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ABSTRACT

This  work  is  concerned  with  logic-based  Multi-Agents  Systems.  We have

investigated  multi-agent  systems  as  open knowledge  bases,  with  knowledge  and

beliefs represented in a logical formalism. We show how to model agent brains as

logic programs using  forward-backward representations and  search by layers. Our

agents perform knowledge assimilation, observing inputs and adapting themselves to

a changing environment. They also can use  abduction to reason about actions and

perform outputs to the environment. Our agents keep an explicit representation of

goals which is used in conjunction with observations to guide the behaviour of those

agents in the world. All this is accomplished within a logic programming framework.

We have modelled agents using PROLOG and APRIL as the building tools

and simulate a world populated by this sort of agents. A set of experiments has been

carried out with the PROLOG-APRIL test-bed and the obtained data has been used

to analyse the effect of  bounded reasoning in the performance of the agents.  We

suggest that other logic-based tools as the Event Calculus and Metalogic  can be use

to tackle the problems of planning and cooperation in Multi-Agent Systems.

Logic Programming Agents
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INTRODUCTION

I.1.Logic-based Multi-Agents Systems. 

This work is concerned with logic-based Multi-Agents Systems. Multi-Agents

is an important category of Distributed Artificial Intelligence Systems (DAI), whose

main feature is  that  the distributed entities  are autonomous (self-controlled).   An

agent  is  an aggregate of knowledge,  practical  skills,  and its  own single locus  of

control and intentions [Bond, Gasser; 1988].   With independent entities interacting

in the same system, a clear need exists for coordinating their activities in pursue of

goals seen as individuals interacting goals or as global goals.  The other universally

accepted category in DAI,  Distributed Problem Solving (DPS),  considers how to

split  a problem into a collection of "nodes" [Bond,  Gasser;  1988] that  can work

separately  with  less  complex  sub-problems.  DPS  systems  use  the  pre-obtained

"problem architecture" to coordinate the solving process and integrate the solutions.

However, unlike DPS, in Multi-Agents Systems the task of coordination can be quite

difficult.  In more interesting systems (realistic open systems [Hewitt; 1985]), it may

be  the  case  that  there  is  not  possibility  for  global  control,  globally  consistent

knowledge,  global  shared goals  or  universal  success  criteria  and that  the  system

representation is incomplete. Under some or all of those conditions, the agents need

to reason about the process of coordination among themselves [Bond, Gasser; 1988].

According to the previous picture an agent could be a rather complex entity.

We are  talking  about  systems that  have  explicit  representations  of  goals  and  an

internal  representation  of  the  world  that  probably  includes  models  of  the  other

agents. The agents use their knowledge bases for reasoning and planning their next

actions. The agents are, therefore, strictly rational agents with a well-defined logical

inference machine. 

Some researchers  have  argued that  this  approach for  system construction,

using  logic-based  agents,  is  "entirely  unrealistic"  [Steels;  1990]  because:  1)  the

technological complexity required is too high, 2) there is no way of extracting logical

description of the world from the current sensing devices and 3) Logic-based AI

faces several theoretical problems (frame problem, reasoning about time and space,

and  modelling  the  non-monotonic  dynamic  of  the  world).  Steel  [Steels;  1990]

proposed an apparent alternative to the logic-based approach: the behaviour based

approach in which, he uses the subsumption architecture of Brooks [Brooks; 1986]

Logic Programming Agents
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to get emergent functionality from very simple reactive  pattern.  
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The aim of the current work is to show that reactive multi-agent systems can

be modelled as logic-based agents  with bounded resources.   We employ a Logic

Programming  framework  to  implement  agents  with  limited  reasoning  capability,

which perform efficiently but still use a sound inference mechanism for reasoning

about themselves and the external world and planning their actions.  As part of a

Logic  Programming  framework,  ours  system  can  employ  representations  that

overcome  the  problems  of  reasoning  about  time  and  the  frame  problem.  Our

proposal addresses the key issue of adaptation whereby the agents can cope with the

dynamic of the world. We implement for each agent an adaptable locus of control

algorithm,  recently  presented  [Kowalski;  1994b]  which  interleaves  planning  and

execution. 

Possibly the more important by-product of this work is that, by implementing

efficient agent in a logic programming framework, we let open the possibility for

developing multi-purpose Multi-Agents Systems. Systems in which the agents may

reason about cooperating strategies, may efficiently use communication and shared

resources and may accomplish realistic autonomy. All this without having to lose

performance or other practical capabilities.

This document is  organised as follow. The last section of the Introduction

presents the system used as the test-bed: APRIL and the APRIL-PROLOG interface.

Chapter  1  presents  the  logic-programming  implementation  of  the  "brain"  of  our

agents. We start by giving account of previous research in logic-base Multi-Agents

Systems  and  located  our  work  in  this  stream.  In  Chapter  2,  we  present  our

implementation and compare the Steel's [Steels; 1990] proposal to our, showing how

the subsumption architecture can be seem as a resolution search strategy and how to

model  forward-backward  representations.  Chapter 3 describes our experiments and

presents the results. We conclude in the next part and show possible extensions to

this work and guidelines for the rest of this research project. The appendices contain

the  source  codes  of  our  implementation  and  present  the  details  of  the

APRIL-PROLOG interface developed as part of this work.

I.2 April:  A language and a Test-bed for making experiments with Multi-Agents

Systems.

APRIL,  Agent  PRocess  Interaction  Language,  is  a  programming language

and a test-bed for building distributed artificial intelligence applications [McCabe;

1993].  The  language  is  process-oriented.  Programmers  can  write  multi-process
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applications  in  a  high  level  approach  that  combine  the  thread-based  program

structure,  with  a  C-UNIX  like  syntax.  A  typical  APRIL  file  contains  several

procedures including the 
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"main" procedure, in complete analogy to c files (the procedures are similar to c

functions). Some of these procedures can be, depending on the programmer's design,

invoked as separated process by  "fork" calls (the threads of some multiprogramming

environments). However, the implementation details of the communications channels

among process are completely transparent for the programmers.

Apart from those features that can make the language attractive for writing

distributed applications, APRIL is also a symbolic language. It has a powerful data

structuring and expression handling features and pattern-matching. It is a strongly

typed language, with facilities for user-defined types but only one built-in complex

structure (the tuple). The language can be its own meta-language and even program

codes can be interchange among processes (as messages) and incorporated to their

code  at  run  time.  The  environment  includes  a  macro-processing  sub-language

whereby  the  original  language  can  be  transformed  and  extended  to  fit  user

necessities  or  wishes.  APRIL  is  an  object-oriented  language  thank  to  its

macro-facilities [McCabe; 1994]. 

In  spite  of  all  said,  APRIL is  not  "a  multi-agent  applications  language"

[McCabe;  1993].  it  does  not  oblige  any  particular  internal  agent's  architecture

(knowledge and/or belief representation  and control mechanisms, as in Shoham's

AGENT0  [Shoham;  1991]).  We  believe  what  makes  APRIL  so  handsome  for

multi-agent's  implementations  are  its  facilities  for  modelling  interactions among

process and, consequently, among agents. For the sake of "briefness"  let us present

an  example  of  an  APRIL program that  models  a  real  human  conversation.  The

example is not particularly enlightening, but it is a real human talk (it is a common

joke-game among grandparents and their grandchildren in Venezuela) and has the

advantage that is supposed to last forever. One of the agents (the grandfather) starts

by saying: "Do you want me to tell you the story of the bald cock?" . The other agent

(the grandson) answers (specially if it's the first time he plays) "Yes!". Then the first

agent uses this answers to reply: "It is not that 'Yes!' but if you want me to tell you

the story of the bald cock?". From there on, the first agent keeps using the second's

responses to reply and if the second agent is patient enough (the grandparents always

are)  that  chat  becomes  a  never-ending  sequence  with  the  following  dialogue

structure:

Agent1: Do you want me to tell you the story of the bald cock?

Agent2: <any answer>

Agent1: It isn't that '<any answer>' but if you want me to tell you the story of the
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bald cock.
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Our  two agents  can  be  simulated  by  the  following  APRIL program.  This

program has two procedures (representing one agent each) and the main procedure

for setting up the chat. All of them can be store in the same text file (but the file

structure of APRIL is currently changing to a modular structure, to cope with more

comprehensive developments).

/* __________________________________________ agent2 */

agent2(){

 while true do {

   DoYouWantMeToTellYouTheBaldCockStory => {

     symbol?answer := genAnswer(yes_No);

     answer >> replyto 

   }

 | quit => break

 }

};

/* __________________________________________ agent1 */

agent1(handle?agent2){

 DoYouWantMeToTellYouTheBaldCockStory >> agent2;

 while true do {

   quit => break  

 | any?answer => {

     DoYouWantMeToTellYouTheBaldCockStory >> replyto 

   }

 }

};

genAnswer(symbol?basicAnswer) -> symbol?valof{

 symbol?basename := gensym(); 

                  /* generate a symbol like Noname01 */

                  /* split it into "Noname" and "01" */

 [symbol,symbol]?splitname := split(basename, 7);

                  /* take the "01" part into counter */

 [symbol,symbol?counter] = splitname;                   

                /* concatenate argument with counter */

 symbol?answer := catenate( basicAnswer, counter );

Logic Programming Agents
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 valis answer        /* Return the just built answer */

} ;

Logic Programming Agents



14

/* ____________________________________ main process  */

main(any[]?ar){

 if |ar| < 2 then {

   writef(stdout,"usage: april exam1 <agent2name> 

<agent1name>\n",[]);

   exit(1);

 };

 handle?grandson := handle?ar[1];

 handle?grandfather := handle?ar[2];

 /* the processes representing the agents are created */

 grandson names agent2() ;               /* fork call */

 grandfather names agent1(grandson) ;    /* fork call */

 { any?Msg => relax 

 | timeout 2 secs => relax }; /*simulat. last 2 

seconds*/

 /*The main process inform the agents the game is over 

*/

 quit >> grandfather;

 quit >> grandson;

};

The first  part  of  the  file  contains  the  procedure  that  models  agent2.  Its

structure is very similar to a C-function. There is a "while" control structure, which

as  usual,  is  a  loop in  the  execution flow.  However,  inside  the  loop there  is   an

unusual structure: several statements separated by "|" ( { st1 | st2 | .. | stn } ). This is

the choice operator and the sentences it separates are guarded statements ( G => S ):

statements preceded by tests that allows or disallows their execution. There are two

types of guarded statement in APRIL: semantics guards and message guards. In this

case,  those are message guards.  Whenever a message is  received by agent1,  this

message is compared with the set of guards inside the while. If the message matches

one of the guards, this one succeeds and its associated sentences are executed.  If no
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message matches any guard (or  if  there  is  no message at  all)   the process stays

suspended.
Only two types of message can be "accepted" by  agent2 (for simplicity

instead  of  the  answer  "it  isn't   that"  we  keep  using  the  first  question).
DoYouWantMeToTellYouTheBaldCockStory is  one  (rather  long)  pattern,

and 

Logic Programming Agents



16

quit is the other. Whenever a message containing quit is received, the sentence

break is executed and the process gives up the while loop, ending the  execution

afterwards. Observe that the  agent2 process does not care who (which process)

sent a message. However, there are ways of checking the message's source using the

guard  test.   The  other  important  things  to  note  in  the  code  are  the  declaring

statements with the form type?var (which in this code always appears combined with

the assignment, but this is not compulsory). A variable can be declared anywhere in

the code  (as in C) and its scope extends until the next  ending curly brace "}".  There
are 7 basic types in APRIL: symbol, handle, number, integer, real,

logical and any. Our example only employs the first two. The last one (any) is

used  when  no  type  can  be  anticipated.  As  we  said  before,  only  one  built-in,

compound type exists in APRIL: the tuple. Nevertheless, users can define its own

types, even using tuples of tuples nested to an arbitrary depth.
Procedure  agent1 should  be understandable  at  this  stage.   The  structure

genAnswer is a function, the only kind of APRIL subroutine that return values.

Hence, unlike procedures, functions have types ( functioname(argdecl) ->

type?valof{ .. valis value }). The main procedure is explained by the

comments.  The function  names create a new agent with the name given as first

parameter.  We  obtain  those  names  from  the  arguments  given  when  the  APRIL

test-bed is called to run this program. It worth noting that an APRIL process (in this

case, there is one process in each agent) is not a machine (operating system) process.

The  APRIL  executive implements  its  own  non-preemptive  process  manager  that

executes the code pre-compiled (by the APRIL compiler).

By adding some write instructions (see appendix A) we can get the following

trace of our simple multi-agents' application:

MAIN(april#19555):Starting the simulation

AGENT1(Grandpa):Do you want me to tell you the story of 

the bald cock?..

AGENT2(Grandson):yes_No0

AGENT1(Grandpa):It isn`t that yes_No0, but if you want 

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No1
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AGENT1(Grandpa):It isn`t that yes_No1, but if you want 

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No2

AGENT1(Grandpa):It isn`t that yes_No2, but if you want 

me to tell you the story of the bald cock..

.

.

.

AGENT1(Grandpa):It isn`t that yes_No423, but if you want

me to tell you the story of the bald cock..

AGENT2(Grandson):yes_No424

MAIN(april#19555):Ending the simulation

APRIL is  not  only a language.  It  is  a  distributed platform that  includes a

compiler,  a  program  administrative  (an  interpreter  of  pre-compiled  APRIL

programs), a nameserver (for managing the addresses of agents located anywhere in

the network) and also that provides facilities for visualisation through a special agent

called DIALOX.  DIALOX is seen, from the point of view of other APRIL agents, as

another agent that can receive messages related to visualisation tasks.  

In this project we use APRIL for building the agents of the application and

other  especial  agents  representing  the  worlds where  the  former  live.  We  use

DIALOX for displaying  the activities of those agents in those worlds (as elemental

computing animations). Finally, we use PROLOG and all its inference machinery for

implementing the  brains of the intelligent agents. For the point of view of APRIL

agents, PROLOG is, as DIALOX, one more agent with which they can interact.

APRIL is a system under development. The compiler is been migrated from

PROLOG to C, seeking efficiency for bigger applications. DIALOX is in its first

versions. As part of this MSc project, we develop an APRIL-PROLOG interface that

allows PROLOG programs to perform as APRIL agents.   The interface has been

developed on top of a TCP/IP (UDP) communications platform1
 that has been used for DIALOX -

APRIL communications. The details of our application are presented later on,  but the general architecture is summarised in figure  I.1.

Every rectangle is an operating-system process acting as an APRIL agent. The arrows represent 

1This interface was provided by Prof. F. McCabe.
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interchange of APRIL messages. The titles in bold letters show the language used to write each program. DIALOX and apnameserver are

independent  agents.  The nameserver  (apnameserver)  is  consulted by the  other  agents  when they need to  find out  the  real  location

(addresses) of other agents. There is no logical bound for the value K  (the number of simulated agent).

brain 1

brain K

body 1

body K

WORLD

apnameserver

DIALOX

PROLOG APRIL

PROLOG APRIL

APRIL

Figure I.1 APRIL-PROLOG test-bed.

This project has been developed in a UNIX platform. The APRIL system runs in SunOS machines

with TCP/IP as the networking environment. DIALOX employs X11/R6 servers and compatible versions. The

PROLOG system employed is SWI-PROLOG [Wielemaker; 1989]. The PROLOG-APRIL interface is a set of

C-programs incorporated to the UNIX (SunOS) SWI-PROLOG. The interface employs the signalling facilities

of UNIX and therefore, it is not completely portable to other operating systems, unless these provided a signal

management similar to UNIX's. The PROLOG programs try to preserve Edinburgh compatibility (however,

we had to use the particular I/O tools of SWI-PROLOG). Some of them were developed and tested in the

DOS-WINDOWS SWI-PROLOG. 
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CHAPTER  1  

LOGIC PROGRAMMING AGENTS

1.1. From reactive agent to deliberate agents.

There have been numerous attempts to model agents either as reactive or as

deliberate entities. In this section we summarise one attempt that tries to cover the

gap between them.  In  [Genesereth,  Nilsson;  1988]  Genesereth  and Nilsson have

proposed 5 types of agent architecture that could be seen as corresponding to ordered

steps in a progression between reactive and cognitive agents.  Starting with  The

Tropistic  Agent,  "whose  activity  at  any  moment  is  determined  entirely  by  its

environment at that moment" [Genesereth, Nilsson; 1988] they define several basic

concepts:  partition,  sensory  function,  effectory  function  and  action  function.  All

those  ideas,  together  with  the  traditional  notions  of  state and  action allow  this

authors to characterise the Tropistic Agents as a 6-tuple: 

<States, Partial descrip, Actions, sensory function, effectory function, action

function>.

Observe that this conceptualisation does not take into account the idea of an

internal state in the agent (memory). The action function simply relates actions with

situations in which the agent might be. These relations are probably  hard-wired in

the agents'  structure. The agent does not need to record any global or permanent

information.  Indeed,  the agent does not distinguish perfectly all  the states of  the

world. It only recognises what they call partitions: set  of states in which certain

feature or property holds. We prefer name those sets partial descriptions as they are

incomplete descriptions of states in the world stored inside the agent. This model fits

perfectly  with  the  generally  accepted  conception  of  what  it  is  a  reactive  agent.

Moreover, the term Tropism has been used in other works on Reactive Agents (See

for instance [Feber, Drogoul; 1991]).

The  notion  of  internal  state  appears  in  the  following  type  or  agent:  The

Hysteretic Agent. The internal state is used as an additional parameter for defining

the next action to be performed by the agent.  

However,  the  next  architecture  presented  by  [Genesereth,  Nilsson;  1988]

substituted the original proposal for an internal state (which is too much detailed

according to them), with the notion of database. This could be seen as rising the
Logic Programming Agents
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abstraction level of the model. From this point on, the internal state of the agent 
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contains a set of sentences in predicate calculus conforming a database. The content

of  this  database  (and  the  non-predefined  method  of  consulting  and  searching)

determines  the  next  action  to  be  performed.  This  is  a  Knowledge-Level  Agent

Architecture. 

The Stepped Knowledge-Level Agent is an monotonic agent in the sense that

new sentences can be added to the database (programme), but no sentences are ever

removed. To accomplish this, the agents need and additional structure as part of their

internal state: a counter of the cycles of the agent's operation. 

Finally,   The  Deliberate  Agent "prescribes  the  use  of  some  automated

inference method in deriving the sentences that indicate the required action on each

cycle" [Genesereth,  Nilsson; 1988].  Of course,  the  inferences are made upon the

sentences in the agent's database which, in turn, is updated to include observations

and past actions' records. These authors also present an alternative characterisation

of  a  deliberate  agent  as  a  programme in  imperative  style  ([Genesereth,  Nilsson;

1988], fig. 13.9):

Procedure CD(DB)

Begin CYCLE <- 1,

Tag OBS <- OBSERVE(CYCLE),

DB <- APPEND([ T(OBS, Ext(CYCLE) ]),DB),

ACT <- FIND( k, Must(CYCLE)=k, DB),

EXECUTE(ACT),

DB <- APPEND([ Act(CYCLE)=ACT], DB),

CYCLE <- CYCLE+1,

GOTO Tag

End

1.2. From deliberate agents  to reactive agents.

The work just discussed covers the gap between reactive and deliberate agents but does not

consider the opposite direction: how can a deliberate agent be transform to a reactive agent. This has

to be done in order to assert that both agents general architectures are transmutable into each other.

Previous works have avoid the idea and,  instead,  have tried to combine both architectures.  The

InteRRaP Project [Muller, Pischel; 1993]) have considered the use of pattern of behaviour, a special

version of production rules in which the action component is a set of pre-compiled abstract low level

actions (a plan) for executing  routine behaviours.  This routine behaviour does not require deep
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reflection or planning [Muller, Pischel; 1993]. In the InteRRaP 
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project  the  agent  structure   combines  behaviour-base  components  with  plan-based  components,

acknowledging the fact  that  efficient  agents still  require a deliberate  component.  They insist  in

seeing its reactive components (pattern of behaviour) as procedural knowledge, in contrast to the

knowledge that can be represented in a declarative manner. 

Our proposal shares with the InteRRaP project the belief that a complete autonomous agent

should  somehow  combine  reactive  behaviour  with  deep well-founded  reasoning.  However,  we

believe that all this can be provided inside the framework of a logical representation. We believe that

the reactive behaviour  is as logical as possible.  An agent needs to decide the next action it will

execute. However, probably due to some environmental constraint, it does not have enough resource

to perform a  deep thinking for getting a well-founded solution. Therefore, it has to consider only

those  alternatives  that  it  can  superficially  explore  in  the  little  time  or  with  the  small  space  of

memory it has. Of course, if the situation prescribes a routine behaviour, the agent could capitalise

over previous reasoning achievements that, after been accomplished several times, were stored as

pre-compiled  (partial  evaluated)  solutions.  We  believe  that  partial  evaluation  is  the  key  for

integrating learning and the development of skills into our agents' setting, but we do not take this

issue any further in the present work. Moreover, there are other alternatives for helping the agent to

make a sensible decision as we will show later on. 

The key strategy we use to obtain reactive performance is by limiting the resources the

agent has to perform its reasoning activities (time, space of memory or speed of processing).  We

propose to extend the Genesereth&Nilsson's conceptualisation of  Deliberate Agents to incorporate

the  notion  of  resource  allocation  function.  Our  intention  is  to  prove  that  a  Cognitive  Agent

(Genesereth&Nilsson's Deliberate Agent) can be regarded as a Reactive Agent at certain moments of

its  life, when it has no enough resources to make deductions with a database. The basic limiting

resource is time. Therefore we devise a function that, at any cycle in the agent's life, assigns limits of

time to  every  internal  activity  (observing,  updating  database,  reasoning  and acting).   The  time

allocation function maps the database (D), the agent's cycle (C), and the agent's internal condition

(IC) to a time amount (N):

resource_alloc: D x  C  x IC ---> N

Consequently, the new Deliberate Agent with bounded time can be define as a 9-tuple as

follows: D is an arbitrary set of predicate calculus databases (one for each cycle),  S is a set of

external states, T is a set of partial descriptions of states in S, A is a set of actions and N is a natural

number indicating amounts of time to be employed 
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in an internal action. In addition,  see in the sensory function from S x Ns into T,  do is a effectory

function from A x S x Ne into S, database is an update function from D x  C x T x Nt into the new

D, action is a function from D x C x T x Nt into A and resource_alloc is the just defined resource

allocation function that produces Ns, Ne and Nt, different time limits for each internal action or

living phase (per cycle).

< D, S, T, A, see, do, database, action, resource_alloc >

Is  worth noting that  the  parameter  N (time resource)  can have different  interpretations.

Considered in absolute terms, N limits the amount of time dedicated to each phase of the agent's life

(Nt: time for thinking, Ns:  time for observing and so on). However, if the cycle is considered as the

real time reference (a cycle is the unit of time), N could be regarded as speed. Hence, an agent with

a bigger Nt thinks faster than other with a lower Nt. In general when Ns is big enough, it can plan

ahead as a  full cognitive agent. On the other hand, if Nt is small, the agent can perform only a

limited amount of reasoning. It might decide its next action but this is not sure. In the case of small

Nt, the agent would be doing its action and its consequence observation  sooner and therefore, its

interaction with its environment is more similar to that of the reactive agents.

 For the sake of simplicity, in the rest of the world we will consider Ns and Ne as being

equal to 1. So, in a typical cycle of life, an agent performs an observation, reasons as long as its Nt

allows, and then executes an action, if it could choose one. The action can fail or succeed and the

cycle start  again with other  observation.  This is  the basic  adaptable  locus of  control  algorithm,

which has been presented in a more general framework elsewhere [Kowalski; 1994b] and will be

examined in the following section.

