
Agents in Logic Programming

Jacinto Alfonso D�avila Quintero

April 1997

Submitted to the University of London as a thesis for the degree of

Doctor of Philosophy

Department of Computing

Imperial College of Science, Technology and Medicine

Abstract

The objective of this thesis is to explore ways of describing agents in logical theories.
The contribution is that the logical theories we build are a generalised form of logic programs.

Like normal logic programs, these theories have an intuitive declarative reading and a procedural
interpretation to guide the implementation of automatic devices and software. Both human
beings and machines can reason about these logical theories.

We employ the amalgamation of object and meta-logic programs to model notions such
as beliefs, goals and agent's \mental" activities. But we also accommodate less usual notions
such as reactivity, openness, activation of goals and preference encoding, that have proved to be
essential in realistic models of agents. Four logic programming languages to program agent with
those features are introduced. We use an event-based approach to model dynamic universes
with changing properties, concurrency and synergistic e�ects.

NOTE: This is a copy of the thesis with single spacing and smaller font than the original.
Please, do not refer to the page numbering in here as this is di�erent from that in the copies
submitted to the University of London.

i

Acknowledgements

Many people helped me to complete this thesis. Thanks and apologies to any whom I do not
mention here.

I specially want to thank my supervisor Bob Kowalski, for his systematic guidance and
valuable support. Many thanks also to Fariba Sadri, Francesca Toni, Gerhard Wetzel, Murray
Shanahan, Rob Miller, Keith Clark, Chriss Moss, Stephen Se, Torbjorn Semb D, Yongyuth
Permpoontanalarp and the Temporal Reasoning, Arti�cial Intelligence and Logic (TRAIL)
seminar group for many useful discussions.

Special thanks to Susan Peneycad for her careful proofreading of the thesis and for lending
her intuition on the subtleties of the English language. I am also very grateful to Giorgio
Tonella and Christoph Jung, for their opportune and useful comments.

My wife Liliana, my mother Gloria, father, family and friends deserve special mention for
providing so much love and enthusiasm.

I gratefully acknowledge the support of the CONICIT-Universidad de Los Andes, Venezuela,
for this thesis.

ii

Contents

1 Introduction 1
1.1 Statement of the general problem : 1
1.2 What is an agent? : 2
1.3 Review of basic concepts in agent theories : 3

1.3.1 Reactivity : 3
1.3.1.1 Architectural reactivity : 3
1.3.1.2 Knowledge-based reactivity : 4
1.3.1.3 Goals in reactive agents : 5
1.3.1.4 Combining planning and execution : : : : : : : : : : : : : : : : : 5

1.3.2 Intentionality : 6
1.3.3 Representation of problems : 6

1.3.3.1 The classical notion of problem : : : : : : : : : : : : : : : : : : : 7
1.3.3.2 The notion of problem revisited : : : : : : : : : : : : : : : : : : 10

1.3.4 Bounded rationality : 12
1.4 Statement of the speci�c problem : 14
1.5 A motivating example: A program for an elevator : : : : : : : : : : : : : : : : : : 14

1.5.1 What is the program for? : 15
1.5.2 Policies of optimal behaviour for the elevator : : : : : : : : : : : : : : : : 16

1.6 Overview of the rest of the document : 17

2 Logic-based Agent Architectures 19
2.1 The representation of time in modelling an agent : : : : : : : : : : : : : : : : : : 19
2.2 The cycle predicate : 22

2.2.1 Kowalski's agent : 22
2.2.2 Improving Cycle : 23

2.3 GLORIA : 27
2.3.1 GLORIA's speci�cation : 27
2.3.2 GLORIA featuring as the elevator controller : : : : : : : : : : : : : : : : 30

2.3.2.1 A �rst look at activation of goals : : : : : : : : : : : : : : : : : : 30
2.3.2.2 A �rst look at the implementation of the elevator controller : : : 32
2.3.2.3 A �rst look at the functions of the demo predicate : : : : : : : : 33
2.3.2.4 A �rst look at an agent cycling: tracing the elevator controller : 34

2.3.3 Limitations and shortcomings in GLORIA : : : : : : : : : : : : : : : : : : 36
2.3.3.1 Thinking and acting : 36
2.3.3.2 How to assign resources for reasoning : : : : : : : : : : : : : : : 37

2.4 Conclusion : 38

iii

3 The Agent's Abductive Reasoning Mechanism 39
3.1 What is abduction? : 39
3.2 Abduction for planning : 40
3.3 Preliminaries for the i� Proof Procedure : 42

3.3.1 Abductive logic programs, queries and semantics : : : : : : : : : : : : : : 42
3.3.1.1 What is an Abductive Logic Program? : : : : : : : : : : : : : : 42
3.3.1.2 What is a Query? : 43
3.3.1.3 What is the semantics of an Abductive Logic Program? : : : : : 44

3.3.2 Fung and Kowalki's i� proof procedure : : : : : : : : : : : : : : : : : : : 45
3.3.2.1 Derivations and Frontiers : 45
3.3.2.2 The form of queries : 45
3.3.2.3 The inference rules : 46

3.4 An Any-time Algorithm for the i� Proof Procedure : : : : : : : : : : : : : : : : : 52
3.4.1 The main routine: demo : 53
3.4.2 The abductive procedure: demo abd : 55
3.4.3 Processing implications: demo impl : 58
3.4.4 Rewrite rules for equalities and inequalities : : : : : : : : : : : : : : : : : 67
3.4.5 The special treatment of inequalities : 73

3.5 Examples of the proof procedure at work : 74
3.5.1 The faulty lamp example : 74
3.5.2 Reasoning about the elevator position : 75

4 An Agent oriented Programming Language and Knowledge Representation 78
4.1 OPENLOG: from structured to logic programming : : : : : : : : : : : : : : : : : 79
4.2 The Syntax of OPENLOG : 80
4.3 The semantics of OPENLOG : 82

4.3.1 Comments on the semantics of programming languages : : : : : : : : : : 82
4.3.2 A semantics and an interpreter for OPENLOG : : : : : : : : : : : : : : : 82

4.4 Background theories : 84
4.5 Background theories in the Situation Calculus : 86

4.5.1 The temporal projection predicate in SC : : : : : : : : : : : : : : : : : : : 86
4.5.2 Action generation in SC : 87

4.6 Background theories in the Event Calculus : 88
4.6.1 The temporal projection predicate in EC : : : : : : : : : : : : : : : : : : 88

4.6.1.1 The role of rei�cation : 89
4.6.1.2 On the representation of time : : : : : : : : : : : : : : : : : : : 89
4.6.1.3 The �rst fundamental di�erence between EC and SC : : : : : : 90

4.6.2 Action generation in EC : 91
4.6.2.1 Completing the background theory in EC : : : : : : : : : : : : : 91
4.6.2.2 The role of abduction : 91
4.6.2.3 The problem of over-generation of abducibles : : : : : : : : : : : 92

4.7 The Event Calculus versus The Situation Calculus. : : : : : : : : : : : : : : : : : 92
4.7.1 On distinguishing between \testing" and \generation" : : : : : : : : : : : 92
4.7.2 On dealing with parallelism : 93
4.7.3 On the treatment of observations : 94

4.7.3.1 Introduction to this problem : 94
4.7.3.2 Observations in SC : 95
4.7.3.3 Observations in (the Observational and Abductive) EC : : : : : 96

4.7.4 On dealing with new goals : 98
4.7.5 On memory required to store partial plans : : : : : : : : : : : : : : : : : : 99

iv

4.7.6 Summary of comparisons : 100
4.8 Programming the Elevator Controller with OPENLOG : : : : : : : : : : : : : : : 100

4.8.1 The elevator controller for policy 1 : 103
4.8.2 The elevator controller for policy 3 : 103

4.9 The representation at work: plans that become invalid because the world changes 104
4.10 Discussion : 106

5 Agent Reactivity and Preferences 109
5.1 An alternative to OPENLOG: The ACTILOG language : : : : : : : : : : : : : : 109

5.1.1 Syntax of ACTILOG : 110
5.1.2 Semantics of ACTILOG : 112
5.1.3 OPENLOG versus ACTILOG : 113

5.2 Activation of goals for planning : 118
5.3 How to incorporate preferences into an agent : 119

5.3.1 From control strategies to time management : : : : : : : : : : : : : : : : 119
5.3.2 Towards a qualitative formalization of preferences : : : : : : : : : : : : : 121

5.4 PRIOLOG: the logical language of priorities : 124
5.4.1 The elevator controller for policy 4 : 128

5.5 USELOG: programming the usefulness criterion : : : : : : : : : : : : : : : : : : : 128
5.6 Discussion : 129

6 The Agent's Planning Mechanism 132
6.1 A brief history of automatic planning : 132

6.1.1 STRIPS (1971) : 132
6.1.2 ABSTRIPS (1974) : 133
6.1.3 WARPLAN (1974) : 133
6.1.4 NOAH (1975) : 133
6.1.5 NONLIN (1976) : 133
6.1.6 MOLGEN (1981) : 134
6.1.7 DEVISER (1983) : 134
6.1.8 Interval Logic Planner (1983) : 134
6.1.9 TWEAK (1987) : 134
6.1.10 O-PLAN (1985) : 136

6.2 Reactive Planning (1986-1989-1991) : 136
6.2.1 What is reactive planning : 136
6.2.2 Criticism of Reactive Planning : 137

6.3 The planning programs : 138
6.3.1 A reason to inhibit abduction in OPENLOG programs : : : : : : : : : : : 138
6.3.2 Making OPENLOG equivalent to ACTILOG : : : : : : : : : : : : : : : : 139
6.3.3 Inhibition of abduction and reactivity : 141
6.3.4 How is the inhibition of abduction achieved? : : : : : : : : : : : : : : : : 143
6.3.5 The Planning algorithms : 144
6.3.6 Dealing with time and time orderings : 144

6.3.6.1 Computing: X < Y in � : 146
6.3.6.2 Using before(X;Y;�) : 149

6.4 GLORIA implemented : 150
6.4.1 The elevator testbed : 150
6.4.2 Practical considerations in GLORIA's implementation : : : : : : : : : : : 152

6.5 Conclusion : 154

v

7 Conclusions 155

A Appendix 166
A.1 Proof of proposition about memory required by SC : : : : : : : : : : : : : : : : : 166
A.2 Proof of proposition about memory required by EC : : : : : : : : : : : : : : : : : 167
A.3 Proof of proposition comparing EC and SC : 168
A.4 Proof of proposition [ELEVA] : 170
A.5 Traces of the simulated elevator : 172

A.5.1 An agent that reacts to opportunities : 172
A.5.2 An agent that is faithful to its policy : 172

vi

List of Figures

2.1 A formalisation of a process of change of an object : : : : : : : : : : : : : : : : : 21
2.2 Kowalski's cycle predicate. : 22
2.3 A cycle for simultaneous thinking and acting : 37

4.1 The Observational and Abductive Event Calculus (OAEC) : : : : : : : : : : : : 96
4.2 The elevator controller in OPENLOG. : 101
4.3 Background theory for the elevator controller : 102
4.4 The history that the elevator knows about : 102
4.5 The background theory for policy 3 : 103
4.6 The elevator controller with policy 3. : 104
4.7 The path�nder in OPENLOG. : 107

5.1 ACTILOG Rules for the elevator controller : 113
5.2 Examples of PRIOLOG rules : 126
5.3 PRIOLOG rules used by the elevator : 127
5.4 Policy 4 for the elevator controller : 128
5.5 Example of USELOG rules. : 129

6.1 A World Block scenario for reactive planning : 142
6.2 The predicate before. : 148
6.3 Factoring of inequalities : 150
6.4 A compiled version of an OPENLOG program : : : : : : : : : : : : : : : : : : : 151

A.1 The initial situation: the elevator at oor 1 : 173
A.2 The elevator has been called to serve the �fth oor : : : : : : : : : : : : : : : : : 174
A.3 At oor 2, moving towards the �fth oor : 175
A.4 The elevator has been called at oor 4 : 176
A.5 The elevator reaches oor 4 : 177
A.6 The elevator serves oor 4 : 178
A.7 The elevator reaches oor 5 : 179
A.8 The elevator serves oor 5 : 180
A.9 Once again, the elevator is at the �rst oor : 181
A.10 .. and has to serve the �fth oor : 182
A.11 It starts moving upwards : 183
A.12 The button is pressed at oor 1 : 184
A.13 .. but the elevator continues it movement towards the �fth oor : : : : : : : : : : 185
A.14 Once again, it reaches the �fth oor : 186
A.15 And it serves the �fth oor : 187
A.16 Only then, it moves down to serve the �rst oor : : : : : : : : : : : : : : : : : : 188

vii

A.17 Just before reaching the �rst, the button is pressed at the fourth : : : : : : : : : 189
A.18 But this agent will serve those on its way �rst : 190

viii

List of Tables

2.1 A new cycle predicate : 26
2.2 GLORIA's cycle predicate : 28

3.1 The demo predicate : 54
3.2 The abductive procedure : 56
3.3 The demostration procedure for implications : 59
3.4 Processing each implication : 60
3.5 Processing one implication : 61
3.6 Top-level predicates for rewriting of equalities : 68
3.7 Rewrite Rules : 69
3.8 Rewriting implications : 69
3.9 Rewrite rules for implications : 70

4.1 The Syntax of OPENLOG. : 81
4.2 The Semantics of OPENLOG. : 83

5.1 Syntax of ACTILOG : 111
5.2 Translating ACTILOG rules into Integrity Constraints (Part 1) : : : : : : : : : : 114
5.3 Translating ACTILOG rules into Integrity Constraints (Part 2) : : : : : : : : : : 115
5.4 Translating ACTILOG rules into Integrity Constraints (Part 3) : : : : : : : : : : 116
5.5 Resource-bounded List Ordering : 122
5.6 Resource-bounded, context-dependent preferences between plans : : : : : : : : : 123
5.7 Resource-bounded, context-dependent preferences between actions : : : : : : : : 124
5.8 Syntax of PRIOLOG : 125
5.9 Syntax of USELOG : 130

6.1 The abductive procedure adapted for reactive planning (Part 1) : : : : : : : : : : 145
6.2 The abductive procedure adapted for reactive planning (Part 2) : : : : : : : : : : 146
6.3 Processing implications with contexts : 147

ix

Chapter 1

Introduction

1.1 Statement of the general problem

This thesis presents a language to describe \agents". An agent is, in principle, any entity
capable of intelligent and e�ective behaviour at problem solving.

There is an on-going debate in Arti�cial Intelligence (AI) and other disciplines as to what is
the best way of describing and building agents. Among the recent polarizations in that debate,
perhaps the most notable is that between those who support the traditional unembodied path
and the supporters of the embodied approach [Tur50].

The unembodied approach assumes that the principles behind intelligent behaviour (and the
structural components required for it) can be studied independently of particular realizations.
Those defending the embodied approach, on the other hand, argue that the actual structural
components of an agent determine how well it can achieve intelligent behaviour and that \[t]he
intelligence of the system emerges from the system's interactions between its components - it
is sometimes hard to point to one event or place within the system and say that is why some
external action was manifested" [Bro91a].

In a technical review of the debate [Bro91a], Rodney Brooks explains how the unembodied
approach has been the mainstream methodology of traditional Arti�cial Intelligence and how
it has been unable to deliver satisfactory solutions. He contrasts it with his own pioneering
work on the embodied approach to robotics, which has succeeded in building systems that
display intelligent behaviour in tasks like locomotion, path-�nding and manipulation of objects
([Bro86], [Bro91a]). Brooks' main point is that none of the robots built following this approach
had anything that could be considered a representational or symbolic system in the traditional
sense. Encouraged by these results, he goes on to suggest the rejection of any representation
and symbolic reasoning mechanism in the construction of agents.

In this project, we share with Brooks the belief that some important elements have been
missed or confused in traditional approaches to agent construction. However, unlike Brooks, we
do not believe there is something inherently wrong in symbolic and representational approaches.
On the contrary, we believe that the way forward to the understanding of the principles of agency
is by overcoming the limitations of the formal languages used to specify, analyse and program
agents. Wrong constraints on the languages may have caused these failures of the disembodied
approach, mainly by confusing principles with particular realizations.

So, the problem attacked in this thesis is how to describe the elements of an agent so
that they can be reasoned about in logical, implementation-independent terms. The logical
description must lend itself to formal analysis, and eventually to some form of automation that

1

would implement the agent.
This thesis may thus appear to be following the disembodied approach. There is, nev-

ertheless, an e�ort to incorporate in the descriptions those elements that Brooks and others
have identi�ed as lacking in previous attempts to characterize agency. Notions like reactivity,
openness, interaction (with the environment and with other agents), indexicality (references to
itself, the current position `here' and the current time `now') and bounded rationality can be
catered for in the agents' models presented in this document.

However, we probably do just the opposite to that which advocates of embodiment would
expect us to do. Throughout this thesis the reader will see a systematic attempt to avoid
(postpone) speci�c involvement with implementational decisions. The intention is to elicit the
abstract components of an agent and formalize them in a logical language. This formalization
must be su�ciently expressive to guide the implementation, not only of the computational
platform (e.g. whether it is a Von-Neuman computer or otherwise) but also of the sensorial and
e�ecting components that the agent might require. It should be an implementation-independent
description that can be used to support (machine or human) reasoning about the system.

Thus, the objective of this research is to explore ways of describing agents in logic. We have
pursued a logical model that captures the everyday intuition of what an agent is.

1.2 What is an agent?

The \aim of Arti�cial Intelligence is the creation of artifacts capable of intelligent behaviour"
[Isr93]. Although this is the widely accepted objective of AI, the emphasis of most research
projects seems to be on obtaining a characterization of intelligent behaviour as independent
as possible from the actual physical realization of the artifacts that display such a behaviour.
The research community is already employing some terminology that permits reference to those
abstract ideas. The term Agent, for instance, has been adopted to refer to an abstract entity
that \can be viewed as perceiving its environment through sensors and acting upon that
environment through e�ectors" [RN95]. It follows that an agent can be a robot, a program
being executed, an animal or a human being.

Some researchers have suggested that an interesting resource in the study of agents is the
attribution of mental capabilities to agents, similar to those possessed by humans. By adopting
this intentional stance [Den87], [MSae90], one obtains a more expressive theory in terms of its
explanatory and predictive powers (See [Lif90a], quoted in [Sho90]).

Consequently, we extend the previous de�nition to include those concepts which can be
useful to the understanding of behaviour of any kind of agent, including human:

An agent is an entity that can perceive its environment, can assimilate those
perceptions accommodating them into a memory device, can reason on the infor-
mation stored in that memory device, can adopt beliefs, goals and intentions for
itself and can actively pursue the achievement of those intentions, by appropriate
control of its e�ectors.

This de�nition commits itself to an embodiment including sensory, memory, processing and
e�ecting devices. However, it sets no constraints on the actual form or structure of those
devices.

Also, this de�nition is consistent the weak and the strong notions of agency discussed in a
recent review of the technological practice in Distributed Arti�cial Intelligence by N. Jennings
and M. Wooldrige [WJ95]. According to their weak notion, an agent must \have" autonomy:
being able to set itself in a environment and control its e�ectors for its own purposes; social

2

ability: being able to perceive messages from other agents and reason and/or act upon those per-
ceptions, perhaps generating messages itself 1; reactivity (discussed below) and pro-activeness:
being able to display goal directed behaviour and \taking the initiative" (also discussed below,
but an immediate consequence of our de�nition of agent).

Notice that, although the de�nition above is of a single agent with no explicit social abilities,
these abilities can be added to the "architecture" speci�ed by the de�nition. For instance,
Jennings-Wooldridge's strong notion of agency (.ibid) includes such things as mobility, which
could be considered a consequence of the agent's control upon its e�ectors, that is, being able
to properly move its body; veracity and benevolence: constraining its behaviour in multi-agent
settings which will also require that the agent be able to reason about other agents and their
attitudes (goals and beliefs), and rationality, a concept that will receive special attention (below
in section 1.3.4) because traditional formal models of rationality have problems \capturing" the
kind of rational capabilities of realistic, human-like agents.

1.3 Review of basic concepts in agent theories

1.3.1 Reactivity

Reactivity deserves special attention in the discussion about how to model intelligent agents. It
has been the centre of the above mentioned debate between advocates and opponents of Good
Old fashioned Arti�cial Intelligence (GOFAI). The main concern of the debate is the wide-
spread opinion that the techniques originally used in Arti�cial Intelligence, characterized by the
representation of knowledge are inappropriate or insu�cient to generate \the swift, dynamic
behaviour that implies real intelligence" [MSae90]. It has been suggested in that debate that
disregard of the notion of reactivity has been the main cause of a number of problems in
implementing e�ective, intelligent agents.

As has been mentioned, there are opinions suggesting that the best way of eliminating those
problems is by avoiding the use of representations (\let the world be its own model" [Bro91a]).
However, a purely reactive agent, like Brooks' robots, that simply responds to stimuli in its
environment, lacks some of the characteristics that can be attributed to an intelligent agent
(such as the capabilities for planning, hypothetical reasoning, introspection and reasoning about
other agents).

Some researchers have tried to bridge the gap between these two viewpoints. The work of
Genesereth and Nilsson[GN88] pioneered these attempts. Work by Kowalski et al ([Kow95],
[DQ94], [KS97]) originated the project to reconcile reactivity and rationality that inspired
this thesis. It was clear from those experiences that one had to make a systematic e�ort to
understand the notion of reactivity.

Reactivity as a property of an agent can be seen as having two facets:

1.3.1.1 Architectural reactivity

First is the aspect of real-time input processing. The system (agent) must be set up so that the
time to process the next input has an upper bound. The exhaustive, open-ended computation
of traditional AI systems is simply inadmissible because it would prevent the system from
responding to new, probably signi�cant inputs.

Real time input processing means that the system must allow the suspension of normal
processing in favour of a periodic checking for inputs, and the subsequent re-assuming of pro-

1Note that a language is required for that but it does not have to be a sophisticated system of written or
spoken symbols. A body language, based on \gestures" could be good enough.

3

cessing, presumably from the point where it was stopped. Algorithms that support this kind
of processing are re-entrant algorithms or any-time algorithms [DB88]. In the latter case (any-
time algorithms) there is also the requirement for the \quality" of the outputs being a function
of the time available to produce them (more time to compute! better quality in the solution).

Observe that eventual re-entering alone it is not enough. There must be a limit for the time
within which the system returns to accept more inputs. At that time, any on-going process will
be interrupted to check for data coming from the sensors.

Something similar occurs in time-sharing, computer operating systems. That interruptive
strategy, known there as preemptive scheduling [Tan87], is not su�cient to support real time
performance. An upper bound for the length of time between inputs is also required. This kind
of reactivity is labelled here as architectural reactivity.

1.3.1.2 Knowledge-based reactivity

A second aspect of reactivity is intimately linked to the knowledge structures in the agent's
knowledge base. As such, it is here called knowledge-based reactivity. If the knowledge of the
agent is highly optimized and compiled into, for instance, condition ! action rules, the agent
can react to inputs in a minimal time with a great chance of success because of its timely
response. In an extreme con�guration, those condition-action rules are stored as a table or as
a hardwired array that directly relates inputs from sensors to actions dictated to the e�ectors.

Unfortunately, success is not, in general, only a matter of timely response. There is also the
need for a proper response that is a function of the situation (state) in which the agent is and
the situation(s) in which it wants (or somebody else wants for it) to be in the future.

Condition! action rules are very e�cient because, in that extreme con�guration, there are
direct links between sensors and e�ectors. When the rules are \hardwired" or compiled into
some form of machine code, the response time is optimal. But this kind of con�guration is also
very rigid. The agent becomes a slave of its local environment. Inputs are always related to
the same basic reactions in the immediate future. An example of a reactive architecture that
relies on this strategy is Kaelbling and Rosenschein's situated agent ([KR90], [Ros89], [Kae87],
[Kae90], [RK95]).

If one wants to recover the exibility of run-time decision making and to provide for thinking
ahead by the agent, the immediate choice is to introduce a forward reasoning system that
processes the condition! action rules kept in a memory device and that maintains a record of
those conditions that activate the rules. Conditions need not be related to inputs only. They
can also be memory records set by special, internal actions. This is what is done in production
rules systems such as those implemented on the OPS5 platform [Bro85].

But internal actions are still not enough. If the system is to support reasoning on con�gu-
rations of the world at di�erent times, it must include some sort of time-stamping of conditions
and actions. This is one of the main features of Agent0 (Agent-Zero) a model of an agent (pre-
sented by Shoham in [Sho90], [Sho95]) in which conditions and actions in commitment rules
(Agent0 equivalents of condition ! action rules) all have time indexes.

Thus, the system must allow for the \triggering " of the conditions of its rules with newly
sensed and previously recorded information, and then it must mediate among those rules that
get \�red" to select the next actual action for the agent. When actions include changes to its
memory device (as in Agent0), the agent can explore more complex responses to the environ-
mental conditions by simulating other con�gurations of the world. The agent can then can
obtain complex combinations of actions to be executed in the non-immediate future.

4

1.3.1.3 Goals in reactive agents

One inconvenience of the methods just described is that when the agent tries to \think ahead"
it will face a combinatorial explosion in the number of \branches" to be explored. This problem
can be dealt with by making the agent a goal-oriented entity. Goals, together with conditions,
can be used to select the branches to be searched in the space of alternative plans of action.

Goals, though, have always been related to backward-reasoning systems. Typically, given a
goal stating a condition to hold or an action to take place in the future, the reasoning system
\backward-chains" related rules until it gets to the list of actions that the agent must execute,
from which it chooses the �rst. This form of processing is called regression. Backward reasoning
implies that the system must complete a plan to achieve its goals before it can take the the
�rst action in that plan for execution. This is, of course, inadmissible for reactive systems as
described above.

In this work we adopt a representational strategy (discussed in chapters 4 and 5) that
combines the reactive, forward-directed nature of condition ! action rules with the goal-
orientedness of traditional planners based on regression. Our agent (our agent's planner) will
still be reasoning backwards from goals to sub-goals, but the rules in the knowledge base are ar-
ranged so that the agent \moves forward" (also called forward planning or progression [Sha96])
in its search for actions to execute to achieve its goals. The rules themselves are of a more
general form that link conditions, actions and goals.

Kowalski [Kow95] explains that condition ! action rules can be subsumed by that more
general form if one restores the goals that have been put away by partial evaluation 2 [Hog90].

1.3.1.4 Combining planning and execution

From what has been said so far one can already deduce some of the functional components of
an agent. There must be a reasoning component (a theorem prover, for instance) that performs
the reduction of goals to sub-goals. As this process eventually decides the actions the agent
will perform to reach its goals, this component could be called the planner. There must be
a memory device, from which the planner gets the rules and the information to trigger these
rules. But the planner must also operate in close association with the component that controls
the e�ectors, which we call the executive.

There have been many attempts to combine a theorem prover, a database, a planner and
an executive to model rational agents ([Gre69], [All87], [GL90], [GN88] (and others mentioned
in chapter 6). Some more recent systems have tried to solve the problem of reactive behaviour
by combining modules for planning (or reasoning) and execution (for instance in PRS [GL90],
[RW91] and [PIB87]). leaving to the executive the task of reacting to certain inputs with
pre-established actions that require no planning.

However, in some of those systems there is a sharp (and sometimes ad hoc) separation
between the reactive and the planning components. As the relation between the reactive and
the reasoning component remains obscure, one does not know how the elaborate and complex
mechanisms of forecasting, communication and cooperation could be smoothly incorporated
into a rational and reactive system.

2For example, Kowalski says that the rule:

if it is raining then carry an umbrella (1.1)

can be rewritten as:
to stay dry; if it is raining then carry an umbrella (1.2)

.

5

1.3.2 Intentionality

The previous section suggests that goals can play an important role in an agent's description.
Yet, unlike conditions and actions, goals have no \physical grounding"3. Goals are \mentalistic"
constructs that we attribute to agents when we adopt an intentional stance (see above) to
explain their behaviour.

As a consequence of adopting the intentional stance for the construction of agents, the
question arises of which mental constructs are the best to characterize an agent. Several answers
are presented in the literature. Perhaps the most widely used are the so-called Beliefs, Desires
and Intentions (BDI) Architectures ([Bra87], [RG95]).

Without going into detail, let us just say that \intentions" may not be regarded as a primary
category as they can be derived from goals (desires) and beliefs. In this work, an intention could
be de�ned as an agent's goal which at a certain moment has the attention of the agent. It is
the one that if the agent decides to act at a certain time determines the action to be tried �rst
at that time. In chapters 2 and 5, we show what we mean by a goal having the attention of the
agent.

If goals represent actions or tasks to be performed in the world, there are two ways for the
agent to generate new intentions out of goals that are being reduced to subgoals. An optimized
theory of actions and properties of the world may allow the agent to reduce a particular task
to a a minimal set of plans, the �rst of which is the best plan to accomplish the original task.
This is the case in Expert Systems. In these systems, the conditions which provide optimality
are compiled into the object level rules that describe the knowledge about a certain domain.

The alternative to that is to allow the agent to reduce its goals to a greater, non-optimal
set of subgoals, and later to compare those alternative plans, to choose the best to suit the
circumstances. In this case, the rules that cater for optimality are placed at the metalevel, the
level of the descriptions that talk about the object level theory. Following this alternative, the
agent would somehow be reecting upon its goals, an operation that could be regarded as a
sort of introspection.

Of course, this description does not explain how the agent gets its goals (and intentions)
in the �rst place. What happens if at some point the agent has no goal at all. Here is where,
we believe, inputs from the environment play a key role. Kowalski [Kow94] has explained how
observations can be assimilated by agents, generating new goals by using integrity constraints
as condition ! action rules.

Having accepted the necessity of \mentalistic" abstractions, such as goals and beliefs, in
the analysis of agents, one then has the problem of how to represent those abstractions. Issues
like whether to use an object-level language only or to provide also for metalevel descriptions,
and how to represent actions and events, arise. This has turned out to be one of the greatest
challenges in Arti�cial Intelligence research, giving rise to one of its most proli�c sub-�elds:
Knowledge Representation.

The following section introduces a general framework to analyse representational strategies
and to justify the one selected in this thesis.

1.3.3 Representation of problems

A \problem" is the di�erence between the current situation and a desired situation. That
di�erence is relative to a particular agency. A problem is always a problem for someone. There
must be an agent (or a group of agents) that for some reason designates a problem as such.

3It is interesting to note that actions (events) were considered problematic in this respect until recent times.
In section 1.3.3, we discuss some of the problems related to action and event representation in agency theory.

6

Moreover, the criteria used to decide what could be a good solution to a problem is also subject
to that agent's relativism.

To solve a problem generally means to perform a set of actions in order to take some objects
from their current situation to the desired con�guration.

While acknowledging the elusive nature of the notion of problem, this work explores one
possibility for formalising the process of solving problems.

Certainly, this is not an original objective. To design machines to solve general problems
(as humans do) has been the main concern of Arti�cial Intelligence throughout this half of the
twentieth century and has involved a lot of work in the formalisation of reasoning.

However, the possibility of having, not just one automatic system, but sets of machines
interacting with themselves and with humans in a realistic environment to solve problems, is
a more recent concern much more di�cult to tackle than the original one. It is well accepted
that Good Old Fashioned Arti�cial Intelligence o�ers no standard solution to the problem of
designing a device that can solve problems while embedded in a dynamic environment.

For some people (see, for instance [Hew91]) the �rst casualties in the switch from central-
ized, monolithic systems to dynamic and multi-agent systems has been those systems based on
deduction. For others any kind of system based on symbolic representation is inappropriate for
modeling agents acting in a changing world ([Bro86], [Bro91a]).

In this thesis, we present arguments against those suggestions. An attempt is made to show
that logic can be used to describe, model and implement reasoning agents that can function
properly while embedded in changing environments.

The second technical aim of this work is to show how to specify a problem related to a
changing universe and how to obtain its solution as a logical consequence of such speci�cation
and the set of rules embodying the knowledge required to solve it.

1.3.3.1 The classical notion of problem

The di�erence between the current situation and the desired or intended situation which, as
has been said, characterizes a problem, can be made precise in two di�erent ways:

1. One can describe the properties (of objects and agents) that hold at the initial and the
�nal situations (e.g. holds(at(me, work), now) and holds(at(me, home), later) or,

2. One can state the intention of performing a particular action (e.g. go(me, work, home,
[T1; T2]) and now < T1 < T2 < later).

As it stands, that is the notion of a problem that has guided Arti�cial Intelligence since the
early works on the subject. There exist many classical approaches to planning and problem
solving based on that simple idea (for instance, [Kow79b], [FN71]) all of them built upon an
almost standard formalization. Pednault de�ned it as:

De�nition0 A classical planning problem is a quadruple of the form <W;A; I;G >,
where:

1. W is the set of all possible states of the world.

2. A is the set of allowable actions.

3. I is the set of possible initial states.

4. G is the set of acceptable goal states.

7

A solution to a classical planning problem is a sequence of actions a1a2: : :an
that will transform the world from any of the possible initial states into one of the
acceptable goal states [Ped87].

Traditional semantics for this kind of formalization say that \a state represents everything
that is true of the world at a given point in time between one action and the next [Ped87]".
This de�nition of a state leads naturally to the notion of a situation as a snapshot of the world,
which has become the semantic core of the most widely employed formalism for knowledge
representation in AI: The Situation Calculus [MH69]. Situations in the Situation Calculus
can be de�ned as \individuals denoting intervals of time over which a fact holds or does not
hold, but over which no fact changes its truth value. This latter property allows us to speak
unambiguously about [which] facts are true or false in a situation" (Hanks and McDermott in
[HM87]). Notice that for this to make sense the world must stay unchanged in order to de�ne
a situation.

Thus, the �rst, normally unstated, traditional assumption is that the relevant world cannot
be in a continuous state of change [Gal95]. If one ignores this possibility then there is another
immediate practical objection to the situation-based approach. It is that in any real application
this approach is very likely to yield an intractable system, given the number of actions that
should be considered even when those included are those that could change that world (see
[Gin89], also discussed in chapter 6).

Yet, it is not only that the solver has to consider a huge number of world-changing actions or
events. The really strong assumption is that the planner can somehow \control" those actions
and decide its presence and its location within a plan, based on an assumed well-known set of
e�ects that each action must have.

On the contrary, conventional wisdom says that the actual e�ects of an action are normally
unknown or known with a degree of uncertainty before the action is executed and even after its
execution. It is precisely because of this that adequate feedback is so important for a successful
controller.

Furthermore, in classical semantics, actions are not allowed to be concurrent. Paralellism,
and with it any synergistic e�ects that might arise from the simultaneous execution of actions,
is ruled out or emulated by an early commitment to a sequential ordering.

This is de�nitely denying the real nature of the interaction between the executor of an
action and the circumstances (environment) in which the action is executed or the purposive
interaction between two actively independent entities. (consider two agents pushing an object
in di�erent directions, each one applying enough force to overcome the friction with the oor.
The trajectory of the movement would be di�erent if those forces are applied simultaneously
instead of sequentially).

Thus, classical approaches face potentially high complexity in their representations, and yet
they seem insu�cient to capture primary intuitions about our changing universe.

Of course, these problems are not new. Researchers have been suggesting solutions to the
problem of modelling action and change for a long time, no only in AI, but also in philosophy
[Res66], computer science [Mil89], and other disciplines.

Within AI, interesting ideas have been presented as ways of patching the semantics of First
Order Logic to cater for such dynamic worlds (including those with concurrent activities).

Pednault [Ped87] for instance, suggested, after borrowing the notion fromMcDermott [McD82],
the idea of using a chronicle as a record of \all that is true, was true, and will be true of the
world, from the beginning of time through to the end of time"(.ibid) What Pednault was doing
was an early attempt to reinterpret what situations are, in an e�ort to follow McDermott in

8

going beyond the limitations of state-transition models (those that interpret situations as global
states or snapshots of the world) and so being able to represent paralellism.

Similarly, Lansky [Lan87] emphasized the \duality between events and states". The work in
the GEM concurrency model [LO83] incorporated several original notions to problemmodelling.
There, Lansky talked about events as rei�ed entities, following the proposal of Davidson [Dav67]
(see below).

Lansky also emphasized the notion of location through which the events are always related
to \logical locations of occurrence". Events so structured, he said, help to organize the ways a
domain is described.

But, the key contribution in work such as Pednault's and Lansky's is the switch from a
conceptualization of events \solely in term of [..] state-changing functions" [Lan87] towards an
event-based approach, where \the state of the world is represented in terms of the set of events
that have occurred up to that moment"(.ibid).

One of the reasons this is helpful is because the resulting representations are inherently
partial. One only needs to indicate those events relevant to a problem to restore the states of
the world that condition the problem.

The inuence of the philosopher Donald Davidson is all-pervasive in this \event-oriented"
community. In a series of papers (collected in [Dav80]) Davidson presented convincing argu-
ments for treating events as things that can be talked about in logical descriptions. That is
rei�cation of events. In \The Logical Form of Action Sentences" ([Dav80], page 118 and page
136)4, it reads:

[..] For example, we would normally suppose that 'Shem kicked Shaun' consisted
of two names and a two-place predicate. I suggest, though, that we think of 'kicked'
as a three-place predicate, and that the sentence to be given in this form:

9X(kicked(shem; shaum;X)) (1.3)

If we try for an English sentence that directly reects this form, we run into
di�culties. 'There is an event X such that X is a kicking of Shaun by Shem' is
about the best I can do, but we must remember that 'a kicking' is not a singular
term. [..] nothing now stands in the way of giving a standard theory of meaning
for action sentences, in the form of a Tarsky-type truth de�nition; [..] that is, of
giving a coherent and constructive account of how the meanings (truth conditions)
of these sentences depend upon their structure. [..] there is a lot of language we
can make systematic sense of if we suppose events exist, and we know no promising
alternative.

The key contribution of an event-based description is, according to Davidson himself, that
\it explains more, and it explains better. It explains more in the obvious sense of bringing
more data under fewer rules"(.ibid.). It turned out that explaining more with fewer rules has
important computational advantages, as is explained below in the context of the so-called frame
problem.

The e�orts to develop alternatives to situation-based semantics have continued. Hayes
[Hay85] appeals to the concept of a history as a way of dealing with the frame problem. Recently,
Sandewall [San93] has re-introduced the analogous notion of a chronicle as part of a general
semantics framework to analyse logics of change. Also, see Pelavin in [Pel91] for another attempt
to address the limitations of the state-change model for planning and for a review of logics that
were developed for that purpose.

4We have changed the notation to a Prolog-like form consistent with the one used in this document.

9

Advocates of the Situation Calculus [Lif90b] (page 247) have acknowledged its limitations
and some have even started to re-interpret \situational" terms in the notation of SC as \histo-
ries" [Rei96].

Trying to pro�t from those experiences, the event-based conceptualization is used in this
project, perhaps in a more radical way. Most of the inspiration of this work comes from the
experience accumulated with the Event Calculus [KS86], a representational framework that has
been shown to be useful for reasoning about change.

The Event Calculus has been proved to be as expressive as the Situation Calculus in some
important respects (see [KS94]).

Both formalisms have been used to tackle the frame problem (FP): in modelling a chang-
ing world, how to cater for those properties that do not change when some event happens; the
rami�cation problem: how to deal with the implicit consequences of actions and events; and
the quali�cation problem: how to de�ne the circumstances under which an action is guaran-
teed to succeed [RN95]. (Shoham [Sho89] suggested that these problems are the manifestation
of a more general one: the extended prediction problem).

The frame problem (and its relatives) has also been characterized as the problem of inertia
(or the problem of persistence): In a given language, how to state the fact that certain properties
do not change unless some action makes them do so (the representational frame problem) and,
once a representation has been adopted, how to infer changes and persistency of properties
from it in an e�cient way (the inferential or computational frame problem). The language of
�rst order logic cannot be used on its own for that purpose because, among other things, it
lacks the required bias towards inertia. First order logic does provide, however, an often denied
resource to deal with non-monotonicity: if-and-only-if de�nitions which we use in this thesis
(see chapter 3).

There has been an enormous volume of research concentrated on the Frame Problem since
1969, when it was �rst stated (See [MH69], [McC86], [HM87], [Bak91], [Lif91], [Kar94], [San94],
[Sch94], [Sha97] in that order for a historical perspective). The aim (the desired solution) seems
to be a general, domain independent language to model the frame problem and to specify the
architecture that solves it. However, the emphasis so far has been more on building that bias
for inertia into some logical language (syntactically or semantically) so that a proof procedure
for that language can compute only the \intended" results. This has caused the production
of a number of languages and nonmonotonic logics that can be used for particular classes of
problems, but that do not have enough expressive power to describe other classes.

