure 1, the
elements of this description are:

Sa: The set of states the agent may be in.

Pa: Partial descriptions of the environment.

Actions: The set of actions the agent might perform.

Knowledge and InternalS: The set of possible internal states
the agent may be in.

Perception: The agent sensory function.

Effector and Decision: These functions encode the agent’s
action-selection mechanism which decides the action the
agent will execute.

Memory: This function encodes the agent assimilation
mechanism by means of which it updates its knowledge
base, with information from the environment (including
the feedback obtained when the actions are tried).

ISBN # 1-56555-316-0 924 SCSC 2007



4. OUR REACTIVE AND RATIONAL
AGENT

We now describe an agent as a 7-tuple which subsumes the
one at the top of that hierarchy:

< Pa,Ka,Ga,Perceptiona,

U pdatea,Planninga,Learninga > (1)

where Pa and Perceptiona are the percept’s domain and the
perception function explained below. The set Ka and Ga
roughly correspond to Sa above. We want to state that a ra-
tional agent has a knowledge base, Ka, and a set of goals,
Ga, that, together, characterize its internal state. U pdatea :
ℑ×Pa ×Ka → Ka takes the place of Memorya in the mem-
orization mechanism but it now has to ensure that the addi-
tion of new information preserves the internal structure of the
knowledge base (and its consistency) because Ka is a collec-
tion of logical formulae with a well-defined syntax and se-
mantics. Similarly, Planninga : ℑ×ℜ×Ka ×Ga → Ga ×Γ,
substitutes the function Decisiona and, instead of just pro-
ducing influences from the internal state, the new reasoning
function derives new goals and influences, taking into account
the previous goals and the knowledge base. Notice that both
U pdatea and Planninga introduce an argument (with domain
ℑ, the set of all the possible time points) to indicate the time
at which each process (updating and planning) takes place.
The introduction of explicit time is another major change in
our proposal with respect to F&M (and G&N). Planning also
include r ∈ ℜ where ℜ is the set of possible bounds for rea-
soning time.

With Planninga, we want to model the process by which
an agent derives, from a set of high level goals, a set of lower
level goals, some of which are actions that can be tried for ex-
ecution. This view of an agent reducing goals to sub-goals has
been studied in [17] in the context of agents in logic program-
ming. This agent model also specifies a way to deal with the
problem of bounded rationality. It basically says that an agent
must interleave reasoning and acting, so there must exist time
(or space) bounds for the reasoning and, then, it may be that
the agent acts with no-completely-refined reasons. We mark
that limit with a resource (time or memory space) counter.
For this, the agent machine is regarded as resource bounded.

Learninga is a function which produces new, possibly par-
tially refined, rules to be added to Ka. We explore possible
ways to implement this function towards the end of this pa-
per.

Following F&M, we characterize an agent a with a math-
ematical function Behavioura : ℑ×ℜ×Ka×Ga×Γ → Ka×
Ga ×Γ that maps the resource limits for reasoning, the agent
internal state and the set of influences to a new internal state
and a set of influences produced by this agent. Unlike, F&M,
our agent internal state contains a knowledge base and a set

of goals, as we described above.
The behaviour of that state-machine can be compactly de-

scribed as follows:

< k′′a ,g′a,γ
′
a > = Behavioura(t,ra,ka,ga,γ) if

< k′a,exm,rul > = Criticsa(U pdatea(t,Perceptiona(γ),ka))
k′′a = Learninga(ka′,examples,rules)

< γ
′
a,g

′
a > = Planninga(t,ra,k′a,ga) (2)

where
t ∈ ℑ : Current simulation time

ra ∈ ℜ : Bound for reasoning time
ka ∈ Ka,ga ∈ Ga : Knowledge, goals

γ ∈ Γ : influences history
γa : Set of actions that a try to execute

exm : (negative) examples for a learning ex-
periments. These examples correspond
to goals whose associated actions have
failed

rul : Rules to be revisited, which correspond
to those goals with failing actions

U pdatea : Update percepts observed by agent a
Perceptiona : could stand for the fact that the agent ob-

served the property P at time t
Criticsa : A function to process the feedback on ac-

tions’ executions and identify rules and
examples for a learning task

:
Note that γ in U pdatea may include (and normally does)

“observational actions” by means of which the agent has ac-
cess to state’s variables (e.g. obs(var(P,t)), the agent observes
the value of var is P at t).