For completing our discussion about cognitive and reactive agent, there is something else to

be  said.  In  the  Genesereth&Nilsson's  proposal,  the  Tropistic  agent  does  not  have  an  internal

representation of its state. Its  action function is a map between partitions (partial descriptions of

states obtained by specific sensors) and actions. However, one could see this  map as part of an

abstract  database  which,  among  other  more  complex  knowledge  structures,  comprises

perception-action rules implemented in hardware. The rest of the database may be implemented by

other means (firmware, different software). In any case, the hardware portion of the database is by

nature more efficient, and thus, even with a low N (few resources), is likely to be consulted during

the process of deciding the next action. This imposes a layered structure that priorized the access to

the hardware low-level layer, against the access to the rest of the database.  In the Tropistic Agent the

rest of the database does not exist. The perception-action rules are hard-wired in. Nonetheless, the

knowledge 
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relating perception with actions is still there. We are not getting rid of the representation. We are

once again in the eternal dilemma of the programmer: to write programs in assembler, (or by wiring

transistors) dealing with an awful amount of details but with full control and efficiency, or write

programs in some high-level programming language, without so many details, but with the nuisance

of sometimes inappropriate abstractions. In either case the programme will be there in one and/or

other representation.

1.3. Knowledge Assimilation and the adaptable locus of control.

In [Kowalski; 1979], Kowalski proposed the use of assimilation for dealing with changes

and updates in information systems and databases.  In that context  an information system was a

collection of assumptions expressed in logic (the database), together with a proof procedure and

maintenance procedures. The set of procedures deals with cases when 1) the new information is

already implied by the database, 2) the new data implies existing data, 2) the new information is

independent from the current database or 4) is inconsistent with it [Kowalski;  1979]. The proof

procedure  is  used,  not  only  to  answer  queries  posted  to  the  database,  but  also  to  perform the

assimilation of inputs. Hence, its outcomes are an answer to the query and a new database that has

assimilated the changes.

Recently, this very same idea has been reintroduced as part of a computational approach to

logic  called  'CL'  (computational  logic   [Kowalski;  1994a])  which  is  aimed  to  understand

autonomous  intelligent  agents  and  human  reasoning.  In  this  context,  "knowledge  assimilation

provides a syntactic and pragmatic alternative to model theory  as an account of the relationship

between language an experience.[..] the experience takes the form of an inescapable stream of input

sentences, which needs to be assimilated into a constantly changing knowledge base" ([Kowalski;

1994a],  pg.  46).  Computational  logic  has  very  attractive  features  for  supporting  the  work  in

multi-agent systems. Firstly, it is based in the clausal and logic programming forms of logic, which

have proved useful for building a wide range of computing applications. In the second place, it

provides an alternative that gets over the inconveniences of model theory, closed world assumptions

and possible worlds' semantics of logic, seen by Hewitt [Hewitt; 1985]  as inadequate to model open

system's dynamics.  Indeed, knowledge assimilation, by tackling the need of  processing an almost

continuous stream of input  sentences, is fulfilling  the requirement  to allow for the open-ended

incremental introduction of new beliefs and 
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objects, also pointed out by Hewitt [Hewitt; 1985] as an essential need in open systems.

Also, the knowledge assimilation idea in Computational Logic has already been put to work.

In [Kowalski; 1994b], a proposal that preceded and inspired our project, Kowalski presents an initial

attempt to specify the main cycle of a rational, active agent.  We called it  the adaptable locus of

control algorithm  and may be sketched as a  logic program as follow:

cycle(KB, Goals, T ) <- 

observe( Input, T ),

assimilate( Input, KB, NewKB, Goals, NextGoals,

                [T+1, T+N]),

execute( NewKB, Goals, NextGoals, NewGoals,

             T + N + 1 ),

cycle( NewKB, NewGoals, T + N + 2 ).

It worth noting that this logic program, in its procedural interpretation, is equivalent to the

Genesereth&Nilsson's imperative program for modelling deliberate agents. The main difference is

that the logical semantics of the former is provided by the CL framework. The locus of control could

be explained as follow:

The observe condition obtains the input at time T. This could be regarded as an access to

an abstract database (which in this case is the environment) as is done by  some "query-the-user"

facilities in expert systems (in which case, the database is assumed to be partially in the user's brain,

partially inside the expert system).  

The  assimilate call  combines the maintenance procedures for updating the database

with the proof procedure that reduces the current goals to a set of new goals. The possibility of

seeing an action as a goal, a search space as a hierarchy of goals, and a set of sub-goals as a plan

provides  a  powerful,  practical  framework  for  modelling  agents.  As  we  shall  see  later  on,  an

assimilation call, which is not allowed to last more than N reduction steps, obtains a more detailed,

possibly executable, set of goals, from the previous set. The N refers to the number of inference

steps in the bounded reasoning proof procedure.   An  executable goal  is  an  abduced term that

represents a  low-level atomic action that could be executed by the  body of the agent as a unit. A

partial plan  is a logical conjunction of executable goals with high-level (still to be reduced) goals.

A full plan is a conjunction of executable goals only. Every set of goals (Goals, NextGoals and

NewGoals in the previous programme) is, in general, a  disjunction of goals. These goals can be

conjunctions of non-executable sub-goals, partial plans or full plans.
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The logical status of  the execute condition is under investigation. In our system what the

executive does is: the brain checks the set of goals received. If this set contains a partial plan, pick

the plan, take the first (low-level atomic) action (scheduled for this time)  and try to execute it. That

is, the brain of the agent sends an order to its body to execute this action. The body tries to execute

the action. Whether it fails or not, it will send and acknowledge (fail or succeed) message back to its

brain. If the brain receives a succeed message, it commits to the current plan being executed, which

will be considered for extension in the next cycle. That means that the alternatives to this plan at this

stage, are forgotten. It is easy to see the reason. If the action succeeds, the agent (body and brain, of

course) is now in a new situation in the world. The alternatives to its plan at this stage, are choices

for the previous situation and have nothing to do with the new next action. On the other hand, if the

action fails,  the brain will  receive a failed message and will  throw away the current plan being

executed,  preparing  one  of  its  alternative  plans  to  be  considered  in  the  next  cycle.  It  is  the

responsibility of the brain's designer to ensure that there is always an alternative plan, or a way to

obtain one. Finally, If there is no partial or full plan in the current set, the only action the body

should execute (and that is always executed attached to the other actions) is sensing its environment.

In this case, the set of goals will not be modified.

In  order  to  give  a  logical  interpretation  to  this  process,  Kowalski  [Kowalski;  1994b]

suggests regarding it as 1) using abduction to add to the knowledge base the assertion: the agent is

trying to perform this action at this time, and 2) making this assertion available to the environment

as an input to it. This would be equivalent to consider the world one more agent, an explanation

which is not fully investigated yet. However, this could be similar to the message-passing semantics

proposed by Hewitt [Hewitt; 1985], where the meaning of a message is determined by how it affects

the  recipients.  Under  Kowalski's  interpretation  there  is  a  symmetry  between  the  agent  and  the

environment. The agent needs to assimilate inputs from the environment (observations) possibly

rejecting the ones  which are  incompatible  with is  beliefs  (an optical  illusion would fall  in  this

category, for instance). On the other hand, the environment needs to assimilate the outputs from the

agent (its actions) which are regarded as input to the world. Infeasible actions (actions that can not

be executed) could be seen as inputs rejected by the environment because they "are inconsistent with

the environment's beliefs"2
. 

The last condition in the locus of control algorithm is the cycle itself, which recursively invokes the next iteration cycle at a

new time, with a new database and a new set of goals.

2This explanation is due to Prof. R. Kowalski.
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We regard the  cycle as an  adaptable locus of control algorithm because the agent can iteratively update its beliefs and

model of the world while is acting in this world. This continuous update or better said, assimilation, is the base of a rational, practical,

adaptable behaviour. The agent is continuously learning about the world and changing its mind accordingly. 
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CHAPTER  2  

SIMULATING AGENTS in PROLOG and APRIL

2.1. Modelling agents in the PROLOG-APRIL TEST-BED.

This project has consisted essentially of implementing models of multi-agent

systems, using APRIL and PROLOG as building tools. The purpose of such models

is to simulate agents' performances in a social context. As Ferber and Drogoul in

[Feber, Drogoul; 1991] we depart from the traditional simulation techniques, based

on mathematical and stochastic models, in the belief that these techniques are very

limited  to  simulate  societies.  Specially  in  the  case  of  societies  of  autonomous

intelligent  agents  it  is  essential  for  researchers  to  see the  specific  behaviour  of

individuals: the actions they perform. This is missing in the traditional simulation

framework where actions are only considered through their very final quantitative

effects or by measuring their probability to happen.  In our case, due to the fact that

we are proposing an approach for specifying the behaviour of autonomous agents

(for  implementing  artificial  agents,  indeed),  it  seems  natural  to  try  to  related  a

program  to  an  individual.  Afterwards,  we  can  simulate  a  world  populated  of

interacting individuals of that sort. Of course, we still can collect statistics of these

individuals and use them to infer features of the real world. We can also do a detailed

analysis  of  the  individual  behaviour  and  its  relationship  with  the  global  social

behaviour.

Some  people  (see  again  [Feber,  Drogoul;  1991])  argue  that  the  classical

stochastic simulation is an exercise of reductionism at macro-level, which cut off

micro-elements  and  complex  subtle  components  that  affect  the  world  being

simulated. This eventually extends the gap between the simulation model and the

real world. In contrast, the multi-agents' approach can capture the interactions among

individuals, from which a global behaviour of the population emerges. We are still

sceptical about the applicability of this approach to the modelling and simulation of

arbitrary natural societies, but it is certainly useful and effective (and more faithful to

the  world  than  the  classical  simulation  alone)  for  simulating  open  systems  and

systems composed of intelligent agents and human beings as operators. 

As we said in the introduction, we use the services of the APRIL platform.

The  agents,  whatever  they  are  in  the  real  world,  are  devices  as  APRIL agents

together with PROLOG process whenever they require reasoning capabilities. The
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world,  for  instance,  is  models  as  a  pure  APRIL agent,  not  because  it  would  be

controversial to assign reasoning capabilities to the world, but because the database

management 

Logic Programming Agents



32

capabilities  we  need  from  the  world,  can  be  implemented  totally  in  APRIL.

Therefore, in our applications the world is a central database with a manager. The

other agents interact with this manager every time they want to execute an action.

An APRIL agent can consist of several APRIL processes active in parallel and

synchronising themselves through the interchange of messages.

2.2. The path-finding and warehouse applications. 

This project was somehow inspired by the work done in the InteRRaP project

of DFKI [Muller, Pischel; 1993] Their approach is totally different to our, but the

motivations  are  the  same.  We  both  address  the  issues  of  reactive  agents  versus

deliberative  agents,  the  world  seen  as  a  central  agent  and  efficient,  adaptable,

search-control  algorithms.  Consequently,  we  decide  to  share  with  them also  one

application example, which is becoming a classical example. This project is aimed at

implementing the warehouse simulation: A set of robots which work in a loading

dock warehouse  as  forklifts,  loading and unloading boxes  from a truck to  some

shelves.  The  example  is  interesting  because  provides  a  framework  where

communication,  cooperation  and  reasoning  about  other  agents  are  all  needed.

However,  the  implementation  of  the  test-bed,  including  the  locus  of  control

algorithm, and the extension made to PROLOG, proved to be complex enough to

consume more than the time available for this first stage of the project.

We had to restrict the work to the implementation of agents who can find their

way in a changing environment. They do not talk each other yet (hence, they will not

cooperate) and the only actions they can perform are turning left or right or moving

forward.  However,  they can see (with some very limited sensors)  the  world and

therefore, they can decide how to avoid permanent obstacles and other agents in their

way  toward  their  goal  places.  Also,  the  object  level  knowledge  required  by  the

path-finders is particular suitable for a layered arrangement as we explain in the next

section. We show experiments of this sort in the next chapter. The rest of this section

is devoted to describing the world agent, the robots and their brains.

2.2.1. The World

As in the InteRRaP [Muller, Pischel; 1993] loading dock example, we employ

a raster-based representation of  the  physical  world.  An array of  cells  covers the
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environment, each cell representing a significant portion of it. The sizes of the cells

are 
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adjusted in such a way that  a  robot occupies just  one cell.  The cells  in turn are

represented by a list of attributes that describe their content. Thus, we end with a

simple database (one flat table) describing the world as follow: 

Pos X PosY objec type status bitmap

0 0 floor floor empty floor

0 1 robot1 struc free rb_north

0 2 floor floor empty floor

1 0 floor floor empty floor

1 1 shelf struc empty emp_shel

1 2 floor floor empty floor

2 0 floor floor empty floor

2 1 floor floor empty floor

2 2 floor floor empty floor

The world corresponding to this table is show in figure 2.1:

Robotname

Shelf

X

Y

Figure 2.1. A rasterized world.

Note  that  our  representation  of  the  world  is  more  complex than  that.  We

devise  an  (APRIL)  agent  that  manages  the  database,  receives  and  serves  action

request by the agent, calculates and transmits to every robot the portion of the world

inside its  range of perception and triggers the animation. This APRIL agent is, in

turn, constituted by 
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two APRIL processes: a top process that performs all the mentioned activities in a

centralised  fashion  and  an  auxiliary  process  that  controls  the  animation  with

DIALOX. The following code is an outline of the first process written in APRIL:

world(handle?name,handle?interface){

 world_model?real_world := world_model?initial_world();

 /* The world main control cycle */

 repeat {

   [act, m_forward,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

      real_world := moving_forward(real_world, Cposx, 

   Cposy, Looking_To,replyto,interface);

   }

 | [act, t_right,

    integer?Cposx,integer?Cposy, symbol?Looking_To] => {

      real_world := turning_right(real_world, Cposx, 

   Cposy,Looking_To, replyto, interface);

   }

 | [act, t_left,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

      real_world := turning_left(real_world, Cposx, 

        Cposy,Looking_To, replyto, interface);

   }

/* This actions are not implemented in the current 

version

 | [act, take,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

      relax
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   }

 | [act, put,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

      relax 

   }*/
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 | [act, birth,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

      real_world := being_born(real_world, Cposx,Cposy,

     Looking_To, replyto, interface);

   }

 | [act, look,

    integer?Cposx, integer?Cposy, symbol?Looking_To] => 

{

    world_model?cp := world_model?(real_world^/[Cposx,  

Cposy,symbol, symbol, symbol, symbol]);

    [[any,any,any,any,any,symbol?bm]] = cp;

    /* Build the new vision field of this robot */

world_model?new_scene:=vision_field(real_world,

      Cposx,Cposy,bm);

    /* acknowledge execution */

    [ok, Cposx, Cposy, new_scene] >> replyto ;

   }

 | any?Msg  => writef(stdout,

   "Strange messagge %p\n",[Msg])

 } until end ;

};  /* of the world */
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Briefly explained, this is a typical agent's control loop with message-guard

tests, which allows the system to discriminate among the action-messages it receives,

and  to  activate  the  database  maintenance  routines  accordingly.  These  routines

(APRIL functions most of them) perform the actions of the agents in the world and

generate 
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the responses for the bodies of the agents. The succeed responses always include an

update of the robot's vision of the world (but  only the current field of vision). The

range of perception of the robots is limited in this first version to one cell (the front
cell). However, this could be changed by modifying the vision field function.

The look action is a motionless action. It does not modify the world database but

only allows the agents to have a look at it. All actions are atomic in the sense that

only one is executed at the time. The order of execution is established by the order of

arrival of the messages.

This simulated world brings about the  structural constraints in the robots'

behaviour. The forklifts can move neither across structures (including themselves, of

course) nor beyond the limits of the world.  Despite this supervisory proficiency, the

role of the world agent is still passive. The world does not affect the robot agents or

itself by executing actions or generating events. Furthermore, the world agent does

not influence the update of the robot's vision of the world: if one agent changes the

database, the others will only know about it when they sense the world. The world

will not inform those changes by its own agency.

The  simulated  world  was  originally  designed  to  model  the  warehouse.
Nevertheless, by changing the content of the file world.db (see appendix A) which

stores  the  initial  specification of  the  world  (as  is  read  by  the  initial_world

function), any other rasterized world can be simulated. In fact, our experiments are
made in a more simple world: the patio, which allows the robots more freedom of

movement. To get an animation display in agreement with the world being simulated,

the auxiliary process also needs to be modified, but the rest of the world agent stays

the same.  The appendices  (See appendix D) also include some typical  snapshots

picked from the images of the animation.

2.2.2. Robots.

These are the active, deliberate agents of this application. The  forklifts (we

prefer to call them robots) are, as expected, more complex than the world agent, but

also more than a typical APRIL agent. A robot agent is composed of two APRIL

processes and one operating-system (UNIX) process, which runs a special version of
SWI-PROLOG  we  call  plagent (Prolog-Agent).  The  plagent executes  a

PROLOG program that controls the overall behaviour of the robot and that we call

the robot's brain. The brain structure will be discussed in the next section, so let us
concentrate on the other two (APRIL) process. The robot process, apart from being
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the locus of control of the APRIL semi-agent, works as the interface between the 
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(APRIL) body and the (PROLOG) brain. The other process is the  body,  and its

structure is this:

body(handle?name,handle?worldname){

 repeat {

   [execute, symbol?nact, 

  [integer?px,integer?py, 

   symbol?dir, symbol?st, any?wm]] => { 

      /* send execution request to the world */

      [act, nact, px, py, dir] >> worldname ;

      /* wait answer from the world */

      {  [ok, integer?npx, 

 integer?npy, world_model?new_scene] => {

            symbol?ndir := newdir(dir,nact) ;

   /*action succeed*/ 

            [ok,[npx, npy, ndir, st, new_scene]] >> name

         }

      |  [failed, action?failed_act] => { 

            [failed,failed_act] >> name

         }

      }

    }

 |  any?Msg => writef(stdout,"strange message %p",[Msg])

 } until die ;

};

At this stage should be clear that, in the simulated world, all the actions are accomplished by interchange of

messages that transmit the actions, the results and information about the new state of the world. It is important to note,

however, that the robot agent is responsible for deducing and keeping track of its new state as a consequence of those

actions. The world sends back position status (x, y) of the robot for the sake of efficiency (otherwise, these calculations

should be repeated by the robot itself). Other attributes of its current state (the direction the agent is looking to, obtained by

the ndir function, for instance) are locally deduced. It is always possible to exploit (and to study) the trade-off between

using the world central database for storing agents' attributes or to locate those descriptions inside each agent. 

This specification of the robot agent as two separate APRIL processes is pursued, not only for its instructional

utility, but also because it allows a more straight-forward implementation of the communication module. The ear-mouth
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module, to handle  human-like conversations and debates with other robots, should run separated from the rest of the body.

2.2.3. The brain of the robots.

As  we  said  in  the  introduction,  we  could  implement  agents  only  in  APRIL (even  with  similar  deliberate

capabilities).  The  reason  for  using  PROLOG  is  to  show  that  an  agent's  brain  can  be  completely  specified  (and

implemented) in logic and that a theorem-prover can be as useful as specially designed programs for controlling reactive

autonomous agents. Thus, we sacrifice the probable efficiency of a full APRIL implementation to get the possibility of

employing  a  language  that  can  be  used  to  describe  the  object  level  knowledge  about  the  world,  together  with  the

meta-level knowledge saying how to think and assimilate. Consequently, the brain of the robot is a PROLOG program that

contains: 1) an image of the world database, probably partial and out of date, accessed through the predicate cell/6; 2) a

set of clauses establishing the relations among goals and actions in a particular domain; 3) the code of the meta-interpreter

that implement a sound proof procedure for reducing goals to actions and 4) the locus of control algorithm presented in

chapter 1. We must say that, once again, the clause form of logic proved useful for specifying an information system, in the

sense of [Kowalski; 1979] (Chapter 13), but which can be regarded now as an open system. 

The first and last parts of the brain have already been explained. The second is going to be detailed in the next

section. The part 3, we present the interpreter of PROLOG that we use to process the object level clauses written in

PROLOG  syntax.  This  interpreter  is  itself  written  in  PROLOG  which  is  why  we  have  to  call  it  a  PROLOG

meta-interpreter. This meta-interpreter is the implementation of a bounded SLDNF with abduction proof procedure  (see

[Hogger; 1990] for further details about SLDNF). The bounded  adjective refers to the fact that the meta-interpreter can

perform the  reduction  in  the  goals'  hierarchy  until  some  predefined  extend.  This  is  accomplished  by  providing  the

resolve predicate, the top level procedure of the meta-interpreter, equivalent to Kowalski's demonstrate [Kowalski;

1979] and Shoham's meta predicates [Shoham; 1994], with an extra argument controlling the depth  of the search. 

To say that the meta-interpreter implements SLDNF resolution is not enough to describe it. SLDNF does not

enforce a particular computation rule or search rule. For both of these we use the PROLOG rules. Our meta-interpreter

selects terms in clauses from left to right. Also, clauses are considered in the order in with they appear in the object-level

database (text order). However, unlike other meta-interpreters, we 
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do not use the implicit PROLOG backtracking. We build a list of the alternative branches of the search tree  and use this

list to select the next branch to be extended. The reason for this explicit list is twofold: 1) We need to keep a record of the

current state of the reduction because, due to the depth constraint, we will have to suspend the resolution, probably before

the current branch get completed; 2) The control of the resolution is going to be transferred to another procedure: the

executive. This executive continues the resolution process by reducing an executable goal (defined in Chapter 1), if there

exists one in the branch being extended. The function of the executive can be seen as testing the validity of an abduced

predicate (the executable goal: do) and asserting its truth-value according to its effect in the world. If the action succeeds,

the truth-value of do term is true and therefore, the current branch (partial or full plan, defined in Chapter 1) can be further

extended. If the action fails, the do term is false, and this falsifies the current branch (conjunction) being extended. In this

case, the executive has to rule out the current branch and backtrack  to an alternative branch. Thus, the backtracking can be

effected either by the normal resolve (when some condition does not hold) or by the executive (when an action fails).

Observe that the executive is invoked by the locus of control. In addition, between the main cycle and the meta-interpreter

stands the  assimilation procedure. Immediately below, we show the actual codes of the  assimilate and  resolve

procedures. Observe that the list of alternative goals (or-list) is represent as a ordinary PROLOG list (between square

brackets) whereas a conjunction of sub-goals is represented as a PROLOG and-list and therefore, ends with true. Once

again, we preferred legibility instead of efficiency in our code.

assimilate( Input, Gs, NewGoals, T, N, Tn ) :-

 update_world_model( Input ),

 resolve( N, Gs, NewGoals ),

 Tn is T + N.

resolve( 0, Goals, Goals ).              /* Base cases */

resolve( _, [(true)], [(true)] ).

resolve( N, [true|Rest], NGoals ) :-

 NNext is N - 1,

 resolve( NNext, Rest, NGoals ).  
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resolve( N, Goals, NGoals ) :-

    /* demostrating upon the current KB */

 Goals = [FirstAlt|RemAlt],

 demo( FirstAlt, NewSet ), /* G <-> body1 or body2 .. */

 append( NewSet, RemAlt, NextGoals ),      

  /* depth first search */

 NNext is N - 1,

 resolve( NNext, NextGoals, NGoals ).

resolve( N, [_|RemAlt], NGoals ) :-   /* backtracking */

 NNext is N - 1,

 resolve( NNext, RemAlt, NGoals ). 

demo( true, [(true)] ).

demo( (true, R), NewGoals ) :- !, demo( (R), NewGoals ).

demo( (not G, R), [(R)] ) :- not demo( G, _ ). /* NF */

demo( (G, R), [(R)] ) :-

 predicate_property(G, built_in), !, G.