The Event Calculus, on the contrary, provides a natural way of representing the so-called
frame axioms that address the frame problem (as we show in chapter 4). And because it is de-
�ned in �rst order logic, one can employ if-and-only-if de�nitions to deal with non-monotonicity.
This observation and the previous remarks about the limitations of the classical approaches are
the preliminary reasons for adopting an event-based approach to modelling for problem solving
in this research project. This is done in chapter 4.

Before that, let us explain why we believe this approach is more general than the one based
on state-situations only.

1.3.3.2 The notion of problem revisited

If one considers the classical idea of what a problem is (discussed in the previous section), it is
clear why the state-situation approach was so attractive to the pioneer researchers in AI who
tried to design problem solvers.

According to that approach, to de�ne a problem, all that is required is to produce one
description of the initial situation and another of the �nal situation.

10

Each description is a complete account of everything that is relevant to the problem: objects,
attributes of those objects, agencies and especially, properties (of those objects and agents
involved in the problem). Actions are simply (state)-transitions between pairs of descriptions.

These descriptions have to be \su�ciently" comprehensive to allow the problem solver to
\rebuild" the picture of the world corresponding to each state-situation. Given these two
pictures and a set of transition rules, the problem solver is responsible for \�lling the gap"
between them with perfectly ordered, intermediate pictures connecting the original two (i.e. a
list of actions).

However, in a more realistic setting, when an agent is faced with a problem the following
conditions normally hold:

1. Instead of an initial, global picture describing the environment at the time when the
\problem starts", the agent normally has a few records of events scattered over di�erent
points in the past. From that record of events and its knowledge about persistence of
properties (initiated by those events), the agent itself infers which properties hold and
which do not hold in the so-called current state. So will it do with the �nal state.

2. The problem-solver agent is not forced to generate a perfectly ordered set of situations.
A set of actions that could (in a normal world) start the desired properties, a minimal
ordering of those actions and an account of the persistence of those properties would be
enough as a plan. The agent reserves the right to update that plan while it is trying to
execute it (by re-ordering or adding new actions as required by changes and updates from
the environment). In this sense, the problem that the problem solver is trying to solve
remains open.

To be precise about these two conditions and to clarify the concepts involved (like minimality
of ordering, reordering and addition of actions and initiation and termination of properties), a
new formalization of the notion of problem is given here:

De�nition 1 A problem P, for an agent acting in an unpredictable environment, can be de-
scribed as a tuple P =< T ;G; IC > where:

� T is a structured theory consisting of an historical record of the relevant world (what
events have happened, including actions that have been performed) H and a description
K, of how (complex and atomic) actions a�ect objects and uents5 and how uents persist
over time.

� G is a set of goals that must be achieved at given points in time by those agents involved.

� IC is a set of constraints upon possible extensions �i of H. Being an extension of
H, �i will include, in principle, all actions that should be performed by all the agents
involved. However, an agent reasoning about P will have to reduce/link every external
event to actions under its own agency, in order to use �i as its individual plan to solve
P.

In the traditional model theoretical semantics of logic, a solution to a problem P can be
characterized by saying that T , G, IC and some �i extending H must satisfy:

T [�i j= G ^ IC (1.4)

5A uent is a property that changes as time passes.

11

However, because �i represents a plan to achieve IC and G, one has to be more interested
in the proof-procedural characterization of logical consequence that permits the generation of
those extensions �i:

T [�i ` G ^ IC (1.5)

As it was suggested, a plan �i will become the solution to the problem P once the agent
has successfully executed it.

This formalisation is more general that the classical one (see De�nition 0 above) because:
1) the current state can be restored from H, 2) the �nal, wanted state can also be constructed
from G and IC, 3) plans correspond to extensions �i and 4) transition rules are subsumed by
axioms and predicates in K. In addition, the new formalisation allows for the openess and the
minimality of ordering mentioned above.

De�nition 1 can be further re�ned by combining G and IC in the set IC (or G) itself. To
allow for this, a semantical extension is required. As integrity constraints are normally expressed
as conditional sentences, stating conditions that must be ful�lled by a knowledge base (here T),
it is intuitively appealing to regard them as conditional goals. Not only the agent has to strive
to achieve its non-conditional goals, but it also has to cater for those goals with conditions.
This movement also provides a beautiful semantic for activation of goals. Whenever all the
conditions of a conditional goal hold, according to T and its extensions, the agent is compelled
to pursue the unconditional goal represented by the consequent (the goal being activated).

All these abstractions are given concrete realizations in chapters 3, 4 and 5.

1.3.4 Bounded rationality

The previous formalisation of problem is intended to be part of a dynamic setting for problem
solving. A problem-solver agent is regarded as an entity that has to deal with deduction,
not for one �xed theory as usual, but from a continuous string of \theories" that change to
accommodate new information from the external world.

In such a dynamic setting, an agent must be prepared to abandon a particular plan to solve
the problem that has turned out to be infeasible in the light of the latest evidence. The current
state can change while the agent is engaged in planning. What was derivable at some point as
a feasible extension to the history can become inappropriate at some later point in time.

The agent then needs to reason about what can be derived from its knowledge at particular
points in time. What were its beliefs, goals and inputs at certain points, whether a plan can be
deduced for every goal and what was the outcome of every action that has been attempted to
solve a particular problem.

But, what is more important, the agent needs to reason about the process of deriving plans
itself: an agent must be able to decide when to stop reasoning because the time has come to
act.

Some of those needs have been traditionally addressed at the speci�cation level by extending
the logical language with several \modal" operators to refer to, for instance, goals and beliefs
(See [Moo95]) Combined with some modal temporal logic, those languages are very attractive
due to their naturalness (descriptions are closer to natural language). However, the enriched
semantics required by those languages (to accommodate the modal operators) inevitably intro-
duces the omniscient agent problem6 contradicting any attempt to model a realistic agent.

Kowalski has argued [Kow94] that the real problem is that the notion of logical consequence,
establishing what can be derived or deduced from what is, in those logics, disconnected from

6An agent must know all the logical consequences of the knowledge it has. This is also known as Perfect
Rationality.

12

the computational aspect of actually deriving those consequences. It can be said, for instance,
that an agent cannot compute all the consequences of its knowledge simply because it has not
got su�cient resources (time or storage) required to carry out the computation. An agent is a
resource-bounded entity in the widest sense7 .

All these issues can be elegantly addressed if one distinguishes between an object language
employed to describe the \constituents" H, K, G and IC of the problem P to be solved, and
a meta-language that \puts together" those constituents of P and speci�es the agent and
its derivability relation (`). When the distinction is established, one can amalgamate both
languages to provide an overall speci�cation of the whole system.

These ideas require further clari�cation. This thesis builds on a variety of results from
logic and logic programming. The most basic of those results are in the theory of problem
solving developed in [Kow79b] and [BK82]. In [Kow79b], Kowalski showed how the notion of
provability of a language L1 - how to deduce what sentences follow from what other sentences
in that language - could be formalised by means of another language L2, acting as the meta-
language of L1.

\Given any two languages (i.e. systems of logic with their associated proof
procedures) it may be possible to simulate the proof procedure of one language
L1 within the other L2. The simulation is accomplished by de�ning in L2 the
binary relationship which holds when a conclusion can be derived from assumptions
in L1. Sentences in L1 need to be named by terms in L2 and the provability
relation needs to be named by a binary predicate symbol, say demo8, and de�ned
by means of sentences [DEMO]9 in L2. Provided that the de�nition [DEMO]
correctly represents the provability relation of L1, simulation by means of [DEMO]
in L2 is equivalent to direct execution of the proof procedure of L1. L2, the language
in which [DEMO] simulates L1 is a meta-language for the object-language L1. To
serve as meta-language, L2 needs to possess su�cient expressive power. For any
object language the language of Horn clauses is already adequate" [Kow79b].

Moreover, Kowalski also explains(.ibid) that, although in the amalgamation of an object-
language with its meta-language, one has the \impossibility [..] to completely formalise the
notion of provability"10, the amalgamated language \is more expressive than the object language
alone".

Here we take advantage of that expressiveness. An amalgamation is used to describe the
architecture of a generic agent and the knowledge that agent manipulates. The architecture
includes a formalisation of the reasoning mechanism of the agent - the derivability relation
that this agent employs - which is described in the meta-language. The knowledge is then
\captured" by a description in the object-language. The amalgamation provides the means to
describe systems with one or more agents interacting in a changing environment, among other
things.

For instance, if agent is the \name" of the theory describing the agent in the meta-language,
and its derivability relation is represented by the (meta-)predicate demo, the following provides
a criterion for correctness for the agent's reasoning mechanism:

if agent ` demo(R; dT e; d�oe; d�fe) then Comp(T) j= �o $ �f (1.6)

7To distinguish it from the resource-boundingnotion suggested by H.A. Simon in [Sim55], sometimes regarded
as the narrow sense of resource bounding [HMP92].

8In [Kow79b] is demonstrate.
9In [Kow79b] they are called Pr.
10A result analogous to Godel's incompleteness of formal arithmetic and whose proof is also shown in [Kow79b].

13

where T is the agent's knowledge base (K[H), �o represents a starting set of goals (including
IC) and �f represents a new set of goals (which also includes IC) computed from �o with the
amount R of resources available for computation. Notice that the expression d�e refers to the
name of the object-level sentence �, as is written in the meta-language. Comp(T) refers to the
Clark completion [Cla78] of T, which provides a well-de�ned closed world assumption.

Basically, T and �0 are being \frozen" while demo is computing �f . This computation can
be suspended when the agent runs out of \resources". While this computation is suspended,
new information can be assimilated and so demo will probably have new parameters T 0 or �0

0

when computation is resumed.
The fundamental point is that all these concepts can be described in the metalanguage

itself, giving a declarative, logical account of the agent's cognitive and computational behaviour
through time. This is achieved by the de�nition of the cycle predicate given in chapter 2.

In establishing relation 1.6, it is assumed that demo correctly represents the agent's deriv-
ability relation (`). It is worth noting, however, that demo represents a resource-bounded
version of the derivability relation. Thus, re-phrasing the condition for correct representability
stated in [Kow79b] and [BK82], demo correctly represents ` if and only if:

for all �nite sets of sentences A in the agent's knowledge base (T in a problem)
and single sentence B (A and B in the object language),

A ` B i� 9R (agent ` demo(R; dAe; dBe; dftruege)) (1.7)

1.4 Statement of the speci�c problem

After that summary revision of the topics related to the modelling of agents, we are in the
position to precisely state what the purpose of this thesis is.

The objective of the thesis is to describe agents by means of logical theories. An important
consideration is that these logical theories should be some generalised form of logic programs.
Like normal logic programs, the logical theories of agents must have an intuitive declarative
reading and also a procedural interpretation to guide the implementation of automatic devices
and software.

To solve the problem, we employ the amalgamation of object and meta-logic programs to
model notions like beliefs, goals and agent's \mental" activities. We also incorporate less usual
notions such as reactivity, openess, activation of goals and preference encoding, that have proved
to be essential in realistic models of agents. Four (generalised) logic programming languages to
program agents with those features are presented. We also explore an event-based approach11

to deal with the modelling of dynamic universes.
To illustrate the sort of things this work could be applied to let us introduce an example

that has been adopted as a benchmark in this and other research projects.

1.5 A motivating example: A program for an elevator

Benchmark examples are common in Arti�cial Intelligence literature. Researchers use them to
reduce the complexity of some problem, clarify the general aspects involved and then focus the
attention on those topics that are relevant for potential solutions.

11Which does not necessarily mean the Event Calculus as it is discussed in chapter 4.

14

The example shown here is borrowed from [LRL+95] where a GOLOG program is used to
solve the same problem. We have kept the notation almost12 unchanged to retain the simplicity
of that example and to facilitate comparisons between our solution and theirs.

The solution presented �rst in chapter 2 is a family of logic programs written in the standard,
PROLOG notation, and later (chapter 4) by means of some auxiliary programming languages.

1.5.1 What is the program for?

The purpose of the program is to control an elevator. The problem of controlling elevators
has been approached by control engineers in many ways. There are well-known solutions to
critical aspects, such as automatically (and safely) parking the elevator when energy power
gets interrupted by some unanticipated event (like �re). Yet, it still seems to be an unsolved
problem because of the diversity of optimality criteria. There are several variables that can
be optimized. Some of them interfere with others, and then the problem is how to balance
the arising trade-o�s. Observe that this has to be done constantly over the working hours of
the device, while the elevator keeps providing an adequate service for a highly uncertain set of
clients. These are some of the criteria to be optimized [SMM96]:

� minimization of average waiting time per passenger,

� balancing of the boarding rate,

� minimization of the average service time,

� minimization of energy consumption by reducing ight time and the
number of elevator starts.

Thus, controlling an elevator seems a natural task for an agent (or set of agents, in a building
with more that one elevator). We believe13 that such agents can be programmed by means of
an appropriate logical architecture. In order to build the controller-program, [LRL+95] employs
several abstractions that we preserve. The elevator is an agent that can perform the following
primitive actions:

� up(N): Go up to oor N,

� down(N): Go down to oor N,

� turno�(N): Switch o� the call signal at oor N,

� open: Open the door, and

� close: Close the door.

So, the agent will keep records like: do(self; up(5); t1; t2), meaning that the elevator has
gone (if t1 and t2 are past time-points) or is planning to go (if t1 and t2 are not both past
time-points) up to oor �ve.

In addition, the agent knows about the following uents:

� currentoor(C): the current oor is C14,

12Except for the current oor uent.
13A belief that is shared by some of those who analysed this example before. See [LRL+95].
14Levesque et al. use current floor(S) =M to say that the current oor is M in situation S. Instead of that,

we say holds(currentfloor(M); T) where T could be seen as referring to the equivalent of a situation in our
framework.

15

� on(N): the signal-call is on at oor N. Observe that, for simplicity, we treat all the calling
buttons (outside the elevator, to fetch the caller, but also inside, to indicate destinations)
as on(N) signals. Once the button is pressed, the signal turns on and stays so until it is
disabled by turno�.

Accordingly, the agent believes that the current oor is the fourth oor if it can demonstrate
holds(currentfloor(4); Now) with the information and the rules in its knowledge base at that
time. Now is a (meta)variable whose value is equal to the current time according to the agent's
internal clock. So, the agent should prove that:

demo(R;AgentKB; fholds(currentfloor(4); Now)g; ftrueg) (1.8)

holds for some R. Provided that R is small enough (so that the agent can actually �nish that
computation on time), the agent will then be able to consider the consequences of this belief for
its future plans. The uent on(5), that represents the changing property of the calling button
at oor �ve being on, is treated in the same way..

In [LRL+95], nextoor(N) is also designated as a uent (the next oor to be visited is N).
We choose not to use this uent. On the other hand, we add the exogenous15 action turnon(N)
(to press the button at oor N) that \explains" on(N)16.

1.5.2 Policies of optimal behaviour for the elevator

From the list of variables that can be optimized (shown above), we have constructed a progres-
sively more complex set of optimality criteria. The policies are:

1. Serve each oor for which the call-signal is ON, in a FIFO fashion (�rst to
call, �rst to be served) . In chapter 2, section 2.3.2 this elementary policy is embodied
in a simple set of integrity contraints and then used to illustrate the agent's architecture.
Later, in chapter 4 a more sophisticated solution is described and compared with those
given in previous works.

Notice that this policy could be considered \fair" by some elevator users, but it can be
terribly ine�cient and energy wasting.

2. Serve that oor for which the signal is ON and which is closest to where the
elevator is at that moment. This policy is speci�ed by the formula:

holds(nextfloor(N); T) �
(holds(on(N); T) ^ holds(currentfloor(C); T)
^ 8M (holds(on(M); T) ! (jM � Cj � jN �Cj)))

which is equivalent to the one that appears in the speci�cation in [LRL+95], but is ignored
in their implementation. This policy could be implemented as a program in more than
one way in the framework here presented.

The problem with this policy is that it leads to the possibility of stagnation in the services:
A number of neighbouring oors can monopolize the elevator inde�nitely if there is high
enough demand for them. So, this policy must be rejected.

15An action performed by other agents.
16Observe that although the elevator agent cannot perform the action turnon(N), it can reason about such

an action being performed by other agents.

16

3. Move to serve any oor requested so long as that does not imply a change of
direction when there are still more oors to serve in that direction. This more
realistic and common policy is very easily obtained by exploiting some non-monotonic
deductive mechanisms (as explained in chapter 4). The interesting thing is that this
policy can be implemented without using a nextoor, as Levesque et al did (.ibid).

4. Set a deadline for every call and follow a route of \minimal energy", provided
that it does not violate any deadline. This more sophisticated policy requires an
elaborate reasoning mechanism. We employ the expressive power of the amalgamated
language to o�er a general solution of this kind in chapter 4.

Eventually, we will be able to prove the following proposition (chapter 4):

Proposition 1 Let ELE PLAN be f do(self,up(5),t4,t5), do(self,turno�(5),t6,t7), do(self,open,t6,t8),
do(self,close,t9,t10), do(self,down(4),t11,t12), do(self,down(3),
t12,t13), do(self,open,t14,t15), do(self,turno�(3),t14,t16), do(self,close,t17,t18),
done(self,park,t18,t100) g.

Let INEQ = ft0 < : : : < t100g, where the ti are time-points. Let ELE T be the theory
with the rules that tell how the agent should behave to control an elevator. ELE T also includes
information such as: holds(currentfloor(4); t4),
do(somebody; turnon(5); t1; t2), do(someone; turnon(3); t2; t3).

Then:

ELE T [ELE PLAN `i� done(control; t4; t100) [ELEVA]

where done(control; t4; t100) stand for the goal: starting at time t4 and �nishing at t100 the
agent must have done what is required to keep the elevator under control. That is, serving
every oor that has been requested by a call, according to the policy that has been established
by the employer of the elevator controller.

Observe, however, that the interesting thing for us is not only to prove [ELEVA], but to
specify the program that does the proving so that the agent can use such a program as its
planner. That is the objective of chapters 3 and 6. This chapter describes an algorithm
for planning that can admit (input) information of the forms holds(currentfloor(4); t4) and
do(somebody; turnon(5); t1; t2) to be updated into the the theory (ELE T) virtually at any time
in the planning process. Similarly, the do atoms in ELE PLAN are progressively generated,
most of them at di�erent re-entrances to the planner process (i.e. after suspending planning to
interleave this process with some other activity like the aforementioned assimilation of inputs).
Chapter 3 will also explain how the planner algorithm is based on an abductive proof procedure.

1.6 Overview of the rest of the document

The information in the rest of this thesis is organized as follows:

Chapter 2 describes a model of an agent based on Kowalski's [Kow95] cycle predicate. The aim is
to provide an architectural speci�cation of agents that combine reactivity and rationality.
The resulting general speci�cation of an agent (called GLORIA), is used to describe a
�rst, simple solution for the elevator controller.

Chapter 3 formalises the agent reasoning mechanism (the predicate demo) as an abductive proof-
procedure, following the speci�cation of the i� proof procedure proposed by Fung and
Kowalski ([Fun96], [FK96]).

17

Chapter 4 presents a systematic approach to program agents. The chapter introduces OPENLOG,
a logic programming language for writing programs that can be use for planning for
problem solving. This chapter also introduces the idea of a background theory, formalising
those concepts introduced above and completing a temporal and common-sense reasoning
platform for agents' programming. A solution to our benchmark example is discussed in
this chapter.

Chapter 5 introduces three more logic programming languages. ACTILOG can be used to describe
conditions for activations of goals in an agent. PRIOLOG and USELOG can be used to
embed heuristics for assigning priorities and utilities to an agent's goals.

Chapter 6 shows a brief review of the work in automatic planning in AI and explains how the general
abductive mechanism presented in chapter 3 can be adapted for planning. The chapter
also discusses a prototypical implementation of the agent described in the thesis.

Chapter 7 summarizes the thesis.

18

Chapter 2

Logic-based Agent Architectures

This chapter presents a speci�cation of an agent architecture written as a logic program. The
speci�cation is based on a basic strategy to represent change and time, which we discuss in
the �rst section. We then describe the functional components of an agent that de�ne the
architecture. This is followed by a �rst approximation to our benchmark example: the elevator
controller, which serves to illustrate how the architecture works. The chapter ends with an
analysis of the limitations and possible extensions of the architecture.

2.1 The representation of time in modelling an agent

Time is always an important element in a description of a system. Agents do not escape this
rule. A description of what an agent is or does normally involves an account of time and of
how properties change as time passes. A formal description of an agent usually includes a
representation of time embedded in the language of the formalization (as in [GN88], [Kow95],
[Sho95] and [RG95]).

The representation of time has been the subject of many interesting studies in Logic and
Arti�cial Intelligence. Galton surveys fundamental ideas and the latest contributions in [Gal95].
He says that the simplest account of change can be obtained by attaching a term representing
time to every predicate denoting a property that changes with time. For instance:

:cold(london;0 31=07=960) (2.1)

and
cold(london;0 31=12=960) (2.2)

are each a (partial) account of the state of the world on the respective dates and, together,
an account of the change of temperature that has taken place in London between these dates.
Galton (.ibid) also explains that this viewpoint, in which change is a derived notion (change
is always a change of states), the basic notion is \state", and a state is a function of an
\independent" time variable, can be traced back to the work of Galileo and Newton.

Despite its limitations (as discussed in chapter 1), the state-based model of time and change
can give a good approximation of how objects and agents change. One can have a description of
change based on extensional records of states like those above, which say that the temperature
in London changed between the two dates. In addition, one can have an account of a process
of change such that, given an state (say, the temperature of London at some point in time) one
can deduce other states. Such an account is provided by the following de�nition:

19

temperature london(Temp; T + 1)

 change temp london(Temp; Temp0; T; T + 1)

^ temperature london(Temp0; T)

(2.3)

together with the proper de�nition of the predicate change temp london.
It is important to note that the fundamental notion here is that of a process. A process

is a sequence of changes of states. The sequence can be �nite or in�nite and is always related
to an invariant of an object. In the example in 2.3 the invariant is temperature london, which
denotes the attribute temperature of the object weather of London. The description above is
saying how the temperature of London changes from an instant to the next. In this sense, the
de�nition in expression 2.3 above, is a description of the process of change of the temperature
of London.

Thus, behind the description of an object there is a description of a process: the process
that changes the object. By making explicit the notion of process one can easily introduce time
into the representation of the object. And then, with object's states indexed by time, one can
build a completely declarative account of how the object changes.

Observe that, if we describe the (state of the) object in a theory (a set of axioms), then the
process should describe how that theory changes. And if it is so, a description of the process
would be a metalevel description, i.e. a description of how the description of the object evolves.

It is also interesting to observe that, although Object Oriented Modelling and Programming
techniques rely on the \simulation" of objects by mean of processes, the processes themselves are
rarely accounted for in a formalisation (see, for instance, McCabe's Logic & Objects [McC91]).
Even if time is not made explicit, by considering the process of change of the object one can
reason about the e�ect of sequences of messages sent to the object.

Take, for example, a common object like a stack, described as a logic program with the
following clauses:

% stack_process(StackState, Inputs)

stack_process(_, []).

stack_process(S1, I1) :-

accepts_msg(S1, I1, S2, I2),

stack_process(S2, I2).

accepts_msg(S1, [push(Item)|Rest], S2, Rest) :-

S1 = [stack(Content)],

S2 = [stack([Item|Content])].

accepts_msg(S1, [top(Item)|Rest], S1, Rest) :-

S1 = [stack([Item|_])].

Any PROLOG system using that logic program will correctly answer the query:

? stack_process([stack([])], [push(10), push(20), top(X)]).

a�rmatively, with X = 20, whereas to the query:

20

process(Do ; T) changes(Do ; D1; T; T + �)
^ process(D1; T + �)

Figure 2.1: A formalisation of a process of change of an object

? stack_process([stack([])], [push(20), push(10), top(X)]).

the system will also answer correctly that, in this case, X = 10. Time is, in this description,
hidden behind the list structure of the inputs. That is, the assumption that inputs are ordered
in the list by their \arrival times". However, the point is made that correct reasoning about
the evolution of the stack through time is possible with a \theory" like the one in the logic
program above.

Thus, a description of an object that displays a behaviour along time can include a de�-
nition of its process of change which can be used to explain and to reason about the object's
behaviour. Such de�nition can be stated in the language of logic programming, by including,
in the axiomatisation, a clause similar to that in �gure 2.1, where Do and D1 are descriptions
of two di�erent states of the object, T is a time point and � is a positive number. This must
include, of course, a description of how state Do turns into D1, which is represented in �g. 2.1
by the predicate changes(Do ; D1; T; T + �) and that, in general, can be a complex description
involving several predicates.

Compared with more general logics of change and actions, such as the Situation Calculus
or the Event Calculus, this strategy to describe objects and how they change is more primitive
but combines selected features of both calculi. It is close to the Situation Calculus in that it is
a state-based description of change1. It is close to the Event Calculus in that events (changes)
are indexed by time-points (changes(Do ; D1; T; T + �) above). However, descriptions like the
one in �g. 2.1 do not need axioms for persistence to deal with the frame problem. The reason
for this is that all the attributes of the object (the object's state) are explicitly represented as
terms (in Do and D1 above). So, a change is a transition between total descriptions of states.
This is a feasible approach (which does not have to face the frame problem) because one can
assume that the object is a �nite entity, with a �nite number of attributes and components
which can be explicitly accounted for in �nite and not-so-big descriptions. However, these are
one-object descriptions. If one is aiming at multi-object descriptions one would have to explain
how changes in one object a�ects properties (attributes) of other objects. This would require
integrating the description of each object into a more general calculus, such as those discussed
in chapter 4.

In the following section we explain how these ideas can be applied to the modelling of a
special type of object: an agent. To characterize an agent the description of the process of
change which it goes through is specially important. Agents are objects with special attributes
such as goals and beliefs. The behaviour of an agent is determined by the way in which
these goals and beliefs change by observing, learning, planning and acting as time passes. The
processes of reasoning/planning, observing and acting can be modelled by a description similar
to that in �gure 2.1, which turns out to have very useful computational characteristics, like
bounded computation and reactive behaviour.

1For instance, one can write a description similar to that in �gure 2.1 like this:

holds(processing(Do); To) T0 = result(changes(Do ; D1); T1)
^ holds(processing(D1); T1)

which, as it will be shown in chapter 4, could be part of an axiomatization in the form of Situation Calculus.

21

cycle(KB; IC;Goals; Input:InRest; try(Act;Result):OutRest; T)

 assimilate(KB; IC;Goals; Input;KB0; Goals0; T)

^ demo(KB0; IC;Goals0; Goals00; R)

^ R � n

^ try � action(KB0; Goals00; try(Act;Result);KB00; Goals000; T + R+ 2)

^ cycle(KB00; IC;Goals000; InRest;OutRest; T +R+ 3)

(2.4)

Figure 2.2: Kowalski's cycle predicate.

2.2 The cycle predicate

2.2.1 Kowalski's agent

In this research project an agent is conceived as a cycling process constantly interacting with an
independent environment process. As (logic) programs, agents go beyond the transformational
view that see programs as functions or relations between initial and �nal state. Instead, agents
programs are reactive systems because \the purpose for which they run is not to obtain a
�nal result, but rather to maintain some interaction with their environment" [Pnu86]. An
agent acting in a dynamic and unpredictable environment has to interleave assimilating new
information, planning and reasoning about its actions with their execution. Otherwise, its
\survival" or the reliability of the system under its control is in jeopardy. Thus, an agent
architecture should be open in the sense that it must allow for the addition of new information
at any time during the process of solving problems.

A logical formalization of an agent with such capabilities has been proposed by Kowalski
in [Kow95] with the de�nition of the cycle predicate. Kowalski is specially concerned with the
notion of reactivity and its embodiment in a logical theory. His agent is basically a resource-
bounded theorem prover that processes sentences from a knowledge base. This knowledge
base contains a representation of the world as the agent perceives it. So, the representation
is constantly updated. Preliminary versions of this model have guided the implementation of
a multi-agent system simulation [DQ94] where each agent's brain is a PROLOG program. In
[Kow95], cycle is de�ned2 as shown in �gure 2.2.

The declarative reading of the de�nition of cycle in �g. 2.2 simply speci�es which sequences
of inputs and outputs (as actions) are acceptable behaviour. This one-clause de�nition has a
procedural reading that \requires the cycle predicate to be executed as a process concurrently
with an environment process" [Kow95]. One can read cycle procedurally as follows:

To cycle at time T, an agent:

1. assimilates (at time T and by means of its integrity constrains IC) an input into its goals
Goals (generating a new set of goals Goals0) and record the inputs in its knowledge base
KB (generating a new knowledge base KB0).

2. reduces goals (in Goals0) to subgoals (in Goals00) taking R units of time (or space) to do
so. This reduction process is modelled by the predicate demo and is bounded to compute

2In this document we employ the usual conventions in clausal form representations. Variables should be seen
as universally quanti�ed over the whole clause, unless stated otherwise.

22

for at most n units of time (or space). To impose this constraint is the purpose of the
expression R � n, which would be tested simultaneously with the execution of demo.

3. tries an action Act that it extracts from its goals Goals00 (which generates a new set of
goals Goals000), adding the outcome to its knowledge base KB0 (which generates a new
knowledge base KB00). Observe that this \attempt" to execute Act occurs at T +R+ 2,
which account for the fact that assimilate consumes 1 unit of time, demo consumes R
and try � action itself consumes 1. The assignment of one unit to both assimilate and
try � action is a convenient simpli�cation that can be relaxed.

4. cycles (to repeat the processes above) with its new set of \mental" structures (KB00; IC;Goals000)
and the remaining streams of inputs and outpus (InRest and OutRest respectively) at
time T +R+ 3.

Kowalski has suggested that an alternative to model-theoretic semantics for logic could be
based on the syntax transformations embodied by those predicates in cycle and the notion of
knowledge assimilation [Kow94].

Also, by appealing to the procedural interpretation of logic programs, these predicates
(cycle, demo, assimilate and try�action) can also be interpreted as re-entrant coroutines with
interleaved executions. In particular, the demo predicate (the theorem prover) has a resource
argument R that limits the time or space of memory devoted to the deduction processes. Thus,
R guarantees an eventual switching of the control from demo to try � action in the same
way as a scheduler, in a time-sharing operating system, switches the control among processes
and/or processors. This interleaving yields an ongoing behaviour that combines reactiveness
and rationality.

The de�nition of cycle captures the logical relationships between some of the processes
that characterize an agent's \mental" activities. The mental activities mentioned above aim
to explain how it is that an agent interacts with its environment (by assimilating inputs and
acting) and reasons \at the same time".

In the following section cycle is described in more detail and de�nitions are given for all
the other predicates except demo, the reasoner program, of which a full description is given in
chapter 3 (although, a �rst informal mention of its characteristic is also made in section 2.3.2).

2.2.2 Improving Cycle

The cycle predicate in [Kow95] has already been given a declarative reading in terms of the
manipulation of input and output streams. However, as it is, cycle has some shortcomings:

1. This cycle uses streams of inputs and outputs to interact with its environment. It is not
clear to what extend inputs and outputs can be given a declarative account.

2. The procedural reading of cycle is based on the fact that processing goes on forever. There
is no \base-case" that could be used to stop a derivation (computation) on cycle, even
when there are no more inputs and outputs to process.

3. A critical point is the fact that the time line seems to be reversed. The present (denoted
by the term T in the head of the de�nition in �g. 2.2) is de�ned in terms of the future
(denoted by the complex term T + R+ 3) in the condition.

In addition to these problems, there was also a mistake in the de�nition of try � action in
[Kow95]. According to that design, after successfully executing an action the agent commits

23

itself to a particular plan, throwing away alternative future courses of action that may be needed
later on3.

All these problems have been addressed and the resulting solutions are contained in the
formalization below (table 2.1). Note that, in this reformulation, integrity constraints (IC)
are separated from the \Frontier" of nodes (Goals). This is only a syntactic device that does
not a�ect the consideration of integrity constraints as (conditional) goals themselves (See the
example in section 2.3.2)4.

Recall from chapter 1 that d�e is used to name the object-level sentence �. Any sentence
surrounded by the symbols d and e is a sentence in the object language. Similarly, b�c is used,
in the object language, to embed the term � from the meta-language. So, any term (typically
a variable) surrounded by b c is a meta-term that is also a term in the object language. This
distinguishes this kind of term from terms belonging only to the meta-language (e.g. Rest and
Alt in the sentences in the table) that act like place-holders for sentences in the object language.
This symbolism is only used here to point out the interaction between the meta-predicate cycle
and the object level speci�cation of the agent's knowledge base in table 2.1. We will avoid its
use later.

As �nal points, notice that, for simplicity, all actions are considered to take only one unit of
time for their execution. So do(Action; T) is left with only one time argument that makes its
description easier. Also, for simplicity again, the agent can execute only one action at a time.

The formalization in table 2.1 has the following new characteristics:

1. Streams are abolished. A predicate-based formalisation of the mechanism of input and
output is given through the de�nitions of the predicates observe and try � action. The
semantics of observe is reminiscent of the semantics of the query � the � user facility
[Ser83]. The agent is \querying" the environment to ask for new inputs. As in query-the-
user, the \knowledge of the world" is now seen as distributed across the system, part of it

3The problem is located in the �rst clause of the de�nition of try � action in [Kow95]. The original version
of that de�nition (The paper [Kow95] has been updated since) looked like this:

try-action(KB;Goals; try(Act; T;Result);KB0;Goals0; T)
Goals � (do(self; Act; T)^Rest) _ AltGoals
^ Result = success

^ Goals0 = Rest

^ KB0 = (do(self;Act; T)^KB)

try-action(KB;Goals; try(Act; T;Result);KB0;Goals0; T)
Goals � (do(self; Act; T)^Rest) _ AltGoals
^ Result = failure

^ Goals0 = AltGoals

^ KB0 = ((do(self;Act; T)! false) ^ KB)

try-action(KB;Goals; try(nil; T; success); KB0; Goals0; T)
:9Act;Rest; AltGoals [Goals � (do(self;Act; T)^Rest) _AltGoals]
^ Goals0 = Goals

^ KB0 = KB

In the �rst clause,Goals0 = Rest must be Goals0 = Rest _AltGoals to allow for future actions failing and the
need for \backtracking" then. Kowalski discovered the error immediately after the paper went to publication.
There is no such error in the PROLOG prototype [DQ94] of the agent. To reconcile this procedural version with
a declarative reading turned out to be an interesting challenge.

4Observe that for this speci�cation to work, there must be an integrity constraint for every kind of input to
be assimilated. Otherwise, axiom [ONL-ASSI] could not be used for all the inputs. One can either add another
axiom for inputs for which there are no integrity constraints, or add \dummy" integrity constraints such as
obs(p; T)! true to avoid altering the speci�cation.
Also, notice that, for simplicity, axiom [ONL-ASSI] caters only for observation of properties (obs(P; T)). To

allow for observation of actions (such as do(A; T)), the speci�cation must be extended with an axiom in which
integrity constraints of the form do(A; T)! C are used as well.

24

inside the agent, the other part outside in the environment. A striking point is that the
same interpretation can be applied to try � action. In this context, when an agent tries
an action it is asking the environment for information about such an action. It is asking
for feedback.

2. A \base-case" for cycle is provided. We adopt a speci�cation with a single-atom clause
stating that nothing (in the agent) changes in a empty interval (from T to T).

3. However, the most important feature of this reformulation is that time references are more
intuitive. In this new de�nition what an agent does within a period of time [To; Tf], is
de�ned in terms of what it does in sub-periods included in the time period [To; Tf].

Briey, table 2.1 can be read as follow:

cycle The \mental" structures of an agent (knowledge base and goals) do not change in an
empty period of time [CYC-0]. On the other hand, over a non-empty period of time
a number of information processing activities will constantly transform those structures
[CYC-1]. These activities can be seen as independent, parallel processes, synchronized
through data exchange. They can also be seen as processes time-sharing a single processor
and therefore, each one with a \slice" of every unit of execution-time. For simplicity, that
slice of time is set here to 1 for all the activities except demo, whose execution-time
boundary is explicitly set by R � n.

It is important to clarify the role of the constraint R � n. This constraint is tested "in
parallel" with the execution of demo, in such a way that reasoning is suspended when the
"resources" (counted by R) are consumed.

The value of n could also be dynamically set up to indicate, within a particular cycle, that
a signi�cant input has arrived and reasoning must be suspended to deal with the incoming
information. This would be the way to simulate "system interruptions" as traditionally
understood in operating systems.

These considerations about R � n are, of course, relative to the control strategy used to
execute cycle and do not a�ect its logical form.

observe The agent gets \new" data by querying the environment once in every period of cycling.
The intuition is that the environment's knowledge base must be able to say what \prop-
erties" (of the environment) the agent observes.

assimilate As in [Kow95], knowledge assimilation is considered an activity with two processes. There
may be an o�-line assimilation caring for the consistency and integrity of the knowledge
base, along the lines discussed in [Kow79b] and [Kow95]. However, the one described
here is on-line assimilation, the process that queries the environment for an input,
time-stamps it (with the current value indicated in an \internal clock" T), and then
says how that input can \�re" a condition-action, integrity constraint. In addition, the
knowledge base records the input and new goals get activated by being put into the set
of goals being processed.

try-action Finally, within every period of cycling, there is also a review of the goals searching for
an action to be executed. If there is no pending action, then there is no modi�cation
to be made to the \mental structures" [TRY-AC3]. On the other hand, if there is one
or more pending actions, the system will try that action and collect its feedback from
the environment about success or failure of that action. This is done through the meta-
predicate try. If the action \succeeds", it is recorded into KB [TRY-AC1]. If the action

25

CYCLE : the locus of control of an agent
cycle(AgentKB;Goals; IC; T; T) [CYC � 0]

cycle(KB;Goals; IC; To; Tf)
 assimilate(KB;Goals; IC;KB0 ; Goals0; To)
^ demo(KB0; Goals0; IC;Goals00; R)
^ R � n
^ try � action(KB0; Goals00; IC;KB00; Goals000; IC0; To + R+ 1)
^ cycle(KB00; Goals000; IC0; To + R+ 2; Tf) [CYC � 1]

observe(P; T)
 sensors0 speci�c conditions::
^ conditions tested by the environment :: [OBS]

assimilate(InKB; InGoals; IC;OutKB;OutGoals; T)
 observe(P; T)
^ IC � d (obs(bP c; bT c) ! C) ^ RestIC e
^ OutKB = d obs(bP c; bT c) ^ InKB e
^ OutGoals = d C ^ InGoals e [ONL�ASSI]

try � action(KB;Goals; IC;KB0; Goals0; IC; T)
 Goals � d (do(bAc; bT1c) ^Rest) _Alts e
^ Goals0 � d (do(bAc; bT c) ^Rest) _

(do(bAc; bT1c) ^ bT1c 6= bT c ^ Rest) _Alts e
^ try(A; T; succeeds)
^ KB0 � d do(bAc; bT c) ^ KB e [TRY �AC1]

try � action(KB;Goals; IC;KB;Goals; IC0; T)
 Goals � d do(bAc; bT1c) ^Rest) _Alts e
^ try(A; T; fails)
^ IC 0 = d (false do(bAc; bT c)) ^ IC e [TRY �AC2]

try � action(KB;Goals; IC;KB;Goals; IC; T)
 :9A (Goals � d do(bAc; bT c) ^Rest _Alts e) [TRY �AC3]

try(Output; T; Feedback) tested by the environment :: [TRY]

Table 2.1: A new cycle predicate

26

\fails", this will cause the addition of a new integrity constraint (as shown in [TRY-AC2]),
which would invalidate any plan containing the failing action.

demo This predicate (whose de�nition is not shown in table 2.1) is responsible for reducing
goals to subgoals by unfolding (a transformation de�ned in chapter 3). But, demo is also
responsible for catering for the e�ects of the success and failure of actions, on the agent's
goals. For instance if, as a consequence of a failed attempt to execute do(a; to), try�action
generates the new integrity constraint false do(a; to), then any plan containing the
action must be cancelled (because, it leads to falsity i.e. (do(a; to)^(false do(a; to))) �
false) This is another task for the reasoner (implemented by demo).

Notice that this transformation is very similar to the assimilation of inputs described by
[ONL-ASSI]. This similarity led us to unify the process of activation of goals as described
by the proposal in the following section, which is supported by the formalizations in
chapters 3, 4 and 5.

2.3 GLORIA

Although the last version of cycle (in table 2.1) improves upon the original one, it still lacks
some intuitive properties of agents. Some of its limitations are that agents can execute only
one action at a time and assimilate one \unit" of input-data per cycle. As a consequence, the
speci�cation may be too committed to a mono-processor implementation.