The Learninga function can be specified by means of gen-
eralization and specialization operators applied to the knowl-
edge base after the update to yield k′a.

A theory generalization operator γρ,g, employing the
clausal generalization refinement operator ρg, could be de-
fined as follows [18]:

γρ,g(K) = {K−{r}∪{r′}|r′ ∈ ρg(r) ∧ r ∈ K∧ r′ ∈ Lh} (3)

Similarly, a theory specialization operator γρ,s, employing
the clausal specialization operator ρs, could be defined as fol-
lows:

γρ,s(K) = {K−{r}∪{r′}|r′ ∈ ρs(r) ∧ r ∈ K∧ r′ ∈ Lh} (4)

where K is a knowledge base, or theory, to be revised, r and r′

represent rules and Lh is the language from which those rules
are written.

To implement these operators into the agent architecture,
one could attempt to embed an existing ILP [18] system, such
as PROGOL [19] [20], as we explain in the following sec-
tions.

SCSC 2007 925 ISBN # 1-56555-316-0



5. A MULTI-AGENT RATIONAL SYSTEM
(MARS): A SPECIFICATION FOR A SIM-
ULATION LANGUAGE

Up until now, we have been describing one agent. To spec-
ify the behaviour of a multi-agent system, we need to define
the functions that account for the evolution of the whole sys-
tem dynamics. Let us, therefore, define Evolution : ℑ× S×
Σ×Γ → τ and Cycle : S×ℑ×Σ×Γ → S×ℑ×Σ×Γ, the
same kind of functions introduced by F&M, but each one with
a new argument representing time; where S represents the set
of all the possible mental states of all the agents.

Evolution(t,< s1,s2, ..,sn >,σ,γ) =
Evolution(Cycle(< s1,s2, ..,sn >, t,σ,γ)) (5)

sa =< ka,ga > (6)

Cycle, the function that steps from one global situation into
the next, is defined as:

< t ′,< s′1,s
′
2, ..,s

′
n >,σ′,γ′ >=

Cycle(< s1,s2, ..,sn >, t,σ,γ) (7)
< σ

′,γ′ >= React(Λ,β, t,σ,γ∪a γa) (8)

in which the newly introduced symbols are explained as fol-
lows:

t: Current time.
sa: Agent a’s internal state.
σ: System “static” state: The environmental vari-

ables.
γ: Set of previous influences on the environment.
γa: Set of Agent a’s new influences.
Λ: The laws of the system.
β: Background knowledge that supports the de-

scription of the system.

This description of the system must also include the equa-
tions:

Λ = Select(Network,ξ) (9)
ξ = NextEvent(γ) (10)
t ′ = TimeO f (ξ) (11)
β = Interpret(InitDecl) (12)

where,

Select represents the process that extracts the laws of the
system from the code provided by the modeller in the
NETWORK section of a GALATEA model (illustrated in
the last section within the example).

NextEvent obtains the next event that will occur in the sys-
tem from the list of influences. TimeO f produces the
time of that event. And Interpret, like Select, represents

an interpreter that extracts background knowledge and
initial settings of variables from the code that the mod-
eller creates (also shown with the example).