     /* Builtin predicates */

demo( (G, R), NewList ) :-          /* Abducibles */

 abducible( G ), !,

 push( G, [(R)], NewList). 

demo( (G, R), NewList ) :-  /* Object level clauses */

 findall( BB, 

         (clause( G, Body ),and_append( Body, R, BB ) ),

          NewList ),

 ( NewList = [] -> ( fail, ! ); true ).
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Note  that  we  do  employ  abduction  (fourth  demo clause),  but  it  is  not  constructive  abduction.  The

meta-interpreter decides if a particular term can be posted as a  suggestion (abductive explanation) to be tested by the

executive, but it does not generate that  suggestion.  It is responsibility of the programmer-designer of the object level

database, to be sure that the meta-interpreter receives a grounded abducible term. This provision is similar to that used to

avoid floundering in programs with negation as failure and thus most logic programmers are used to it.

In our system, the use of negation as failure (third demo clause) is justified by the need to commit to actions,

making quick decisions with the available information. Thus, the robot will, for instance, decide to move to the next cell if,

either its model of the world says that it is an  accessible cell or there is no information about it.  The  prohibited

predicate, a condition that is part of the object-level database (see appendix B), tests whether a cell is occupied by one

structure and therefore it is not accessible. In addition the robot assumed that a cell is accessible  whenever it can not be

prove that it is prohibited  (the cell is not prohibited as far as the robot knows. This is the close world assumption of

negation  as  failure).  If  this  assumption  is  wrong,  that  will  be  corroborated  at  execution  time  when the  assimilation

procedure will make the adjustment needed to the current set of goals and to the database.

We believe this  is  an appropriated model  of  intelligent  decision-making.  After  all,  we human beings make

decisions in the same way, probably changing our minds when we come to realise the world.  We also believe we address

the objections of Hewitt  [Hewitt;  1985]  to  the use of  the close world assumption in open systems,  by allowing our

creature  [..] to cope appropriately and in timely fashion with changes in its dynamic environment , as Brooks has required

[Brooks;  1991].  In  the  next  sections,  we  will  review the  other  requirements  for  artificial  creatures  that  Brooks  has

established, to see whether or not our robots satisfy them. 
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2.3. Backward-forward representations.

In this section we discuss the second part of the  brain information system: the set of clauses establishing the

relations among goals and actions in  some domain. We try to answer the question: how can specify knowledge relate to a

particular domain, in such a way that an agent can employ this knowledge to guide its actions?. In other words: How to

program an intelligent agent?.  Obviously, we are not the first to make this question or to suggest an answer. 

The need to act, probably within some period of time, has always been a major problem for the designer of

intelligent agents. Arguably, this could be the reason for the success of condition-action production rule systems or more

recently  patterns-with-associations  [Newell,  Young,  Polk;  1993]  were  the  knowledge  is  pre-compiled  to  allow more

flexible contingent response. In this sort of system, a set of rules contains the knowledge relating conditions in the world

with actions to be performed. Whenever all the conditions in a rule hold, the rule fires and so, triggers the execution of its

related action, which can produce changes in the world or inside the agent itself. These changes can make other conditions

hold (or  not  hold).  If  several  rules  fire,  the  system has  the extra  work  of  picking  one,  probably appealing to  some

meta-level information. Thus, production-rules can be used  to model reactive intelligence.

Although we do not deny the appropriateness of production rules, we believe, following Kowalski [Kowalski;

1994b], that they correspond to normal logic programs whose goals have been put out of sight by pre-compilation. We take

this believe a little further and propose to use logic programs to specify the behaviour of the agents by describing the full

hierarchy that relates goals and conditions with actions. Some implementation tricks are required to obtain the required

efficiency. However, those are only implementation issues, as solvable in the production rules framework as with the logic

programming approach.  In  exchange,  the programmer gets  the greater  expressiveness  of  logic  programming with its

declarative and procedural readings.

What we call a hierarchy of goals is simply an abstraction of the SLD-tree. The root of the tree is a high-level

goal.  The  intermediate  nodes  are  sub-goals.  The  leaves  of  the  tree  are  either  low-level  conditions  or  actions

(executable-goals). The system maintains a list of conjunctions, as the one described in Chapter 1, to store the current set

of leaves of the SLD-tree. During the process of reduction, this list is updated accordingly. To illustrate the resolution

process, we immediately include a fragment of a typical evaluation, showing the evolution of the list in PROLOG-like

notation  (uppercase  letters  represents  variables).  This  example  employs  the  rules  involving  go goals.  Note  that,  for

simplicity,  only one number denotes a geographical situation 
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(instead of the normal X-Y representation). The lowercase letter beside the number indicates the direction toward which

the agent is looking:

[(go(3n,5e))]

↓

[(gradient_steps(3n, Z, 5e), go(Z, 5e) ) ;

(avoid_steps(3n, Z), go(Z, 5e)) ]

↓

[(atom(A, 3n, Z), closer(3n, Z, 5e),

 not prohibited(Z), do(A), go(Z, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

[(closer(3n, 0n, 5e), not prohibited(0n),

 do(m_forward), go(0n, 5e)) ; 

(closer(3n, 3e, 5e), not prohibited(3e),

 do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohibited(3w),

 do(t_left), go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

.

.

↓

[(not prohibited(3e), do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohibited(3w), do(t_left),

 go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

↓

[(do(t_right), go(3e, 5e)) ;

(closer(3n, 3w, 5e), not prohited(3w), do(t_left),

 go(3w, 5e)) ;

(avoid_steps(3n, Z), go(Z, 5e))]

Looking top-down, the first list contains only one single-term goal: go(3n, 5e), which should be read as the

agent having the intention to go from cell 3 (where it stands looking to the North) to cell 5 (where it will be looking to the

East). This single-term goal is replaced during the first step of reduction by two alternatives set of sub-goals (separated by

semi-colon). Note that each one of those set of sub-goals is a 
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conjunction  of  terms  (the  aforementioned  and-list).  The  terms  gradient_steps/3 (from  steps  in  the  gradient

direction) and avoid_steps/2 (from steps for obstacle avoidance) represent different strategies for generating the next

action  of  the  agent.  The  next  resolution  step  (next  list)  substitutes  the  first  sub-goal  in  the  first  set  (the

gradient_step/3 term. This is depth-first  search) with its definition. Within this definition one can observe several

kinds of terms. The atom/3 term, at the beginning, in a  generator term  because it generates and action that  could be

executed in  the current  situation (3n)  and instantiates  the variables  accordingly (A with the action,  Z with the next

situation). The closer/3 condition  tests those situations generated by atom to decide whether each one of them (see

next list) is closer to the final situation than the current situation. Indeed, closer/3 implements our notion of gradient

field (see the source-codes in appendix B). The not prohibited/1 sub-goal was presented in the previous section. It

is a condition for checking that a particular situation, generated by atom/3 and tested for closeness by closer/3, is

indeed  accessible (the  agent  can  walk  through  it).  Finally  in  the  definition  appears  the  do/1 term.  This  is  the

executable goal  previously described (Chapter 1). It is a term that will be offered to the meta-interpreter for

abduction. Observe that the variable  A (specific low-level action) in  do/1 is instantiated by the precursor

atom/3 term. Eventually, a do/1 term appears as the first term in the first list (see last list in the example)

ready to be executed (the executive also works in a depth-first fashion). What happens next depend on the sort

of brain  involved (reactive or planner as will be explained in Chapter 3). We provide a more comprehensive

explanation on the structure of these domain-specific rules in the following section.

Although the details about what it is a generator term, a condition or an abducible term are important,

the fundamental idea of this representation is the use of what we call  situated goals  to perform a  forward

search within a backward reasoning scheme.  Almost every sub-goal term (excepting only the abducible

terms and the non-logical terms used in normal PROLOG programming) carries a description of the current

situation, which may be updated to a new situation when the sub-goal implies the execution of an action

(recall in the previous example go(3n,5e) means the agent is now in 3n and when the goal is accomplished

will be in 5e). Note that what we call situation is not necessarily a complete description of the current state of

the  robot.  In  this  case  what  it  is  relevant  to  the  goal  go/2 is  the  geographical  condition  of  the  agent

(coordinates X and Y and direction toward which it is looking). It does not matter, for instance, whether or not

the robot is carrying a box.

This knowledge database (goal hierarchy) is designed in such a way that the high-level goals are

defined in terms of movements from a well defined  initial situation toward a final situation.  It could be seen

as the forward reasoning of condition action rules implemented in a backward reasoning framework. We insist

on 
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the point because it has been mistakenly believed (specially in some non-academic circles) that the backward

reasoning proof procedure implemented in PROLOG can not be use for forward reasoning. Our programs

show that it can be used. Moreover, we are not the first to adopt such representations (see for instance the

DCG rules in [Covington; 1994]).

Let use a classical example to show the universality of this representation. A program for building

towers in the world block  might include the following clauses (in PROLOG syntax):

build(InitialTower, FinalTower) :- 

put_block_on(InitialTower, NextTower),

build(NextTower, FinalTower).

build(InitialTower, FinalTower) :-

take_block_from(InitialTower, NextTower),

build(NextTower, FinalTower).

The predicate  build/2 represents the action of building the tower described by  FinalTower,

starting with a tower (that may be a null tower, i.e. the empty table) described by  InitialTower. How

efficient (optimal) is the program depend on the actual implementation of the procedures put_block_on/2

and take_block_from/2, which represents the actions of putting a block on top of the current tower and

taking a block from the top of it, respectively. Of course, the process ends when InitialTower is equal to

FinalTower.  The key  point  is  to  discompose  the problem is  such a  way that  the  situation description

progress toward the solution while the reasoning is accomplished in backward manner.

2.4. Search by layers. 

It is worth noting that in the brain programs, as in normal PROLOG programming,  the branching

points of the search tree  can be arranged in such a way that during the search, the agent explores first the most

promising branches. Furthermore, the branches could be used to represent layers of control  in the sense first

proposed by Brooks [Brooks; 1986] and applied by Steels [Steels; 1990], as we will show later.

In that last reference, one can find a proposal for building reactive agent that advocates the use of

pattern of behaviour against explicit (logical) knowledge 
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representation.  Steels  employs  Brooks'  subsumption  architecture  [Brooks;  1986]  in  order  to  model  and

simulate reactive robots in an application very similar to our path-finder example. A fragment of the Steels'

robots subsumption architecture is shown in figure 2.2

RETURN MOVEMENT

EXPLORATION MOVEMENT

OBSTACLE AVOIDANCE

Figure 2.2. Steel's agent architecture.

Steels identify layers with behaviours, which in turn are defined as follow [Steels; 1990]:

Return movement behaviour:

If I am in return mode I chose the direction of the highest gradient.

Exploration movement behaviour:

If I am in exploration mode I chose the direction with the lowest gradient.

Obstacle avoidance behaviour:

If I sense an obstacle in front, I make a random turn.

It is not difficult to argue that these definitions are ordinary condition-action rules. Steels insists that

"there is no sophisticated control strategy or internal reasoning of any sort"  behind this architecture. The

layers run in parallel. The only important point about control is that lower-level edicts take precedence over

upper-level ones. That is, whenever there is an obstacle at the front, is the obstacle avoidance layer which

dictates the actions to take. There are not further details  in the reference to explain how to resolve other

conflicts. However, some other rules are added to guide the action of the robot by determining its next mode of

operation:

Mode determination:

If I am in exploration mode and I sense no lower concentration than the concentration in the

cell on which I am located, I put myself in return mode.

If I am in return mode and I arrive at my destination, I put myself in exploration mode.

Logic Programming Agents



51

If  I am holding a sample, I am in return mode.

Let us present the logic programming specification of our path-finder robot in order to compare it

with the Steels' architecture. A path-finder robot "lives"  to find a way of going somewhere. Consequently, one

top  level  goal  of  our  robot  may  be  logically  stated  by  the  predicate:  go(InitialSituation,

FinalSituation). We fulfil one of the Brooks' requirements for artificial creatures: "A creature should do

something in the world; it should have some purpose in being" [Brooks; 1991]. We link this overall goal with

more every-day goals and actions by means of the following PROLOG program:

go( InitialSit, FinalSit ) :-

gradient_step(InitialSit, IntermSit, FinalSit), go(IntermSit, FinalSit).

go( InitialSit, FinalSit ) :-

avoidance_steps(InitialSit, IntermSit), go(IntermSit, FinalSit).

Where  the  arguments  of  the  go/2 predicate  are  descriptions  of  an  initial  situation  and  a  final  situation,  the

gradient_step/3 clause is a subgoal forcing the agent to make a step in the direction of certain gradient field and the

avoidance_steps/2 dictates a sequence  of actions to avoid obstacles.

We claim that this program generates in our simulated robots the same behaviour that Steel's reports from his.

The first go/2 clause is equivalent to the return and exploration movement layer together because, once a final situation is

established, the agent always tries to follow the shortest way (the direction with the maximum gradient) to its destination.

The second one is the logic programming representation of the obstacle avoidance layer. According to the PROLOG search

rule we use, the first clause is considered first. If there is an obstacle to be avoided, the conditions behind the first clause

will not hold. As a consequence, the search will continue with the next clause that specified the correct behaviour in that

situation. This is the principle of search by layers. 

It  is  important to remember that the clauses can be ruled out either at  thinking time  or at  execution time.

Therefore, even if  resolve mistakenly uses  the  gradient clause, the executive will force backtracking afterwards.

Certainly, this logic programming representation does not allow parallel exploration of clauses. Nevertheless, nothing apart

from the need for choosing only one final action (that also exits in the Steel's  architecture),  excludes parallel  search

throughout the alternative branches. This is possible because our locus of control keeps all the alternatives to particular

goal  at  any  moment.  The  set  of  goals,  the  list  of  and-lists,  used  for  controlling  backtracking  is,  precisely,  a  set  of

disjunctive sub-goals (an or-list) which 
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are  alternatives  to  the current  goal.  This  could be seen as  having multiple  goals  at  every stage.  "Depending on the

circumstances it  find itself in, [the robot]  will change which particular goals it  is  actively pursuing" [Brooks; 1991],

another of the requirements established by Brooks and that we have been enumerating.

As a  final  point  in  our  presentation of  the path-finder  architecture,  let  us  present  the full  definition of  the

avoidance_steps sub-goal, which will allow us to highlight some important aspects of our representation:

avoidance_steps( CurrentSit, NextSit ) :- 

 change_dir( CurrentSit, NewSit ), 

 avoidance_step2( NewSit, NextSit ).

avoidance_step2( CurrentSit, NextSit ) :-

 move_forward( CurrentSit, NextSit ).

avoidance_step2( CurrentSit, NexSit ) :-

 avoidance_steps( CurrentSit, NexSit )

change_dir( (X, Y, north), (X, Y, east), T ) :-

 do(t_right, T).

change_dir( (X, Y, south), (X, Y, west), T ) :-

 do(t_right, T).

change_dir( (X, Y, east), (X, Y, south), T ) :-

 do(t_right, T).

change_dir( (X, Y, west), (X, Y, north), T ) :-

 do(t_right, T).

move_forward( (X, Y, north), (X, Ny, north) ) :-

 Ny is Y - 1, not prohibited( (X, Ny, north) ),

 do(m_forward). 

move_forward( (X, Y, south), (X, Ny, south) ) :- 

 Ny is Y + 1, not prohibited( (X, Ny, south) ),

 do(m_forward).

move_forward( (X, Y, east), (Nx, Y, east) ) :- 

 Nx is X + 1, not prohibited( (Nx, Y, east) ),

 do(m_forward).
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move_forward( (X, Y, west), (Nx, Y, west) ) :- 

 Nx is X - 1, not prohibited( (Nx, Y, west) ),

 do(m_forward).

The  avoidance_steps rule  states  that  the  actions  the  robot  will  take  consist  of  a  change  of  direction

(change_dir)  and  a  second  action  determined  by  avoidance_step2 rules   The  next  action,  established  by

avoidance_step2, is either move forward (move_forward) or try a new change of direction, deduced through a

recursive call to the  avoidance_steps rule. Observe that when the robot is surrounded by other structures it keeps

changing directions until it get and open space (which can never happen).

We also include the definitions of change_dir and move_forward. It is important to note that every action

is related to a situation of the robot (the situation with respect to its goal of going somewhere). Thus, the code is carefully

designed to guarantee that the robot always knows where it is. Every atomic action (proposed for abduction by the  do

predicate) should be linked to a situation in such a way that if the action succeeds or fails, the robot will be able to deduce

its  next  situation.  The  fundamental  point  is  that  an  over-simplified  rule,  as  the  following  (presumably  closer  to  the

equivalent condition-action rule), would not be correct:

avoidance_steps( CurrentSit, NewSit ) :-  

 /* follow the wall */

 change_dir_move_forward( Turn1, CurrentSit, NewSit ),

 not prohibited( NewSit ),

 do( Turn1 ),      

 do( m_forward ).

The first term  change_dir_move_forward/2 generate the actual direction for turning and calculate the

new situation. This new situation is tested by prohibited/1 and the two do/1 terms are presented to the executive.

Consider  what  happens  when  the  do(m_forward) fails.  The  robot  could  not  change  its  situation  (it  is  still  at

CurrentSit).  However the argument of the next term in the goal conjunction is pointing out to the new situation

(NewSit). The robot will eventually lose track of its situation with respect to its goal. 

We are conscious of the identification of actions and goals we impose upon our representation. This is not,

however, an actual constraint. One could say, for instance, that the goal of a path-finder is not to go from one point to

another but, instead, to be at certain place (at certain time). This possibility is not excluded in the 
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representation. An appropriate clause for capturing the idea, could be added to hierarchy, raising its level as follow:

at( FinalSit ) :- current_sit(InitSit), 

  go(InitSit, FinalSit).

However, the designer needs to be alert in order to prevent tragic errors. For example, one could be tempted to

exploit  the easy definition of  recursive procedures in clausal form,  in  order  to  program a permanent or long lasting

behaviour into the robot. Something like this, following the same idea in the previous clause:

move_around( SomeSit ) :-

current_sit(InitSit), 

go(InitSit, SomeSit), move_around( InitSit ).

This rule is intended to cause the robot to go from one place to another indefinitely. Unfortunately, in brains with

planning  capabilities (see next chapter for the definition) and a description of the current_sit restricted to the present

time, this rule is misleading. To see the reason, consider what happens when the resolver has reduced all the sub-goals up

to and including go(InitSit, SomeSit). In the next reduction it will select the clause itself, which carries a call to

the current_sit predicate. This call, however, refers to a situation in which the robot will be later, not the one recorded

in its current mental context. The basic problem is that the database in the robot's brain does not describe the world and its

dynamic, it simulates the world. We require a way of predicting  situations of the robot, reasoning about the fact that it is

going to achieve certain goals. We need the robot to project itself into the future.

2.5. Time and events representation in logic programming agents

Although this weakness of the representation, as we have described it so far, could be discouraging for the logic

programmer, it can provide the practical context to introduce a powerful tool employed in more sophisticated agents: time

management  [Shoham;  1994]  and/or  event  representation  [Kowalski,  Sergot;  1986].  We  have  been  looking  after  the

rationalism for including time representations in agent's brains. At first sight, it seems to be that, unless other external

agencies (human operators or users, for instance) mandate the use of time, for example by limiting the periods of 
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time for achieving goals, such a necessity does not arise by its own in these agents. Even some practical exercises of

cooperation can be solved without an explicit account of time (i.e. to past through the narrow corridor, you go, he goes

and I go in that order). If the forklifts want to unload the truck as soon as possible, they can simply negotiate and distribute

the tasks and pick the plan with the minimal number of atomic actions. This could be done even if the goal is to unload the

truck before lunch time. Some  more intelligent  agent (maybe a human) could evaluate the robots' global plan, to see

whether or not it can be accomplished before the lunch gets cool.

However, as we said in the previous section, sometimes (for example in narrative understanding) the agent needs

to deal with goals that are not equivalent to actions (e.g. to go to) but, instead, to situations (e.g. to be at some place, at

some time, to have something, during some period). We must admit that our current agent model does not permit the agent

to distinguish its current situation from previous and future ones. In other words, our agent can not reason about what the

situation was sometime ago or  will be in the future. As in conventional databases, the agent updates its beliefs about the

world in the same order (and also almost at same time delayed only by the speed of perception) as the corresponding

events occur in the real world. That is why we say the agent's brain simulates  the world. As the robot only represents the

present moment, it can not accept new information about the past or the future available from the environment or from

other agents. Hence, the agent is missing part of the world's experiences which, otherwise, could be available for a more

accurate deduction of actions and goals.

We human beings do that situation analysis in order to learn from past experiences and to decide the better way

for behaving in the future  in pursue of some goal.  We also use that capability  of self-location in  the space-time for

synchronising ourselves with nature and with other beings (eat breakfast just after dawn, lunch at 12.00 and dinner when

she gets home, then rest between 11.00 p.m. and 5.00 a.m.). There is an important advantage in using a watch or an event

notifier. We do not need to worry about the overwhelming amount of detail about actions, order of actions or events of

other beings and nature that, in addition, happens in parallel to our own actions. Our own organism is a set of processes

running in parallel.  We do not follow them explicitly.  We simply  meet them  at  certain points in time with as much

precision as the state of the art in time-keeping allows. We believe all these capabilities could be provided to artificial,

intelligent agents  within the logic programming framework.
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CHAPTER  3  

EXPERIMENTS WITH THE PROLOG-APRIL TESTBED

3.1. Comments on multi-agent simulations.

As we said at the beginning of  Chapter 2, part of the motivation to simulate

an  agents'  society  in  this  non-traditional  simulation  framework,  comes  from the

opportunity to model  micro-behaviour  (behaviours of individuals) and to measure

its impact on global behaviour. This last, however, is not a straightforward task with

a test-bed like ours.  Repetition of experiments, for instance, is fundamental in an

environment where real randomness is used instead of the pseudo-random computer

generated sequences. Due to the fact that our agents' messages almost always travel

throughout a real network, we deal with real random delays. In such conditions, any

conclusion made from the results is at risk of being mere speculation, unless the

supporting data can be proved to be representative enough.

In contrast to the call for more testing it is the quantity of information to be

analysed.  The  amount  of  details  that  can  be  recorded,  already  overwhelming  in

macro simulations, is even greater in micro-simulation. There is also, the additional

problem  that  some  of  the  statistics  need  to  be  obtained  by  individuals  and

post-processed  into global  hypothesis  afterwards.  This  post-processing can imply

loss of grades of freedom in the final statistics and, consequently, less confidence.

We bore all those influences in mind during the tests, and also encourage the readers

to consider them when they come to interpret the results.

3.2. Description of experiments with the path-finders.

Taking  the  simplistic  path-finder  agents  (and  the  patio world)  as

guinea-pigs, we concentrated  attention on two types of experiments: 1) measures of

real machine performance of our agents and 2) measures of adaptability of the agents

to environmental conditions. The first set of experiments is aimed to compare the

running requirements (time and memory space) of two models of brains: the reactive

brain and the planner-brain. The second set obtains data to evaluate the effect of

deep thinking (recall  the  parameter  N used to  bind the depth of  search)  into the

behaviour of an agent  that has to interact with a changing environment. We build a

changing environment by setting goals to the agents that make them interfere each
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other.
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Before showing the details of each group of experiments, some concepts need

explanation. What we call a  reactive brain is the program described in Chapter 2.