What follows is a new speci�cation that overcomes these limitations. Three basic changes
with respect to the speci�cation above are made: 1) Acting and observing are integrated as
one single process, 2) Activation of goals is no longer a task of the assimilating process, but is
transferred to the reasoning mechanism (demo in chapter 3) where it will be integrated with
other goal-transforming operations and 3) The assimilation procedure is changed to have inputs
(observations and feedbacks after executing the actions) attached to the goals (above they are
added to KB). The reason for the subtle change will be discussed and clari�ed in the following
chapters. This change implies a major change of perspective with respect to the content of the
knowledge base as usually understood.

All this yields a description that is simpler to analyse and to use (as will be seen in sec-
tion 2.3.2). To make it even simpler we go back to a de�nition of cycle with no base case,
the time order reversed and integrity constrains grouped with the other goals. One can always
reformulate the de�nitions as has been shown. Note that the restriction of actions taking only
one unit of time for execution is still maintained.

The new description is called GLORIA5.

2.3.1 GLORIA's speci�cation

GLORIA's cycle is speci�ed in table 2.2. This may be read as follow:

� cycle The agent's mental structures are changed by the interaction of two processes:
demo (explained below) that reduces goals to subgoals and activates new goals and act
that \queries the environment". The agent posts a query string and the environment
answers with an input string. Note that in the agent's query string there may be (and
normally are) observational actions that command the sensors to observe in a particular
way. Thus, this model contemplates that an agent must be capable of focusing its sensors.

5A General-purpose, Logic-based,Open, Reactive and Intelligent Agent.

27

GLORIA0s cycle

cycle(KB;Goals; T)
 demo(KB;Goals;Goals0; R)
^ R � n
^ act(KB;Goals0; Goals00; T +R)
^ cycle(KB;Goals00; T +R+ 1) [GLOCYC]

act(KB;Goals;Goals00; Ta)
 Goals � PreferredP lan _ AltGoals
^ executables(PreferredP lan; Ta; TheseActions)
^ try(TheseActions; Ta ; F eedback)
^ assimilate(Feedback;Goals;Goals0)
^ use order(Goals0; Goals00; Ruse)
^ Ruse � k [GLOACT]

executables(Intentions; Ta ; NextActs)
 8A; T (do(A; T) is in Intentions

^ consistent((T = Ta) ^ Intentions)
$ do(A; Ta) is in NextActs) [GLOEXE]

assimilate(Inputs; InGoals;OutGoals)
 8A; T; T 0(action(A; T; succeed) is in Inputs

^ do(A; T 0) is in InGoals
! do(A; T) is in NGoal)

^ 8A; T; T 0(action(A; T; fails) is in Inputs
^ do(A; T 0) is in InGoals
! (false do(A; T)) is in NGoal)

^ 8P; T (obs(P; T) is in Inputs
! obs(P; T) is in NGoal)

^ 8Atom(Atom is in NGoal
! Atom is in Inputs

^ OutGoals � NGoal ^ InGoals [GLOASSI]

A is in B B � (A ^ Rest)
_ B � (A ^ Rest _RemDisj) [GLOISN]

try(Output; T; Feedback) tested by the environment :: [TRY]

Table 2.2: GLORIA's cycle predicate

28

Of course, what the agent actually senses depends on the properties of its environment
at that time.

� act This process changes the agent's mental structures at a given time if, out of its
\preferred plan" the agent selects those actions that can be executed at that time, posts
them (in parallel) to the environment and analyses and assimilates the obtained feedback.
The agent's preferred plan is the plan upon which the agent is concentrating its attention,
that is the �rst in a (heuristic) ordering of all the goals. The process that orders the plans
is part of the reasoning goal-processing mechanism and will be explained in chapter 5 and
chapter 6.

� executables These are all the actions in the agent's preferred plan whose execution time
can be equated with the current (internal) time. Notice that this is not a simple test of
equality. There may be an instantiation involved because the actions in the plan normally
do not have a speci�c prede�ned time for execution. So, the consistency test will check
the constraints on the time arguments of each action to �nd out whether they can safely
take the value indicated by Ta.

� assimilate. This new form of assimilation relies on a more \informative" feedback that
not only says whether particular actions fail or succeed, but it also transmits observations
(see the example in the next section).

Two details are worth emphasizing:

1) Observations of actions and properties (do and obs atoms) are no longer \stored" in
the knowledge base, but they are all (irrespective of success or failure in the case of the
actions) added to the goals as new constraints. This change will make sense after the
reasoning mechanism has been explained (in chapter 3);

2) These de�nitions of assimilation and act lend themselves to an attractive extension
when actions with duration (with starting and �nishing times) are introduced into the
model. One of the most important items of information that one could expect to obtain
via feedback is the actual terminating time of an action. The agent may decide when
to start executing an action, but the �nishing time depends on what is going on in the
environment at the time of the attempt. Being able to enter this information at \run-time"
is very useful to the models discussed here.

� use order The other component of the speci�cation introduced in this de�nition is the
logic program use order, itself de�ned and discussed in chapter 5. With this program,
the agent will evaluate the usefulness or otherwise of the currently preferred plan. If the
feedback indicates a failure on this plan, the agent may want to review its frontier of goals
and focus its attention on another plan that could be more successful. Alternatively,
it could try again the failing string of actions again. This type of analysis is context-
dependent. That is, what the agent does after this analysis depends, in general, on its
current situation and on a domain-speci�c set of preferences6 .

Thus, use order implements a form on reasoning di�erent from demo's. It is also a
resource-bounded reasoner. The resources, Ruse, consumed by use order are restricted
by Ruse � k where k is some prede�ned constant value. However, unlike demo, use order
reasons about preferences of the agent and utilities of the plans.

6There are, however, simple ad � hoc solutions like removing those plans with failures from the frontier
altogether and then covering their absence with clever programs at the object level. We do something like that
in the testing solution for the elevator controller as shown below and in chapter 6.

29

The presence of use order in act is not essential, as it is also called from within demo (as
shown in chapter 3). However, its inclusion in the de�nition of act serves to emphasize
the point that after execution, the agent has feedback information that may determine
its immediate behaviour. In particular, a prompt decision about what plan to consider
immediately after an action execution can a�ect the e�ciency of the agent, as we discuss
in chapter 6.

The following section shows how the GLORIA speci�cation can be used to model the elevator
controller.

2.3.2 GLORIA featuring as the elevator controller

2.3.2.1 A �rst look at activation of goals

As a �rst approximation for the elevator example, let us imagine that an agent (with an archi-
tecture as speci�ed in the previous sections) stores its goals in Goals. The content of Goals is
in general a disjunction in which each disjunct represents an alternative goal of the agent.

Let us also imagine that, at a certain moment, the agent has only one disjunct in Goals,
which is itself a conjunction of the following integrity constraints:

9T1 9T2 (
(T < T1) ^ (T < T2) ^
(cons do(up; T1) M < N) ^
(cons do(down; T1) N < M) ^
((cons do(open; T1) ^
cons do(turnoff; T1) ^
cons do(close; T2) N = M))
 atfloor(M;T) ^ on(N; T)) [ICSERVE]

9T 0 (
(T < T 0) ^
((do(A; T) ^ cons do(B; T 0))
_(do(B; T) ^ cons do(A; T 0))))
 cons do(A; T) ^ cons do(B; T)
^ A 6= B ^ incomp(A;B) [ICCONSI]

do(A; T) _ (false do(A; T)) cons do(A; T) [ICDO]

false do(A; T) ^ do(B; T) ^ incomp(A;B) [ICINCON]

where cons do(A; T) can be read as \consider doing action A at time T", while do(A,T) is read
as \do action A at time T" (the other predicates are explained below).

With respect to the agent's knowledge base, stored in KB, let us assume that it contains
the following de�nition:

incomp(A;B)
$ interf(A;B) _ interf(B;A) [INCOMP]

interf(A;B)
$ ((A = up ^B = down)
_(A = down ^B = open)
_(A = up ^B = open)
_(A = close ^B = down)
_(A = close ^B = up)
_(A = open ^B = close) [INTERF]

30

In addition to the knowledge embodied by the integrity constrains and by the de�nition
above, the agent has access to some built-in mechanism to compute for given numbers N and
M , whether N < M , M < N or N = M and, for every pair of symbols, A and B whether
A = B or A 6= B.

Finally, the agent also has access to \changing" information about its physical location
(atfloor(M;T)) and, as any elevator, about which calling buttons have been pressed (on(N; T))7.

Let us now imagine that the agent has been cycling as the speci�cation of GLORIA pre-
scribes. In its last cycle, the agent collected the information atfloor(3; 0) and on(5; 0).

At this point, the agent's reasoning mechanism (the reasoner) starts processing that infor-
mation. A typical derivation (a reasoning sequence) could be:

1. The agent \propagates" the atoms atfloor(3; 0) and on(5; 0) through the integrity con-
straint ICSERVE above. This form of processing is using the integrity constraint as a
condition ! action rule. After \proving" the conditions, the \head" of the outermost
implication is activated. This yields the new implication ICSERVE2:

9T1 9T2 (
(0 < T1) ^ (0 < T2) ^
(cons do(up; T1) 3 < 5) ^
(cons do(down; T1) 5 < 3) ^
((cons do(open; T1) ^
cons do(turnoff; T1) ^
cons do(close; T2)) 5 = 3))) [ICSERVE2]

2. From ICSERVE2, the agent obtains:

9T1 ((0 < T1) ^ (cons do(up; T1))) ^ [ICSERVE3]

This is, of course, due to the fact that only the corresponding inequality in ICSERVE2
(3 < 5) can be proved.

3. This derivation seems to be culminating with the basic sub-goal cons do(up; T1) being
activated. However, cons do(up; T1) is a special type of goal which can be \propagated"
through constraint ICDO, above, to yield:

9T1 ((0 < T1) ^
(do(up; T1) _ (false do(up; T1))) [ICDO2]

4. At this point the reasoner has activated a conjunction, one of whose conjuncts is itself
a disjunction. After distributing the conjunct (0 < T1) over the nested disjuncts, the
reasoner \splits" the disjunction, to generate two new alternative goals. Presumably, the
agent will \prefer" the new goal:

9T1 (0 < T1) ^ do(up; T1) [FOREXE]

because it contains a do atom representing a primitive action that might be executed.

7For simplicity we are avoiding the \rei�ed" representations (i.e. holds(at(M;T)) and holds(on(N); T))
introduced in chapter 1.

31

So, the derivation leads to the activation of do atoms. These atoms, as consdo atoms,
can themselves be propagated through other constraints (as ICINCON above). However, more
importantly, do atoms represent atomic actions that the agent can try for execution when the
reasoning is suspended, and the control is passed to act, as described by the speci�cation of
GLORIA.

Thus, a list of do atoms (\activated" as above), represents a plan of actions for the agent.
They constitute a plan in the sense that the agent will be acting according to them, to satisfy
its integrity constraint that, as we discussed in chapter 1 can be seen as goals for the agent.

Of course, to guarantee that the plan (the set of do atoms) is consistent with all the integrity
constraints and the rest of the agent's knowledge, the reasoning mechanism would have to
explore all the possible derivations. This could take a lot of time or memory space. This is why
the agent is restricted (by the constraint R < k on demo in table 2.2) to interrupt is reasoning
and present its \partial" plans (the set of do atoms activated so far) to the process act that
attempts their execution.

The agent needs a demo predicate capable of all these di�erent transformations and knowl-
edge manipulations. A proposal in that direction is the subject of chapter8 3.

2.3.2.2 A �rst look at the implementation of the elevator controller

A key element in the implementation is the data structure to store the agent's set of goals
(Goals). We use lists and tuples.

The set of goals Goals of the agent can be kept in a tuple (IC; Frontier), where IC is a
list (an and-list) of structures storing sentences like [ICSERVE] above (conditional sentences).

Frontier is a list of tuples, which we call nodes. Each node in Frontier has the following
structure:

Node = (Uncond;Cond) (2.5)

Uncond stores do atoms representing actions that the agent must try for execution. Uncond
can, therefore, be said to contain a plan to achieve certain goals that have been activated by
processing of IC, as we illustrated above. Uncond also contains cons do atoms used to guide
the search for correct and feasible sets of do's, i.e. combinations of actions that satis�es the
integrity constraint [ICCONS], [ICDO] and [ICINCON] above.

The other element of each tuple in Frontier is Cond. Cond (as IC), contains implications,
sometimes also called conditional sentences. The general structure of sentences in IC and Cond
is described by the following elementary grammar:

Conditional ::= Head Body
Head ::= Disjunct_

Disjunct ::= Conditional^

j (Conjunct^) ^ (Conditional^)
j Conjunct^

Body ::= Conjunct^

Conjunct ::= Literal j false j true
Literal ::= Atom j:Atom [ICGRAMM]

where C^ means either one C or the conjunction of two of more C's; C_ means either one C
or the disjunction of two of more C's; Every identi�er in [ICGRAMM] starting with a capital
letter is a non-terminating element of the grammar. The symbols (^, :, _, false and true) are
terminating elements. In addition, [ICGRAMM] must also include rules de�ning the category

8This chapter also presents a formalization of propagation, unfolding, splitting and activation of goals

32

Atom for a particular application. For instance, above, one might have: Atom ::= do(up; T) : : :
and so on.

Notice that there are global constraints over all the plans (kept in IC), but also every node
maintains (in Cond) its own set of local conditional sentences, some of which are obtained by
a sort of partial evaluation of the global constraints. The reasons for this will be clari�ed later.
However, let us say that the intention is to factor IC out of the nodes, leaving in Cond those
constraints that are speci�c to each plan.

Uncond is a conjunction of literals whose variables are regarded as existentially quanti�ed.
Cond and IC are conjunctions of conditional sentences like [ICSERVE]. Those variables in IC
andCond that do not appear in Uncond are considered universallyquanti�ed. We will formally
describe all these elements in chapter 3 and later in chapter 5. For the moment, an example
can illustrate the declarative reading of a node:

Example 2.3.1
N = ([do(a1; T 0)], [cons do(a2;W) true, do(A; T) c(A;N; T)]) should be read as
N � 9T 0 do(a1; T 0) ^ 8A;N; T;W (cons do(a2;W) ^ do(A; T) c(A;N; T)).

2.3.2.3 A �rst look at the functions of the demo predicate

This section describes some of the reasoning functions that demo (whose formal speci�cation
is the subject of chapter 3) performs for the agent.

Some of this functions provided by demo are the key to the success of the elevator controller
(in particular, the elevator following policy one, as de�ned in chapter 1). The following is a
informal account of those functions:

1. demo will (always) consider more recent data from the environment �rst, to ensure that
every goal that must be activated by inputs, is actually activated.

2. demo will always process the �rst node in the Frontier �rst. Inside the node, the attention
is always on the \outmost part" (body) of the �rst conditional-sentence of Cond. For
instance, in [ICSERVE] the testing starts with atfloor(M;T) and on(M;T). If all the
literals in that part are reduced to true the \head" of that sentence will be promoted to
a new position in the node, as illustrated above. As we said above, this promotion can
be seen as a form of activation of goals.

3. If the head of a sentence is itself an implication, then its promotion means placing it as
the new �rst element of Cond. If the head is not an implication but a conjunction of
literals, promotion means that it will be transferred to Uncond.

If the head is a disjunction, promotionmeans the creation of a new node for every disjunct
(di�erent to false) in that head, while preserving the order of the disjuncts (i.e. �rst
disjunct in the �rst node and so on).

Finally, if the head is the symbol false, the node must be dropped from the goals.

4. If there are no sentences in the Cond part of the �rst node of the frontier the program
will take a copy of (the whole) IC and will put it as the new Cond of this node. After
this processing starts again.

A strong assumption that we should adopt here is that there is always enough time within
every cycle to test all the literals in the body of the conditional sentences or implications.

A demo program with these characteristics will be enough to support a gloria-like agent
working as an elevator controller.

33

2.3.2.4 A �rst look at an agent cycling: tracing the elevator controller

As an illustration, let us show an imaginary trace of that elevator controller at work. The
trace shows the evolution of state of the agent as it acts and assimilates observations. For easy
reference, we use this notation:

Si is the overall state at time i.

mental activity is the agent's process that is starting at this stage.

inputs is the record of all the inputs that the agent has received. We use di�erent symbols I, I0,
I00 to point out the di�erent input sets.

time shows the time indicated by the agent's internal clock.

resource is the amount of resource used in the last call to demo. This, of course, is known when
the activity act is starting to be executed.

goals displays the nodes of the frontier after exiting the mental activity. Notice that the in-
tegrity constrains IC are not displayed. IC contains the overall constraints of the agent:
[ICSERVE], [ICDO], [ICCONSI] and [ICINCON]. As this information does not change, it
is omitted in the trace. Also observe that Ni is the i-th node of the frontier. Its content
is displayed as: Ni = f: : :g + f: : :g. The �rst set is the list Uncond, the second is Cond.
For simplicity, only the �rst element of the frontier is displayed.

The trace goes as follows:

S1 =

mental activity demo
inputs I : atfloor(3; now); on(5; now)
time T : now
goals N1 = ftrueg+ ftrueg

At the beginning the elevator is at oor 3 and the term now refers to the time at that
moment. Let us assume as above that atfloor(3; now) and on(5; now) (the button at
oor 5 is on) are known to the agent. The reasoner module (demo) is starting to run.

#

S2 =

mental activity act
inputs I : : : :
time T : now + r1
resources R : r1
goals N1 = fdo(up; T1); now < T1g+ f: : :g

demo has completed its portion of time this cycle, leaving activated the goals of going
up, from oor 3, presumably to serve oor 5, at some time T1 after now. Observe that,
because demo took r1 units of time for reasoning, the new current time is now + r1. Also
note that the store of inputs is unchanged w.r.t previous time and that act is starting its
execution.

#

34

S3 =

mental activity demo
inputs I0 : atfloor(4; now + r1 + 1); atfloor(3; now); on(5; now)
time T : now + r1 + 1
resources R0 :?
goals N1 = fdo(up; now+ r1); : : :g+ f: : :g

act successfully executed the action of moving up at time now+ r1. It took act 1 unit of
time to do so, and then the current time is now + r1 + 1. As part of the feedback, the
agent has learnt that it is at oor 4 at time now + r1 + 1. demo takes over once again.

#

S4 =

mental activity act
inputs I0 : : : :
time T : now + r1 + 1 + r2
resources R0 : r2
goals N1 = fdo(up; T2); now + r1 + 1 < T2;

do(up; now + r1); : : :g+ f: : :g

When demo suspends its running, time is now + r1 + 1 + r + 2 (demo consumed r2 unit
reasoning) and a new goal, similar to the one above, has been activated. The elevator
must go up again, any time T2 after now+ r1+ 1 which is, of course, already in the past.
Act re-starts to run.

#

S5 =

mental activity demo
inputs I00 : atfloor(5; now + r1 + 1 + r2 + 1); atfloor(4; now+ r1);

atfloor(3; now); on(5; now)
time T : now + r1 + 1 + r2 + 1
resources R00 :?
goals N1 = fdo(up; now+ r1 + 1 + r2); : : :g+ f: : :g

Once again, act succeeded in executing the corresponding action and has learnt its new
position. Time is now + r1 + 1 + r2 + 1 when demo starts again reasoning.

#

S6 =

mental activity act
Inputs base I00 : : : :
time T : now + r1 + 1 + r2 + 1 + r3
resources R00 : r3
goals N1 = fdo(open; T3); do(turnoff; T3);

do(close; T4); : : :g+ f: : :g

demo has suspended its processing, this time after activating a more complex set of
goals. Two actions in that set are next for parallel execution at time T3. With that set of
instructions, to start serving oor 5, act resumes its running at time now+r1+1+r2+1+r3.

35

#

S7 = : : :

This trace can be summarized like this: At time now the agent, knowing that it is at oor
3, observes that the button at oor 5 is pressed. This input activates, through processing
of [ICSERVE] by demo, the action \go up". This type of activation happens twice and the
execution of these commands takes the elevator to oor 5. Once it gets there, demo activates
the goals of opening the door and turning o� the calling signal.

We are assuming that, in both calls to demo, the corresponding ri (resource or time allocated
for computing) is large enough to allow for a complete processing of the goals, as described in
the previous section. This, of course, is not always the case. One has to analyse a more complex
pattern of interactions to test the exibility of this architecture. This is done below in chapter 6.

There are many \holes" in this explanation that will be further explored in the following
chapters. Critical among them are the operational details of demo and of how demomanipulates
the temporal variables in the representation. The former is the subject of chapter 3. The latter
will be considered in chapter 4, where a more systematic approach to program agents of this
type is discussed. How to elaborate this models of agent to support more complex and sensible
behaviour is also discussed in chapter 4 and in chapter 5. The elevator example is re-taken in
chapter 4 and in chapter 6 an actual implementation simulating the elevator is discussed.

To close this chapter, we discuss some limitations of GLORIA that we have identi�ed.

2.3.3 Limitations and shortcomings in GLORIA

There is an important structural limitation and an important simpli�cation in the agent de-
scribed by GLORIA. Let us discuss �rst the structural limitation.

2.3.3.1 Thinking and acting

So far, neither GLORIA, nor the previous versions of cycle can describe parallelism between
\mental activities". As part of the inheritance from the state-based models of change, the
cycle predicate relies on the interleaving of reasoning and acting (i.e. one activity is strictly
performed after the other). This, together with a proper set of contraints on the times that
demo and act (specially demo) are left to run before passing control to the other \activity",
creates the \impression" of parallelism between acting and thinking. However, as any user of a
time-sharing operating system (like UNIX) knows, as soon as the \time-slice" of each activity
becomes too big, the illusion of parallelism disappears. To prevent that, one has to impose
tight limits on the resources (time) allocated to each activity.

The problem with tight resource limits for each activity is that they may conict with the
opennes of the architecture. As we said while formalising GLORIA, the ending time of an action
can be regarded as part of the feedback information that the agent receives, and that could not
have set before the attempt. The durations of the actions are part of the things unknown before
execution. In GLORIA, act could only pass control back to the next cycle, after the longest
action among the executables has terminated. In general, one does not known when that will
happen and it is, therefore, di�cult and counter-intuitive to set strict constraints on that time.

This problem is even more serious for GLORIA. It is even more counter-intuitive to have an
agent (like GLORIA) that can execute several \physical", external actions strictly at the same
time and yet, it cannot execute those actions and \think" simultaneously (but only pseudo-
simultaneously as a time-sharing operating system). If the agent is, as in Allen's example
[All91], holding the lock open and pulling the door at the same time (to open a door), then it
does not make sense to say that agent stops thinking meanwhile.

36

cycle(M;T)
 demo(M;M 0; T;R)
^ R � n
^ M1 +M2 = M 0

^ initiate actions(M1;M
0

1; T + R)
^ terminate actions(M2;M

0

2; T + R+ 1)
^ M 0

1 +M 0

2 = M 00

^ cycle(M 00; T +R+ 2) [FUTCYC]

Figure 2.3: A cycle for simultaneous thinking and acting

A solution within the current framework would be to break the holding-pulling action into
(su�ciently) many small atomic actions. This would be an application speci�c solution and
would require much more intervention by the programmer or designer of the (object-level)
description of the problem.

One would like to ascertain that the logical description of the architecture can accommodate
this more subtle intuition: that one can think and act really simultaneously. In �g. 2.3, we
present a simpli�ed proposal9 that satis�es this intuition.

The important aspects of this proposal are:

1. Two new \activities" substitute act: 1) initiate actions which takes actions from a plan,
set their initial times, \post" them to the environment and suspends further processing
of that plan; and 2) terminate actions, which checks the actions \under execution" for
termination at that time and sets the �nal time for those that do. One, or both activities,
could include the checking and assimilation of inputs.

2. We use a \partition" mechanism, represented in the �gure by +, to split the mental
data structure (Goals or Knowledge base or both) into two \mutually exclusive" parts,
and later to restore the new parts into a new global data structure. Ensuring that the
two parts, presumably containing subgoals from the same overall plan, do not interfere
each other, may require access to domain-speci�c knowledge which could be stored in the
mental structures as well. How to do this requires further investigation.

An agent like [FUTCYC] would use initiate actions to \launch" a set of primitive actions
(such as do(hold lock open; to; Tf)^do(pull door; to; Tf)), for simultaneous execution as act, in
the speci�cation of GLORIA, would do.

However, these actions do not need to terminate for initiate actions to pass the locus of
control to the other processes. The execution of the actions can continue until some subsequent
call to terminate actions (presumably in some future iteration of cycle) terminates it. In
particular demo can run while the actions are being executed.

Thus, the architecture might accommodate simultaneous reasoning and acting, provided
that one can �nd a sound and e�cient \partition mechanism".

2.3.3.2 How to assign resources for reasoning

An important simpli�cation in the agent speci�ed by GLORIA (and Kowalski's cycle) is related
to the management of reasoning resources. The condition R � n in [GLOCYC] (table 2.3.1)

9For simplicity we \collapse" all the agent \mental" state (KB and Goals, which of course, includes the
integrity constraints) into one single term. Thus, M , M 0 and the correspondingMi store the agent's mental
state at di�erent points in the cycle.

37

is setting an upper bound for the amount of time that demo can consume (i.e. can use for
processing goals) in a cycle. Because this bound is set to n, a constant value, demo will be
allowed to run for at most n unit of times in every cycle.

Setting a constant upper-limit for the time for reasoning is a good modelling simpli�cation.
It allows for a clear description of the idea of time-sharing and interleaving mental activities
in the agent. However, it will be one of the �rst simpli�cations to be reviewed before an
implementation. The value cannot be kept constant in an implementation of the agent without
losing exibility and performance. If the constant n is too small, the agent will have little
chance to process goals and inputs, before a new, probably not very signi�cant, set of inputs
arrive. On the other hand, if n is too big, the agent will spend relatively long periods of time
reasoning, ignoring events and stimuli in its environment that could be very important. So, a
big constant n will a�ect the reactivity of the agent. These comments apply even if the agent
has an extended architecture along the lines of [FUTCYC] in previous section.

The obvious step forward is to make the resource boundary variable, say with R � f(X),
where f(X) is a function of some parameters X to the natural numbers. The problem is that
very little can be said, in general, about the form of f(X). This function could, for instance,
incorporate an analysis of the physical and psychological state of the agent, so that moods,
pains and other factors determine the allocation of thinking time. It could also evaluate the
agent's model of the world and history of events and observations, to decide if it is a \good time"
to pace down and devote more time for reasoning. It could even take into account preferences
and desires so that, as part of the response to certain stimuli, the agent \decides" (or it is
imposed) to think less and observe more. Another possibility that we suggested above is to use
the boundary (n or f(X)) to indicate the ocurrence of some external events (e.g. the arrival of
a certain input), that demands the "interruption" of reasoning. Most of this considerations are
speci�c for particular realizations and implementations of agents. For this reason, we do not
discuss \resource allocation functions" (functions like f(X)) or interruptions anymore in this
thesis.

2.4 Conclusion

In this chapter we have described �rst, how to model an agent as a logic program, using an
approach that is useful in general to model processes that change objects. We started with a
formalisation due to Kowalski [Kow95] and extended it so that one has an agent's description
more suitable for automatic reasoning and also a formalization of an agent capable of performing
parallel actions. We then showed one way of incorporating knowledge into the agent, so that it
knows how to provide services like those required in an elevator. Using this benchmark example,
we showed a simple trace of the execution of the agent, to illustrate the interleaving of acting,
reasoning and observing.

In this chapter we also sketched, very roughly, some of the characteristics of the reasoning
mechanism required by the agent, which will be implemented as the demo predicate. We
already said, for instance, that the execution of demo is resource bounded and that demo will
transform goals into sub-goals, using the information obtained from the environment and from
its knowledge base. We also illustrated how some of the agent's goals processed by demo have
the form of condition! action rules or implications, and we said that demo is responsible for
obtaining unconditional goals from the implications in the process of \activation of goals".

In the following chapter, we describe a general-purpose proof procedure for abductive logic
programs. The key contribution of that chapter is that the operational requirements for demo
(those mentioned above and others) are \captured" by the logical transformations speci�ed by
the proof procedure, including a logical account of the principles of \activation of goals".

38

Chapter 3

The Agent's Abductive

Reasoning Mechanism

3.1 What is abduction?

Abduction is a defeasible, non-valid form of reasoning. The philosopher Charles Sanders Peirce
�rst characterized it, together with the other known forms of reasoning, as follows [Pei55]:

Deduction [is] an analytic process based on the application of general rules to particular cases, with
the inference of a result.

Induction [is] synthetic reasoning which infers the rule from the case and the result.

Abduction [is] another form of synthetic inference, but of the case from a rule and a result.

Abduction is not a valid rule of inference because it is not the case that, for instance, from:
h (b _ c) and h one can validly infer (b _ c). It all depends on whether h (b _ c) is a
complete account of the knowledge about h. Only then one can assume to know h ! b _ c as
well. However, for a well-informed agent embedded in a not-so-chaotic environment, abduction
can be an useful tool for e�ective decision-making.

As Console et. al. explain in [CDT91], the assumption of complete knowledge does not have
to imply the permanent closure of the information (related to h, in this case), \but simply that
one is reasoning to the best of the given knowledge" (.ibid). If new information arrives, one
should be able to relax the assumption and to review one's knowledge base, perhaps withdrawing
conclusions reached with the previous knowledge base. Thus, abduction can be regarded as a
form of defeasible, non-monotonic reasoning. A process of decision-making that appeals to
abduction would then be subject to inherent uncertainty.

As has been explained by Reiter in [Rei96], abduction is a meta-level task. It is at the meta-
level that the abducible character of the explanations (b or c, above) is established. Notice
that this is similar to the treatment of negation as negation as failure (NAF [Cla78]) where that
which can not be proven is assumed to be false. As in NAF, the if-and-only-if rules obtained
from, for instance, the completion [Cla78] of the knowledge base (h$ b _ c, in our example)
provides a way to reduce that \meta-level task" to pure, object-level, deductive reasoning. It
is doing abduction through deduction [Fun96].

A substantial e�ort has been made to formalize abductive reasoning. Poole's Theorist
[Poo89] was the �rst to incorporate the use of abduction for non-monotonic reasoning. Eshghi

39

and Kowalski [EK89] have exploited the similarities between abduction and negation as failure
and provided a proof procedure based on a transformation of logic programs with negation into
logic programs with abducible atoms. de Kleer incorporates abduction into the so-called truth
maintenance systems to obtain the ATMS [dK86]. Also, in [CDT91], L. Console, D. Theiseider
and P. Torasso analyse the relationships between abduction and deduction and de�ne what
they call an abduction problem as a pair < T ; � > where:

1. T (the domain theory) is a hierarchical propositional logic program1 whose abducible
atoms are the ones not occurring in the head of any clause.

2. � (the observations to be explained) is a consistent conjunction of literals with no occur-
rence of abducible atoms.

This de�nition resembles Poole's de�nition of the Theorist Framework, and both of them
can be mapped into our De�nition 1 in chapter 1. The idea of imposing these structures
and distinctions upon a reasoning problem is to create frameworks in which the semantics
of each component and its relationships with other components can be established in a declar-
ative manner. A framework is a structure that distinguishes between types of elements in a
formalisation. For instance, the framework < T; �;Ab > could be used to say that one has a
theory T , a set of of observations � and that these observations can be explained by abducing
predicates in T whose names appear in Ab (abducible predicates). These distinctions are then
used to justify di�erential treatment of each type of element. In the cases here considered, for
instance, abducible predicates and non-abducible predicates, so separated by the framework,
are processed di�erently. The distinction captures the fact that the former, unlike the latter,
denote uncertain information.

The use of frameworks has been taken further by Kakas and Mancarella [KM90], De-
necker and De Schreye [DDS95], Toni [Ton95], Fung [Fun96] and more recently, Wetzel et
al [WKT95], [Wet97] in the context of incorporating abduction into constraint logic program-
ming. In [KKT93] there is an overview of the �rst e�orts to incorporate abduction into logic
programs. In [FK96] there is a preliminary description of the abductive framework that we
have used to formalize the agent reasoning mechanism. The following sections will clarify the
reasons for this selection.

3.2 Abduction for planning

Abduction has been applied to a variety of problems (see [CM85] for a general description
of applications). When abduction is applied to planning, normally \abducibles" are actions
that may be performed to achieve a given goal. So, for instance, given a goal g and the rule
g a1^ : : :^an, the plan a1^ : : :^an may be abduced, provided that every ai is regarded as an
abducible. We use this and other rule-forms where the strategy of reducing goals to abducible
sub-goals is also employed.

Planning by abduction is an increasingly popular technique in logic-based systems. It has
been used in Allen's temporal logic [All91] and several times in logic programming systems
(see [Esh88b], [Sha89], [Eva89], [MBD95] and [Poo95]). Most of these systems use the Event
Calculus or some event-based formalism to deal with the temporal reasoning required by the
planning problem. According to Reiter [Rei96], there is no alternative but to use an \abductive
account" of reasoning when an event-based temporal logic is involved. However, as we have sug-
gested in the previous section and will show later in this chapter, an abductive, computational

1A hierarchical logic program is a logic program without recursive rules.

40

framework may well be based on a deductive account of reasoning. We discuss the advantages
and disadvantages of the Event Calculus approach in chapter 4. For easy reference, however,
let us summarize the attributes of the abductive, event-based approach that makes it attractive
for planning applications:

1. The history of planning systems in AI (see [RN95] and the review in chapter 6) shows
a shift from systems and algorithms that produce complete, perfectly ordered and well
de�ned sequences of steps as plans, to systems that do partial planning, where plans
are only partially described leaving the executive to choose a particular set and ordering
of actions at runtime2. This least commitment strategy [RN95] can be achieved by
means of an abductive, event-oriented system that keeps the planning problem open for
updates at execution time (as we show below).

2. Conceptually speaking, \Meta-level abstractions" are desirable. Meta-level descriptions
can be amalgamated with object-level ones to obtain a highly expressive speci�cation.
Notions like \agent's mental activities" can be easily captured by that amalgamation, as
we have shown in chapter 2. It has been argued that, intuitively, planning is a meta-level
(abductive) activity and hence, it should be represented as such[Sha93].

3. An event-based framework lends itself to planning by: traditional goal regression, where
the next action to be performed by the agent is determined last for execution (having
identi�ed all the actions back from the goal); or by progression, where the next action
to be performed by the agent is determined �rst for execution (and where a complete
identi�cation of all the actions is not required, in principle). The system can then be
tailored to a particular planning problem. We argue that in the case of reactive planning,
a planner based on progression is more appropriate. This is discussed in chapter 4 (also,
recall the discussion about reactivity in chapter 1).

4. Finally, because the \time line" need not be explicitly represented, as in the Situation
Calculus, an event-based planner can be naturally implemented as an any-time algorithm.
This type of algorithm can be interrupted at any stage of processing (to be interleaved with
other processes) and, when provided with more resources, will produce better (re�ned)
plans (as shown below).

It has been traditionally understood that abduction involves a test of consistency of the
generated explanations \with respect to the object level axiomatization of the domain"[Rei96].
This normally implies having a \meta-level" theorem prover that 1) identi�es the abductive
explanations3, 2) builds a theory consisting of the original axiomatization plus the set of expla-
nations and 3) checks that the new theory is consistent.

If those explanations are written as arbitrary sentences in �rst order logic, that test would
be equivalent to a test of consistency of a set of sentences in FOL which is, in the general
case, not even semi-decidable (see discussion in [RN95]). Therefore, that test is non-computable

2There is an confusion of terminology in the planning community in AI. Partial planners are misleadingly
called non-linear planners by some researchers to contrast them with the linear, complete planner of the �rst
generations. The label non-linear is misleading because it suggests that the process of generating the plans is
non-linear, whereas the intention is to say that the product of the process: a plan, is non-linear,meaning, in turn,
that the ordering of the time-points or intervals in the plan is not explicitly de�ned. Similar objections apply
to the label linear, of course. We use [RN95] terminology that is closer to usage in Knowledge Representation.

3This identi�cation is only possible at the meta-level, i.e. using a meta-language to talk about the object
level axiomatization. That is the reason one have to refer to a \meta-level" prover. However, one could say that
the other two steps also require \meta-level" capabilities in the prover, to \talk about" a theory being built
and its consistency being checked. Probably, that is what Reiter means when he mentions a \meta-level test of
consistency" [Rei96].

41

in the general case. However, one can impose restrictions on the form of the theories and
of the \abduced explanations" to avoid the general case. For instance, by assuming that the
original theory is consistent, one can concentrate the checking of consistency on the abduced
explanations. This kind of \sub-test of consistency" can be shown to be computable for certain
form of \abducibles" (see [Mil96] for an analysis of these topics in the context of the Event
Calculus).

Consistency tests are carried out to ensure the integrity of the explanations. There are,
however, many ways of guaranteeing the integrity of a theory. The designer of the axiomatiza-
tion can state integrity constraints, sentences describing conditions with which the information
in a theory (knowledge base) must be consistent. This is known [EK88] as the consistency view
of integrity constraints, which requires the theory consisting of the original axiomatization, the
explanations and the integrity constraints, to be consistent. In principle, integrity constraints
do not add anything but complexity to the consistency test problem (more sentences to be
tested). However, if one assumes that the original axiomatization is internally consistent then
the test of consistency could involve only the explanations and the integrity constraints.

Alternatively, integrity contraints can be interpreted as goals to be \achieved" by the system.
This is the theoremhood interpretation (of integrity constraints) [EK88], which requires the
integrity constraints to be entailed by the new theory (axiomatization plus explanations).

The theoremhood interpretation is, in general, \stronger" (i.e. more restrictive) than the
consistency view, although the two views coincide for theories of the form of the if and only
if completion of hierarchical logic programs [FK96]. The intesting point is that theoremhood
is always semi-decidable and can be used 1) to prevent incorrect plans (as those mentioned
by Pelavin in [Pel91], that arise in the context of planning with concurrent actions) and 2) to
devote all computations to goal-entailment proofs, thereby cancelling the need for a separate,
consistency-testing procedure.

For the i� proof procedure (i�PP hereafter), introduced below, the theoremhood view of
integrity contraints has been adopted. The description of an algorithm for this abductive proof
procedure is the subject of the rest of this chapter and of chapter 6 where the algorithm is
adapted to be used as a planner. In this chapter, we introduce the speci�cation of i�PP which
constitutes the kernel of the planner.

A remark about programs and speci�cations is in place here. Normally, speci�cations are
logical descriptions that guide the implementation of programs. In logic programming, how-
ever, there is the possibility that \logic programs can just as well be regarded as executable
speci�cations"[Kow84]. This is related to the fact that logic programs have a declarative read-
ing in addition to the procedural reading that any program has. So, a logic program can bridge
the gap between a speci�cation and its implementation. In this chapter, for instance, we show
an implementation of the inferences rules of the proof procedure as a logic program (the demo
predicate). However, this implementation can be seen as the speci�cation for another imple-
mentation (in non-pure PROLOG, in any other lower-level programming language or even in
hardware).

3.3 Preliminaries for the i� Proof Procedure

3.3.1 Abductive logic programs, queries and semantics

3.3.1.1 What is an Abductive Logic Program?

In [FK96] Fung and Kowalski de�ne an abductive logic program as follows4:

4For basic notions like atom, literal and if-and-only-if form we follow the common usage in logic pro-
gramming, as explained in [Kow79b] and [Hog90].

42

De�nition 2 An abductive logic program is an tuple < T; IC;Ab > where

1. T is a set of de�nitions in if-and-only-if form:

p(X1; : : : ; Xk)$ D1 _ : : :_Dn k; n � 0 (3.1)

where p is a de�ned predicate symbol di�erent from equality (=) and from any predicate
symbol in Ab, the variables X1; : : : ; Xk are all distinct, and each Di is a conjunction of
literals. When n = 0, the disjunction is equivalent to false. There is one de�nition per
predicate symbol p.

2. IC (the set of integrity contraints) is a consistent set of implications [of the form]:

A1 _ : : :_Am B1 ^ : : :^Bn m;n � 0 (3.2)

where each Ai and Bi is an atom. When m = 0, the disjunction is equivalent to false.
When n = 0, the conjunction is equivalent to true.

3. Ab is the set of all predicate symbols, called abducibles, di�erent from = and any pred-
icate symbol de�ned in T .

The atom p(X1; : : : ; Xk), de�ned in T above is said to be the head of the de�nition. The
variables X1; : : : ; Xk are implicitly universally quanti�ed, with scope the entire de�nition. Any
variable in a disjunct Di of a de�nition, which is not one of the X1; : : : ; Xk is implicitly exis-
tentially quanti�ed, with scope the disjunct.

