
1

Imperial College of Science, Technology and Medicine

University of London

Department of Computing

KNOWLEDGE ASSIMILATION
IN

MULTI-AGENT SYSTEMS.

by

Jacinto Alfonso Dávila Quintero

Submitted in partial fulfilment of the requirements for the MSc
degree in Engineering of the University of London and for the
Diploma of Imperial College of Science, Technology and
Medicine.

September 1994

Logic Programming Agents

2

Gracias Señor por la oportunidad..

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Robert A. Kowalski for the valuable

support and encouragement he has given me throughout this project.

I would like also to thank Prof. Frank McCabe for his support and attention

and for providing the basic software for building this project; Yuji Takada and

Francesca Toni for their friendly attention and professional support and Jans

Wielemaker who gently accepted my queries and helped me to debug the intricate

code of SWI-PROLOG.

Special thanks to Sylvana Zappacosta who always provided technical and

academic support and extra-academic advice during this year at Imperial College.

Finally but mainly, I would like to thank to my wife, Liliana, my fellow girl in

this venture.

Logic Programming Agents

3

CONTENTS

Index

ACKNOWLEDGEMENTS ii

CONTENTS iii

Index iii

Table of figures iv

ABSTRACT v

INTRODUCTION vi

I.1. Logic-based Multi-Agents Systems. vi

I.2 April: A language and a Test-bed for making experiments with

Multi-Agents Systems. vii

CHAPTER 1 1

1.1. From reactive agent to deliberate agents. 1

1.2. From deliberate agents to reactive agents. 2

1.3. Knowledge Assimilation and the adaptable locus of control. 5

CHAPTER 2 9

2.1. Modelling agents in the PROLOG-APRIL TEST-BED. 9

2.2. The path-finding and warehouse applications. 10

2.2.1. The World 10

2.2.2. Robots. 14

2.2.3. The brain of the robots. 16

2.3. Backward-forward representations. 20

2.4. Search by layers. 23

2.5. Time and events representation in logic programming agents 28

Logic Programming Agents

4

CHAPTER 3 30

3.1. Comments on multi-agent simulations. 30

3.2. Description of experiments with the path-finders. 30

3.3. Redesign of experiments 31

3.4. Results. 36

3.4.1. Performance of the agents. 36

3.4.2. Quality of decision-making38

3.4.3. Hesitancy 40

3.4.4. Other results 42

CONCLUSIONS AND GUIDELINES FOR FURTHER RESEARCH 44

Conclusions 44

Extensions and further research 46

REFERENCES 50

APPENDIX A. AGENTS IN APRIL.

APPENDIX B. AGENT'S BRAINS IN PROLOG.

APPENDIX C. SOURCES OF THE PROLOG-APRIL INTERFACE.

APPENDIX D. DIALOX DISPLAYS.

Table of figures

Fig. I.1 APRIL-PROLOG test-bedxiii

Fig. 2.1 A rasterized world 11

Fig. 3.2 Steels' agent architecture 24

Fig. 3.2 Average time per trip 37

Fig. 3.3 Average number of failures per trip 39

Fig. 3.4 Average number of observations per trip 41

Logic Programming Agents

5

ABSTRACT

This work is concerned with logic-based Multi-Agents Systems. We have

investigated multi-agent systems as open knowledge bases, with knowledge and

beliefs represented in a logical formalism. We show how to model agent brains as

logic programs using forward-backward representations and search by layers. Our

agents perform knowledge assimilation, observing inputs and adapting themselves to

a changing environment. They also can use abduction to reason about actions and

perform outputs to the environment. Our agents keep an explicit representation of

goals which is used in conjunction with observations to guide the behaviour of those

agents in the world. All this is accomplished within a logic programming framework.

We have modelled agents using PROLOG and APRIL as the building tools

and simulate a world populated by this sort of agents. A set of experiments has been

carried out with the PROLOG-APRIL test-bed and the obtained data has been used

to analyse the effect of bounded reasoning in the performance of the agents. We

suggest that other logic-based tools as the Event Calculus and Metalogic can be use

to tackle the problems of planning and cooperation in Multi-Agent Systems.

Logic Programming Agents

6

INTRODUCTION

I.1.Logic-based Multi-Agents Systems.

This work is concerned with logic-based Multi-Agents Systems. Multi-Agents

is an important category of Distributed Artificial Intelligence Systems (DAI), whose

main feature is that the distributed entities are autonomous (self-controlled). An

agent is an aggregate of knowledge, practical skills, and its own single locus of

control and intentions [Bond, Gasser; 1988]. With independent entities interacting

in the same system, a clear need exists for coordinating their activities in pursue of

goals seen as individuals interacting goals or as global goals. The other universally

accepted category in DAI, Distributed Problem Solving (DPS), considers how to

split a problem into a collection of "nodes" [Bond, Gasser; 1988] that can work

separately with less complex sub-problems. DPS systems use the pre-obtained

"problem architecture" to coordinate the solving process and integrate the solutions.

However, unlike DPS, in Multi-Agents Systems the task of coordination can be quite

difficult. In more interesting systems (realistic open systems [Hewitt; 1985]), it may

be the case that there is not possibility for global control, globally consistent

knowledge, global shared goals or universal success criteria and that the system

representation is incomplete. Under some or all of those conditions, the agents need

to reason about the process of coordination among themselves [Bond, Gasser; 1988].

According to the previous picture an agent could be a rather complex entity.

We are talking about systems that have explicit representations of goals and an

internal representation of the world that probably includes models of the other

agents. The agents use their knowledge bases for reasoning and planning their next

actions. The agents are, therefore, strictly rational agents with a well-defined logical

inference machine.

Some researchers have argued that this approach for system construction,

using logic-based agents, is "entirely unrealistic" [Steels; 1990] because: 1) the

technological complexity required is too high, 2) there is no way of extracting logical

description of the world from the current sensing devices and 3) Logic-based AI

faces several theoretical problems (frame problem, reasoning about time and space,

and modelling the non-monotonic dynamic of the world). Steel [Steels; 1990]

proposed an apparent alternative to the logic-based approach: the behaviour based

approach in which, he uses the subsumption architecture of Brooks [Brooks; 1986]

Logic Programming Agents

7

to get emergent functionality from very simple reactive pattern.

Logic Programming Agents

8

The aim of the current work is to show that reactive multi-agent systems can

be modelled as logic-based agents with bounded resources. We employ a Logic

Programming framework to implement agents with limited reasoning capability,

which perform efficiently but still use a sound inference mechanism for reasoning

about themselves and the external world and planning their actions. As part of a

Logic Programming framework, ours system can employ representations that

overcome the problems of reasoning about time and the frame problem. Our

proposal addresses the key issue of adaptation whereby the agents can cope with the

dynamic of the world. We implement for each agent an adaptable locus of control

algorithm, recently presented [Kowalski; 1994b] which interleaves planning and

execution.

Possibly the more important by-product of this work is that, by implementing

efficient agent in a logic programming framework, we let open the possibility for

developing multi-purpose Multi-Agents Systems. Systems in which the agents may

reason about cooperating strategies, may efficiently use communication and shared

resources and may accomplish realistic autonomy. All this without having to lose

performance or other practical capabilities.

This document is organised as follow. The last section of the Introduction

presents the system used as the test-bed: APRIL and the APRIL-PROLOG interface.

Chapter 1 presents the logic-programming implementation of the "brain" of our

agents. We start by giving account of previous research in logic-base Multi-Agents

Systems and located our work in this stream. In Chapter 2, we present our

implementation and compare the Steel's [Steels; 1990] proposal to our, showing how

the subsumption architecture can be seem as a resolution search strategy and how to

model forward-backward representations. Chapter 3 describes our experiments and

presents the results. We conclude in the next part and show possible extensions to

this work and guidelines for the rest of this research project. The appendices contain

the source codes of our implementation and present the details of the

APRIL-PROLOG interface developed as part of this work.

I.2 April: A language and a Test-bed for making experiments with Multi-Agents

Systems.

APRIL, Agent PRocess Interaction Language, is a programming language

and a test-bed for building distributed artificial intelligence applications [McCabe;

1993]. The language is process-oriented. Programmers can write multi-process

Logic Programming Agents

9

applications in a high level approach that combine the thread-based program

structure, with a C-UNIX like syntax. A typical APRIL file contains several

procedures including the

Logic Programming Agents

10

"main" procedure, in complete analogy to c files (the procedures are similar to c

functions). Some of these procedures can be, depending on the programmer's design,

invoked as separated process by "fork" calls (the threads of some multiprogramming

environments). However, the implementation details of the communications channels

among process are completely transparent for the programmers.

Apart from those features that can make the language attractive for writing

distributed applications, APRIL is also a symbolic language. It has a powerful data

structuring and expression handling features and pattern-matching. It is a strongly

typed language, with facilities for user-defined types but only one built-in complex

structure (the tuple). The language can be its own meta-language and even program

codes can be interchange among processes (as messages) and incorporated to their

code at run time. The environment includes a macro-processing sub-language

whereby the original language can be transformed and extended to fit user

necessities or wishes. APRIL is an object-oriented language thank to its

macro-facilities [McCabe; 1994].

In spite of all said, APRIL is not "a multi-agent applications language"

[McCabe; 1993]. it does not oblige any particular internal agent's architecture

(knowledge and/or belief representation and control mechanisms, as in Shoham's

AGENT0 [Shoham; 1991]). We believe what makes APRIL so handsome for

multi-agent's implementations are its facilities for modelling interactions among

process and, consequently, among agents. For the sake of "briefness" let us present

an example of an APRIL program that models a real human conversation. The

example is not particularly enlightening, but it is a real human talk (it is a common

joke-game among grandparents and their grandchildren in Venezuela) and has the

advantage that is supposed to last forever. One of the agents (the grandfather) starts

by saying: "Do you want me to tell you the story of the bald cock?" . The other agent

(the grandson) answers (specially if it's the first time he plays) "Yes!". Then the first

agent uses this answers to reply: "It is not that 'Yes!' but if you want me to tell you

the story of the bald cock?". From there on, the first agent keeps using the second's

responses to reply and if the second agent is patient enough (the grandparents always

are) that chat becomes a never-ending sequence with the following dialogue

structure:

Agent1: Do you want me to tell you the story of the bald cock?

Agent2: <any answer>

Agent1: It isn't that '<any answer>' but if you want me to tell you the story of the

Logic Programming Agents

11

bald cock.

Logic Programming Agents

12

Our two agents can be simulated by the following APRIL program. This

program has two procedures (representing one agent each) and the main procedure

for setting up the chat. All of them can be store in the same text file (but the file

structure of APRIL is currently changing to a modular structure, to cope with more

comprehensive developments).

/* __ agent2 */

agent2(){

 while true do {

 DoYouWantMeToTellYouTheBaldCockStory => {

 symbol?answer := genAnswer(yes_No);

 answer >> replyto

 }

 | quit => break

 }

};

/* __ agent1 */

agent1(handle?agent2){

 DoYouWantMeToTellYouTheBaldCockStory >> agent2;

 while true do {

 quit => break

 | any?answer => {

 DoYouWantMeToTellYouTheBaldCockStory >> replyto

 }

 }

};

genAnswer(symbol?basicAnswer) -> symbol?valof{

 symbol?basename := gensym();

 /* generate a symbol like Noname01 */

 /* split it into "Noname" and "01" */

 [symbol,symbol]?splitname := split(basename, 7);

 /* take the "01" part into counter */

 [symbol,symbol?counter] = splitname;

 /* concatenate argument with counter */

 symbol?answer := catenate(basicAnswer, counter);

Logic Programming Agents

13

 valis answer /* Return the just built answer */

} ;

Logic Programming Agents

14

/* ____________________________________ main process */

main(any[]?ar){

 if |ar| < 2 then {

 writef(stdout,"usage: april exam1 <agent2name>

<agent1name>\n",[]);

 exit(1);

 };

 handle?grandson := handle?ar[1];

 handle?grandfather := handle?ar[2];

 /* the processes representing the agents are created */

 grandson names agent2() ; /* fork call */

 grandfather names agent1(grandson) ; /* fork call */

 { any?Msg => relax

 | timeout 2 secs => relax }; /*simulat. last 2

seconds*/

 /*The main process inform the agents the game is over

*/

 quit >> grandfather;

 quit >> grandson;

};

The first part of the file contains the procedure that models agent2. Its

structure is very similar to a C-function. There is a "while" control structure, which

as usual, is a loop in the execution flow. However, inside the loop there is an

unusual structure: several statements separated by "|" ({ st1 | st2 | .. | stn }). This is

the choice operator and the sentences it separates are guarded statements (G => S):

statements preceded by tests that allows or disallows their execution. There are two

types of guarded statement in APRIL: semantics guards and message guards. In this

case, those are message guards. Whenever a message is received by agent1, this

message is compared with the set of guards inside the while. If the message matches

one of the guards, this one succeeds and its associated sentences are executed. If no

Logic Programming Agents

15

message matches any guard (or if there is no message at all) the process stays

suspended.
Only two types of message can be "accepted" by agent2 (for simplicity

instead of the answer "it isn't that" we keep using the first question).
DoYouWantMeToTellYouTheBaldCockStory is one (rather long) pattern,

and

Logic Programming Agents

16

quit is the other. Whenever a message containing quit is received, the sentence

break is executed and the process gives up the while loop, ending the execution

afterwards. Observe that the agent2 process does not care who (which process)

sent a message. However, there are ways of checking the message's source using the

guard test. The other important things to note in the code are the declaring

statements with the form type?var (which in this code always appears combined with

the assignment, but this is not compulsory). A variable can be declared anywhere in

the code (as in C) and its scope extends until the next ending curly brace "}". There
are 7 basic types in APRIL: symbol, handle, number, integer, real,

logical and any. Our example only employs the first two. The last one (any) is

used when no type can be anticipated. As we said before, only one built-in,

compound type exists in APRIL: the tuple. Nevertheless, users can define its own

types, even using tuples of tuples nested to an arbitrary depth.
Procedure agent1 should be understandable at this stage. The structure

genAnswer is a function, the only kind of APRIL subroutine that return values.

Hence, unlike procedures, functions have types (functioname(argdecl) ->

type?valof{ .. valis value }). The main procedure is explained by the

comments. The function names create a new agent with the name given as first

parameter. We obtain those names from the arguments given when the APRIL

test-bed is called to run this program. It worth noting that an APRIL process (in this

case, there is one process in each agent) is not a machine (operating system) process.

The APRIL executive implements its own non-preemptive process manager that

executes the code pre-compiled (by the APRIL compiler).

By adding some write instructions (see appendix A) we can get the following

trace of our simple multi-agents' application:

MAIN(april#19555):Starting the simulation

AGENT1(Grandpa):Do you want me to tell you the story of

the bald cock?..

AGENT2(Grandson):yes_No0

AGENT1(Grandpa):It isn`t that yes_No0, but if you want

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No1

Logic Programming Agents

17

Logic Programming Agents

18

AGENT1(Grandpa):It isn`t that yes_No1, but if you want

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No2

AGENT1(Grandpa):It isn`t that yes_No2, but if you want

me to tell you the story of the bald cock..

.

.

.

AGENT1(Grandpa):It isn`t that yes_No423, but if you want

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No424

MAIN(april#19555):Ending the simulation

APRIL is not only a language. It is a distributed platform that includes a

compiler, a program administrative (an interpreter of pre-compiled APRIL

programs), a nameserver (for managing the addresses of agents located anywhere in

the network) and also that provides facilities for visualisation through a special agent

called DIALOX. DIALOX is seen, from the point of view of other APRIL agents, as

another agent that can receive messages related to visualisation tasks.

In this project we use APRIL for building the agents of the application and

other especial agents representing the worlds where the former live. We use

DIALOX for displaying the activities of those agents in those worlds (as elemental

computing animations). Finally, we use PROLOG and all its inference machinery for

implementing the brains of the intelligent agents. For the point of view of APRIL

agents, PROLOG is, as DIALOX, one more agent with which they can interact.

APRIL is a system under development. The compiler is been migrated from

PROLOG to C, seeking efficiency for bigger applications. DIALOX is in its first

versions. As part of this MSc project, we develop an APRIL-PROLOG interface that

allows PROLOG programs to perform as APRIL agents. The interface has been

developed on top of a TCP/IP (UDP) communications platform1
 that has been used for DIALOX -

APRIL communications. The details of our application are presented later on, but the general architecture is summarised in figure I.1.

Every rectangle is an operating-system process acting as an APRIL agent. The arrows represent

1This interface was provided by Prof. F. McCabe.

Logic Programming Agents

19

interchange of APRIL messages. The titles in bold letters show the language used to write each program. DIALOX and apnameserver are

independent agents. The nameserver (apnameserver) is consulted by the other agents when they need to find out the real location

(addresses) of other agents. There is no logical bound for the value K (the number of simulated agent).

brain 1

brain K

body 1

body K

WORLD

apnameserver

DIALOX

PROLOG APRIL

PROLOG APRIL

APRIL

Figure I.1 APRIL-PROLOG test-bed.

This project has been developed in a UNIX platform. The APRIL system runs in SunOS machines

with TCP/IP as the networking environment. DIALOX employs X11/R6 servers and compatible versions. The

PROLOG system employed is SWI-PROLOG [Wielemaker; 1989]. The PROLOG-APRIL interface is a set of

C-programs incorporated to the UNIX (SunOS) SWI-PROLOG. The interface employs the signalling facilities

of UNIX and therefore, it is not completely portable to other operating systems, unless these provided a signal

management similar to UNIX's. The PROLOG programs try to preserve Edinburgh compatibility (however,

we had to use the particular I/O tools of SWI-PROLOG). Some of them were developed and tested in the

DOS-WINDOWS SWI-PROLOG.

Logic Programming Agents

20

CHAPTER 1

LOGIC PROGRAMMING AGENTS

1.1. From reactive agent to deliberate agents.

There have been numerous attempts to model agents either as reactive or as

deliberate entities. In this section we summarise one attempt that tries to cover the

gap between them. In [Genesereth, Nilsson; 1988] Genesereth and Nilsson have

proposed 5 types of agent architecture that could be seen as corresponding to ordered

steps in a progression between reactive and cognitive agents. Starting with The

Tropistic Agent, "whose activity at any moment is determined entirely by its

environment at that moment" [Genesereth, Nilsson; 1988] they define several basic

concepts: partition, sensory function, effectory function and action function. All

those ideas, together with the traditional notions of state and action allow this

authors to characterise the Tropistic Agents as a 6-tuple:

<States, Partial descrip, Actions, sensory function, effectory function, action

function>.

Observe that this conceptualisation does not take into account the idea of an

internal state in the agent (memory). The action function simply relates actions with

situations in which the agent might be. These relations are probably hard-wired in

the agents' structure. The agent does not need to record any global or permanent

information. Indeed, the agent does not distinguish perfectly all the states of the

world. It only recognises what they call partitions: set of states in which certain

feature or property holds. We prefer name those sets partial descriptions as they are

incomplete descriptions of states in the world stored inside the agent. This model fits

perfectly with the generally accepted conception of what it is a reactive agent.

Moreover, the term Tropism has been used in other works on Reactive Agents (See

for instance [Feber, Drogoul; 1991]).

The notion of internal state appears in the following type or agent: The

Hysteretic Agent. The internal state is used as an additional parameter for defining

the next action to be performed by the agent.

However, the next architecture presented by [Genesereth, Nilsson; 1988]

substituted the original proposal for an internal state (which is too much detailed

according to them), with the notion of database. This could be seen as rising the
Logic Programming Agents

21

abstraction level of the model. From this point on, the internal state of the agent

Logic Programming Agents

22

contains a set of sentences in predicate calculus conforming a database. The content

of this database (and the non-predefined method of consulting and searching)

determines the next action to be performed. This is a Knowledge-Level Agent

Architecture.

The Stepped Knowledge-Level Agent is an monotonic agent in the sense that

new sentences can be added to the database (programme), but no sentences are ever

removed. To accomplish this, the agents need and additional structure as part of their

internal state: a counter of the cycles of the agent's operation.

Finally, The Deliberate Agent "prescribes the use of some automated

inference method in deriving the sentences that indicate the required action on each

cycle" [Genesereth, Nilsson; 1988]. Of course, the inferences are made upon the

sentences in the agent's database which, in turn, is updated to include observations

and past actions' records. These authors also present an alternative characterisation

of a deliberate agent as a programme in imperative style ([Genesereth, Nilsson;

1988], fig. 13.9):

Procedure CD(DB)

Begin CYCLE <- 1,

Tag OBS <- OBSERVE(CYCLE),

DB <- APPEND([T(OBS, Ext(CYCLE)]),DB),

ACT <- FIND(k, Must(CYCLE)=k, DB),

EXECUTE(ACT),

DB <- APPEND([Act(CYCLE)=ACT], DB),

CYCLE <- CYCLE+1,

GOTO Tag

End

1.2. From deliberate agents to reactive agents.

The work just discussed covers the gap between reactive and deliberate agents but does not

consider the opposite direction: how can a deliberate agent be transform to a reactive agent. This has

to be done in order to assert that both agents general architectures are transmutable into each other.

Previous works have avoid the idea and, instead, have tried to combine both architectures. The

InteRRaP Project [Muller, Pischel; 1993]) have considered the use of pattern of behaviour, a special

version of production rules in which the action component is a set of pre-compiled abstract low level

actions (a plan) for executing routine behaviours. This routine behaviour does not require deep

Logic Programming Agents

23

reflection or planning [Muller, Pischel; 1993]. In the InteRRaP

Logic Programming Agents

24

project the agent structure combines behaviour-base components with plan-based components,

acknowledging the fact that efficient agents still require a deliberate component. They insist in

seeing its reactive components (pattern of behaviour) as procedural knowledge, in contrast to the

knowledge that can be represented in a declarative manner.

Our proposal shares with the InteRRaP project the belief that a complete autonomous agent

should somehow combine reactive behaviour with deep well-founded reasoning. However, we

believe that all this can be provided inside the framework of a logical representation. We believe that

the reactive behaviour is as logical as possible. An agent needs to decide the next action it will

execute. However, probably due to some environmental constraint, it does not have enough resource

to perform a deep thinking for getting a well-founded solution. Therefore, it has to consider only

those alternatives that it can superficially explore in the little time or with the small space of

memory it has. Of course, if the situation prescribes a routine behaviour, the agent could capitalise

over previous reasoning achievements that, after been accomplished several times, were stored as

pre-compiled (partial evaluated) solutions. We believe that partial evaluation is the key for

integrating learning and the development of skills into our agents' setting, but we do not take this

issue any further in the present work. Moreover, there are other alternatives for helping the agent to

make a sensible decision as we will show later on.

The key strategy we use to obtain reactive performance is by limiting the resources the

agent has to perform its reasoning activities (time, space of memory or speed of processing). We

propose to extend the Genesereth&Nilsson's conceptualisation of Deliberate Agents to incorporate

the notion of resource allocation function. Our intention is to prove that a Cognitive Agent

(Genesereth&Nilsson's Deliberate Agent) can be regarded as a Reactive Agent at certain moments of

its life, when it has no enough resources to make deductions with a database. The basic limiting

resource is time. Therefore we devise a function that, at any cycle in the agent's life, assigns limits of

time to every internal activity (observing, updating database, reasoning and acting). The time

allocation function maps the database (D), the agent's cycle (C), and the agent's internal condition

(IC) to a time amount (N):

resource_alloc: D x C x IC ---> N

Consequently, the new Deliberate Agent with bounded time can be define as a 9-tuple as

follows: D is an arbitrary set of predicate calculus databases (one for each cycle), S is a set of

external states, T is a set of partial descriptions of states in S, A is a set of actions and N is a natural

number indicating amounts of time to be employed

Logic Programming Agents

25

in an internal action. In addition, see in the sensory function from S x Ns into T, do is a effectory

function from A x S x Ne into S, database is an update function from D x C x T x Nt into the new

D, action is a function from D x C x T x Nt into A and resource_alloc is the just defined resource

allocation function that produces Ns, Ne and Nt, different time limits for each internal action or

living phase (per cycle).