The important point to be noted is that, in the reactive brain, the resolver reduces the
goals until it gets the first do predicate pointing an action to be executed. It does not

try to reduce the other goals after the do, so there is no further planning. The control

is  transferred  to  the  executive  which  either  executes  the  action,  confirming  the

current  conjunction  of  goals  for  further  refinement,  or  backtracks  to  another

conjunction.  A reactive  brain  may  or  may  not  decide  an  action  to  be  executed,

depending on how deep the parameter N allows it to get. On the other hand, unlike
the reactive, the planner brain does worry about sub-goals after the do. In fact, the

planner brain tries to obtain as  do predicates as possible given some N, getting in

some cases to build several full plans  in the sense explained in Chapter 1. Various

modifications have been made to the program shown in Chapter 2, to cope with the
planning-ahead capabilities of this brain. Some of them are: 1) changes in the demo

clause devoted to abducibles, allowing the process to skip over previous obtained do

terms; 2) changes in the  resolve clauses to skip over the full-plans obtained in

previous cycles, if any exits. The planner brain also may not decide an action to be

executed, but this is unlikely to happen because it capitalises on reductions made in

previous  cycles.  Certainly,  planning  can  demand  enormous  spaces  of  memory.

However, once again, the depth-parameter N can be use to control and to restrict

resources. The source-codes of both brain programs are included in Appendix B.

3.3. Redesign of experiments

As soon as we started to carry out the experiment described in the previous

section, several issues arose. The first thing we realised is that adaptability, how the

agents integrate themselves into the changing environment and  performance,  how

well  they  accomplish  their  goals  in  that  environment,  could  be  correlate  and,

therefore, we need to test them with the same set of experiments. On the other hand,

during the first experiments, our first model of the planner brain showed itself to be

awfully inefficient.  One run of one robot alone, with N set to 70, took 1 hour and a

half,  with  the  reference  robot  living  only  for  50  cycles  (See  the  experiments'

specification  in  the  next  paragraphs,  for  comparison)  whereas  the  reactive-brain

agent could make the same work in 4 minutes. A careful analysis of the planner brain

structure let us realised that, in the original design, we had missed or misunderstood
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one important aspect of a long-lasting agent's brain. 
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In the planner brain we employ abduction for building ordered sequences of
executable  goals  (do terms) which can be regarded as detailed plans.  One valid

sequence, in our path-finder application could be (as before,  we use a simplified
notation):  do(m_forward),  do(m_forward),  do(t_right),

do(m_forward), go(0e, 4n). This sequence is a partial plan  (see previous

Chapter for definition) that the agent can use to go from some initial situation to the
situation 4n.  The basic problem in our first model of planner is that the agent keeps

extending  these  sequences  indefinitely.  At  every  cycle,  the  brain  skips  over  the
previously  abduced  do terms  and  tries  to  solve  the  other  high-level  goals.

Considering  that  the  robots  have  permanent  goal  hierarchies,  most  of  the  time

recursively  defined,  this  turns  out  to  be  a  never-ending  extension  process.  It  is

always possible to extend the robot's plans, even with a very low N. The agent still

shows an acceptable performance for low N (N = 10..20 in our application), because

the abduced terms are generated almost at the same speed as they are consumed by

the executive. Therefore, there is no memory overflow, as it is the case when N is big

(N > 30 in our application). Our system does not explode, but the garbage collection

is so intense that dismisses any hope of efficiency. As if that is not enough, that

scheme does not seem to be a realistic model. We human beings, for instance, do not

go into details about those plans whose execution is too far in the future. We can

specify the constituents of a plan until certain point and then complete it with more

abstract goals (i.e. in the morning: get up, put on your clothes, brush your teeth and

then  go to  work).  How far  to  go  specifying  plans  in  that  way is  an application

dependent issue, yet it is not carried on forever.

Following the previous line of reasoning, we decided to modify the planner

brain schema to limit the length of the detailed part of the plans. The strategy is

simple:  in  the  same  way  we  use  a  parameter  to  limit  the  depth  of  the  search

(bounded reasoning), another parameter may be used to control the size of the set of

abduced  terms  at  any  time  (bounded  abducibility).   Both  parameters  should  be

adjusted  by  the  designer  in  agreement  with  the  available  resources  and  the

application domain constraints, including the need for quick response. In pursue of

this, we implement bounded abducibility altering the code by adding some special
procedures  and  predicates  to  the  knowledge  base,  namely  abd_count/1,

init_abd_limit/1,  up_abd,  down_abd,  reinit_abd.  The  final

effect is that the brain can plan ahead until it gets certain number of abduced terms.

We set this number to 10 in our experiments. That was enough for our robots to build

a set  of  steps  for  taking itself  from the initial  situation to the  extreme situation.

Observe that this is not a complete plan. The goal of the agents in the experiments is
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recursively defined as follow:
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go_around( So, Sf ) :- go( So, Sf ), go_around( Sf,

So ).

Therefore, a full plan  for this goal is a never-ending sequence of  abducible

terms. The attempt to generate such plan causes the overflow of memory we want to

avoid with bounded abducibility.

It is really worth noting that the reactive model of brain becomes a special

case of a planner brain, whose abducibility parameter has been set to 1. This implies

an even smoother transition between reactive and planning ahead planners in this

framework.  Accordingly,  we  also  decided  to  include  in  the  experiments,  tests

comparing the behaviour brought about by the pure-reactive brain and the planner

brain. The Appendix B contains the source-codes of those brain schemes.

The  unified  set  of  experiments  obtains  information  about  performance,

failures and hesitancy of the agents. The overall purpose is to evaluate the effect of

bounded reasoning (N parameter) on the behaviour of individual agents and on the

whole group. At the same time, we survey the behaviour of pure-reactive and planner

robot's brains, following the guidelines discussed in the previous paragraphs. In all

the experiments the hardware of the test-bed is configured as follow: 2 SparcStation

ELC, with 16 MB RAM memory each one,  connected via nfs with a Disk Server.
The plagents (SWI-PROLOG) use 2 MB of RAM memory for the global stack, 4

for the local stack, 2 for the trail stack and 1 for the arguments' stack (those are the

maximum values permitted).  One machine executed the DIALOX server and the
patio world.  The other machine executes the robots'  processes.  Recall that  a

robot is  composed of one  plagent process and two APRIL processes.  Another

machine runs the APRIL nameserver.  The experiments are:

• Experiment ONE: For every test (for N = 10, 20, 30, 40, 50, 60, 70, 100 and

200), for every brain scheme (reactive, planner), simulate a robot alone in the

patio world, going from initial situation to extreme situation. Record the number

of failure steps per trip per robot. That data will be used to estimate the average

of failures per trip and to correlate the number of failures with N. It is worth

noting that, in our simple patio and warehouse worlds, the only action that can

fail is the move forward action. Turning left or right is not restricted. Thus, what

we are trying to determined is how frequently a robot is blocked by its fellows in

its  attempt  to  move  forward.   Also  record,  the  number of  observations  the

agent performs per trip. These values are used to estimate the level of hesitancy

of the agent, that is, how frequently the agent does not decide the next action to
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be executed. The agents' insecurities are due to the fact that the agent may not

reason long enough,  thus hesitancy is  a  function of  the parameter  N. Finally,

record the time the reference robot (ja) takes to 
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reach 200 cycles of  life. All the agents stop at the same time and, therefore, these

time values can be used to estimates the average performance of the agents. 

Description of agent ja:

Robot name: ja

Initial situation: X=0 ; Y=5; Looking toward = north.

Extreme situation: X=4; Y=3; Looking toward = east.

High-level goal: permanently go between initial situation and extreme

situation, following the shortest path.

Length of minimal path: 5 step between initial situation and extreme

situation.

• Experiment  TWO:  Repeat  experiment  ONE  with  two  robots  (ja,  jb).  The

simulation runs until the reference robot reaches 200 cycles.

Description of agent jb:

Robot name: jb

Initial situation: X=4; Y=5; Looking toward = north.

Extreme situation: X=0; Y=3; Looking toward = east.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 5 step between initial situation and extreme

situation.

• Experiment  THREE:  Repeat  experiment  ONE with  three  robots  (ja,  jb,  jc).

Again the experiment last until the reference robots reaches 200 cycles.

Description of agent jc:

Robot name: jc

Initial situation: X=0 ; Y=1; Looking toward = south.

Extreme situation: X=3; Y=6; Looking toward = north.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 8 step between initial situation and extreme

situation.
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• Experiment FOUR:  Repeat experiment ONE with four robots (ja,  jb,  jc,  jd).

Stop when ja reaches 200 internal cycles.

Description of agent jd:

Robot name: jd

Initial situation: X=4 ; Y=1; Looking toward = south.

Extreme situation: X=0; Y=6; Looking toward = north.

High-level goal: permanently go between initial situation and extreme

situation, following an optimal path.

Length of minimal path: 8 step between initial situation and extreme

situation.

The reason for using the numbers 10, 20, 30, 40, 50, 60, 70, 100 and 200 is

this: In the elementary path-finding domain, described by the object level rules, a

robot alone can decide most of the time its next action in one cycle if its N has been

set to some value between 20 and 30. The value is not unique and universal because

some  action  can  need  more  thinking  to  be  decided  (i.e.  move  forward  is  more

straightforward than turn right or left). In Any case 50 is always enough to reach the
first do predicate, while 10 is always insufficient for this purpose. The scale allows a

more systematic  approach.  The values 100 and 200 are  included to compare  the

performance of the pure-reactive and the planner scheme for big N.

We talk about optimal and minimal path because the object-level rules are

designed for allowing the robot to follow a shortest path (may be more than one,

remember  that  the  robot  does  not  walk  over  diagonal  lines)  to  its  destination.
Following the  gradient_step clause,  the  agent always chooses  a cell  that  is

closer to its destination. This is the criteria for optimality within the program. What

we call minimal path is the one with the minimum number of steps for going from

initial situation to extreme situation.

It  is  also  important  to  note  that  the  apparently  arbitrary  routes  the  robots

follow have been calculated to generate interaction.  The selected configuration tries

to  balance  the  trade-off  between  interaction  caused  by  sharing  one  specific

(pre-defined) resource (as in normal distributed systems) and interaction caused by

accidental coincidence of goals (attempts to share an arbitrary resource in the world).

It is difficult to control this trade-off, so we do not claim this configuration is the best

in any sense. The default routes the robots follow when there are no obstructions are
shown in figure 3.1. Note that ja and jb use the same routes for going and coming,
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whereas jc and jb have circular routes.

Logic Programming Agents



68

Ja

Jb

Jc

Jd

X

Y

Figure 3.1 Routes of agents.

3.4. Results.

3.4.1. Performance of the agents.

For easing the burden of analising the data from the experiments, we compile the information into

statistics that represents the features of the groups of agent we wanted to measure in the simulations. The first

of those statistics is the Average time to make a Trip (AVT): an estimation of the time an agent would take to

make a trip. A lower AVT indicates that the agent is more efficient in achieving its goal or, in other word, that

it performs better. Observe that here we use time instead of, for example, the inference step counter, as the

measure of performance per trip. We discard the inference step counter because  it is not a uniform unity. From

one step of inference to another, the number of clauses and term/clauses involved may change and therefore,

we end having more than one independent variable. That is not the case with absolute time. AVT is defined as

follow:

AVT

TTj

R
j

R

=
∑

               TTj
TIME

TRIPSj
=

Where R is the number of robot agents in the simulation, TIME is the total duration of the simulation and

TRIPSj  are the number of trips made by agent j during the whole simulation.
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Figure  3.2  shows  a  plot  of  the  calculated  AVT  versus  the  parameter  N  for  both  planner  and

pure-reactive brains (left and right, respectively).

Performances compared (Planner - Reactive) 

N

Average Time per Trip (secs.)0

10

20

30

40

50

60

10 20 30 40 50 60 70 100 200 10 20 30 40 50 60 70 100 200

One Agent Two Agents Three Agents Four Agents

Figure 3.2

Reading the groups of columns separately, one can see that the efficiency consistently drops back as

the  number  of  agents  increases.  Clearly  with  more  agents  in  the  environment,  the  world  becomes  more

unpredictable and therefore, the agents waste more time deciding and trying actions which eventually fail.

Considering the whole graphs, one may note that the efficiency start at some intermediate level and then goes

to maximal values for N between 20 and 40. After this point, it decreases  monotonicly.  There exists a point of

optimal performance associated with the depth of the knowledge base.  Recall that for values of N around 30

the agent almost always gets to the leaves of the decision tree in the current knowledge base,  in one cycle.

The graphs show that there is a slightly difference in favour of the planner brain, which could be

explained by the fact that this brain can execute more inference step per cycle. The reactive brain stops as soon

as it gets to first executable goal (do(Action)). This implies wasting some inference steps still allowed by the

remainder of parameter N. Whereas, the planner may keep working in those circumstances, going deeper in

the SLD-tree. At the end the net effect is that the planner brain decides, in average, sooner than the reactive

brain. However, the important point to observe is that planning does not help to much to avoid the fall of

efficiency in this context. It can be note that, ignoring random disturbances, the graphs are very close one to

another. Generally speaking, one would expect that an agent that can plan up to 
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10 actions ahead in one cycle, would have a better performance than one that only decides its next action.

However, clearly that is not the case with the current mechanism for planning applied to this domain. We can

mention two notable weaknesses of the current planner brain, in order to explain that: 1) because there is the

possibility of evasive actions, any plan can always be extended although the plan being followed may not be

optimal (for instance, when facing a wall the robot turns right and keeps following the wall even though

turning left would take it to its destination in fewer steps), and  2) The robot never evaluates the situation in

which will be in the future due to the execution of certain plan, which also could be used to select a better

plan. In both cases, there is no overall analysis to select the best among several solutions. The planner brain

(and also the reactive brain) commits to a solution built into the knowledge base for this domain. A solution

that may not be the best. It seems that other capabilities, as projection into the future and meta reasoning about

planning, are required in pursue of the optimal performance. 

On the other hand, the characteristics of the patio world with few regular structures to take care of

(and from which to learn), cancel out the advantages of looking ahead. The patio world is well suited for

representing an environment where the agents are responsible for change, but it is not complex enough for

showing the advantages of planning. A more constrained environment (like the warehouse) where the fixed

obstacles influence the choice of the best route, could be more promising in that sense. Of course, there are

still other aspects to be take into consideration. A larger range of perception, for instance, can improve the

quality of knowledge (how well represent the world) by allowing the agent to learn more about the real world

in less time.  Both types of agent can take advantage of a wider perception but it is the planner which will

exploit the fresh knowledge to a greater extend.

As  a  final  remark,  let  us  say  that  absolute  efficient  seems  to  depend  heavily  on  the  memory

management policy used by the plagents. However, in this work we limit ourselves to maintain the same

garbage collection scheme through all the tests and to make observations on relative efficiency. We do not

pretend to employ this results to evaluate any of the tools in the test-bed (namely SWI-PROLOG and the

APRIL system).

3.4.2. Quality of decision-making

The second statistic we have calculated is the Average number of failures per trip per agent (AVF).

This indicator could also be regarded as a measure of performance. However, we are getting rid of the time as

the reference and attempting 
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to measure efficiency due only to correct decision making. If the world model in the agent's brain is a faithful

representation of the real world, the robot will avoid failures on its attempts to act. The AVF is defined below:

AVF

AFj

R
j

R

=
∑

          AFj
NFj

NTj
=

Where R is the number of agents, AFj is the average number of failures of agent j, NFj is the total number of

failures of agent j and NTj is the total number of trips of agent j. 

Quality of decision-making (Planner-Reactive)
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Figure 3.3

Unfortunately, there is no clear tendency in the data, as one can see from both graphs. It seems that

either this statistic is inadequate for capturing the information or the experiments are too limited. We still

believe the AVF could be used to analysed the quality of decision making. Probably, we need to involved a

bigger group of agents to make arise the effect of  higher entropy in the system, that suggests more failures

with more agents. We already obtain a bigger total number of failures with more agents, but also more trips per

agent. In any case, we will not make any conclusion about this topic.
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3.4.3. Hesitancy

The final statistic we considered is intended to show the relationship between the hesitancy of the

agent and bounded reasoning. What we call hesitancy is the behaviour of a robot that can not decide the next

action  to  be  executed.  In  those  situations  (cycles)  when this  happens,  the robot  activity  is  limited  to  an

observation of its environment. The robot executes no action to change the world or itself. Of course, this is

closely  related  to  the  depth  up  to  which  the  agent  is  allow  to  reason.  A superficial  exploration  of  its

alternatives for acting (namely, its hierarchy of goals), caused by a low N, is likely to end in hesitancy. In other

words, hesitancy is what the designer or controller of the brain should expect if he/she does not allocate to the

robot enough resources to reasoning.

We try to capture the hesitancy of the agents by measuring the Average number of observations per

trip (AVO). It is important to clarify the distinction between the kind of explicit observation we record and the

almost  continuous stream of  observations the agent  receives.  The locus of  control  algorithms implies  an

observation after every action is executed. In our system, every time an action is executed, the world sends

back an update of the new range of perception of the agent, due to its new situation. This is what we call an

implicit observation and it always occurs. Observe that implicit observations are linked to actions that change

the world.  We talk about  explicit  observations  either 1)  when the brain does not decide an action to be

execute, in which case it order the brain only to look, or 2) when the hierarchy of goals contains the executable

goal:  do(look), that we use to mark particular points within the plans (in this case at the end of a trip

between  initial  situation  and  extreme  situation).  Indeed,  the  agents  are  enforced  to  make  an  (explicit)

observation every time that they get to the end of one trip. Any additional (explicit) observation during the trip

can be regarded as hesitancy. We defined AVO as follow:

AVO

OTj

R
j

R

=
∑

          OTj
NOj

NTj
=

Where again, R is the number of agents, OTj is the average number of observations per trip in agent j, N0j is

the total number of observations made by agent j and NTj is the total number of trips by agent j.  Figure 3.4

shows the graphs of AVO versus N.
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This time the message is clear. In the current hierarchy of goals, N set to a value greater than 50 is

always enough to get to the leaf of any branch and, hence, to make a decision about the next action in one

cycle. The other interesting point to note here is that, for very low N, the planner brain dictates a slightly less

hesitant profile of activity than the pure-reactive brain, even in a changing environment (several agents). This

is probably the only advantage of what we call planning in this context: to keep reducing the goals after the

next action has been decided. While the reactive agent may stop with a list of goal similar to (see chapter 2 for

a preliminary explanation of this example):

[(do(t_right), go(3e, 5e)) ; .. other alternatives.. ]

the planner brain might end with:

[(do(t_right), atom(A, 3e, Z), closer(3e, Z, 5e),

 not prohibited(Z), do(A), go(Z, 5e)) ;

.. other alternatives.. ]

or even with:

[(do(t_right), do(m_forward), go(4e, 5e)) ;

.. other alternatives.. ]

Logic Programming Agents



74

where the action  t_right and  m_forward are decided in one cycle. One of them (t_right) will be

consumed immediately by the executive. The other (m_forward) is going to be used in the next cycle, even

if N is too small to get a new executable goal in that cycle. 

Thus, the agent can try actions decided in previous cycles when the value of N allows to reach the

leaves of the hierarchy of goals. This may be the case when the branches are shorter (let say "rules with few

conditions fire", using the condition action rules' analogy).

Currently the value of the parameter N is the same throughout the robot's life. In a more sophisticated

agent, the parameter N may be let to change during its life in order to reflect the mood  of the agent (in a hurry,

excited, calm, inert). Of course, the practical purpose of a changing N is to allow the agent a more dynamic

adjustment to the available resources (time and memory space).

Nevertheless, it is important to note that a less hesitant agent is not necessarily a more efficient one.

The time wasted by an agent that could not decide its next action, can be equivalent to the time spent by the

same agent testing more conditions and building a plan within one cycle. More reasoning per cycle aimed to

build a  plan implies  more memory consumption and in practice,  waste of  time in memory management.

Consequently, the remarks about planning and efficiency made in section "performance of the agents" are

perfectly compatible with the results in this section.

3.4.4. Other results

Apart from the formal, objective results presented so far, other discoveries were made during the

tests. First of all, and in spite of our efforts to provide the agent's brain with all the knowledge needed to make

optimal decisions (pre-compiled set of rules), there are still situations where groups of path-finder agents get

stuck. We did not fix them because that would have implied repeating most of the tests and we lacked the time.

Thus, we continued working with the anomalous rules until the end. However this allowed us to confirm that

those  dangerous  situations  were  unlikely  to  occur,  even  thought  under  more  restricted  testing  conditions

(without the randomness of the network) they do arise.

This discovery was due to collateral observations and thus we can not jump into any conclusion yet.

Nevertheless, we wonder whether this effect of randomness, which allowed our system to behave well even

with incomplete knowledge guiding 
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the agents,  could be linked with the  emergent behaviour reported in other works (see [Steels;  1990] and

[Feber, Drogoul; 1991]).

There are, we have to say, problems concerning the  plagent program (SWI-PROLOG with the

PROLOG-APRIL interface). In several occasions during the tests, the PROLOG brains stopped working after

a  call  to  the  garbage collector.  The system works  reasonably  well  most  of  the  time,  but  we believe  the

plagent still requires more testing and debugging.
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CONCLUSIONS AND GUIDELINES FOR FURTHER RESEARCH

Conclusions

This work has included a survey of one of the basic topics that has motivated

research in Distributed Artificial Intelligence and Multi-Agents Systems in the last

years: the use of logic for modelling autonomous agents.  We contribute to the debate

about reactive agent and deliberate agent by saying that the former can be regarded

as a special case of the later. One and the other can be modelled as logic programs.

Taking a proposal by Genesereth and Nilsson [Genesereth, Nilsson; 1988]  and that

provided by [Kowalski; 1994b] as references, we present an alternative model for a

deliberate agent with bounded reasoning. The reasoning is bounded because the

agent has limited resources (time and space of memory) to perform deductions and

to select its next actions. We analyse Steel's proposal [Steels; 1990] which advocated

the  use  of  reactive  systems  and  show  that  we  can  get  similar  behaviour  and

performance,  with  logic-based  deliberate  agents.  Indeed,  we  show  how  to

accommodate a domain knowledge base, with goals and rules written as terms and

clauses, in such a way that rules of behaviour in specific situations are represented

by separated layers of knowledge.  Thus, an ordinary computation rule can be used to

perform a  search by layers that, we believe, is equivalent to what is accomplished

by  a  subsumption  architecture  [Brooks;  1991].  We  also  explain  how  to  design

programs that implement a  forward search of solutions while using a backward

reasoning proof procedure.

 We address the criticism of Hewitt [Hewitt; 1985] to the use of logic and

closed  world  assumptions  in  open  systems  by  devising  the  adaptable  locus  of

control algorithm. This locus of control, used as the main control loop in an agent

brain,  intermixes  observation,  assimilation  (knowledge  updates,  resolution  and

planning) and execution. This allows the agent to respond quickly to contingencies in

the environment using its recently updated model of the world, but still following its

own goals and purposes of life. We believe our artificial creatures conform to almost

all  the  requirements  set  by  Brooks  [Brooks;  1991]  because  1)  they  can  cope

opportunistically  with  changes  in  the  environment;  2)  they  maintain  a  set  of

multiples goals and, depending on the circumstances, can choose which particular
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goal to 
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pursue and 3) The creatures have some high level goal for living, something to do in

the  world.  We  do  not  claim  to  address  the  fourth  requirement  of  Brooks:  The

creature must be robust with respect to its environment because our project is limited

to the simulations of multi-agent environments and thus, we are still far away from

concrete implementation of, for example, real robots. Moreover, our model of brain

can  not  cope  yet  with  unexpected  changes  in  the  agent  situation  produced,  for

example, by accidents or natural events. Nevertheless, we believe that even Brook's

fourth requirement can be fulfilled with logic-based representations.