Fung [Fun96] also adds the restriction that de�nitions must be \range restricted", i.e. every
variable occurring somewhere in a Di in a de�nition must occur in a non-negative literal within
the same Di or in the head of the de�nition.

With respect to [FK96], we can re�ne the constraint that \all variables in an integrity con-
traint are implicitly universally quanti�ed" by allowing explicit quanti�cation in the heads of
implications, as exempli�ed by the integrity contraints in section 2.3.2 in chapter 2. Thus, in the
general case, variables in implications are universally quanti�ed, unless otherwise stated. This
means, of course, that the language must be extended with the existential symbol (9) and also
with the universal symbol (8). Implicit quanti�ers are always \outside" the formulae (i.e. the
formula 9XF (: : : ; Y1; : : : ; Yn; X; : : :) should be read as 8Y1; : : : ; 8Yn; 9X;F (: : : ; Y1; : : : ; Yn; X; : : :),
where Y1; : : : ; Yn are all the universally quanti�ed variables in the formula). We return to this
discussion in chapter 5 as part of the presentation of the ACTILOG language.

3.3.1.2 What is a Query?

To extract information from a logic program, a user can submit a query to the proof procedure
operating on the program. In logic programming, a query can be seen as a call to procedures
de�ned in a logic program. A query can provide input data to those procedures and also collect
output data in its variables. Declaratively, however, a query is a logical sentence, de�ned here
(as in [FK96]) as follows:

De�nition 3 A query is a formula of the form:

B1 ^ : : :^Bn m;n � 0 (3.3)

where each Bi is a literal, i.e. an atom or the negation of an atom. All variables in the query
are regarded as existentially quanti�ed (No other form of quanti�cation is allowed).

43

To improve the e�ciency of the proof procedure, variables in the query can be marked to
distinguish them from other existential variables that may appear later in the computation to
answer the query. This distinction is required in order to extract answers from the frontier and
is further clari�ed below.

In the planning context, a query is a conjunction of goals whose joint achievability the proof
procedure tries to prove. The information to prove that the goals are achievable is normally
extracted from the knowledge base. The abductive procedure, however, allows for another
source of contextual information, particularly suited to the reactive planning problem because
it can be updated at anytime. This new source of information is constituted, in principle, by
the set of abducibles or assumptions made up to a point, that can be used to justi�ed or to
prevents further assumptions. We expand on this argument in chapter 4.

3.3.1.3 What is the semantics of an Abductive Logic Program?

To de�ne the semantics of a logic program, one needs to establish what it is that the proof
procedure computes from the program given a query, i.e. what an answer is.

De�nition 4 Given an abductive logic program, < T; IC;Ab >, an answer to a query Q is a
pair (�; �) where � is a �nite set of ground abducible atoms and � is a substitution of ground
terms for the variables in Q, that satis�es:

T [Comp(�) j= Q� (3.4)

and
T [Comp(�) j= Cond� (3.5)

for every conditional sentence Cond in IC

Comp(�) refers to the Clark completion [Cla78] of �. Completing a theory C in Clark's
sense, technically means strengthening all the if de�nitions in C to if-and-only-if de�nitions,
negating any unde�ned atom in C, and adding the Clark equality theory (CET) that de�nes
the necessary and su�cient conditions for syntactic equality between terms. An important
consequence of the completion of � is, therefore, that abducible predicates which do not occur
in � are de�ned as equivalent to false. Clark completion is a common form of closed world
assumption in logic programming. It was designed to provide a semantics for logic programs
extended with negation as failure, i.e. normal logic programs.

What completion does is to transform a logic program with negation as failure, into a �rst
order logical theory with classical negation. This dissolves the semantical problem because, the
resulting theory can be understood model theoretically as is traditional in �rst order logic. This
happens in most cases. However, there are pathological cases where completion causes problems.
A well-known example is the program p :p, transformed by completion into p$:p, which
is obviously inconsistent.

Completion semantics does not allow either \for the possibility that the truth value of
a query [..] be unde�ned because the [prover] interpreter fails to halt" [Kun87]. To for-
malise the i� proof procedure, Fung and Kowalski [FK96] have used a semantics described by
Kunen in [Kun87] and also used by Denecker and De Schreye in their formalisation of SLDNFA
[DDS92], [DDS95]. Kunen's semantics is a re�nement of Fitting's three-valued semantics for
logic programs [Fit85] and they are both based on Kleene's idea above, (�rst suggested in 1938
[Kle38], [Kle52]), of using three-valued logic to deal with nonterminating computations. In his
PhD. thesis [Fun96], Fung has proved that the i� proof procedure is sound and complete with
respect to Kunen's three-valued (true, false and unde�ned) semantics. So, j= above (in 3.4
and 3.5) should be read as truth in all three-valued models of that kind.

The following section describes Fung and Kowalski's i� proof procedure.

44

3.3.2 Fung and Kowalki's i� proof procedure

3.3.2.1 Derivations and Frontiers

The i� proof procedure is a rewriting method for logical formulae. It consists of a set of
inference rules, each of which replaces a formula by another formula that is equivalent to
the former in the context of the theory and the integrity contraints. One can characterize the
rewriting process by means of derivations [FK96].

De�nition 5 A derivation of a formula Fn from a formula F1 is a nonempty sequence of
formulae F1; : : : ; Fn such that each Fi+1 in the sequence is obtained from the previous Fi after
applying one of the inference rules. A derivation then, satis�es:

T [CET [IC j= F1 $ Fn (3.6)

De�nition 6 A frontier in a derivation is any formula Fi within the sequence that de�nes
the derivation. The general form of every Fi is a disjunction:

Fi � D1 _ : : :_Dn n � 0 (3.7)

which in the case n = 0 implies Fi � false. There is also the degenerate frontier when n = 1,
for which Fi � D1 holds.

De�nition 7 A node is any formula Dj in a frontier Fi. The general form of a node is a
conjunction such that:

Dj � C1 ^ : : :^Cn m � 0 (3.8)

and whenever m = 0 the conjunction is equivalent to true. Every conjunct Ck can be either an
atom, a disjunction of conjunctions, or an implication as in equation 3.2.

De�nition 8 An implication is any formula of the form:

A1 _ : : :_Am B1 ^ : : :^Br m; r � 0 (3.9)

where A1 _ : : :_Am is known as the head of the implication and B1 ^ : : :^Bn is its body. If
m = 0 the head is false. If r = 0 the body is true.

In the planning context, every Fi can be used to represent the set of alternative courses of
action (plans) the agent has.

As discussed at the beginning of the chapter, one can allow for a more general form of
implications in Ck (as described by [ICGRAMM] in chapter 2). Neither this extension, nor the
use of explicit existential quanti�cation suggested above, alter the soundness or completeness of
the proof procedure with respect to Kunen's semantics. For the sake of simplicity, however, we
maintain Fung's syntax in the presentation of the proof procedure. We consider the extensions
in the special version of the procedure discussed in chapters 5 and 6.

3.3.2.2 The form of queries

As explained at the beginning of this section (equation 3.3), a query is a conjunction of positive
and negative atoms.

When a query Q is submitted, the proof procedure starts by transforming it into its initial
frontier Fo. This initial frontier is a degenerate disjunction i.e. just one disjunct formed, in
turn, by the conjunction of:

45

1. the positive atoms in Q.

2. an implication with the form false Q for every :A in Q.

3. the implications in IC.

This initial transformation is not required if one assumes that instead of being queried from
time to time, the system is permanently deriving a new Fi+1 from a previous Fi. The proof
procedure goes from a frontier of derivations Fi to a new one (Fi+1).

In the following section, we describe the inferences rules including its operational details.
Before that, however, let us extend the data structures introduced in section 2.3.2, chapter 2
to store frontiers of nodes.

De�nition 9 A frontier of nodes F is implemented by an or-list. Every Node N in the frontier
is implemented by an structure such as:

(�; UC;CN;HF;M) (3.10)

where � contains abducibles atoms only, UC contains unconditional goals still to be processed,
CN is a conjunction of implications including those in IC. Each implication CNi in CN has
a history of propagation HPi attached to it. HF above is the history of factoring for atoms in
this node. M is the list of \marked variables", i.e. the list of existentially quanti�ed variables
in the initial frontier.

M has an important role to play, as illustrated by the following revisiting of the example
2.1 in [Fun96]:

Example 3.3.1 The query Q � 9X9Y (p(X) ^ :q(Y)) is represented by the node:

(fg; fp(X)g; ffalse q(Y)g; fg; fX;Y g) (3.11)

Notice that:
(fg; fp(X)gffalse q(Y)g; fg; fXg) (3.12)

would be representing Q0 � 9X; 8Y (p(X) ^ :q(Y)) instead.

The meaning and use of each one of these elements will be explained by the description of
the inference rules and clari�ed by the algorithms presented in the following sections.

3.3.2.3 The inference rules

The inference rules of the i� proof procedure are explained by Fung in [Fun96] and by Fung
and Kowalski in [FK96]). The following description is intended as a introduction to the logic
programs that implement the proof procedure, presented and discussed in the following sections.
Notice, however, that some important details for the implementation of the rules are discussed
in this section. The inference rules are5:

� Unfolding creates a new node by replacing an atom in UC or in the body of some
implication inCN by its de�nition in T . Consequently, one type of unfolding is unfolding
in UC:

5An observation about notation. We are using X, T , etc. in capital letters as \meta-variables" here. They
can be regarded as placer holders for variables or terms in the object language. So, when we say X, this is a
vector of Xi's, each of which can be a variable or a term. Also, X = T is an abbreviation for the conjunction
of atoms Xi = Ti built from elements of X and T , respectively.

46

1. select an atom p(T) from UC in a node N .

2. obtain the de�nition p(X)$ D1 _ : : :_Dn from the knowledge base.

3. build a new node N 0 identical to N except for having p(T) replaced with (D1_ : : :_
Dn)�, where � is the substitution fX1=T1, : : :, Xm=Tmg, where the Xi and Ti are
the elements in X and T , respectively.

The other type of unfolding is unfolding in CN:

1. select an atom p(T) from the body of an implicationH p(T)^Rest, in CN (in a
node N).

2. obtain the de�nition p(X)$ D1 _ : : :_Dn from the knowledge base.

3. build a new node N 0 identical to N except for having that implication inCN replaced
with the conjunction: (H X = T ^D1^Rest) ^ : : :^ (H X = T ^Dn^Rest).

� propagation resolves an atom in � with an implication in CN of a node N , to create a
new node N 0 that has an additional implication in its CN . More precisely, the rule says:

1. select an atom p(T) fromUC and an implicationCNi of the form (H p(X)^Rest)
in N .

2. if p(T) has not been previously propagated with p(X) then build a new node N 0

identical to N except that the implication (H X = T ^ Rest) is added to CN .
Also, add p(T) to the history of propagation of p(X), HPi, attached to the original
CN 0

i .

The test in the second step veri�es that the atom has not been used previously to resolve
against the same atom in the implication. This is the reason to maintain a history of
propagation: to ensure that atoms are only used once to be propagated with a particular
implication. Otherwise, loops could easily occur. One could avoid having a history of
propagation by doing exhaustive propagation of all suitable atoms p(T) in UC through
each p(X). But this is only possible when one has all these p(T) when propagation is
applied to an implication. In an anytime implementation, where the prover may have
\new" atoms in UC on reentering, that would not be the case, as we show below.

propagation is conceptually attractive as an inference rule for the agent reasoning mech-
anism because it supports, (together with the second type of unfolding), the mechanism
of activation of goals. A goal in the head of an implication can be seen as activated by
atoms in � that are resolved against atoms in the body of the implication. Eventually,
the body of the implication is reduced to true and the goal in the head can be promoted
to UC as an unconditional goal, as the following example illustrates:

Example 3.3.2 Suppose one starts with the formula:

o(1) ^ 8N (s(N) o(N)) (3.13)

propagation will transform it into:

o(1) ^ 8N 0(s(N 0) N 0 = 1) ^ 8N (s(N) o(N)) (3.14)

which, after rewriting yields:

o(1) ^ s(1) ^ 8N (s(N) o(N)) (3.15)

Thus, one ends up with a new unconditional goal to be proven.

47

Notice that the history of propagation is crucial to ensure that the prover will not loop.
Without a record of that type in the example above, o(1) could be used again to \trigger"
the implication and activate the goal s(1).

The history of propagation has the same structure and content type as the history of
factoring discussed below. In the general case, it is a list of equalities, refering the as-
signments required to unify the abducible in � (o(1) above), with the abducible in the
implication (o(N)). So, after the operation illustrated in example 3.3.2, the history of
propagation of the implication will probably6 contain the equality N = 1.

When abducibles are ground atoms, one can dispense with the need to maintain or update
the history of propagation. For that, one must adopt a slightly di�erent version of the
propagation rule which do not add a new implication to the node, but replaces the original
one. The following example 3.3.3 illustrates this.

Example 3.3.3 Given the node: p ^ q p, where p is an abducible, one can:

{ either, derive the node: p ^ q ^ q p, with the history of propagation of q
p registering the p has been \propagated" (and, therefore, cannot be propagated
again).

{ or, derive the node: p^q, in which the implication has been removed (and, obviously,
cannot be used for propagation anymore).

Another important detail of the propagation rule is about the treatment of existentially
quanti�ed variables in the implications. Variables of this kind must be renamed at prop-
agation, according to the following criterion:

When the propagation rules is being applied to an implication I, every
existentially quanti�ed variable X appearing in I must be renamed if and
only if the propagating abducibles contain universally quanti�ed variables on
which X depends (i.e. X is within the scope of any of this variables in I).

The following examples clarify the criterion:

Example 3.3.4 Consider the node:

o(1) ^ 8N 9T (s(N; T) o(N)) (3.16)

When propagating o(1) through o(N), one must obtain:

o(1) ^ 9T 0(s(1; T 0)) ^ 8N 9T (s(N; T) o(N)) (3.17)

where the variable T 0 is introduce as a renaming of T . If this were not done, one would
obtain:

o(1) ^ 9T (s(1; T)) ^ 8N 9T (s(N; T) o(N)) (3.18)

where a posterior assignment of, say, T = 0, would allow the rewrite rules (explained
below) to produce an incorrect rendering of the implication, such as:

o(1) ^ s(1; 0) ^ 8N (s(N; 0) o(N)) (3.19)

which, clearly, is not the intended meaning of the implication.

6These lists can have one of several possible structures, with di�erent implications for the implementation.
These possibilities are discussed below for the historical list required by the factoring rule, but the discussion
equally apply to the history of propagation.

48

However, renaming of existentially quanti�ed variables is not always required, as this
example shows:

Example 3.3.5 Consider another node:

o(1) ^ 9T8N (s(N; T) o(N)) (3.20)

In this case, renaming of T as, say T 0 would be incorrect, because it would yield:

o(1) ^ 9T 0(s(1; T 0)) ^ 9T8N (s(N; T) o(N)) (3.21)

from which the system will be unable to verify whether or not it is the same T for all the
N 's.

The criterion above covers cases with a more complex combination of quanti�ers, as in:

Example 3.3.6

o(1) ^ r(0) ^ 8N 9T 8M (s(N; T;M) o(N) ^ r(M)) (3.22)

where renaming is done when one propagates o(1) (because T is within the scope of N),
but not when one propagates r(0) (because, T is not within the scope of M).

The treatment of existentially quanti�ed variables makes propagation a complicate oper-
ation. One can avoid these complications by restricting the language so that, for instance,
universally quanti�ed variables are not allowed in implications or are restricted to appear
in particular positions in the implication.

� splitting distributes conjunctions over disjunctions. This rule has two variants: simple
splitting and splitting a head. simple splitting is the usual distribution of conjunctions
over disjunctions applied to the elements of UC. Whenever one has UC � (E1 _ : : : _
Ek) ^RestUC, one replaces the node containing this UC with k nodes, one for each Ei.
Every new node has an UC0 such that UC0 � Ei ^RestUC for the Ei corresponding to
that node. Recall that the Ei's are obtained by unfolding of \range restricted" de�nitions.
This ensures that no Ei contains universally quanti�ed variables.

On the other hand, in splitting a head (in node N), an implication of the form (H _
RestH Body), where H is an atom with no universally quanti�ed variables, is selected
and two nodes, N1 and N2, replace N . N1 is identical to N , except it has H added to
its UC, and the original implication disappears from its CN . N2 is also identical to N ,
except for the replacement of the original implication by (RestH Body)

Observe that whereas simple splitting exhaustively distributes the rest of UC over the
disjuncts of D, the second form of splitting takes only one element of the head apart,
creating two nodes.

There is a relation between splitting and unfolding and the notion of equivalence of logical
sentences. For instance:

(A _B) ^C � (A ^C) _ (B ^C) (3.23)

(H (A _B) ^C) � (H A ^C) ^ (H B ^C) (3.24)

49

formalise splitting (3.23) and unfolding in CN (3.24), respectively. However, they can
also be seen as \de�ning" the relation � for sentences with these forms. This approach
has been used by Kowalski in [Kow95] to specify logical equivalence between formulae
and also to describe control strategies for a proof procedure.

We use a similar device in the implementation of the proof procedure. That is the reason
why splitting is not mentioned in any of the logic programs shown below but is assumed
to be \embedded" in the de�nition (and implementation) of the predicate �.

� case analysis for an equality,X = T , creates two nodes to replace the one which contains
the equality. One node for the case when X = T and the other forX 6= T . The application
of this rule is restricted to equalities appearing in the body of an implication. This rule
is useful to extract information from implications. The rule is applied as follows:

1. select an implication of the form (H X = T ^Rest) in N .

2. replace N with nodes N1 and N2. N1 is identical to N , except it has X = T added
to UC, and the implication above is replaced in CN by (H Rest). N2 is also
identical to N , except for the replacement of the implication by (false X = T)

Observe that there are restrictions on H and Rest in the selected implication (H cannot
be false and Rest true at the same time). In other words, one cannot select a disequality
for case analysis.

� factoring considers two abducible atoms (with the same predicate) in �[UC in a node,
and creates two new nodes to replace this node; one for the case when the abducibles are
identical, and the other for case when they are di�erent.

For ground atoms, one can decide whether the two atoms are or are not the same immedi-
ately, without having to create two nodes for the alternatives. This is also the case when
the atoms involved are identical up to variable identi�ers (e.g. p(X) ^ p(X) can only be
transformed into p(X) disregarding the actual value of X).

In general, factoring matches the arguments in both atoms to �nd out whether these
atoms can be considered identical. If the arguments cannot be matched (e.g in a(1)^a(2)),
factoring must fail. It must also fail, if the atoms involved were used for factoring earlier
on. To support this, a record of which pairs of arguments have been considered is kept
in the history of factoring (HF) of each node. As with the history of propagation, this
record, HF , is kept to avoid repeatedly performing the same operation. And as with
propagation, one cannot by-pass the history of factoring by doing exhaustive factoring
because, in the context of an open architecture, no all \factors" are known at any given
point in time. Factoring is done as follows:

1. Consider two abducible atoms in a node N , p(T1) and p(T2). (The algorithm below
shows how one abducible, p(T1), is taken from � and other, p(T2), from UC).

2. if these atoms have not been jointly considered before and they arguments match
then replace N with two nodes N1 and N2 such that:

(a) N1 is identical to N except that p(T2) is not in N1's UC and the equalities in
T1 = T2 are added to �.

(b) N2 is identical to N , except the set of disequalities T1 6= T2) is added to history
of factoring HF of the N2, to prevent more factoring of atoms involving these
terms and variables. Alternatively, these disequalities could be added to CN as
new implications of the form false T1i = T2i. This would yield a declarative

50

reading of the history of factoring. But it would be more complex to use the
whole CN to test for previous factoring. On the other hand, one could use
disequalities produced by other rules.

The addition of T1 6= T2 to HF 7 implies some extra processing. For instance, if T1 =
fW;a; f(Z); g(a); h(T)g and T2 = fc;X; d; g(R); t(a)g

8 then, strictly speaking, one should
add (W 6= c), (X 6= a) and (R 6= a) to HF . The others do not add new information
about the variables, in which case it is neither necessary nor useful to keep them. With
respect to g(R) 6= g(a), this is not necessary provided that the mechanism for matching
(used in step 1) always reduces the arguments to their innermost elements.

This extra processing can cause overload because it involves, among other things, a variant
of the occur-check of the uni�cation algorithm (If T1 = ff(f(Y))g and T2 = fY g, then
the matching program will have to detect that f(f(Y)) contains Y and, therefore, T1 and
T2 do not match).

One can reduce the overload by relaxing the factoring discipline. For instance, one could
simply store the two atoms involved, in the history of factoring. This would prevent
incorrectly repeating the same operation on the same atoms, but it would still allow
factoring in cases where it could be prevented. The following example will clarify these
observations.

Example 3.3.7 Assume one has a(1)^ b(1; 2)^ a(X) ^ b(X;Y). One can apply the rule
to a(1) and a(X) to yield: a(1) ^ b(1; 2) ^ X = 1 ^ b(X;Y) _ a(1) ^ b(1; 2) ^ a(X) ^
b(X;Y)^X 6= 1, where X 6= 1 represents the history of factoring HF . This history would
prevent the application of the rule to b(1; 2) and b(X;Y) in the second disjunct, because
this would cause X = 1.

If, instead of the disequality, one stores \a(X) 6= a(1)" inHF , then factoring of b(1; 2) and
b(X;Y) would not be prevented although, of course, that would not make any di�erence
to the logic of the sentences.

Thus, it seems that some computationally useful simpli�cations are possible in the fac-
toring rule, but only at the cost of adding logically irrelevant nodes to the frontier.

As in the case of propagation, one can ignore the history of factoring in the case of ground
abducibles.

� rewrite rules for equalities, is a set of rules that could be regarded as the speci�cation
of an algorithm similar to Robinson's uni�cation algorithm [Rob79] [Hog90], widely used
in logic programming systems. The main di�erence between standard uni�cation and the
processing prescribed by the rewrite rules is the special treatment of variables, for these
can be existentially or universally quanti�ed. Equalities in implications, as de�ned below,
cannot be processed by standard uni�cation.

One important consideration for the e�ciency of the implementation of the proof proce-
dure is that rewrite rules have priority over any other inference rule. They have to be
applied exhaustively and as frequently as possible, to process any equality that may have
been produced by the application of the other rules.

The rewrite rules are described by the algorithms below in tables 3.6, 3.7, 3.8 and 3.9 and
can also be found in [Fun96].

7Or to HP , as these arguments also apply for histories of propagation
8Recall that we are using PROLOG convention. Term names starting with capital letter represents variables,

otherwise they are constants or functors.

51

In addition to these inference rules, we must add to the proof procedure the conventions
about treatment of quanti�ers, already mentioned at the beginning of this section: Variables
in � and/or UC are implicitly existentially quanti�ed. Variables in implications are either
implicitly universally quanti�ed with scope the whole implication in which they appear or
existentially quanti�ed because the also appear in � and/or UC.

Although we could allow for explicit (existential and universal quanti�cation in implications
(as shown chapter 5 as part of the presentation of the ACTILOG language), we follow Fung's
conventions for quanti�ers (stated above) in order to simplify the presentation of an algorithms.
This presentation is the subject of the remaining sections of this chapter. Other operational
details of the proof procedure are discussed with the algorithms.

3.4 An Any-time Algorithm for the i� Proof Procedure

Anytime algorithms were �rst mentioned by Dean and Boddy [DB88] to refer to programs that
can be interrupted at any time during their operation. When provided with more resources
or time to compute, these algorithms will produce results of higher quality. This description
is particularly applicable to the reasoning mechanism of a reactive agent. As explained in
chapter 1, an agent must be able to interrupt its thinking in order to receive information
from the environment, assimilate it, and more importantly, to act in response to these inputs.
If there is no pressure to act, the agent may well devote more time to goal processing, for
instance, obtaining more re�ned plans of action to achieve its goals, possibly avoiding actions
that can be predicted to result in eventual failure. In this sense, its plans would be improved.

We must add to Dean and Boddy's description an extra condition: the requirement for
re-entering. After interrupting its reasoning mechanism to act, the agent must be able to
resume its reasoning process from the point where it left it.

We have already explained (in chapters 1 and 2) that the interruption of reasoning is \con-
trolled" by the resource parameter R provided as a argument for demo. In the algorithms shown
below, R counts the derivation steps performed by the application of the inference rules. When
that counting hits a prede�ned (de�ned before calling demo) value N , processing is suspended.
An interesting topic for further research is how that value N is set. Most probably, it would be
a function of the previous \mental state" of the agent (see chapter 2).

For re-entering (carry on the processing of goals from where it left it), the system needs
to maintain its \state of computation" between interruptions. The frontier of nodes is already
a su�cient structure to preserve the \state of computation" between successive calls to demo,
the logic program that implements the agent's reasoning mechanism. The e�ects of re-entering
on the agent's previous goals and plans will be discussed in chapter 4 in the context of the
treatment of inputs.

The following sections present the derivability relation (demo) of an agent as a logic program.
The choice of language for the speci�cation (logic programming) is justi�ed by the following
considerations:

1. We will end using only one language, normal logic programming, to describe the agent
architecture (chapter 2), the agent reasoning mechanism (this chapter) and the agent's
procedural knowledge (chapter 4).

2. Nondeterminismand certain degree of paralellism in the applications of the inference rules,
can be modelled by a logic program. Di�erent behaviour can be obtained by changing
the strategy of control of the same logic program. Both possibilities would be �xed in a
procedural description.

52

3. Pure normal logic programs do not su�er from the ambiguity of destructive assignment
of values to variables. Variable assignments are unique. One always refers to the values
in certain data structure before an after some major transformation by using di�erent
terms. This discipline is particularly useful for modelling interleaving of processes. One
will always be able to refer to the particular set of values of data structure at a time-point.

4. Control mechanisms can themselves be represented inside logic programs in di�erent ways
and other extra-logical resources (such as cuts) could be used to optimize the logic code,
should it be necessary.

In what follows, demo is described in detail. Tables 3.1, 3.2, 3.3,3.4, 3.5, 3.6, 3.7, 3.8 and 3.9
contain the de�nition of demo and its subsidiary predicates. We discuss each table afterwards,
to clarify the operational details of these logic programs.

First, some remarks about the notation:

� To make easier the reading of the logic programs below, we attach a \nesting index" to
every _ and ^ operator. This is to indicate which operators are at the same level of
nesting (marked with the same index) within a complex formula;

� The operator = is used to indicate syntactic equality as de�ned by some suitable equality
theory left implicit. The operator � denotes logical equivalence and it \encapsulates" the
splitting rule of inference and other logical transformations such as false ^ A � false
and true ^ A � A. Thus, if F1 � F2 holds for frontiers F2 and F2, it means that either
they are identical or one can be transformed into the other by the splitting rule or one of
these logical transformations.

� Instead of the logical rendering of nodes (as conjunctions of literal and implications),
we use the structure that implements them. The intention is to have immediate access
to the control information related to each node, namely histories of propagations and
factoring and the distinction between �, UC and CN that will be explained below. All
these elements can be described in the logical notation, but the description would be
considerable longer and potentially confusing. Thus, when we write

Ni � (�; UC;CN;HF;M) (3.25)

we mean that node Ni has � as its set of abducibles, UC as the rest of the unconditional
goals expecting processing, CN the conjunction of all the implications in the node, HF
the history of factoring for abducibles in this node and M is the set of variables in the
initial query. CN will have some internal structure as well because we need to distinguish
each implication and its history of factoring. So, when we write:

CN � (Imp;HP) ^CNRest (3.26)

we mean that CN 's �rst implication is Imp the history of which is HP . The rest of CN
is, of course, CNRest.

3.4.1 The main routine: demo

demo (in table 3.1) is one of the two topmost predicates of the speci�cation (the other is
demo impl). It encapsulates tests for termination and selection of nodes for further processing
and it invokes the lower level routines to apply the inference rules (demo abd as explained
below) on those nodes.

53

DEMO

demo(KB; InGoals;OutGoals;R)
 (R = 0 ^1 OutGoals � InGoals) [DEMO�BAS1]
_1 (empty(InGoals)
^1 R 6= 0
^1 empty(OutGoals)) [DEMO�BAS2]

_1 (:rule apply(InGoals)
^1 R 6= 0
^1 OutGoals � InGoals
^1 :empty(InGoals)) [DEMO�BAS3]

_1 (rule apply(InGoals)
^1 R 6= 0
^1 :empty(InGoals)
^1 rewrite disj(InGoals;NextGoals)
^1 ((NextGoals � (FirstP lan _AltGoals)
^2 urg order(FirstP lan;OrderedP lan;Rurg)
^2 Rurg < k
^2 NewGoals � (OrderedP lan_AltGoals))
_2 (empty(NextGoals) ^2 empty(NewGoals)))
^1 demo drop(KB;NewGoals;OutGoals;R� 1) [DEMO�RECU]

demo drop(KB; InGoals;OutGoals;R)
 (InGoals � (FirstG _AltGoals)
^1 ((false � FirstG
^2 demo(KB;AltGoals;OutGoals))
_2(false 6� FirstG
^2 demo abd(KB; InGoals;OutGoals)))) [DEMO�DROP]

Table 3.1: The demo predicate

54

demo has four arguments: the knowledge base KB, containing the de�nitions used to
unfold goals into subgoals; InGoals contains the frontier of nodes provided as input to demo;
OutGoal, contains the �nal frontier of nodes, i.e. the frontier when demo is suspended; and R
is the argument responsible for the any-time character of the program. It functions as a counter
of the steps in the derivation starting with the initial frontier.

The demo program is described by four sub-clauses:

� [DEMO-BAS1] : : : [DEMO-BAS3] gather the base cases when demo will suspend
processing. Declaratively, these clauses can be read: No frontier can be derived from
the initial frontier (InGoals remain unaltered) if either, 1) the prover has spent all its
resources (R = 0), 2) the frontier is empty or 3) no rule can be applied to the frontier.

� [DEMO-RECU] is a more complex clause. It says: To derive OutGoals from InGoals
1) apply rewrite rules to the frontier and if the frontier is not empty after this then 1.1)
select the �rst node in the new frontier, 1.2) order the literals (and implications) in the
nodes (this task is further explained below and it is also discussed in chapters 4 and 5)
and 1.3) create a new frontier with the ordered �rst node, else the new frontier will also
be empty; 2) call demo drop with the new frontier.

The routine demo drop prunes the frontier, removing those nodes that entail falsity (i.e.
are equivalent to false).

The role of urg order above is related to the goal selection strategy which, as explained
in [Kow95], could be embedded in the de�nition of the predicate �. However, we argue, in
chapter 4, that a more general priority mechanism, also resource bounded (the reason for
Rurg < k, where k is a pre-de�ned constant value), could be used to increase the e�ciency of
the theorem prover with domain speci�c information. For the time being, urg order can be
omitted without a�ecting the theorem prover.

Another aspect that needs clari�cation is the role of R. As has been mentioned several
times above, the resource argument counts the steps of the derivation from the input frontier to
the output frontier. The main assumption is that each one of these steps (the application
of one rule of inference), represents a minimal unit of processing in the agent's reasoning
mechanism. Once this atomic unit of processing has been activated, it can not be stopped
until it has been completed. There is no such thing as a partial application of an inference rule.
Moreover, we further assume that all the inferences take exactly the same amount of resources.
These two assumptions allow us to add one unit to the counting per applied rule. For further
simplicity, however, resource counting for rewrite rules and case analysis is not considered.
These are, of course, working simpli�cations. Conceptually, every derivation step has its own
particular operational latency (duration), presumably highly dependent on the actual physical
implementation of the computing device that performs the derivations.

3.4.2 The abductive procedure: demo abd

We have been taking liberties with the form of the logic programs presented so far (including
those in chapter 2 describing GLORIA). Some of these logical descriptions are not in clause
form. However, they can be easily transformed into PROLOG clauses following the standard
procedures described, for instance, in [Kow79b] and [Hog90]. We carry on with this non-clausal
style for the sake of the clarity and brevity of the presentations. Labels are used to highlight
sub-clauses (conjunctions in the body of a main clause) that are related to certain tasks.

demo abd contains the procedures that perform the operations described in previous sec-
tions, and some additional ones that we explain below. The processing starts with the selection

55

DEMO abd : The abductive procedure

demo abd(KB; InGoals;OutGoals;R)
 InGoals � FirstNode _AltGoals
^1 FirstNode = (�; (G^Rest); CN;HF;M)
^1 ((G = :G0

^2 NewCN = ((false G0); fg)^ CN
^2 NewNode = (�; Rest;NewCN;HF;M)
^2 NextGoals = (NewNode _AltGoals)
^2 demo impl(KB;NextGoals;OutGoals;R � 1) [DMAB�NEG]
_2 (G 6= :G

0

^2 ((unfoldable(G)
^3 definition(KB;G;D)
^3 NewNode = (�; (D ^Rest); CN;HF;M)
^3 NextGoals � NewNode _AltGoals
^3 use order(NextGoals;OrdGoals;Ruse)
^3 Ruse < kuse
^3 NextGoals = OrdGoals) [DMAB�UNF]
_3
((equality(G) _4 inequality(G))
^3 �0 = G ^�
^3 NewNode = (�0; Rest; CN;HF;M)
^3 NextGoals = (NewNode _AltGoals)) [DMAB�EQU]
_3
(abducible(G)
^3 factorable(�; G;HF)
^3 factoring(InGoals;NextGoals)) [DMAB�FAC]
_3
(abducible(G)
^3 :factorable(�; G;HF)
^3 �0 = G ^�
^3 NewNode = (�0; Rest; CN;HF)
^3 NextGoals = (NewNode _AltGoals))) [DMAB�ABD]
^2 (demo(KB;NextGoals;OutGoals;R� 1))))

_1 (:rule apply to uc(FirstNode)
^2 demo impl(KB; InGoals;OutGoals;R)) [DMAB�NRA]

rule apply to uc(Node) Node 6� false
^1 Node = (�; UC;CN;HF;M)
^1 literal(G) ^1 G 2 UC [NRA�UC]

Table 3.2: The abductive procedure

56

of a node (FirstNode) and then, from the UC component of this node, the program selects a
literal on which the application of a rule will be attempted. The subsequent operations are:

� [DMAB-NEG]: If the selected literal is a negative atom, then:

1. Add the corresponding implication to CN . Note that the new implication is initiated
with an empty history of propagation (fg).

2. Rebuild the node, excluding the original literal from UC.

3. Call the routine demo impl (described below) with a new frontier that has the new
node as its �rst node. This maneuver is intended to activate the processing of the
just-added implication.

4. Eventually demo impl will return the control to demo to carry on processing other
literals in UC.

The transformation performed by this sub-clause is similar to Fung and Kowalski's trans-
formation of [FK96] \initial" queries and within the splitting rule. Observe that the
algorithm emulates the resolution mechanism of a SLDNF theorem prover like PROLOG.
Here, as in SLDNF, once a negative atom has been selected for reduction a separate pro-
cedure (in this case demo impl) is called to process it. The main di�erence, with respect
to SLDNF, is that this new process may end up not only proving or disproving the atom,
but also suspending the reduction of the body of the implication, without making a �nal
decision on the truth or provability of every atom in it.

Further explanations of this novel strategy are provided below. One can add here, how-
ever, that this suspension strategy can be pro�tably combined with abduction. Processing
of an implication is suspended when the reduction hits an abducible atom that can not be
resolved by propagation. Abduction is not performed on abducibles atoms in the body
of implications. In doing so, the abducible atoms are minimized. The reasons and conse-
quences of this are further discussed below, in the description of the program demo impl.

If the selected literal is not a negative atom, one of the following (mutually exclusive)
operations will be performed.

� [DMAB-UNF]: If the selected literal can be unfolded (unfoldable(G) i.e. not abducible
or equality or inequality, as explained below) then its de�nition is retrieved from the
knowledge base (if there is no de�nition false will be provided as proxy de�nition). The
new de�nition takes the place of the literal in the new version of the �rst node, which is
then placed in the new frontier.

Recall that the predicate � (i.e. the program or routine that implements the equiva-
lence relation), has the splitting rule embedded in it. As a consequence, after the call in
this clause the new �rst node, that contains disjunction D (the de�nition of the literal
G) in UC, will be processed by � so that the conjunction Rest is distributed over the
disjunction, yielding a new at frontier in NextGoals.

The predicate use order, as urg order, is further discussed in chapter 4. As the syntax
suggests, this predicate performs an ordering of the nodes (unlike urg order that orders
the conjuncts \inside" a node) and can be omitted or trivially implemented as a program
that makes a copy of NextGoals into OrdGoals. We explain in that chapter how this
predicate is part of the (resource bounded) mechanism to incorporate useful, domain-
speci�c heuristics for goal processing into the agent's programs. Its appearance here
serves to illustrate the location of this sort of procedure within the reasoning mechanism.

57

� [DBMAB-EQU]: This clause simply decides whether the literal being processed is an
equality or a disequality, in which case it transfers it to � for later processing. In the
i� proof procedure, equalities require special treatment, as explained before, due to the
need of distinguishing between existentially and universally quanti�ed variables. This
distinction is critical when one wants to retrieve an answer from the �nal frontier in a
derivation. We have chosen to extend the treatment in order to deal with inequalities (<)
in a similar form. That is, a set of rewrite rules has been built to reduce conjunctions
with inequality as well as with equalities. The set required by the planning application
is simply one that \suspends" the reduction of inequalities when there are variables (un-
known values) involved, and processes them in the corresponding manner when they are
instantiated. These rules for equalities and inequalities are shown in tables 3.8 and 3.9
and are explained below.

It is worth noticing, however, that equalities and inequalities can be regarded as abducible
predicates or predicates with no de�nition in the knowledge base. They can, therefore, be
incorporated into the abductive framework < T; IC;Ab > , without altering its seman-
tics. Nevertheless, the predicate abducible(G) in our description is intended to refer to
abducibles other than equalities and inequalities.

� [DMAB-FAC]: This clause implements the factoring transformation described in the
previous section. Two tests restrict the application of the factoring rule to the �rst
node of the current frontier (done by factoring(InGoals; NextGoals)). The �rst test
(abducible(G)) establishes whether the literal under consideration is an abducible and
not an equality or inequality.

The second test is speci�c to factoring. It checks whether there is an atom in � that can
be used to factor with the atom G, according to the history of transformation kept in the
node. If there is such an atom, then the factoring is carried out.

� [DMAB-ABD]: If the literal G is an abducible but there is no atom with which G has
not been factored before, then G must be suspended. As a transformation of the data
structures, this implies removing G from UC and placing it in �. Suspension is this sort
(moving a predicate from UC into �) is equivalent to abduction).

� [DMAB-NRA]: If none of the alternatives above applies, which will be the case when
UC is empty or equivalent to false9 then control passes to demo impl, to check whether
any of the rules involving implications can be apply.

One can increase the e�ciency of an implementation by dropping, at this stage, a node
that is equivalent to false, instead of waiting until the control returns to demo drop.
To make the presentation simple, we have not include this possibility in the program in
table 3.2.

3.4.3 Processing implications: demo impl

The program demo impl deals with the application of inference rules (those that can be
applied) to literals in implications. It could be regarded as the topmost procedure of the
prover. One can start processing an initial frontier either by calling demo impl or demo. It all
depends on whether one wants attention �rst on activation of goals (done by demo impl) or on
goal reduction (done by demo). These processes, however, will call each other and processing
will stop when neither can modify the frontier anymore.

9(as tested by :rule apply to cn(FirstNode)).