< D, S, T, A, see, do, database, action, resource_alloc >

Is worth noting that the parameter N (time resource) can have different interpretations.

Considered in absolute terms, N limits the amount of time dedicated to each phase of the agent's life

(Nt: time for thinking, Ns: time for observing and so on). However, if the cycle is considered as the

real time reference (a cycle is the unit of time), N could be regarded as speed. Hence, an agent with

a bigger Nt thinks faster than other with a lower Nt. In general when Ns is big enough, it can plan

ahead as a full cognitive agent. On the other hand, if Nt is small, the agent can perform only a

limited amount of reasoning. It might decide its next action but this is not sure. In the case of small

Nt, the agent would be doing its action and its consequence observation sooner and therefore, its

interaction with its environment is more similar to that of the reactive agents.

 For the sake of simplicity, in the rest of the world we will consider Ns and Ne as being

equal to 1. So, in a typical cycle of life, an agent performs an observation, reasons as long as its Nt

allows, and then executes an action, if it could choose one. The action can fail or succeed and the

cycle start again with other observation. This is the basic adaptable locus of control algorithm,

which has been presented in a more general framework elsewhere [Kowalski; 1994b] and will be

examined in the following section.

For completing our discussion about cognitive and reactive agent, there is something else to

be said. In the Genesereth&Nilsson's proposal, the Tropistic agent does not have an internal

representation of its state. Its action function is a map between partitions (partial descriptions of

states obtained by specific sensors) and actions. However, one could see this map as part of an

abstract database which, among other more complex knowledge structures, comprises

perception-action rules implemented in hardware. The rest of the database may be implemented by

other means (firmware, different software). In any case, the hardware portion of the database is by

nature more efficient, and thus, even with a low N (few resources), is likely to be consulted during

the process of deciding the next action. This imposes a layered structure that priorized the access to

the hardware low-level layer, against the access to the rest of the database. In the Tropistic Agent the

rest of the database does not exist. The perception-action rules are hard-wired in. Nonetheless, the

knowledge

Logic Programming Agents

26

relating perception with actions is still there. We are not getting rid of the representation. We are

once again in the eternal dilemma of the programmer: to write programs in assembler, (or by wiring

transistors) dealing with an awful amount of details but with full control and efficiency, or write

programs in some high-level programming language, without so many details, but with the nuisance

of sometimes inappropriate abstractions. In either case the programme will be there in one and/or

other representation.

1.3. Knowledge Assimilation and the adaptable locus of control.

In [Kowalski; 1979], Kowalski proposed the use of assimilation for dealing with changes

and updates in information systems and databases. In that context an information system was a

collection of assumptions expressed in logic (the database), together with a proof procedure and

maintenance procedures. The set of procedures deals with cases when 1) the new information is

already implied by the database, 2) the new data implies existing data, 2) the new information is

independent from the current database or 4) is inconsistent with it [Kowalski; 1979]. The proof

procedure is used, not only to answer queries posted to the database, but also to perform the

assimilation of inputs. Hence, its outcomes are an answer to the query and a new database that has

assimilated the changes.

Recently, this very same idea has been reintroduced as part of a computational approach to

logic called 'CL' (computational logic [Kowalski; 1994a]) which is aimed to understand

autonomous intelligent agents and human reasoning. In this context, "knowledge assimilation

provides a syntactic and pragmatic alternative to model theory as an account of the relationship

between language an experience.[..] the experience takes the form of an inescapable stream of input

sentences, which needs to be assimilated into a constantly changing knowledge base" ([Kowalski;

1994a], pg. 46). Computational logic has very attractive features for supporting the work in

multi-agent systems. Firstly, it is based in the clausal and logic programming forms of logic, which

have proved useful for building a wide range of computing applications. In the second place, it

provides an alternative that gets over the inconveniences of model theory, closed world assumptions

and possible worlds' semantics of logic, seen by Hewitt [Hewitt; 1985] as inadequate to model open

system's dynamics. Indeed, knowledge assimilation, by tackling the need of processing an almost

continuous stream of input sentences, is fulfilling the requirement to allow for the open-ended

incremental introduction of new beliefs and

Logic Programming Agents

27

objects, also pointed out by Hewitt [Hewitt; 1985] as an essential need in open systems.

Also, the knowledge assimilation idea in Computational Logic has already been put to work.

In [Kowalski; 1994b], a proposal that preceded and inspired our project, Kowalski presents an initial

attempt to specify the main cycle of a rational, active agent. We called it the adaptable locus of

control algorithm and may be sketched as a logic program as follow:

cycle(KB, Goals, T) <-

observe(Input, T),

assimilate(Input, KB, NewKB, Goals, NextGoals,

 [T+1, T+N]),

execute(NewKB, Goals, NextGoals, NewGoals,

 T + N + 1),

cycle(NewKB, NewGoals, T + N + 2).

It worth noting that this logic program, in its procedural interpretation, is equivalent to the

Genesereth&Nilsson's imperative program for modelling deliberate agents. The main difference is

that the logical semantics of the former is provided by the CL framework. The locus of control could

be explained as follow:

The observe condition obtains the input at time T. This could be regarded as an access to

an abstract database (which in this case is the environment) as is done by some "query-the-user"

facilities in expert systems (in which case, the database is assumed to be partially in the user's brain,

partially inside the expert system).

The assimilate call combines the maintenance procedures for updating the database

with the proof procedure that reduces the current goals to a set of new goals. The possibility of

seeing an action as a goal, a search space as a hierarchy of goals, and a set of sub-goals as a plan

provides a powerful, practical framework for modelling agents. As we shall see later on, an

assimilation call, which is not allowed to last more than N reduction steps, obtains a more detailed,

possibly executable, set of goals, from the previous set. The N refers to the number of inference

steps in the bounded reasoning proof procedure. An executable goal is an abduced term that

represents a low-level atomic action that could be executed by the body of the agent as a unit. A

partial plan is a logical conjunction of executable goals with high-level (still to be reduced) goals.

A full plan is a conjunction of executable goals only. Every set of goals (Goals, NextGoals and

NewGoals in the previous programme) is, in general, a disjunction of goals. These goals can be

conjunctions of non-executable sub-goals, partial plans or full plans.

Logic Programming Agents

28

The logical status of the execute condition is under investigation. In our system what the

executive does is: the brain checks the set of goals received. If this set contains a partial plan, pick

the plan, take the first (low-level atomic) action (scheduled for this time) and try to execute it. That

is, the brain of the agent sends an order to its body to execute this action. The body tries to execute

the action. Whether it fails or not, it will send and acknowledge (fail or succeed) message back to its

brain. If the brain receives a succeed message, it commits to the current plan being executed, which

will be considered for extension in the next cycle. That means that the alternatives to this plan at this

stage, are forgotten. It is easy to see the reason. If the action succeeds, the agent (body and brain, of

course) is now in a new situation in the world. The alternatives to its plan at this stage, are choices

for the previous situation and have nothing to do with the new next action. On the other hand, if the

action fails, the brain will receive a failed message and will throw away the current plan being

executed, preparing one of its alternative plans to be considered in the next cycle. It is the

responsibility of the brain's designer to ensure that there is always an alternative plan, or a way to

obtain one. Finally, If there is no partial or full plan in the current set, the only action the body

should execute (and that is always executed attached to the other actions) is sensing its environment.

In this case, the set of goals will not be modified.

In order to give a logical interpretation to this process, Kowalski [Kowalski; 1994b]

suggests regarding it as 1) using abduction to add to the knowledge base the assertion: the agent is

trying to perform this action at this time, and 2) making this assertion available to the environment

as an input to it. This would be equivalent to consider the world one more agent, an explanation

which is not fully investigated yet. However, this could be similar to the message-passing semantics

proposed by Hewitt [Hewitt; 1985], where the meaning of a message is determined by how it affects

the recipients. Under Kowalski's interpretation there is a symmetry between the agent and the

environment. The agent needs to assimilate inputs from the environment (observations) possibly

rejecting the ones which are incompatible with is beliefs (an optical illusion would fall in this

category, for instance). On the other hand, the environment needs to assimilate the outputs from the

agent (its actions) which are regarded as input to the world. Infeasible actions (actions that can not

be executed) could be seen as inputs rejected by the environment because they "are inconsistent with

the environment's beliefs"2
.

The last condition in the locus of control algorithm is the cycle itself, which recursively invokes the next iteration cycle at a

new time, with a new database and a new set of goals.

2This explanation is due to Prof. R. Kowalski.

Logic Programming Agents

29

We regard the cycle as an adaptable locus of control algorithm because the agent can iteratively update its beliefs and

model of the world while is acting in this world. This continuous update or better said, assimilation, is the base of a rational, practical,

adaptable behaviour. The agent is continuously learning about the world and changing its mind accordingly.

Logic Programming Agents

30

CHAPTER 2

SIMULATING AGENTS in PROLOG and APRIL

2.1. Modelling agents in the PROLOG-APRIL TEST-BED.

This project has consisted essentially of implementing models of multi-agent

systems, using APRIL and PROLOG as building tools. The purpose of such models

is to simulate agents' performances in a social context. As Ferber and Drogoul in

[Feber, Drogoul; 1991] we depart from the traditional simulation techniques, based

on mathematical and stochastic models, in the belief that these techniques are very

limited to simulate societies. Specially in the case of societies of autonomous

intelligent agents it is essential for researchers to see the specific behaviour of

individuals: the actions they perform. This is missing in the traditional simulation

framework where actions are only considered through their very final quantitative

effects or by measuring their probability to happen. In our case, due to the fact that

we are proposing an approach for specifying the behaviour of autonomous agents

(for implementing artificial agents, indeed), it seems natural to try to related a

program to an individual. Afterwards, we can simulate a world populated of

interacting individuals of that sort. Of course, we still can collect statistics of these

individuals and use them to infer features of the real world. We can also do a detailed

analysis of the individual behaviour and its relationship with the global social

behaviour.

Some people (see again [Feber, Drogoul; 1991]) argue that the classical

stochastic simulation is an exercise of reductionism at macro-level, which cut off

micro-elements and complex subtle components that affect the world being

simulated. This eventually extends the gap between the simulation model and the

real world. In contrast, the multi-agents' approach can capture the interactions among

individuals, from which a global behaviour of the population emerges. We are still

sceptical about the applicability of this approach to the modelling and simulation of

arbitrary natural societies, but it is certainly useful and effective (and more faithful to

the world than the classical simulation alone) for simulating open systems and

systems composed of intelligent agents and human beings as operators.

As we said in the introduction, we use the services of the APRIL platform.

The agents, whatever they are in the real world, are devices as APRIL agents

together with PROLOG process whenever they require reasoning capabilities. The
Logic Programming Agents

31

world, for instance, is models as a pure APRIL agent, not because it would be

controversial to assign reasoning capabilities to the world, but because the database

management

Logic Programming Agents

32

capabilities we need from the world, can be implemented totally in APRIL.

Therefore, in our applications the world is a central database with a manager. The

other agents interact with this manager every time they want to execute an action.

An APRIL agent can consist of several APRIL processes active in parallel and

synchronising themselves through the interchange of messages.

2.2. The path-finding and warehouse applications.

This project was somehow inspired by the work done in the InteRRaP project

of DFKI [Muller, Pischel; 1993] Their approach is totally different to our, but the

motivations are the same. We both address the issues of reactive agents versus

deliberative agents, the world seen as a central agent and efficient, adaptable,

search-control algorithms. Consequently, we decide to share with them also one

application example, which is becoming a classical example. This project is aimed at

implementing the warehouse simulation: A set of robots which work in a loading

dock warehouse as forklifts, loading and unloading boxes from a truck to some

shelves. The example is interesting because provides a framework where

communication, cooperation and reasoning about other agents are all needed.

However, the implementation of the test-bed, including the locus of control

algorithm, and the extension made to PROLOG, proved to be complex enough to

consume more than the time available for this first stage of the project.

We had to restrict the work to the implementation of agents who can find their

way in a changing environment. They do not talk each other yet (hence, they will not

cooperate) and the only actions they can perform are turning left or right or moving

forward. However, they can see (with some very limited sensors) the world and

therefore, they can decide how to avoid permanent obstacles and other agents in their

way toward their goal places. Also, the object level knowledge required by the

path-finders is particular suitable for a layered arrangement as we explain in the next

section. We show experiments of this sort in the next chapter. The rest of this section

is devoted to describing the world agent, the robots and their brains.

2.2.1. The World

As in the InteRRaP [Muller, Pischel; 1993] loading dock example, we employ

a raster-based representation of the physical world. An array of cells covers the

Logic Programming Agents

33

environment, each cell representing a significant portion of it. The sizes of the cells

are

Logic Programming Agents

34

adjusted in such a way that a robot occupies just one cell. The cells in turn are

represented by a list of attributes that describe their content. Thus, we end with a

simple database (one flat table) describing the world as follow:

Pos X PosY objec type status bitmap

0 0 floor floor empty floor

0 1 robot1 struc free rb_north

0 2 floor floor empty floor

1 0 floor floor empty floor

1 1 shelf struc empty emp_shel

1 2 floor floor empty floor

2 0 floor floor empty floor

2 1 floor floor empty floor

2 2 floor floor empty floor

The world corresponding to this table is show in figure 2.1:

Robotname

Shelf

X

Y

Figure 2.1. A rasterized world.

Note that our representation of the world is more complex than that. We

devise an (APRIL) agent that manages the database, receives and serves action

request by the agent, calculates and transmits to every robot the portion of the world

inside its range of perception and triggers the animation. This APRIL agent is, in

turn, constituted by

Logic Programming Agents

35

two APRIL processes: a top process that performs all the mentioned activities in a

centralised fashion and an auxiliary process that controls the animation with

DIALOX. The following code is an outline of the first process written in APRIL:

world(handle?name,handle?interface){

 world_model?real_world := world_model?initial_world();

 /* The world main control cycle */

 repeat {

 [act, m_forward,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 real_world := moving_forward(real_world, Cposx,

 Cposy, Looking_To,replyto,interface);

 }

 | [act, t_right,

 integer?Cposx,integer?Cposy, symbol?Looking_To] => {

 real_world := turning_right(real_world, Cposx,

 Cposy,Looking_To, replyto, interface);

 }

 | [act, t_left,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 real_world := turning_left(real_world, Cposx,

 Cposy,Looking_To, replyto, interface);

 }

/* This actions are not implemented in the current

version

 | [act, take,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 relax

Logic Programming Agents

36

 }

 | [act, put,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 relax

 }*/

Logic Programming Agents

37

 | [act, birth,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 real_world := being_born(real_world, Cposx,Cposy,

 Looking_To, replyto, interface);

 }

 | [act, look,

 integer?Cposx, integer?Cposy, symbol?Looking_To] =>

{

 world_model?cp := world_model?(real_world^/[Cposx,

Cposy,symbol, symbol, symbol, symbol]);

 [[any,any,any,any,any,symbol?bm]] = cp;

 /* Build the new vision field of this robot */

world_model?new_scene:=vision_field(real_world,

 Cposx,Cposy,bm);

 /* acknowledge execution */

 [ok, Cposx, Cposy, new_scene] >> replyto ;

 }

 | any?Msg => writef(stdout,

 "Strange messagge %p\n",[Msg])

 } until end ;

}; /* of the world */

Logic Programming Agents

38

Briefly explained, this is a typical agent's control loop with message-guard

tests, which allows the system to discriminate among the action-messages it receives,

and to activate the database maintenance routines accordingly. These routines

(APRIL functions most of them) perform the actions of the agents in the world and

generate

Logic Programming Agents

39

the responses for the bodies of the agents. The succeed responses always include an

update of the robot's vision of the world (but only the current field of vision). The

range of perception of the robots is limited in this first version to one cell (the front
cell). However, this could be changed by modifying the vision field function.

The look action is a motionless action. It does not modify the world database but

only allows the agents to have a look at it. All actions are atomic in the sense that

only one is executed at the time. The order of execution is established by the order of

arrival of the messages.

This simulated world brings about the structural constraints in the robots'

behaviour. The forklifts can move neither across structures (including themselves, of

course) nor beyond the limits of the world. Despite this supervisory proficiency, the

role of the world agent is still passive. The world does not affect the robot agents or

itself by executing actions or generating events. Furthermore, the world agent does

not influence the update of the robot's vision of the world: if one agent changes the

database, the others will only know about it when they sense the world. The world

will not inform those changes by its own agency.

The simulated world was originally designed to model the warehouse.
Nevertheless, by changing the content of the file world.db (see appendix A) which

stores the initial specification of the world (as is read by the initial_world

function), any other rasterized world can be simulated. In fact, our experiments are
made in a more simple world: the patio, which allows the robots more freedom of

movement. To get an animation display in agreement with the world being simulated,

the auxiliary process also needs to be modified, but the rest of the world agent stays

the same. The appendices (See appendix D) also include some typical snapshots

picked from the images of the animation.

2.2.2. Robots.

These are the active, deliberate agents of this application. The forklifts (we

prefer to call them robots) are, as expected, more complex than the world agent, but

also more than a typical APRIL agent. A robot agent is composed of two APRIL

processes and one operating-system (UNIX) process, which runs a special version of
SWI-PROLOG we call plagent (Prolog-Agent). The plagent executes a

PROLOG program that controls the overall behaviour of the robot and that we call

the robot's brain. The brain structure will be discussed in the next section, so let us
concentrate on the other two (APRIL) process. The robot process, apart from being

Logic Programming Agents

40

the locus of control of the APRIL semi-agent, works as the interface between the

Logic Programming Agents

41

(APRIL) body and the (PROLOG) brain. The other process is the body, and its

structure is this:

body(handle?name,handle?worldname){

 repeat {

 [execute, symbol?nact,

 [integer?px,integer?py,

 symbol?dir, symbol?st, any?wm]] => {

 /* send execution request to the world */

 [act, nact, px, py, dir] >> worldname ;

 /* wait answer from the world */

 { [ok, integer?npx,

 integer?npy, world_model?new_scene] => {

 symbol?ndir := newdir(dir,nact) ;

 /*action succeed*/

 [ok,[npx, npy, ndir, st, new_scene]] >> name

 }

 | [failed, action?failed_act] => {

 [failed,failed_act] >> name

 }

 }

 }

 | any?Msg => writef(stdout,"strange message %p",[Msg])

 } until die ;

};

At this stage should be clear that, in the simulated world, all the actions are accomplished by interchange of

messages that transmit the actions, the results and information about the new state of the world. It is important to note,

however, that the robot agent is responsible for deducing and keeping track of its new state as a consequence of those

actions. The world sends back position status (x, y) of the robot for the sake of efficiency (otherwise, these calculations

should be repeated by the robot itself). Other attributes of its current state (the direction the agent is looking to, obtained by

the ndir function, for instance) are locally deduced. It is always possible to exploit (and to study) the trade-off between

using the world central database for storing agents' attributes or to locate those descriptions inside each agent.

This specification of the robot agent as two separate APRIL processes is pursued, not only for its instructional

utility, but also because it allows a more straight-forward implementation of the communication module. The ear-mouth

Logic Programming Agents

42

module, to handle human-like conversations and debates with other robots, should run separated from the rest of the body.

2.2.3. The brain of the robots.

As we said in the introduction, we could implement agents only in APRIL (even with similar deliberate

capabilities). The reason for using PROLOG is to show that an agent's brain can be completely specified (and

implemented) in logic and that a theorem-prover can be as useful as specially designed programs for controlling reactive

autonomous agents. Thus, we sacrifice the probable efficiency of a full APRIL implementation to get the possibility of

employing a language that can be used to describe the object level knowledge about the world, together with the

meta-level knowledge saying how to think and assimilate. Consequently, the brain of the robot is a PROLOG program that

contains: 1) an image of the world database, probably partial and out of date, accessed through the predicate cell/6; 2) a

set of clauses establishing the relations among goals and actions in a particular domain; 3) the code of the meta-interpreter

that implement a sound proof procedure for reducing goals to actions and 4) the locus of control algorithm presented in

chapter 1. We must say that, once again, the clause form of logic proved useful for specifying an information system, in the

sense of [Kowalski; 1979] (Chapter 13), but which can be regarded now as an open system.

The first and last parts of the brain have already been explained. The second is going to be detailed in the next

section. The part 3, we present the interpreter of PROLOG that we use to process the object level clauses written in

PROLOG syntax. This interpreter is itself written in PROLOG which is why we have to call it a PROLOG

meta-interpreter. This meta-interpreter is the implementation of a bounded SLDNF with abduction proof procedure (see

[Hogger; 1990] for further details about SLDNF). The bounded adjective refers to the fact that the meta-interpreter can

perform the reduction in the goals' hierarchy until some predefined extend. This is accomplished by providing the

resolve predicate, the top level procedure of the meta-interpreter, equivalent to Kowalski's demonstrate [Kowalski;

1979] and Shoham's meta predicates [Shoham; 1994], with an extra argument controlling the depth of the search.

To say that the meta-interpreter implements SLDNF resolution is not enough to describe it. SLDNF does not

enforce a particular computation rule or search rule. For both of these we use the PROLOG rules. Our meta-interpreter

selects terms in clauses from left to right. Also, clauses are considered in the order in with they appear in the object-level

database (text order). However, unlike other meta-interpreters, we

Logic Programming Agents

43

do not use the implicit PROLOG backtracking. We build a list of the alternative branches of the search tree and use this

list to select the next branch to be extended. The reason for this explicit list is twofold: 1) We need to keep a record of the

current state of the reduction because, due to the depth constraint, we will have to suspend the resolution, probably before

the current branch get completed; 2) The control of the resolution is going to be transferred to another procedure: the

executive. This executive continues the resolution process by reducing an executable goal (defined in Chapter 1), if there

exists one in the branch being extended. The function of the executive can be seen as testing the validity of an abduced

predicate (the executable goal: do) and asserting its truth-value according to its effect in the world. If the action succeeds,

the truth-value of do term is true and therefore, the current branch (partial or full plan, defined in Chapter 1) can be further

extended. If the action fails, the do term is false, and this falsifies the current branch (conjunction) being extended. In this

case, the executive has to rule out the current branch and backtrack to an alternative branch. Thus, the backtracking can be

effected either by the normal resolve (when some condition does not hold) or by the executive (when an action fails).

Observe that the executive is invoked by the locus of control. In addition, between the main cycle and the meta-interpreter

stands the assimilation procedure. Immediately below, we show the actual codes of the assimilate and resolve

procedures. Observe that the list of alternative goals (or-list) is represent as a ordinary PROLOG list (between square

brackets) whereas a conjunction of sub-goals is represented as a PROLOG and-list and therefore, ends with true. Once

again, we preferred legibility instead of efficiency in our code.

assimilate(Input, Gs, NewGoals, T, N, Tn) :-

 update_world_model(Input),

 resolve(N, Gs, NewGoals),

 Tn is T + N.

resolve(0, Goals, Goals). /* Base cases */

resolve(_, [(true)], [(true)]).

resolve(N, [true|Rest], NGoals) :-

 NNext is N - 1,

 resolve(NNext, Rest, NGoals).