We also highlight some of the limitations of the representation adopted in this

work. Our robots can not evaluate their current situation in the world and project

themselves into the future or the past. We believe that this in an important feature in

autonomous intelligent agent. Furthermore, we suggest that these capabilities can be

provided to agents modelled as logic programs.

All the main discussions in this work are supported by experiments carried on

logic programming agents. We devised models of agents using APRIL and PROLOG

as the development languages. An APRIL-PROLOG test-bed is configured to make

experiments  tracing  the  performance  and  other  features  of  logic  programming

agents. We simulated a world where agents (robots) interact by performing actions.

The very same test-bed is ultimately aimed at supporting simulated contexts where

agents  communicate  and  cooperate  in  pursue  of  social  goals.  However,  in  this

project,  the  test-bed  has  been  employed  to  evaluate  the  impact  of  the  bounded

reasoning and to compare the performance of pure-reactive brains and models of

brains with planning capabilities.

Several results arose from the experiment:

1) The parameter N, which is used to bound the reasoning by limiting the depth of

search in a knowledge base, proved to be very influential in the efficiency of the

agent. Normally, to obtain the best performance, the value of N should be such

that allow the theorem-prover in the agent's brain to get  to the leaves of its

hierarchy of goals. This allows the agent to decided its next action in one cycle.

However, a greater value may decrease the efficiency. 

2) We discovered that, apart from the parameter N limiting the depth of search,

other parameter seems to be required in agents with planning capabilities. We

observed that a planner brain, that permanently tries to refine its plans until its

lower  level  details,  pays  the  cost  of  a  formidable  plan  description  with

performance.  For  the  sake  of  more  realistic  agents,  we  need  to  limit  the

extension and level of detail of plans built by the planner brain. As the low-level

details of a plan in this context (specific actions to be executed) depend on the
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abduction capabilities of our logic programming brains, we call the new control

feature  bounded  abducibility.   Once  we  introduce  this  concept  in  our

formalism, the 
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pure-reactive brain, a model of brain that concentrates its reasoning in obtaining only

the next action to be executed, becomes a special case of a planner brain, where

the reasoning may generate not only the next action, but a sequence of actions to

be executed (a plan). The former is simply a planner brain whose abducibility

control  parameter has  been set  to  1.  Therefore,  our  representation  allows  a

smooth  transition  between  reactive  agents  and  planner  agents.  A  logic

programming  agent  can  be  tuned,  not  only  to  accommodate  the  amount  of

resources needed for reasoning, but also to control plan construction.

3) Finally, the simulations have shown no clear advantage in using a planner brain

instead of a pure-reactive brain. We speculate that this may be due to the fact

that  our simulated contexts  are too simplistic  and the effect  of  the  bounded

reasoning and mainly, the dynamic of the environment, limit the advantages of

planning.  Perhaps  a  more  complex  environment,  with  less  unpredictable

dynamic, could show the relevance of building and following plans.

Recalling what was said in the introduction, probably the main by-product of

this work is the evidence supporting the fact that a logical representation can be used

to model and implement intelligent autonomous agent. The exciting point is that we

already solve some of the main problems in designing Multi-Agent System and we

have not exploited but a very limited set of the representations and programming

strategies available within Logic Programming. 

Extensions and further research

The immediate way for extending this work is by completing the warehouse

example. It is not difficult to modify the robots'  bodies to include the capabilities for

taking, carrying and leaving boxes. Moreover, it does not require much programming

effort to extend the object-level goals' hierarchy in the robot's brain in order to give
account  of  goals  such  as:  find_truck,  find_boxes,  pick_a_box,

carry_box_to_shelves, find_box_place, leave_box.   We  would

expect that the changes in the world agent and database, needed to incorporate (and

to visualise) those more complex robots' activities, would require a careful design

and may require more time. In addition a systematic set of experiment should be

carried  out  in  the  test-bed,  in  order  to  ensure  that  the  agents  can  cope with  the

interactions  and  that  deadlock  situations  are  avoided.  Of  course,  first,  the

incompleteness of the current knowledge base (due to insufficient rules of behaviour
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and optimality criteria) already reported in this document, should be attacked. Also,

some changes to the range of 
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perception of the robots could be attempted by, for instance, allowing the agent  to

see across a larger area, but with obstacles hiding the part of the picture behind them.

Once those changes have been made and tested, the next stage of this research

project may be the addition of communication and cooperation capabilities to the

logic-based  agents.  A large  amount  of  effort  has  been  given  to  the  issues  of

cooperation and communication within Distributed Artificial Intelligence (see [Bond,

Gasser; 1988]). Thus, we would expect this part to be more time-consuming and to

have many concepts and approaches to take into consideration. One has to bear in

mind the motivation for including communication and cooperation in a Multi-Agent

System:  coordination.  Coordination  has  been cited as  possibly  the  key research

problem in DAI  [Gasser; 1992].  Once one decides, as we have done in this work, to

build agents that perform autonomously in the world, using partial knowledge of the

environment to make decisions (the devils of partiality and autonomy as pointed out

by Jennings [Jennings; 1994]), one has to provide the way for programming groups

of agents for the efficient pursuing of relevant goals (that is, to make all of them do

something useful in a constrained environment). In [Gasser; 1992]  Les Gasser also

discusses a classification of approaches to coordination based on the predictability

and reactiveness of the mechanisms employed: organisation, exchange of meta-level

information, multi-agent planning and explicit analysis with overall synchronisation.

We believe that most, if not all, of those kinds of mechanisms for coordination

can  be  embedded  into  logic-based  agents.  This  would  allow  a  dynamic

self-adjustment  of  an  agent  to  its  social  environment  according  to  its  historic

situation. However, this discussion may be overwhelmingly complex. Therefore, we

suggest  a  step-by-step  approach,  starting  by  employing  only  one  coordination

mechanism. Meta-level information exchange  that implies agents sending each other

control level information about their current priorities and focuses [Gasser; 1992],

seems to be a promising approach for reasons that will  be elaborated upon later.

Besides,  other  aspects  could  also  be  included  in  a  logic-based  approach  to

coordination.  The  agent's  reasons  for  cooperating  (benevolence,  altruism  and

self-interest  as  were  classified  in  [Connah,  Wavish;  1990])  may  prove  to  be

adjustable in the logical design.

In any case, to tackle the problem of cooperation requires a formal approach.

In a preliminary exploration, we have found an interesting framework in the work by

Jennings [Jennings;  1994]  that  establishes theoretical  conditions for cooperation.

Jennings distinguishes between identical and parallel goals and between accidental

coordination and cooperation. If, for example, two path-finder robots want to go to

the same place we say they have identical goals. However, if both of  them have the
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goal "be at cell 1 at time t", they have parallel goals. The former kind of situation is

suitable for cooperation because the agents may decide to work as a team and, for

example, share information about routes to that place. The second kind may generate
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conflict because both robots will compete for getting the resource, in this case the

cell. On the other hand, accidental coordination occurs when, for instance, two or

more path-finder pick different routes toward their destinations and, therefore, help

each other (by leaving their  ways clear) without previous agreement.  That is not

cooperation  [Jennings; 1994]. 

An  important  point  to  be  noted  in  Jennings'  project  is  its  attachment  to

implementation.  The  theoretical  rules  support  a  DAI  shell  (GRATE  [Jennings;

1994]) which has been used to  integrate pre-existing knowledge-based system as

agents  in  industrial  distributed  applications.  The  often-neglected use  of  DAI

technology  to  integrate  pre-existing  standalone  systems  [Jennings,  Wittig;  1992]

entails  an attitude that,  we believe,  may be useful to  research: it  needs to tackle

immediately the implementation of models and designs, which may help to highlight

relevant  trade-offs,  assumptions  and  other  details.  In  addition,  integrating

pre-existing  systems often  entails  filling,  with artificial  agents,  the  gap normally

occupied by human operators. Building systems that work in human being's roles

and cooperate with people is an initiative that has already reported success (see for

instance, [Maes; 1994]). Summarising this second point, we suggest adopting two

methodological  guidelines  for  the  next  stages  of  research:  1)  commitment  to

implementation and testing of programs as realistic as possible and 2) human beings'

behaviours as desiderata of flexibility and practical capabilities. Our work so far has

been guided by those ideas.

Although  the  previous  paragraphs  delineate  a  rather  wide  set  of  steps  to

continue  this  work,  we  believe  that  an  even  wider  group  of  ideas  needs  to  be

considered.  As we said  in  the  conclusions,  this  work  only  involves  a  sub-set  of

concepts  and  tools  of  Logic  Programming:  meta-interpreters,  search  by  layer,

forward-backward representations, decompilation  (restoration of goal-orientedness)

of condition action rules and modelling of rules of behaviour as logic programming

clauses.  Logic  Programming,  within  the  semantic  framework  of  Computational

Logic 'CL' [Kowalski; 1994a], still has a large set of features and tools to be applied.

Two  of  them are  likely  to  be  introduced  in  the  next  stages  of  this  research  in

logic-based  agents:  1)  Event  Calculus  [Kowalski,  Sergot;  1986]  to  cope  with

efficient temporal representation that would provide the agents the desired projection

into the past and the future, while avoiding the frame problem , and 2) Metalogic.

The prefix meta  is usually employed in a broad diversity of interpretations,

some  of  them  questionable.  Thus,  first  attaching  ourselves  to  the  definitions  of

metalogic  investigated  by  Kowalski  ([Kowalski;  1979],  [Kowalski;  1994a],
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[Kowalski; 1994c]3
) we claim that meta-representation may play an important role by allowing agents to model and to reason

about other agents. Agents in Multi-Agents 

3In that reference Kowalski defines metalogic as a set of theories that "talk" about sentences, theories and other linguistics objects.
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systems normally keep models of other agents (or acquaintances, see [Jennings, Wittig; 1992] and [Gasser, Braganza, Herman; 1988]).

Those models of others are used to [Jennings; 1994] 1) focus activities of the group and reducing communication overhead, 2) guide the

transmission of predictive information and 3) enable self-reflection. The first two of these options conforms to the so-called meta-level

information exchange strategy for cooperation. What we suggest is that metalogic may be employed by logic-based agents to guide all

those three internal activities. In addition, metalogic might provide a solution to the ramification problem in planning  and even to the

omniscience  problem of  conventional  modal  representations  [Kowalski;  1994a].  That  is  why we proposed to  follow the  mentioned

mechanism for cooperation: for exploring the implementation issues of metalogic that already has been used to solve problems of highly

complex, rational interactions as the wise man puzzle  [Kowalski; 1994c].
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APPENDIX A.  AGENTS IN APRIL

This appendix shows the source-codes of:

• robot.ap.  The  APRIL program  that  models  the  forklift/path-finder  agent.

Within  this  code  the  reader  will  find  the  specification  of  the  processes  that

simulate this kind of agent.

• patio.ap. The APRIL program that represents the patio during the simulations.

• dk_world.ap. This code should replace the Worldprocess procedure (see

the patio.ap code) when one wants to perform animated simulations of the

warehouse.

• common.ah. This is header file, used for declaring some functions and macros

employed by the APRIL programs.

• world.db.patio. It shows the data stored in the file world.db every time

that a simulation of the patio world is carried out. 

• world.db.warehouse.  This  is  the  data  describing  the  warehouse  for  the

APRIL program. Observe that simply by using the data in this file as the initial
data  in  the  file  world.db,  the  system  will  simulate  the  warehouse.  No

recompilation  of  the  APRIL code  is  required.  Unfortunately,  to  display  the

warehouse in the DIALOX animation still (in this version) requires changes in

the code and recompiling. 

• exam1.ap.  This  files  contains  the  example  used  in  the  section  I.2  of  the

Introduction to explain the syntax of APRIL. The example include the tracing call

to the routine in common.ah. 
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robot.ap

/* robot.ap

 A robot in the patio (or in the warehouse) is simulated by 
 an agent whose structure and behaviour is modeled by this program.

  Last modified: 30 - 7 - 94.

  Knowledge assimilation in multiagents system.

  Jacinto Davila. Imperial College.

*/

#include "common.ah";

/* ______________________________________________data structures */
/*
  world_model ::= [[posx, posx, object, type, status, bitmap]]
  arms_towards E { north, south, west, east }
  mental_context ::= [ posx, posy, arms_toward, robot_status,
                       current_world_model ]
*/
listofsteps ::= [action] ;  
act_list ::= [action,listofsteps] ;
world_item ::= [coord, coord, symbol, symbol, symbol, symbol] ;
world_model ::= [world_item] ;
mental_context ::= [ coord, coord, direccion, rb_status, world_model ] ;

/* _____________________________________________________newdir */
newdir(symbol?dir,action?ac) -> symbol?valof{
 { ac = m_forward || ac = look => valis dir 
 | ac = t_back =>
   { dir = north => valis south
   | dir = south => valis north
   | dir = west => valis east
   | dir = east => valis west 
   }
 | ac = t_right =>
   { dir = north => valis east
   | dir = south => valis west
   | dir = west => valis north
   | dir = east => valis south
   }
 | ac = t_left =>
   { dir = north => valis west
   | dir = south => valis east
   | dir = west => valis south
   | dir = east => valis north
   }
 }
};

/* _____________________________________________________________ body */
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body(handle?name,handle?worldname){

trace("BODY","activated..",[]);
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 repeat {
   [execute,symbol?nact,
      [integer?px,integer?py,symbol?dir,symbol?st,any?wm]] => { 
      /* send execution intension to the world */
      [act, nact, px, py, dir] >> worldname ; 

 /* Predefined world agent */
      /* Answer from the world */
      {  [ok, integer?npx, integer?npy, world_model?new_scene] => {
            /* The action succeed. 

    Now the mc should be update accordingly */
            symbol?ndir := newdir(dir,nact) ;
            [ok,[npx, npy, ndir, st, new_scene]] >> name 
         }
      |  [failed,action?failed_act,integer?npx,integer?npy,

     symbol?Look] => { 
            [failed,failed_act] >> name
         }
      }
    }

 |  any?Msg => trace("BODY","strange message %p",[Msg]) 

 } until die ;
};

/* ________________________________________________process_plan */
process_plan(listofsteps?LowlevelPlan) -> act_list?valof{
  if (|LowlevelPlan| == 0) then
    valis act_list?[nothing,LowLevelPlan]
  else {
    symbol?Item := symbol?LowlevelPlan[0] ;
    integer?rest := |LowlevelPlan|-1;
    /* symbol[]?t := back(LowlevelPlan,rest); */
    /* [symbol?Item] = h ; */
    valis act_list?[Item,LowlevelPlan] 
  }
}; 

/* ________________________________________________________robot */
robot(handle?name, handle?worldname, integer?PX,

integer?PY, symbol?Dir){
 /* handle?mybrain := fork(brain(name)); April Brain lobotomized */
 handle?mybrain := handle?catenate(brainof_,symbol?name); 
 handle?mybody := fork(body(name,worldname));
 mental_context?mc := mental_context?[] ;

 [act,birth,PX,PY,Dir] >> worldname ;    
 /* Registering with the world */

 [ok, integer?X,integer?Y, world_model?firstsight ] => {
   wake_up >> mybrain ;           /* Registering with its brain */
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   mc := [X,Y,Dir,free,firstsight] ;
 };

 listofsteps?current_plan := listofsteps?[] ;
 action?next_action := nothing;
 number?counter := 1; 
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 while true do {

trace("ROBOT","Assimilation-Execution Cycle number %d\n",[counter]);

   [observe,mc] >> mybrain;                /* Initializing cycle */
   while true do { 
     [any,listofsteps?Plan] => { /* never receives an empty plan */
       next_action := action?head(Plan) ;
       current_plan := listofsteps?extract(Plan);
       [execute, next_action, mc] >> mybody ;
       while true do {
         [ok,any[]?Nmc] => {
            mc := mental_context?Nmc; /* Updating mental context */
            succeed >> mybrain ;             /* Action succeed   */
            go => relax ;    /* Sincronizing. Should'n be needed */
            break;
         }
       | [failed, action?fail_action] => {
            fail >> mybrain ;                /* Action failed    */
            go => relax ;    /* Sincronizing. Should'n be needed */
            break;
         } 
       | any?Msg => trace("ROBOT",

 "Wrong msg %p while waiting for ok or failed\n",[Msg])
       };
       break;
     }
   | any?Msg => trace("ROBOT",

  "Wrong msg %p receive while waiting for plan",[Msg]) 
   };
   counter +:= 1;
 }; 
 die >> [mybrain, mybody] ;
};

/* ******************************************************************* Main */
main(any[]?ar){
 if |ar| < 5 then { 

   trace("ROBOT","usage: april robot
 <robotname> <worldname> <coordX> <coordY> <dir>\n",[]);

   exit(1) ; /* names of agent and world should be provided */
 } ;
 handle?ar[1] names robot(handle?ar[1],
                          handle?ar[2],
                         integer?ar[3],integer?ar[4],symbol?ar[5]) ;
 handle?rb := handle?ar[1] ;
 while true do {
    any?Msg => Msg >>> rb ; /* Any message goes to robot */
 }
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};
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patio.ap

/*  patio.ap

  This  file  contains  the  code  of  two  process.The  "world"  process  which  represents  the  environment  in
simulation, and a subsidiary process called WorldProcess which triggers and controls the visualisation with
Dialox.

  The file also contains the especification of the data structures used for the "world". It worth noticing that the
world database is simply a description of the cells which conform the environment. Each cells has attributes
attached to it, to indicate which "things" it is. For instance, the "free" cells througth which the robots can walk,
are "floor_" cells. Each robot, in turn, occupies a cells which is then regarded as "full". (see file world.db)

  Version: 1.0   Robots` range of perception: the front cell  

  Last modified: 30 - 7 - 94

  Jacinto Davila. FAIT 94. Imperial College.
*/

#include "common.ah";
/* ____________________________________________________ macros */
#macro maxx -> 500;
#macro maxy -> 700;
#macro sqmax -> 100; /* square size */
/* ____________________________________________________bitmaps */
#macro rob_east(?N,?X,?Y) -> [group, 

     [text, X+sqmax/4, Y+sqmax/2, N ],
                            [line,X,Y,X,Y+sqmax],
                            [line,X,Y+sqmax,X+sqmax,Y+sqmax],
                            [line,X,Y,X+sqmax,Y],
                            [line,X+sqmax,Y,X+sqmax,Y+sqmax],
                            [ellipse,X+sqmax/4,Y+sqmax/2,40,40],

     [line,X+3*sqmax/4,Y+sqmax/4,
X+sqmax,Y+sqmax/2],

     [line,X+sqmax,Y+sqmax/2,
X+3*sqmax/4,Y+3*(sqmax/4)]];

#macro rob_west(?N,?X,?Y) -> [group, 
     [text, X+3*sqmax/4, Y+sqmax/2, N ],

                            [line,X,Y,X,Y+sqmax],
                            [line,X,Y+sqmax,X+sqmax,Y+sqmax],
                            [line,X,Y,X+sqmax,Y],
                            [line,X+sqmax,Y,X+sqmax,Y+sqmax],
                            [ellipse,X+3*sqmax/4,Y+sqmax/2,40,40],
                            [line,X+sqmax/4,Y+sqmax/4,X,Y+sqmax/2],

     [line,X,Y+sqmax/2,X+sqmax/4,
Y+3*(sqmax/4)]] ;

#macro rob_south(?N,?X,?Y) -> [group, 
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            [text, X+sqmax/2, Y+sqmax/4, N ],
                             [line,X,Y,X,Y+sqmax],
                             [line,X,Y+sqmax,X+sqmax,Y+sqmax],
                             [line,X,Y,X+sqmax,Y],
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                             [line,X+sqmax,Y,X+sqmax,Y+sqmax],
                             [ellipse,X+sqmax/2,Y+sqmax/4,40,40],
                             [line,X+sqmax/4,Y+3*sqmax/4,

X+sqmax/2,Y+sqmax],
                             [line,X+sqmax/2,Y+sqmax,X+3*sqmax/4,

Y+3*(sqmax/4)]
                      ] ;

#macro rob_north(?N,?X,?Y) -> [group, 
 [text, X+sqmax/2, Y+3*sqmax/4, N],

                              [line,X,Y,X,Y+sqmax],
                              [line,X,Y+sqmax,X+sqmax,Y+sqmax],
                              [line,X,Y,X+sqmax,Y],
                              [line,X+sqmax,Y,X+sqmax,Y+sqmax],
                              [ellipse,X+sqmax/2,

Y+3*sqmax/4,40,40],
                              [line,X+sqmax/4,Y+sqmax/4,

X+sqmax/2,Y],
                              [line,X+sqmax/2,Y,X+3*sqmax/4,

Y+sqmax/4]] ;

/* ____________________________________________ data structures */
/* Data structures: 
  world_item ::= [posx,posy,object,type,status,bitmap]
  world_model ::= [world_model_item]
  arms_towards E { north, south, west, east }
  mental_context ::= [ posx, posy, arms_toward
                       current_goal,
                       current_plan,
                       current_world_model ]
  acquantaince_model ::= [ name,
                           posx, posy, arms_toward,
                           his_current_goal,
                           his_current_plan ]
*/

action ::= symbol ; 
listofsteps ::= [action] ;  
goal ::= symbol ;
coord ::= integer ;
direccion ::= north | south | west | east ;
world_item ::= [coord, coord, symbol, symbol, symbol, symbol] ;
world_model ::= [world_item] ;
mental_context ::= [ coord, coord, direccion, 
                    goal,
                    symbol,
                    world_model ] ;
acquantaince_model ::= [ handle, 
                        coord, coord, direccion,
                        goal,
                        symbol ] ;
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sensing_scope ::= [[integer,integer]] ;

/* **************************************************************/
main(any[]?arg){

 handle?dialox := handle?DialoX;
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 handle?wd := handle?robot_world ;

 if |arg| > 0 then wd := handle?arg[1] ;
 if |arg| > 1 then dialox := handle?arg[2] ;

 handle?video := fork WorldProcess(me, dialox) ;

 wd names world(wd, video) ;

 repeat {
    any?Msg => { Msg >>> wd }
    /* Any message goes to world controler */
 } until end ;
 end >> wd ;
};

/* _______________________________________________________________ */

 /* Some auxiliary functions and procedures */
turn_back(symbol?bm) -> symbol?valof{  
      { bm = rb_box_north => valis rb_box_south 
      | bm = rb_box_south => valis rb_box_north
      | bm = rb_box_west => valis rb_box_east
      | bm = rb_box_east => valis rb_box_west
      | bm = rb_north => valis rb_south
      | bm = rb_south => valis rb_north
      | bm = rb_west => valis rb_east
      | bm = rb_east => valis rb_west
      } ;
}; 

turn_right(symbol?bm) -> symbol?valof{
      { bm = rb_box_north => valis rb_box_east
      | bm = rb_box_south => valis rb_box_west
      | bm = rb_box_west => valis rb_box_north
      | bm = rb_box_east => valis rb_box_south
      | bm = rb_north => valis rb_east
      | bm = rb_south => valis rb_west
      | bm = rb_west => valis rb_north
      | bm = rb_east => valis rb_south
      } ;
};

turn_left(symbol?bm) -> symbol?valof{
      { bm = rb_box_north => valis rb_box_west
      | bm = rb_box_south => valis rb_box_east
      | bm = rb_box_west => valis rb_box_south
      | bm = rb_box_east => valis rb_box_north
      | bm = rb_north => valis rb_west
      | bm = rb_south => valis rb_east
      | bm = rb_west => valis rb_south
      | bm = rb_east => valis rb_north
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      } ;
};