On that brief description of an reactive and rational agent
and a modified React function, we can build the mathematical
description of a system populated by many of such agents. We
only need to connect React with the Behaviour function for
each agent, as follows:

< σ
′,γ′ >= React(Λ,β, t,σ,γ∪a γa) (13)

< s′a,γa >= Behavioura(t,ra,ka,ga,γ) (14)

where, in turn, s′a is an abbreviation of < k′a,g
′
a >, the knowl-

edge base and goals of agent a. This links the influences from
the agents’ behaviour to the reaction of the environment and
completes the definition of the multi-agent system.

GALATEA already supports MARS models, except for the
learning function, which is being explored as we explain in
section 7. Thus, we are not far from a fully functional simu-
lation platform with learning agents. What follows is an ex-
ample in which GALATEA is used to simulate a model of the
combined human-nature biocomplexity of a land-use, land-
cover change system.

6. AN EXAMPLE: AGENT MODELLING OF
A FOREST RESERVE

What follows is the basic layout of a GALATEA simula-
tion model of a multi-agent system coupled with a natural
dynamics.

The model here described is an outcome of the project
Biocomplexity: Integrating Models of Natural and Human
Dynamics in Forest Landscapes Across Scales and Cultures
(http://www.geog.unt.edu/biocomplexity). It
aims to model and simulate land use and changes in vege-
tation cover as a consequence of human actions.

As it has been explained in [21] [22], we have being devis-
ing a collection of toy models to cater for 1) the human dy-
namics, using the set of conceptual tools and data structures
provided by GALATEA and 2) the environmental dynamics,
by integrating a cellular automaton from the SpaSim [23] [24]
library into the actual simulator of a forest reserve. The data
structures of GALATEA provide for the representation of the
agents’ goals, beliefs and observations, and, also, for a rea-
soning engine to deduce actions for each agent, according to
its circumstances.

The simplified model considers several instances of “set-
tler” agents and a lumber “concessionary” agent. For the sake
of space, we will only consider here the behaviours of the
first. For a complete account the reader is referred to [21].

The settler agent rules of behaviour can be put as shown
in figure 2. The settlers are people of limited economical re-
sources that arrive at the reserve aiming to improve their eco-

ISBN # 1-56555-316-0 926 SCSC 2007

http://www.geog.unt.edu/biocomplexity


NETWORK
LANDSCAPE (A) :: // SpaSim’s invocation code

AGENTS
Settler (AGENT) ::
GOALS

if supervised then go_elsewhere;
if not(occupied_land), not(supervised),

abandoned_land
then settle_down_with_strategy_1;
if not(occupied_land), not(supervised),

land_is_forest_without_timber
then settle_down_with_strategy_2;
if not(occupied_land), not(supervised),

land_is_forest_with_timber
then settle_down_with_strategy_3;
if land_does_not_produce,

not(occupied_land_next)
then expand;

BELIEFS
to settle_down_with_strategy_1 do move_in;
to settle_down_with_strategy_2 do move_in,

cut;
to settle_down_with_strategy_3 do move_in,

cut, sale_wood;
INTERFACE
// Code to explain the effects of the agents’
// actions on the environment.
INIT
// Initiation services.

time_step := 10;
ACT(LANDSCAPE, 0);

DECL
// Instructions to declare the data structures
// including those based on the SpaSim library

END.

Figure 2. Partial view of the Caparo Model in GALATEA

nomical status and to get the property of the land that they get
to occupy. Initially they dedicated themselves to subsistence
agriculture: they just try to maximize the benefits from their
occupation of the area, without considering soil exhaustion
due to poor management practices, and without much regard
for ecological damage. After five years, the land loses its fer-
tility, and the settler must move to another available place (i.e.
an area not under government supervision) or expand his farm
by deforesting some adjacent land.

Figure 2 partially depicts a GALATEA model of this sys-
tem [22]. This is the normal layout of a simulation model
in GLIDER now enriched with a logic-based description for
each agent [14] [15].

Simulation results are portrayed as graphs (Figure 3) that
show the percentage of total forest area by each of the policy
scenarios (whose features are related to the behaviour of the
Government Agent: Agroforestry, Forestry, Hands-off) and
maps that show the spatial distribution of land-use types ob-
tained in each of the scenarios at each time step.