Logic Programming Agents

44

resolve(N, Goals, NGoals) :-

 /* demostrating upon the current KB */

 Goals = [FirstAlt|RemAlt],

 demo(FirstAlt, NewSet), /* G <-> body1 or body2 .. */

 append(NewSet, RemAlt, NextGoals),

 /* depth first search */

 NNext is N - 1,

 resolve(NNext, NextGoals, NGoals).

resolve(N, [_|RemAlt], NGoals) :- /* backtracking */

 NNext is N - 1,

 resolve(NNext, RemAlt, NGoals).

demo(true, [(true)]).

demo((true, R), NewGoals) :- !, demo((R), NewGoals).

demo((not G, R), [(R)]) :- not demo(G, _). /* NF */

demo((G, R), [(R)]) :-

 predicate_property(G, built_in), !, G.

 /* Builtin predicates */

demo((G, R), NewList) :- /* Abducibles */

 abducible(G), !,

 push(G, [(R)], NewList).

demo((G, R), NewList) :- /* Object level clauses */

 findall(BB,

 (clause(G, Body),and_append(Body, R, BB)),

 NewList),

 (NewList = [] -> (fail, !); true).

Logic Programming Agents

45

Note that we do employ abduction (fourth demo clause), but it is not constructive abduction. The

meta-interpreter decides if a particular term can be posted as a suggestion (abductive explanation) to be tested by the

executive, but it does not generate that suggestion. It is responsibility of the programmer-designer of the object level

database, to be sure that the meta-interpreter receives a grounded abducible term. This provision is similar to that used to

avoid floundering in programs with negation as failure and thus most logic programmers are used to it.

In our system, the use of negation as failure (third demo clause) is justified by the need to commit to actions,

making quick decisions with the available information. Thus, the robot will, for instance, decide to move to the next cell if,

either its model of the world says that it is an accessible cell or there is no information about it. The prohibited

predicate, a condition that is part of the object-level database (see appendix B), tests whether a cell is occupied by one

structure and therefore it is not accessible. In addition the robot assumed that a cell is accessible whenever it can not be

prove that it is prohibited (the cell is not prohibited as far as the robot knows. This is the close world assumption of

negation as failure). If this assumption is wrong, that will be corroborated at execution time when the assimilation

procedure will make the adjustment needed to the current set of goals and to the database.

We believe this is an appropriated model of intelligent decision-making. After all, we human beings make

decisions in the same way, probably changing our minds when we come to realise the world. We also believe we address

the objections of Hewitt [Hewitt; 1985] to the use of the close world assumption in open systems, by allowing our

creature [..] to cope appropriately and in timely fashion with changes in its dynamic environment , as Brooks has required

[Brooks; 1991]. In the next sections, we will review the other requirements for artificial creatures that Brooks has

established, to see whether or not our robots satisfy them.

Logic Programming Agents

46

2.3. Backward-forward representations.

In this section we discuss the second part of the brain information system: the set of clauses establishing the

relations among goals and actions in some domain. We try to answer the question: how can specify knowledge relate to a

particular domain, in such a way that an agent can employ this knowledge to guide its actions?. In other words: How to

program an intelligent agent?. Obviously, we are not the first to make this question or to suggest an answer.

The need to act, probably within some period of time, has always been a major problem for the designer of

intelligent agents. Arguably, this could be the reason for the success of condition-action production rule systems or more

recently patterns-with-associations [Newell, Young, Polk; 1993] were the knowledge is pre-compiled to allow more

flexible contingent response. In this sort of system, a set of rules contains the knowledge relating conditions in the world

with actions to be performed. Whenever all the conditions in a rule hold, the rule fires and so, triggers the execution of its

related action, which can produce changes in the world or inside the agent itself. These changes can make other conditions

hold (or not hold). If several rules fire, the system has the extra work of picking one, probably appealing to some

meta-level information. Thus, production-rules can be used to model reactive intelligence.

Although we do not deny the appropriateness of production rules, we believe, following Kowalski [Kowalski;

1994b], that they correspond to normal logic programs whose goals have been put out of sight by pre-compilation. We take

this believe a little further and propose to use logic programs to specify the behaviour of the agents by describing the full

hierarchy that relates goals and conditions with actions. Some implementation tricks are required to obtain the required

efficiency. However, those are only implementation issues, as solvable in the production rules framework as with the logic

programming approach. In exchange, the programmer gets the greater expressiveness of logic programming with its

declarative and procedural readings.

What we call a hierarchy of goals is simply an abstraction of the SLD-tree. The root of the tree is a high-level

goal. The intermediate nodes are sub-goals. The leaves of the tree are either low-level conditions or actions

(executable-goals). The system maintains a list of conjunctions, as the one described in Chapter 1, to store the current set

of leaves of the SLD-tree. During the process of reduction, this list is updated accordingly. To illustrate the resolution

process, we immediately include a fragment of a typical evaluation, showing the evolution of the list in PROLOG-like

notation (uppercase letters represents variables). This example employs the rules involving go goals. Note that, for

simplicity, only one number denotes a geographical situation

Logic Programming Agents

47

(instead of the normal X-Y representation). The lowercase letter beside the number indicates the direction toward which

the agent is looking:

[(go(3n,5e))]

↓

[(gradient_steps(3n, Z, 5e), go(Z, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

[(atom(A, 3n, Z), closer(3n, Z, 5e),

 not prohibited(Z), do(A), go(Z, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

[(closer(3n, 0n, 5e), not prohibited(0n),

 do(m_forward), go(0n, 5e)) ;

(closer(3n, 3e, 5e), not prohibited(3e),

 do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohibited(3w),

 do(t_left), go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

.

.

↓

[(not prohibited(3e), do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohibited(3w), do(t_left),

 go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

[(do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohited(3w), do(t_left),

 go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

Looking top-down, the first list contains only one single-term goal: go(3n, 5e), which should be read as the

agent having the intention to go from cell 3 (where it stands looking to the North) to cell 5 (where it will be looking to the

East). This single-term goal is replaced during the first step of reduction by two alternatives set of sub-goals (separated by

semi-colon). Note that each one of those set of sub-goals is a

Logic Programming Agents

48

conjunction of terms (the aforementioned and-list). The terms gradient_steps/3 (from steps in the gradient

direction) and avoid_steps/2 (from steps for obstacle avoidance) represent different strategies for generating the next

action of the agent. The next resolution step (next list) substitutes the first sub-goal in the first set (the

gradient_step/3 term. This is depth-first search) with its definition. Within this definition one can observe several

kinds of terms. The atom/3 term, at the beginning, in a generator term because it generates and action that could be

executed in the current situation (3n) and instantiates the variables accordingly (A with the action, Z with the next

situation). The closer/3 condition tests those situations generated by atom to decide whether each one of them (see

next list) is closer to the final situation than the current situation. Indeed, closer/3 implements our notion of gradient

field (see the source-codes in appendix B). The not prohibited/1 sub-goal was presented in the previous section. It

is a condition for checking that a particular situation, generated by atom/3 and tested for closeness by closer/3, is

indeed accessible (the agent can walk through it). Finally in the definition appears the do/1 term. This is the

executable goal previously described (Chapter 1). It is a term that will be offered to the meta-interpreter for

abduction. Observe that the variable A (specific low-level action) in do/1 is instantiated by the precursor

atom/3 term. Eventually, a do/1 term appears as the first term in the first list (see last list in the example)

ready to be executed (the executive also works in a depth-first fashion). What happens next depend on the sort

of brain involved (reactive or planner as will be explained in Chapter 3). We provide a more comprehensive

explanation on the structure of these domain-specific rules in the following section.

Although the details about what it is a generator term, a condition or an abducible term are important,

the fundamental idea of this representation is the use of what we call situated goals to perform a forward

search within a backward reasoning scheme. Almost every sub-goal term (excepting only the abducible

terms and the non-logical terms used in normal PROLOG programming) carries a description of the current

situation, which may be updated to a new situation when the sub-goal implies the execution of an action

(recall in the previous example go(3n,5e) means the agent is now in 3n and when the goal is accomplished

will be in 5e). Note that what we call situation is not necessarily a complete description of the current state of

the robot. In this case what it is relevant to the goal go/2 is the geographical condition of the agent

(coordinates X and Y and direction toward which it is looking). It does not matter, for instance, whether or not

the robot is carrying a box.

This knowledge database (goal hierarchy) is designed in such a way that the high-level goals are

defined in terms of movements from a well defined initial situation toward a final situation. It could be seen

as the forward reasoning of condition action rules implemented in a backward reasoning framework. We insist

on

Logic Programming Agents

49

the point because it has been mistakenly believed (specially in some non-academic circles) that the backward

reasoning proof procedure implemented in PROLOG can not be use for forward reasoning. Our programs

show that it can be used. Moreover, we are not the first to adopt such representations (see for instance the

DCG rules in [Covington; 1994]).

Let use a classical example to show the universality of this representation. A program for building

towers in the world block might include the following clauses (in PROLOG syntax):

build(InitialTower, FinalTower) :-

put_block_on(InitialTower, NextTower),

build(NextTower, FinalTower).

build(InitialTower, FinalTower) :-

take_block_from(InitialTower, NextTower),

build(NextTower, FinalTower).

The predicate build/2 represents the action of building the tower described by FinalTower,

starting with a tower (that may be a null tower, i.e. the empty table) described by InitialTower. How

efficient (optimal) is the program depend on the actual implementation of the procedures put_block_on/2

and take_block_from/2, which represents the actions of putting a block on top of the current tower and

taking a block from the top of it, respectively. Of course, the process ends when InitialTower is equal to

FinalTower. The key point is to discompose the problem is such a way that the situation description

progress toward the solution while the reasoning is accomplished in backward manner.

2.4. Search by layers.

It is worth noting that in the brain programs, as in normal PROLOG programming, the branching

points of the search tree can be arranged in such a way that during the search, the agent explores first the most

promising branches. Furthermore, the branches could be used to represent layers of control in the sense first

proposed by Brooks [Brooks; 1986] and applied by Steels [Steels; 1990], as we will show later.

In that last reference, one can find a proposal for building reactive agent that advocates the use of

pattern of behaviour against explicit (logical) knowledge

Logic Programming Agents

50

representation. Steels employs Brooks' subsumption architecture [Brooks; 1986] in order to model and

simulate reactive robots in an application very similar to our path-finder example. A fragment of the Steels'

robots subsumption architecture is shown in figure 2.2

RETURN MOVEMENT

EXPLORATION MOVEMENT

OBSTACLE AVOIDANCE

Figure 2.2. Steel's agent architecture.

Steels identify layers with behaviours, which in turn are defined as follow [Steels; 1990]:

Return movement behaviour:

If I am in return mode I chose the direction of the highest gradient.

Exploration movement behaviour:

If I am in exploration mode I chose the direction with the lowest gradient.

Obstacle avoidance behaviour:

If I sense an obstacle in front, I make a random turn.

It is not difficult to argue that these definitions are ordinary condition-action rules. Steels insists that

"there is no sophisticated control strategy or internal reasoning of any sort" behind this architecture. The

layers run in parallel. The only important point about control is that lower-level edicts take precedence over

upper-level ones. That is, whenever there is an obstacle at the front, is the obstacle avoidance layer which

dictates the actions to take. There are not further details in the reference to explain how to resolve other

conflicts. However, some other rules are added to guide the action of the robot by determining its next mode of

operation:

Mode determination:

If I am in exploration mode and I sense no lower concentration than the concentration in the

cell on which I am located, I put myself in return mode.

If I am in return mode and I arrive at my destination, I put myself in exploration mode.

Logic Programming Agents

51

If I am holding a sample, I am in return mode.

Let us present the logic programming specification of our path-finder robot in order to compare it

with the Steels' architecture. A path-finder robot "lives" to find a way of going somewhere. Consequently, one

top level goal of our robot may be logically stated by the predicate: go(InitialSituation,

FinalSituation). We fulfil one of the Brooks' requirements for artificial creatures: "A creature should do

something in the world; it should have some purpose in being" [Brooks; 1991]. We link this overall goal with

more every-day goals and actions by means of the following PROLOG program:

go(InitialSit, FinalSit) :-

gradient_step(InitialSit, IntermSit, FinalSit), go(IntermSit, FinalSit).

go(InitialSit, FinalSit) :-

avoidance_steps(InitialSit, IntermSit), go(IntermSit, FinalSit).

Where the arguments of the go/2 predicate are descriptions of an initial situation and a final situation, the

gradient_step/3 clause is a subgoal forcing the agent to make a step in the direction of certain gradient field and the

avoidance_steps/2 dictates a sequence of actions to avoid obstacles.

We claim that this program generates in our simulated robots the same behaviour that Steel's reports from his.

The first go/2 clause is equivalent to the return and exploration movement layer together because, once a final situation is

established, the agent always tries to follow the shortest way (the direction with the maximum gradient) to its destination.

The second one is the logic programming representation of the obstacle avoidance layer. According to the PROLOG search

rule we use, the first clause is considered first. If there is an obstacle to be avoided, the conditions behind the first clause

will not hold. As a consequence, the search will continue with the next clause that specified the correct behaviour in that

situation. This is the principle of search by layers.

It is important to remember that the clauses can be ruled out either at thinking time or at execution time.

Therefore, even if resolve mistakenly uses the gradient clause, the executive will force backtracking afterwards.

Certainly, this logic programming representation does not allow parallel exploration of clauses. Nevertheless, nothing apart

from the need for choosing only one final action (that also exits in the Steel's architecture), excludes parallel search

throughout the alternative branches. This is possible because our locus of control keeps all the alternatives to particular

goal at any moment. The set of goals, the list of and-lists, used for controlling backtracking is, precisely, a set of

disjunctive sub-goals (an or-list) which

Logic Programming Agents

52

are alternatives to the current goal. This could be seen as having multiple goals at every stage. "Depending on the

circumstances it find itself in, [the robot] will change which particular goals it is actively pursuing" [Brooks; 1991],

another of the requirements established by Brooks and that we have been enumerating.

As a final point in our presentation of the path-finder architecture, let us present the full definition of the

avoidance_steps sub-goal, which will allow us to highlight some important aspects of our representation:

avoidance_steps(CurrentSit, NextSit) :-

 change_dir(CurrentSit, NewSit),

 avoidance_step2(NewSit, NextSit).

avoidance_step2(CurrentSit, NextSit) :-

 move_forward(CurrentSit, NextSit).

avoidance_step2(CurrentSit, NexSit) :-

 avoidance_steps(CurrentSit, NexSit)

change_dir((X, Y, north), (X, Y, east), T) :-

 do(t_right, T).

change_dir((X, Y, south), (X, Y, west), T) :-

 do(t_right, T).

change_dir((X, Y, east), (X, Y, south), T) :-

 do(t_right, T).

change_dir((X, Y, west), (X, Y, north), T) :-

 do(t_right, T).

move_forward((X, Y, north), (X, Ny, north)) :-

 Ny is Y - 1, not prohibited((X, Ny, north)),

 do(m_forward).

move_forward((X, Y, south), (X, Ny, south)) :-

 Ny is Y + 1, not prohibited((X, Ny, south)),

 do(m_forward).

move_forward((X, Y, east), (Nx, Y, east)) :-

 Nx is X + 1, not prohibited((Nx, Y, east)),

 do(m_forward).

Logic Programming Agents

53

move_forward((X, Y, west), (Nx, Y, west)) :-

 Nx is X - 1, not prohibited((Nx, Y, west)),

 do(m_forward).

The avoidance_steps rule states that the actions the robot will take consist of a change of direction

(change_dir) and a second action determined by avoidance_step2 rules The next action, established by

avoidance_step2, is either move forward (move_forward) or try a new change of direction, deduced through a

recursive call to the avoidance_steps rule. Observe that when the robot is surrounded by other structures it keeps

changing directions until it get and open space (which can never happen).

We also include the definitions of change_dir and move_forward. It is important to note that every action

is related to a situation of the robot (the situation with respect to its goal of going somewhere). Thus, the code is carefully

designed to guarantee that the robot always knows where it is. Every atomic action (proposed for abduction by the do

predicate) should be linked to a situation in such a way that if the action succeeds or fails, the robot will be able to deduce

its next situation. The fundamental point is that an over-simplified rule, as the following (presumably closer to the

equivalent condition-action rule), would not be correct:

avoidance_steps(CurrentSit, NewSit) :-

 /* follow the wall */

 change_dir_move_forward(Turn1, CurrentSit, NewSit),

 not prohibited(NewSit),

 do(Turn1),

 do(m_forward).

The first term change_dir_move_forward/2 generate the actual direction for turning and calculate the

new situation. This new situation is tested by prohibited/1 and the two do/1 terms are presented to the executive.

Consider what happens when the do(m_forward) fails. The robot could not change its situation (it is still at

CurrentSit). However the argument of the next term in the goal conjunction is pointing out to the new situation

(NewSit). The robot will eventually lose track of its situation with respect to its goal.

We are conscious of the identification of actions and goals we impose upon our representation. This is not,

however, an actual constraint. One could say, for instance, that the goal of a path-finder is not to go from one point to

another but, instead, to be at certain place (at certain time). This possibility is not excluded in the

Logic Programming Agents

54

representation. An appropriate clause for capturing the idea, could be added to hierarchy, raising its level as follow:

at(FinalSit) :- current_sit(InitSit),

 go(InitSit, FinalSit).

However, the designer needs to be alert in order to prevent tragic errors. For example, one could be tempted to

exploit the easy definition of recursive procedures in clausal form, in order to program a permanent or long lasting

behaviour into the robot. Something like this, following the same idea in the previous clause:

move_around(SomeSit) :-

current_sit(InitSit),

go(InitSit, SomeSit), move_around(InitSit).

This rule is intended to cause the robot to go from one place to another indefinitely. Unfortunately, in brains with

planning capabilities (see next chapter for the definition) and a description of the current_sit restricted to the present

time, this rule is misleading. To see the reason, consider what happens when the resolver has reduced all the sub-goals up

to and including go(InitSit, SomeSit). In the next reduction it will select the clause itself, which carries a call to

the current_sit predicate. This call, however, refers to a situation in which the robot will be later, not the one recorded

in its current mental context. The basic problem is that the database in the robot's brain does not describe the world and its

dynamic, it simulates the world. We require a way of predicting situations of the robot, reasoning about the fact that it is

going to achieve certain goals. We need the robot to project itself into the future.

2.5. Time and events representation in logic programming agents

Although this weakness of the representation, as we have described it so far, could be discouraging for the logic

programmer, it can provide the practical context to introduce a powerful tool employed in more sophisticated agents: time

management [Shoham; 1994] and/or event representation [Kowalski, Sergot; 1986]. We have been looking after the

rationalism for including time representations in agent's brains. At first sight, it seems to be that, unless other external

agencies (human operators or users, for instance) mandate the use of time, for example by limiting the periods of

Logic Programming Agents

55

time for achieving goals, such a necessity does not arise by its own in these agents. Even some practical exercises of

cooperation can be solved without an explicit account of time (i.e. to past through the narrow corridor, you go, he goes

and I go in that order). If the forklifts want to unload the truck as soon as possible, they can simply negotiate and distribute

the tasks and pick the plan with the minimal number of atomic actions. This could be done even if the goal is to unload the

truck before lunch time. Some more intelligent agent (maybe a human) could evaluate the robots' global plan, to see

whether or not it can be accomplished before the lunch gets cool.

However, as we said in the previous section, sometimes (for example in narrative understanding) the agent needs

to deal with goals that are not equivalent to actions (e.g. to go to) but, instead, to situations (e.g. to be at some place, at

some time, to have something, during some period). We must admit that our current agent model does not permit the agent

to distinguish its current situation from previous and future ones. In other words, our agent can not reason about what the

situation was sometime ago or will be in the future. As in conventional databases, the agent updates its beliefs about the

world in the same order (and also almost at same time delayed only by the speed of perception) as the corresponding

events occur in the real world. That is why we say the agent's brain simulates the world. As the robot only represents the

present moment, it can not accept new information about the past or the future available from the environment or from

other agents. Hence, the agent is missing part of the world's experiences which, otherwise, could be available for a more

accurate deduction of actions and goals.

We human beings do that situation analysis in order to learn from past experiences and to decide the better way

for behaving in the future in pursue of some goal. We also use that capability of self-location in the space-time for

synchronising ourselves with nature and with other beings (eat breakfast just after dawn, lunch at 12.00 and dinner when

she gets home, then rest between 11.00 p.m. and 5.00 a.m.). There is an important advantage in using a watch or an event

notifier. We do not need to worry about the overwhelming amount of detail about actions, order of actions or events of

other beings and nature that, in addition, happens in parallel to our own actions. Our own organism is a set of processes

running in parallel. We do not follow them explicitly. We simply meet them at certain points in time with as much

precision as the state of the art in time-keeping allows. We believe all these capabilities could be provided to artificial,

intelligent agents within the logic programming framework.

Logic Programming Agents

56

CHAPTER 3

EXPERIMENTS WITH THE PROLOG-APRIL TESTBED

3.1. Comments on multi-agent simulations.

As we said at the beginning of Chapter 2, part of the motivation to simulate

an agents' society in this non-traditional simulation framework, comes from the

opportunity to model micro-behaviour (behaviours of individuals) and to measure

its impact on global behaviour. This last, however, is not a straightforward task with

a test-bed like ours. Repetition of experiments, for instance, is fundamental in an

environment where real randomness is used instead of the pseudo-random computer

generated sequences. Due to the fact that our agents' messages almost always travel

throughout a real network, we deal with real random delays. In such conditions, any

conclusion made from the results is at risk of being mere speculation, unless the

supporting data can be proved to be representative enough.

In contrast to the call for more testing it is the quantity of information to be

analysed. The amount of details that can be recorded, already overwhelming in

macro simulations, is even greater in micro-simulation. There is also, the additional

problem that some of the statistics need to be obtained by individuals and

post-processed into global hypothesis afterwards. This post-processing can imply

loss of grades of freedom in the final statistics and, consequently, less confidence.

We bore all those influences in mind during the tests, and also encourage the readers

to consider them when they come to interpret the results.

3.2. Description of experiments with the path-finders.

Taking the simplistic path-finder agents (and the patio world) as

guinea-pigs, we concentrated attention on two types of experiments: 1) measures of

real machine performance of our agents and 2) measures of adaptability of the agents

to environmental conditions. The first set of experiments is aimed to compare the

running requirements (time and memory space) of two models of brains: the reactive

brain and the planner-brain. The second set obtains data to evaluate the effect of

deep thinking (recall the parameter N used to bind the depth of search) into the

behaviour of an agent that has to interact with a changing environment. We build a

changing environment by setting goals to the agents that make them interfere each
Logic Programming Agents

57

other.

Logic Programming Agents

58

Before showing the details of each group of experiments, some concepts need

explanation. What we call a reactive brain is the program described in Chapter 2.

The important point to be noted is that, in the reactive brain, the resolver reduces the
goals until it gets the first do predicate pointing an action to be executed. It does not

try to reduce the other goals after the do, so there is no further planning. The control

is transferred to the executive which either executes the action, confirming the

current conjunction of goals for further refinement, or backtracks to another

conjunction. A reactive brain may or may not decide an action to be executed,

depending on how deep the parameter N allows it to get. On the other hand, unlike
the reactive, the planner brain does worry about sub-goals after the do. In fact, the

planner brain tries to obtain as do predicates as possible given some N, getting in

some cases to build several full plans in the sense explained in Chapter 1. Various

modifications have been made to the program shown in Chapter 2, to cope with the
planning-ahead capabilities of this brain. Some of them are: 1) changes in the demo

clause devoted to abducibles, allowing the process to skip over previous obtained do

terms; 2) changes in the resolve clauses to skip over the full-plans obtained in

previous cycles, if any exits. The planner brain also may not decide an action to be

executed, but this is unlikely to happen because it capitalises on reductions made in

previous cycles. Certainly, planning can demand enormous spaces of memory.