/* ______________________________________________vision_field */
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/* This function build the scene the robot can see from its new  
  position. In the current version (1.0) is just the next cell/
vision_field(world_model?RW,
  integer?X,integer?Y,symbol?bm) -> world_model?valof{
  integer?Fposx = 0;
  integer?Fposy = 0;

  { bm = rb_north || bm = rb_box_north => {
      Fposy := Y - 1;
      Fposx := X ;     
    }
  | bm = rb_south || bm = rb_box_south => {
      Fposy := Y + 1;
      Fposx := X ;
    }
  | bm = rb_west || bm = rb_box_west => {
      Fposy := Y ;
      Fposx := X - 1;
    }
  | bm = rb_east || bm = rb_box_east => {
      Fposy := Y ;
      Fposx := X + 1;
    }
  };
/*
trace("VISUAL FIELD"," World Model %w \n\n",[RW]);
*/
 world_model?landscape := world_model?(RW^/[Fposx,Fposy,

symbol,symbol,symbol,symbol]) ;

trace("VISUAL FIELD"," Sight %p \n",[landscape]);

 valis landscape ;

} ;

next_position( coord?Cposx, coord?Cposy, symbol?Looking_To ) -> [coord,coord]?valof{
 coord?Nposx := 0;
 coord?Nposy := 0;
 symbol?Dir := nothing; 

 Dir := pname(Looking_To);

 { north = Dir => {
    Nposy := Cposy - 1;
    Nposx := Cposx ;
   }
 | south = Dir => {
    Nposy := Cposy + 1;
    Nposx := Cposx ;
   }
 | west = Dir => {
    Nposy := Cposy ;
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    Nposx := Cposx - 1;
   }
 | east = Dir => {
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    Nposy := Cposy ;
    Nposx := Cposx + 1;
   }
 };
 valis [Nposx,Nposy] ;
};

initial_world() -> any[]?valof{
 symbol?fullname = ffilename("world.db.patio");
 file?f := fopen(fullname,"r") ;

 world_model?wm := world_model?[];

 logical?keep := true ;
 while keep do {
   any?wr := read(f,1000);
   writef(stdout," Reading record %w\n",[wr]);
   if eof(f) then keep := false 
   else wm := world_model?(wm \/[wr]) ; 
 };

 valis wm
} ;

/* ____________________________________________ moving_forward */
moving_forward(world_model?real_world, 

integer?Cposx,integer?Cposy,symbol?Looking_To,
handle?rt,handle?interface) -> world_model?valof{

 any[]?NextPos := next_position(Cposx,Cposy,Looking_To);
 [coord?Nposx,coord?Nposy] = [coord,coord]?NextPos;

 any[]?to_ := real_world^/[Nposx,Nposy,floor_,floor_,empty,any];
 if ( to_ = [] ) then {
    [failed, m_forward, Cposx, Cposy, Looking_To ] >> rt
 } else {
    real_world := world_model?(real_world^\[Nposx,Nposy,

floor_,floor_,empty,any]);
    any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];

    /* Catching the attributes values */
    [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
    real_world := world_model?(real_world^\[Cposx,

Cposy,any,any,any,any]);
    real_world := real_world \/ [[Nposx, Nposy, Ob, Tp, St, bm]];
    real_world := real_world \/ [[Cposx, Cposy,

 floor_, floor_, empty, floor_]];

    /* Trigger the animation */
    [move,Ob,Cposx,Cposy,Nposx,Nposy] >> interface ;

    /* Build the vision field of this robot */
    any[]?new_scene := vision_field(real_world,

Nposx,Nposy,symbol?bm);
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    /* acknowledge execution */
    [ok, Nposx, Nposy, new_scene] >> rt ;
 };
 valis real_world
};
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/* ___________________________________ ____________ turning_right */
turning_right(world_model?real_world,integer?Cposx,

integer?Cposy,symbol?Looking_To,
handle?rt,handle?interface) -> world_model?valof{

 world_model?from_ := world_model?(real_world^/[Cposx,
Cposy,symbol,symbol,symbol,symbol]);

 [[integer,integer,symbol?Ob,
symbol?Tp,symbol?St,symbol?bm]]= from_;

 real_world := world_model?(real_world^\[Cposx,
 Cposy, any, any, any, any]);

 symbol?Nbm := turn_right(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];

 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;
 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; DEBUGGING */
 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);
 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;
 valis real_world

};

/* _________________________________________________turning_left */
turning_left(world_model?real_world, integer?Cposx,integer?Cposy,

symbol?Looking_To,
handle?rt,handle?interface)-> world_model?valof{

 any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];
 [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
 real_world := world_model?(real_world^\[Cposx,

 Cposy, any, any, any, any]);
 symbol?Nbm := turn_left(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];
 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;
 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; */
 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);
 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;
 valis real_world
};

/* ____________________________________________________________ turning_back */
turning_back(world_model?real_world,  integer?Cposx,integer?Cposy,symbol?Looking_To,handle?rt,handle?
interface) -> world_model?valof{
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 any[]?from_ := real_world^/[Cposx,Cposy,any,any,any,any];
 [[any,any,symbol?Ob,symbol?Tp,symbol?St,symbol?bm]] = from_ ;
 real_world := world_model?(real_world^\[Cposx, Cposy, any, any, any, any]);
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 symbol?Nbm := turn_back(bm) ;
 real_world := real_world \/ [[Cposx, Cposy, Ob, Tp, St, Nbm]];

 /* Triggering animation */
 [clear,Ob,Cposx,Cposy,floor_] >> interface ;

 [draw,Ob,Cposx,Cposy,Nbm] >> interface ;
 /* ok => relax ; */

 /* Build the vision field of this robot */
 any[]?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm);

 /* acknowledge execution */
 [ok, Cposx, Cposy, new_scene] >> rt ;

 valis real_world

};

/* __________________________________________________ being_born */
being_born(world_model?real_world, integer?Cposx,integer?Cposy,symbol?Looking_To,

handle?rt,handle?interface) -> world_model?valof{

 symbol?Nbm := catenate(rb_,Looking_To) ;

 any[]?pla := real_world^/[Cposx,Cposy,floor_,floor_,empty,any];

 if ( pla == [] ) then {
    [failed, birth, Cposx, Cposy, Looking_To ] >> rt;
 } else {
    real_world := world_model?(real_world^\[Cposx,Cposy,any?Ob,

any?Tp,any?St,any?bm]);
    real_world := real_world \/ [[Cposx, Cposy,

 rt, struct, free, Nbm]];
    /* Trigger the display */
    [birth,rt,Cposx,Cposy,Nbm] >> interface ;

    /* Build the vision field of this robot */
    world_model?new_scene := vision_field(real_world,

Cposx,Cposy,symbol?Nbm) ;

    /* acknowledge execution */
    [ok, Cposx, Cposy, new_scene] >> rt ;
 } ;
 valis real_world
};

/* ______________________________________________________________ world */
/* This process control the "world" or environment in the Warehouse.
  From a logical standpoint, its main function is to manage the 
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  "world database", which describe the world as is at each instant.
  (Snapshot database).

*/
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world(handle?name,handle?interface){
 world_model?real_world := world_model?initial_world();
 repeat {
   [act, m_forward, integer?Cposx, 

integer?Cposy, symbol?Looking_To ] => {
      real_world := moving_forward(real_world,

Cposx,Cposy,Looking_To,replyto,interface) ;
   }
 | [act, t_back, integer?Cposx, 

integer?Cposy, symbol?Looking_To  ] => {
      real_world := turning_back(real_world,

Cposx,Cposy,Looking_To,replyto,interface);
   }
 | [act, t_right, integer?Cposx,

 integer?Cposy, symbol?Looking_To  ] => {
      real_world := turning_right(real_world,

Cposx,Cposy,Looking_To,replyto,interface);
   }
 | [act, t_left, integer?Cposx,

 integer?Cposy, symbol?Looking_To  ] => {
      real_world := turning_left(real_world,Cposx,

Cposy,Looking_To,replyto,interface);
   }
/*
 | [act, take, coord?Cposx, coord?Cposy, symbol?Looking_To  ] => {
      relax
   }
 | [act, put, coord?Cposx, coord?Cposy, symbol?Looking_To  ] => {
      relax 
   }
*/
 | [act, birth, integer?Cposx,

 integer?Cposy, symbol?Looking_To  ] => {
      real_world := being_born(real_world,Cposx,

Cposy,Looking_To,replyto,interface);
   }
 | [act, look, integer?Cposx,

 integer?Cposy, symbol?Looking_To ] => {
    world_model?cp := world_model?(real_world^/[Cposx,Cposy,

symbol,symbol,symbol,symbol]);
    [[any,any,any,any,any,symbol?bm]] = cp ;
    world_model?new_scene := vision_field(real_world,

Cposx,Cposy,bm) ;
    /* acknowledge execution */
    [ok, Cposx, Cposy, new_scene] >> replyto ;
   }
 | any?Msg  => trace("WORLD","Strange messagge %p\n",[Msg])
 } until end ;

};  /* of the world */

/* ************************************************** interface */
/* The following groups of routinesactually control the visualisation creating the graphical environment in
Dialox. */
create_robot(symbol?name,integer?x,integer?y,symbol?bm) -> any[]?valof{
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 { bm = rb_north => valis [addpic,
 Test,name,rob_north(name,x*sqmax,y*sqmax) ]

 | bm = rb_east => valis [addpic,
 Test, name, rob_east(name,x*sqmax,y*sqmax) ]

 | bm = rb_west => valis [addpic,
 Test, name, rob_west(name,x*sqmax,y*sqmax) ]

 | bm = rb_south => valis [addpic,
 Test, name, rob_south(name,x*sqmax,y*sqmax) ]  }
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};

move_object(symbol?name,integer?ox,integer?oy,integer?fx,integer?fy) -> any[]?valof{
 integer?Dx := (fx-ox)*100;
 integer?Dy := (fy-oy)*100;

trace("VIDEO","moving %s by %d %d \n",[name,Dx,Dy]);

 valis [move, Test, name, Dx, Dy ]
};

/* _______________________________________________ WorldProcess */
/* This process activates the X display and control the animation of the dock_land system.
  In order to activate this process:
       1.- start (or check active status) the April nameserver.
       2.- start (or check active status) the Dialox server.
       3.- start this process by executing:

 april dk_world <nameofworld> <?>

  It should be started before the dk_world process and before the robots are activated.
*/
WorldProcess(handle?wd, handle?dialox)
{
 /* Creating the world */
 [dialog,Patio, 
       [column, 2,
       [row,[quit,Quit],[bitmap,xlogo32],[text,msg, ""]],
       [yellow, graph, Test, maxx, maxy],
       [row,[text,"Control Panel"],
            [button,Start,Start],
            [button,Freeze, Freeze],
            [button,Continue, Continue],
            [button,Select, Select],
            [button,Delete, Delete]
       ]]] >> dialox;

 /* Some visual help for the operator */
 [addpic,Test, axis, [group, [text, maxx/2-20,10, North],

      [text, maxx/2-20,maxy-10,South],
      [text, 5, maxy/2, West],

                       [text, maxx-30, maxy/2, East]
                     ]
 ] >> dialox ;

 {ok => relax
 | failed => writef(stdout,"Failed to create main dialog\n",[])
 };

 /* Setting the initial conditions */

 /* Controling the visualisation */
 repeat{
   [birth,symbol?name,integer?X,integer?Y,symbol?Dir] => {
      create_robot(name,X,Y,Dir) >> dialox ;
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            }
 | Freeze => { Continue => relax /* Temporal stop... ack needed */
           }
 | Goal => { relax 
           }
 /* Basic drawing capabilities */
 | [clear,symbol?name, integer?px,integer?py,?] => {
      handle?simul := replyto ;
      [delpic,Test,name] >> dialox ;
      /* Continue => ok >> simul ;  DEBUGGING */
   }
 | [draw, symbol?name, integer?px, integer?py, symbol?orient] => {
      handle?simul := replyto ;
      create_robot(name,px,py,orient) >> dialox ;
      /* Continue => ok >> simul ;  DEBUGGING */
   }

 /* Moving object in the display */
 | [move, symbol?name,
          integer?xi, integer?yi,
          integer?xf, integer?yf]  => {
     move_object(name,xi,yi,xf,yf) >> dialox
   }

 | ok => relax

 | any?M => writef(stdout,"Other message: %D\n",[M])

 } until ^Quit;

 end >> wd ;                      /* End of the world */
};
cat(symbol?X,symbol?Y) -> symbol? catenate(X,catenate(" ",Y));
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/* Loading Dock World

  This file contains the piece of code that need to be replaced 
  in the patio world, in order to display the warehouse. Observe
  that only the WorldProcess need to be replaced. The rest of
  the code is identical in both worlds.

  Version: 1.0   Robots` range of perception: the front cell  

  Last modified: 14 - 6 - 94

  Jacinto Davila. FAIT 94. Imperial College.
  
*/

/* *************************************************** interface */
/* The following groups of routines actually control the  */
/* visualisation creating the graphical environment in Dialox. */
/*****************************************************************/

/* _________________________________           ____ WorldProcess */
/* This process activates the X display and control 
  the animation of the warehouse 
  In order to activate this process:
       1.- start (or check active status) the April nameserver.
       2.- start (or check active status) the Dialox server.
       3.- start this process by executing:

 april dk_world <nameofworld> <?>

  It should be started before the dk_world process and before the robots are activated.
*/
WorldProcess(handle?wd, handle?dialox)
{
 /* Creating the world */
 [dialog,Warehouse, 
       [column, 2,
       [row,   [quit,Quit],[bitmap,xlogo32],[text, msg, ""]],
       [yellow, graph, Test, maxx, maxy],
       [row,[text,"Control Panel"],
            [button,Start,Start],
            [button,Freeze, Freeze],
            [button,Continue, Continue],
            [button,Select, Select],
            [button,Delete, Delete]
       ]]] >> dialox;

 /* Some visual help for the operator */
 [addpic,Test, axis, [group, [text, maxx/2-20,10, North],

      [text, maxx/2-20,maxy-10,South],
      [text, 5, maxy/2, West],

                             [text, maxx-30, maxy/2, East]
                     ]
 ] >> dialox ;
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 /* Drawing the structures in the world */
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 /* The shelves */
 [addpic,Test, shelves, [group, 
                             [line, 0,100, 500,100],
                             [line, 0,200, 200,200],
                             [line, 200,200,200,300],
                             [line, 200,300,0,300],
                             [line, 300,200,500,200],
                             [line, 300,200,300,300],
                             [line, 300,300,500,300]
                     ]
 ] >> dialox ;

 /* The truck */
 [addpic,Test, truck, [group, 
                             [line, 200,400, 300,400],
                             [line, 200,400, 200,700],
                             [line, 300,400, 300,700],
                             [line, 200,700, 300,700],
                             [line, 200,500, 300,500],
                             [line, 200,600, 300,600],
                             [line, 200,600, 220,660],
                             [line, 220,660, 280,660],
                             [line, 280,660, 300,600],
                             [line, 220,600, 240,640],
                             [line, 240,640, 260,640],
                             [line, 260,640, 280,600],
                             [line, 300,300,500,300]
                     ]
 ] >> dialox ;

 {ok => relax
 | failed => writef(stdout,"Failed to create main dialog\n",[])
 };

 /* Setting the initial conditions */

 /* Controling the visualisation */
 repeat{
   [birth,symbol?name,integer?X,integer?Y,symbol?Dir] => {

trace("VIDEO","Putting %s in the
 world at %d %d with face %s\n",[name,X,Y,Dir]);

      create_robot(name,X,Y,Dir) >> dialox ;

            }
 | Freeze => { Continue => relax /* Temporal stop... ack needed */
           }
 | Goal => { relax 
           }
 /* Basic drawing capabilities */
 | [clear,symbol?name, integer?px,integer?py,?] => {

/* trace("VIDEO","Erasing %s",[name]); */
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      handle?simul := replyto ;
      [delpic,Test,name] >> dialox ;
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      /* Continue => ok >> simul ;  DEBUGGING */
   }
 | [draw,symbol?name,integer?px,integer?py, symbol?orient] => {
/*
trace("VIDEO","Drawing %s with symbol %s\n ",[name,orient]);
*/
      handle?simul := replyto ;
      create_robot(name,px,py,orient) >> dialox ;
      /* Continue => ok >> simul ;  DEBUGGING */
   }

 /* Moving object in the display */
 | [move, symbol?name,
          integer?xi, integer?yi,
          integer?xf, integer?yf]  => {
     move_object(name,xi,yi,xf,yf) >> dialox
   }
 | ok => relax

 | any?M => writef(stdout,"Other message: %D\n",[M])

 } until ^Quit;

 end >> wd ;              /* End of the world */
};
cat(symbol?X,symbol?Y) -> symbol? catenate(X,catenate(" ",Y));
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/* common.ah

  This file contains macros and functions used by robot.ap and
  the world simulators.
*/

/* _________________________________________________________________ macros */
/* trace( Process, OutputFile, Message, ListofObjects ); */
#macro trace( ?O, ?M, ?L) -> { relax
       writef( stdout,"%s(%s):",[ O, self]);
       writef( stdout, M, L );
       writef( stdout,"\n",[]);
};

/*                                                          head */
head(any[]?T) -> any?valof{
       any[]?A := front(T,1);
       [any?Item] = A;
       valis Item
};

/______________________________________________________ extract */ 
extract(any[]?T) -> any[]?valof{

valis back(T, |T|-1 )
};

world.db.patio

[ 0, 6, floor_, floor_, empty, floor_];
[ 1, 6, floor_, floor_, empty, floor_];
[ 2, 6, floor_, floor_, empty, floor_];
[ 3, 6, floor_, floor_, empty, floor_];
[ 4, 6, floor_, floor_, empty, floor_];
[ 0, 5, floor_, floor_, empty, floor_];
[ 1, 5, floor_, floor_, empty, floor_];
[ 2, 5, floor_, floor_, empty, floor_];
[ 3, 5, floor_, floor_, empty, floor_];
[ 4, 5, floor_, floor_, empty, floor_];
[ 0, 4, floor_, floor_, empty, floor_];
[ 1, 4, floor_, floor_, empty, floor_];
[ 2, 4, floor_, floor_, empty, floor_];
[ 3, 4, floor_, floor_, empty, floor_];
[ 4, 4, floor_, floor_, empty, floor_];
[ 0, 3, floor_, floor_, empty, floor_];
[ 1, 3, floor_, floor_, empty, floor_];
[ 2, 3, floor_, floor_, empty, floor_];
[ 3, 3, floor_, floor_, empty, floor_];
[ 4, 3, floor_, floor_, empty, floor_];
[ 0, 2, floor_, floor_, empty, floor_];
[ 1, 2, floor_, floor_, empty, floor_];
[ 2, 2, floor_, floor_, empty, floor_];
[ 3, 2, floor_, floor_, empty, floor_];
[ 4, 2, floor_, floor_, empty, floor_];
[ 0, 1, floor_, floor_, empty, floor_];
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[ 1, 1, floor_, floor_, empty, floor_];
[ 2, 1, floor_, floor_, empty, floor_];
[ 3, 1, floor_, floor_, empty, floor_];
[ 4, 1, floor_, floor_, empty, floor_];
[ 0, 0, floor_, floor_, empty, floor_];
[ 1, 0, floor_, floor_, empty, floor_];
[ 2, 0, floor_, floor_, empty, floor_];
[ 3, 0, floor_, floor_, empty, floor_];
[ 4, 0, floor_, floor_, empty, floor_];
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[ 0, 6, floor_, floor_, empty, floor_];
[ 1, 6, floor_, floor_, empty, floor_];
[ 2, 6, truck, struct, full, truck_cabin];
[ 3, 6, floor_, floor_, empty, floor_];
[ 4, 6, floor_, floor_, empty, floor_];
[ 0, 5, floor_, floor_, empty, floor_];
[ 1, 5, floor_, floor_, empty, floor_];
[ 2, 5, box, struct, full, boxB_on_truck];
[ 3, 5, floor_, floor_, empty, floor_];
[ 4, 5, floor_, floor_, empty, floor_];
[ 0, 4, floor_, floor_, empty, floor_];
[ 1, 4, floor_, floor_, empty, floor_];
[ 2, 4, box, struct, full, boxA_on_truck];
[ 3, 4, floor_, floor_, empty, floor_];
[ 4, 4, floor_, floor_, empty, floor_];
[ 0, 3, floor_, floor_, empty, floor_];
[ 1, 3, floor_, floor_, empty, floor_];
[ 2, 3, floor_, floor_, empty, floor_];
[ 3, 3, floor_, floor_, empty, floor_];
[ 4, 3, floor_, floor_, empty, floor_];
[ 0, 2, shelf, struct, empty, shelf_cell];
[ 1, 2, shelf, struct, empty, shelf_cell];
[ 2, 2, floor_, floor_, empty, floor_];
[ 3, 2, shelf, struct, empty, shelf_cell];
[ 4, 2, shelf, struct, empty, shelf_cell];
[ 0, 1, floor_, floor_, empty, floor_];
[ 1, 1, floor_, floor_, empty, floor_];
[ 2, 1, floor_, floor_, empty, floor_];
[ 3, 1, floor_, floor_, empty, floor_];
[ 4, 1, floor_, floor_, empty, floor_];
[ 0, 0, shelf, struct, empty, shelf_cell];
[ 1, 0, shelf, struct, empty, shelf_cell];
[ 2, 0, floor_, floor_, empty, floor_];
[ 3, 0, shelf, struct, empty, shelf_cell];
[ 4, 0, shelf, struct, empty, shelf_cell];
[ 0, 7, wall, struct, full, wall];
[ 1, 7, wall, struct, full, wall];
[ 2, 7, wall, struct, full, wall];
[ 3, 7, wall, struct, full, wall];
[ 4, 7, wall, struct, full, wall];
[ 5, 7, wall, struct, full, wall];
[ 5, 0, wall, struct, full, wall];
[ 5, 1, wall, struct, full, wall];
[ 5, 2, wall, struct, full, wall];
[ 5, 3, wall, struct, full, wall];
[ 5, 4, wall, struct, full, wall];
[ 5, 5, wall, struct, full, wall];
[ 5, 6, wall, struct, full, wall];
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exam1.ap

/* perpetual dialogue

  Elemental example of an APRIL multiagent implementation.
*/

/* ________________________________________________________ trace */
/* trace( Process, OutputFile, Message, ListofObjects ); */
#macro trace( ?O, ?M, ?L) -> {
       writef( stdout,"%s(%s):",[ O, self]);
       writef( stdout, M, L );
       writef( stdout,"\n",[]);
};

/* _____________________________________________________ _ agent2 */
agent2(){
 while true do {
   DoYouWantMeToTellYouTheBaldCockStory => {
     symbol?answer := genAnswer(yes_No);

trace("AGENT2","%s\n",[answer]);

     answer >> replyto 
   }
 | quit => break
 }
};

/* _______________________________________________________ agent1 */
agent1(handle?agent2){

 DoYouWantMeToTellYouTheBaldCockStory >> agent2;

trace("AGENT1","Do you want me to tell you the story of the bald cock?..\n",[]); 

 while true do {
   quit => break           /* the game is over */
 | any?answer => {

trace("AGENT1","It isn`t that %s, but if you want me to tell you the story of the bald cock..\n",[answer]);

     DoYouWantMeToTellYouTheBaldCockStory >> replyto 
   }
 }
};

genAnswer(symbol?basicAnswer) -> symbol?valof{
 symbol?basename := gensym(); 
 [symbol,symbol]?splitname := split(basename, 7);
 [symbol,symbol?counter] = splitname; 
 symbol?answer := catenate( basicAnswer, counter );
 valis answer            /* Return the just built answer */
} ;
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exam1.ap
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/* __________________________________               main process  */
main(any[]?ar){

 if |ar| < 2 then {
   writef(stdout,"usage:

 april exem1 <agent2name> <agent1name>\n",[]);
   exit(1);
 };

 handle?grandson := handle?ar[1];
 handle?grandfather := handle?ar[2];

 /* the processes representing the agents are created */
 grandson names agent2() ;               /* fork call */
 grandfather names agent1(grandson) ;    /* fork call */

trace("MAIN","Starting the simulation\n",[]);

 { any?Msg => relax 
 | timeout 2 secs => relax }; 

/* the simulation longs as most 2 seconds */

trace("MAIN","Ending the simulation \n",[]);

 /* The main process inform the agents the game is over */
 quit >> grandfather;
 quit >> grandson;

};
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APPENDIX B. AGENT'S BRAINS IN PROLOG

This appendix shows the source-codes of the following programs written in

PROLOG:

• reacbrain.pl. It contains the reactive model of brain including the locus of

control  algorithm,  the  knowledge  assimilation  meta-interpreter  and  the

object-level hierarchy of goals.