58

DEMO IMPL : Processing implications

demo impl(KB;InGoals;OutGoals;R)
 (R = 0 ^1 InGoals = OutGoals) [DMIM�BAS1]
_1 (empty(InGoals)
^1 R 6= 0
^1 empty(OutGoals)) [DMIM�BAS2]
_1 (InGoals � (FirstNode _AltGoals)
^1 R 6= 0
^1 :rule apply to cn(FirstNode)
^1 InGoals = OutGoals)) [DMIM�BAS3]
_1 (InGoals � (FirstNode _AltGoals)
^1 exist quant vars(FirstNode;ExQV ars)
^1 FirstNode = (�; UC; CN;HF;M)
^1 Ro +Rr � R

^1 demo each impl(KB;ExQV ars;�; CN; fg; CN 0; Ro)
^1 ((case analysis(ExQV ars;�; CN 0; Eq; CN1; CN2)
^2 NewNode1 = (�; (Eq ^ UC); CN1;HF;M)
^2 NewNode2 = (�; UC;CN2;HF;M)
^2 NextGoals � (NewNode1 _NewNode2 _AltGoals) [DMIM �CA]
_2 (promotion(CN 0;Head;CN 00)
^2 NewNode= (�; (Head ^ UC;CN 00;HF;M)
^2 NextGoals � (NewNode_AltGoals)) [DMIM � PRO]
_2 ((:case analysis(ExQV ars;�; CN 0; Eq; CN1; CN2)
^2 splitting head(ExQV ars;CN

0;Head;CN1; CN2)
^2 NewNode1 = (�; (Head ^ UC); CN1;HF;M)
^2 NewNode2 = (�; UC;CN2;HF;M)
^2 NextGoals � (NewNode1 _NewNode2 _AltGoals) [DMIM � SPL]
_2 (:case analysis(ExQV ars;�; CN 0;

Eq; CN1; CN2)
^2 :splitting head(ExQV ars; CN

0;Head;CN1; CN2)
^2 :promotion(CN

0;Head;CN 00)
^2 NewNode= (�; UC;CN 0;HF;M)
^2 NextGoals � (NewNode_AltGoals))) [DMIM �NRA]

^1 demo(KB;NextGoals;OutGoals;Rr)) [DMIM�RECU]

rule apply to cn(Node)
 Node = (�; UC;CN;Hf;M)
^1 some rule applicable(CN) [NRA�CN]

Table 3.3: The demostration procedure for implications

59

DEMO EACH IMPL : Processing each implication

demo each impl(KB;ExQV ars;�;
InImps;PreviousImps;OutImps;R)

 (R 6= 0 ^1 empty(InImps) ^1 OutImps = PreviousImps)
_1 (R = 0 ^1 OutImps = (PreviousImps ^ InImps))
_1 (R 6= 0 ^1 InImps = (FirstImp ^Rest)
^1 demo one impl(KB;ExQV ars;�; F irstImp;NewImp)
^1 ((suitable for ca pro spl(ExQV ars;�;NewImp)
^2 RestImp = (PreviousImps ^Rest)
^2 OutImps = (NewImp^ RestImp)) [DMEA�CP]
_2 (suitable for deletion(NewImp)
^2 demo each impl(KB;ExQV ars;�;

Rest; PreviousImps;OutImps;R� 1)) [DMEA�DEL]
_2 (suitable for splitting(NewImp)
^2 NextImp � NewImp

^2 NewRest = (NextImp ^Rest)
^2 demo each impl(KB;ExQV ars;�

NewRest;PreviousImps;OutImps; R� 1)) [DMEA� SPL]
_2 (suitable for equality treatment(NewImp)
^2 NewRest = (NewImp ^Rest)
^2 demo each impl(KB;ExQV ars;�;

NewRest;PreviousImps;OutImps; R� 1)) [DMEA� EQU]
_2 (:suitable for ca pro spl(ExQV ars;�;NewImp)
^2 :suitable for deletion(NewImp)
^2 :suitable for splitting(NewImp)
^2 :suitable for equality treatment(NewImp)
^2 some rule applicable(NewImp)
^2 NewRest = (NewImp ^Rest)
^2 demo each impl(KB;ExQV ars;�;

NewRest;Previous;OutImps;R� 1)))) [DMEA�NRA]
_2 (:suitable for ca pro spl(ExQV ars;�;NewImp)
^2 :suitable for deletion(NewImp)
^2 :suitable for splitting(NewImp)
^2 :suitable for equality treatment(NewImp)
^2 :some rule applicable(NewImp)
^2 NewPrevious = (PreviousImps ^NewImp)
^2 demo each impl(KB;ExQV ars;�;

Rest;NewPrevious;OutImps;R� 1)))) [DMEA�REC]

Table 3.4: Processing each implication

60

DEMO ONE IMPL : processing one implication

demo one impl(KB;ExQV ars;�; InImp;OutImps)
 (noimp(InImps) ^1 empty(OutImps)) [DMON�BAS1]
_1 (:rule apply imp(InImp) [DMON�BAS2]
_1 (InImp � (H (G ^Rest);HP)
^1 (((equality(G) _3 inequality(G))
^2 ((process equalities(ExQV ars; InImp;NewImp)
^3 demo one impl(ExQV ars;�; NewImp;OutImps))
_3 (:process equalities(ExQV ars; InImp;NewImp)
^3 OutImps = (NewImp)))) [DMON�EQU]

_2 (G = :G0

^2 H
0 = (H _G0)

^2 NewImp = (H 0 Rest;HP)
^2 demo one impl(ExQV ars;�;NewImp;OutImps)) [DMON�NEG]
_2 (unfoldable(G)
^2 definition(KB;G;D)
^2 OutImps � (H (D ^Rest);HP)) [DMON�UNF]
_2 (abducible(G)
^2 propagation(�; InImp;OutImps))))) [DMON�ABD]

rule apply imp(Imp)
 Imp � (H (G ^Rest);HP)
^1 (equality(G) _2 inequality(G)
_2 unfoldable(G) _2 G = :G0

_2 (abducible(G) ^2 propagable(�; G;HP)) [NRA� IMP]

some rule applicable(Imps)
 Imps � (Imp ^RestCN)
^1 rule apply imp(Imp) [NRA� IPS]

Table 3.5: Processing one implication

61

Within demo abd, demo impl itself is invoked by [DMAB-NEG], which rightly suggests that
the program is involved in the treatment of negations. This is due to the fact that the proof
procedure transforms negation into implication with false by head. This should not, however,
obscure the fact that the processing explained by demo impl is applicable to any implication
in a node. Actually, because one has to process all these implications (integrity contraints) in
the goals to safeguard the correctness of the proof procedure, demo impl will try to process all
the implications in the node. The process will only stop if no implication admits further rule
application or the system runs out of resources (R = 0).

Notice that although demo impl is used to reduce negative literals in the node its role is
more general and includes the aforementioned process of activation of goals, as will be discussed
below.

Having demo abd spawning a (demo impl) process to deal with negation suggests a close
paralellism between SLDNF and i�PP. As mentioned above (in the description of the rules of
inference), the i�PP seeks to generalize the treatment of negations for those cases where no
commitment can be made with respect to the truth or falsity of an atom, because it depends
on the truth value of some unde�ned atoms. The evaluations of these latter atoms must be
suspended, waiting until \evidential" or contextual support allows for a decision to be made.

In SLDNF, something that can not be proven is regarded as false. The proof procedure
implicitly closes the knowledge base, which is tantamount to state that the prover has all the
knowledge related to the problem being handled. This closure is what completion semantics
seeks to capture.

The i� proof procedure, on the other hand, does not �x the information related to those
predicates whose de�nitions changes or are known to be incomplete in some way. It is capable
of doing this because the abductive framework that de�nes each program, has been given a
semantics where unde�ned atoms can be made sense of.

Abductive programs, however, involve some subtleties related with negation that require
more clari�cation. For instance, at the beginning of the chapter we said that from a goal g and
the rule g a1 ^ : : :^ an, the \explanation" a1 ^ : : :^ an may be abduced. This means that
the proof procedure, when queried with g about a theory containing only that rule, answers
back with a conjunction a1 ^ : : :^ an, provided that all the ai belong to the set of abducible
predicates Ab10. If one of the a's, say aj is a literal such that aj = :bj, where bj is an abducible
atom (it belongs to Ab) then, despite being an abducible, one would not want to abduce bj
because that would invalidate the explanation provided by the other a's. Of course, if bj has
already been abduced (outside the negation), or it is known to be true, then there is no choice
but to drop the explanation as invalid.

So, at �rst glance, it seems that abducible atoms require di�erent treatment depending on
whether they are \inside" or \outside" a negation, i.e. in the body of an implication with head
false (inside) or somewhere else (outside). Whether an atom is inside or outside a negation can
always be established by applying a well-de�ned set of rules.

Thus, abduction (i.e. shifting an atom to �) should not be performed inside a negation.
This could be regarded, we believe, as a form of context-dependent abduction, where the context
is set by the body of the implication that contains the abducible atom. It is interesting to note
that this context-dependent, syntax-driven restriction of abduction has a semantic justi�cation.
The justi�cation is the minimality of the abduction that the restriction brings about, which
is better explained by an example:

10Notice that what belongs to the set Ab is the predicate name of each ai, not the actual atom.

62

Example 3.4.1 Consider the abductive logic program < T; IC;Ab >, where:

T : a$ c ^:b
Ab : fc; bg
IC : fg

Trying to answer the query a, the proof procedure will unfold a into c^:b. If the criterion
were strictly \add abducibles to � whenever you cannot factor or propagate them", then the
answer (as extracted from �) would be fc; bg. This \explanation" is consistent with a c^:b
(easier to observe by rewriting it as a _ b c), the \if" side of the de�nition of a above, but
not with the \only-if" side which forces the exclusion of b.

Thus, if the proof procedure is to correctly capture the semantics of the de�nitions, then
it must inhibit abduction inside negations. Moreover, in general and for the same reason,
abduction should not be performed on atoms in the body of any implication.

Observe that this discussion is consistent with the interpretation of abduction as deduction
on the only if part of the de�nitions in an abductive logic program, as explained by Fung
[Fun96].

We argue for another form of context-dependent abduction in chapter 6. Meanwhile, the
discussion above is su�cient as conceptual support for the description of the demo impl program
in table 3.3, which follows:

� [DMIM-BAS1] : : : [DMIM-BAS3] are the base cases of the de�nition, de�ning the
conditions under which processing of implications will be suspended. Lack of resources is
stated by [DMIM-BAS1] and processing on an empty frontier is prevented by [DMIM-
BAS2]. [DMIM-BAS3] states that no further processing is possible because no rule
can be applied to any implication in the �rst node, even though there may be resources
for further computation.

Observe that [DMIM-BAS3] calls the program rule apply to cn to establish whether
a rule of inference can be applied to some implication in the current �rst node. This
program is speci�ed by the clause [NRA-CN] which is not as simple as [NRA-UC] in
table 3.2. An extra condition of this clause caters for the case when there is an abducible
in the body of an implication that could be used to propagated some of the previously
abduced atoms in this node (kept in this node's �). In that case, we say that � is
propagable through G, and the history of propagation is employed in establishing it.

The de�nition of rule apply to cn implies that processing must stop, not only when CN
is empty but more importantly when there is no abducible in an implication that can be
used for propagation.

An important implementational detail about [NRA-CN] in table 3.3 and [NRA-UC] in
table 3.2 is that these tests coincide with the conditions of the inference rules and therefore
need not be repeated. Instead, extra-logical devices, like \cuts" in PROLOG or \ags" in
general, can be used to indicate that no rule has been applied since the last iteration of
the the corresponding recursive programs (the other clauses in demo abd and demo impl,
respectively). We have followed this strategy in a prototypical implementation.

� [DMIM-RECU]: This part of the speci�cation of demo impl describe a more complex
process. The intended sequence of execution (which could be enforced with a more com-
plicated logical description and that is carried on by a PROLOG interpreter) is as follow:

1. The �rst node of the frontier is retrieved (FirstNode).

63

2. The existentially quanti�ed variables in this node are collected (ExQV ars).

3. The program demo each impl, described in table 3.4 and explained below, is invoked
withKB, ExQV ars, �, CN , fg and Ro as input arguments. The program computes
and output CN 0 which is the revised version of CN after exhaustively applying
some of the inference rules to it (see below). We exploit the \double-modality" of
arguments in logic programming (parameter of a procedure can be used in both
inputs and output mode) with argument Ro. One does not really known the value of
Ro when demo each impl is called. But one knows that whatever the value, it must
total R when added to Rr. This restriction is somehow \inputted" to the program.
Thus, Ro is bounded by R. If demo each impl consumes all the resources (in R)
then Rr = 0. Otherwise, Rr is assigned the di�erence R� Ro. However, this is just
one possible strategy. Other assignments (satisfying Ro < R and Rr > 0) are also
allowed by this any-time algorithm.

4. After the call to demo each impl and before calling demo, one of the following al-
ternatives is chosen:

{ [DMIM-CA]: The �rst condition of this clause tests whether case analysis can
be applied to the �rst implication Imp in CN 0 (CN 0 � (Imp ^ CNRest)). If
case analysis is indeed applicable then the program case analysis will output
Eq, CN1 and CN2 satisfying:

Imp � (H Eq ^Rest;HP)
CN1 � ((H Rest;HP)^ CNRest)
CN2 � ((false Eq; fg) ^ CNRest)

The other two conditions introduce the two nodes resulting from the case analysis
into the frontier of nodes, as substitution for the original FirstNode.

{ [DMIN-PRO]: If the �rst implication, Imp, in CN 0 (if any) has a empty body
(i.e. Imp � (Head true;HP) then promote will remove the head in Head
and will return it as output. It will also return the remaining implications of
CN 0 in CN 00.
Promotion means that Head is shifted to UC. It also can be seen as the acti-
vation of all the goals in Head. However, promotion of a Head is only allowed
when that Head contains no universally quanti�ed variables. The Head is, in
general, a disjunction of atoms which would have eventually been split. So, this
restriction on promotion is just an extension of the restriction on the splitting
rule, as established by Fung and Kowalski [FK96].
To preserve the depth �rst search strategy for selection of goals, common in
SLDNF systems like PROLOG, the program must add the goal being activated
as the �rst element of UC. This and other strategies can also be accomplished by
a mechanism (implemented as urg order in [DEMO RECU]) for setting priorities
for goals. This mechanism would favour more recently unfolded goals and it
would be called after promoting a literal in H to UC.

{ [DMIN-SPL]: If neither case analysis, nor promotion are possible, the program
will try to split the the implication, separating the body from the head into
di�erent nodes.
Splitting of a head, as we call the rule implemented by this clause, is restricted
by the following conditions:

(a) The head of the implication to be split must not contain universally quan-
ti�ed variables. This is to avoid introducing universal variables into UC,
which would then treat those variable as existentially quanti�ed.

64

(b) The head of the implication must not be false. Splitting an implication
of this sort would generate exactly the same frontier and could, therefore,
plunge the system into loops.

{ [DMIN-NRA]: When neither case analysis, nor promotion are applicable, this
third clause will build a new frontier the �rst node of which is identical to the
one in FirstNode except that CN 0 substitutes CN .

5. The last call is to demo with a new frontier in NextGoals.

The logic program in Table 3.3 speci�es the top-most procedures in the processing of impli-
cations. The rules for treatment of implications have been separated into two sets. One set is
\encapsulated" by the program demo each impl. The other set is constituted by the rules for
case analysis, splitting and the promotion mechanism (which is a sort of degenerated splitting).
This separation is intended to give priority to those rules that do not increase the side of the
frontier of goals. The rules in the second set, that do increase the frontier's nodes are left as
last resource as suggested by [Fun96]. This program, together with demo abd, intend a depth
�rst search of the tree of derivations. The search strategy can be improved by reordering the
nodes in the frontier, so that the \best" node is always the �rst node. This is the purpose of
the programs use order and urg order, presented and discussed in chapter 4.

The program in table 3.4, on the other hand, extracts as many implications from the
current node's CN as the resources allow. Every one of these implications is processed by
demo one impl, which encapsulates the rules of unfolding, propagation and for treatment of
negative literals, equalities and inequalities. The inputs to the program are the knowledge base,
KB, the set of existentially quanti�ed variable in this node, ExQV ars, the abducibles in � and
CN as InImps together with the set of implications processed in previous iterations (which is,
of course, initially empty). The output of the program is processed by the following clauses:

� [DMEA-CPS]: The �rst condition of this clause suitable for ca pro spl, tests whether
the newly obtained implication, NewImp, is suitable either for case analysis, pro-
motion or splitting a head. If any of this rules is applicable, the control returns to
demo impl with NewImp as the �rst node of CN .

� [DMEA-DEL]: If the implication in NewImp has a body equivalent to false, then it
can be dropped all together. Process resumes with the next implication in CN , if any.

� [DMEA-SPL]: After unfolding and propagation, the body of NewImp will possibly
contain a disjunction of atoms as one of the conjuncts. The call to � will distribute
the conjuncts over the disjunction, generate a new set of \at" implications. ((H
(D1 _ : : :_Dn)^C) � (H D1 ^C)^ : : :^ (H Dn ^C) Processing continues on the
�rst of this newly generated implications.

� [DMEA-EQU]: If NewImp contains an equality or an inequality that has not been pro-
cessed before, the implication is installed as �rst implication in CN and demo each impl
is recursively called.

� [DMEA-REC]: Because of demo one impl (explained below), the returning NewImp
may contain implications that have not been exhaustively processed. In that case, demo each impl
recursively calls itself. This is what this clause speci�es.

� [DMEA-NRA]: Finally, if none of the previous rules apply, it means that the original
implication in CN has been exhaustively processed by this set of inference rules on CN .
The resulting set of implications is then stored in the bag of already processed implications
(NewPrevious) and the process resumes with the next unprocessed implication.

65

Observe that demo each impl only stops, as the name suggests, when each and every impli-
cation in CN has been processed or when resources are exhausted. In this latter case, nothing
guarantees that the answers given by the proof procedure will be correct, because there may
be rules no applied at any time.

Sudden lack of resources is also a problem when the system is processing one application in
particular (demo one impl). However, for simplicity, we have not included resource restriction
into the speci�cation of the program for that task (i.e. processing one implication is regarded
as an atomic activity). Table 3.5 presents such a program. The program is called with KB,
ExQV ars, �, and one implication InImp as inputs. As output, the program returns a conjunc-
tion of implications OutImps as the result of processing InImp. The structure of the program
is explained as follows:

� [DMON-BAS1] and [DMON-BAS2] states the terminating conditions of demo one impl.
[DMON-BAS1] says that processing an implication is impossible if no implication is pro-
vided. In an implementation where implications in CN are kept in a list, this conditions
will test whether the end of the list has been reached. The output list of implications
would, therefore, be empty. [DMON-BAS2] establishes whether processing must stop
because none of the rules implemented by this program can be applied to the body of
InImp.

� [DMON-EQU]: The second part of the de�nition starts with the selection of a literal G,
if any, from the body of InImp. Then, the condition in [DMON-EQU] tests whether
G is an equality or inequality pending processing in the body of InImp. If G is that
type of literals, the program invokes process equalities to deal with it. As processing
of one equality can enable other equalities for processing, the program demo one impl
recursively calls itself, to pursue processing of other elements of the body of the same
implication.

If the equalities and inequalities in InImp do not admit further processing, the program
stops returning InImps as the only element of in OutImps.

� [DMON-NEG]: If the selected literal G is a negative literal, this clause will attach its
negation, :G � G0, to the head of the implication. The program recursively calls itself
to continue processing the same implication.

� [DMON-UNF]: If G is an unfoldable predicate, then the program retrieves its def-
inition from the knowledge base (in D). Processing stop, and control is returned to
demo each impl which will distribute the remaining conjuncts in the body of InImp over
the disjuncts in D or it will drop the implication all together, if D � false.

� [DMON-ABD]: Finally, if G is an abducible, then propagation will be attempted on it
by using the abducibles in �.

The rule of factoring (implemented in [DMAB-FAC] above) is intended to minimize the
number of abduced atoms in �. It does so by using every (previously obtained) abducible
atom to explain as many goals as possible, instead of throwing newly found abducibles
into �.

Similarly, propagation, as described in this clause, tries to use every abducible atom al-
ready in UC to resolve with an abducible in the body of an implication. It is interesting to
observe that, despite their similarities, while propagation is a resolution step (as resolving
b and a _ :b into a), factoring is not.

Propagation is also similar to unfolding, if one regards the list of abducibles in � as
de�nitions of the abducible predicates in the body of the implications. The program

66

exploits this similarity: instead of propagating one atom from � with the one in the body
of the implication, the program builds a de�nition for the atom in the body, with all those
abducibles in � that match it. This \de�nition" then takes the place of the original atom
in the resolvent of the propagated atom and the original implication, as [DMON-UNF]
indicates.

Observe that i�PP preserves the original implication subjected to propagation. In an
open architecture, the system will be able to use the same implication to propagate new
data in future calls to demo impl. It also worth observing that the preservation of the
original implication could be understood as an extension of traditional resolution-based
theorem provers (such as SLD and SLDNF), which do not keep ancestors of the resolvent.
Hogger suggests that the e�ciency of those provers could be due to that strategy of no
preservation of ancestors ([Hog90] pages 127 and 208). It would be interesting to test the
practical impact of challenging that restriction as the i�PP does.

Also, notice that the construction of the \de�nition" is packing up several applications of
the propagation rule in one operation. It could be called, therefore, multiple propagation.

This replacement operation is guarded by a test (propagable(HPi;�; G)) analogous to
that in factoring. Only if a non-empty de�nition can be built for the atom (G) under con-
sideration, propagation operations will continue. What that test does is to ensure that no
abducible is used more than once for propagation, so avoiding the risk of nonterminating
computations. The test relies, of course, on the existence of the history of propagation
(HPi) of all the abducible atoms in the body of implication i, in the node. Every time a
non-empty de�nition is successfully built, those atoms in � involved in the operation are
marked as used in (HPi), as explained in the description of the propagation rule above.

This operation, together with unfolding and promotion, constitutes the set of operations
required for activation of goals.

This completes the description and analysis of the routines of the proof procedure that
manipulate non-abducible and most of the abducible predicates. In the following section the
attention is focused on two special classes of abducibles: equalities (=) and inequalities (<).

3.4.4 Rewrite rules for equalities and inequalities

The original speci�cation of the i� proof procedure does require a special treatment of
equalities. On one hand, = is an abducible predicate, so that no de�nition of it should be part
of the knowledge base. This leaves the predicate \open" for changes. On the other hand, the
predicate is not treated as other abducibles by the factoring and propagation rules. Instead,
the proof procedure is furnished with a special set of rules for equality treatment i.e. those that
simulate the uni�cation algorithm and those for case analysis of equalities.

The discussion of the programs that implement these rules for equalities is the subject of
this section. The other subject is the introduction and discussion of a similar set of rules to deal
with inequalities (<, in particular). With the planning application in mind, inequalities are
also regarded as special abducible predicates. As will be seen below, scheduling and temporal
reasoning in planning are highly dependent on a exible and e�cient treatment of inequalities.
As in the case of equalities, this is possible by means of predicate-speci�c manipulations.

We have chosen to implement treatment of equalities and inequalities within the same
routines because most of the processing is the same for both kinds of predicates. Conceptually,
one could see an inequality as any other abducible that requires no special treatment, except
for appropriate integrity contraints. The e�ects of this special treatment on the soundness and
e�ciency of the proof procedure is discussed below.

67

Predicates for rewriting equalities and inequalities

rewrite disj(D;D0)
 (D � (C _DRest)
^1 rewrite conj(C;C

0)
^1 ((C

0 6� false
^2 D

0 � C0 _Rest)
_2 (C

0 � false
^2 rewrite disj(DRest;D

0)))
_1 (D � false ^1 D0 = false)) [REW �DIS]

rewrite conj(C;C0)
 (C � (A ^RestC)
^1 ((literal(A)
^2 rewrite(A;A0;�)
^2 C

00 � (A0 ^ (RestC �))
^2 rewrite conj(C

00; C0))
_2 (implication(A) ^2 existV ars(C;X)
^2 rewrite implication(X;A;A

0)
^2 rewrite conj(Rest;Rest0)
^2 C0 � (A0 ^Rest0)))

_1 (C � true ^1 C0 = true)
_1 (C � false ^1 C0 = false)) [REW �CON]

rewrite implication(XV ars; I; I0)
 I = ((H B);HP)
^1 rewrite conj

0(XV ars;B;B0;�)
^1 I

0 = ((H B0)�);HP) [REW � IMP]

rewrite conj0(X;C;C0;�0)
 (C � (A ^RestC)
^1 rewrite0(X;A;A0;�)
^1 C00 � (A0 ^ (RestC �))
^1 �0 = � [�00

^1 rewrite conj
0(X;C00; C0;�00))

_1 (C � true ^1 C0 = true ^1 �0 = fg)
_1 (C � false ^1 C0 = false ^1 �0 = fg)) [REW �COX]

Table 3.6: Top-level predicates for rewriting of equalities

68

Rewrite Rules

rewrite(A;A0;�)
 (A 6= (X = Y)
^1 A 6= (X < Y)
^1 A 6= (X � Y)
^1 A = A0 ^1 � = fg) [OTHERPR]
_1 (A = (X = Y)
^1 ((var(X) ^2 var(Y)

^2 � = fX=Y g ^2 A0 = true) [UNIF1]
_2 (X = F (W) ^2 Y = F (Z) ^2 � = fg
^2 A0 = (W = Z)) [UNIFI2]

_2 (constant(X) ^2 constant(Y)
^2 X = Y ^2 � = fg ^2 A0 = true) [UNIFI3]

_2 (var(Y) ^2 :var(X)
^2 :occurs(Y;X) ^2 � = fY=Xg ^2 A0 = true) [UNIFI4]

_2 (var(X) ^2 :var(Y)
^2 :occurs(X;Y) ^2 � = fX=Y g ^2 A0 = true) [UNIFI5]

_2 (none of the above1(X;Y)
^2 A0 = false ^2 � = fg)) [UNIFI6]

_1 (A = (X < Y)
^1 constant(X) ^1 constant(Y)
^1 ((X < Y ^2 � = fg ^1 A0 = true)
_2 (:(X < Y) ^2 � = fg ^2 A0 = false))) [LESSTH]

_1 (A = (X < Y)
^1 (var(X) _2 var(Y))
^1 � = fg ^1 A0 = A) [SUSINEQ]

[REWRITE]

Table 3.7: Rewrite Rules

Rewriting process on implications
process equalities(ExQV ars; C;C0)
 rewrite implication(ExQV ars; C;C0)
^1 C 6= C0 [PRO�CON]

case analysis(ExQV ars; InCN;Eq;CN1; CN2)
 (InCN � (((H X = T ^ Rest);HPi) ^ RestC)
^1 var(X)
^1 X 2 ExQV ars
^1 (atomic(T)
_2 (compound(T) ^2 :occurs(X;T)))
^1 (no contain Uni V ars(ExQV ars;H))

Table 3.8: Rewriting implications

69

Rewrite Rules for atoms in implications
rewrite0(ExV;A;A0;�)
 (A 6= (X = Y) ^1 A 6= (X < Y)
^1 A 6= (X � Y) ^1 A = A0 ^ � = fg) [XOTHERP]
_1 (A = (X = Y)
^1 ((var(X) ^ var(Y)

^2 :(X 2 ExV) ^2 :(Y 2 ExV)
^2 � = fX=Y g ^2 A0 = true) [XUNIF1]

_2 (X = F (W) ^2 Y = F (Z) ^2 � = fg
^2 A0 = (W = Z)) [XUNIF2]

_2 (constant(X) ^2 constant(Y)
^2 X = Y ^2 � = fg ^2 A0 = true) [XUNIF3]
_2 (var(X) ^2 var(Y)
^2 :(Y 2 ExV) ^2 (X 2 ExV)
^2 � = fY=Xg ^2 A0 = true) [XUNIF4]

_2 (var(Y) ^2 var(X)
^2 :(X 2 ExV) ^2 (Y 2 ExV)
^2 � = fX=Y g ^2 A0 = true) [XUNIF5]

_2 (var(Y) ^2 :(Y 2 ExV) ^2 :var(X)
^2 :occurs(Y;X) ^2 � = fY=Xg ^2 A0 = true) [XUNIF6]

_2 (var(X) ^2 :(X 2 ExV) ^2 :var(Y)
^2 :occurs(X;Y) ^2 � = fX=Y g ^2 A0 = true) [XUNIF7]
_2 (none of the above2(X;Y)
^2 � = fg ^2 A0 = false)) [XUNIF8]

_1 (A = (X < Y)
^1 constant(X) ^1 constant(Y)
^1 ((X < Y ^2 � = fg ^2 A0 = true)
_2 (:(X < Y) ^2 � = fg ^2 A0 = false))) [XLESST]

_1 (A = (X < Y)
^1 (var(X) _2 var(Y))
^1 � = fg ^1 A0 = A) [XSUSINQ]

[REWRITE0]

Table 3.9: Rewrite rules for implications

70

The programs for rewriting are shown in tables 3.6, 3.7, 3.8 and 3.9. Table 3.6 contains
the topmost routines for the rewriting process on atoms in the � element of a node. Table 3.8
contains the topmost routines for processing equality and inequality atoms in the body of impli-
cations, including case analysis. Tables 3.7 and 3.9 contains the rewrite rules that simulate the
uni�cation algorithm for equalities and reduce inequalities. In table 3.9 the rules of uni�cation
are extended to cater for universal and existential quanti�cation of variables.

In these descriptions, we take for granted built-in mechanisms for:

1. Identifying whether a term(X is a variable (var(X));

2. Identifying whether the term is grounded (constant(X));

3. Collecting the set S of existentially quanti�ed variables in a given nodeC (existV ars(C; S));

4. Identifying whether a given variableX, occurs within a term T , the occur-check of Robin-
son'n uni�cation algorithm [Rob79], (occurs(X;T)) and

5. Establishing whether a given variable X belongs to a given set S (X 2 S).

What follows is a description of each clause and sub-clause in the tables, using its label as
reference:

� [REW-DIS]: Rewriting equalities and inequalities in a node means transforming that
node into a new one. The new node must be consistent with what can be deduced from
the equalities|inequalities in the original node, and an equality theory (such as Clark
Equality Theory [Cla78]) that formalizes syntactic relations between terms.

This clause describes the topmost program of the rewrite mechanism. From the frontier
D (a disjunction), provided as input, the program selects a node C (conceptually a con-
junction) and rewrites it into C0. If the new C0 is not equivalent to false, it is attached
to the rest of the original frontier and returned as output. If C0 is equivalent to false,
then the program calls itself recursively to rewrite the rest of the original frontier.

If the original frontier is equivalent to false the program indicates that the new frontier
is empty by returning false as output.

� [REW-CON]: This program searches a node, checking every literal and implication in it.
If an equality|inequality literal is found, the program will apply the rules speci�ed below
in table 3.7 and collect a uni�er � that must be applied to the rest of the conjunction.
(RestC�). This ensures that the substitution of variables by terms, implied by the
original equality, is actually performed on the other occurrences of the same variables in
the node. Observe that because this operation of substitution is potentially performed for
every equality in the node, the �nal e�ect is the application of a composition of uni�ers
to the whole node.

As, in general, composition is not commutative (see [Hog90], page 77), if it is not com-
pletely executed then it can yield di�erent results for di�erent search strategies, as the
following example shows:

Example 3.4.2 Consider a conjunction A such that A = (X = a^ p(X) ^X = b). This
could be partially rewritten as A = (X = a^p(a)^X = b) or as A = (X = a^p(b)^X = b),
depending on the selection strategy. But, if the rewriting is completed, it would end with
A � false in both cases.

71

This is the reason to make of the rewrite process an atomic, non-interruptible process,
with, in addition, the highest priority within the agent's reasoning mechanism.

If the selected conjunct (A) is a literal and is not an equality or disequality, then no
alteration of the node takes place.

On the other hand, if the selected conjunct in C is an implication, a special routine
rewrite implication will be called to rewrite equalities and inequalities in the body of
the implication. existV ars(C;X) is called to collect all the variables in the node before
rewriting of the body can proceed.

Note that, as rewriting of equalities in implications is carefully controlled by the higher
level programs of the proof procedure (see table 3.5), rewriting of implications need not
be part of this clause [REW-CON]. It is left here to emphasized that rewriting must take
place on literal and implications.

� [REW-IMP]: This is the de�nition of the rewriting of implications. Notice that the pro-
gram must collect the uni�er � to apply it to the head of the implication This propagates
the instantiations of variables cause by the rewritings in the body of the implications.

� [REW-COX]: This program is similar to [REW-CON] except that it only deals with
conjunctions of literals (no implications) and it calls a routine that rewrites equalities
taking quanti�cation of variables into consideration. This routine is described below.
This program is, as one can deduce from the description of the inference rules, devoted
to process equalities in the body of implications.

The program in table 3.7 contains the code that rewrites equalities in �. Its components
are:

� [OTHERPR]: This sub-clause skips over those atoms that are not equalities or inequal-
ities.

� [UNIFI1] .. to [UNIFI6] implement Robinson's uni�cation algorithm [Rob79]. Observe
that this meta-level description uses some new notational devices. In X = F (X) ^X =
F (Y), F (X) is syntactic sugar for term(F;X), where F and X are term themselves (the
name of the compound term and its list of arguments, respectively). The constructed
term is used to indicate that the functions in the equalities have the same name. Recall
that X denotes a vector with all the arguments of the function. Thus, X = Y is an
abbreviation for the conjunction of the equalities between arguments in the same position
in each vector. Of course, that conjunction can only be built if both vectors have the
same number of elements. Otherwise (X = Y) will fail.

� [LESSTH] reduces inequalities between known values, while

� [SUSINEQ] avoids any commitment on inequalities where at least one of the terms in
unknown.

To support the processing equalities inside an implication (tables 3.4) Table 3.8 contains:

� [PRO-CON]: This is the topmost program for processing of equalities and inequalities
in the body of implications. The added functionally with respect to rewrite implications
is a test to detect whether the incoming implication C is rewritten into a di�erent C0.
This test is a control device. It is used by the program to decide that equality rewriting
has been exhaustively applied.

72

� [CAS-ANA] This clause describes the application of the rule for case analysis of equal-
ities. Whenever an implication contains an equality such as X = T , where X is an
existentially quanti�ed variable and T is an atomic or \compound" (a function) term,
case analysis is applicable. The rule also tests that in the case of a \compound" term this
does not contain the variable X. Another condition is that the head of the implication
must not contain universally quanti�ed variables.

Finally, the program in table 3.9 contains the code that rewrites equalities in the body of
implications in CN . Its components are:

� [XOTHERP]: This sub-clause, as [OTHERPR] above, skips over those atoms that are
not equalities or inequalities.

� [XUNIF1] .. to [XUNIF8] implement an extension of Robinson's uni�cation algorithm
[Rob79] that caters for variables with existential and universal quanti�cation. Basically,
normal uni�cation is performed on those terms that contain universally quanti�ed vari-
ables, while it is \suspended" for those terms containing existentially quanti�ed variables.
Uni�cation involving the latter is only possible after to assignments in �, outside the
implication, have been considered.

Observe that the notational devices introduced in table 3.7 are also used here. Major
assumptions in this implementation are that ExV contains all the existentially quanti�ed
variables in the node and that any variable not in this set (ExV) is universally quanti�ed.
That explains the use of the operator 2 in [XUNIF4] : : : [XUNIF7].

� [XLESST], as [LESSTH] in table 3.7, reduces inequalities between known values, while

� [XSUSINQ] avoids any commitment on the truth of inequalities where at least one of
the terms in unknown.

This concludes the description of the logic programs that implement the i� proof procedure.

3.4.5 The special treatment of inequalities

The special treatment of inequalities <, implemented by [LESSTH], [SUSINEQ] and their
analogues in table 3.9, has an important e�ect on the soundness results obtained by Fung [Fun96]
for the i� proof procedure.

The net e�ect of these extensions is to yield an implementation that is not sound, because
the prover will end up with pseudo-leaf nodes to which it can not apply any inference rule. For
the program, these pseudo-leaf nodes will be undistinguishable from real leaf node. Yet the
pseudo-leaf could contain < atoms that are being prevented from processing by the factoring
and propagation rules.

Example 3.4.3 The node Node � 2 < W ^W < 2 ^ (false X < Y ^ Y < X would be
o�ered by the algorithms in this chapter, as a leaf node. This is because we are refraining from
propagating <.

So, in order to justify the use of these extensions, one must recall the following points:

1. Our implementation of the proof procedure is forced to ignore the strong notion of sound-
ness proved by Fung [Fun96]. The reason for this is the parameter R in demo and the
other programs. As the execution of the prover is resource bounded, the system is doomed
to produce potentially incorrect answers when it consumes all its resources before �nishing

73

a proof. In these cases, there would still be some rules of inference to be applied, but the
prover would ignore them because of the lack of time or space for further computations.

Nevertheless, the prover still preserves a weak notion of soundness, expressed by the fact
that any pair of frontiers Fi and Fj in a derivation always satis�es:

T [CET [IC j= Fi $ Fj (3.27)

This weak soundness is not a�ected by the special treatment of inequalities, as these can
be seen as goals still to be processed.

2. Any useful account of the relation < (or �) includes the transitivity rule: T < T 0 T <
T 00 ^ T 00 < T 0. If one chooses to consider < was a normal predicate with a de�nition
containing that rule, then when invoked with variables as parameters, this rule could
plunge the prover into a loop, consuming resources in unuseful computations. Very little
is gained if the predicate is considered as an abducible and the rule is added as an integrity
constraint. In this case, even though there would be no loop, the use of propagation will
not be adding useful information in most cases. What one needs is a mechanism that uses
the transitivity rules and other rules over < just when it is necessary. We describe one of
such mechanisms in chapter 6.

3. So, the main reason for the selective treatment of inequalities is to avoid too early com-
mitments on the ordering of variables with unknown absolute values. This is particularly
useful in planning applications, when < refers to the ordering between time points. As has
been pointed out by Denecker et al [DMB92], the use of an explicit linear order theory,
describing the relationships between points in a linear order, can cause ine�ciency in a
proof procedure. To deal with this kind of ine�ciency, Fung introduces a specialization
of the proof procedure (i�-LO) that combines a special form of propagation (resolving,
see [Fun96] pg. 123) with a linear order theory LINORD, containing the transitivity
rule above, among others. Fung then proves that i�-LO is sound using a new de�nition
of answer that extends a non-failure, leaf node < �; UC;CN > with all the possible
linearizations11 of the set of time-points in the node.

These extensions, especially the new de�nition of an answer, can be useful in the planning
problem. However, we consider a more pragmatic approach to deal with time ordering
for planning in the reactive agent architecture, which is discussed in chapter 6.

3.5 Examples of the proof procedure at work

To illustrate the way the proof procedure works, we show some solutions produced by a PRO-
LOG implementation of the programs above:

3.5.1 The faulty lamp example

This example is shown by Fung and Kowalski in [FK96], where they do all the computations
manually. Below there is the description of the example and the output of program to answer the
query. Notice that we have simpli�ed some of the de�nitions. The programs take a PROLOG
database as input. Also, notice that the predicate = is written as eq.

11a linearization is a particular complete ordering of all the points in a set, i.e. if the set contains the points
t1 and t2, the two possible linearizations are t1 < t2 and t2 < t1.

74

Example 3.5.1 There is a fault in the lamp when the lamp is broken or when there has been
a power failure and there is no backup battery. A backup battery is available when the battery
has a nonempty deposit. The system knows about a lamp \a" and a battery \b" with deposit
\c".

T : lamp(a)
battery(b; c)
faulty lamp$ lamp(X) ^ broken(X)

_ power failure(X) ^ :backup(X)
backup(X)$ battery(X;Y) ^ :empty(Y)

Ab : fbroken; power failure; empty; eqg
IC : fg
Query : faulty lamp

The program's output is:

%Query: demo(40, rule_app, true, [[true,(faulty_lamp, true), true,

[],[]],L).

Frontier 1

% UC1 = { | lamp(G2904), broken(G2904) }; CN1 = { }

% UC2 = { | power_failure(G2840), not backup(G2840) }; CN2 = { }

Frontier 2

% UC1 = { | G2904 eq a, broken(G2904) }; CN1 = { }

% UC2 = { | power_failure(G2840), not backup(G2840) }; CN2 = { }

Frontier 3

% UC1 = { broken(a) | }; CN1 = { }

% UC2 = { | power_failure(G2840), not backup(G2840) }; CN2 = { }

% L = [[(broken(a), true),true,true,[],[]],

[true,(powerfailure(G2840), not backup(G2840), true),

true,[],[]]]

Thus, for the program, the \�rst" explanation of the fault in the lamp is that only lamp \a"
is broken. There are alternative explanations that have not been fully explored at this stage
because this agent is performing a kind of depth-�rst search.

3.5.2 Reasoning about the elevator position

One can de�ne a theory to be used by the elevator controller to reason about its own position
in the building, with the programs here described. Although this is not exactly reasoning

75

for planning, there are certain analogies between this mode of reasoning and that used by
the planner, discussed later in chapter 6. This is also a simple introduction to the kind of
formalisations discussed in the following chapter. (Notice that < and � are written as \lt" and
\le", respectively).

Example 3.5.2 The elevator is at oor \X" at time \T" if it moved (up or down) to that oor
at some earlier time \T1" and it has not moved since. The elevator moves away from location
\X" in the interval between \T1" and \T2", if it goes (up or down) to a di�erent oor \Y" at
some time \T" between \T1" and \T2".