However, once again, the depth-parameter N can be use to control and to restrict

resources. The source-codes of both brain programs are included in Appendix B.

3.3. Redesign of experiments

As soon as we started to carry out the experiment described in the previous

section, several issues arose. The first thing we realised is that adaptability, how the

agents integrate themselves into the changing environment and performance, how

well they accomplish their goals in that environment, could be correlate and,

therefore, we need to test them with the same set of experiments. On the other hand,

during the first experiments, our first model of the planner brain showed itself to be

awfully inefficient. One run of one robot alone, with N set to 70, took 1 hour and a

half, with the reference robot living only for 50 cycles (See the experiments'

specification in the next paragraphs, for comparison) whereas the reactive-brain

agent could make the same work in 4 minutes. A careful analysis of the planner brain

structure let us realised that, in the original design, we had missed or misunderstood

Logic Programming Agents

59

one important aspect of a long-lasting agent's brain.

Logic Programming Agents

60

In the planner brain we employ abduction for building ordered sequences of
executable goals (do terms) which can be regarded as detailed plans. One valid

sequence, in our path-finder application could be (as before, we use a simplified
notation): do(m_forward), do(m_forward), do(t_right),

do(m_forward), go(0e, 4n). This sequence is a partial plan (see previous

Chapter for definition) that the agent can use to go from some initial situation to the
situation 4n. The basic problem in our first model of planner is that the agent keeps

extending these sequences indefinitely. At every cycle, the brain skips over the
previously abduced do terms and tries to solve the other high-level goals.

Considering that the robots have permanent goal hierarchies, most of the time

recursively defined, this turns out to be a never-ending extension process. It is

always possible to extend the robot's plans, even with a very low N. The agent still

shows an acceptable performance for low N (N = 10..20 in our application), because

the abduced terms are generated almost at the same speed as they are consumed by

the executive. Therefore, there is no memory overflow, as it is the case when N is big

(N > 30 in our application). Our system does not explode, but the garbage collection

is so intense that dismisses any hope of efficiency. As if that is not enough, that

scheme does not seem to be a realistic model. We human beings, for instance, do not

go into details about those plans whose execution is too far in the future. We can

specify the constituents of a plan until certain point and then complete it with more

abstract goals (i.e. in the morning: get up, put on your clothes, brush your teeth and

then go to work). How far to go specifying plans in that way is an application

dependent issue, yet it is not carried on forever.

Following the previous line of reasoning, we decided to modify the planner

brain schema to limit the length of the detailed part of the plans. The strategy is

simple: in the same way we use a parameter to limit the depth of the search

(bounded reasoning), another parameter may be used to control the size of the set of

abduced terms at any time (bounded abducibility). Both parameters should be

adjusted by the designer in agreement with the available resources and the

application domain constraints, including the need for quick response. In pursue of

this, we implement bounded abducibility altering the code by adding some special
procedures and predicates to the knowledge base, namely abd_count/1,

init_abd_limit/1, up_abd, down_abd, reinit_abd. The final

effect is that the brain can plan ahead until it gets certain number of abduced terms.

We set this number to 10 in our experiments. That was enough for our robots to build

a set of steps for taking itself from the initial situation to the extreme situation.

Observe that this is not a complete plan. The goal of the agents in the experiments is

Logic Programming Agents

61

recursively defined as follow:

Logic Programming Agents

62

go_around(So, Sf) :- go(So, Sf), go_around(Sf,

So).

Therefore, a full plan for this goal is a never-ending sequence of abducible

terms. The attempt to generate such plan causes the overflow of memory we want to

avoid with bounded abducibility.

It is really worth noting that the reactive model of brain becomes a special

case of a planner brain, whose abducibility parameter has been set to 1. This implies

an even smoother transition between reactive and planning ahead planners in this

framework. Accordingly, we also decided to include in the experiments, tests

comparing the behaviour brought about by the pure-reactive brain and the planner

brain. The Appendix B contains the source-codes of those brain schemes.

The unified set of experiments obtains information about performance,

failures and hesitancy of the agents. The overall purpose is to evaluate the effect of

bounded reasoning (N parameter) on the behaviour of individual agents and on the

whole group. At the same time, we survey the behaviour of pure-reactive and planner

robot's brains, following the guidelines discussed in the previous paragraphs. In all

the experiments the hardware of the test-bed is configured as follow: 2 SparcStation

ELC, with 16 MB RAM memory each one, connected via nfs with a Disk Server.
The plagents (SWI-PROLOG) use 2 MB of RAM memory for the global stack, 4

for the local stack, 2 for the trail stack and 1 for the arguments' stack (those are the

maximum values permitted). One machine executed the DIALOX server and the
patio world. The other machine executes the robots' processes. Recall that a

robot is composed of one plagent process and two APRIL processes. Another

machine runs the APRIL nameserver. The experiments are:

• Experiment ONE: For every test (for N = 10, 20, 30, 40, 50, 60, 70, 100 and

200), for every brain scheme (reactive, planner), simulate a robot alone in the

patio world, going from initial situation to extreme situation. Record the number

of failure steps per trip per robot. That data will be used to estimate the average

of failures per trip and to correlate the number of failures with N. It is worth

noting that, in our simple patio and warehouse worlds, the only action that can

fail is the move forward action. Turning left or right is not restricted. Thus, what

we are trying to determined is how frequently a robot is blocked by its fellows in

its attempt to move forward. Also record, the number of observations the

agent performs per trip. These values are used to estimate the level of hesitancy

of the agent, that is, how frequently the agent does not decide the next action to

Logic Programming Agents

63

be executed. The agents' insecurities are due to the fact that the agent may not

reason long enough, thus hesitancy is a function of the parameter N. Finally,

record the time the reference robot (ja) takes to

Logic Programming Agents

64

reach 200 cycles of life. All the agents stop at the same time and, therefore, these

time values can be used to estimates the average performance of the agents.

Description of agent ja:

Robot name: ja

Initial situation: X=0 ; Y=5; Looking toward = north.

Extreme situation: X=4; Y=3; Looking toward = east.

High-level goal: permanently go between initial situation and extreme

situation, following the shortest path.

Length of minimal path: 5 step between initial situation and extreme

situation.

• Experiment TWO: Repeat experiment ONE with two robots (ja, jb). The

simulation runs until the reference robot reaches 200 cycles.

Description of agent jb:

Robot name: jb

Initial situation: X=4; Y=5; Looking toward = north.

Extreme situation: X=0; Y=3; Looking toward = east.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 5 step between initial situation and extreme

situation.

• Experiment THREE: Repeat experiment ONE with three robots (ja, jb, jc).

Again the experiment last until the reference robots reaches 200 cycles.

Description of agent jc:

Robot name: jc

Initial situation: X=0 ; Y=1; Looking toward = south.

Extreme situation: X=3; Y=6; Looking toward = north.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 8 step between initial situation and extreme

situation.

Logic Programming Agents

65

Logic Programming Agents

66

• Experiment FOUR: Repeat experiment ONE with four robots (ja, jb, jc, jd).

Stop when ja reaches 200 internal cycles.

Description of agent jd:

Robot name: jd

Initial situation: X=4 ; Y=1; Looking toward = south.

Extreme situation: X=0; Y=6; Looking toward = north.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 8 step between initial situation and extreme

situation.

The reason for using the numbers 10, 20, 30, 40, 50, 60, 70, 100 and 200 is

this: In the elementary path-finding domain, described by the object level rules, a

robot alone can decide most of the time its next action in one cycle if its N has been

set to some value between 20 and 30. The value is not unique and universal because

some action can need more thinking to be decided (i.e. move forward is more

straightforward than turn right or left). In Any case 50 is always enough to reach the
first do predicate, while 10 is always insufficient for this purpose. The scale allows a

more systematic approach. The values 100 and 200 are included to compare the

performance of the pure-reactive and the planner scheme for big N.

We talk about optimal and minimal path because the object-level rules are

designed for allowing the robot to follow a shortest path (may be more than one,

remember that the robot does not walk over diagonal lines) to its destination.
Following the gradient_step clause, the agent always chooses a cell that is

closer to its destination. This is the criteria for optimality within the program. What

we call minimal path is the one with the minimum number of steps for going from

initial situation to extreme situation.

It is also important to note that the apparently arbitrary routes the robots

follow have been calculated to generate interaction. The selected configuration tries

to balance the trade-off between interaction caused by sharing one specific

(pre-defined) resource (as in normal distributed systems) and interaction caused by

accidental coincidence of goals (attempts to share an arbitrary resource in the world).

It is difficult to control this trade-off, so we do not claim this configuration is the best

in any sense. The default routes the robots follow when there are no obstructions are
shown in figure 3.1. Note that ja and jb use the same routes for going and coming,

Logic Programming Agents

67

whereas jc and jb have circular routes.

Logic Programming Agents

68

Ja

Jb

Jc

Jd

X

Y

Figure 3.1 Routes of agents.

3.4. Results.

3.4.1. Performance of the agents.

For easing the burden of analising the data from the experiments, we compile the information into

statistics that represents the features of the groups of agent we wanted to measure in the simulations. The first

of those statistics is the Average time to make a Trip (AVT): an estimation of the time an agent would take to

make a trip. A lower AVT indicates that the agent is more efficient in achieving its goal or, in other word, that

it performs better. Observe that here we use time instead of, for example, the inference step counter, as the

measure of performance per trip. We discard the inference step counter because it is not a uniform unity. From

one step of inference to another, the number of clauses and term/clauses involved may change and therefore,

we end having more than one independent variable. That is not the case with absolute time. AVT is defined as

follow:

AVT

TTj

R
j

R

=
∑

 TTj
TIME

TRIPSj
=

Where R is the number of robot agents in the simulation, TIME is the total duration of the simulation and

TRIPSj are the number of trips made by agent j during the whole simulation.

Logic Programming Agents

69

Figure 3.2 shows a plot of the calculated AVT versus the parameter N for both planner and

pure-reactive brains (left and right, respectively).

Performances compared (Planner - Reactive)

N

Average Time per Trip (secs.)0

10

20

30

40

50

60

10 20 30 40 50 60 70 100 200 10 20 30 40 50 60 70 100 200

One Agent Two Agents Three Agents Four Agents

Figure 3.2

Reading the groups of columns separately, one can see that the efficiency consistently drops back as

the number of agents increases. Clearly with more agents in the environment, the world becomes more

unpredictable and therefore, the agents waste more time deciding and trying actions which eventually fail.

Considering the whole graphs, one may note that the efficiency start at some intermediate level and then goes

to maximal values for N between 20 and 40. After this point, it decreases monotonicly. There exists a point of

optimal performance associated with the depth of the knowledge base. Recall that for values of N around 30

the agent almost always gets to the leaves of the decision tree in the current knowledge base, in one cycle.

The graphs show that there is a slightly difference in favour of the planner brain, which could be

explained by the fact that this brain can execute more inference step per cycle. The reactive brain stops as soon

as it gets to first executable goal (do(Action)). This implies wasting some inference steps still allowed by the

remainder of parameter N. Whereas, the planner may keep working in those circumstances, going deeper in

the SLD-tree. At the end the net effect is that the planner brain decides, in average, sooner than the reactive

brain. However, the important point to observe is that planning does not help to much to avoid the fall of

efficiency in this context. It can be note that, ignoring random disturbances, the graphs are very close one to

another. Generally speaking, one would expect that an agent that can plan up to

Logic Programming Agents

70

10 actions ahead in one cycle, would have a better performance than one that only decides its next action.

However, clearly that is not the case with the current mechanism for planning applied to this domain. We can

mention two notable weaknesses of the current planner brain, in order to explain that: 1) because there is the

possibility of evasive actions, any plan can always be extended although the plan being followed may not be

optimal (for instance, when facing a wall the robot turns right and keeps following the wall even though

turning left would take it to its destination in fewer steps), and 2) The robot never evaluates the situation in

which will be in the future due to the execution of certain plan, which also could be used to select a better

plan. In both cases, there is no overall analysis to select the best among several solutions. The planner brain

(and also the reactive brain) commits to a solution built into the knowledge base for this domain. A solution

that may not be the best. It seems that other capabilities, as projection into the future and meta reasoning about

planning, are required in pursue of the optimal performance.

On the other hand, the characteristics of the patio world with few regular structures to take care of

(and from which to learn), cancel out the advantages of looking ahead. The patio world is well suited for

representing an environment where the agents are responsible for change, but it is not complex enough for

showing the advantages of planning. A more constrained environment (like the warehouse) where the fixed

obstacles influence the choice of the best route, could be more promising in that sense. Of course, there are

still other aspects to be take into consideration. A larger range of perception, for instance, can improve the

quality of knowledge (how well represent the world) by allowing the agent to learn more about the real world

in less time. Both types of agent can take advantage of a wider perception but it is the planner which will

exploit the fresh knowledge to a greater extend.

As a final remark, let us say that absolute efficient seems to depend heavily on the memory

management policy used by the plagents. However, in this work we limit ourselves to maintain the same

garbage collection scheme through all the tests and to make observations on relative efficiency. We do not

pretend to employ this results to evaluate any of the tools in the test-bed (namely SWI-PROLOG and the

APRIL system).

3.4.2. Quality of decision-making

The second statistic we have calculated is the Average number of failures per trip per agent (AVF).

This indicator could also be regarded as a measure of performance. However, we are getting rid of the time as

the reference and attempting

Logic Programming Agents

71

to measure efficiency due only to correct decision making. If the world model in the agent's brain is a faithful

representation of the real world, the robot will avoid failures on its attempts to act. The AVF is defined below:

AVF

AFj

R
j

R

=
∑

 AFj
NFj

NTj
=

Where R is the number of agents, AFj is the average number of failures of agent j, NFj is the total number of

failures of agent j and NTj is the total number of trips of agent j.

Quality of decision-making (Planner-Reactive)

N

Av. number of
failures per trip0

1

2

3

4

10 20 30 40 50 60 70
100200

10 20 30 40 50 60 70
100200

Two Agents Three Agents Four Agents

Figure 3.3

Unfortunately, there is no clear tendency in the data, as one can see from both graphs. It seems that

either this statistic is inadequate for capturing the information or the experiments are too limited. We still

believe the AVF could be used to analysed the quality of decision making. Probably, we need to involved a

bigger group of agents to make arise the effect of higher entropy in the system, that suggests more failures

with more agents. We already obtain a bigger total number of failures with more agents, but also more trips per

agent. In any case, we will not make any conclusion about this topic.

Logic Programming Agents

72

3.4.3. Hesitancy

The final statistic we considered is intended to show the relationship between the hesitancy of the

agent and bounded reasoning. What we call hesitancy is the behaviour of a robot that can not decide the next

action to be executed. In those situations (cycles) when this happens, the robot activity is limited to an

observation of its environment. The robot executes no action to change the world or itself. Of course, this is

closely related to the depth up to which the agent is allow to reason. A superficial exploration of its

alternatives for acting (namely, its hierarchy of goals), caused by a low N, is likely to end in hesitancy. In other

words, hesitancy is what the designer or controller of the brain should expect if he/she does not allocate to the

robot enough resources to reasoning.

We try to capture the hesitancy of the agents by measuring the Average number of observations per

trip (AVO). It is important to clarify the distinction between the kind of explicit observation we record and the

almost continuous stream of observations the agent receives. The locus of control algorithms implies an

observation after every action is executed. In our system, every time an action is executed, the world sends

back an update of the new range of perception of the agent, due to its new situation. This is what we call an

implicit observation and it always occurs. Observe that implicit observations are linked to actions that change

the world. We talk about explicit observations either 1) when the brain does not decide an action to be

execute, in which case it order the brain only to look, or 2) when the hierarchy of goals contains the executable

goal: do(look), that we use to mark particular points within the plans (in this case at the end of a trip

between initial situation and extreme situation). Indeed, the agents are enforced to make an (explicit)

observation every time that they get to the end of one trip. Any additional (explicit) observation during the trip

can be regarded as hesitancy. We defined AVO as follow:

AVO

OTj

R
j

R

=
∑

 OTj
NOj

NTj
=

Where again, R is the number of agents, OTj is the average number of observations per trip in agent j, N0j is

the total number of observations made by agent j and NTj is the total number of trips by agent j. Figure 3.4

shows the graphs of AVO versus N.

Logic Programming Agents

73

Hesitancy of agents (Planner - Reactive)

N

Observations/Trip

0

5

10

15

20

25

30

10 20 30 40 50 60 70 100 200 10 20 30 40 50 60 70 100 200

One Agent Two Agents Three Agents Four Agents

Fig

ure 3.4

This time the message is clear. In the current hierarchy of goals, N set to a value greater than 50 is

always enough to get to the leaf of any branch and, hence, to make a decision about the next action in one

cycle. The other interesting point to note here is that, for very low N, the planner brain dictates a slightly less

hesitant profile of activity than the pure-reactive brain, even in a changing environment (several agents). This

is probably the only advantage of what we call planning in this context: to keep reducing the goals after the

next action has been decided. While the reactive agent may stop with a list of goal similar to (see chapter 2 for

a preliminary explanation of this example):

[(do(t_right), go(3e, 5e)) ; .. other alternatives..]

the planner brain might end with:

[(do(t_right), atom(A, 3e, Z), closer(3e, Z, 5e),

 not prohibited(Z), do(A), go(Z, 5e)) ;

.. other alternatives..]

or even with:

[(do(t_right), do(m_forward), go(4e, 5e)) ;

.. other alternatives..]

Logic Programming Agents

74

where the action t_right and m_forward are decided in one cycle. One of them (t_right) will be

consumed immediately by the executive. The other (m_forward) is going to be used in the next cycle, even

if N is too small to get a new executable goal in that cycle.

Thus, the agent can try actions decided in previous cycles when the value of N allows to reach the

leaves of the hierarchy of goals. This may be the case when the branches are shorter (let say "rules with few

conditions fire", using the condition action rules' analogy).

Currently the value of the parameter N is the same throughout the robot's life. In a more sophisticated

agent, the parameter N may be let to change during its life in order to reflect the mood of the agent (in a hurry,

excited, calm, inert). Of course, the practical purpose of a changing N is to allow the agent a more dynamic

adjustment to the available resources (time and memory space).

Nevertheless, it is important to note that a less hesitant agent is not necessarily a more efficient one.

The time wasted by an agent that could not decide its next action, can be equivalent to the time spent by the

same agent testing more conditions and building a plan within one cycle. More reasoning per cycle aimed to

build a plan implies more memory consumption and in practice, waste of time in memory management.

Consequently, the remarks about planning and efficiency made in section "performance of the agents" are

perfectly compatible with the results in this section.

3.4.4. Other results

Apart from the formal, objective results presented so far, other discoveries were made during the

tests. First of all, and in spite of our efforts to provide the agent's brain with all the knowledge needed to make

optimal decisions (pre-compiled set of rules), there are still situations where groups of path-finder agents get

stuck. We did not fix them because that would have implied repeating most of the tests and we lacked the time.

Thus, we continued working with the anomalous rules until the end. However this allowed us to confirm that

those dangerous situations were unlikely to occur, even thought under more restricted testing conditions

(without the randomness of the network) they do arise.

This discovery was due to collateral observations and thus we can not jump into any conclusion yet.

Nevertheless, we wonder whether this effect of randomness, which allowed our system to behave well even

with incomplete knowledge guiding

Logic Programming Agents

75

the agents, could be linked with the emergent behaviour reported in other works (see [Steels; 1990] and

[Feber, Drogoul; 1991]).

There are, we have to say, problems concerning the plagent program (SWI-PROLOG with the

PROLOG-APRIL interface). In several occasions during the tests, the PROLOG brains stopped working after

a call to the garbage collector. The system works reasonably well most of the time, but we believe the

plagent still requires more testing and debugging.

Logic Programming Agents

76

CONCLUSIONS AND GUIDELINES FOR FURTHER RESEARCH

Conclusions

This work has included a survey of one of the basic topics that has motivated

research in Distributed Artificial Intelligence and Multi-Agents Systems in the last

years: the use of logic for modelling autonomous agents. We contribute to the debate

about reactive agent and deliberate agent by saying that the former can be regarded

as a special case of the later. One and the other can be modelled as logic programs.

Taking a proposal by Genesereth and Nilsson [Genesereth, Nilsson; 1988] and that

provided by [Kowalski; 1994b] as references, we present an alternative model for a

deliberate agent with bounded reasoning. The reasoning is bounded because the

agent has limited resources (time and space of memory) to perform deductions and

to select its next actions. We analyse Steel's proposal [Steels; 1990] which advocated

the use of reactive systems and show that we can get similar behaviour and

performance, with logic-based deliberate agents. Indeed, we show how to

accommodate a domain knowledge base, with goals and rules written as terms and

clauses, in such a way that rules of behaviour in specific situations are represented

by separated layers of knowledge. Thus, an ordinary computation rule can be used to

perform a search by layers that, we believe, is equivalent to what is accomplished

by a subsumption architecture [Brooks; 1991]. We also explain how to design

programs that implement a forward search of solutions while using a backward

reasoning proof procedure.

 We address the criticism of Hewitt [Hewitt; 1985] to the use of logic and

closed world assumptions in open systems by devising the adaptable locus of

control algorithm. This locus of control, used as the main control loop in an agent

brain, intermixes observation, assimilation (knowledge updates, resolution and

planning) and execution. This allows the agent to respond quickly to contingencies in

the environment using its recently updated model of the world, but still following its

own goals and purposes of life. We believe our artificial creatures conform to almost

all the requirements set by Brooks [Brooks; 1991] because 1) they can cope

opportunistically with changes in the environment; 2) they maintain a set of

multiples goals and, depending on the circumstances, can choose which particular

Logic Programming Agents

77

goal to

Logic Programming Agents

78

pursue and 3) The creatures have some high level goal for living, something to do in

the world. We do not claim to address the fourth requirement of Brooks: The

creature must be robust with respect to its environment because our project is limited

to the simulations of multi-agent environments and thus, we are still far away from

concrete implementation of, for example, real robots. Moreover, our model of brain

can not cope yet with unexpected changes in the agent situation produced, for

example, by accidents or natural events. Nevertheless, we believe that even Brook's

fourth requirement can be fulfilled with logic-based representations.

We also highlight some of the limitations of the representation adopted in this

work. Our robots can not evaluate their current situation in the world and project

themselves into the future or the past. We believe that this in an important feature in

autonomous intelligent agent. Furthermore, we suggest that these capabilities can be

provided to agents modelled as logic programs.

All the main discussions in this work are supported by experiments carried on

logic programming agents. We devised models of agents using APRIL and PROLOG

as the development languages. An APRIL-PROLOG test-bed is configured to make

experiments tracing the performance and other features of logic programming

agents. We simulated a world where agents (robots) interact by performing actions.

The very same test-bed is ultimately aimed at supporting simulated contexts where

agents communicate and cooperate in pursue of social goals. However, in this

project, the test-bed has been employed to evaluate the impact of the bounded

reasoning and to compare the performance of pure-reactive brains and models of

brains with planning capabilities.

Several results arose from the experiment:

1) The parameter N, which is used to bound the reasoning by limiting the depth of

search in a knowledge base, proved to be very influential in the efficiency of the

agent. Normally, to obtain the best performance, the value of N should be such

that allow the theorem-prover in the agent's brain to get to the leaves of its

hierarchy of goals. This allows the agent to decided its next action in one cycle.

However, a greater value may decrease the efficiency.