Figure 4 shows the final state of the Caparo Forest Reserve
for each policy scenario. Our theory allows for modularity

Figure 3. Percentage of total forest area by each of the pol-
icy scenarios

by means of a function Behavioura for each agent but also a
conceptually higher modularity by distinguishing the agents
from the natural system of the forest reserve. Moreover, the
theory also prescribes a role for learning in the system: to
allow the agent to adapt themselves to their circunstances and
change their rules of behaviour.

Figure 4. Resulting maps at the end of the simulation for
each one of the policy scenarios

7. AGENTS THAT LEARN HOW TO BE-
HAVE

The simulation theory, presented above, allows for one step
further in the implementation of the GALATEA platform that,
not only simulates a system, but also helps to elicit knowledge
from the simulations.

We have done an exercise to prove the concept of a learning
agent, by employing an a already implemented learning sys-
tem: PROGOL[20]. This system implements a form of spe-
cialization and generalization operators based on inverse en-
tailment [19].

Let us depict a situation in which a “settler” agent is trying
to learn how to be successful in a simplified version of one of

SCSC 2007 927 ISBN # 1-56555-316-0



the scenarios of the aforementioned biocomplex model. Fig-
ure 5 shows a fragment of the code provided to the learning
system PROGOL as background knowledge. Notice that it
corresponds to a simplified, partial history with the actions of
10 agents. Each action is described by a predicate with the
name of the action and the performing agent and the time of
execution as arguments, similar to the ones in the rules in fig-
ure 2.

Working from the following set of learning examples of
the concept “being successful as a settler agent A at time T”,
successful(A,T)1:

successful(ag8,5).
successful(ag8,6).
successful(ag7,5).
successful(ag7,6).
successful(ag6,5).
successful(ag6,6).

:- successful(ag0,5).
:- successful(ag9,5).
:- successful(ag1,5).
:- successful(ag2,5).
:- successful(ag3,5).
:- successful(ag4,5).
:- successful(ag5,5).

the Inductive logic programing engine PROGOL starts by
producing the the following outputs:

[Generalising successful(ag8,5).]
[Most specific clause is]

successful(A,B) :- B=<B,
settle(A,C),
plant(A,D), expand(A,E),
sale(A,E), cattle(A,B),
cattle(A,E), cattle(A,F),
C=<B, C=<C, C=<D, C=<E,
C=<F, D=<B, D=<D, D=<E,
D=<F, E=<B, E=<E, E=<F,
F=<B, F=<F.

which says that an agent A is successful at time B if she set-
tles down, plants, expands, sales and do cattle-raising in the
order indicated by the =< conditions. This shows how the
system is able to generalize from examples to rules, that will
be checked to see if they cover (positive and not negative)
teaching examples. The final outcome of the learning process
looks like:

1:- b stands for not b, to annotate the negative examples

% ag1
settle(ag1, 0).
plant(ag1, 0).
expand(ag1, 1).
plant(ag1, 1).
expand(ag1, 2).
plant(ag1, 2).
expand(ag1, 3).

% ag2
settle(ag2, 0).
expand(ag2, 0).
expand(ag2, 1).
plant(ag2, 2).
plant(ag2, 3).
expand(ag2, 4).
plant(ag2, 4).
plant(ag2, 5).

% ag3
settle(ag3, 0).
expand(ag3, 1).
plant(ag3, 1).
expand(ag3, 2).
plant(ag3, 2).
expand(ag3, 3).
plant(ag3, 3).
plant(ag3, 4).
plant(ag3, 5).

% ag4
settle(ag4, 1).
expand(ag4, 1).
plant(ag4, 1).
expand(ag4, 2).
plant(ag4, 2).
expand(ag4, 3).
plant(ag4, 3).
plant(ag4, 4).
plant(ag4, 5).