T : at(X;T)$ do(up(X); T1) ^ T1 le T ^ :move(T1; X; T)
_ do(down(X); T1) ^ T1 le T ^:move(T1 ; X; T)

move(T1; X; T2)$ do(up(Y); T) ^ :(XeqY) ^ T1 le T ^ T lt T2
_ do(down(Y); T) ^ :(XeqY) ^ T1 le T ^ T lt T2

Ab : fdo; lt; le; eqg
IC : fg
Query : at(1; 3)

The program's output is:

%Query2: demo(40, rule_app, true, [[true,(at(1,3), true), true,

[],[]]],L).

Frontier 1

% UC1 = { | 1 eq G2872, 3 eq G2876, do(up(G2872), G2880),

G2880 le G876, not move(G2880, G2872, G2876) }; CN1 = { }

% UC2 = { | 1 eq G2744, 3 eq G2748, do(down(G2744), G2752),

G2752 leG2748, not move(G2752, G2744, G2748) }; CN2 = { }

Frontier 2

% UC1 = { do(up(1), G2880), G2880 le 3 | }; CN1 = { [] if

(move(G2880, 1, 3), true) }

% UC2 = { | 1 eq G2744, 3 eq G2748, do(down(G2744), G2752),

G2752 leG2748, not move(G2752, G2744, G2748) }; CN2 = { }

Frontier 3

% UC1 = { do(up(1), G2880), G2880 le 3, | }; CN1 = {

[1 eq 1] if (G2880 le G14268, G14268 lt 3, true),

[] if (do(up(1), G14268), not 1 eq 1, G2880 le G14268,

G14268 lt 3, true), [] if (do(down(G14104), G14108),

not 1 eq G14104, G2880 le G14108, G14108 lt 3, true) }

% UC2 = { | 1 eq G2744, 3 eq G2748, do(down(G2744), G2752),

G2752 le G2748, not move(G2752, G2744, G2748), }; CN2 = { }

76

To explain its position (the 1rd oor) at time 3, without further information, the agent
assumes that it is due to an earlier movement upwards. Observe that, once again, this is only
one among 2 possible explanations, one of which (UC2) is still to be further explored.

Chapter 4 explains how to go beyond this kind of simple reasoning to more complex forms
of reasoning for planning. There we also describe a logical platform to program agents with a
reasoning mechanism as formalised in this chapter.

77

Chapter 4

An Agent oriented

Programming Language and

Knowledge Representation

So far, we have described the architecture of an agent and how that architecture processes
and transforms the agent's knowledge and goals. We formalised the agent's architecture in
chapter 2 and the agent's reasoning mechanism in chapter 3, using the language presented in the
introductory chapter 1. Because the agent's knowledge and goals can themselves be described
in a logical language, and we have been describing how these descriptions change, we can say
that the language used in the previous chapter is a meta-language (for the object language
in which the agent's knowledge and goals are represented). In this chapter the attention is
switched to the object language to describe problems about which the agent reasons.

The leading intention in this chapter is to program an agent to solve a particular set of
problems. Recall that a preliminary attempt at programming the agent has already been made.
In section 2.3.2 of chapter 2, a set of integrity constraints was presented and it was briey
explained how they could be used to provide a �rst solution for the elevator controller, our
benchmark example. It could be said that integrity contraints, with the structure prescribed by
[ICGRAMM] in chapter 2, already constitute an object level language for agent programming.

When designing a language for knowledge representation and agent programming, one
should consider what Muggleton and Michie has called the duality principle1. Sometimes a
declarative description of \what" the problem is all about can be the best input to give to the
agent that will try to solve it. At other times, listing a recipe of \how" to solve the problem is
the most straightforward way of conveying the knowledge required by the solver. Indeed, logic
programming is an attempt to combine both types of descriptions in the same formalism, so
giving the programmer the means to cover the spectrum of possibilities between the procedural
and the declarative extremes of knowledge representation. This exibility of logic programming
can be very useful in agent programming, where one wants the agent to plan the solution of a
given problem but where one does not want to provide a detailed and customized account of
the problem's context and relevant procedures. That is, one wants the agent to \deduce" what

1Muggleton and Michie state the duality principle as follows:

\Software involved in human-computer interaction should be designed at two interconnected
levels: a) a declarative, or self-aware level, supporting ease of adaptation and human interaction
and b) a procedural, or skill level, supporting e�cient and accurate computation" [MM96]

.

78

the relevant solution is.
It is interesting to observe how this dilemma of procedures vs. de�nitions (imperative vs.

declarative descriptions) takes many di�erent forms. In [AC90], Agre and Chapman explain
that \what plans are like depends on how they are used". They contrast two views of plan
use: \On the plans-as-program view, plan use is the execution of an e�ective procedure. On
the plan-as-communication view, plan use is like following natural language instructions [..] it
requires an account of improvisation." (.ibid, their italics). One can �nd similarities between
this discussion and one of the ideas advanced in logic programming: algorithm = logic +
control [Kow79b], [Kow79a]. One wants the programmer/instructor (who knows about certain
domains of knowledge) to provide the logic of the problem, i.e. a general description or set
of instructions that any agent could accept and understand. The agent (machine or human)
receiving the instructions should then build and execute a particular plan, using the control
strategy that best suits the circumstances at execution time (i.e. improvisation). The control
strategies must have been fed to the agent's common- sense knowledge base in advance, perhaps
as part of the development of the agent's basic architecture.

Thus, the multifaceted problem of agent programming seems to require a very rich lan-
guage. In this chapter and in the following, a family of languages for agent programming is
introduced. The family of languages is intended to provide a programming platform exible in
various ambitious respects. First, the platform should allow for trade-o�s between declarative
and procedural knowledge, in principle by supporting both kinds of programming descriptions.
It should also support the speci�cation of diverse control strategies by means of domain-speci�c
heuristics. This means that the agent's control strategies could be tailored to particular do-
mains to have a more e�cient reasoner. Finally, it should allow the programmer to describe
e�cient strategies for problem solving, along the lines of knowledge-based reactivity (de�ned in
chapter 1, section 1.3.3), as opposed to exhaustively performed means-end analysis. We start
the presentation of the family of languages in this chapter, with the introduction of a structured,
logic-programming language: OPENLOG.

4.1 OPENLOG: from structured to logic programming

A program can be seen as a scheme that an agent uses to generate plans to achieve some
speci�ed goal. These plans ought to lead that agent to display an e�ective, goal-oriented
behaviour that, nevertheless, caters for changes in the environment due to other independent
processes and agencies. This means that, although the agent would be following a well-de�ned
program, it would stay open to the environment and allow for changes in its circumstances and
the assimilation of new information generated by these changes.

In the following, a well-known programming language (STANDARD PASCAL) is extended
with language constructs to support this kind of open problem-solving and planning. The se-
mantics of the resulting language (OPENLOG) is based on a non-monotonic logic of actions
and events that caters for input assimilation and reactivity. In combination with the reactive
architecture described in chapter 2, where the interleaving of planning and execution is clearly
de�ned, the language supports a solution to the problem of agent speci�cation and program-
ming.

OPENLOG supports the principle of progression for the decomposition of goals into sub-
goals. In this mode of planning, the �rst action to be performed is generated �rst2. Proper
heuristic information can help the agent to choose an action that is appropriate for the achieve-
ment of its goals. We say that this strategy is reactive because it allows the agent to start

2as opposed to regression \where the �rst action to be performed is generated last" [Sha96].

79

acting within a short period of time, even if it has not completed a plan to achieve its goals.
This strategy �ts nicely in an agent's architecture where planning can be interrupted at any
time to be interleaved with execution and sensing, as described in [Kow95] and in chapter 2.

OPENLOG is aimed at the same applications as the language GOLOG of Levesque et al
[LRL+95] i.e. agent programming. Our approach di�ers from Levesque et al's in that there is
no commitment to a particular logical formalism. One can employ the Situation Calculus or
the Event Calculus depending on the requirements of one's architecture. However, the Event
Calculus has turned out to be more expressive and useful for the reactive architecture described
in chapter 2.

Like GOLOG, our approach also regards standard programming constructs as macros. How-
ever, here they are treated as special predicates or terms3. There is no problem with recursive
or global procedures. Procedures are like predicates that can be referred to (globally and re-
cursively or non-recursively) from within other procedures. Interpreting these macros is, in a
sense, like translating traditional structured programs into normal logic programs.

To present the language, the information in this chapter is organized as follows: Section 4.2
describes the syntax of the language which is, basically, a subset of PASCAL [WJ84] extended
with operator for parallel execution. Section 4.3 explains the semantics of OPENLOG by means
of a logic program. This novel strategy to describe the semantics of a programming language
is also discussed. We interrupt the description of the OPENLOG to introduce in section 4.4,
background theories, the temporal reasoning platform on which the whole family of languages
in this thesis is based. Section 4.8 resumes the presentation of OPENLOG and the background
theories by showing how they can be applied to the problem of the elevator controller. Sub-
sections 4.8.1 and 4.8.2 explain how to program policy 1 and 3 of the elevator example into the
elevator controller. Finally, section 4.10 compares our solution with GOLOG's and discusses
related work.

4.2 The Syntax of OPENLOG

The syntax of OPENLOG is described in BNF4 form in table 4.1.
The syntax is left \open" to accommodate, in suitable syntactic categories, those symbols

designated by the programmer to represent uents, primitive actions and complex actions.
These notions are part of the semantics and are explained below. In addition to the syntac-
tic rules, the system must also provide translations between the \surface syntax", that the
programmer will use to write queries, and the underlining logical notation.

In this initial formalization, PASCAL syntax is limited to the least number of structures
required for structured programming: (\;", \if.. then.. else..", \while"). On the other hand,
the syntax supports the representation of parallel actions through the compositional operators
par 5 and + 6.

3See [DN01] in table 4.1 below, proc can be regarded as a two-argument predicate, the following symbol is
a term, and begin and end are bracketing a more complex term.

4In the table, Sj means an instance of S of sub-type j. (A)� indicates zero or more occurrences of category
A within the brackets.

5Unlike those semantics of interleaving [Hoa85], [Mil89] this is a form of real parallelism. Actions start
simultaneously, although they can �nish at di�erent times. Notice that when all the actions have the same
duration (or when they all are \instantaneous") this operator is equivalent to +. Also, observe that the cycle
predicates in [Kow95] and in chapter 2 only handle actions which last for one unit of time. We relax this
limitation in chapter 6.

6used as well to express real parallelism. Actions start and �nish at the same time. This allows the program-
mer to represent actions that interact with each other so that the �nishing time of one constraints the �nishing
time of the other. For instance, taking a bowl full of soup with both hands and avoiding spilling [Sha97].

80

Table 4.1 OPENLOG: Syntax

Program ::= Proc (Program)� A program
Proc ::= proc Funcproc

begin Commands end Procedure de�nition
Block ::= begin Commands end Block
Commands ::= Block Block call

j Funcproc Procedure call
j Funcaction Primitive action call
j Commands ; Commands Sequential composition
j Commands par Commands Parallel composition
j Commands + Commands Strict parallel composition
j if Exprboolean then Commands Test
j if Exprboolean then Commands

else Commands Choice
j while Exprboolean do Block Iteration

Query ::= : : : Logical expressions
Exprj ::= Funcj(Func, Func, : : : , Func) Expressions (as function

applications)
Func ::= Funcproc

j Funcaction

j Funcfluent

j Funcboolean Functors
Funcproc ::= serve(Term), build(Term), : : : User-de�ned complex ac-

tions or procedures' names
Funcaction ::= nil Null action

j up j move(Term, Term) j : : : User-de�ned primitive ac-
tions' names

Funcfluent ::= at(Term) j on(Term, Funcfluent) j : : : User-de�ned uents
Funcboolean ::= and(Funcfluent , Funcboolean)

j or(Funcfluent, Funcboolean)
j not(Funcboolean)
j Funcfluent Boolean functions
j Query Tests on \rigid"

information
Term ::= Ind j Var Terms can be individuals or

variables
Ind ::= : : : Individuals identi�ed by the

user
Var ::= : : : Sorted Variables

Table 4.1: The Syntax of OPENLOG.

81

4.3 The semantics of OPENLOG

4.3.1 Comments on the semantics of programming languages

In the history of Computer Science, three clear \strands" of methods to specify the semantics
of programming languages can be identi�ed [Win93]. These are 1) operational semantics, which
\describes the meaning of a programming language by specifying how it executes on an abstract
machine" (.ibid); 2) denotational semantics [Sto77], which \uses the more abstract mathemat-
ical concepts of complete partial orders, continuous functions and least �xed points" [Win93]
to create a Domain Theory that de�nes and \grounds" the meaning of the language; and 3)
axiomatic semantics that \tries to �x the meaning of a programming construct by giving proof
rules for it within a program logic" (.ibid).

Denotational semantics have been criticized for being too di�cult to apply to real program-
ming language speci�cation [Mos92]. A similar type of semantics based on abstract concepts
has been advanced as a more pragmatic solution, this time using \actions" as the fundamental
notion. It is called action semantics and has been pioneered by Mosses [Mos92].

To de�ne the semantics of OPENLOG, we use a strategy that does not correspond directly
to any of these \strands", although it has a close relationship with each of them, especially
with the axiomatic semantics. We specify the semantics of the language by means of a logic
program. That is, we de�ne a transformation from programs in OPENLOG to normal logic
programs (logic programs including negation), for which well-understood semantics already
exists. Any semantics attributed to the logic program that \de�nes" OPENLOG, can then be
regarded as a semantics for the programs written in this language.

One advantage of this novel approach to semantics is that one can build on the existing
results for the semantics of logic programs. It may seem that relying on \the" semantics of
logic programming implies that one will have to choose from at least 497 existing formalisations
or perhaps to advance a new one. However, recent results, showing the convergence and coinci-
dence of di�erent semantics encourage the idea of using logic programs to de�ne the semantics
of other programming languages.

Research on the semantics of logic programs has had as a main focus one key aspect of any
logic framework: the inference of negative information. The inclusion of negative literals into
logic programs disables the usual denotational approach to semantics in logic programming.
The reason for this is that with negative literals in the formalism, the abstract mathematical
concepts of Scott-Strachey's semantics are not well de�ned and their \functions" are not well-
behaved. However, the problem of negative information can be isolated from the problem of
de�ning a semantics for a programming language, as our de�nition below shows.

Another advantage of our approach is that our \semantics" also speci�es an interpreter for
the language. Thus, the operational semantics of OPENLOG programs takes the the form of
an interpreter for an abstract machine.

We now proceed to the de�nition of the logic program that speci�es the semantics of OPEN-
LOG.

4.3.2 A semantics and an interpreter for OPENLOG

The semantics of the language is stated8 in table 4.2 by means of the predicate done9. The
de�nition of done can also function as an interpreter for the language. Informally, done(A; To; Tf)
reads \An action of type A is started at To and completed at Tf". As we explained above,

7As counted by Reiter (reported by personal communication).
8PROLOG-like syntax is being used.
9The de�nitions of rigid, nonrigid and other predicates are also required but are not problematic.

82

Table 4:2 OPENLOG : Semantics and implementation

done(Pr; To; Tf) proc Pr begin C end

^ done(C;To; Tf) [DN01]
done((C1 ; C2); To; Tf) done(C1; To; T1) ^ T1 � T2

^ done(C2; T2; Tf) [DN02]
done((C1 par C2); To; Tf) done(C1; To; T1) ^ done(C2; To; Tf)

^ T1 � Tf

_ done(C1; To; Tf) ^ done(C2; To; T1)
^ T1 < Tf [DN03]

done((C1 + C2); To; Tf) done(C1; To; Tf) ^ done(C2; To; Tf) [DN04]
done((if E then C1); To; Tf) holdsAt(E;To) ^ done(C1; To; Tf)

_ :holdsAt(E;To) ^ To = Tf [DN05]
done((if E then C1

else C2); To; Tf) holdsAt(E;To) ^ done(C1; To; Tf)
_ :holdsAt(E;To) ^ done(C2; To; Tf) [DN06]

done((while
9L (Eb(L) do B(L))); To; Tf)

 (:9L holdsAt(Eb(L); To)
^ To = Tf)

_ (holdsAt(Eb(L
0); To)

^ done(B(L0); To; T1)
^ To < T1

^ done((while
9L (Eb(L) do B(L))); T1; Tf)) [DN07]

done((begin C end); To; Tf) done(C;To; Tf) [DN08]
done(nil; To; To) [DN09]

holdsAt(and(X;Y); T) holdsAt(X;T) ^ holdsAt(Y; T) [DN10]
holdsAt(or(X;Y); T) holdsAt(X;T) _ holdsAt(Y; T) [DN11]
holdsAt(not(X); T) :holdsAt(X;T) [DN12]
holdsAt(X;T) nonrigid(X) ^ holds(X;T) [DN13]
holdsAt(Q;T) rigid(Q) ^ Q [DN14]

nonrigid(X) isfluent(X) [DN15]

rigid(X) :isfluent(X) [DN16]

Table 4.2: The Semantics of OPENLOG.

83

due to the fact that the de�nition of done is a logic program, any semantics of normal logic
programming can be used to give meaning to OPENLOG programs.

The only command-type that requires further clari�cation is while. L in [DN07] stands
for the list of variables that appears in expression Eb and nowhere else in the procedure that
contains the while instruction10. What the axiom states is that these variables (appearing only
in the expression) must be considered existentially quanti�ed. And any \unfolding" of the while
instruction will make use of expressions Eb(L

0) and B(L0) which are obtained by renaming the
aforementioned variables in Eb(L) and B(L), respectively.

The de�nition of semantics in table 4.2 needs to be completed with a \base case" clause
for the predicate done and the de�nition of holds. These two elements are also part of the
semantics, but more important, they are the key elements of a background theory B.

4.4 Background theories

Roughly, a background theory (B) is a formal description of actions and properties and the
relationships between action-types and property-types. It also provides the historical context
in which actions (commands of the programming language) will be executed and goals will be
achieved.

A background theory consists of two sub-theories: A set of domain independent axioms (DI-
B) (notably the base case of done and the de�nition of holds) stating how actions and properties
interact. These domain independent axioms also describe how persistence of properties is cared
for in the formalism.

The other component of the background theory is a set of domain dependent axioms (DDB),
describing the particular properties, actions and inter-relationships that characterize a domain
of application (including the de�nitions of the predicates initiates, terminates and isfluent).

The semantics for OPENLOG and DDB can be isolated from the decision about what for-
malism to use to represent actions and to solve the frame problem (the problem of persistence of
properties) in DIB. The formulations presented in the following sections are alternatively based
on the Situation Calculus11 (section 4.5) and on Event Calculus [KS86] (section 4.6). Proba-
bly, the most important element in DIB is the de�nition of the temporal projection predicate:
holds(P; T), which reads: uent P holds at T [MH69].

The denotation of T depends on the underlying formalism in DIB. One can say that T
refers to the state of the universe (including, of course, the computing system). In this case
events are state-transitions, and every event causes a state change and every state is caused by
an event. The prime notion is then that of an state. Alternatively, one can say that T is a
time-point and that time progresses independently of states. Events and states are indexed
by time. Events initiate and terminate properties (uents, as shown below) and when one refers
to the state at time to, one is referring to all the uents that hold at that time. Two states can
still be identical if what holds in one also holds in the other, but each one is uniquely associated
with a time point. In this case, the prime notion would be that of a time point.

In the context of the semantics of the programming language, a background theory deter-
mines a kind of assertion language [Win93] that could be used to make assertions about the
state of computation before and after the execution of each command/instruction in a program.

Moreover, this assertion language could be used to state the meaning of each type of com-
mand as de�ned by the syntax of the programming language. This is done by associating the

10The symbol Eb(L) is used, instead of Eb alone, to highlight the fact that the variables in L appear only in
the expression Eb. The same applies for Eb(L0), B(L) and B(L0).

11with certain sacri�ce in expressiveness, however. The operators + and par would have to be excluded from
the language as it is.

84

syntactic constructs with speci�c axioms and a set of rules to reason about the correctness of
programs, using the axioms. This is the approach to the semantics of programming language
known as axiomatic semantics. It was pioneered by Floyd [Flo67] and Hoare [Hoa69], who
devised a set of rules to prove the correctness of programs.

As we said above, in axiomatic semantics, the designer of a programming language \cap-
tures" the meaning of the programs in the language by precisely stating how to prove that
every instruction in a given program is correct. An instruction/command is correct if, and only
if, its associated assertion actually holds. The assertion states that if the preconditions of the
command (action) hold then its postconditions also hold. This kind of assertion is normally
written (in an extension of the assertion language known as the correctness assertion language)
as ([Win93], [Gor88]):

fAg P fBg (4.1)

where A describes the preconditions and B the postconditions for a program P to be partially
correct. This means that if P is executed in a con�guration satisfying A and it terminates12,
then the state (of the computing system) after the execution must satisfy B. A and B are
sentences in the original assertion language which, in our context, would be the language of the
background theory.

Hoare axiomatic approach has been criticized by many including Mosses [Mos92] who says
that its pragmatic aspects are poor and that \the semantics of a statement S [..] essentially
consists of all pairs (P;Q) of conditions such that fP g S fQg is provable - a somewhat inac-
cessible entity" (.ibid, the italics are ours). It is understandable that the pragmatic aspects of
Hoare logic are poor. It is a logic. It is trying to capture the meaning of programming expres-
sions without being biased towards a particular computer architecture or implementation. And
the entities that provide the semantics of an statement are inaccessible so long as there is no
e�ective procedure to compute the provability relation of the logical language.

Another criticism to the axiomatic approach came from C. Moss. In his Phd thesis [Mos81],
Moss presented a set of axioms similar to the one presented in this chapter. His intention was,
as is our here, to de�ne the semantics of a programming language (a subset of ALGOL in his
case) in terms of logic programs. After praising the axiomatic approach for being superior for
proving properties of programs and developing correct programs, Moss concluded that it \fails
to give a complete answer" because: 1) The approach only supports YES/NO queries about
what the execution of a program does and 2) \To specify the meaning of a program having a
loop, it is necessary for the programmer to supply an inductive invariant assertion [..]"(.ibid).

We disagree with criticism 1) because, as we will show below (in the proof of proposition
[ELEVA]) an axiomatisation (such as the one above in table 4.2), can be used to obtain \traces"
of the execution of the program (that we call plans) on which a more complex analysis can
be based. For that, of course, we need a new kind of proof procedure. As we discussed in
chapter 3, an abductive proof procedure can produce more informative answers than YES or
NO. Whether this type of procedure can produce the \complete answer" indicated by Moss
requires more investigation. But the axiomatization can indeed produce a more informative
answer about what the execution of a program does.

We also have to disagree, to some extent, with criticism 2). One certainly has to provide
some sort of invariant assertion for the loops. But this invariant does not have to be speci�c
for every instance of a loop. It can be stated, for example, as part of the semantics of the while
instruction, to be used for every possible instance of this instruction. We have done that in
table 4.2. Axiom [DN07] de�nes the invariant 9(Eb(L) do B(L)) which is used to state that the
looping will persists while there is an instance of Eb(L) for which B(L) should be attempted.

12To claim \total correctness" the program must be guaranteed to terminate.

85

We have addressed these criticisms in an attempt to support the argument that logical (ax-
iomatic) semantics can produce useful semantics for programming languages. We complete our
axiomatisation in the following sections showing alternative languages to describe background
theories. The resulting background theories are more than systematic assertion languages for
programming constructs. They can be regarded as general theories of action and change that
describe how a given universe evolves.

4.5 Background theories in the Situation Calculus

The Situation Calculus (SC) [MH69] has been the preferred formalism in some sub-�elds of AI
(planning, common-sense and non-monotonic reasoning) for quite a long time. As explained
in the introduction, one reason for this could be the naturalness with which a problem can be
described as a relation between two \situations". Work on the SC led to the discovery of the
frame problem [MH69] and many e�orts have been made since to improve the exibility of the
language (see [GLR90]) and its associated ontology. This ontology assumes the existence of
properties that change as time passes, known as uents. There are, therefore, terms in the
language denoting uents. The term P in holds(P; T) denotes a uent. Also, the language
has terms to denote \situations" which were apparently originally regarded as snapshots of the
universe ([MH69] section 2), but that have recently been re-interpreted as \histories" (See, for
instance [Rei96]). T in holds(P; T) could be said to refer to a situation in either of these senses.

The other important terms in the language denote actions that cause uents to change.
The results of these changes are described by logical sentences involving holds, the temporal
projection predicate.

4.5.1 The temporal projection predicate in SC

With the temporal projection predicate one can establish which properties hold and which do
not hold throughout the history of a problem. A history is a record of changes of the uents
in that part of the universe relevant to the problem. How to represent such historical data and
how to reason with it are the two main facets of the Frame Problem.

The following axiom SC1, known as the axiom of change, provides a solution in the context
of the SC.

holds(P; do(A; S)) [:terminates(A; S; P) ^ holds(P; S)]
_ initiates(A; S; P) [SC1]

Declaratively it reads: A property P holds in the situation (do(A; S)) that results after the
execution of action A in situation S if property P is not terminated by action A in situation S
where it already holds or action A initiates property P in S.

SC1 is very similar to the combination of axioms presented by Kowalski and Sadri in [KS94].
In SC1, however, there is no predicate referring to the occurrence of an action (happens or do).
The reason for this will be explained below, although it can be seen that do does appear as
a term. Also, notice that SC1 is \an elegant" combination of the e�ect axioms (axioms
describing the e�ects of the actions) and the frame axioms in traditional axiomatisations of
the Situation Calculus (as argued in [RN95], pg. 206).

86

4.5.2 Action generation in SC

The temporal projection predicate as de�ned by SC1, is already su�ciently expressive to sup-
port classical planning in one-agent applications. Given a description of an initial state (every-
thing that holds at time t0), appropriate de�nitions for the predicates initiates and terminates,
and a conjunction of goal literals (of the form holds(p; Ti)), one can compute sequences of
actions such as Ti = do(an; do(an�1; : : : ; do(a0; t0)); ::).

Thus, SC1 can be used to generate the set of actions required to achieve the goals. But, the
same deductive procedure applied above could be used to test whether a \given" (obtained by
some other means) literal of the form holds(p; do(an; do(an�1; : : : ; do(ao; to)); ::) is implied by
SC1, its supporting predicates and the initial situation.

This double-nature of the deductive procedure is a feature of logic. It is related to the fact
that in logic there is no distinction between proofs and computations. In SC, nevertheless, one
can re-establish the distinction by observing that when holds(P; S) is invoked with a variable
S, the program will attempt to generate an instantiation of S. On the other hand, when S is a
ground term at invocation time, the program will simply \test" whether P holds at that given
S. And if S is somehow partially instantiated (e.g. S = do(a1; S

0), where S1 is a variable), the
program will try to �ll the gaps.

The axiom for holds, however, is not the only way we have to generate action sequences.
As we can describe goals with the predicate done (for tasks that must be done within a given
time-window, e.g. done(open; t1; t2)), we can use the axiom de�ning this predicate to generate
those sequences. We need, of course, to complete the de�nition of done but this is done with
axiom [DNSCO] below.

Our aim (the reasons for which are explained below and in chapter 6) is to restrict the use
of holds to be only a \tester" in the sense explained above. This can be achieved in SC by
restricting the term T in holds(P; T) to be a ground term (i.e. not a variable) whenever the
predicate holds is invoked.

This \testing-only" restriction on holds in SC is very similar to the extensions made on
the selection rule of some proof procedures, to cater for negative literals and avoid oundering
[Hog90]13. It should, therefore, be easy to incorporate the restriction into proof procedures that
prevent oundering such a SLDNF 14

The \testing-only" restriction is more di�cult to enforce on the Abductive Event Calculus
(AEC) where, even with a grounded S in the invocation, holds(P; S) will generate new actions.

AEC and its limitations will be discussed in the following section. Meanwhile, as we said
above, the de�nition of done must be completed. This is achieved with the axiom [DNSC0].
This axiom states a \base case" for the de�nition of done modelled along the lines of SC:

done(A; S; do(A; S)) primitive(A) [DNSC0]

The axiom reads: An action A can be executed at situation S, taking the system to situation
do(A; S) if it is a primitive (low-level, directly executable) action.

It is important to observe that the planning task is, by means of done, put under the control
of the programmer. It will be he/she who will de�ne how to unfold a (done) goal into the set
of actions that must be performed to achieve it (a sequence of do terms in this case). For this,

13That rule in SLDNF says: do not select for resolution a negative literal that contains variables.
14Some PROLOG systems leave the prevention of oundering in the hands of the programmer. This could

also be done here, provided that the programmer has means to check that every holds literal does not contain
variables when it is selected for processing.

87

the programmer will write an OPENLOG program to describe the speci�c relation between the
goal and the actions that can achieve it.

The programmer is, therefore, responsible for testing that the preconditions of each primitive
action hold at the appropriate time. This somehow conicts with the e�orts made to provide
an open programming framework that adjusts itself to a changing environment characterized
by \opportunities" arising in an unpredictable fashion15.

One could relieve the programmer of this responsibility by including a possibly redundant
condition in DNSC0, as shown in DNSC0'. The condition preconds ensures that all precondi-
tions of actions A hold at situation S:

done(A; S; do(A; S)) primitive(A) ^ preconds(A; S) [DNSC0 0]

preconds can be redundant if the programmer has already include the testing of all the
preconditions of that action as part of the programs. For instance, assuming that clear(A) is
the only precondition of move(B;A) and that one is using [DNSCO'], the following code will
test clear(A) twice:

...

if clear(A) then move(B,A)

...

It will do it �rst after unfolding the expression in the if using [DN05] in table 4.2 and later
while testing the preconditions of move(B;A) as the axiom [DNSCO'] dictates.

Axioms SC1, DNSC0 and those in DDB (described above) constitute a background theory
that can be used for systematic reasoning about actions and change. There is, however, a more
expressive alternative language to formalize background theories: the Event Calculus, which is
introduced in the following section.

4.6 Background theories in the Event Calculus

4.6.1 The temporal projection predicate in EC

The paper in which the Event Calculus (EC) was presented ([KS86]) o�ers, not only a set of
inference rules, but also an ontology based on event and properties and the notions of initiation
and termination of properties. The intuition behind EC is: A property (in the world) holds if
an event has happened to initiate it and, after the event, nothing has happened to terminate
it. We use the following axioms to formalize this intuition16:

15Opportunity is used here to refer to those fortunate circumstances when the environment helps the agent to
achieve its goals. For the goal \go through that door and fetch a pen", the door being open and the pen being
on the table immediately after, are not properties to be rigidly envisaged by the programmer and procured by
the agent, but opportunities to be exploited by the system.

16Notice the condition T1 < T in [[EC1] and [EC2]. This condition implies that this version of the Event
Calculus cannot cater for destructive interferencebetween two simultaneousactions. That is, when two actions a1
and a2 �nish at the same time (i.e. do(a1; ; t1) and do(a2; ; t1) and a1 initiates some uent p (initiates(a1; t1; p))
while a2 terminates it (terminates(a2; t1; p)), then one will still be able to deduce holds(p; t2) for some t2 such
that t1 < t2. a2 will not block the post-conditions of a1. The reasons for the weaker version of EC are discussed
below, after introducing OEAC.

88

holds(P; T) do(A; T 0; T1) ^ initiates(A; T1 ; P)
^ T1 < T ^ :clipped(T1; P; T) [EC1]

clipped(T1; P; T2) do(A; T 0; T) ^ terminates(A; T; P)
^ T1 < T ^ T � T2 [EC2]

These axioms are di�erent from most formulations of the EC (in particular [KS94]) in that
the well-known predicate happens(Event; T ime) is replaced by the predicate do(Action; Starting T ime; F inishing

The declarative reading of these axioms is precisely the one given in the paragraph above.
There are, however, a couple of issues that must be addressed before one can take that as a
formal declarative reading of these fundamental formulae.

4.6.1.1 The role of rei�cation

The �rst of them (one that has been skipped over in previous sections) is that of rei�cation.
Most of the power of EC, and of SC extended with the notions of termination and initiation,
rests on the fact that properties are considered objects of the world. Therefore, existential and
universal quanti�cation over them is permitted without having to go beyond the realm of First
Order Logic. They can be represented by terms in the language18.

4.6.1.2 On the representation of time

The second issue that needs mention is that of the representation of time. EC is neutral
with respect to important aspects of the semantics of time. Terms can be used to represent
intervals or time points, although in this work only time-points are used. Intervals are implicitly
represented by their extreme time-points when it is necessary19. This might seem an erroneous
decision given the popularity of interval-based representations ([AK90],[Sri91]). However, this
project is driven by the belief that there is no signi�cant advantage (weighted against the
disadvantages, of course) in such interval-based representations. From the point of view of
knowledge representation, intervals can be regarded as possibly in�nite sets of points. Even if
the time line is dense, EC is expressive enough to describe properties that hold over intervals
of time. This is also valid for SC as this expressiveness is a characteristic of First Order Logic,
on which both EC and SC can be formalised. An example of the type of axioms we have in
mind is the following:

Example 4.6.1 To formally describe the light being on over an interval starting at time t0
(inclusive) and ending \just before" tf , one could write:

8T (holds(on; T) to � T ^ T < tf) (4.2)

17The intention is to have the name of the agent also represented by a term in the predicate:
do(Agent; Action; Starting T ime;F inishing T ime). For the sake of simplicity, however, the term for agents is
omitted here.

18This \representational strategy", highly successful in practice (see [All84] and [Sha97]), has \raised some
eyebrows" among philosophically-oriented researchers (see [Gal91, Gal95])

19There is no reference to intervals as terms in the formulation. However, the axiomatization is based on
time-points that initiate and terminate intervals over which certain properties hold.

89

There have been arguments in favour of terms representing intervals as the more appropriate
choice for theory of actions [All91], [AF94]. However, as intervals can be described in terms
of points, we have chosen to have points as terms and to express properties of intervals using
points as we did in the example above.

EC is also neutral with respect to the structure of time. Time can be dense or discrete. Both
possibilities are representable, in principle, in EC (see [Sha97] for some models with continous
time in the Event Calculus).

Some researchers ([Rei96]) believe that EC requires a total linear-time ordering (given two
points, the formalization should be able to say whether one is after the other or they are
identical). The truth is that EC supports reasoning on partial linear time orderings in
which the relationships between certain pairs of points are unknown.

In an agent, information about time-points ordering normally arrives gradually and can
come from 1) communications: the agent is told by other agents how to order the points, 2)
deduction: the agent decides the ordering, given other related time-points, and 3) experience:
the agent perceives that one point is after or before the other. Thus, the formalization must be
open to updates coming from any of these sources. EC seems to be better than SC in ful�lling
the requirement of being open and easy to update, as we argue below.

Nevertheless, it is true that EC cannot embed a branching model of time as SC does.
However, this does not imply that our agent, reasoning on a theory based on EC, will not be
able to consider alternative futures (or pasts). The agent architecture (presented in Chapter
2) takes care of branching in the time line, (i. e. non-determinism due to a multiplicity of
alternative courses of action) independently from EC and the background theory. Alternative
pasts and futures are represented by the di�erent extensions of the history H represented by
the nodes in the frontier of goals of the agent. An agent like ours would be able to reason
about di�erent possibilities for \state of a�airs" in its future (and in its past, see [Sha96] for
an example of an agent that uses abduction to \explain" its observations), thus overcoming the
limitations of a linear time model.

4.6.1.3 The �rst fundamental di�erence between EC and SC

The axiom SC1 in the Situation Calculus can be used constructibly to extract, from the answer
to goals of the form holds(P,T), terms representing plans. This was �rst done by Green [Gre69]
in his �rst order logic axiomatization for problem solving.

In the Event Calculus, one would have to either 1) use if and only if versions of the axioms
(that is, EC1 and EC2 would have to be strengthened) to deduce, from the goals holds(P,T),
certain sets of do-atoms; or 2) abduce those do-atoms from the (if halves of) the axioms (alone).

The �rst signi�cant di�erence between EC and SC is that, as shown above, the do's in SC
are terms, while in EC one ends with a set of do-atoms as a residue.

This is more than a variation of syntax. It means that while in SC one can select actions
(as terms) without leaving the object language, in EC this is not so straightforward.

In particular, if one is doing abduction, one will have to distinguish between literals that
can be abduced and literals that cannot be abduced (e.g. actions can be abduced, other literals
cannot).

It will be the proof procedure, not any syntactic construct of the object language, that
collects the appropriate (do) atoms in the \residue".

Before returning to these comparisons between SC and EC, let us explain how one can
collect primitive actions in EC.

90

4.6.2 Action generation in EC

To generate actions for planning, we employ the equivalent of axiom [DNSC0] for EC, which
is introduced below. The intention is, once again, to place all the generation mechanism \un-
derneath" done, the predicate that interprets programs in OPENLOG. In this way, it is the
programmer who will use domain speci�c information to decide when to test and when to
generate steps in the process of planning.

4.6.2.1 Completing the background theory in EC

It is known ([Esh88b], [Sha89], [MBD95]) that to make an abductive theorem prover [Ton95]
behave as a planner, one has to de�ne the set of abducibles, say Ab. In the present context
one can make Ab = fdo;<;=g20. The domain-independent background theory can then be
completed with the following de�nition (base case of done)21:

done(A; To; Tf) primitive(A) ^ To � Tf ^ do(A; To; Tf) [DNEC0]

By using an abductive proof-procedure (as i�PP [Fun96]) with these de�nitions, the result
of successively unfolding a done goal will be a set of do's (the steps of the plans to achieve the
goal) plus a minimal set of \f<;=g" required to correctly order the do's.

4.6.2.2 The role of abduction

Abduction provides EC with capabilities that can match the constructive mechanism of the
Situation Calculus. By declaring do atoms as abducibles one has a simple criterion, built into
the proof procedure, to distinguish the elements of the \residue".

The process of abduction can be understood as deduction on the \only if" halves of the
de�nitions of the predicates involved. The i� proof procedure [FK96], as explained in chapter
3, is a realization of this possibility. The key operational advantage of the abductive proof
procedure is that instead of simply proving or disproving an statement (i.e. given a query,
arriving at con�rmation or refutation of the sentence in the query), the procedure can generate
hypotheses supporting the statement (i.e. given a query, the prover will produce a residue: a
set of literals that in case of \being true" would make the query valid).

In the planning context, one can designate action-atoms as residual atoms, given a planning
goal as query. Of course, that designation of atoms as abducibles is still attached to the particular
object-level theory on which the reasoner operates. So, for instance, EC1 and EC2, regarding
the predicate do as an abducible, constitute a version of the Abductive Event Calculus,
other versions of which have appeared in [Eva89] and [Esh88a].

The Abductive Event Calculus (AEC) is as expressive as SC for the planning application in
the mono-agent context. Given a goal hold(P; T), with EC one will arrive at a residual set of
atoms of the form do(ai; tj)

22 that will \explain" (and when executed, possibly achieve) that
goal.

The greater exibility of EC (with respect to SC) is already evident: Unlike the do's in
do(an; do(an�1; : : : ; do(a0; t0)); ::), the atoms obtained by abduction are not restricted by a
built-in temporal ordering. So, actions can be added, deleted and modi�ed without having to
rebuild the whole sequence.

20Recall from chapter 3 that, although = (equality) requires special treatment, it can still be regarded as an
abducible.

21The de�nition of primitive must also be provided by the designer. It should correspond to the list of
low-level, indivisible actions that the agent can perform.

22together with some tj < tk (time-point ordering) atoms.

91

Notice again that this is not only a matter of having a more convenient syntax. Actions
in SC depend on their immediate predecessors to de�ne their situation of occurrence. In AEC
(in EC in general), immediate and non-immediate predecessors are equally important to de�ne
the context in which an action is executed. Only those actions related to the occurring one
(because they a�ect the same uents) will be considered.

4.6.2.3 The problem of over-generation of abducibles

In previous sections, we explain how to restrict SC so that holds is used only for \testing" and
not for action generation. The solution is essentially to avoid the reduction of holds literals
containing variables.

Unfortunately, this solution does not work for AEC. In the abductive solution (explained
below), reduction of a holds literal with AEC will inevitably \add" a new element to the \bag
of abducibles" (the residue) regardless of whether there are variables involved.

Example 4.6.2 Suppose we have the OPENLOG code:

...

if raining then carry(umbrella)

...