2) We discovered that, apart from the parameter N limiting the depth of search,

other parameter seems to be required in agents with planning capabilities. We

observed that a planner brain, that permanently tries to refine its plans until its

lower level details, pays the cost of a formidable plan description with

performance. For the sake of more realistic agents, we need to limit the

extension and level of detail of plans built by the planner brain. As the low-level

details of a plan in this context (specific actions to be executed) depend on the

Logic Programming Agents

79

abduction capabilities of our logic programming brains, we call the new control

feature bounded abducibility. Once we introduce this concept in our

formalism, the

Logic Programming Agents

80

pure-reactive brain, a model of brain that concentrates its reasoning in obtaining only

the next action to be executed, becomes a special case of a planner brain, where

the reasoning may generate not only the next action, but a sequence of actions to

be executed (a plan). The former is simply a planner brain whose abducibility

control parameter has been set to 1. Therefore, our representation allows a

smooth transition between reactive agents and planner agents. A logic

programming agent can be tuned, not only to accommodate the amount of

resources needed for reasoning, but also to control plan construction.

3) Finally, the simulations have shown no clear advantage in using a planner brain

instead of a pure-reactive brain. We speculate that this may be due to the fact

that our simulated contexts are too simplistic and the effect of the bounded

reasoning and mainly, the dynamic of the environment, limit the advantages of

planning. Perhaps a more complex environment, with less unpredictable

dynamic, could show the relevance of building and following plans.

Recalling what was said in the introduction, probably the main by-product of

this work is the evidence supporting the fact that a logical representation can be used

to model and implement intelligent autonomous agent. The exciting point is that we

already solve some of the main problems in designing Multi-Agent System and we

have not exploited but a very limited set of the representations and programming

strategies available within Logic Programming.

Extensions and further research

The immediate way for extending this work is by completing the warehouse

example. It is not difficult to modify the robots' bodies to include the capabilities for

taking, carrying and leaving boxes. Moreover, it does not require much programming

effort to extend the object-level goals' hierarchy in the robot's brain in order to give
account of goals such as: find_truck, find_boxes, pick_a_box,

carry_box_to_shelves, find_box_place, leave_box. We would

expect that the changes in the world agent and database, needed to incorporate (and

to visualise) those more complex robots' activities, would require a careful design

and may require more time. In addition a systematic set of experiment should be

carried out in the test-bed, in order to ensure that the agents can cope with the

interactions and that deadlock situations are avoided. Of course, first, the

incompleteness of the current knowledge base (due to insufficient rules of behaviour

Logic Programming Agents

81

and optimality criteria) already reported in this document, should be attacked. Also,

some changes to the range of

Logic Programming Agents

82

perception of the robots could be attempted by, for instance, allowing the agent to

see across a larger area, but with obstacles hiding the part of the picture behind them.

Once those changes have been made and tested, the next stage of this research

project may be the addition of communication and cooperation capabilities to the

logic-based agents. A large amount of effort has been given to the issues of

cooperation and communication within Distributed Artificial Intelligence (see [Bond,

Gasser; 1988]). Thus, we would expect this part to be more time-consuming and to

have many concepts and approaches to take into consideration. One has to bear in

mind the motivation for including communication and cooperation in a Multi-Agent

System: coordination. Coordination has been cited as possibly the key research

problem in DAI [Gasser; 1992]. Once one decides, as we have done in this work, to

build agents that perform autonomously in the world, using partial knowledge of the

environment to make decisions (the devils of partiality and autonomy as pointed out

by Jennings [Jennings; 1994]), one has to provide the way for programming groups

of agents for the efficient pursuing of relevant goals (that is, to make all of them do

something useful in a constrained environment). In [Gasser; 1992] Les Gasser also

discusses a classification of approaches to coordination based on the predictability

and reactiveness of the mechanisms employed: organisation, exchange of meta-level

information, multi-agent planning and explicit analysis with overall synchronisation.

We believe that most, if not all, of those kinds of mechanisms for coordination

can be embedded into logic-based agents. This would allow a dynamic

self-adjustment of an agent to its social environment according to its historic

situation. However, this discussion may be overwhelmingly complex. Therefore, we

suggest a step-by-step approach, starting by employing only one coordination

mechanism. Meta-level information exchange that implies agents sending each other

control level information about their current priorities and focuses [Gasser; 1992],

seems to be a promising approach for reasons that will be elaborated upon later.

Besides, other aspects could also be included in a logic-based approach to

coordination. The agent's reasons for cooperating (benevolence, altruism and

self-interest as were classified in [Connah, Wavish; 1990]) may prove to be

adjustable in the logical design.

In any case, to tackle the problem of cooperation requires a formal approach.

In a preliminary exploration, we have found an interesting framework in the work by

Jennings [Jennings; 1994] that establishes theoretical conditions for cooperation.

Jennings distinguishes between identical and parallel goals and between accidental

coordination and cooperation. If, for example, two path-finder robots want to go to

the same place we say they have identical goals. However, if both of them have the

Logic Programming Agents

83

goal "be at cell 1 at time t", they have parallel goals. The former kind of situation is

suitable for cooperation because the agents may decide to work as a team and, for

example, share information about routes to that place. The second kind may generate

Logic Programming Agents

84

conflict because both robots will compete for getting the resource, in this case the

cell. On the other hand, accidental coordination occurs when, for instance, two or

more path-finder pick different routes toward their destinations and, therefore, help

each other (by leaving their ways clear) without previous agreement. That is not

cooperation [Jennings; 1994].

An important point to be noted in Jennings' project is its attachment to

implementation. The theoretical rules support a DAI shell (GRATE [Jennings;

1994]) which has been used to integrate pre-existing knowledge-based system as

agents in industrial distributed applications. The often-neglected use of DAI

technology to integrate pre-existing standalone systems [Jennings, Wittig; 1992]

entails an attitude that, we believe, may be useful to research: it needs to tackle

immediately the implementation of models and designs, which may help to highlight

relevant trade-offs, assumptions and other details. In addition, integrating

pre-existing systems often entails filling, with artificial agents, the gap normally

occupied by human operators. Building systems that work in human being's roles

and cooperate with people is an initiative that has already reported success (see for

instance, [Maes; 1994]). Summarising this second point, we suggest adopting two

methodological guidelines for the next stages of research: 1) commitment to

implementation and testing of programs as realistic as possible and 2) human beings'

behaviours as desiderata of flexibility and practical capabilities. Our work so far has

been guided by those ideas.

Although the previous paragraphs delineate a rather wide set of steps to

continue this work, we believe that an even wider group of ideas needs to be

considered. As we said in the conclusions, this work only involves a sub-set of

concepts and tools of Logic Programming: meta-interpreters, search by layer,

forward-backward representations, decompilation (restoration of goal-orientedness)

of condition action rules and modelling of rules of behaviour as logic programming

clauses. Logic Programming, within the semantic framework of Computational

Logic 'CL' [Kowalski; 1994a], still has a large set of features and tools to be applied.

Two of them are likely to be introduced in the next stages of this research in

logic-based agents: 1) Event Calculus [Kowalski, Sergot; 1986] to cope with

efficient temporal representation that would provide the agents the desired projection

into the past and the future, while avoiding the frame problem , and 2) Metalogic.

The prefix meta is usually employed in a broad diversity of interpretations,

some of them questionable. Thus, first attaching ourselves to the definitions of

metalogic investigated by Kowalski ([Kowalski; 1979], [Kowalski; 1994a],

Logic Programming Agents

85

[Kowalski; 1994c]3
) we claim that meta-representation may play an important role by allowing agents to model and to reason

about other agents. Agents in Multi-Agents

3In that reference Kowalski defines metalogic as a set of theories that "talk" about sentences, theories and other linguistics objects.

Logic Programming Agents

86

systems normally keep models of other agents (or acquaintances, see [Jennings, Wittig; 1992] and [Gasser, Braganza, Herman; 1988]).

Those models of others are used to [Jennings; 1994] 1) focus activities of the group and reducing communication overhead, 2) guide the

transmission of predictive information and 3) enable self-reflection. The first two of these options conforms to the so-called meta-level

information exchange strategy for cooperation. What we suggest is that metalogic may be employed by logic-based agents to guide all

those three internal activities. In addition, metalogic might provide a solution to the ramification problem in planning and even to the

omniscience problem of conventional modal representations [Kowalski; 1994a]. That is why we proposed to follow the mentioned

mechanism for cooperation: for exploring the implementation issues of metalogic that already has been used to solve problems of highly

complex, rational interactions as the wise man puzzle [Kowalski; 1994c].

Logic Programming Agents

87

REFERENCES

[Brooks; 1986] Rodney Brooks. "A robust layered control system for a mobile

robot". IEEE Journal of Robotics and Automation, 2: pg. 14-23, 1986.

[Brooks; 1991] Rodney Brooks. "Intelligence without representation". Artificial

Intelligence. 1991. Vol 47. pg. 139-159.

[Bond, Gasser; 1988] Alan H. Bond and Les Gasser (Ed). Readings in Distributed

Artificial Intelligence. Morgan Kaufmann Publishers. San Mateo. Ca. USA. 1988.

[Connah, Wavish; 1990] David Connah and Peter Wavish. "An experiment in

cooperation". In Decentralized A. I.; Proceedings of the First European Workshop

on Modelling Autonomous Agents in a Multi-Agent World. Cambridge, England.

August 1989. Y. Demazeau and J.-P. Müller (Eds.). North-Holland. 1990.

[Covington; 1994] Michael Covington. Natural Language Processing for Prolog

Programmers. Prentice Hall. 1994.

[Ferber, Drogoul; 1991] J. Feber and A. Drogoul. "Using Reactive Multi-Agent

Systems in Simulation and Problem Solving". Distributed Artificial Intelligence:

Theory and Praxis. Avouris and Les Gassers Eds. Kluwer Academic Publishers. The

Netherlands. 1991

[Gasser; 1992] Les Gasser. "DAI Approaches to coordination". In Distributed

Artificial Intelligence: Theory and Praxis. N. Avouris and Les Gasser Eds. Kluwer

Academic Pub. 1992. pg. 31-51.

[Gasser, Braganza, Herman; 1988] Les Gasser, Carl Braganza and Nava Herman.

"MACE: A Flexible Testbed for Distributed AI Research". In Distributed Artificial

Intelligence. M. N. Huhns Ed. Pitman Publishing. pg 119-153.

[Genesereth, Nilsson; 1988] Michael R. Genesereth and Nils J. Nilsson. Logical

foundations of artificial intelligence. Morgan Kauffman Publishers. CA. 1988.

Logic Programming Agents

88

Logic Programming Agents

89

[Hewitt; 1985] Carl Hewitt. "The Challenge of Open Systems". BYTE. Vol 10. April

1985. pg.123.

[Hogger; 1990] Christopher Hogger. Essentials of Logic Programming. Oxford

University Press, 1990.

[Jennings; 1994] Nick Jennings. Cooperation in Industrial Multi-Agent Systems.

World Scientific Pub. 1994.

[Jennings, Wittig; 1992] N. Jennings and T. Wittig. "ARCHON: Theory and

Practice". In Distributed Artificial Intelligence: Theory and Praxis. N. Avouris and

Les Gasser Eds. Kluwer Academic Pub. 1992. pg. 179-195.

[Kowalski; 1979] Robert Kowalski. Logic for Problem Solving. North-Holland.

Elsevier Science Publishing Co. Inc. 1979.

[Kowalski; 1994a] Robert Kowalski. "Logic Without Model Theory". In What is a

Logical System. Oxford University Press. D. Gabbay Ed. 1994. To appear

[Kowalski; 1994b] Robert Kowalski. "Reconciling reactive with rational agents".

Internal Report. Imperial College. July. 1994.

[Kowalski; 1994c] Robert Kowalski. "Why metalogic?". In Knowledge

Representation: non-monotonic reasoning and metareasoning. Foundations for

Advanced Information Technology. Course's Notes. Dept. of Computing. Imperial

College. London. March. 1994.

[Kowalski, Sergot; 1986] Robert Kowalski and Marek Sergot. "A Logic-based

Calculus of Events". New Generation Computing 4 (1986). pg. 67-95. OHMSHA,

LTD and Springer-Verlag.

[Maes; 1994] Pattie Maes. "Agents that reduce work and information overload". In

Communications of the ACM. Volume 37. No. 7. July 1994. pg 31-40.

[McCabe;1993] F.G. McCabe. April - agent process interaction language. Internal

report, Dept. of Computing. Imperial College, London. 1993.

Logic Programming Agents

90

[McCabe;1994] F.G. McCabe. "Object Oriented Programming with April". In

Distributed Artificial Intelligence. Foundations for Advanced Information

Technology. Course's Notes. Dept. of Computing. Imperial College. London.

January. 1994.

[Muller, Pischel; 1993] Jörg P. Muller and Markus Pischel. The Agent Architecture

InteRRaP: Concept and Application. German Research Center for Artificial

Intelligence (DFKI). Report. 1993.

[Newell, Young, Polk; 1993] Allen Newell, Richard Young and Thad Polk. "The

Approach Through Symbols". In The Simulation of the Human Intelligence. D.

Broadbent Ed.; Blackwell Pub.; 1993.

[Shoham; 1991]. Yoav Shoham. "AGENT0: A simple agent language and its

interpreter". In Proceedings Ninth National Conference on Artificial Intelligence.

AAAI-91. July 14-19. 1991. Vol II. pg. 704-709.

[Shoham, 1994] Yoav Shoham. Artificial Intelligence Techniques in Prolog. Morgan

Kaufmann Publishers. Ca. 1994.

[Steels; 1990] Luc Steels. "Cooperation between distributed agents through

self-organisation". In Decentralized A.I.; Proceedings of the First European

Workshop on Modelling Autonomous Agents in a Multi-Agent World. Cambridge,

England. August 1989. Y. Demazeau and J.-P. Müller (Eds.). North-Holland. 1990.

[Wielemaker; 1989] Jan Wielemaker. SWI-PROLOG 1.6. Reference Manual. Dept.

of Social Science Informatics (SWI). Amsterdam. The Netherlands. 1989.

Logic Programming Agents

91

APPENDIX A. AGENTS IN APRIL

This appendix shows the source-codes of:

• robot.ap. The APRIL program that models the forklift/path-finder agent.

Within this code the reader will find the specification of the processes that

simulate this kind of agent.

• patio.ap. The APRIL program that represents the patio during the simulations.

• dk_world.ap. This code should replace the Worldprocess procedure (see

the patio.ap code) when one wants to perform animated simulations of the

warehouse.

• common.ah. This is header file, used for declaring some functions and macros

employed by the APRIL programs.

• world.db.patio. It shows the data stored in the file world.db every time

that a simulation of the patio world is carried out.

• world.db.warehouse. This is the data describing the warehouse for the

APRIL program. Observe that simply by using the data in this file as the initial
data in the file world.db, the system will simulate the warehouse. No

recompilation of the APRIL code is required. Unfortunately, to display the

warehouse in the DIALOX animation still (in this version) requires changes in

the code and recompiling.

• exam1.ap. This files contains the example used in the section I.2 of the

Introduction to explain the syntax of APRIL. The example include the tracing call

to the routine in common.ah.

Logic Programming Agents

92

robot.ap

/* robot.ap

 A robot in the patio (or in the warehouse) is simulated by
 an agent whose structure and behaviour is modeled by this program.

 Last modified: 30 - 7 - 94.

 Knowledge assimilation in multiagents system.

 Jacinto Davila. Imperial College.

*/

#include "common.ah";

/* __data structures */
/*
 world_model ::= [[posx, posx, object, type, status, bitmap]]
 arms_towards E { north, south, west, east }
 mental_context ::= [posx, posy, arms_toward, robot_status,
 current_world_model]
*/
listofsteps ::= [action] ;
act_list ::= [action,listofsteps] ;
world_item ::= [coord, coord, symbol, symbol, symbol, symbol] ;
world_model ::= [world_item] ;
mental_context ::= [coord, coord, direccion, rb_status, world_model] ;

/* ___newdir */
newdir(symbol?dir,action?ac) -> symbol?valof{
 { ac = m_forward || ac = look => valis dir
 | ac = t_back =>
 { dir = north => valis south
 | dir = south => valis north
 | dir = west => valis east
 | dir = east => valis west
 }
 | ac = t_right =>
 { dir = north => valis east
 | dir = south => valis west
 | dir = west => valis north
 | dir = east => valis south
 }
 | ac = t_left =>
 { dir = north => valis west
 | dir = south => valis east
 | dir = west => valis south
 | dir = east => valis north
 }
 }
};

/* ___ body */

Logic Programming Agents

93

body(handle?name,handle?worldname){

trace("BODY","activated..",[]);

Logic Programming Agents

94

robot.ap

 repeat {
 [execute,symbol?nact,
 [integer?px,integer?py,symbol?dir,symbol?st,any?wm]] => {
 /* send execution intension to the world */
 [act, nact, px, py, dir] >> worldname ;

 /* Predefined world agent */
 /* Answer from the world */
 { [ok, integer?npx, integer?npy, world_model?new_scene] => {
 /* The action succeed.

 Now the mc should be update accordingly */
 symbol?ndir := newdir(dir,nact) ;
 [ok,[npx, npy, ndir, st, new_scene]] >> name
 }
 | [failed,action?failed_act,integer?npx,integer?npy,

 symbol?Look] => {
 [failed,failed_act] >> name
 }
 }
 }

 | any?Msg => trace("BODY","strange message %p",[Msg])

 } until die ;
};

/* __process_plan */
process_plan(listofsteps?LowlevelPlan) -> act_list?valof{
 if (|LowlevelPlan| == 0) then
 valis act_list?[nothing,LowLevelPlan]
 else {
 symbol?Item := symbol?LowlevelPlan[0] ;
 integer?rest := |LowlevelPlan|-1;
 /* symbol[]?t := back(LowlevelPlan,rest); */
 /* [symbol?Item] = h ; */
 valis act_list?[Item,LowlevelPlan]
 }
};

/* __robot */
robot(handle?name, handle?worldname, integer?PX,

integer?PY, symbol?Dir){
 /* handle?mybrain := fork(brain(name)); April Brain lobotomized */
 handle?mybrain := handle?catenate(brainof_,symbol?name);
 handle?mybody := fork(body(name,worldname));
 mental_context?mc := mental_context?[] ;

 [act,birth,PX,PY,Dir] >> worldname ;
 /* Registering with the world */

 [ok, integer?X,integer?Y, world_model?firstsight] => {
 wake_up >> mybrain ; /* Registering with its brain */

Logic Programming Agents

95

 mc := [X,Y,Dir,free,firstsight] ;
 };

 listofsteps?current_plan := listofsteps?[] ;
 action?next_action := nothing;
 number?counter := 1;

Logic Programming Agents

96

robot.ap

 while true do {

trace("ROBOT","Assimilation-Execution Cycle number %d\n",[counter]);

 [observe,mc] >> mybrain; /* Initializing cycle */
 while true do {
 [any,listofsteps?Plan] => { /* never receives an empty plan */
 next_action := action?head(Plan) ;
 current_plan := listofsteps?extract(Plan);
 [execute, next_action, mc] >> mybody ;
 while true do {
 [ok,any[]?Nmc] => {
 mc := mental_context?Nmc; /* Updating mental context */
 succeed >> mybrain ; /* Action succeed */
 go => relax ; /* Sincronizing. Should'n be needed */
 break;
 }
 | [failed, action?fail_action] => {
 fail >> mybrain ; /* Action failed */
 go => relax ; /* Sincronizing. Should'n be needed */
 break;
 }
 | any?Msg => trace("ROBOT",

 "Wrong msg %p while waiting for ok or failed\n",[Msg])
 };
 break;
 }
 | any?Msg => trace("ROBOT",

 "Wrong msg %p receive while waiting for plan",[Msg])
 };
 counter +:= 1;
 };
 die >> [mybrain, mybody] ;
};

/* *** Main */
main(any[]?ar){
 if |ar| < 5 then {

 trace("ROBOT","usage: april robot
 <robotname> <worldname> <coordX> <coordY> <dir>\n",[]);

 exit(1) ; /* names of agent and world should be provided */
 } ;
 handle?ar[1] names robot(handle?ar[1],
 handle?ar[2],
 integer?ar[3],integer?ar[4],symbol?ar[5]) ;
 handle?rb := handle?ar[1] ;
 while true do {
 any?Msg => Msg >>> rb ; /* Any message goes to robot */
 }

Logic Programming Agents

97

};

Logic Programming Agents

98

patio.ap

/* patio.ap

 This file contains the code of two process.The "world" process which represents the environment in
simulation, and a subsidiary process called WorldProcess which triggers and controls the visualisation with
Dialox.