• planbrain.pl.  It  contains  the  locus  of  control  and  the  meta-interpreter

enhanced for planning with bounded abducibility. The object level knowledge is
not included (it is the same that in reacbrain.pl).

Within  the  code  of  reacbrain.pl the  reader  will  find  the  description  of  the

model of the world (cell/5 predicate) that the agent maintains.
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reacbrain.pl

/* reacbrain.pl

  Knowledge assimilation in logic-based agents.

  This programm implements the main execution-assimilation cycle 
  within the agent's  brain. It also contains the rules of 
  behaviour this agent will follow.

  features:
  1.- The metapredicate stops as soon as it can abduce the
      first do term or the depth is N. As this brain only decide
      the next action to be executed is regarded as a reactive 
      brain.
  2.- The object level and meta-level predicates include
      time representation but this is not actually used by the
      program.

  Last modified: 30 Aug 1994

*/

/******************************************************************/
/*this first section implements the locus of control algorithms & */
/*activates the APRIL-PROLOG interfaces. */
/******************************************************************/

:- dynamic cell/6, current_sit/1, stat/3.

agent( Name, InitialGoal, N ) :- 
 ap_init( Name, 0 ),
 ap_receive( From, _ ),      /* Receive the wake up message */
 writef("Agent %w running with time resource = %w\n",[Name,N]),
 cycle( From, InitialGoal, N ),  
 ap_end.

agent(_, _, _) :- ap_end.

cycle( Agent, Goals, N ) :- !,
 observe( Input ),
 To = Counter,                    /* Initial time for planning */
 update_stat( counter, [cycle] ),
 stat( counter, cycle, Counter ),
 /* writef("Assim-Exec Cycle number %w \n",[Counter]), */
 assimilate( Input, Goals, NGoals, To, N, _ ),
 execute( Agent, NGoals, NextGoals),
 ( pause( NextGoals ) ->
   cycle( Agent, NextGoals, N );
   true ).

observe(Input) :-
 ap_receive(_, Message),                  /* Observe message */
 /* writef("Receive new scenario %w\n",[Message]), */
 Message = [observe,[X,Y,F,St,Input]],
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 ( retract( current_sit( _ ) ) -> true ; true ),
 assert(current_sit( ( X, Y, F, St ) ) ).
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update_world_model( [] ).
update_world_model( [[ X, Y, Obj, Typ, St, Bm ]|Rest] ) :- !,
 ( retract( cell( X, Y, _, _, _, _ ) ) ->
   /* writef("My World has changed\n"), */ true ;
   /* writef("My World has been extended\n"), */ true ),
 assert( cell( X, Y, Obj, Typ, St, Bm ) ),
 update_world_model( Rest ).

execute( Agent, OldGoals, NewGoals ) :-
 process_goal( OldGoals, Plan, SamePlan, OtherPlan ), 
 /* writef("Sending new plan %w to my body\n",[Plan]), */
 ap_send( Agent, [plan,Plan] ),
 ap_receive( Agent, Ack ),
 ap_send( Agent, go ),   /* Sincronizing. Shouldn`t be needed */
 /* writef("Last action %w %w \n",[Plan, Ack]), */
 ( Ack == succeed -> 
   (  update_stat( success, Plan ), NewGoals = SamePlan ) ; 
   (  update_stat( failure, Plan ), NewGoals = OtherPlan ) ).

process_goal( [Goal|AltG], Plan, NewGoals, RealAltG ) :-
 ( Goal = (do(Act,T), _) ->
   ( Action = (do(Act,T)), Plan = [Act] ) ;
   ( Action = (do(look,0)), Plan = [look] ) ),
 ( Act == look -> display_stat; true ),

/* displaying stat at the end */
 /* writef("\nExecuting \n\n",[]), printconj(Goal), */
 pop( Action, [Goal|AltG], NewGoals, RealAltG).
 /* writef("Next subgoals in this set:\n",[]), */
 /* printl( NewGoals), writef(" Alternatives\n",[]), printl(RealAltG) .*/

/* ************************************************************* */
/* This is the module of assimilation to be inserted into the    */
/* robots' brains                                                */
/* ************************************************************* */

/* __________________________________________________ assimilate */

assimilate( Input, Gs, NGs, T, N, Tn ) :-
 update_world_model( Input ),
 /* writef("\n Assimilating %w \n",[Gs]), */
 ( resolve( N, Gs, NewGoals ) ->
   NGs = NewGoals ; 
   ( writef("These goals %w don't make any sense\n",[Gs]),
     NGs = [(true)]
   )
 ),
 Tn is T + N. 

resolve( 0, Goals, Goals ).                       /* Base cases */
resolve( _, [(true)], [(true)] ).

resolve( N, [true|Rest], NGoals ) :-
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 NNext is N - 1,
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 resolve( NNext, Rest, NGoals ).  

resolve( N, Goals, NGoals ) :-  
 /* demostrating upon the current KB */
 Goals = [FirstAlt|RemAlt],
 demo( FirstAlt, NewSet ),          /* G <-> body1 or body2 .. */
 append( NewSet, RemAlt, NextGoals ),      /* depth first like */
 NNext is N - 1,
 resolve( NNext, NextGoals, NGoals ).

resolve( N, [_|RemAlt], NGoals ) :-  
 NNext is N - 1,
 resolve( NNext, RemAlt, NGoals ). 

demo( true, [(true)] ).

demo( (true, R), NewGoals ) :- !, demo( (R), NewGoals ).

demo( (not G, R), [(R)] ) :- not demo( G, _ ).

demo( (G, R), [(R)] ) :-
 predicate_property(G, built_in), !, G /*,
 writef("Solving built-in %w \n",[G])  */. 

demo( (G, R), NewList ) :-  
 /* Stop demo and prepare for execution */
 abducible( G ), !,
 push( G, [(R)], NewList). 

demo( (G, R), NewList ) :-     /* reducing actions and subgoals */
 /* writef("\n Resolving %w \n",[G]), */
 findall( BB, 
          ( clause( G, Body ), and_append( Body, R, BB ) ),
          NewList ),
 /*
 writef("\n\n New Set \n { ",[]),
 printdisj( NewList ),
 writef("\n } \n ",[]),
 */
 ( NewList = [] -> ( fail, ! ); true ).

push( _, [], [] ).
push( G, [F|R], [N|NR] ) :- !,
 and_append( G, F, N ),
 push( G, R, NR ).

pop( Act, [F|R], [N|NR], AltR ) :- 
 cut( Act, F, N ),
 pop( Act, R, NR, AltR ).
pop( do(look,0), Rest, Rest, []) :- !. 
    /* action do(look,0) has special function */
pop( _, Rest, [], Rest ). 

Logic Programming Agents



137

cut( R_Act, (P_Act, Rest), Rest ) :- R_Act == P_Act.

Logic Programming Agents



138

reacbrain.pl

and_append( First, Second, Result ) :- !,
 first_part( First, Second, Result ).
first_part( (A, R), Second, (A, Rest) ) :- !,
 first_part( R, Second, Rest ).
first_part( Last, Second, (Last, Rest2) ) :- !,
 second_part( Second, Rest2 ).
second_part( (A, R), (A, Rest2) ) :- !,
 second_part( R, Rest2 ).
second_part( A, A ).

printl( [] ).
printl( [A|B] ) :- writef(" [ ",[]),
                  andprint( A ), 
                  writef(" ] ",[]), printl( B ), !.

andprint( (A,B) ) :- 
 ( A = do(_,_) -> ( writef("-Act- %w ",[A]), andprint( B ) );
                  ( writef("-+- %w ",[A]), andprint( B ) ) ).
andprint( A ) :- 
 ( A = do(_,_) -> writef("-Act- %w ",[A]) ;
                  writef("-+- %w ",[A]) ).

printconj( (A,B) ) :-
  writef(" %w ^ ",[A]), printconj( B ).
printconj( B ) :- 
  writef("%w ",[B]).

printdisj( [] ) :- writef("]",[]).
printdisj( [A|B] ) :- writef("\n    [",[]),
                     printconj(A),
                     writef("] -+- \n    [",[]), printdisj( B ), !.

/*****************************************************************/
/* This section contains domain specific definitions             */
/* and the object level rules                                    */
/*****************************************************************/

abducible( G ) :- G=..[P|_], abd( P ), !. 
/* Add Instantiation check */

abd(do).

/* _____________________________________________________ closer */
/* Test whether (X,Y) is closer to Gx,Gy than Cx,Cy             */

closer( (_, _, _), (X, Y, D), (X, Y, D) ) .
closer( (X, Y, east), (X, Y, north), (X, Y, north) ).
closer( (X, Y, east), (X, Y, north), (X, Y, west) ).
closer( (X, Y, east), (X, Y, south), (X, Y, south) ).
closer( (X, Y, west), (X, Y, north), (X, Y, north) ).
closer( (X, Y, west), (X, Y, north), (X, Y, east) ).
closer( (X, Y, west), (X, Y, south), (X, Y, south) ).
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closer( (X, Y, north), (X, Y, east), (X, Y, east) ).
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reacbrain.pl

closer( (X, Y, north), (X, Y, west), (X, Y, west) ).
closer( (X, Y, north), (X, Y, east), (X, Y, south) ).
closer( (X, Y, south), (X, Y, east), (X, Y, east) ).
closer( (X, Y, south), (X, Y, west), (X, Y, west) ).
closer( (X, Y, south), (X, Y, west), (X, Y, north) ).
closer( (CX, CY, _), (X, Y, _), (GX, GY, _) ) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 DIni is sqrt(IniX*IniX + IniY*IniY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 DNw is sqrt(NwX*NwX + NwY*NwY),
 DNw < DIni.
closer( (CX, CY, _), (X, Y, east), (GX, GY, _) ) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX =< IniX, NwY = IniY, CX < GX.
closer( (CX, CY, _), (X, Y, west), (GX, GY, _) ) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX =< IniX, NwY = IniY, CX > GX.
closer( (CX, CY, _), (X, Y, south), (GX, GY, _) ) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX = IniX, NwY =< IniY, CY < GY.
closer( (CX, CY, _), (X, Y, north), (GX, GY, _) ) :-
 IniX is abs(GX - CX),
 IniY is abs(GY - CY),
 NwX is abs(GX - X),
 NwY is abs(GY - Y),
 NwX = IniX, NwY =< IniY, CY > GY.

/* ___________________________________________ evasive actions */
/* Precompiled primitive action for avoiding obstacules */

change_dir( (X, Y, north), (X, Y, east), T ) :-
 do(t_right, T).
change_dir( (X, Y, south), (X, Y, west), T ) :-
 do(t_right, T).
change_dir( (X, Y, east), (X, Y, south), T ) :-
 do(t_right, T).
change_dir( (X, Y, west), (X, Y, north), T ) :-
 do(t_right, T).

move_forward( (X, Y, north), (X, Ny, north), T ) :-
 Ny is Y - 1, not prohibited( (X, Ny, north), T ), do(m_forward, T ).
move_forward( (X, Y, south), (X, Ny, south), T ) :-

Logic Programming Agents



141

 Ny is Y + 1, not prohibited( (X, Ny, south), T ), do(m_forward, T ).
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move_forward( (X, Y, east), (Nx, Y, east), T ) :-
 Nx is X + 1, not prohibited( (Nx, Y, east), T ),
 do(m_forward, T ).
move_forward( (X, Y, west), (Nx, Y, west), T ) :-
 Nx is X - 1, not prohibited( (Nx, Y, west), T ),
 do(m_forward, T ).

/* _________________________________________________ prohibited */
prohibited( (X,Y,_), _ ) :-
 cell( X, Y, _, struct, _, _ ).
prohibited( (X,Y,_), _ ) :-
 not cell( X, Y, _, _, _, _ ) .

/* ________________________________________________ atom_action */
atom_action( m_forward, (X, Y, north), (X, Y2, north) ) :-
 Y2 is Y - 1.
atom_action( m_forward, (X, Y, south), (X, Y2, south) ) :-
 Y2 is Y + 1.
atom_action( m_forward, (X, Y, east), (X2, Y, east) ) :-
 X2 is X + 1.
atom_action( m_forward, (X, Y, west), (X2, Y, west) ) :-
 X2 is X - 1.
atom_action( t_right, (X, Y, north), (X, Y, east) ).
atom_action( t_right, (X, Y, east), (X, Y, south) ).
atom_action( t_right, (X, Y, south), (X, Y, west) ).
atom_action( t_right, (X, Y, west), (X, Y, north) ).
atom_action( t_left, (X, Y, north), (X, Y, west) ).
atom_action( t_left, (X, Y, west), (X, Y, south) ).
atom_action( t_left, (X, Y, south), (X, Y, east) ).
atom_action( t_left, (X, Y, east), (X, Y, north) ).

/* ________________________________________________ World Model */
/* Cell( CoordX, CoordY, Name, Type, Status, Bitmap */

/* __________________________________ goal <- cond, action rules */

go( Cs, Cs, To, _ ) :-
 do( look, To ).

go( Cs, Fs, To, Tn ) :-
 gradient_step( Cs, Ns, Fs, To ), T1 is To + 1,
 go( Ns, Fs, T1, Tn ).

go( Cs, Fs, To, Tn ) :-
 avoidance_steps( Cs, Ns, Fs, To, Tf ), T1 is Tf + 1,
 go( Ns, Fs, T1, Tn ).

gradient_step( CurrentSit, NewSit, FinalSit, T ) :-
 atom_action( Action, CurrentSit, NewSit ),
 closer( CurrentSit, NewSit, FinalSit ),
 not prohibited( NewSit, T ),
 do( Action, T ).
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avoidance_steps( CurrentSit, NextSit, FinalSit , T, Tf ) :- 
/*follow the wall*/
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 change_dir( CurrentSit, NewSit, T ),
 T1 is T + 1,
 avoidance_step2( NewSit, NextSit, FinalSit, T1, Tf ).

avoidance_step2( CurrentSit, NextSit, _, T, Tf ) :-
 move_forward( CurrentSit, NextSit, T ),
 Tf is T + 1.

avoidance_step2( CurrentSit, NexSit, FinalSit, T, Tf ) :-
 T1 is T + 1,
 avoidance_steps( CurrentSit, NexSit, FinalSit, T1, Tf ).

at(S, Int) :-
 time_now( To ), current_sit((Cx,Cy,Cd,_)), T is To + Int,
 go((Cx,Cy,Cd), S, To, T).

walk_around( Sa, _ ) :-
 current_sit( (Cx, Cy, Cd, _)),

go_around( So, Sf ) :-
 go( So, Sf, 1, 1000 ), go_around( Sf, So ).

/*****************************************************************/
/* _________________________________________Auxiliary predicates */

time_now(T) :-  get_time(T).

update_stat( Result, [Act] ) :-
 retract(stat( Result, Act, Old )) ->
 ( New is Old + 1, assert(stat( Result, Act, New )) ) ;
 ( assert(stat( Result, Act, 1 )) ).

display_stat :-
 findall( ( Result, Act, Num ), stat( Result, Act, Num ), L ),
 writef("\n\n Statistics:  ",[]),
 printl( L )
 /* retractall(stat(_,_,_)) */.

/*****************************************************************/
/* ______________________________________________________testers */

test1a(N) :- agent(brainof_ja,
[(walk_around((4,3,west), 200), true)],N).

test1b(N) :- agent(brainof_jb,
[(walk_around((0,3,east), 200), true)],N).

test1c(N) :- agent(brainof_jc,
[(walk_around((3,6,north), 200), true)],N).
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test1d(N) :- agent(brainof_jd,
[(walk_around((1,6,north), 200), true)],N).
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/* planbrain.pl

  Knowledge assimilation in logic-based agents.

  This programm implements the main assimilation cycle within
  the agent's  brain.

  features:
  1.- The metapredicate does not stop  when it gets the first
      executable goal. This is an agent with planning capabilities.
  2.- The object level and meta-level predicates include
      time representation but this is not actually used by the
      program.
  3.- This version also limits the number of abduced terms that the
      agent can have at any time.

  Last modified: 30 Aug 1994

*/

/*****************************************************************/
/* this first section implement the locus of control algorithms  */
/* and activate the APRIL-PROLOG interfaces.                     */
/*****************************************************************/

:- dynamic cell/6, current_sit/1, stat/3, abd_count/1.

agent( Name, InitialGoal, N, M ) :- 
 ap_init( Name, 0 ),
 ap_receive( From, _ ),         /* Receive the wake up message */
 writef("Agent %w ; 

time resource = %w ; abducing limit = %w\n",[Name, N, M]),
 init_abd_count( M ),
 cycle( From, InitialGoal, N ),  
 ap_end.

agent(_, _, _) :- ap_end.

cycle( Agent, Goals, N ) :- !,
 observe( Input ),
 To = Counter,                     /* Initial time for planning */
 update_stat( counter, [cycle] ),
 stat( counter, cycle, Counter ),
 /* writef("Assim-Exec Cycle number %w \n",[Counter]), */
 assimilate( Input, Goals, NGoals, To, N, _ ),
 execute( Agent, NGoals, NextGoals),
 ( pause( NextGoals ) ->
   cycle( Agent, NextGoals, N );
   true ).

observe(Input) :-
 ap_receive(_, Message),                    /* Observe message */

Logic Programming Agents



147

 /* writef("Receive new scenario %w\n",[Message]), */
 Message = [observe,[X,Y,F,St,Input]],
 ( retract( current_sit( _ ) ) -> true ; true ),
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 assert(current_sit( ( X, Y, F, St ) ) ).

update_world_model( [] ).
update_world_model( [[ X, Y, Obj, Typ, St, Bm ]|Rest] ) :- !,
 ( retract( cell( X, Y, _, _, _, _ ) ) ->
   /* writef("My World has changed\n"), */ true ;
   /* writef("My World has been extended\n"), */ true ),
 assert( cell( X, Y, Obj, Typ, St, Bm ) ),
 update_world_model( Rest ).

execute( Agent, OldGoals, NewGoals ) :-
 process_goal( OldGoals, Plan, SamePlan, OtherPlan ), 
 /* writef("Sending new plan %w to my body\n",[Plan]), */
 ap_send( Agent, [plan,Plan] ),
 ap_receive( Agent, Ack ),
 ap_send( Agent, go ),      /* Sincronizing. Shouldn`t be needed */
 /* writef("Last action %w %w \n",[Plan, Ack]), */
 ( Ack == succeed -> 
   (  update_stat( success, Plan ), NewGoals = SamePlan,
      up_abd ) ; 
   (  update_stat( failure, Plan ), NewGoals = OtherPlan,
      reinit_abd )
 ).

process_goal( [Goal|AltG], Plan, NewGoals, RealAltG ) :-
 ( Goal = (do(Act,T), _) ->
   ( Action = (do(Act,T)), Plan = [Act] ) ;
   ( Action = (do(look,0)), Plan = [look] ) ),
 ( Act == look -> display_stat; true ),  /* displaying stat at the end */
 /* writef("\nExecuting \n\n",[]), printconj(Goal), */
 pop( Action, [Goal|AltG], NewGoals, RealAltG).
 /* writef("Next subgoals in this set:\n",[]), */
 /* printl( NewGoals), writef(" Alternatives\n",[]), printl(RealAltG) .*/

/* ************************************************************* */
/* This is the module of assimilation to be inserted into the    */
/* robots' brains                                                */
/* ************************************************************* */

/* ___________________________________________________assimilate */

assimilate( Input, Gs, NGs, T, N, Tn ) :-
 update_world_model( Input ),
 /* writef("\n Assimilating %w \n",[Gs]), */
 ( resolve( N, Gs, NewGoals ) ->
   NGs = NewGoals ; 
   ( writef("These goals %w don't make any sense\n",[Gs]),
     NGs = [(true)]
   )
 ),
 Tn is T + N. 
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resolve( 0, Goals, Goals ).                      /* Base cases */
resolve( _, [(true)], [(true)] ).

resolve( N, [true|Rest], NGoals ) :-
 NNext is N - 1,
 resolve( NNext, Rest, NGoals ).  

resolve( N, Goals, NGoals ) :- 
 /* demostrating upon the current KB */
 select( Goals, ReadySet, FirstAlt, RemAlt ),
 demo( FirstAlt, NewSet ),         /* G <-> body1 or body2 .. */
 combine( ReadySet, NewSet, RemAlt, NextGoals ),
 NNext is N - 1,
 resolve( NNext, NextGoals, NGoals ).

resolve( N, Goals, NGoals ) :-
 select( Goals, ReadySet, _, RemAlt ), /* Not very efficient */
 NNext is N - 1,
 append( ReadySet, RemAlt, NextGoals ),
 resolve( NNext, NextGoals, NGoals ).

select( [(true)|RG], [], true, RG ).

select( [FG|RG], [FG|RReady], FirstAlt, RemAlt ) :-
 fullplan( FG ),
 select( RG, RReady, FirstAlt, RemAlt ).

select( [FG|RG], [], FG, RG ).

combine( ReadySet, NewSet, RemAlt, NextGoals ) :-
 append( ReadySet, NewSet, TempSet ),/* Depth first search*/
 append( TempSet, RemAlt, NextGoals ).

fullplan( (G, R) ) :-
 ( abducible( G ); G = true ),
 fullplan( R ).
fullplan( G ) :- !,
 G = true.

demo( true, [(true)] ).

demo( (true, R), NewGoals ) :- !, demo( (R), NewGoals ).

demo( (not G, R), [(R)] ) :- not demo( G, _ ).

demo( (G, R), [(R)] ) :-
 predicate_property(G, built_in), !.

demo( (G, R), NewList ) :-  
 abducible( G ), !,
 ( no_more_abd -> 
   ( NewList = [(G, R)] ) ;
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   ( demo( R, NewSet ), push( G, NewSet, NewList), down_abd )

Logic Programming Agents



152

planbrain.pl

 ). 

demo( (G, R), NewList ) :-     /* reducing actions and subgoals */
 findall( BB, 
          ( clause( G, Body ), and_append( Body, R, BB ) ),
          NewList ),
 ( NewList = [] -> ( fail, ! ); true ).

push( _, [], [] ).
push( G, [F|R], [N|NR] ) :- !,
 and_append( G, F, N ),
 push( G, R, NR ).

pop( Act, [F|R], [N|NR], AltR ) :- 
 cut( Act, F, N ),
 pop( Act, R, NR, AltR ).
pop( do(look,0), Rest, Rest, []) :- !. 
    /* action do(look,0) has special function */
pop( _, Rest, [], Rest ). 

cut( R_Act, (P_Act, Rest), Rest ) :- R_Act == P_Act.

and_append( First, Second, Result ) :- !,
 first_part( First, Second, Result ).
first_part( (A, R), Second, (A, Rest) ) :- !,
 first_part( R, Second, Rest ).
first_part( Last, Second, (Last, Rest2) ) :- !,
 second_part( Second, Rest2 ).
second_part( (A, R), (A, Rest2) ) :- !,
 second_part( R, Rest2 ).
second_part( A, A ).

printl( [] ).
printl( [A|B] ) :- writef(" [ ",[]),
                  andprint( A ), 
                  writef(" ] ",[]), printl( B ), !.

andprint( (A,B) ) :- 
 ( A = do(_,_) -> ( writef("-Act- %w ",[A]), andprint( B ) );
                  ( writef("-+- %w ",[A]), andprint( B ) ) ).
andprint( A ) :- 
 ( A = do(_,_) -> writef("-Act- %w ",[A]) ;
                  writef("-+- %w ",[A]) ).

printconj( (A,B) ) :-
  writef(" %w ^ ",[A]), printconj( B ).
printconj( B ) :- 
  writef("%w ",[B]).

printdisj( [] ) :- writef("]",[]).
printdisj( [A|B] ) :- writef("\n    [",[]),
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                     printconj(A),
                     writef("] -+- \n    [",[]), printdisj( B ), !.

init_abd_count( M ) :- 
 ( retract(abd_count(_)) -> true; true ),
 ( retract(abd_init(_)) -> true; true ),
 assert(abd_count(M)),
 assert(abd_init(M)).

reinit_abd :- abd_init(M),
  retract(abd_count(_)), assert(abd_count(M)).

no_more_abd :-  abd_count(M), M =< 0.

up_abd :- retract(abd_count(M)), NM is M + 1, assert(abd_count(NM)).

down_abd :- retract(abd_count(M)), 
NM is M - 1, assert(abd_count(NM))

/*****************************************************************/
/* This section contains domain specific definitions and the     */
/* object level rules                                            */
/*****************************************************************/

/* see the details of this section inside the code of reacbrain */
/* the object level knowledge in both brains is the same   */
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APPENDIX C. SOURCES OF THE PROLOG-APRIL INTERFACE

This appendix contains the following source-codes:

• stub.c.  This file describes or declares for the SWI-PROLOG those routines

and  procedures  (PROLOG  predicates)  that  are  being  added  to  the  original

PROLOG through the C-interface.