That section of code will be mapped by the interpreter (in table 4.2) to:

holds(raining; T) ^ done(carry(umbrella); T; Tf) (4.3)

One wants the system to \test" whether holds(raining; T) before planning to carry the um-
brella. Unfortunately, any sensible background theory for this program will include information
such as:

initiates(alter atmospheric pressure; T; raining) (4.4)

and this, together with the fact that every do obtained while reducing [EC1] is abduced, implies
that the system will always end up with something like:

do(alter atmospheric pressure; ; T1) ^ T1 < T ^ done(carry(umbrella); T; Tf) (4.5)

Thus, the agent will always plan to carry the umbrella, irrespective of whether the \event"
do(alter atmospheric pressure; ; T1) has been observed. Notice that this action may not even
be among the agent capabilities.

We call this the problem of over-generation of abducibles. It is a problem because the system
(the proof procedure) cannot \test" whether a property holds. Instead, it will always force in
an assumption (a do-atom in our case) to make the property hold. There is no distinction
between what is the case (and therefore can be tested) and what the system assumes to be the
case (because it is required in a plan to achieve some goal).

This problem is clari�ed in the following sections. Meanwhile, let us say that we have
adopted a controversial solution: context-dependent abduction, a mechanism that we present
and justify (in terms of deduction and interleaving of planning and testing) in chapter 6.

4.7 The Event Calculus versus The Situation Calculus.

4.7.1 On distinguishing between \testing" and \generation"

A �rst advantage of the SC solution with respect to EC's is that there can be a clear and
easy separation between the \testing" of properties ([SC1]) and the \generation" of actions

92

([DNSC0]). Both \contexts of operation" (testing and generation) can be unambiguously related
to the syntax of the language (holds for testing, the base case of done for generation). So,
whenever the programmer writes in OPENLOG:

...

look(door) ;

if open(door) then close(door) ;

...

this code will generate a plan in which the agent looks at the door and then tests whether the
door is open, closing it if it is so. The plan will not contemplate opening the door, even if the
agent believes (it is in its knowledge base) that action initiates the door being open. Observe
that this means that in SC there is a simple way of \closing" the history of the problem. One
must simply assume that everything that happens is explicitly represented as a term.

In contrast, to achieve that \separation" is not easy in EC. The main problem with the
Abductive Event Calculus is the \over-generation of abducibles" mentioned above. Rigidly
declaring a predicate (or set of predicates) as abducible biases the system towards the gener-
ation of new abducible atoms whenever there is no information to prevent it. In particular,
axioms EC1 and EC2, intended only as testers of properties over time, now become potential
\generators" of abducible atoms. EC becomes the Abductive Event Calculus (AEC).

So, although it can be a sound policy to reason with (e.g. the abductive i� proof procedure,
which has been proved to be a sound reasoning mechanism [Fun96]), unconstrained abduction
in planning might generate not only too many actions, but even actions that are unfeasible
because they are not under the control of the agent23.

Thus, the abductive strategy needs to be enriched or complemented with other control rules
to limit its application. A �rst answer to this problem has already been built into the i� proof
procedure. This proof procedure \disables" abduction in the body of implications and, by
extension, inside negated literals in the goals (For instance, when one unfolds a positive hold
literal with EC1, EC2 will not be used to generate a new abducible because it has been invoked
through the negated literal in EC1).

The \disconnection" or inhibition of abduction in the body of implications is perfectly
justi�ed on semantic grounds (See [Fun96] and [FK96] or chapter 3). This strategy minimizes
the abducible atoms in the answer to a query. However, the rule has an exception: The equality
(=) predicate, considered an abducible in all other respects, is, in e�ect, \abduced" in the body
of implications, by case analysis on equalities.

Nevertheless, the disconnection of abduction in the body of implications can be regarded as
a sort of context-dependent abduction. The context being set by the body of the implication.
As can be seen in chapter 3, there are special provisions in the proof procedure for separating
literal \inside" and \outside" implications (in CN and in UC respectively), mainly to guarantee
that they are treated di�erently with respect to abduction.

We explore other convenient forms of context-dependent abduction in chapter 6, as we said
before.

4.7.2 On dealing with parallelism

A problem with SC is that it prevents the use of the operators par and + in OPENLOG \as
it is".

23For instance, given the piece of code if raining then carry(umbrella), a planner using AEC as background
theory may add increase cloud concentration to the plan, simply because it knows that action causes rain,
as we explained above

93

The reason for this can be seen, for instance, in clause [DN04] in table 4.2. From a goal of the
form done(c1 par c2; s0; Tf), one obtains done(c1; s0; Tf)^ done(c2; s0; Tf) in which the variable
Tf appears twice, one for each command. But, due to the way SC generates do-terms (using
[DNSC0]), Tf will collect the sequence of actions corresponding to only one of the commands.
The literal corresponding to the other command will lead to failure, because it will be used to
\test" that command, rather than planning for it. One could solve this problem by using special
terms to refer to \parallel situations". Something like done(c1 par c2; s0; doplus(c1; c2; Tf)) to
record the fact that c1 and c2 should be executed simultaneously. This, however, would lead to
a complete redesign of the representation to cater for correct reasoning with those special terms.
In particular, one would no longer be able to say that the \time-arguments" refers to simple
time-points. One may even need a complex executive, if one passes \doplus" for execution,
because c1 and c2 above can be complex sequences of commands, that need to be synchronized
at runtime. Hence, several non-trivial changes will be triggered by those extensions to [DN04]
in table 4.2. Similar problems would arise with the operator par.

None of these problems a�ect EC because the ordering of actions is not \built in" the
structure of the terms. The ordering is formalized separately by means of the predicate <. To
that e�ect, the predicate < is declared as an abducible (it is included in the set Ab mentioned
above).

Of course, by making the ordering independent of the structure of the terms, one can describe
parallel actions without having to use new and less meaningful terms. The predicate = can be
combined with < (�) to express the fact that actions occur before, after or at the same time
with respect to other actions.

4.7.3 On the treatment of observations

Parallelism and prevention of \over-generation", as discussed above, are very important aspects
in the design of an agent. We believe, however, that there is a more crucial aspect in the design
of an open and reactive agent architecture: the treatment of observations.

4.7.3.1 Introduction to this problem

What we call the treatment of observations is the task of updating the agent with information
that comes from the sensors. We showed, in chapter 2, how the agent's architecture supports the
insertion of new data from the environment into the agent. There was also, in the speci�cation
of GLORIA (also in chapter 2), the unusual decision of attaching inputs to the goals. We will
discuss this decision later in this chapter. In this section, we concentrate on the (object-level)
details of the treatment of observations and why we prefer EC, rather than SC, to support this
task.

The purpose of sensing is to provide the agent with information about its environment,
so that it can plan appropriate actions to achieve a given set of goals. For the purposes of
reasoning, that information can be compiled into observations.

In principle, observations (also called inputs) can be anything that can be represented in
the agent's object language. However, in the planning context and as a �rst approximation
(see [Sha96] for a more general approach), one can restrict observations to belong to one of the
following two classes:

1. observations of properties: what is the case at certain situations or points in time; and

2. observations of events: what has happened over certain periods of time (This is the case
when events have duration. One can also have instantaneous events).

94

This restriction has the advantage that one can establish unambiguous relationships be-
tween physical sensory signals and the agent's internal representations. So, observations can be
represented by atoms in a theory.

The treatment of observations is problematic because, as the environment changes, new
inputs may conict with plans derived from previous information. The capacities to withdraw
previous conclusions (which support certain plans) and to revise the plans are, therefore, re-
quired. These requirements are the core of important problems in AI and computer science,
such as non-monotonic reasoning, knowledge assimilation [Kow79b] and belief revision.

It should be noticed, however, that assimilating observations for planning di�ers from the
general problem of knowledge assimilation and beliefs revision in an important respect. In
case of contradiction, the agent is compelled to reject its planning assumptions instead of
the observations or the beliefs in its knowledge base. Whether this constitutes an e�ective
distinction between these problems requires further investigation.

4.7.3.2 Observations in SC

In SC, one can easily incorporate observations of properties as holds atoms into the existing
knowledge, for instance:

Example 4.7.1 In the Blocks World, the atoms:

holds(on(a; table); s0) [OB01]
holds(on(b; c); s0) [OB02]
holds(on(a; b); do(move(a; b); s0)) [OB03]

could be added to [SC1] as part of the de�nition of the temporal projection predicate holds
provided, of course, that they are consistent with the existing de�nition and the rest of the
theory.

[OB01] indicates that it has been observed that a was on the table at s0, [OB02], that b was
on c at s0 and [OB02] that a was on b at the situation that resulted from moving a onto b at
s0. The \new" de�nition of holds would be:

holds(P; do(A; S)) [:terminates(A; S; P) ^ holds(P; S)]
_ initiates(A; S; P) [SC1]

holds(on(a; table); s0) [OB01]
holds(on(b; c); s0) [OB02]
holds(on(a; b); do(move(a; b); s0)) [OB03]

Notice that, if there is no inconsistency of the sort mentioned in the example, the new
de�nition is ready to be used for further reasoning. The recursive de�nition of holds in SC1
permits the propagation of the information in the observations to other situations.

Also, when all the observations are grounded on the initial situation (s0), the testing of
consistency can be simpli�ed24. This could be part of the reason why the Situation Calculus is
so popular as a formalising media, as we argued in the introductory chapter.

24To add observations of the form hold(P; s0) to a theory that only contains observations of that form, one
could reduce the test of consistency to a test of this integrity constraint:

:(holds(P; s0) ^ holds(P 0; s0) ^ incompatible(P; P 0)) (4.6)

with an appropriate de�nition of incompatible.

95

holds(P; T) do(A; T 0; T1) ^ initiates(A; T1; P)
^ T1 < T ^ :clipped(T1; P; T) [EC11]

holds(P; T) obs(P; T1) ^ T1 � T ^ :clipped(T1; P; T) [EC12]

clipped(T1; P; T2) do(A; T 0; T) ^ terminates(A; T; P)
^ T1 < T ^ T � T2 [EC21]

clipped(T1; P; T2) obs(P 0; T) ^ incompatible(P; P 0)
^ T1 < T ^ T � T2 [EC22]

Figure 4.1: The Observational and Abductive Event Calculus (OAEC)

However, when it comes to the second class of observations, SC causes problems. Actions in
SC are represented by terms, not by atoms. So, to add new actions as observations to the theory
one would have to \wrap" them up with some predicate. The predicate holds can do this, as
shown by [OB03] in the example above, but either 1) one needs to accompany the action with
the observation of some property (as on(a; b) above) or 2) one has to use existentially quanti�ed
variables such as 9P; S holds(P; do(action; S)). Alternative 2) conicts with our project to have
clauses in a logic program de�ning holds. We would need to skolemize [Hog90] such expressions,
causing even more complications for the proof procedure (as commented in [Fun96]).

And if one introduces a new predicate (say, do sc(Action)) as in EC, one would be duplicat-
ing the representations of actions (actions as terms and also as predicates). This is already a
load on the representation, without considering that one still needs to introduce other elements
in the representation to support reasoning with the new predicate.

4.7.3.3 Observations in (the Observational and Abductive) EC

There is a sort of duality between SC and EC with respect to the representation of observations
of properties and observations of actions. SC favours the representation of observations of
properties. In EC, representing observations of actions is the easier problem to address.

In EC, actions can normally be represented as ground atoms of the form do(action; t1; t2).
So, without existentially quanti�ed variables, there is no problem storing those actions in logic
programs. (We show below that, even with existentially quanti�ed variables the abductive EC
can deal with observations of actions and events).

With observations of properties, EC does have problems. Observations represented by atoms
of the form holds(p; t) could not be used to assume the persistency of uents like p. That is,
there is no mechanism to indicate that a uent p persists after the time-point t when it is
observed. The axioms for persistency of EC work only with uents initiated by events and
actions.

Moreover, it is not clear how those observations interact with other observations and as-
sumptions about events and actions. For instance, does the observation holds(on(light bulb); t2)
terminate the uent off(light bulb) initiated by do(switch off(light bulb); t0; t1) an instant
after t1?.

Fortunately, we can extend EC to solve the problem of representing observations of proper-
ties, while preserving many of the useful features we have been enumerating.

96

To cater for inputs of new information, we extend the Event Calculus with the new predicate
obs(P; T). The predicate reads: at time T, it has been observed that P is the case, where T is
a time-point and P designates a propositional uent25. To include obs, axioms EC1 and EC2
are substituted by EC11, EC12, EC21 and EC22 as shown in �gure 4.1.

This extended version of the Event Calculus, designated as the Observational and Abductive
Event Calculus (OAEC), has a set of characteristics worth listing:

1. Observations of properties and actions (or events) have similar e�ects on persistency. The
persistency of uents can now be clipped by observations of incompatible uents. A uent
can persist since its initiation by an action, but also since it was observed.

2. Although backward persistency of properties is equally representable, EC11 only caters
for forward persistence. Properties (uents) are assumed to hold if they are observed at
some point and nothing clips their persistence after that point.

3. EC22 relies on a new predicate: incompatible which states that two given properties
cannot co-exist (e.g. incompatible(here(me); there(me))).

4. More important, this version of the Event Calculus is too weak to detect synergistic inter-
ference between simultaneous actions or incompatibility between properties at a certain
point in time.

So if, for instance, the agent has obs(on; 1) and obs(off; 1) as inputs and
incompatible(on; off) in its knowledge base, then holds(on; 3) and holds(off; 3) will be
equally deducible with OAEC.

Similarly, do(switch on; 0; 1), which initiates on and terminates off immediately after 1,
will not interfere with (i.e. will not block the consequences of) do(switch off; 0; 1) which
terminates on and initiates off immediately after 1, as well.

One could prevent this weakness by strengthening the inequalities in the axioms of OAEC.
But this would yield an axiomatization stronger than required (For instance, in the �rst
example above, one would not be able to infer holds(on; 3), even if obs(on; 0) is also among
the observations).

Thus, OAEC must be accompanied by another mechanism to check consistency and
non-interference, such as the integrity constraint in equation 4.6 in the footnote of page 95,
which could, of course, be manipulated by the i� proof procedure.

In OEAC we have a solution that encompasses AEC and supports a natural representation
of observations. The lack of agreement with intuition, mentioned before, comes from the fact
that obs atoms (as do's) are abducibles. Abducible atoms are not part of the knowledge base that
contains the de�nition of the unfoldable predicates. Instead, abducibles are seen as permanently
attached to the goals. So, the history of a problem (H in chapter 1), constituted by do and
obs atoms, should be seen as part of the goals (in G), rather than co-joint to the database of
de�nitions (in K).

This awkward movement is motivated by the semantics of the proof procedure we are em-
ploying (see chapter 3). However, it seems to coincide with the use of separated \oracles" in
systems such as transactional logic [BK96], that o�ers a similar kind of functionalities. In-
terestingly, it also coincides with the separation of observations (inputs) from the rest of the
knowledge base when it comes to minimization. This can be seen in systems and frameworks
as dissimilar as [San94], [Sch94] and [Sha97].

25As with do, obs could also be extended to record the observing agent (obs(Agent; P; T)). In this thesis, it is
always obs(self; P; T). We omit the Agent argument for the sake of simplicity.

97

We resume this discussion in the chapter 6, where more operational elements will be avail-
able.

4.7.4 On dealing with new goals

SC is well suited for exhaustively performed reasoning on theories where all the inputs are
of the form hold(p; s0) (s0 refers to the initial situation). However, when inputs can occur
at di�erent time points or situations and, therefore, can activate new goals at anytime, the
reasoning process has to go through a non-trivial recovery, as the following example shows:

Example 4.7.2 Consider the OPENLOG program below in �gure 4.2, page 101. Suppose that
the elevator is using this program and a background theory based on SC, to plan its actions
and serve the oors.

Also suppose that the elevator is initially at oor 1 and the button is on at oor 3. This
means (as will be explained below in this chapter) that the goal of serving oor 3 is activated
and the controller starts planning how to achieve it. This is the sequence of activities in which
the agent engages:

� The situation s0 is designated as the initial situation and the goal below is activated.

� (reasoning on) done(serve(3); s0; Tf1)
#

� (reasoning on) done(serve(3); do(up(3); do(up(2); s0)); Tf1)

� Reasoning is interrupted at this point

� (acting/observing)

� After acting (executing do(up(2); s0), assuming that one has a method to extract steps
from the partial plan) and observing its surroundings, the agent learns that
h(on(2); do(up(2); s0)) (i.e.the button has been turned on at oor 2).

Let us ignore the problem of assimilating that observation for the time being. The agent
still has the problem of dealing with the new goal that should be activated (this time to
serve oor 2).

Observe that the original plan is there after execution. The reason for this is that SC
has to have a grounded initial situation s0 (for several reasons, among them the need to
\close" the history and perform testing only, instead of generation, as we explained in the
previous section).

Thus, after the new goal is activated the agent has the following set of goals.

� (reasoning on)
done(serve(2); do(up(2); s0); Tf2) ^ done(serve(3); do(up(3); do(up(2); s0)); Tf1)
#

� At this point the agent has to establish the relation between the newly activated goal and
the old partially executed plan. This time it is easy. The alternatives are:

done(serve(2); do(up(2); s0); Tf2)^ done(serve(3); Tf2; Tf1) and
done(serve(3); do(up(3); do(up(2); s0)); Tf1)^ done(serve(2); Tf1; Tf2).

How the agent's proof procedure will generate these options is not hard to envisage: it
will have to consider all the possible linearizations [Fun96] of the set of actions that are
compatible with the existing plan.

98

This will force a complete ordering of tasks at this early stage. Storing this ordering (all
the alternative plans) may be costly in terms of storage and computing time (as we show
in the following section) and unnecessary if one can achieve the same behaviour with no
explicit ordering. (See the discussion about planning in chapter 6).

4.7.5 On memory required to store partial plans

Storing plans (list of actions a their orderings) is more expensive (in terms of memory con-
sumption) for the SC-based representation than for the EC-solution when information about
the ordering of actions is limited.

To see this, assume that one has Z di�erent types of actions that could be part of a plan.
Also assume that N such actions do occurr26. Then the space of memory required to store
those N actions and the information indicating how those actions are ordered is given by the
following formulations27:

Proposition 2 The memory required to store a plan with N actions and Z action-types in SC
vary from a minimal

SCStoragefullinfo = N � aprox(log2(Z + 1)) (4.8)

when the ordering of the actions is completely known, to a maximum of:

SCStoragenoinfo = (N �N ! +N !� 1) � aprox(log2(Z + 1)) (4.9)

when the ordering of the actions is completely unknown.

Proof. See Appendix.

Proposition 3 The memory required to store a plan with N actions and Z action-types in EC
vary from a minimal

ECStoragenoinfo = N � (aprox(log2(Z) + aprox(log2(N))) (4.10)

when the ordering of the actions is completely unknown, to a maximum of:

ECStoragefullinfo = N � (aprox(log2(Z) + aprox(log2(N))) (4.11)

+N �
N � 1

2
� (aprox(log2(N)))

when the ordering of the actions is completely known.

26Recall that an action type corresponds to each di�erent identi�er A that we can put in do(A; T). When we
say that N actions occur, we mean that there must be N literals (in EC) or terms (in SC) of the form do(A; T)
to be stored plus the ordering between them (i.e. < terms in EC). For instance, in EC one could have

do(a1; to)^ do(a2; t1) ^ to < t1 (4.7)

indicating two actions (the do predicates), two time-points (to; t1), one item for the ordering relation (to < t1)
and two actions types (a1, a2). See the appendix for examples in SC.

27The function aprox(X) gives the nearest greater integer above X. e.g. if X = 1:3, aprox(X) = 2.

99

Proof. See Appendix.

The previous results support the following proposition which incline the balance in favour of
EC as the representational strategy for partial planning (planning in which there is no explicit
and complete information about the ordering of actions).

Proposition 4 For plans with incomplete information about the ordering of the actions, mem-
ory consumption in EC is lower than in SC.

Proof. See Appendix.

4.7.6 Summary of comparisons

1. The striking advantage of the new Event Calculus solution (AEC)28 is that the formalism
is free from over-restrictions on the ordering of actions. EC uses the predicate < to
express the ordering of actions suggested by the knowledge in a OPENLOG program
and its background theory. But this is not the strict total ordering imposed by the
SC-solution (which is built in terms of the form do(a1; do(a2; : : : ; s0; : : :)). In EC, one
has a minimal ordering of actions, dictated by domain speci�c rationality about how to
achieve a particular goal in that domain. There is a degree of least commitment in this
representational strategy.

2. In practice this means that AEC supports the use of par and + in OPENLOG without
any modi�cation to the de�nition of done. It also means that plans are open to alterations
due to assimilation of inputs and activation of goals anytime during processing. The world
changes while the agent reasons and the built-in chain of actions in SC does not lend itself
to the on-line assimilation of those changes.

All these problems with SC are related to its inherent limitations to represent concurrency.
In our case, this problem is exacerbated by the fact that extensions of SC to cater for concur-
rency ([Pin94], [GLR90]) do not seem to make any easier the task of interleaving inputting and
reasoning. Having observed the tendencies among some SC supporters (e.g. [Rei96]) to move
towards event-based representations, we decided to explore the aforementioned extensions of
EC that, despite being counter-intuitive at �rst, seem to solve all the problems discussed in this
section.

We end this chapter on the practical arena, by showing the platformOPENLOG/background
theory is already su�ciently expressive to tackle the benchmark example: the Elevator con-
troller.

4.8 Programming the Elevator Controller with OPEN-
LOG

In the introductory chapter 1, we stated the intention of proving proposition 1 and in the process
of doing so, show how an agent could be programmed to behave as an elevator controller. The
following two subsections use the language (OPENLOG) and a background theory (based on
the Event Calculus as shown above), to program the agent. We also re-state proposition 1 in
more formal terms (the proof is shown in the Appendix).

100

proc serve(N)

begin

if currentfloor(C) then

if C=N then

begin

turnoff(N) par open ; close

end

else

if C<N then

begin

addone(C, Nx); up(Nx); serve(N)

end

else

begin

subone(C, Nx); down(Nx); serve(N)

end

end

proc control

begin

while on(N) do

begin

serve(N)

end ;

park

end

proc park

begin

if currentfloor(C) then

if C=0 then

open

else

begin

down(0); open

end

end

Figure 4.2: The elevator controller in OPENLOG.

101

initiates(up(N); T; currentfloor(N))
 preconds(up(N); T) [INI � 01]

initiates(down(N); T; currentfloor(N))
 preconds(down(N); T) [INI � 02]

initiates(turnon(N); T; on(N)) [INI � 03]
terminates(up(N); T; currentfloor(M))

 preconds(up(N); T)
^ :(N = M) [TER � 01]

terminates(down(N); T; currentfloor(M))
 preconds(down(N); T)
^ :(N = M) [TER � 02]

terminates(turnoff(N); T; on(N))
 preconds(turnoff(N); T) [TER � 03]

preconds(up(N); T)
 holds(currentfloor(M); T)
^ M < N [PRE � 01]

preconds(down(N); T)
 holds(currentfloor(M); T)
^ M > N [PRE � 02]

preconds(open; T) [PRE � 03]
preconds(close; T) [PRE � 04]
preconds(turnoff(N); T)

 holds(on(N); T)
^ holds(currentfloor(N); T) [PRE � 05]

Figure 4.3: Background theory for the elevator controller

do(self; up(4); t0; t1) [DO � 01]
do(x; turnon(5); t2; t3) [DO � 02]
do(y; turnon(3); t1; t3) [DO � 03]

Figure 4.4: The history that the elevator knows about

102

initiates(up(N); T; going up)
 :terminates(up(N); T; going up) [INI � 04]

initiates(down(N); T; going down)
 :terminates(down(N); T; going down) [INI � 05]

terminates(up(N); T; going up)
 holds(currentfloor(L); T)
^ :(holds(on(N); T) ^ N > L) [TER � 04]

terminates(down(N); T; going down)
 holds(currentfloor(L); T)
^ :(holds(on(N); T) ^ N < L) [TER � 05]

Figure 4.5: The background theory for policy 3

4.8.1 The elevator controller for policy 1

The OPENLOG program (ELEVATOR) in �gure 4.2 is equivalent to the GOLOG program
presented in [LRL+95] (pg. 10)29. The (domain-dependent) background theory (ELE DDB)
supporting this program is shown in �gure 4.3. The elevator agent also has a record of its own
history (ELE H) since it was started 30, as it is displayed in �gure 4.4.

The combination of ELEVATOR, ELE DDB, EC1, EC2 and DONE31 provide the elevator-
agent with the same functionalities that the GOLOG program, plus some additional ones. In
the context of the history ELE H, this agent will do the same things the agent controlled with
the GOLOG program will, given the initial situation that Levesque et al describe in [LRL+95]32.

We can now re-state proposition 1 as follows:

Proposition 5 Let ELE-PLAN be:

fdo(self; up(5); t4; t5) ^ do(self; turnoff(5); t6 ; t7) ^ do(self; open; t6; t8)^
do(self; close; t9; t10) ^ do(self; down(4); t11; t12) ^ do(self; down(3); t12; t13)^
do(self; open; t14; t15) ^ do(self; turnoff(3); t14; t16) ^ do(self; close; t17; t18)^

done(self; park; t18; t100)g

Let INEQ = ft0 < : : : < t100g. Let ELE T be the conjunction of ELE H, ELEVATOR,
ELE DDB, EC1, EC2, INEQ and DONE, then:

ELE T [ELE PLAN `i� done(control; t4; t100) [ELEVA]

Proof: See Appendix (A.4).

4.8.2 The elevator controller for policy 3

28Event Calculus with Abduction of do, = and <.
29Note that addone(X; Y) � assign(Y; X+1) and subone(X; Y) � assign(Y; X�1). It is assumed that there

is a built-in mechanism to perform these mathematical operations.
30do has been extended to record the identity of the agent. This will require similar modi�cations in other

predicates. Again, for simplicity, these modi�cations are ignored.
31the de�nition of done plus the base case
32In their notation: current floor(S0) = 4, on(5; S0) and on(3; S0).

103

proc serve(N)

begin

if currentfloor(C) then

if C=N then

begin

turnoff(N) par open ; close

end

else

if C<N then

if not going_down then

begin

addone(C, Nx); up(Nx); serve(N)

end

else

if not going_up then

begin

subone(C, Nx); down(Nx); serve(N)

end

end

Figure 4.6: The elevator controller with policy 3.

This policy can be straightforwardly implemented by extending ELE DDB with two new
uents: going up and going down and using them inside the program. The new background
theory (ELE DDB') must include the axioms in �gure 4.5. And the procedure serve(N) should
be rewritten as in �gure 4.6.

4.9 The representation at work: plans that become in-
valid because the world changes

In this section, we use the examples above to illustrate the dynamic character of the architecture.
The agent's reasoner (described in chapter 3) will process the programs and background theories
presented in this chapter. This processing will yield plans: sequences of actions one of which
the agent will try to execute to achieve the goal that may have been activated (as shown in
chapters 2 and 6).

Imagine that in the pursuit of the goal33:

(0 < T1 ^ serve(2; T1; T2)) (4.12)

the agent derives the sub-goal34

(0 < T1 ^ do(up(2); T1; T3) ^ T3 � T4 ^ do(open; T4; T5) ^

33For simplicity, we omit the quanti�ers. The variables in these formulae are existentially quanti�ed.
34Again for simplicity,we do not show all the literals and implications involved. To see how the reasoner obtains

the \clipped" implication, consider the following: The condition holds(on(2); T4) is among the preconditions of
turnoff (entry [PRE-05], table in �gure 4.3, page 102). Trying to prove this condition, the planner will produce
a derivation such as:

1.- holds(on(2); T4)
unfolding with [EC12] ([EC11] omitted for simplicity)

2.- obs(P; T) ^ T � T4 ^ :clipped(T; on(2); T4)

104

T5 � T6 ^ do(turnoff(2); T4; T6) ^ T6 � T7 ^ do(close; T7; T2) ^

: : : ^ (false clipped(0; on(2); T4)) ^ : : : (4.13)

using the information: obs(currentfloor(1); 0) and obs(on(2); 0).
At this point the planner suspends its processing because it runs out of resources. The

plan represented by expression 4.13 above is then passed to the executive, which successfully
executes do(up(2); 1; 2). Therefore, after assimilating the feedback the agent has a plan in which
T1 = 1 ^ T3 = 2.

However, as part of that feedback the agent also perceives the input:

do(someone; turnoff(2); 1; 2): (4.14)

That is, somebody else switched o� the buttom at oor 2, while the elevator was arriving
at that oor.

On re-entering, the reasoner, which always checks the integrity constraints �rst (demo impl
is the �rst routine to be called), unfolds the implication in expression 4.13 above to35:

(false do(X;A; T 0; T)) ^ terminates(A; T; on(2)) ^ 0 < T ^ T � T4) (4.15)

in which the only existentially quanti�ed variable is T4.
Propagation of do(someone; turnoff(2); 1; 2) and 2 � T4 (this one obtained from T3 � T4

and the assimilated T3 = 2) will cause the promotion of false invalidating this plan.
Observe in the example that the fact that the elevator executes the �rst action of the plan

is crucial. Only after this execution the agent has the information about T4 that it requires to
falsify the plan (2 � T4). In general, this type of information is available after some action in
the plan has been executed.

Thus, provided that the reasoner (demo) has su�cient resources to \exhaustively" process
a goal whose preconditions have vanished and provided that at least an action of the plan is
attempted, the plan will be abandoned.

A more general solution could be obtained by providing the reasoner with means to handle
inequalities and time constraints involving the current time (now), as indicated, for instance,
by the time-counter of the cycle predicate. This would allow the agent to deduce that it is too
late to follow a plan (i.e. the plan is obsolete), without having to execute one action of this
plan �rst, as in the example above.

This solution could be combined with a mechanism for evaluating plans according to agent's
preferences, using information such as estimates of the duration of each action and aggregates
based on these estimates. The agent should prefer those plans whose duration do not violate
the constraints on the time-points. We discuss a mechanism for encoding preferences into an
agent in the chapter 5.

It is worth noticing that a related but di�erent problem with obsolete plans occurs when
a goal, that has been activated by some external condition in the environment (by using an

by propagation of obs(on(2); 0) and rewriting of :

3.- 0 � T4 ^ (false clipped(0; on(2); T4))
unfolding with [EC21] ([EC22] omitted for simplicity)

4.- 0 � T4 ^ (false do(Agent; Act; T;T 0) ^ terminates(A; T 0; P)
^ 0 < T 0 ^ T 0 � T4)

This is, of course, only one possible derivation starting from holds(on(2); T4). Observe that 1) implications
are kept in case new obs's arrive in future cycles; 2) The planner only reaches the last stage (4) above when it
has enough resources to do so. Otherwise it will stop the derivation at some previous point. For instance, in
this section we assume that demo suspends processing when it reaches the frontier corresponding to position 3
above.

35Notice that we have reintroduced into the predicate do the argument identifying the agent.

105

integrity constraint), becomes redundant because its \activating" condition has ceased to hold
(perhaps because the goal has been satis�ed by another agent or process). This problem is
discussed in chapter 5 (section 5.2).

4.10 Discussion

OPENLOG is a logic programming language that can be used to write procedural code which
can be combined with a declarative speci�cation of a problem domain (a background theory)
to guide an agent at problem-solving and planning in that domain.

To de�ne the language, logical characterization has been given to the traditional program-
ming structures (if then else, while, ;, : : :) in such a way that any program written with
those structures can be translated into a set of logical sentences.

This mapping from procedural code to logical sentences is not only sought for the sake of
clarity. The logic chosen to provide semantics for the procedural structures is also used to
specify a theory of actions that models dynamic universes.

This theory of actions can be based on Kowalski and Sergot's Event Calculus [KS86], a
logical formalism with an ontology based on events and properties that can be initiated and
terminated by events. The Event Calculus provides a solution to the Frame Problem and also
permits the e�cient representation of concurrent activities and continuous domains. This has
permitted the straightforward extension of the capabilities of standard PASCAL to allow for
the description of parallel actions in OPENLOG programs.

Thus, the designer/programmer is o�ered a speci�cation-implementation that can be used
to model complex universes and also to write high-level algorithms to guide the activities of
agents acting in a dynamic environment.

As in other logic programming languages, programs in OPENLOG are processed by a the-
orem prover that transforms goals into a set of alternative plans which a simple automata can
follow.

Unlike in other approaches, however, programs in OPENLOG are intended to be interpreted36

rather than compiled37. The reason for this is crucial. The process of planning (the theorem
prover transforming goals into plans) is interleaved with the execution of those plans and the
inputting and assimilation of observations. This guarantees architectural reactivity; the system
as a whole will process inputs as soon as it can, increasing its chances of an opportune response
(normally by an minor adjustment to its plans as will be illustrated in chapter 6). The �rst
practical consequence of this is that the system will generate and use partial plans which it
will re�ne progressively as its knowledge of the environment increases. This is a crucial di�er-
ence between OPENLOG and the similar logic-based programming language GOLOG[LRL+95].
We have explored the similarities and di�erences between GOLOG and a previous version of
OPENLOG in [DQ96].

OPENLOG also supports the other form of reactivity: knowledge-based reactivity. OPEN-
LOG is a language for describing strategies for problem solving. The desired strategies are
normally those that can be decomposed into one immediate primitive action and a remaining
set of actions to be processed later. The planning process moves forward from the current state
toward a �nal state.

This form of planning may seem atypical in the current context because theorem provers
(and the planner here is a theorem prover) are normally backward-reasoning mechanisms. An

36As in JAVA [Mic95] and other commercial products, where code is pre-compiled to an intermediate form to
be read by an interpreter/executive.

37As in Situated Agents [RK95] and GOLOG [LRL+95]

106

proc goto(Site)

begin

if at(Site) then nil

else

if closer(Site, S) and cleared(S) then

begin

step-on(S) ;

goto(Site)

end

else

if cleared(S) then

begin

step-on(S) ;

goto(Site)

end

end

Figure 4.7: The path�nder in OPENLOG.

interesting aspect of this representation is that planning is performed by searching the time line
in a forward direction. This is called progression.

The representational strategy that supports this form of planning is not new. It is at the
core of a well known device to specify grammars and program their parsers: De�nite Clause
Grammar or DCG [PW80]. OPENLOG programs are like DCGs in that they are higher level
macros that can be completely and unambiguously translated into logic programs. Unlike DCG
however, OPENLOG provides for negative literals.

There is another critical di�erence between OPENLOG and DCG. In DCGs, the \state of the
computation" (which in that case contains the sentence being parsed) is carried along through
arguments as is common in stream logic programming. This has the inconvenience of requiring
the explicit representation of all objects in the application domain and is, therefore, cumbersome
and limiting (We tested the approach in the prototypical implementation of path�nder reactive
automatas that do forward planning, reported in [DQ94]). Background theories are a exible
and powerful alternative to this approach.

The representational strategy is then very important for the purposes of reactivity. In
OPENLOG the programmer is encouraged (although not restricted) to write procedures to
lead the planner from the topmost goals to the low-level, directly-executable actions, in the
shortest deduction time. Part of the problem of \intelligent reactivity" is, of course, that the
best strategy always depends on the particular circumstances in which the agent is at a given
point. However, the designer can always try to envisage such circumstances and to devise a
general strategy to approach the problem with the least ine�ciency. A \good" program for
reactive path�nding, for instance, is the one shown in �gure 4.738:

The procedure in �gure 4.7 is the typical example of a piece of code organized so that the
agent that uses it can be reactive (knowledge-based reactivity). The path�nder is asked to �nd a
route to its destination and to follow it. With the code in �g. 4.7, the planner does not need to
build the whole plan to achieve the goal goto(Site), before starting to move. On the contrary,

38Read at(Site) as \the agent is currently at Site; closer(Site; S) as \by stepping of S from the current
location (one step away), the agent will be closer to Site"; cleared(S) as \the space S is clear"; and step�on(S)
as \the agent moves one step from the current position to S. For more details see the discussion in [DQ94].

107

it will �rst decide in which direction its destination is and it may even execute a �rst step in
that direction, before carrying on planning. The advantage is that the agent is ready to start
moving sooner (reacts earlier) and, if it does move, it risks less error later in its plans as it will
decide each step on fresher and more precise information.

An agent architecture like GLORIA can also be enriched by other functionalities of a logical
framework. An agent can be set up to be highly autonomous by providing it with appropriate
integrity constraints for activation of goals. A �rst exercise in that direction was the language
de�ned by [ICGRAMM] in chapter 2. That notation, however, is slightly demanding for a
programmer and the use of quanti�ers can be confusing if one has to write long pieces of code.

In the following chapter, we re-introduce the ideas in [ICGRAMM] as part of a better de�ned
programming language that we call ACTILOG. We also show how to put heuristic information
into the agent to improve its ability to react timely and sensibly.

108

Chapter 5

Agent Reactivity and

Preferences

5.1 An alternative to OPENLOG: The ACTILOG lan-
guage

ACTILOG is a language to write condition ! action activation rules. In the introductory
chapter 1 we suggested that the process of activation of goals could be understood as the deriva-
tion of unconditional goals from integrity contraints. We saw in chapter 2 how implications
(conditional goals) could be used to state integrity contraints for an agent. These integrity con-
traints described conditions under which the agent's goals must be reduced to plans that can
be executed. For instance, a rule such as if A then B, will indicate to the agent that whenever
it can prove that A is the case, it then should pursue goal B. B is normally the description of
a task that must be reduced to a set of low-level, primitive actions that the agent can execute.

ACTILOG is similar to other production rule languages (as OPS5 [Bro85]). It can be used
to write condition-action rules to characterize the behaviour of a reactive agent.

A �rst di�erence with respect to previous work is that ACTILOG, as OPENLOG, relies on
a general purpose representation of actions and events (i.e. a logic of actions) in the form of
background theories. Temporal and common-sense reasoning about initiation and termination
of properties is, as we have seen, possible within this framework.

A second important di�erence (with respect to OPS5, in particular) is that ACTILOG is an
object-level language1. It does not include syntactic constructs like goal G or plan P. These
characterizations are provided by the architecture of the agent (in chapter 3).

ACTILOG is intended as a language to write declarative sentences stating the relations
between observations and subsequent actions to be performed in response to those observations.
These sentences are regarded as integrity contraints for the behaviour of the agent, in close
analogy to integrity constraints for information stored in a database.

All the control devices required to interpret and verify integrity contraints are provided by
the proof procedure that characterizes the reasoning mechanism of the agent. The intention is
to separate concerns about how to describe conditions for activation from concerns about the
e�ciency of the platform.

However, the enriched syntax of ACTILOG (with respect to simple implications with atomic
heads) supports the arrangement of the activating conditions so as to minimize redundant pro-

1As it is the case with OPENLOG.

109

cessing. The head of an implication can be almost any logical sentence (including implications)
and thus it is possible to write, not only sentences of the form: (A B) C, but also sen-
tences such as ((A B) ^ (C D)) E), where E is a condition shared by both nested
implications. This captures some of the functionalities of the RETE algorithm which has been
used to improve the e�ciency of the OPS5 platform (.ibid).

The following two sections describe ACTILOG in detail. Afterwards, We compare the
language with OPENLOG and discuss the advantages of each.

5.1.1 Syntax of ACTILOG

The syntax of ACTILOG is presented in table 5.1 in a variant of BNF form. The conventions
to read the table are the same as before2. As in OPENLOG, ACTILOG's syntax is open so
that the programmer can include uent and action names into the language. Actually, all the
lower level syntactic categories, including boolean uents, are borrowed from table 4.1.

The top-most syntactic category is UNIT . A \unit" in ACTILOG gathers a set of activation
rules (de�ned by ACT Rule) related to a particular task. Below (in �g. 5.1), we give an example
of ACTILOG encoding by translating the sentences in [ICSERVE] in chapter 2 for the elevator
controller.

Another important category in the syntax is Quants. It stands for the sub-expression in an
ACT rule that speci�es which variables are existentially and universally quanti�ed.

Variables for which quanti�cation is not indicated are assumed as universally quanti�ed and
their scope of quanti�cation is the whole activation unit. This means that the scope of the
variable so implicitly quanti�ed will include the scope of quanti�cation of the other variables.
This aspect must be emphasized because it implies that existentially quanti�ed variables will
depend on those implicitly quanti�ed variables for skolemization, as shown in example 5.1.1:.

Example 5.1.1 Consider the ACTILOG rule:

exists T1 if on(N) at T and T lt T1 then serve(N) at T1

It should be read as: 8N 8T 9T1(serve(N; T1) on(N; T) ^ T < T1).
So, in clausal form one would write: serve(N; f(N; T)) on(N; T) ^ T < f(N; T), where

f(N; T) is a skolem function.

Thus, the syntax of ACTILOG takes it beyond the realm of Horn clauses extended with
negation. One can now have existentially quanti�ed variables in the head of the clause. The
implications of this are discussed in the following section.