 The file also contains the especification of the data structures used for the "world". It worth noticing that the
world database is simply a description of the cells which conform the environment. Each cells has attributes
attached to it, to indicate which "things" it is. For instance, the "free" cells througth which the robots can walk,
are "floor_" cells. Each robot, in turn, occupies a cells which is then regarded as "full". (see file world.db)

 Version: 1.0 Robots` range of perception: the front cell

 Last modified: 30 - 7 - 94

 Jacinto Davila. FAIT 94. Imperial College.
*/

#include "common.ah";
/* __ macros */
#macro maxx -> 500;
#macro maxy -> 700;
#macro sqmax -> 100; /* square size */
/* __bitmaps */
#macro rob_east(?N,?X,?Y) -> [group,

 [text, X+sqmax/4, Y+sqmax/2, N],
 [line,X,Y,X,Y+sqmax],
 [line,X,Y+sqmax,X+sqmax,Y+sqmax],
 [line,X,Y,X+sqmax,Y],
 [line,X+sqmax,Y,X+sqmax,Y+sqmax],
 [ellipse,X+sqmax/4,Y+sqmax/2,40,40],

 [line,X+3*sqmax/4,Y+sqmax/4,
X+sqmax,Y+sqmax/2],

 [line,X+sqmax,Y+sqmax/2,
X+3*sqmax/4,Y+3*(sqmax/4)]];

#macro rob_west(?N,?X,?Y) -> [group,
 [text, X+3*sqmax/4, Y+sqmax/2, N],

 [line,X,Y,X,Y+sqmax],
 [line,X,Y+sqmax,X+sqmax,Y+sqmax],
 [line,X,Y,X+sqmax,Y],
 [line,X+sqmax,Y,X+sqmax,Y+sqmax],
 [ellipse,X+3*sqmax/4,Y+sqmax/2,40,40],
 [line,X+sqmax/4,Y+sqmax/4,X,Y+sqmax/2],

 [line,X,Y+sqmax/2,X+sqmax/4,
Y+3*(sqmax/4)]] ;

#macro rob_south(?N,?X,?Y) -> [group,
Logic Programming Agents

99

 [text, X+sqmax/2, Y+sqmax/4, N],
 [line,X,Y,X,Y+sqmax],
 [line,X,Y+sqmax,X+sqmax,Y+sqmax],
 [line,X,Y,X+sqmax,Y],

Logic Programming Agents

100

patio.ap

 [line,X+sqmax,Y,X+sqmax,Y+sqmax],
 [ellipse,X+sqmax/2,Y+sqmax/4,40,40],
 [line,X+sqmax/4,Y+3*sqmax/4,

X+sqmax/2,Y+sqmax],
 [line,X+sqmax/2,Y+sqmax,X+3*sqmax/4,

Y+3*(sqmax/4)]
] ;

#macro rob_north(?N,?X,?Y) -> [group,
 [text, X+sqmax/2, Y+3*sqmax/4, N],

 [line,X,Y,X,Y+sqmax],
 [line,X,Y+sqmax,X+sqmax,Y+sqmax],
 [line,X,Y,X+sqmax,Y],
 [line,X+sqmax,Y,X+sqmax,Y+sqmax],
 [ellipse,X+sqmax/2,

Y+3*sqmax/4,40,40],
 [line,X+sqmax/4,Y+sqmax/4,

X+sqmax/2,Y],
 [line,X+sqmax/2,Y,X+3*sqmax/4,

Y+sqmax/4]] ;

/* __ data structures */
/* Data structures:
 world_item ::= [posx,posy,object,type,status,bitmap]
 world_model ::= [world_model_item]
 arms_towards E { north, south, west, east }
 mental_context ::= [posx, posy, arms_toward
 current_goal,
 current_plan,
 current_world_model]
 acquantaince_model ::= [name,
 posx, posy, arms_toward,
 his_current_goal,
 his_current_plan]
*/

action ::= symbol ;
listofsteps ::= [action] ;
goal ::= symbol ;
coord ::= integer ;
direccion ::= north | south | west | east ;
world_item ::= [coord, coord, symbol, symbol, symbol, symbol] ;
world_model ::= [world_item] ;
mental_context ::= [coord, coord, direccion,
 goal,
 symbol,
 world_model] ;
acquantaince_model ::= [handle,
 coord, coord, direccion,
 goal,
 symbol] ;

Logic Programming Agents

101

sensing_scope ::= [[integer,integer]] ;

/* **/
main(any[]?arg){

 handle?dialox := handle?DialoX;

Logic Programming Agents

102

patio.ap

 handle?wd := handle?robot_world ;

 if |arg| > 0 then wd := handle?arg[1] ;
 if |arg| > 1 then dialox := handle?arg[2] ;

 handle?video := fork WorldProcess(me, dialox) ;

 wd names world(wd, video) ;

 repeat {
 any?Msg => { Msg >>> wd }
 /* Any message goes to world controler */
 } until end ;
 end >> wd ;
};

/* ___ */

 /* Some auxiliary functions and procedures */
turn_back(symbol?bm) -> symbol?valof{
 { bm = rb_box_north => valis rb_box_south
 | bm = rb_box_south => valis rb_box_north
 | bm = rb_box_west => valis rb_box_east
 | bm = rb_box_east => valis rb_box_west
 | bm = rb_north => valis rb_south
 | bm = rb_south => valis rb_north
 | bm = rb_west => valis rb_east
 | bm = rb_east => valis rb_west
 } ;
};

turn_right(symbol?bm) -> symbol?valof{
 { bm = rb_box_north => valis rb_box_east
 | bm = rb_box_south => valis rb_box_west
 | bm = rb_box_west => valis rb_box_north
 | bm = rb_box_east => valis rb_box_south
 | bm = rb_north => valis rb_east
 | bm = rb_south => valis rb_west
 | bm = rb_west => valis rb_north
 | bm = rb_east => valis rb_south
 } ;
};

turn_left(symbol?bm) -> symbol?valof{
 { bm = rb_box_north => valis rb_box_west
 | bm = rb_box_south => valis rb_box_east
 | bm = rb_box_west => valis rb_box_south
 | bm = rb_box_east => valis rb_box_north
 | bm = rb_north => valis rb_west
 | bm = rb_south => valis rb_east
 | bm = rb_west => valis rb_south
 | bm = rb_east => valis rb_north

Logic Programming Agents

103

 } ;
};

/* __vision_field */

Logic Programming Agents

104

patio.ap

/* This function build the scene the robot can see from its new
 position. In the current version (1.0) is just the next cell/
vision_field(world_model?RW,
 integer?X,integer?Y,symbol?bm) -> world_model?valof{
 integer?Fposx = 0;
 integer?Fposy = 0;

 { bm = rb_north || bm = rb_box_north => {
 Fposy := Y - 1;
 Fposx := X ;
 }
 | bm = rb_south || bm = rb_box_south => {
 Fposy := Y + 1;
 Fposx := X ;
 }
 | bm = rb_west || bm = rb_box_west => {
 Fposy := Y ;
 Fposx := X - 1;
 }
 | bm = rb_east || bm = rb_box_east => {
 Fposy := Y ;
 Fposx := X + 1;
 }
 };
/*
trace("VISUAL FIELD"," World Model %w \n\n",[RW]);
*/
 world_model?landscape := world_model?(RW^/[Fposx,Fposy,

symbol,symbol,symbol,symbol]) ;

trace("VISUAL FIELD"," Sight %p \n",[landscape]);

 valis landscape ;

} ;

next_position(coord?Cposx, coord?Cposy, symbol?Looking_To) -> [coord,coord]?valof{
 coord?Nposx := 0;
 coord?Nposy := 0;
 symbol?Dir := nothing;

 Dir := pname(Looking_To);

 { north = Dir => {
 Nposy := Cposy - 1;
 Nposx := Cposx ;
 }
 | south = Dir => {
 Nposy := Cposy + 1;
 Nposx := Cposx ;
 }
 | west = Dir => {
 Nposy := Cposy ;

Logic Programming Agents

105

 Nposx := Cposx - 1;
 }
 | east = Dir => {

Logic Programming Agents

106

patio.ap

 Nposy := Cposy ;
 Nposx := Cposx + 1;
 }
 };
 valis [Nposx,Nposy] ;
};

initial_world() -> any[]?valof{
 symbol?fullname = ffilename("world.db.patio");
 file?f := fopen(fullname,"r") ;

 world_model?wm := world_model?[];

 logical?keep := true ;
 while keep do {
 any?wr := read(f,1000);
 writef(stdout," Reading record %w\n",[wr]);
 if eof(f) then keep := false
 else wm := world_model?(wm \/[wr]) ;
 };

 valis wm
} ;

/* __ moving_forward */
moving_forward(world_model?real_world,

integer?Cposx,integer?Cposy,symbol?Looking_To,
handle?rt,handle?interface) -> world_model?valof{

 any[]?NextPos := next_position(Cposx,Cposy,Looking_To);
 [coord?Nposx,coord?Nposy] = [coord,coord]?NextPos;

 any[]?to_ := real_world^/[Nposx,Nposy,floor_,floor_,empty,any];
 if (to_ = []) then {
 [failed, m_forward, Cposx, Cposy, Looking_To] >> rt
 } else {
 real_world := world_model?(real_world^\[Nposx,Nposy,

floor_,floor_,empty,any]);
 any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];

 /* Catching the attributes values */
 [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
 real_world := world_model?(real_world^\[Cposx,

Cposy,any,any,any,any]);
 real_world := real_world \/ [[Nposx, Nposy, Ob, Tp, St, bm]];
 real_world := real_world \/ [[Cposx, Cposy,

 floor_, floor_, empty, floor_]];

 /* Trigger the animation */
 [move,Ob,Cposx,Cposy,Nposx,Nposy] >> interface ;

 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Nposx,Nposy,symbol?bm);

Logic Programming Agents

107

 /* acknowledge execution */
 [ok, Nposx, Nposy, new_scene] >> rt ;
 };
 valis real_world
};

Logic Programming Agents

108

patio.ap

/* ___________________________________ ____________ turning_right */
turning_right(world_model?real_world,integer?Cposx,

integer?Cposy,symbol?Looking_To,
handle?rt,handle?interface) -> world_model?valof{

 world_model?from_ := world_model?(real_world^/[Cposx,
Cposy,symbol,symbol,symbol,symbol]);

 [[integer,integer,symbol?Ob,
symbol?Tp,symbol?St,symbol?bm]]= from_;

 real_world := world_model?(real_world^\[Cposx,
 Cposy, any, any, any, any]);

 symbol?Nbm := turn_right(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];

 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;
 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; DEBUGGING */
 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);
 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;
 valis real_world

};

/* ___turning_left */
turning_left(world_model?real_world, integer?Cposx,integer?Cposy,

symbol?Looking_To,
handle?rt,handle?interface)-> world_model?valof{

 any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];
 [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
 real_world := world_model?(real_world^\[Cposx,

 Cposy, any, any, any, any]);
 symbol?Nbm := turn_left(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];
 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;
 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; */
 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);
 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;
 valis real_world
};

/* __ turning_back */
turning_back(world_model?real_world, integer?Cposx,integer?Cposy,symbol?Looking_To,handle?rt,handle?
interface) -> world_model?valof{

Logic Programming Agents

109

 any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];
 [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
 real_world := world_model?(real_world^\[Cposx, Cposy, any, any, any, any]);

Logic Programming Agents

110

patio.ap

 symbol?Nbm := turn_back(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];

 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;

 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; */

 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);

 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;

 valis real_world

};

/* __ being_born */
being_born(world_model?real_world, integer?Cposx,integer?Cposy,symbol?Looking_To,

handle?rt,handle?interface) -> world_model?valof{

 symbol?Nbm := catenate(rb_,Looking_To) ;

 any[]?pla := real_world^/[Cposx,Cposy,floor_,floor_,empty,any];

 if (pla == []) then {
 [failed, birth, Cposx, Cposy, Looking_To] >> rt;
 } else {
 real_world := world_model?(real_world^\[Cposx,Cposy,any?Ob,

any?Tp,any?St,any?bm]);
 real_world := real_world \/ [[Cposx, Cposy,

 rt, struct, free, Nbm]];
 /* Trigger the display */
 [birth,rt,Cposx,Cposy,Nbm] >> interface ;

 /* Build the vision field of this robot */
 world_model?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm) ;

 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;
 } ;
 valis real_world
};

/* __ world */
/* This process control the "world" or environment in the Warehouse.
 From a logical standpoint, its main function is to manage the

Logic Programming Agents

111

 "world database", which describe the world as is at each instant.
 (Snapshot database).

*/

Logic Programming Agents

112

patio.ap

world(handle?name,handle?interface){
 world_model?real_world := world_model?initial_world();
 repeat {
 [act, m_forward, integer?Cposx,

integer?Cposy, symbol?Looking_To] => {
 real_world := moving_forward(real_world,

Cposx,Cposy,Looking_To,replyto,interface) ;
 }
 | [act, t_back, integer?Cposx,

integer?Cposy, symbol?Looking_To] => {
 real_world := turning_back(real_world,

Cposx,Cposy,Looking_To,replyto,interface);
 }
 | [act, t_right, integer?Cposx,

 integer?Cposy, symbol?Looking_To] => {
 real_world := turning_right(real_world,

Cposx,Cposy,Looking_To,replyto,interface);
 }
 | [act, t_left, integer?Cposx,

 integer?Cposy, symbol?Looking_To] => {
 real_world := turning_left(real_world,Cposx,

Cposy,Looking_To,replyto,interface);
 }
/*
 | [act, take, coord?Cposx, coord?Cposy, symbol?Looking_To] => {
 relax
 }
 | [act, put, coord?Cposx, coord?Cposy, symbol?Looking_To] => {
 relax
 }
*/
 | [act, birth, integer?Cposx,

 integer?Cposy, symbol?Looking_To] => {
 real_world := being_born(real_world,Cposx,

Cposy,Looking_To,replyto,interface);
 }
 | [act, look, integer?Cposx,

 integer?Cposy, symbol?Looking_To] => {
 world_model?cp := world_model?(real_world^/[Cposx,Cposy,

symbol,symbol,symbol,symbol]);
 [[any,any,any,any,any,symbol?bm]] = cp ;
 world_model?new_scene := vision_field(real_world,

Cposx,Cposy,bm) ;
 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> replyto ;
 }
 | any?Msg => trace("WORLD","Strange messagge %p\n",[Msg])
 } until end ;

}; /* of the world */

/* ** interface */
/* The following groups of routinesactually control the visualisation creating the graphical environment in
Dialox. */
create_robot(symbol?name,integer?x,integer?y,symbol?bm) -> any[]?valof{

Logic Programming Agents

113

 { bm = rb_north => valis [addpic,
 Test,name,rob_north(name,x*sqmax,y*sqmax)]

 | bm = rb_east => valis [addpic,
 Test, name, rob_east(name,x*sqmax,y*sqmax)]

 | bm = rb_west => valis [addpic,
 Test, name, rob_west(name,x*sqmax,y*sqmax)]

 | bm = rb_south => valis [addpic,
 Test, name, rob_south(name,x*sqmax,y*sqmax)] }

Logic Programming Agents

114

patio.ap

};

move_object(symbol?name,integer?ox,integer?oy,integer?fx,integer?fy) -> any[]?valof{
 integer?Dx := (fx-ox)*100;
 integer?Dy := (fy-oy)*100;

trace("VIDEO","moving %s by %d %d \n",[name,Dx,Dy]);

 valis [move, Test, name, Dx, Dy]
};

/* ___ WorldProcess */
/* This process activates the X display and control the animation of the dock_land system.
 In order to activate this process:
 1.- start (or check active status) the April nameserver.
 2.- start (or check active status) the Dialox server.
 3.- start this process by executing:

 april dk_world <nameofworld> <?>

 It should be started before the dk_world process and before the robots are activated.
*/
WorldProcess(handle?wd, handle?dialox)
{
 /* Creating the world */
 [dialog,Patio,
 [column, 2,
 [row,[quit,Quit],[bitmap,xlogo32],[text,msg, ""]],
 [yellow, graph, Test, maxx, maxy],
 [row,[text,"Control Panel"],
 [button,Start,Start],
 [button,Freeze, Freeze],
 [button,Continue, Continue],
 [button,Select, Select],
 [button,Delete, Delete]
]]] >> dialox;

 /* Some visual help for the operator */
 [addpic,Test, axis, [group, [text, maxx/2-20,10, North],

 [text, maxx/2-20,maxy-10,South],
 [text, 5, maxy/2, West],

 [text, maxx-30, maxy/2, East]
]
] >> dialox ;

 {ok => relax
 | failed => writef(stdout,"Failed to create main dialog\n",[])
 };

 /* Setting the initial conditions */

 /* Controling the visualisation */
 repeat{
 [birth,symbol?name,integer?X,integer?Y,symbol?Dir] => {
 create_robot(name,X,Y,Dir) >> dialox ;

Logic Programming Agents

115

Logic Programming Agents

116

patio.ap

 }
 | Freeze => { Continue => relax /* Temporal stop... ack needed */
 }
 | Goal => { relax
 }
 /* Basic drawing capabilities */
 | [clear,symbol?name, integer?px,integer?py,?] => {
 handle?simul := replyto ;
 [delpic,Test,name] >> dialox ;
 /* Continue => ok >> simul ; DEBUGGING */
 }
 | [draw, symbol?name, integer?px, integer?py, symbol?orient] => {
 handle?simul := replyto ;
 create_robot(name,px,py,orient) >> dialox ;
 /* Continue => ok >> simul ; DEBUGGING */
 }

 /* Moving object in the display */
 | [move, symbol?name,
 integer?xi, integer?yi,
 integer?xf, integer?yf] => {
 move_object(name,xi,yi,xf,yf) >> dialox
 }

 | ok => relax

 | any?M => writef(stdout,"Other message: %D\n",[M])

 } until ^Quit;

 end >> wd ; /* End of the world */
};
cat(symbol?X,symbol?Y) -> symbol? catenate(X,catenate(" ",Y));

Logic Programming Agents

117

Logic Programming Agents

118

dk_world.ap

/* Loading Dock World

 This file contains the piece of code that need to be replaced
 in the patio world, in order to display the warehouse. Observe
 that only the WorldProcess need to be replaced. The rest of
 the code is identical in both worlds.

 Version: 1.0 Robots` range of perception: the front cell

 Last modified: 14 - 6 - 94

 Jacinto Davila. FAIT 94. Imperial College.

*/

/* *** interface */
/* The following groups of routines actually control the */
/* visualisation creating the graphical environment in Dialox. */
/***/

/* _________________________________ ____ WorldProcess */
/* This process activates the X display and control
 the animation of the warehouse
 In order to activate this process:
 1.- start (or check active status) the April nameserver.
 2.- start (or check active status) the Dialox server.
 3.- start this process by executing:

 april dk_world <nameofworld> <?>

 It should be started before the dk_world process and before the robots are activated.
*/
WorldProcess(handle?wd, handle?dialox)
{
 /* Creating the world */
 [dialog,Warehouse,
 [column, 2,
 [row, [quit,Quit],[bitmap,xlogo32],[text, msg, ""]],
 [yellow, graph, Test, maxx, maxy],
 [row,[text,"Control Panel"],
 [button,Start,Start],
 [button,Freeze, Freeze],
 [button,Continue, Continue],
 [button,Select, Select],
 [button,Delete, Delete]
]]] >> dialox;

 /* Some visual help for the operator */
 [addpic,Test, axis, [group, [text, maxx/2-20,10, North],

 [text, maxx/2-20,maxy-10,South],
 [text, 5, maxy/2, West],

 [text, maxx-30, maxy/2, East]
]
] >> dialox ;

Logic Programming Agents

119

 /* Drawing the structures in the world */

Logic Programming Agents

120

dk_world.ap

 /* The shelves */
 [addpic,Test, shelves, [group,
 [line, 0,100, 500,100],
 [line, 0,200, 200,200],
 [line, 200,200,200,300],
 [line, 200,300,0,300],
 [line, 300,200,500,200],
 [line, 300,200,300,300],
 [line, 300,300,500,300]
]
] >> dialox ;

 /* The truck */
 [addpic,Test, truck, [group,
 [line, 200,400, 300,400],
 [line, 200,400, 200,700],
 [line, 300,400, 300,700],
 [line, 200,700, 300,700],
 [line, 200,500, 300,500],
 [line, 200,600, 300,600],
 [line, 200,600, 220,660],
 [line, 220,660, 280,660],
 [line, 280,660, 300,600],
 [line, 220,600, 240,640],
 [line, 240,640, 260,640],
 [line, 260,640, 280,600],
 [line, 300,300,500,300]
]
] >> dialox ;

 {ok => relax
 | failed => writef(stdout,"Failed to create main dialog\n",[])
 };

 /* Setting the initial conditions */

 /* Controling the visualisation */
 repeat{
 [birth,symbol?name,integer?X,integer?Y,symbol?Dir] => {

trace("VIDEO","Putting %s in the
 world at %d %d with face %s\n",[name,X,Y,Dir]);

 create_robot(name,X,Y,Dir) >> dialox ;

 }
 | Freeze => { Continue => relax /* Temporal stop... ack needed */
 }
 | Goal => { relax
 }
 /* Basic drawing capabilities */
 | [clear,symbol?name, integer?px,integer?py,?] => {

/* trace("VIDEO","Erasing %s",[name]); */

Logic Programming Agents

121

 handle?simul := replyto ;
 [delpic,Test,name] >> dialox ;

Logic Programming Agents

122

dk_world.ap

 /* Continue => ok >> simul ; DEBUGGING */
 }
 | [draw,symbol?name,integer?px,integer?py, symbol?orient] => {
/*
trace("VIDEO","Drawing %s with symbol %s\n ",[name,orient]);
*/
 handle?simul := replyto ;
 create_robot(name,px,py,orient) >> dialox ;
 /* Continue => ok >> simul ; DEBUGGING */
 }

 /* Moving object in the display */
 | [move, symbol?name,
 integer?xi, integer?yi,
 integer?xf, integer?yf] => {
 move_object(name,xi,yi,xf,yf) >> dialox
 }
 | ok => relax

 | any?M => writef(stdout,"Other message: %D\n",[M])

 } until ^Quit;

 end >> wd ; /* End of the world */
};
cat(symbol?X,symbol?Y) -> symbol? catenate(X,catenate(" ",Y));

Logic Programming Agents

123

Logic Programming Agents

124

common.ah

/* common.ah

 This file contains macros and functions used by robot.ap and
 the world simulators.
*/

/* ___ macros */
/* trace(Process, OutputFile, Message, ListofObjects); */
#macro trace(?O, ?M, ?L) -> { relax
 writef(stdout,"%s(%s):",[O, self]);
 writef(stdout, M, L);
 writef(stdout,"\n",[]);
};

/* head */
head(any[]?T) -> any?valof{
 any[]?A := front(T,1);
 [any?Item] = A;
 valis Item
};

/__ extract */
extract(any[]?T) -> any[]?valof{

valis back(T, |T|-1)
};

world.db.patio

[0, 6, floor_, floor_, empty, floor_];
[1, 6, floor_, floor_, empty, floor_];
[2, 6, floor_, floor_, empty, floor_];
[3, 6, floor_, floor_, empty, floor_];
[4, 6, floor_, floor_, empty, floor_];
[0, 5, floor_, floor_, empty, floor_];
[1, 5, floor_, floor_, empty, floor_];
[2, 5, floor_, floor_, empty, floor_];
[3, 5, floor_, floor_, empty, floor_];
[4, 5, floor_, floor_, empty, floor_];
[0, 4, floor_, floor_, empty, floor_];
[1, 4, floor_, floor_, empty, floor_];
[2, 4, floor_, floor_, empty, floor_];
[3, 4, floor_, floor_, empty, floor_];
[4, 4, floor_, floor_, empty, floor_];
[0, 3, floor_, floor_, empty, floor_];
[1, 3, floor_, floor_, empty, floor_];
[2, 3, floor_, floor_, empty, floor_];
[3, 3, floor_, floor_, empty, floor_];
[4, 3, floor_, floor_, empty, floor_];
[0, 2, floor_, floor_, empty, floor_];
[1, 2, floor_, floor_, empty, floor_];
[2, 2, floor_, floor_, empty, floor_];
[3, 2, floor_, floor_, empty, floor_];
[4, 2, floor_, floor_, empty, floor_];
[0, 1, floor_, floor_, empty, floor_];

Logic Programming Agents

125

[1, 1, floor_, floor_, empty, floor_];
[2, 1, floor_, floor_, empty, floor_];
[3, 1, floor_, floor_, empty, floor_];
[4, 1, floor_, floor_, empty, floor_];
[0, 0, floor_, floor_, empty, floor_];
[1, 0, floor_, floor_, empty, floor_];
[2, 0, floor_, floor_, empty, floor_];
[3, 0, floor_, floor_, empty, floor_];
[4, 0, floor_, floor_, empty, floor_];

Logic Programming Agents

126

world.db.warehouse

[0, 6, floor_, floor_, empty, floor_];
[1, 6, floor_, floor_, empty, floor_];
[2, 6, truck, struct, full, truck_cabin];
[3, 6, floor_, floor_, empty, floor_];
[4, 6, floor_, floor_, empty, floor_];
[0, 5, floor_, floor_, empty, floor_];
[1, 5, floor_, floor_, empty, floor_];
[2, 5, box, struct, full, boxB_on_truck];
[3, 5, floor_, floor_, empty, floor_];
[4, 5, floor_, floor_, empty, floor_];
[0, 4, floor_, floor_, empty, floor_];
[1, 4, floor_, floor_, empty, floor_];
[2, 4, box, struct, full, boxA_on_truck];
[3, 4, floor_, floor_, empty, floor_];
[4, 4, floor_, floor_, empty, floor_];
[0, 3, floor_, floor_, empty, floor_];
[1, 3, floor_, floor_, empty, floor_];
[2, 3, floor_, floor_, empty, floor_];
[3, 3, floor_, floor_, empty, floor_];
[4, 3, floor_, floor_, empty, floor_];
[0, 2, shelf, struct, empty, shelf_cell];
[1, 2, shelf, struct, empty, shelf_cell];
[2, 2, floor_, floor_, empty, floor_];
[3, 2, shelf, struct, empty, shelf_cell];
[4, 2, shelf, struct, empty, shelf_cell];
[0, 1, floor_, floor_, empty, floor_];
[1, 1, floor_, floor_, empty, floor_];
[2, 1, floor_, floor_, empty, floor_];
[3, 1, floor_, floor_, empty, floor_];
[4, 1, floor_, floor_, empty, floor_];
[0, 0, shelf, struct, empty, shelf_cell];
[1, 0, shelf, struct, empty, shelf_cell];
[2, 0, floor_, floor_, empty, floor_];
[3, 0, shelf, struct, empty, shelf_cell];
[4, 0, shelf, struct, empty, shelf_cell];
[0, 7, wall, struct, full, wall];
[1, 7, wall, struct, full, wall];
[2, 7, wall, struct, full, wall];
[3, 7, wall, struct, full, wall];
[4, 7, wall, struct, full, wall];
[5, 7, wall, struct, full, wall];
[5, 0, wall, struct, full, wall];
[5, 1, wall, struct, full, wall];
[5, 2, wall, struct, full, wall];
[5, 3, wall, struct, full, wall];
[5, 4, wall, struct, full, wall];
[5, 5, wall, struct, full, wall];
[5, 6, wall, struct, full, wall];

Logic Programming Agents

127

Logic Programming Agents

128

exam1.ap

/* perpetual dialogue

 Elemental example of an APRIL multiagent implementation.
*/

/* __ trace */
/* trace(Process, OutputFile, Message, ListofObjects); */
#macro trace(?O, ?M, ?L) -> {
 writef(stdout,"%s(%s):",[O, self]);
 writef(stdout, M, L);
 writef(stdout,"\n",[]);
};

/* ___ _ agent2 */
agent2(){
 while true do {
 DoYouWantMeToTellYouTheBaldCockStory => {
 symbol?answer := genAnswer(yes_No);

trace("AGENT2","%s\n",[answer]);

 answer >> replyto
 }
 | quit => break
 }
};

/* ___ agent1 */
agent1(handle?agent2){

 DoYouWantMeToTellYouTheBaldCockStory >> agent2;

trace("AGENT1","Do you want me to tell you the story of the bald cock?..\n",[]);

 while true do {
 quit => break /* the game is over */
 | any?answer => {

trace("AGENT1","It isn`t that %s, but if you want me to tell you the story of the bald cock..\n",[answer]);

 DoYouWantMeToTellYouTheBaldCockStory >> replyto
 }
 }
};

genAnswer(symbol?basicAnswer) -> symbol?valof{
 symbol?basename := gensym();
 [symbol,symbol]?splitname := split(basename, 7);
 [symbol,symbol?counter] = splitname;
 symbol?answer := catenate(basicAnswer, counter);
 valis answer /* Return the just built answer */
} ;

Logic Programming Agents

129

exam1.ap

Logic Programming Agents

130

/* __________________________________ main process */
main(any[]?ar){

 if |ar| < 2 then {
 writef(stdout,"usage:

 april exem1 <agent2name> <agent1name>\n",[]);
 exit(1);
 };

 handle?grandson := handle?ar[1];
 handle?grandfather := handle?ar[2];

 /* the processes representing the agents are created */
 grandson names agent2() ; /* fork call */
 grandfather names agent1(grandson) ; /* fork call */

trace("MAIN","Starting the simulation\n",[]);

 { any?Msg => relax
 | timeout 2 secs => relax };

/* the simulation longs as most 2 seconds */

trace("MAIN","Ending the simulation \n",[]);

 /* The main process inform the agents the game is over */
 quit >> grandfather;
 quit >> grandson;

};

Logic Programming Agents

131

APPENDIX B. AGENT'S BRAINS IN PROLOG

This appendix shows the source-codes of the following programs written in

PROLOG:

• reacbrain.pl. It contains the reactive model of brain including the locus of

control algorithm, the knowledge assimilation meta-interpreter and the

object-level hierarchy of goals.