• pl_ap.c.  This  file  contains  the  source-code  of  those  procedures  that

implements the PROLOG-APRIL interface and other auxiliary procedures and

system routines. Observe that this code contains calls to procedures that are part

of the supporting TCP/IP platform, implemented as a separated library. 

• pl-prims.c.  This  is  the  only  file  within  the  SWI-PROLOG  original

source-codes that required alteration. We include precisely the piece of code (the
pl_halt procedure) that was changed.

• talker.ap. It is small example of a program written in APRIL that can be used

to  interact  with  a  PROLOG  program  with  the  APRIL-PROLOG  extensions.

Observe that this program is an ordinary APRIL program.

• talker.pl. This is a PROLOG code (with the APRIL-PROLOG predicates)

that can interact with the program talker.ap.
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stub.c

/*  stub.c,v 1.1 1992/07/17 12:40:36 jan Exp

   Copyright (c) 1991 Jan Wielemaker. All rights reserved.
   jan@swi.psy.uva.nl

   Purpose: Skeleton for extensions to SWI-PROLOG. (see manual).

   PROLOG-APRIL agent interface: 
   Interface for communicating a prolog agent with other agents
   in an April environment. The interface implements a set of 4
   primitives communicating predicates. This predicates invoke
   the procedures for initialising the channels of communications,
   sending and receiving messages and closing the channels. 
   This version of the interface is implemented on top of a TCP/IP
   plataform, using UDP as the transport layer protocol. However
   some previsions are taken for ensuring reliable communication.

   Implemented by: Jacinto Alfonso Da'vila.

   Last modified: 24 - 5 - 94.

   The TCP/IP plataform was provided by Prof. Frank McCabe.

   Imperial College. London.

*/

#include <stdio.h>
#include "SWI-Prolog.h"

extern foreign_t pl_ap_init P((term, term ));
extern foreign_t pl_ap_send P((term, term));
extern foreign_t pl_ap_receive P((term, term));
extern foreign_t pl_ap_end P((term));

PL_extension PL_extensions [] =
{
/*{ "name", arity,  function, PL_FA_<flags> },*/
 { "ap_init", 2,       pl_ap_init,  0 },
 { "ap_send", 2,       pl_ap_send,  0 },
 { "ap_receive", 2,       pl_ap_receive,  0 },
 { "ap_end", 0,       pl_ap_end,  0 },
 { NULL, 0, NULL, 0 } /* terminating line */
};
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pl_ap.c

/* pl_ap.c
  
  This file contains the definition of the C-functions which implement the   April-PROLOG interface over the
TCP libraries. 
  These functions support the predicates which allow a prolog agent to communicates with other agents in an
April environment. 

  The actual program that controls this process should be written in PROLOG and executed by the prolog
agent. (see file  talker.pl )

  Limitation: The current interface only make provision for remembering the last agent from which it received
messages. Therefore the prolog agent only can send messages to the last APRIl process that send a request to
PROLOG. This code can be enhanced to accomodate a directory of names and addresses of APRIL process,
allowing the PROLOG agent to comunicate with them without the previous restriction.

       This version allow the interchange the following types
       of data (from PROLOG to the equivalent APRIL and vice
       versa): integers, atoms (april symbols) and strings
       (also april symbols), real numbers and tuples nested
       up to 16 times (april tuples are converted in 

 prolog list).
       Prolog predicates are no allowed for conversion 

 into april format.

  bugs:  The SWI-PROLOG agents have shown anomalous activities  in certain ocasions (after calling the
garbage collector, the program stop). More testing and debugging of the UNIX signals used by SWI-PROLOG
and this interface is required.

 There are also some problems transmiting floating point numbers from APRIL to PROLOG. 

  Last modified: 30 - Jul - 94.

  Jacinto Da'vila.

  Knowledge Assimilation in Multiagents Systems. FAIT Course. 1994.
*/

#include "SWI-Prolog.h"
#include <ctype.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>          /* define u_char etc. */
#include <sys/time.h>
#include <sys/socket.h>         /* Comms stuff */
#include <netinet/in.h>
#include <errno.h>
#include <signal.h>
#include <malloc.h>
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pl_ap.c

#include "queue.h"
#include "tcp.h"
#include "fnames.h"
#include "logical.h"

#define MSGTRACE
#define functor_name(term) PL_atom_

value(PL_functor_name(PL_functor(term)))

logical traceTCP=False;
logical traceMsg=True;

char* PLDefAgentname ="PLAgent";
char* PLAgentname ;
int CSocket = 0;
static addrpo LastQuerier = NULL ; 
                 /* This was the last process which sent a msg */

u_char plxbuff[MAX_TCP_MSG], *bufpo;    
     /* pointers to the tcp buffer area */

/* ****************************************** Support functions */

/* ________________________________________________ SWI-Refresh */

void SWI_Refresh(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;
{
 RefreshQ();                     /* refresh the message queue */
 alarm(3); /* schedule a new refresh in 3 seconds */

};

/* _____________________________________________________ fatal_error_handler */

fatal_error_handler(sig,type,scp,addr)
int sig, type;
struct sigcontext *scp;
char *addr;
{
 deregister() ;                  /* Deregistering before quit */
 deliverSignal(sig, type, scp, addr); 

/* Be carefull. PROLOG may not know it */
 fprintf(stdout,"FATAL ERROR (Signal %s)\n",sig) ;
};

/* _________________________________________________________________ sig_int */
/*
* cleanup after CTRL-C and other major errors
*/
void sig_int()
{
 deregister();
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 exit(SIGINT);
};
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void sig_quit_agent()
{
 deregister();
 printf("Prolog Agent says bye bye.. \n");
};

char *itoa(long n)
{
 static char nm[100];

 sprintf(nm,"%d",n);

 return &nm[0];
};

/* ________________________________________________________ dispatch_event */
int dispatch_events(void){
 
 fd_set fdset;
 struct timeval timeout;
 int status;
 int width = 1 ;

 FD_ZERO(&fdset);
 FD_SET(0, &fdset); /*  Checking the standard input only */
 timeout.tv_sec = 2L;
 timeout.tv_usec = 0L;
 status = select(width, &fdset, NULL, NULL, &timeout);

 if (status > 0) return(PL_DISPATCH_INPUT);
 else 
   if (status == 0) return(PL_DISPATCH_TIMEOUT);
   else
     if (errno==EINTR) return(PL_DISPATCH_TIMEOUT);
     else {
        perror("select() error ");
        exit(1);
     }
};

/* ____________________________________________________________ do_wait */
static int do_wait(int sock)
{
 fd_set fdset;
 struct timeval timeout;
 int status;

again:
 FD_ZERO(&fdset);
 FD_SET(sock, &fdset);
 timeout.tv_sec = 2L;
 timeout.tv_usec = 0L;
 status = select(sock+1, &fdset, NULL, NULL, &timeout);
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 if (status == 0) goto again;

pl_ap.c
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 if (status == -1 ) {
   if (errno == EINTR)
     goto again;
   else {
     perror("select() error ");
     exit(1);
   }
 }
 return(1);
} ;

/* ************************************************************* */
/* __________________________________________________ decode_msg */
/*Tranforms the message from the encoded form into a PROLOG term*/
u_char *decode_msg(term m,u_char *c)
{
  char s[256] ; /* Auxiliary buffers */

 switch((*c)&TAGMASK){
 case S_INT:
   PL_unify_atomic(m,PL_new_integer((long)((*c++)&VALMASK))); 
   break;
 case INT:{
   int i = *(c+4);
   i |= *(c+3)<<010;
   i |= *(c+2)<<020;
   i |= *(c+1)<<030;
   c+=5;
   PL_unify_atomic(m,PL_new_integer(i));
   break;
 }
 case S_SYMB:{
   int len = (*c++)&VALMASK;
   bcopy(c,s,(len<256?len:255));
   s[(len<256?len:255)]='\0';
   PL_unify_atomic(m, PL_new_atom(s));
   c+=len;
   break;
 }
 case SYMB:{
   int len = *(c+1)<<010 | *(c+2);
   c+=3;
   bcopy(c,s,(len<256?len:255));
   s[(len<256?len:255)]='\0';
   PL_unify_atomic(m, PL_new_atom(s));
   c+=len;
   break;
 }

 case FLT:{
   char len = abs(*(signed char*)c);
   double flt = UnConvertFP(c);
   c+= len+1;
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   PL_unify_atomic(m, PL_new_float(flt));
   break;
 }

 case S_TPL:{
   int len = (*c++)&VALMASK;
   term arg1,arg2, temp;
   int count = 1;

   if (len == 0) { 
     PL_unify_atomic(m, PL_new_atom("[]"));
     break;
   };

   PL_unify_functor(m, PL_new_functor(PL_new_atom("."), 2));
   temp = m;
   while(count<=len){
     arg1 = PL_arg(temp,1);
     c = decode_msg(arg1,c);
     if (count==len) {
       PL_unify_atomic(PL_arg(temp,2), PL_new_atom("[]")); 
     } else {
       arg2 = PL_arg(temp,2);   
       PL_unify_functor(arg2, PL_new_functor(PL_new_atom("."), 2));

temp = arg2 ;
     };
     count++ ;
   }
   break;
 }
    
 case TPL:{
   term arg1,arg2, temp; 
   int count = 1;
   char *ch = "";
   int len = *(c+1)<<010 | *(c+2);
   c+=3;

   if (len == 0) {
     PL_unify_atomic(m, PL_new_atom("[]"));
     break;
   };

   PL_unify_functor(m, PL_new_functor(PL_new_atom("."), 2));
   temp = m;
   while(count<=len){
     arg1 = PL_arg(temp,1);
     c = decode_msg(arg1,c);
     if (count==len) {
       PL_unify_atomic(PL_arg(temp,2), PL_new_atom("[]"));
     } else {
       arg2 = PL_arg(temp,2);
       PL_unify_functor(arg2, PL_new_functor(PL_new_atom("."), 2));
       temp = arg2 ;
     };
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     count++ ;
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   }
   break;
 }

 default:
   fprintf(stderr,"Unknown format type: %#x\n",*c++);
 }
 return c;
};

/* __________________________________________________________ flat_list */
/* This procedure receives a list and transforms it in a printable
  string. The procedure assumed a list of at least one element 
  as input...
*/
char *flat_list(term l, char *fmt ){
 char *tmp ;

  switch (PL_type(PL_arg(l,1))) {  /* first argument of the list */
    case PL_TERM: {
      char *fc = functor_name(PL_arg(l,1)) ;
      if (strcmp(fc,".")==0) { /* It's a list */
        strcat(fmt, "%[");
        flat_list(PL_arg(l,1),fmt) ;  /* This is a nested list */
        strcat(fmt, "%]") ;
      } else {
        PL_fatal_error("Composed terms are not allowed inside an April list");
      } ;
      break ;
     };
    case PL_ATOM: {
      tmp =  PL_atom_value(PL_atomic(PL_arg(l,1)));
      strncat( fmt, tmp, 256 );
      break ;
    };
  };

  switch (PL_type(PL_arg(l,2))) { /* second argument of the list */
    case PL_TERM: {
      char *fc = functor_name(PL_arg(l,2)) ;
      if (strcmp(fc,".")==0) { /* It's a list */
        strcat( fmt, "%," );
        flat_list(PL_arg(l,2),fmt); 
      } else {
        PL_fatal_error("Invalid term as 

second argument in a Prolog list..");
      } ;
      break ;
     };
    case PL_ATOM: {
      tmp =  PL_atom_value(PL_atomic(PL_arg(l,2)));
      if (*tmp != '[') {
        strcat( fmt, "%," );
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        strncat( fmt, tmp, 256 );
      }
      break ;
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    };
    default: {
      PL_fatal_error("Invalid term as second argument

 in a Prolog list..");
    };
  };
} ;

/* ___________________________________________________ encode_msg */
/* this function transforms a valid (non_variable) PROLOG term into
a APRIL value of the appropiate type (now, numbers, symbols and
tuples and send it to an april process. Only lists of atoms allowed.
*/
int encode_msg(char *to, addrpo addrto, term m ) {

 switch (PL_type(m)) {

   case PL_INTEGER: { 
     long num = PL_integer_value(PL_atomic(m));
     return(send_msg( to, addrto, "%d", num )) ;
   }
   case PL_STRING: {
     return(send_msg( to, addrto,

    "\"%s\"", PL_string_value(PL_atomic(m))));
   }
   case PL_ATOM: {
     char *atm = PL_atom_value(PL_atomic(m));
     if (*atm != '[') return(send_msg( to, addrto, "%s",atm));
     else return(send_msg( to, addrto, "%[%]"));
   }
   case PL_TERM: { /* the lists should be treated specially */
     char fmt[10000] ;  /* format containing the tuple */
     char *fc = functor_name(m) ;
     *fmt = '\0' ; 
     if (strcmp(fc,".")==0) { /* It's a list */
        strcat(fmt, "%[");
        flat_list(m,fmt) ;  /* put the list in a flat string */
        strcat(fmt, "%]") ;
        return(send_msg( to, addrto, fmt )) ; /* List sending */
     } else {
        PL_fatal_error("Term type not allowed by April encoding.");
     } ; 
     break ;
   }
   case PL_FLOAT: {
     return(send_msg( to, addrto,

 "%f", PL_float_value(PL_atomic(m))));
   }
   default: {
     PL_fatal_error("Term type not allowed for April encoding..") ;
     return -1 ;
   }
 }
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 return -1 ;
}

/* __________________________ _________________________ UnHookPl */
/* kept for debugging purposes */
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void UnHookPl(addrpo addr)
{
fprintf(stdout,"Unhooking.. ") ; 
};

/* ************************************************************* */
/* The following procedures constitutes the Prolog-April interface 
*/
/*______________________________________________________ ap_init */
/* initialises the plagent ports for listening and answering queries from other April agents. 
*/
foreign_t pl_ap_init(term agentname, term portN )
{
 u_short PortNum = 0;
 u_short ServerPortNum = 5071; /* Default Name server port */
 long timeout = 4L;  /* server timeout period */

 PLAgentname = (char*) malloc(80);
 *PLAgentname = '\0';

 PL_dispatch_events = dispatch_events ; 

 if (PL_is_atom(agentname)) {
   strncpy(PLAgentname,(char *)PL_atom_value(PL_atomic

(agentname)),80); 
   /* It can no be more than 80 characters long */
 } else { 
   strcpy(PLAgentname, PLDefAgentname ); 
   PL_warning("AP_INIT: Invalid Prolog Agent Name");
   PL_fail;
 };

 if (PL_is_int(portN)) {
   PortNum = (u_short) PL_integer_value(PL_atomic(portN)) ; 
 } else {
   PL_warning("AP_INIT: Invalid TCP Port Number");
   PL_fail;
 };

 if ((CSocket = init_server((u_short) PortNum,
 PLAgentname, timeout, UnHookPl)) < 0){

   CloseAddressBook();
   PL_warning("AP_INIT: I couldn't start the Prolog Server socket");
   PL_fail;
 }; 

 /* Installing signals handlers */
 pl_signal(SIGQUIT,  sig_quit_agent) ; 
 pl_signal(SIGINT,  sig_int) ; /* In case of Ctrl-C */
 pl_signal(SIGALRM, SWI_Refresh);  

 /* Initialises the alarming system */
 alarm(3);  

 PL_succeed;
Logic Programming Agents



173

};
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/* __________________________________________________  __ ap_send */
/* sends a message from the prolog agent to another april agent.
*/
foreign_t pl_ap_send(term to, term msg)
{
 char *dest;
 int result;
 addrpo addrto = LastQuerier ; /* Destination address */

 if ( PL_is_var(to) ) {
   PL_warning("ap_send/2: instantiation fault. first arg");
   PL_fail; 
 };

 if ( PL_is_var(msg) ) {
   PL_warning("ap_send/2: instantiation fault. second arg");
   PL_fail;
 };

 if (addrto==NULL) {
   PL_warning("ap_send/2: no address avalaible");
   PL_fail;
 };
 dest = PL_atom_value(PL_atomic(to));
 result = encode_msg(dest,addrto,msg);

 if (result>=0) PL_succeed;
 else PL_fail; 

};

/* ______________________________________________________________ ap_receive */
/* receives a message send from an april agent. Observe that the term msg should be a variable. This version
can not perform pattern-matching. */
foreign_t pl_ap_receive(term from, term msg) {
 int msglen;
 char *fromhandle;
 addrpo replytoaddr = NULL ;
 term tmsg;
 char *msg_text; 
 bktrk_buf buf;

 if (!(PL_is_var(msg))) {
   PL_warning("ap_receive/2: Variable

 required in second argument");
   PL_fail ;
 };

 /* PL_lock(from); PL_lock(msg); */

 fromhandle = (char*) malloc(80); /* Store the sender handle */
 *fromhandle = '\0';

 /* Get the next message from the TCP Channel */

Logic Programming Agents



175

Logic Programming Agents



176

pl_ap.c

again:
 if (do_wait(CSocket) && (replytoaddr =
     get_msg(PLAgentname,fromhandle,CSocket,"%#",&msglen,plxbuff))) {

    if (replytoaddr != NULL) { 
      msg_text = plxbuff;
      decode_msg(msg,msg_text) ;
      LastQuerier = replytoaddr;
 
      /* Creating the new atoms and returning their 

    values in the arguments */
      if (!(PL_unify_atomic(from, PL_new_atom(fromhandle)))) {
         free(fromhandle);
         /* PL_unlock(msg); PL_unlock(from); */
         PL_fail ; 
      };

      /* Acknowledging the message */
      /* send_msg(fromhandle,replytoaddr,"%s","ok"); */

    } 
 } else goto again;
 free(fromhandle);
 /* PL_unlock(msg); PL_unlock(from); */
 PL_succeed ;
};

/_______________________________________________________ ap_end */
/* cancels the communications capabilities of the prolog agent. 
*/ 
foreign_t pl_ap_end()
{
 deregister();  /* Deregister with the name server */
 free(PLAgentname) ;  /* free the space for the agent name */
 CloseAddressBook();
 close(CSocket);
 PL_succeed ;
};
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/*  pl-prims.c,v 1.11 1993/11/12 10:22:26 jan Exp

   Copyright (c) 1990 Jan Wielemaker. All rights reserved.
   See ../LICENCE to find out about your rights.
   jan@swi.psy.uva.nl

   Purpose: primitive built in

   NOTE: This is the code that was changed to integrate
         the APRIL-PROLOG interface. the change involved
         only one routine in this file and thus, we decide
         to include only the code of such routine (pl_halt).

Jacinto Davila. Imperial College. 1994.
*/

word
pl_halt()
{ 
 kill(getpid(), SIGQUIT);  
 Halt(0);
 /*NOTREACHED*/
 fail;
}

talker.ap

/* talker.ap

  Program example for interchanging messages between an
  APRIL process and a PROLOG program. The apnameserver
  should be active.

  APRIL side.

  To start the program:
  1) run "april talker prologag"

  To stop the program:
  1) press Ctrl+C

  Last modified: 29 Jun 1994
*/

main(any[]?args)
{
 handle?plagent:= handle?args[1];
 number?i = 1; 
 number?f = 100 ;
 while i<2 do {
   [hello,i] >> plagent; /* Send an integer */
   i+:=1;
 } ;
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 i := 1;
 while true do {
   [symbol?F,symbol?S,any?L] => writef(stdout,"received [%s,%s,%p]\n",[F,S,L]);
   [gensym(),[gensym(),[gensym(),[i]]]] >> plagent;
   i+:= 1;
 } 
}
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/* talker.pl

  Program example for interchanging messages between an
  APRIL and PROLOG. The apnameserver should be active.

  PROLOG side.

  To start the program:
  1) run plagent.
  2) load this program: "[talker]."
  3) type the query-call "agent."
  4) run the april side

  To stop the program:
  1) press Ctrl+C

  Last modified: 29 Jun 1994
*/

agent :- 
 ap_init(prologag,0),
 initial_chat(F,1),
 sending(F),
 ap_end.

initial_chat(_,0).
initial_chat(F,N) :- /* Needed for establishing the conection */
 ap_receive(F,M),
 write(M),nl,
 NN is N - 1,
 initial_chat(F,NN).

sending(F) :- 
 ap_send(F,[hello,myfriend,[]]), 
 ap_receive(F,M),
 write(M),nl,
 sending(F).
 write('send more messages?'),
 read(Ans),
 ((Ans = 'y') -> sending(F) ; true). 
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APPENDIX D. DIALOX DISPLAYS.

In this appendix we include some pictures take from the DIALOX window
displaying the world during the simulations. The first picture shows one robot (ja)

travelling  its  experimental  route  in  the  warehouse.  The  remaining  pictures  were
taken from the animation of four robots interacting in the patio world.
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