% ag5
settle(ag5, 0).
expand(ag5, 1).
plant(ag5, 1).
expand(ag5, 2).
plant(ag5, 2).
expand(ag5, 3).
cattle(ag5, 3).
cattle(ag5, 4).
cattle(ag5, 5).

% ag6
settle(ag6, 0).
plant(ag6, 1).
expand(ag6, 3).
sale(ag6, 3).
cattle(ag6, 3).
cattle(ag6, 4).
cattle(ag6, 5).

% ag7
settle(ag7, 0).
plant(ag7, 1).
expand(ag7, 3).
sale(ag7, 3).
cattle(ag7, 3).
cattle(ag7, 4).
cattle(ag7, 5).

% ag8
settle(ag8, 0).
plant(ag8, 1).
expand(ag8, 3).
sale(ag8, 3).
cattle(ag8, 3).
cattle(ag8, 4).
cattle(ag8, 5).

% ag9
settle(ag9, 0).
plant(ag9, 1).
expand(ag9, 3).
buy(ag9, 3).
cattle(ag9, 3).
cattle(ag9, 4).
cattle(ag9, 5).

% ag0
settle(ag0, 0).
plant(ag0, 1).
expand(ag0, 3).
cattle(ag0, 3).
cattle(ag0, 4).
cattle(ag0, 5).
sale(ag0, 6).

Figure 5. A simplified history in a MAS: Agents acting in a
Forest Reserve. Which one is more successful?

ISBN # 1-56555-316-0 928 SCSC 2007



...
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C),cattle(A,D).]
[C:-9999,3,10000,0 successful(A,B)

:- cattle(A,C), cattle(A,D).]
[60 explored search nodes]
f=1,p=3,n=0,h=0
[Result of search is]

successful(A,B) :- sale(A,C), C=<B.

[3 redundant clauses retracted]
successful(A,B) :-

sale(A,C), C=<B.
[Total number of clauses = 1]

[Time taken 0.060s]

which basically says that Agent A is successful at B if she
sales at C and C is before or at B. Notice that this rule is
produced after exploring many alternatives (60 nodes, or al-
ternative rules, in this case) and choosing the one with the best
evaluation score (not explained here for the lack of space, but
related to the numbers accompanying the rules above).

The effect of negative examples is also meaningful, as
shown by the following different output from an experiment
with 9 positive examples, and the 7 negative examples above:

[7421 explored search nodes]
f=7,p=9,n=0,h=0
[Result of search is]

successful(A,B) :-
sale(A,C), cattle(A,C).

[9 redundant clauses retracted]
successful(A,B) :-

sale(A,C),
cattle(A,C).

[Total number of clauses = 1]

[Time taken 5.100s]

Notice that, in all cases, the learner agent does not pro-
duce a whole plan (a complete program) but only points to
crucial actions or conditions. This is due to PROGOL learn-
ing strategy of maximal compression [20] and it is certainly
not a constraint if one builds in the learner within the simula-
tion system, as we intend to do. On the contrary, it could be
an useful strategy for learners that have to face an enormous
store of information in the (simulated) history of the system.

8 CONCLUSIONS
In this paper, we have described a mathematical theory

that state what multi-agent systems are and how they evolve

through time. This theory is being used as formal specifica-
tion to guide the implementation of a multi-agent simulation
platform that we have called GALATEA. We have completed
the development of a platform that implements the theory and
we are now applying it to the study of multi-agent systems.
We are exploring ways to extend the platform to allow for
learning agents. We have shown how a ILP system can be
used as a learning agent, in accord with the theory, to learn
rules in a representation very close to the one used to simulate
a multi-agent system. This establishes the feasibility of em-
bedding (resource-bounded) learners as agents that take part
in simulating a complex system.