• planbrain.pl. It contains the locus of control and the meta-interpreter

enhanced for planning with bounded abducibility. The object level knowledge is
not included (it is the same that in reacbrain.pl).

Within the code of reacbrain.pl the reader will find the description of the

model of the world (cell/5 predicate) that the agent maintains.

Logic Programming Agents

132

reacbrain.pl

/* reacbrain.pl

 Knowledge assimilation in logic-based agents.

 This programm implements the main execution-assimilation cycle
 within the agent's brain. It also contains the rules of
 behaviour this agent will follow.

 features:
 1.- The metapredicate stops as soon as it can abduce the
 first do term or the depth is N. As this brain only decide
 the next action to be executed is regarded as a reactive
 brain.
 2.- The object level and meta-level predicates include
 time representation but this is not actually used by the
 program.

 Last modified: 30 Aug 1994

*/

/**/
/*this first section implements the locus of control algorithms & */
/*activates the APRIL-PROLOG interfaces. */
/**/

:- dynamic cell/6, current_sit/1, stat/3.

agent(Name, InitialGoal, N) :-
 ap_init(Name, 0),
 ap_receive(From, _), /* Receive the wake up message */
 writef("Agent %w running with time resource = %w\n",[Name,N]),
 cycle(From, InitialGoal, N),
 ap_end.

agent(_, _, _) :- ap_end.

cycle(Agent, Goals, N) :- !,
 observe(Input),
 To = Counter, /* Initial time for planning */
 update_stat(counter, [cycle]),
 stat(counter, cycle, Counter),
 /* writef("Assim-Exec Cycle number %w \n",[Counter]), */
 assimilate(Input, Goals, NGoals, To, N, _),
 execute(Agent, NGoals, NextGoals),
 (pause(NextGoals) ->
 cycle(Agent, NextGoals, N);
 true).

observe(Input) :-
 ap_receive(_, Message), /* Observe message */
 /* writef("Receive new scenario %w\n",[Message]), */
 Message = [observe,[X,Y,F,St,Input]],

Logic Programming Agents

133

 (retract(current_sit(_)) -> true ; true),
 assert(current_sit((X, Y, F, St))).

Logic Programming Agents

134

reacbrain.pl

update_world_model([]).
update_world_model([[X, Y, Obj, Typ, St, Bm]|Rest]) :- !,
 (retract(cell(X, Y, _, _, _, _)) ->
 /* writef("My World has changed\n"), */ true ;
 /* writef("My World has been extended\n"), */ true),
 assert(cell(X, Y, Obj, Typ, St, Bm)),
 update_world_model(Rest).

execute(Agent, OldGoals, NewGoals) :-
 process_goal(OldGoals, Plan, SamePlan, OtherPlan),
 /* writef("Sending new plan %w to my body\n",[Plan]), */
 ap_send(Agent, [plan,Plan]),
 ap_receive(Agent, Ack),
 ap_send(Agent, go), /* Sincronizing. Shouldn`t be needed */
 /* writef("Last action %w %w \n",[Plan, Ack]), */
 (Ack == succeed ->
 (update_stat(success, Plan), NewGoals = SamePlan) ;
 (update_stat(failure, Plan), NewGoals = OtherPlan)).

process_goal([Goal|AltG], Plan, NewGoals, RealAltG) :-
 (Goal = (do(Act,T), _) ->
 (Action = (do(Act,T)), Plan = [Act]) ;
 (Action = (do(look,0)), Plan = [look])),
 (Act == look -> display_stat; true),

/* displaying stat at the end */
 /* writef("\nExecuting \n\n",[]), printconj(Goal), */
 pop(Action, [Goal|AltG], NewGoals, RealAltG).
 /* writef("Next subgoals in this set:\n",[]), */
 /* printl(NewGoals), writef(" Alternatives\n",[]), printl(RealAltG) .*/

/* *** */
/* This is the module of assimilation to be inserted into the */
/* robots' brains */
/* *** */

/* __ assimilate */

assimilate(Input, Gs, NGs, T, N, Tn) :-
 update_world_model(Input),
 /* writef("\n Assimilating %w \n",[Gs]), */
 (resolve(N, Gs, NewGoals) ->
 NGs = NewGoals ;
 (writef("These goals %w don't make any sense\n",[Gs]),
 NGs = [(true)]
)
),
 Tn is T + N.

resolve(0, Goals, Goals). /* Base cases */
resolve(_, [(true)], [(true)]).

resolve(N, [true|Rest], NGoals) :-
Logic Programming Agents

135

 NNext is N - 1,

Logic Programming Agents

136

reacbrain.pl

 resolve(NNext, Rest, NGoals).

resolve(N, Goals, NGoals) :-
 /* demostrating upon the current KB */
 Goals = [FirstAlt|RemAlt],
 demo(FirstAlt, NewSet), /* G <-> body1 or body2 .. */
 append(NewSet, RemAlt, NextGoals), /* depth first like */
 NNext is N - 1,
 resolve(NNext, NextGoals, NGoals).

resolve(N, [_|RemAlt], NGoals) :-
 NNext is N - 1,
 resolve(NNext, RemAlt, NGoals).

demo(true, [(true)]).

demo((true, R), NewGoals) :- !, demo((R), NewGoals).

demo((not G, R), [(R)]) :- not demo(G, _).

demo((G, R), [(R)]) :-
 predicate_property(G, built_in), !, G /*,
 writef("Solving built-in %w \n",[G]) */.

demo((G, R), NewList) :-
 /* Stop demo and prepare for execution */
 abducible(G), !,
 push(G, [(R)], NewList).

demo((G, R), NewList) :- /* reducing actions and subgoals */
 /* writef("\n Resolving %w \n",[G]), */
 findall(BB,
 (clause(G, Body), and_append(Body, R, BB)),
 NewList),
 /*
 writef("\n\n New Set \n { ",[]),
 printdisj(NewList),
 writef("\n } \n ",[]),
 */
 (NewList = [] -> (fail, !); true).

push(_, [], []).
push(G, [F|R], [N|NR]) :- !,
 and_append(G, F, N),
 push(G, R, NR).

pop(Act, [F|R], [N|NR], AltR) :-
 cut(Act, F, N),
 pop(Act, R, NR, AltR).
pop(do(look,0), Rest, Rest, []) :- !.
 /* action do(look,0) has special function */
pop(_, Rest, [], Rest).

Logic Programming Agents

137

cut(R_Act, (P_Act, Rest), Rest) :- R_Act == P_Act.

Logic Programming Agents

138

reacbrain.pl

and_append(First, Second, Result) :- !,
 first_part(First, Second, Result).
first_part((A, R), Second, (A, Rest)) :- !,
 first_part(R, Second, Rest).
first_part(Last, Second, (Last, Rest2)) :- !,
 second_part(Second, Rest2).
second_part((A, R), (A, Rest2)) :- !,
 second_part(R, Rest2).
second_part(A, A).

printl([]).
printl([A|B]) :- writef(" [",[]),
 andprint(A),
 writef("] ",[]), printl(B), !.

andprint((A,B)) :-
 (A = do(_,_) -> (writef("-Act- %w ",[A]), andprint(B));
 (writef("-+- %w ",[A]), andprint(B))).
andprint(A) :-
 (A = do(_,_) -> writef("-Act- %w ",[A]) ;
 writef("-+- %w ",[A])).

printconj((A,B)) :-
 writef(" %w ^ ",[A]), printconj(B).
printconj(B) :-
 writef("%w ",[B]).

printdisj([]) :- writef("]",[]).
printdisj([A|B]) :- writef("\n [",[]),
 printconj(A),
 writef("] -+- \n [",[]), printdisj(B), !.

/***/
/* This section contains domain specific definitions */
/* and the object level rules */
/***/

abducible(G) :- G=..[P|_], abd(P), !.
/* Add Instantiation check */

abd(do).

/* ___ closer */
/* Test whether (X,Y) is closer to Gx,Gy than Cx,Cy */

closer((_, _, _), (X, Y, D), (X, Y, D)) .
closer((X, Y, east), (X, Y, north), (X, Y, north)).
closer((X, Y, east), (X, Y, north), (X, Y, west)).
closer((X, Y, east), (X, Y, south), (X, Y, south)).
closer((X, Y, west), (X, Y, north), (X, Y, north)).
closer((X, Y, west), (X, Y, north), (X, Y, east)).
closer((X, Y, west), (X, Y, south), (X, Y, south)).

Logic Programming Agents

139

closer((X, Y, north), (X, Y, east), (X, Y, east)).

Logic Programming Agents

140

reacbrain.pl

closer((X, Y, north), (X, Y, west), (X, Y, west)).
closer((X, Y, north), (X, Y, east), (X, Y, south)).
closer((X, Y, south), (X, Y, east), (X, Y, east)).
closer((X, Y, south), (X, Y, west), (X, Y, west)).
closer((X, Y, south), (X, Y, west), (X, Y, north)).
closer((CX, CY, _), (X, Y, _), (GX, GY, _)) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 DIni is sqrt(IniX*IniX + IniY*IniY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 DNw is sqrt(NwX*NwX + NwY*NwY),
 DNw < DIni.
closer((CX, CY, _), (X, Y, east), (GX, GY, _)) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX =< IniX, NwY = IniY, CX < GX.
closer((CX, CY, _), (X, Y, west), (GX, GY, _)) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX =< IniX, NwY = IniY, CX > GX.
closer((CX, CY, _), (X, Y, south), (GX, GY, _)) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX = IniX, NwY =< IniY, CY < GY.
closer((CX, CY, _), (X, Y, north), (GX, GY, _)) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX = IniX, NwY =< IniY, CY > GY.

/* ___ evasive actions */
/* Precompiled primitive action for avoiding obstacules */

change_dir((X, Y, north), (X, Y, east), T) :-
 do(t_right, T).
change_dir((X, Y, south), (X, Y, west), T) :-
 do(t_right, T).
change_dir((X, Y, east), (X, Y, south), T) :-
 do(t_right, T).
change_dir((X, Y, west), (X, Y, north), T) :-
 do(t_right, T).

move_forward((X, Y, north), (X, Ny, north), T) :-
 Ny is Y - 1, not prohibited((X, Ny, north), T), do(m_forward, T).
move_forward((X, Y, south), (X, Ny, south), T) :-

Logic Programming Agents

141

 Ny is Y + 1, not prohibited((X, Ny, south), T), do(m_forward, T).

Logic Programming Agents

142

reacbrain.pl

move_forward((X, Y, east), (Nx, Y, east), T) :-
 Nx is X + 1, not prohibited((Nx, Y, east), T),
 do(m_forward, T).
move_forward((X, Y, west), (Nx, Y, west), T) :-
 Nx is X - 1, not prohibited((Nx, Y, west), T),
 do(m_forward, T).

/* ___ prohibited */
prohibited((X,Y,_), _) :-
 cell(X, Y, _, struct, _, _).
prohibited((X,Y,_), _) :-
 not cell(X, Y, _, _, _, _) .

/* __ atom_action */
atom_action(m_forward, (X, Y, north), (X, Y2, north)) :-
 Y2 is Y - 1.
atom_action(m_forward, (X, Y, south), (X, Y2, south)) :-
 Y2 is Y + 1.
atom_action(m_forward, (X, Y, east), (X2, Y, east)) :-
 X2 is X + 1.
atom_action(m_forward, (X, Y, west), (X2, Y, west)) :-
 X2 is X - 1.
atom_action(t_right, (X, Y, north), (X, Y, east)).
atom_action(t_right, (X, Y, east), (X, Y, south)).
atom_action(t_right, (X, Y, south), (X, Y, west)).
atom_action(t_right, (X, Y, west), (X, Y, north)).
atom_action(t_left, (X, Y, north), (X, Y, west)).
atom_action(t_left, (X, Y, west), (X, Y, south)).
atom_action(t_left, (X, Y, south), (X, Y, east)).
atom_action(t_left, (X, Y, east), (X, Y, north)).

/* __ World Model */
/* Cell(CoordX, CoordY, Name, Type, Status, Bitmap */

/* __________________________________ goal <- cond, action rules */

go(Cs, Cs, To, _) :-
 do(look, To).

go(Cs, Fs, To, Tn) :-
 gradient_step(Cs, Ns, Fs, To), T1 is To + 1,
 go(Ns, Fs, T1, Tn).

go(Cs, Fs, To, Tn) :-
 avoidance_steps(Cs, Ns, Fs, To, Tf), T1 is Tf + 1,
 go(Ns, Fs, T1, Tn).

gradient_step(CurrentSit, NewSit, FinalSit, T) :-
 atom_action(Action, CurrentSit, NewSit),
 closer(CurrentSit, NewSit, FinalSit),
 not prohibited(NewSit, T),
 do(Action, T).

Logic Programming Agents

143

avoidance_steps(CurrentSit, NextSit, FinalSit , T, Tf) :-
/*follow the wall*/

Logic Programming Agents

144

reacbrain.pl

 change_dir(CurrentSit, NewSit, T),
 T1 is T + 1,
 avoidance_step2(NewSit, NextSit, FinalSit, T1, Tf).

avoidance_step2(CurrentSit, NextSit, _, T, Tf) :-
 move_forward(CurrentSit, NextSit, T),
 Tf is T + 1.

avoidance_step2(CurrentSit, NexSit, FinalSit, T, Tf) :-
 T1 is T + 1,
 avoidance_steps(CurrentSit, NexSit, FinalSit, T1, Tf).

at(S, Int) :-
 time_now(To), current_sit((Cx,Cy,Cd,_)), T is To + Int,
 go((Cx,Cy,Cd), S, To, T).

walk_around(Sa, _) :-
 current_sit((Cx, Cy, Cd, _)),

go_around(So, Sf) :-
 go(So, Sf, 1, 1000), go_around(Sf, So).

/***/
/* ___Auxiliary predicates */

time_now(T) :- get_time(T).

update_stat(Result, [Act]) :-
 retract(stat(Result, Act, Old)) ->
 (New is Old + 1, assert(stat(Result, Act, New))) ;
 (assert(stat(Result, Act, 1))).

display_stat :-
 findall((Result, Act, Num), stat(Result, Act, Num), L),
 writef("\n\n Statistics: ",[]),
 printl(L)
 /* retractall(stat(_,_,_)) */.

/***/
/* __testers */

test1a(N) :- agent(brainof_ja,
[(walk_around((4,3,west), 200), true)],N).

test1b(N) :- agent(brainof_jb,
[(walk_around((0,3,east), 200), true)],N).

test1c(N) :- agent(brainof_jc,
[(walk_around((3,6,north), 200), true)],N).

Logic Programming Agents

145

test1d(N) :- agent(brainof_jd,
[(walk_around((1,6,north), 200), true)],N).

Logic Programming Agents

146

planbrain.pl

/* planbrain.pl

 Knowledge assimilation in logic-based agents.

 This programm implements the main assimilation cycle within
 the agent's brain.

 features:
 1.- The metapredicate does not stop when it gets the first
 executable goal. This is an agent with planning capabilities.
 2.- The object level and meta-level predicates include
 time representation but this is not actually used by the
 program.
 3.- This version also limits the number of abduced terms that the
 agent can have at any time.

 Last modified: 30 Aug 1994

*/

/***/
/* this first section implement the locus of control algorithms */
/* and activate the APRIL-PROLOG interfaces. */
/***/

:- dynamic cell/6, current_sit/1, stat/3, abd_count/1.

agent(Name, InitialGoal, N, M) :-
 ap_init(Name, 0),
 ap_receive(From, _), /* Receive the wake up message */
 writef("Agent %w ;

time resource = %w ; abducing limit = %w\n",[Name, N, M]),
 init_abd_count(M),
 cycle(From, InitialGoal, N),
 ap_end.

agent(_, _, _) :- ap_end.

cycle(Agent, Goals, N) :- !,
 observe(Input),
 To = Counter, /* Initial time for planning */
 update_stat(counter, [cycle]),
 stat(counter, cycle, Counter),
 /* writef("Assim-Exec Cycle number %w \n",[Counter]), */
 assimilate(Input, Goals, NGoals, To, N, _),
 execute(Agent, NGoals, NextGoals),
 (pause(NextGoals) ->
 cycle(Agent, NextGoals, N);
 true).

observe(Input) :-
 ap_receive(_, Message), /* Observe message */

Logic Programming Agents

147

 /* writef("Receive new scenario %w\n",[Message]), */
 Message = [observe,[X,Y,F,St,Input]],
 (retract(current_sit(_)) -> true ; true),

Logic Programming Agents

148

planbrain.pl

 assert(current_sit((X, Y, F, St))).

update_world_model([]).
update_world_model([[X, Y, Obj, Typ, St, Bm]|Rest]) :- !,
 (retract(cell(X, Y, _, _, _, _)) ->
 /* writef("My World has changed\n"), */ true ;
 /* writef("My World has been extended\n"), */ true),
 assert(cell(X, Y, Obj, Typ, St, Bm)),
 update_world_model(Rest).

execute(Agent, OldGoals, NewGoals) :-
 process_goal(OldGoals, Plan, SamePlan, OtherPlan),
 /* writef("Sending new plan %w to my body\n",[Plan]), */
 ap_send(Agent, [plan,Plan]),
 ap_receive(Agent, Ack),
 ap_send(Agent, go), /* Sincronizing. Shouldn`t be needed */
 /* writef("Last action %w %w \n",[Plan, Ack]), */
 (Ack == succeed ->
 (update_stat(success, Plan), NewGoals = SamePlan,
 up_abd) ;
 (update_stat(failure, Plan), NewGoals = OtherPlan,
 reinit_abd)
).

process_goal([Goal|AltG], Plan, NewGoals, RealAltG) :-
 (Goal = (do(Act,T), _) ->
 (Action = (do(Act,T)), Plan = [Act]) ;
 (Action = (do(look,0)), Plan = [look])),
 (Act == look -> display_stat; true), /* displaying stat at the end */
 /* writef("\nExecuting \n\n",[]), printconj(Goal), */
 pop(Action, [Goal|AltG], NewGoals, RealAltG).
 /* writef("Next subgoals in this set:\n",[]), */
 /* printl(NewGoals), writef(" Alternatives\n",[]), printl(RealAltG) .*/

/* *** */
/* This is the module of assimilation to be inserted into the */
/* robots' brains */
/* *** */

/* ___assimilate */

assimilate(Input, Gs, NGs, T, N, Tn) :-
 update_world_model(Input),
 /* writef("\n Assimilating %w \n",[Gs]), */
 (resolve(N, Gs, NewGoals) ->
 NGs = NewGoals ;
 (writef("These goals %w don't make any sense\n",[Gs]),
 NGs = [(true)]
)
),
 Tn is T + N.

Logic Programming Agents

149

Logic Programming Agents

150

planbrain.pl

resolve(0, Goals, Goals). /* Base cases */
resolve(_, [(true)], [(true)]).

resolve(N, [true|Rest], NGoals) :-
 NNext is N - 1,
 resolve(NNext, Rest, NGoals).

resolve(N, Goals, NGoals) :-
 /* demostrating upon the current KB */
 select(Goals, ReadySet, FirstAlt, RemAlt),
 demo(FirstAlt, NewSet), /* G <-> body1 or body2 .. */
 combine(ReadySet, NewSet, RemAlt, NextGoals),
 NNext is N - 1,
 resolve(NNext, NextGoals, NGoals).

resolve(N, Goals, NGoals) :-
 select(Goals, ReadySet, _, RemAlt), /* Not very efficient */
 NNext is N - 1,
 append(ReadySet, RemAlt, NextGoals),
 resolve(NNext, NextGoals, NGoals).

select([(true)|RG], [], true, RG).

select([FG|RG], [FG|RReady], FirstAlt, RemAlt) :-
 fullplan(FG),
 select(RG, RReady, FirstAlt, RemAlt).

select([FG|RG], [], FG, RG).

combine(ReadySet, NewSet, RemAlt, NextGoals) :-
 append(ReadySet, NewSet, TempSet),/* Depth first search*/
 append(TempSet, RemAlt, NextGoals).

fullplan((G, R)) :-
 (abducible(G); G = true),
 fullplan(R).
fullplan(G) :- !,
 G = true.

demo(true, [(true)]).

demo((true, R), NewGoals) :- !, demo((R), NewGoals).

demo((not G, R), [(R)]) :- not demo(G, _).

demo((G, R), [(R)]) :-
 predicate_property(G, built_in), !.

demo((G, R), NewList) :-
 abducible(G), !,
 (no_more_abd ->
 (NewList = [(G, R)]) ;

Logic Programming Agents

151

 (demo(R, NewSet), push(G, NewSet, NewList), down_abd)

Logic Programming Agents

152

planbrain.pl

).

demo((G, R), NewList) :- /* reducing actions and subgoals */
 findall(BB,
 (clause(G, Body), and_append(Body, R, BB)),
 NewList),
 (NewList = [] -> (fail, !); true).

push(_, [], []).
push(G, [F|R], [N|NR]) :- !,
 and_append(G, F, N),
 push(G, R, NR).

pop(Act, [F|R], [N|NR], AltR) :-
 cut(Act, F, N),
 pop(Act, R, NR, AltR).
pop(do(look,0), Rest, Rest, []) :- !.
 /* action do(look,0) has special function */
pop(_, Rest, [], Rest).

cut(R_Act, (P_Act, Rest), Rest) :- R_Act == P_Act.

and_append(First, Second, Result) :- !,
 first_part(First, Second, Result).
first_part((A, R), Second, (A, Rest)) :- !,
 first_part(R, Second, Rest).
first_part(Last, Second, (Last, Rest2)) :- !,
 second_part(Second, Rest2).
second_part((A, R), (A, Rest2)) :- !,
 second_part(R, Rest2).
second_part(A, A).

printl([]).
printl([A|B]) :- writef(" [",[]),
 andprint(A),
 writef("] ",[]), printl(B), !.

andprint((A,B)) :-
 (A = do(_,_) -> (writef("-Act- %w ",[A]), andprint(B));
 (writef("-+- %w ",[A]), andprint(B))).
andprint(A) :-
 (A = do(_,_) -> writef("-Act- %w ",[A]) ;
 writef("-+- %w ",[A])).

printconj((A,B)) :-
 writef(" %w ^ ",[A]), printconj(B).
printconj(B) :-
 writef("%w ",[B]).

printdisj([]) :- writef("]",[]).
printdisj([A|B]) :- writef("\n [",[]),

Logic Programming Agents

153

Logic Programming Agents

154

planbrain.pl

 printconj(A),
 writef("] -+- \n [",[]), printdisj(B), !.

init_abd_count(M) :-
 (retract(abd_count(_)) -> true; true),
 (retract(abd_init(_)) -> true; true),
 assert(abd_count(M)),
 assert(abd_init(M)).

reinit_abd :- abd_init(M),
 retract(abd_count(_)), assert(abd_count(M)).

no_more_abd :- abd_count(M), M =< 0.

up_abd :- retract(abd_count(M)), NM is M + 1, assert(abd_count(NM)).

down_abd :- retract(abd_count(M)),
NM is M - 1, assert(abd_count(NM))

/***/
/* This section contains domain specific definitions and the */
/* object level rules */
/***/

/* see the details of this section inside the code of reacbrain */
/* the object level knowledge in both brains is the same */

Logic Programming Agents

155

APPENDIX C. SOURCES OF THE PROLOG-APRIL INTERFACE

This appendix contains the following source-codes:

• stub.c. This file describes or declares for the SWI-PROLOG those routines

and procedures (PROLOG predicates) that are being added to the original

PROLOG through the C-interface.

• pl_ap.c. This file contains the source-code of those procedures that

implements the PROLOG-APRIL interface and other auxiliary procedures and

system routines. Observe that this code contains calls to procedures that are part

of the supporting TCP/IP platform, implemented as a separated library.

• pl-prims.c. This is the only file within the SWI-PROLOG original

source-codes that required alteration. We include precisely the piece of code (the
pl_halt procedure) that was changed.

• talker.ap. It is small example of a program written in APRIL that can be used

to interact with a PROLOG program with the APRIL-PROLOG extensions.

Observe that this program is an ordinary APRIL program.

• talker.pl. This is a PROLOG code (with the APRIL-PROLOG predicates)

that can interact with the program talker.ap.

Logic Programming Agents

156

stub.c

/* stub.c,v 1.1 1992/07/17 12:40:36 jan Exp

 Copyright (c) 1991 Jan Wielemaker. All rights reserved.
 jan@swi.psy.uva.nl

 Purpose: Skeleton for extensions to SWI-PROLOG. (see manual).

 PROLOG-APRIL agent interface:
 Interface for communicating a prolog agent with other agents
 in an April environment. The interface implements a set of 4
 primitives communicating predicates. This predicates invoke
 the procedures for initialising the channels of communications,
 sending and receiving messages and closing the channels.
 This version of the interface is implemented on top of a TCP/IP
 plataform, using UDP as the transport layer protocol. However
 some previsions are taken for ensuring reliable communication.

 Implemented by: Jacinto Alfonso Da'vila.

 Last modified: 24 - 5 - 94.

 The TCP/IP plataform was provided by Prof. Frank McCabe.

 Imperial College. London.

*/

#include <stdio.h>
#include "SWI-Prolog.h"

extern foreign_t pl_ap_init P((term, term));
extern foreign_t pl_ap_send P((term, term));
extern foreign_t pl_ap_receive P((term, term));
extern foreign_t pl_ap_end P((term));

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/
 { "ap_init", 2, pl_ap_init, 0 },
 { "ap_send", 2, pl_ap_send, 0 },
 { "ap_receive", 2, pl_ap_receive, 0 },
 { "ap_end", 0, pl_ap_end, 0 },
 { NULL, 0, NULL, 0 } /* terminating line */
};

Logic Programming Agents

157

Logic Programming Agents

158

pl_ap.c

/* pl_ap.c

 This file contains the definition of the C-functions which implement the April-PROLOG interface over the
TCP libraries.
 These functions support the predicates which allow a prolog agent to communicates with other agents in an
April environment.

 The actual program that controls this process should be written in PROLOG and executed by the prolog
agent. (see file talker.pl)

 Limitation: The current interface only make provision for remembering the last agent from which it received
messages. Therefore the prolog agent only can send messages to the last APRIl process that send a request to
PROLOG. This code can be enhanced to accomodate a directory of names and addresses of APRIL process,
allowing the PROLOG agent to comunicate with them without the previous restriction.

 This version allow the interchange the following types
 of data (from PROLOG to the equivalent APRIL and vice
 versa): integers, atoms (april symbols) and strings
 (also april symbols), real numbers and tuples nested
 up to 16 times (april tuples are converted in

 prolog list).
 Prolog predicates are no allowed for conversion

 into april format.

 bugs: The SWI-PROLOG agents have shown anomalous activities in certain ocasions (after calling the
garbage collector, the program stop). More testing and debugging of the UNIX signals used by SWI-PROLOG
and this interface is required.

 There are also some problems transmiting floating point numbers from APRIL to PROLOG.

 Last modified: 30 - Jul - 94.

 Jacinto Da'vila.

 Knowledge Assimilation in Multiagents Systems. FAIT Course. 1994.
*/

#include "SWI-Prolog.h"
#include <ctype.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h> /* define u_char etc. */
#include <sys/time.h>
#include <sys/socket.h> /* Comms stuff */
#include <netinet/in.h>
#include <errno.h>
#include <signal.h>
#include <malloc.h>

Logic Programming Agents

159

Logic Programming Agents

160

pl_ap.c

#include "queue.h"
#include "tcp.h"
#include "fnames.h"
#include "logical.h"

#define MSGTRACE
#define functor_name(term) PL_atom_

value(PL_functor_name(PL_functor(term)))

logical traceTCP=False;
logical traceMsg=True;

char* PLDefAgentname ="PLAgent";
char* PLAgentname ;
int CSocket = 0;
static addrpo LastQuerier = NULL ;
 /* This was the last process which sent a msg */

u_char plxbuff[MAX_TCP_MSG], *bufpo;
 /* pointers to the tcp buffer area */

/* ** Support functions */

/* __ SWI-Refresh */

void SWI_Refresh(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;
{
 RefreshQ(); /* refresh the message queue */
 alarm(3); /* schedule a new refresh in 3 seconds */

};

/* ___ fatal_error_handler */

fatal_error_handler(sig,type,scp,addr)
int sig, type;
struct sigcontext *scp;
char *addr;
{
 deregister() ; /* Deregistering before quit */
 deliverSignal(sig, type, scp, addr);

/* Be carefull. PROLOG may not know it */
 fprintf(stdout,"FATAL ERROR (Signal %s)\n",sig) ;
};

/* ___ sig_int */
/*
* cleanup after CTRL-C and other major errors
*/
void sig_int()
{
 deregister();

Logic Programming Agents

161

 exit(SIGINT);
};

Logic Programming Agents

162

pl_ap.c

void sig_quit_agent()
{
 deregister();
 printf("Prolog Agent says bye bye.. \n");
};

char *itoa(long n)
{
 static char nm[100];

 sprintf(nm,"%d",n);

 return &nm[0];
};

/* __ dispatch_event */
int dispatch_events(void){

 fd_set fdset;
 struct timeval timeout;
 int status;
 int width = 1 ;

 FD_ZERO(&fdset);
 FD_SET(0, &fdset); /* Checking the standard input only */
 timeout.tv_sec = 2L;
 timeout.tv_usec = 0L;
 status = select(width, &fdset, NULL, NULL, &timeout);

 if (status > 0) return(PL_DISPATCH_INPUT);
 else
 if (status == 0) return(PL_DISPATCH_TIMEOUT);
 else
 if (errno==EINTR) return(PL_DISPATCH_TIMEOUT);
 else {
 perror("select() error ");
 exit(1);
 }
};

/* __ do_wait */
static int do_wait(int sock)
{
 fd_set fdset;
 struct timeval timeout;
 int status;

again:
 FD_ZERO(&fdset);
 FD_SET(sock, &fdset);
 timeout.tv_sec = 2L;
 timeout.tv_usec = 0L;
 status = select(sock+1, &fdset, NULL, NULL, &timeout);

Logic Programming Agents

163

 if (status == 0) goto again;

pl_ap.c

Logic Programming Agents

164

 if (status == -1) {
 if (errno == EINTR)
 goto again;
 else {
 perror("select() error ");
 exit(1);
 }
 }
 return(1);
} ;

/* *** */
/* __ decode_msg */
/*Tranforms the message from the encoded form into a PROLOG term*/
u_char *decode_msg(term m,u_char *c)
{
 char s[256] ; /* Auxiliary buffers */

 switch((*c)&TAGMASK){
 case S_INT:
 PL_unify_atomic(m,PL_new_integer((long)((*c++)&VALMASK)));
 break;
 case INT:{
 int i = *(c+4);
 i |= *(c+3)<<010;
 i |= *(c+2)<<020;
 i |= *(c+1)<<030;
 c+=5;
 PL_unify_atomic(m,PL_new_integer(i));
 break;
 }
 case S_SYMB:{
 int len = (*c++)&VALMASK;
 bcopy(c,s,(len<256?len:255));
 s[(len<256?len:255)]='\0';
 PL_unify_atomic(m, PL_new_atom(s));
 c+=len;
 break;
 }
 case SYMB:{
 int len = *(c+1)<<010 | *(c+2);
 c+=3;
 bcopy(c,s,(len<256?len:255));
 s[(len<256?len:255)]='\0';
 PL_unify_atomic(m, PL_new_atom(s));
 c+=len;
 break;
 }

 case FLT:{
 char len = abs(*(signed char*)c);
 double flt = UnConvertFP(c);
 c+= len+1;

Logic Programming Agents

165

Logic Programming Agents

166

pl_ap.c

 PL_unify_atomic(m, PL_new_float(flt));
 break;
 }

 case S_TPL:{
 int len = (*c++)&VALMASK;
 term arg1,arg2, temp;
 int count = 1;

 if (len == 0) {
 PL_unify_atomic(m, PL_new_atom("[]"));
 break;
 };

 PL_unify_functor(m, PL_new_functor(PL_new_atom("."), 2));
 temp = m;
 while(count<=len){
 arg1 = PL_arg(temp,1);
 c = decode_msg(arg1,c);
 if (count==len) {
 PL_unify_atomic(PL_arg(temp,2), PL_new_atom("[]"));
 } else {
 arg2 = PL_arg(temp,2);
 PL_unify_functor(arg2, PL_new_functor(PL_new_atom("."), 2));

temp = arg2 ;
 };
 count++ ;
 }
 break;
 }

 case TPL:{
 term arg1,arg2, temp;
 int count = 1;
 char *ch = "";
 int len = *(c+1)<<010 | *(c+2);
 c+=3;

 if (len == 0) {
 PL_unify_atomic(m, PL_new_atom("[]"));
 break;
 };

 PL_unify_functor(m, PL_new_functor(PL_new_atom("."), 2));
 temp = m;
 while(count<=len){
 arg1 = PL_arg(temp,1);
 c = decode_msg(arg1,c);
 if (count==len) {
 PL_unify_atomic(PL_arg(temp,2), PL_new_atom("[]"));
 } else {
 arg2 = PL_arg(temp,2);
 PL_unify_functor(arg2, PL_new_functor(PL_new_atom("."), 2));
 temp = arg2 ;
 };

Logic Programming Agents

167

 count++ ;

Logic Programming Agents

168

pl_ap.c

 }
 break;
 }

 default:
 fprintf(stderr,"Unknown format type: %#x\n",*c++);
 }
 return c;
};

/* __ flat_list */
/* This procedure receives a list and transforms it in a printable
 string. The procedure assumed a list of at least one element
 as input...
*/
char *flat_list(term l, char *fmt){
 char *tmp ;

 switch (PL_type(PL_arg(l,1))) { /* first argument of the list */
 case PL_TERM: {
 char *fc = functor_name(PL_arg(l,1)) ;
 if (strcmp(fc,".")==0) { /* It's a list */
 strcat(fmt, "%[");
 flat_list(PL_arg(l,1),fmt) ; /* This is a nested list */
 strcat(fmt, "%]") ;
 } else {
 PL_fatal_error("Composed terms are not allowed inside an April list");
 } ;
 break ;
 };
 case PL_ATOM: {
 tmp = PL_atom_value(PL_atomic(PL_arg(l,1)));
 strncat(fmt, tmp, 256);
 break ;
 };
 };

 switch (PL_type(PL_arg(l,2))) { /* second argument of the list */
 case PL_TERM: {
 char *fc = functor_name(PL_arg(l,2)) ;
 if (strcmp(fc,".")==0) { /* It's a list */
 strcat(fmt, "%,");
 flat_list(PL_arg(l,2),fmt);
 } else {
 PL_fatal_error("Invalid term as

second argument in a Prolog list..");
 } ;
 break ;
 };
 case PL_ATOM: {
 tmp = PL_atom_value(PL_atomic(PL_arg(l,2)));
 if (*tmp != '[') {
 strcat(fmt, "%,");

Logic Programming Agents

169

 strncat(fmt, tmp, 256);
 }
 break ;

Logic Programming Agents

170

pl_ap.c

 };
 default: {
 PL_fatal_error("Invalid term as second argument

 in a Prolog list..");
 };
 };
} ;

/* ___ encode_msg */
/* this function transforms a valid (non_variable) PROLOG term into
a APRIL value of the appropiate type (now, numbers, symbols and
tuples and send it to an april process. Only lists of atoms allowed.
*/
int encode_msg(char *to, addrpo addrto, term m) {

 switch (PL_type(m)) {

 case PL_INTEGER: {
 long num = PL_integer_value(PL_atomic(m));
 return(send_msg(to, addrto, "%d", num)) ;
 }
 case PL_STRING: {
 return(send_msg(to, addrto,

 "\"%s\"", PL_string_value(PL_atomic(m))));
 }
 case PL_ATOM: {
 char *atm = PL_atom_value(PL_atomic(m));
 if (*atm != '[') return(send_msg(to, addrto, "%s",atm));
 else return(send_msg(to, addrto, "%[%]"));
 }
 case PL_TERM: { /* the lists should be treated specially */
 char fmt[10000] ; /* format containing the tuple */
 char *fc = functor_name(m) ;
 *fmt = '\0' ;
 if (strcmp(fc,".")==0) { /* It's a list */
 strcat(fmt, "%[");
 flat_list(m,fmt) ; /* put the list in a flat string */
 strcat(fmt, "%]") ;
 return(send_msg(to, addrto, fmt)) ; /* List sending */
 } else {
 PL_fatal_error("Term type not allowed by April encoding.");
 } ;
 break ;
 }
 case PL_FLOAT: {
 return(send_msg(to, addrto,

 "%f", PL_float_value(PL_atomic(m))));
 }
 default: {
 PL_fatal_error("Term type not allowed for April encoding..") ;
 return -1 ;
 }
 }

Logic Programming Agents

171

 return -1 ;
}

/* __________________________ _________________________ UnHookPl */
/* kept for debugging purposes */

Logic Programming Agents

172

pl_ap.c

void UnHookPl(addrpo addr)
{
fprintf(stdout,"Unhooking.. ") ;
};

/* *** */
/* The following procedures constitutes the Prolog-April interface
*/
/*__ ap_init */
/* initialises the plagent ports for listening and answering queries from other April agents.
*/
foreign_t pl_ap_init(term agentname, term portN)
{
 u_short PortNum = 0;
 u_short ServerPortNum = 5071; /* Default Name server port */
 long timeout = 4L; /* server timeout period */

 PLAgentname = (char*) malloc(80);
 *PLAgentname = '\0';

 PL_dispatch_events = dispatch_events ;

 if (PL_is_atom(agentname)) {
 strncpy(PLAgentname,(char *)PL_atom_value(PL_atomic

(agentname)),80);
 /* It can no be more than 80 characters long */
 } else {
 strcpy(PLAgentname, PLDefAgentname);
 PL_warning("AP_INIT: Invalid Prolog Agent Name");
 PL_fail;
 };

 if (PL_is_int(portN)) {
 PortNum = (u_short) PL_integer_value(PL_atomic(portN)) ;
 } else {
 PL_warning("AP_INIT: Invalid TCP Port Number");
 PL_fail;
 };

 if ((CSocket = init_server((u_short) PortNum,
 PLAgentname, timeout, UnHookPl)) < 0){

 CloseAddressBook();
 PL_warning("AP_INIT: I couldn't start the Prolog Server socket");
 PL_fail;
 };

 /* Installing signals handlers */
 pl_signal(SIGQUIT, sig_quit_agent) ;
 pl_signal(SIGINT, sig_int) ; /* In case of Ctrl-C */
 pl_signal(SIGALRM, SWI_Refresh);

 /* Initialises the alarming system */
 alarm(3);

 PL_succeed;
Logic Programming Agents

173

};

Logic Programming Agents

174

pl_ap.c

/* __ __ ap_send */
/* sends a message from the prolog agent to another april agent.
*/
foreign_t pl_ap_send(term to, term msg)
{
 char *dest;
 int result;
 addrpo addrto = LastQuerier ; /* Destination address */

 if (PL_is_var(to)) {
 PL_warning("ap_send/2: instantiation fault. first arg");
 PL_fail;
 };

 if (PL_is_var(msg)) {
 PL_warning("ap_send/2: instantiation fault. second arg");
 PL_fail;
 };

 if (addrto==NULL) {
 PL_warning("ap_send/2: no address avalaible");
 PL_fail;
 };
 dest = PL_atom_value(PL_atomic(to));
 result = encode_msg(dest,addrto,msg);

 if (result>=0) PL_succeed;
 else PL_fail;

};

/* __ ap_receive */
/* receives a message send from an april agent. Observe that the term msg should be a variable. This version
can not perform pattern-matching. */
foreign_t pl_ap_receive(term from, term msg) {
 int msglen;
 char *fromhandle;
 addrpo replytoaddr = NULL ;
 term tmsg;
 char *msg_text;
 bktrk_buf buf;

 if (!(PL_is_var(msg))) {
 PL_warning("ap_receive/2: Variable

 required in second argument");
 PL_fail ;
 };

 /* PL_lock(from); PL_lock(msg); */

 fromhandle = (char*) malloc(80); /* Store the sender handle */
 *fromhandle = '\0';

 /* Get the next message from the TCP Channel */

Logic Programming Agents

175

Logic Programming Agents

176

pl_ap.c

again:
 if (do_wait(CSocket) && (replytoaddr =
 get_msg(PLAgentname,fromhandle,CSocket,"%#",&msglen,plxbuff))) {

 if (replytoaddr != NULL) {
 msg_text = plxbuff;
 decode_msg(msg,msg_text) ;
 LastQuerier = replytoaddr;

 /* Creating the new atoms and returning their

 values in the arguments */
 if (!(PL_unify_atomic(from, PL_new_atom(fromhandle)))) {
 free(fromhandle);
 /* PL_unlock(msg); PL_unlock(from); */
 PL_fail ;
 };

 /* Acknowledging the message */
 /* send_msg(fromhandle,replytoaddr,"%s","ok"); */

 }
 } else goto again;
 free(fromhandle);
 /* PL_unlock(msg); PL_unlock(from); */
 PL_succeed ;
};

/___ ap_end */
/* cancels the communications capabilities of the prolog agent.
*/
foreign_t pl_ap_end()
{
 deregister(); /* Deregister with the name server */
 free(PLAgentname) ; /* free the space for the agent name */
 CloseAddressBook();
 close(CSocket);
 PL_succeed ;
};

Logic Programming Agents

177

Logic Programming Agents

178

pl-prims.c

/* pl-prims.c,v 1.11 1993/11/12 10:22:26 jan Exp

 Copyright (c) 1990 Jan Wielemaker. All rights reserved.
 See ../LICENCE to find out about your rights.
 jan@swi.psy.uva.nl

 Purpose: primitive built in

 NOTE: This is the code that was changed to integrate
 the APRIL-PROLOG interface. the change involved
 only one routine in this file and thus, we decide
 to include only the code of such routine (pl_halt).

Jacinto Davila. Imperial College. 1994.
*/

word
pl_halt()
{
 kill(getpid(), SIGQUIT);
 Halt(0);
 /*NOTREACHED*/
 fail;
}

talker.ap

/* talker.ap

 Program example for interchanging messages between an
 APRIL process and a PROLOG program. The apnameserver
 should be active.

 APRIL side.

 To start the program:
 1) run "april talker prologag"

 To stop the program:
 1) press Ctrl+C

 Last modified: 29 Jun 1994
*/

main(any[]?args)
{
 handle?plagent:= handle?args[1];
 number?i = 1;
 number?f = 100 ;
 while i<2 do {
 [hello,i] >> plagent; /* Send an integer */
 i+:=1;
 } ;

Logic Programming Agents

179

 i := 1;
 while true do {
 [symbol?F,symbol?S,any?L] => writef(stdout,"received [%s,%s,%p]\n",[F,S,L]);
 [gensym(),[gensym(),[gensym(),[i]]]] >> plagent;
 i+:= 1;
 }
}

Logic Programming Agents

180

talker.pl

/* talker.pl

 Program example for interchanging messages between an
 APRIL and PROLOG. The apnameserver should be active.

 PROLOG side.

 To start the program:
 1) run plagent.
 2) load this program: "[talker]."
 3) type the query-call "agent."
 4) run the april side

 To stop the program:
 1) press Ctrl+C

 Last modified: 29 Jun 1994
*/

agent :-
 ap_init(prologag,0),
 initial_chat(F,1),
 sending(F),
 ap_end.

initial_chat(_,0).
initial_chat(F,N) :- /* Needed for establishing the conection */
 ap_receive(F,M),
 write(M),nl,
 NN is N - 1,
 initial_chat(F,NN).

sending(F) :-
 ap_send(F,[hello,myfriend,[]]),
 ap_receive(F,M),
 write(M),nl,
 sending(F).
 write('send more messages?'),
 read(Ans),
 ((Ans = 'y') -> sending(F) ; true).

Logic Programming Agents

181

Logic Programming Agents

182

APPENDIX D. DIALOX DISPLAYS.

In this appendix we include some pictures take from the DIALOX window
displaying the world during the simulations. The first picture shows one robot (ja)

travelling its experimental route in the warehouse. The remaining pictures were
taken from the animation of four robots interacting in the patio world.

Logic Programming Agents