ACKNOWLEDGEMENTS
We are very grateful to the CESIMO team and our stu-

dents for many useful discussion. This work has been par-
tially funded by CDCHT-ULA project I-886-05-02-A and
Fonacit project S1-2000000819. The work on Biocomplex-
ity was also partially supported by an NSF Biocomplexity in
the Environment grant CNH BCS-0216722.

REFERENCES
[1] Biocomplexity Group. Biocomplexity: Integrating

models of natural and human dynamics in forest
landscapes across scales and cultures. NFS Grant
CNH BCS-0216722, USA, 2002. Miguel Acevedo,
Baird Callicott, Michael Monticino, Tom LaPoint, Jim
Kennedy, Pinliang Dong, Minhe Ji, Armin Mikler,
Dan Mauldin, Pete Gunter, Rudy Thompson (UNT).
Paul Harcombe (RICE) Magdiel Ablan, Armando Tor-
res, Giorgio Tonella, Jacinto Dávila, Hirma Ramı́rez,
Mayerlin Uzcátegui, Niandry Moreno (ULA). Judith
Rosales, Luz Delgado, Hernán Castellanos, Lionel
Hernández, Alexander Mansutti (UNEG).

[2] Jacinto Dávila and Kay Tucci. Towards a logic-based,
multi-agent simulation theory. AMSE Special Issue
2000. Association for the advancement of Modelling
& Simulation techniques in Enterprises, pages 37–51,
2002.

[3] Jacinto Dávila and Mayerlin Uzcátegui. Galatea: A
multi-agent simulation platform. AMSE Special Issue
2000. Association for the advancement of Modelling
& Simulation techniques in Enterprises, pages 52–67,
2002.

[4] Mayerlin Uzcátegui. Diseño de la plataforma de simu-
lación de sistemas multi-agentes galatea. Master’s the-
sis, Postgrado en Computación, Universidad de Los An-
des. Mérida, Venezuela, May 2002.

[5] Jacinto Dávila, Mayerlin Uzcátegui, and Kay Tucci. A
multi-agent theory for simulation. In Giorgio Tonella,

SCSC 2007 929 ISBN # 1-56555-316-0



editor, The Fifth IASTED International Conference on
Modelling, Simulation, and Optimization (MSO’2005),
pages 285–290, Oranjestad, Aruba, August 2005. The
International Association of Science and Technology
for Development (IASTED), Acta Press.

[6] Giorgio Tonella, Miguel Acevedo, Magdiel Ablan, Car-
los Domingo, Herbert Hoeger, and Marta Sananes. The
use of glider as a tool for the simulation of ecological
systems. In M.H. Hamza, editor, IASTED International
Conference, number ISBN 0-88986-196-X, pages 463–
367, Anaheim, California, October 1995. Acta Press.

[7] C. Domingo, M. Sananes, and G. Tonella. Problem
solving by structural simulation. In M.H. Hamza, edi-
tor, IASTED International Conference, number ISBN 0-
88986-218-4, pages 463–367, Anaheim, California, Oc-
tober 1995. Acta Press.

[8] GLIDER Development Group. GLIDER Reference
Manual, Versión 5.0. Cesimo & IEAC, Universidad de
Los Andes, Mérida, Venezuela, 2000. CESIMO IT-02-
00.

[9] Bernard P. Zeigler. Theory of modelling and simulation.
Interscience. Jhon Wiley& Sons, New York, 1976.

[10] Jacinto Dávila and Mayerlin Uzcátegui. Gloria: An
agent’s executable specification. Collegium Logicum.
Kurt Gödel Society, VIII:35–44, August 2004. Vienna,
Austria.

[11] Jacinto Dávila and Mayerlin Uzcátegui. Agents that
learn to behave in multi-agent simulations. In Gior-
gio Tonella, editor, The Fifth IASTED International
Conference on Modelling, Simulation, and Optimiza-
tion (MSO’2005), pages 51–55, Oranjestad, Aruba, Au-
gust 2005. The International Association of Science and
Technology for Development (IASTED), Acta Press.

[12] Jacinto Dávila, Erasmo Gómez, Klaudia Laffaille, Kay
Tucci, and Mayerlin Uzcátegui. Multiagent distributed
simulation with galatea. In The 9-th IEEE International
Symposium on Distributed Simulation and Real Time
Applications (DS-RT’2005), pages 165–170, Montreal,
Canada, October 2005. Institute of Electrical and Elec-
tronics Engineers.

[13] Jacques Ferber and Jean-Pierre Müller. Influences and
reaction: a model of situated multiagent systems. In
ICMAS-96. Second International Conference on Multi-
agent Systems, pages 72–79, 1996.

[14] Jacinto A. Dávila. Openlog: A logic programming
language based on abduction. In PPDP’99. Interna-
tional Conference on Principles and Practice of Declar-

ative Programming, Lecture Notes in Computer Sci-
ence. 1702, Paris, France, 1999. Springer.

[15] Jacinto Dávila. Actilog: An agent activation language.
In PADL2003. Practical Aspects of Declarative Lan-
guages, 5th International Symposium, number 2562 in
LNCS, New Orleans, USA, 2003.

[16] Michael R. Genesereth and Nils Nilsson. Logical foun-
dations of Artificial Intelligence. Morgan Kauffman
Pub., California. USA, 1988.

[17] Robert A. Kowalski and Fariba Sadri. Towards a uni-
fied agent architecture that combine rationality with re-
activity. In Dino Pedreschi and Carlos Zaniolo, editors,
LID’96. Workshop on Logic in Databases, San Miniato,
Italy, July 1996.

[18] Luc de Raedt. Logical and Relational Learning. From
ILP to MRDM. Springer, 2007.

[19] Stephen Muggleton. Inverse entailment and progol.
Technical report, The University of York, York, UK,
2002.

[20] Stephen Muggleton and Jhon Firth. Cprogol4.4: A tu-
torial introduction. Department of Computer Sciences,
The University of York, United Kingdom, 2002.

[21] Magdiel Ablan, Jacinto Dávila, Niandry Moreno,
Raquel Quintero, and Mayerlin Uzcátegui. Agent mod-
eling of the caparo forest reserve. In B. Di Marino,
L. T. Yang, and C. Bobeanu, editors, European Simu-
lation and Modelling Conference (ESMc’2003), Simu-
lation of Ecosystems, pages 367–372, Naples, Italy, Oc-
tober 2003. EUROSIS-ETI. ISBN: 90-77381-04-X.

[22] R. Quintero, R. Barros, J. Dávila, N. Moreno, Tonella
G., and M. Ablan. A model of the biocomplex-
ity of deforestation in tropical forest: Caparo case
study. In C. Pahl, S. Schmidt, and T. Jakeman, editors,
IEMSs 2004. International Environmental Modelling
and Software Society, Osnabrueck, Germany, June
2004. http://www.iemss.org/iemss2004/proceedings.

[23] Niandry L. Moreno. Diseño e implementación de una
estructura, para el soporte de simulación espacial en
GLIDER. Master’s thesis, Maestrı́a en Computación,
Universidad de Los Andes. Mérida. Venezuela, 2001.
Tutor: Ablan, Magdiel.

[24] Niandry Moreno, Magdiel Ablan, and Giorgio Tonella.
Spasim: A software to simulate cellular automata mod-
els. In IEMSs 2002, First Biennial Meeting of the Inter-
national Environmental Modeling and Software Society,
Lugano, Switzerland, 2002.

ISBN # 1-56555-316-0 930 SCSC 2007


	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	From a Multi-agent Simulation Theory to GALATEA
	Introduction
	A briefing on GLIDER
	A theory of influences and reactions
	Our reactive and rational agent
	A multi-agent rational system (MARS): a specification for a simulation language
	An example: Agent Modelling of a Forest Reserve
	Agents that learn how to behave
	Conclusions