The other syntactic categories are better understood by the translation of the rules into in-
tegrity constraints involving the predicates holds(P; T) and done(A; To; Tf). This is the purpose
of tables 5.2, 5.3 and 5.4 in the following section.

Also, notice that ACTILOG allows for composite task names, using the operators \;" and
\par" (and we could also add \+"). The idea is to borrow part of the de�nition of done in
table 4.2 to deal with these. However, for the sake of simplicity we omit these operators in the
semantics of ACTILOG. Observe, however, that one still needs the \base-case" of the de�nition
of done ([DNEC0] or [DNSC0] in chapter 4.

2in table 4.1 in the previous chapter. Notably, C� represents zero or more occurrence of the category symbol
C

110

Table 5.1 ACTILOG Language: Syntax
Unit ::= Set to TaskName Activation Unit
Set ::= Act Rule (and Set)� Activation Set
Act Rule ::= Quants if Body then Head Basic Activation Rule
Quants ::= One Quant� Quanti�ers
One Quant ::= 9Var One Quanti�er

j 8Var
Body ::= Condition (and Body)� Body of an IC
Head ::= Disjunct (or Head)� Head of an IC
Disjunct ::= Set

j Task
j false

Condition ::= Funcfluent at Term Conditions
j Task
j not Condition
j Query Tests on \rigid"

information
Task ::= TaskName Schedule Task descriptions
Schedule ::= Schedule and Schedule Schedules

j at Term j before Term
j after Term j starting at Term
j �nishing at Term
j starting before Term
j �nishing before Term
j starting after Term
j �nishing after Term

TaskName ::= Funcaction j Funcproc Action names
j TaskName (; TaskName)�

j TaskName (par TaskName)�

Funcaction ::= : : : As in OPENLOG
Funcproc ::= : : : As in OPENLOG
Funcfluent ::= : : : As in OPENLOG
Funcboolean ::= : : : As in OPENLOG
Term ::= Ind j Var As in OPENLOG
Ind ::= : : : As in OPENLOG
Var ::= : : : As in OPENLOG

Table 5.1: Syntax of ACTILOG

111

5.1.2 Semantics of ACTILOG

It must be evident at this stage that, �rst OPENLOG and now ACTILOG, are no more than
\syntactic sugar" for logic and traditional logic programming in the case of OPENLOG. The
exercise of de�ning these languages is important, however, because it helps to clarify what
logical concepts are involved in programming an agent.

Thus, as with OPENLOG, to understand the meaning of any ACTILOG unit, one must
restore it to its underlying logical form. Unlike OPENLOG programs however, an ACTILOG
unit cannot be transformed into a normal logic program, without losing expressiveness. This is
due to the fact that existential quanti�cation is highly restricted in logic programs. We must
use a richer form of logic that admits explicit quanti�cation of variables and a more complex
sentence structure.

Nevertheless, this is not a problem in our system because, as discussed in chapter 3, i�PP
can accommodate a more general structure for implications (conditional goals). A few new
functionalities must be added to the speci�cation of i�PP:

1. The proof procedure must admit nested implications with the syntax described by gram-
mar [ICGRAMM] in chapter 2 (repeated here for easy reference):

Conditional ::= Head Body
Head ::= Disjunct_

Disjunct ::= Conditional^

j (Conjunct^) ^ (Conditional^)
j Conjunct^

Body ::= Conjunct^

Conjunct ::= Literal j false j true
Literal ::= Atom j:Atom [ICGRAMM]

2. The proof procedure must be able to deal with existential quanti�cation. The i� proof
procedure (i�PP) can do this. We state the requirement in this chapter because it is
essential for the notion of activation of goals, as the examples below show.

It is worth noticing that the inference rules remain the same except for splitting of implica-
tions and case analysis, which must now include a new set of conditions for their application.

Recall that the splitting of implication in i�PP is not applied if there are universally quanti-
�ed variables in the head of the implication. The reason for this, which also applies to the rule
of case analysis is related to skolemization and is better explained by example 5.1.2, a follow-up
to example 5.1.1:

Example 5.1.2 Suppose that we split:

8N 8T 9T1((serve(N; T1) ^ T < T1) on(N; T)) (5.1)

We will end up with:

8N 8T 9T1((serve(N; T1) ^ T < T1) _ (false on(N; T))) (5.2)

The reason not to split the sentence in this example is that the �rst disjunct in the resulting
sentence (serve(N; T1)) cannot be incorporated into the unconditional goals (as it should be),
because it involves the universally quanti�ed variable N . If one insists on doing so, the proof
procedure will treat N as existentially quanti�ed.

112

if currentfloor(M) at T and on(N) at T then (

if M eq N then open par turnoff(N); close after T

and if M lt N then addone(M,Nx); up(Nx) after T

and if N lt M then subone(M,Nx); down(Nx) after T)

Figure 5.1: ACTILOG Rules for the elevator controller

However, it remains the problem that the system is losing the dependency between existential
and universal quanti�cation. One can see this by looking back at the clausal form of the sentence
in the example 5.1.2: serve(N; f(N; T)) on(N; T) ^ T < f(N; T), which after splitting
leaves serve(N; f(N; T)) as a separate disjunct. The value of the second argument of serve is
determined, not only by N but also by T .

Of course, nothing has been lost if one keeps the dependency by appealing to the skolem
function (f(N; T)). However, this would imply signi�cant modi�cations to the proof procedure.
Use of skolemization has been attempted before (see Denecker and De Schreye's SLDNFA
[DDS92] for a system similar to i�PP, but that uses skolemization) and it has proved to be
cumbersome and ine�cient.

However, one can reach a proper compromise with the following strategy: The proof proce-
dure will preserve the dependencies between variables in the implications and will be banned
from splitting (or doing case analysis) on any implication the head of which contains variables
with active dependencies.

The concept of active dependency is simple. The dependency between T1 and N and
T above is active if N and T , in that implication, have not been assigned known constant values.
For instance, when, by propagation of on(3; 1), the implicationabove becomes 9T1(serve(3; T1)
1 < T1) then this can safely be handled by splitting because T1 is now as de�ned as it can be
by skolemization (T1 = f(3; 1)).

Observe that, for this strategy, the only extension required in i�PP is a list of \dependencies"
between variables in the implications. A list which could be built by straightforward parsing of
the quanti�ers in the original integrity constraints. To make the process easier, we restrict the
quanti�ers in the ACTILOG rules to appear as shown in table 5.1.

All this explained, we can now show how to transform ACTILOG units into sets of integrity
contraints for agent programming. The procedure is described by a normal (meta-)logic program
in tables 5.2, 5.3 and 5.4. To simplify the presentation the syntax of the logic programs is
slightly relaxed. \fg" represents both empty categories in ACTILOG and empty formulae.
The predicate append=3 has the usual interpretation.

5.1.3 OPENLOG versus ACTILOG

If we do not allow for activation of goals (i.e. we do not want to use ACTILOG, only OPEN-
LOG), the agent would have to have one, top-most main goal from which all the possible
activities of the agent are derived. This is the solution with GOLOG (See [LRL+95]) that we
tried to emulate in chapter 4 for comparison.

But ACTILOG rules can make the agent more open to its environment, (as we show below).
Thus, the programmer will normally have to use ACTILOG and OPENLOG to program the
agent. Furthermore, one could have ACTILOG extended as suggested in table 5.1 to include
the operators \;", \par" and \+". This would make it as expressive as OPENLOG for the
representation of sequential and parallel actions.

113

Table 5:2 ACTILOG translation into Integrity Constraints

rewrite activa ic(Set to TaskName; IC)
 transform(Set; IC) [RW�ACTI]

transform(QV ars FRule and RestRules;

NQV ars(NewFRule ^NRestRules))
 transform(fg FRule;QV arsFR (NewFRule))
^ transform(fg RestRules;QV arsRest (NRestRules))
^ transform quantifiers(QV ars; QV ars0)
append(QV arsFR;QV arsRest; QV arTemp)
append(QV ars0;QV arTemp;NQV ars) [TRSET]

transform(QV ars if Body then Head;

NQV ars(NewHead NewBody))
 transform(fg Body; fg NewBody)
^ transform(QV ars Head;NQV ars (NewHead)) [TRRULE]

transform(fg Condition and RestConds;

fg(holds(P;T) ^NRestCond))
 Condition = P at T

^ is fluent(P)
transform(fg RestCond; fg (NRestCond)) [TRCOND�FL]

Table 5.2: Translating ACTILOG rules into Integrity Constraints (Part 1)

114

Table 5:3 ACTILOG translation into Integrity Constraints

transform(fg Condition and RestConds;

fg(done(Name;T1; T2) ^ LogSched ^NewRC))
 Condition = Name Schedule

^ actionname(Name)
^ transform schedule(T1; T2; Schedule; LogSched)
^ transform(fg RestConds; fg (NewRC)) [TRCOND�ACT]

transform(fg not Condition; fg:(NewCond))
 transform(fg Condition;fg (NewCond)) [TRCOND�NOT]

transform(QV ars Disjunct or RestDisj;
NQV ars(NewDisj _NewRD))

 transform(fg Disjunct;V ars1 (NewDis))
^ transform(fg RestDisj;ReV ars (NewRD))
^ transform quantifiers(QV ars; LogQV ars)
append(V ars1; ReV ars; QV arTemp)
append(LogQV ars; QV arTemp;NQV ars) [TRHEAD�OR]

transform(QV ars Task;
NQV ars(LogSched ^ done(TaskName; T1; T2)))

 Task = TaskName Schedule

^ transform schedule(T1; T2; Schedule; LogSched)
^ transform quantifiers(QV ars; QV ars0)
append(QV ars0; f9T1 9T2g;NQV ars) [TRHEAD�ACT]

Table 5.3: Translating ACTILOG rules into Integrity Constraints (Part 2)

115

Table 5:4 ACTILOG translation into Integrity Constraints

transform quantifiers(fg; fg) [TRQU1]
transform quantifiers(exists V RestQV; 9V RestQV 0)

 var(V) ^ transform quantifiers(RestQV;RestQV 0) [TRQU2]

transform schedule(To ; Tf ; at T; T le To ^ T lt Tf) [TRSCH1]
transform schedule(To ; Tf ;before T; To lt T ^ Tf le T) [TRSCH2]
transform schedule(To ; Tf ; after T; T le To ^ T lt Tf) [TRSCH3]
transform schedule(To ; Tf ; starting at T; To eq T ^ Tf lt T) [TRSCH4]
transform schedule(To ; Tf ;�nishing at T; To lt T ^ Tf eq T) [TRSCH5]
transform schedule(To ; Tf ; starting before T; To lt T) [TRSCH6]
transform schedule(To ; Tf ;�nishing before T; Tf lt T) [TRSCH7]
transform schedule(To ; Tf ; starting after T; T lt To) [TRSCH8]
transform schedule(To ; Tf ;�nishing after T; T le Tf) [TRSCH9]

Table 5.4: Translating ACTILOG rules into Integrity Constraints (Part 3)

As one could expect after seeing the example in chapter 2 ([ICSERVE]), the ACTILOG
rule in �gure 5.1 provides a solution for the elevator controller as complete as those shown in
chapter 4.

Observe that an ACTILOG \unit" will have neither recursive call, nor while statements.
The iterative behaviour is generated by the architecture of the agent, i.e. by the cycling in
which the whole system is engaged (as explained in chapter 2).

An ACTILOG unit is more open to the environment than a OPENLOG procedure because
cycle will check the environment on each iteration and new information will be constantly
arriving. There is less interaction with the environment when one has a while statement in a
OPENLOG procedure which is being unfolded during a call to demo. By using while, one is
introducing an iterative process in addition to (and without the bene�ts of interaction with the
environment of) the iterative process generated by cycle. It is like having a loop within a loop,
with the inconvenience that the \included-loop" (demo processing the while statement) is not
forced to check the environment on every iteration, as cycle is.

Notice that, this is the case even ifwhile statements can be interrupted to assimilate inputs.
To achieve the same number of \tests" on the environment (calls to observe or try in chapter 3)
per unit of time, one would have to to restrict a demo program processing a while to suspend
processing after each iteration. This requires a careful tuning of the resource argument R of
demo or a modi�cation of the structure of this predicate, to make it speci�c to the requirements
of the while construct.

In ACTILOG, cycle de�nes the only iterative mechanism. No \loops within loops" can
a�ect the interaction with the environment.

In addition, ACTILOG units can support \planning ahead". Actions will be promoted from
the head of implications to the bag of abducibles (the residue � in chapter 3) and after that
they will be \�ring" implications and triggering subsequent actions.

There still is one more advantage in ACTILOG due to the fact the we are using the i�
abductive proof procedure. Plans generated from ACTILOG rules, in contrast to those obtained

116

from OPENLOG procedures, can be made to contain a minimal set of abduced steps. The
checking of preconditions can be done in the body of the implications, where abduction is not
allowed by the proof procedure. This form of precondition testing blurs the distinction between
triggering conditions and proper preconditions of actions. However, by using ACTILOG only,
we will not have to inhibit the abductive process, to cater for \over-generation of abducibles",
the problem explained above (also discussed in chapter 6).

Thus, OPENLOG and ACTILOG, in the context of abductive logic programs, could be
alternative solutions for the same problem (i.e. both could be used to generate the same
behaviour in the agent) if OPENLOG is accompanied by a mechanism to inhibit abduction.
We return to this discussion in chapter 6.

All these advantages suggest that ACTILOG is a more general programming framework
than OPENLOG. There are however, points in favour of using OPENLOG as the programming
language (or even better, a combination of OPENLOG and ACTILOG, as we suggested above.
We followed this approach in the prototype discussed in chapter 6).

The �rst advantage comes from Software Engineering. For complex tasks and domains, the
set of integrity contraints can be very large and di�cult to arrange as one \unit". In those
circumstances, a more \modular" approach, for instance with procedures in OPENLOG, could
be more advisable.

The second advantage in the OPENLOG solution is related to the �rst but is more subtle.
In OPENLOG procedures, the ultimate goal being pursued can always be inferred from the
code of the procedures. For instance, in the elevator example, once on(3; 1) triggers the goal
1 < T1 ^ serve(3; 1; T1), serve(3; T2; T1)^ 1 < T2 can always be inferred from the literals in the
frontier. These literals are part of the agent's goals while the agent is trying to achieve \serving
the third oor by T1".

Having information about which higher goal the agent is aiming to (and how much is still
to be done to achieve it) in a partial plan is then easier in OPENLOG.

This kind of information can be particularly useful when the system is using heuristics to
guide its search process and when it is trying to decide on the importance or urgency of its
goals.

But even this can be done, to some extend, in ACTILOG, although by appealing to an
extra-logical resource. In the �rst category in table 5.1, a Unit is characterized by a Set and
a TaskName (Unit ::= Set to TaskName), where TaskName indicates the ultimate goal at
which the integrity contraints in Set are aiming.

This is an extra-logical device because TaskName is lost in the translation of ACTILOG
rules into integrity contraints that de�ne their semantics. However, if one maintains this \label"
attached to the ACTILOG unit, one could identify the tasks that have been triggered and reason
about their state of planning and execution.

Of course, this is not the only way of knowing about pending tasks. One could also use
\state encoding", as described by Allen [All91]: within the language, one would introduce the
uent serving(N; T), initiated by the observation on(N; T), and this would be enough for the
agent to know which the on-going tasks are.

One last remark about ACTILOG and the activation of goals. Observe that, from the
perspective of a reactive agent, there may be no need to remember which higher goal the agent
is planning and acting for. For instance, in the case of the elevator controller, the agent does
not need to remember serve(3; T), activated by on(3; T 0) for some T 0 < T .

If the signal stays on \outside in the environment", the agent will be able to realize that
the task is still pending if it fails to reach its higher goal (serve(3; T) in this case) with the
�rst (re-)actions. It is as if the agent is using the \world as its own model" [Bro91a] and so,
representations (memory) of inputs and goals (such as records of the signals and the triggered

117

tasks) will not be necessary. In a \cooperating" environment like that, an agent needs fewer
deliberative resources in order to be e�cient and e�ective. We have exploited this possibility in
the implementation discussed chapter 6. The following section discussed the logic of activation
of goals with one example to illustrate how the reactive nature of integrity constraints can be
combined with planning.

5.2 Activation of goals for planning

The purpose of activating a goal is to have the agent plan actions to achieve it. As we discussed
above, sometimes the environment is such that the agent does not need to plan. In those cases,
reactivity becomes more important in producing sensible behaviour, and then simple integrity
constraint or ACTILOG rules are su�cient to generate that behaviour.

However, the \reactive" use of integrity constraints to activate goals could be a source of
inadequate or improper behaviour. This could be the case, for instance, if the agent continues
executing a plan that it has devised to achieve an \activated" goal, even though the \activating"
conditions have ceased to hold.

To illustrate this, let us use the context of the example discussed in section 4.9, in chapter 4.
Imagine that the goal:

9T1 9T2 (0 < T1 ^ serve(2; T1; T2)) (5.3)

has been activated from the implication:

9T1 9T2 (T < T1 ^ serve(N; T1 ; T2) obs(on(N); T)) (5.4)

by the input: obs(on(2); 0)
Also imagine that, as in chapter 4, half-way through the execution of the corresponding

plan, the signal at oor 2 is turned o�. The agent observes this, because it has interrupted its
reasoning to try the �rst action of the plan, and the information about the new status of the
signal arrives as \feedback".

It would be incorrect3 for the elevator to keep executing this plan as its motivating condition
(that the signal was \on" and the oor ought to be served) has vanished.

The problem is that the elevator (executing an OPENLOG \serve" procedure as in chapter 4
and with the integrity constraint 5.4 above) has no means of deducing that the plan is now
unnecessary and must be abandoned, until it actually tries the turnoff action (which will fail
because the signal is not \on").

We can solve this problem in several ways with our agent architecture. We discuss one
general4 and one speci�c solution below.

A general solution is to modify the axiom [DNEC0] to include an explicit test of all the
preconditions of all the primitive actions, like this:

done(A; To; Tf) primitive(A) ^ preconds(A; To)
^To � Tf ^ do(A; To; Tf) [DNEC00]

The axiom [DNECO'] would allow for the \clipped" constraint (discussed in chapter 4,
section 4.9) to be produced and used by the planner to falsify the plan. If the agent completes
that plan up to the point where the preconditions of turnoff are reasoned about, it will \realize"
(before trying to execute it) that the action turnoff(2) is going to fail (precisely because the

3with respect to an idealised model of perfect rationality with no resource constraints for reasoning.
4General solution for those cases when the \motivating" condition (e.g. on(2) above) is also the precondition

of some action in the plan (as in the case of turnoff(2) above).

118

elevator assumes that the signal will not be \on" at that oor). This is the reason to drop the
plan.

Notice that as in section 4.9, we are assuming here that either some action of the plan
has been executed or the planner has access to some mechanism to handle inequalities and
time-constraints involving the current time. As we said in that section, this inequality-handling
mechanism could be combined with a mechanism to evaluate preferences, which is the subject
of the following sections. One could also maintain an explicit record of the goal that has been
activated and its activating condition as \contextual" information. This type of information
and the use of labels attached to the plans is discussed below in chapter 6, section 6.3.4.

That \general" solution to the problem of activating conditions that ceased to hold (leav-
ing \triggered" plans without justi�cation for their execution) could be expected to be in-
e�cient. This is because the planner needs to \complete" the plan up to the point where
the constraints on the preconditions of the actions are made explicit (e.g. the constraint
false clipped(0; on(2); T4) must be derived by the planner, before it can be used to test
whether the precondition persists).

One could improve the e�ciency of the planner by providing a more precise and informative
integrity constraint to activate the \serve" goal. This would be a speci�c solution because
it uses knowledge speci�c to the problem. For instance, after introducing a new abducible
predicate5 serving, the constraints:

9T1 9T2 ((T < T1 ^ serving(N; T; T2) ^ serve(N; T1; T2))
 obs(on(N); T))

^ (false (serving(N; T3 ; T4) ^ do(S; turnoff(N); T0; Tf)
^ S 6= self ^ T3 � T0 ^ Tf � T4))

will have any plan to achieve the goal serve(N; T1 ; T2) falsi�ed, if an event that switches the
signal o� (presumably other agent doing it) is observed before the plan is executed by this
agent6

Thus, integrity constraints do support some basic, rational behaviour in a multi-agent,
dynamic environment. Whether they can be extended to cater for more complex cases of
coordination and cooperative behaviour requires further investigation.

5.3 How to incorporate preferences into an agent

5.3.1 From control strategies to time management

This chapter and the previous are about languages to encode domain speci�c knowledge into
an agent. In the chapter 4 and the �rst section of this chapter the attention concentrates
on languages to describe domains of expertise and strategies for problem solving in those do-
mains. These knowledge-description tools and the rules of inferences of the proof procedure
(as described in chapter 3) are essential components of an agent with reasoning capabilities.
However, they may not be su�cient to yield e�cient and e�ective behaviour.

5This means that the set Ab, introduced in chapter 3, will contain fdo;=; <; obs; servingg. The introduction
of serving could be regarded as an instance of \state-encoding" as discussed by Allen in [All91] and also
mentioned in the previous section.

6Here we also assume that there is a mechanism to deduce that the turning o� of the signal does occur
after the instant when the goal is activated (T3 � T0) and before the plan is completed (Tf � T4). This is the
aforementioned inequality-handlingmechanism. Proper inequality processing is already provided for cases when
some action in the plan has been executed, as shown above. The algorithms for treatment of inequality in the
current architecture are discussed in chapter 6 (see �gure 6.2).

119

It is known that the e�ectiveness and e�ciency of an inference rule is highly dependent
on the strategy to apply it. In logic programming, the selection of clauses and literals for
resolution is guided by a set of prede�ned control rules that determine the way in which
the space of possible derivations is searched. Two types of rules are normally used: A search
rule determines the clause that will be employed to resolve a literal and a computation rule
determines the literal, within a conjunction, that must be selected for resolution. A text-
order search rule and left-to-right computation rule determine the depth-�rst search engine of
standard PROLOG interpreters [Hog90]. If one wants to alter this uninformed, brute-force
search strategy, one can substitute those control rules by a control strategy that incorporates
heuristics and domain-speci�c information for a more e�ective search, as in the A� algorithm
and its variants ([HNR68], [DP87]).

Search and heuristic search are well-known territory in Arti�cial Intelligence. There is
a large set of well founded solutions available. However, what is wanted here is a control
mechanism that works for any problem, but that can be made more e�ective and e�cient for
certain contexts and domains. What we want is to provide knowledge to the agent, so that it
can reach a prompt but sound decision when it has to react in stressing circumstances. What
we need is not only a exible search engine and a set of heuristics for each application domain,
but also exible languages to program this heuristic knowledge into the agent.

So, it is perhaps more promising to approach the problem of agent control strategies from
the perspective of decision makers that can manage their tasks and time in a e�ective and
e�cient manner in very dynamic contexts.

We come to this problem with an important resource. The combination of object and meta-
language allows access to domain-speci�c, context dependent information and, within the same
language, to the inference rules that characterize the reasoning mechanism of the agent. Thus,
the language allows for description of a more complex reasoning mechanism where the control
on the inference rule is tailored to the requirements the application (e.g. planning).

In books on time management it is common to see references to importance and urgency as
criteria for organizing plans and schedules. If a task is urgent, it must be planned before any
other and executed as soon as possible. If a task is important, it must be ensured that it will
be executed. By rating tasks by both attributes, an agent will be able to decide what to do
next. By considering all the tasks that are important, and \ordering" them by urgency, the
agent has a general strategy for time management and optimal planning.

The notions of importance and urgency of tasks can be accommodated within the agent
architecture presented in this thesis, in the following way:

� Any important task must have some \triggering conditions" (e.g. if a car is moving
toward you while you cross the road, you know it is important to get out of its way).
A set of integrity constraints, written as ACTILOG rules, can be used to capture the
relationships between those triggering conditions and the important tasks. For instance,
for the elevator it is important to serve any oor in which the calling button has been
pressed on.

Thus, writing integrity constraints (or ACTILOG rules) is the �rst step to program the
\important" goals into an agent. The second step can be done in two di�erent ways.

The programmer could manually reduce a task to a set of primitive actions that achieve
it, and then accommodate these actions into integrity contraints. In this case the pure
ACTILOG language (describe in table 5.1 would be su�cient as representational medium.

Alternatively, the programmer can de�ne OPENLOG procedures to be used with the
predicate done representing tasks that have been activated. In this case, the activated
goals (done atoms) which will be reduced to primitive actions by unfolding.

120

� As ACTILOG rules can trigger actions leading to di�erent goals, the agent must have
some way of choosing the most urgent ones. For instance, if observations on(3; 1) and
on(4; 2) have activated the goals serve(3; T1) and serve(4; T2), the agent must be able to
decide that the former is more urgent than the latter (apparently, i.e. it depends on the
serving policy).

So, within the same plan (the conjunction of goals in a node) the system must perform
some kind of ordering or priority setting, based on the urgency of each task.

� There is a variant of \importance" that is not fully captured by ACTILOG rules. Some-
times, a certain course of action is said to be more important than some other course of
action. The reason to \prefer" a certain course of actions, as opposed to others, may
not be that it contains certain activated actions (in the case of the plans in our architec-
ture, all the nodes/plans will contain all the activated goals), but that it is more likely to
achieve its top-most goals.

An agent will not only select actions within a plan according to some urgency criterion, but
it will also choose some plan (within the frontier of goals that contains all the alternative
courses of action for the agent), according to some quantitative or qualitativemeasurement
of the usefulness, utility or likelihood of that plan to achieve the goals.

So, dispensing with the notion of \absolute importance", already captured by ACTILOG
rules (or integrity constraints), we still have to extend our system to be able to program pref-
erences between actions in a plan (the urgency criteria) and between plans (the usefulness
criteria)7

5.3.2 Towards a qualitative formalization of preferences

Simon's bounded rationality [Sim55], was an attempt to go beyond the limitations of previous
models of rationality in traditional economy theory. He wanted a new theory that did not
make the assumption that the \economic man [.. has] a well organized and stable system
of preferences, and a skill in computation that enables him to calculate, for the alternative
courses of action that are available to him, which of these will permit him to reach the highest
attainable point of his preference scale" (.ibid). Simon thought that those, by then classical,
concepts of rationality made severe demands upon the choosing agent. In particular, such an
agent should be able to attach de�nite \pay-o�s" to each possible outcome of its actions. This
implies that the nature of the outcome should be precisely de�ned (no uncertainty) and that
pay-o�s must be completely ordered. Thus, the agent is assumed to be omniscient with respect
to its preferences.

One of the main concerns of the work reported in this thesis is to overcome the \omniscient
agent" problem, albeit in a di�erent sense. We want to capture the notion of an agent that
cannot reason about all the consequences of its beliefs because of its limited resources to compute
them. It is encouraging to �nd out that our models can incorporate all the notions in Simon's
rationality and allow for qualitative criteria and subjective preferences. The mapping is as
follows:

1. Simon's \economic or administrative" man is the agent modelled as a cycling process that
interleaves observation, thinking and acting.

2. This agent has a set of \behaviour alternatives" represented here by the nodes in the
frontier of derivations (chapter 3).

7This process of choosing between goals and between plans is similar to conict resolution in production-rule
systems.

121

Table 5:5 Resource� bounded List Ordering

order(List; List; 0) [ORD � 00]
order([]; []; 1) [ORD � 01]
order([Item]; [Item]; 1) [ORD � 02]
order([FirstItem; SecondItemjRest];

OrderedList; R)
 precedes(FirstItem; SecondItem)
^ R1 + R2 + 1 = R
^ order([SecondItemjRest]; T empOrd;R1)
^ order([FirstItemjTempOrd]; OrderedList; R2) [ORD � 03]

order([FirstItem; SecondItemjRest];
OrderedList; R)

 precedes(SecondItem; F irstItem)
^ R1 + R2 + 1 = R
^ order([FirstItemjRest]; T empOrd;R1)
^ order([SecondjTempOrd]; OrderedList; R2) [ORD � 04]

precedes(H1;H2) utility(H2) � utility(H1) [PRE]

Table 5.5: Resource-bounded List Ordering

3. The set of \future states of a�airs", is implicitly represented as the logical consequences
of the knowledge in the background theories and of the behaviour alternatives adopted
by the agent (and other agents in the multi-agent setting).

4. The \preference order over future states of a�airs" in Simon's theory is substituted here
by a preference order over \behaviour alternatives", because these determine those future
state of a�airs. Note that this implies that 1) there is some computation involved in
ordering alternative plans so that the \most preferred" are chosen for further re�nement
and execution, 2) the preference order is internal to every agent and 3) preferences may
or may not be based on some computed pay-o�s for each alternative.

One of the attractions of our model is that one can make the computation to \order the
plans" resource-bounded, as was done with the demo predicate. The logic program in table 5.5
speci�es a resource-bounded list ordering algorithm. Note that, with limited resources (such as
limited time to compute) this algorithm will consider only a few elements of the list, leaving
the rest untouched. As in demo, an argument of the predicate is devoted to \count" the
resources spent on the ordering process. One can make explicit the limits on these resources
(with something like R < n as we did for demo in chapter 2).

Observe that the speci�cation in table 5.5 captures the ordering principle but the actual
ordering strategy depends on the way the resources R1 and R2 (for the recursive calls) are
assigned. With R1 = (R � 1) div 2 and R2 = R div 2, where div is the integer-division
operator, and for large value of R, this logic program will behave like the well-known \bubble"
algorithm for ordering lists.

Apart from the strict resource bounding provided by the third argument of order in table 5.5,
there is another aspect that limits the capability of the agent to fully ordering its preferences.
Observe that the ordering depends on an appropriate de�nition of the predicate precedes in

122

Table 5:6 Resource� bounded usefulness ordering

use order(Goals;Goals; 0) [USORD00]
use order(false; false; R) [USORD01]
use order(fP lang; fP lang; R) [USORD02]
use order(fFirstP lan _ SecondP lan _Restg;

OrderedGoals;R1+ R2 + 1)
 (prefers(FirstP lan; SecondP lan)
_ indifferent(FirstP lan; SecondP lan))

^ use order(fSecondP lan _Restg; T empOrd;R1)
^ use order(fFirstP lan_ TempOrdg; OrderedGoals;R2) [USORD03]

use order(fFirstP lan _ SecondP lan _Restg;
OrderedGoals;R1+ R2 + 1)

 prefers(SecondP lan; F irstP lan)
^ use order(fFirstP lan_Restg; T empOrd;R1)
^ use order(fSecondP lan _ TempOrdg; OrderedGoals;R2) [USORD04]

prefers(P lan1; P lan2) P lan1 � (�1; UC1; CN1;HF1;M)
^ P lan2 � (�2; UC2; CN2;HF2;M)
^ demoNonAb(KB [�1;H1; true)
^ demoNonAb(KB [�2;H2; true)
^ H1 6= H2

^ demoNonAb(KB [�1;H2; false)
^ demoNonAb(KB [�2;H1; false)
absolutely prefers(H1;H2) [PREF01]

indifferent(P lan1; P lan2) :prefers(P lan1; P lan2)
^ :prefers(P lan2; P lan1)

Table 5.6: Resource-bounded, context-dependent preferences between plans

this case. In table 5.5, we suggest to use the traditional method in Decision Analysis ([Rai70],
[Jon75]): One estimates the utility of each item, as an scalar value, and use it to decide on the
precedence between them (greater values precede smaller ones). A hidden assumption is that
utility is a total function, mapping every item to a value.

However, one could relax this last assumption and use a \partial" de�nition of precedes.
This is exactly what we do in tables 5.6 and 5.7 where the logic program above is adapted
to describe the mechanisms of plan and action ordering based on the agent's programmed
preferences.

Thus, the problem of how to incorporate preferences into an agent is reduced to how to de�ne
the predicates prefers (or absolutely prefers) in table 5.68 and more urgent in table 5.7.
What we do in the remaining sections of this chapter is to propose \surface syntaxes" for
the logic programs that will provide those de�nitions. As we have done with OPENLOG
and ACTILOG, this \syntactic sugar" is presented as two more independent programming
languages.

Finally, observe that without any information about preferences the system will preserve

8demoNonAb is explained below.

123

Table 5:7 Resource� bounded urgency ordering

urg order(Goals;Goals; 0) [URORD00]
urg order(true; true; R) [URORD01]
urg order((Action); (Action); R) [URORD02]
urg order((FirstAction ^ SecondAction ^Rest);

OrderedP lan;R1+R2 + 1)
 (more urgent(FirstAction; SecondAction)
_ indifferent(FirstAction; SecondAction))

^ urg order((SecondAction ^Rest); T empOrd;R1)
^ urg order((FirstAction ^ TempOrd); OrderedP lan;R2) [URORD03]

urg order((FirstAction ^ SecondAction ^Restg;
OrderedP lan;R1+R2 + 1)

 more urgent(SecondAction; F irstAction)
^ urg order((FirstAction ^Rest); T empOrd;R1)
^ urg order((SecondAction ^ TempOrd); OrderedP lan;R2) [URORD04]

indifferent(Action1 ; Action2)
 :more urgent(Action1; Action2)
^ :more urgent(Action2; Action1)

Table 5.7: Resource-bounded, context-dependent preferences between actions

the ordering of actions suggested by the text of OPENLOG procedures or ACTILOG rules.
This is a kind of text-order, default priority.

5.4 PRIOLOG: the logical language of priorities

PRIOLOG must be used to encode knowledge about the relative urgency of actions. This
knowledge will be used by the procedure urg order, invoked by demo (chapter 3), to order
literals within a node for selection and further processing. The syntax of the language is given
in table 5.8.

Figure 5.2 shows a set of PRIOLOG rules9 that could be used to obtain di�erent behaviours
in the elevator controller. Figure 5.3 shows the set of PRIOLOG rules used by the elevator to
implement policy 3 (chapter 4). A compiled version of these rules was used in an implementation
discussed in chapter 6.

These rules can be read as clauses in a normal logic program. The intention is to translate
them into the de�nition of the meta-predicate more urgent, called by urg ord.

more urgent(KB; T;�; D1; D2) (5.5)

Notice that the meta-predicate is provided with \contextual" information from the agent
including the de�nition of holds (inKB), other actions and observations in the plan from which
the comparing actions are taken (in �) and the current time (T , accessible through the term
now i.e. the parser will have to replace the constant now with the variable T designating the
current time according to the cycle predicate)).

9We assume that the interpreter admits comments as in PROLOG: anything to the right of a \%" is a
comment.

124

Table 5.8 PRIOLOG Language: Syntax

Urg Set ::= Urg Rule (and Urg Set)� Urgency Set
Urg Rule ::= consider TaskName1

before TaskName2 if Body Priority Rule
Body ::= Condition (and Body)� Body of an IC

j true
Condition ::= Funcboolean at Term Conditions

j TaskName starts at Term
j TaskName �nishes at Term
j TaskName starts before TaskName
j TaskName �nishes before TaskName
j TaskName `s earliest start is Term
j TaskName `s latest �nish is Term
j Query Tests on \rigid"

information
j not Condition

TaskName ::= Funcaction Action names
j Funcproc
j TaskName (; TaskName)�

j TaskName (par TaskName)�

Funcaction ::= : : : As in OPENLOG
Funcproc ::= : : : As in OPENLOG
Funcfluent ::= : : : As in OPENLOG
Funcboolean ::= : : : As in OPENLOG
Term ::= Ind j Var As in OPENLOG
Ind ::= : : : As in OPENLOG
Var ::= : : : As in OPENLOG

Table 5.8: Syntax of PRIOLOG

125

% Chronological ordering..

consider D1 before D2 if

D2 starts at T2 and

D1 finishes at T1' and T1' lt T2'

% First to call, first to be served..

consider D1 before D2 if

D1's earliest start T1 and

D2's earliest start is T2 and

T1 le T2

% Pure Shortest path..

consider serve(N1) before serve(N2) if

currentfloor(L) at now and

abs(N1 - L) < abs(N2 - L)

% Minimal waiting time..

consider serve(N1) before serve(N2) if

serve(N1) 's earliest start is T1 and

serve(N2) 's earliest start is T2 and

abs(T1 - now) > abs(T2 - now)

% finish everything before you stop..

consider D1 before park if true

Figure 5.2: Examples of PRIOLOG rules

126

consider turnoff(N) before D2 if

currentfloor(N) at now

consider serve(N) before serve(M) if

going_up at now and

N lt M and

currentfloor(H) at now and H lt M and H lt N

consider serve(N) before serve(M) if

going_up at now and

M lt N and

currentfloor(H) at now and M lt H and H lt N

consider serve(N) before serve(M) if

going_down at now and

N lt M and

currentfloor(H) at now and N lt H and H lt M

consider serve(N) before serve(M) if

going_down at now and

M lt N and

currentfloor(H) at now and N lt H and M lt H

Figure 5.3: PRIOLOG rules used by the elevator

127

consider serve(N1) before serve(N2) if

currentfloor(L) at now and

abs(N1 - L) < abs(N2 - L) and

serve(N2)'s earliest start is T2es and

estimated_duration(serve(N1), Duration) and

maximum_waiting_time_per_passenger(MWTPP) and

now + Duration < T2es + MWTPP

Figure 5.4: Policy 4 for the elevator controller

There is also some additional processing of data provided by the interpreter of this language.
Conditions of the form D 0s earliest start is T , for instance, refer to the \activation time" of
task D or more simply, to the lowest bound of the actual starting time of the task.

Example 5.4.1 In to < T1^T1 < T2^done(serve(3); T2; Tf), to is the earliest starting time for
task serve(3). The corresponding treatment can also be provided for the operator \`s latest
�nish is".

The PRIOLOG language is su�ciently expressive that we can now o�er a more interesting
solution for the elevator controller in �gure 5.4.

5.4.1 The elevator controller for policy 4

The policy that the clause in �gure 5.4 formalizes is: consider serving oor N1 before oor
N2 if you are at L now and L is closer to N1 than to N2 and by going to N1 you are not
likely to exceed the \maximum-waiting-time limit" for those clients at oor N2.

This PRIOLOG clause, an OPENLOG code de�ning the serve(N) procedure and an AC-
TILOG unit indicating the conditions for activation of serve(N) goals, constitute a complete
speci�cation of the elevator controller (for policy 4)10

5.5 USELOG: programming the usefulness criterion

The language USELOG is also \syntactic sugar" for logic clauses. It encodes heuristic knowledge
about the relative usefulness of plans to achieve goals. demo has access to this knowledge
through the logic program use order.

The issue of preference between plans is slightly more complicated than preference between
actions. As we said above, agents manifest preferences between \future states of a�airs" or,
following von Wright[vW63], a preference statement is a statement about situations.

Comparing two situations by exhaustively analysing what holds in one versus what holds
in the other is likely to be a task of enormous complexity. Some reduction of complexity can
be achieved by a more restrictive interpretation of preference statements. It was von Wright
(.ibid) who suggested that when an agent \prefers oranges to apples" then it will prefer the
situation where it has an orange and no apple to the situation where it has an apple but no
orange. Huang and Masuch call this the conjunction expansion principle [HMP92] and suggest
that is a good idea to restrict attention to preference statements that obey the principle.

10This is if one takes the speci�cation of cycle and demo for granted.

128

prefers P1 to P2 if

P1 implies F1 and P2 implies F1 and

probability of F1 given P1 is V1 and

probability of F1 given P2 is V2 and

V2 lt V1

prefers P1 to P2 if

energy_consumption(P1, E1) and

energy_consumption(P2, E2) and E1 le E2

Figure 5.5: Example of USELOG rules.

The conjunction expansion principle is formalized in our framework by the entry [PREF01]
in table 5.6. The idea is to have a quick mechanism embodied by the program demoNonAb11in
table 5.6, (which also implements implies12).

This program, which could be a deductive-only version of demo (or demo plus inhibition of
abduction, as we explain in chapter 6), could be used to obtain properties H1 and H2 that hold
after the execution of plans P lan1 and P lan2, respectively, but that do not hold after the other
plan in each case13. One can then ask for the absolute preference between P1 and P2. And,
one can also have the case when neither plan is preferred to the other.

However useful, the conjunction expansion principle is just one criterion to guide the choice
between situation or plans. One should leave open to the programmer of the agent the possibility
of encoding other kinds of criterion, so long as it does not lead to inconsistency of preferences.
A more general criterion will probably be based on a mixture of qualitative knowledge and
estimations of probabilities, if they are available. This is the purpose of the syntactic constructs:
implies,does not implies,probability of and utility of in the USELOG language, as shown
in table 5.9.

With USELOG one can write preference clauses like those in �gure 5.5.
The �rst clause assumes that one has a mechanism, perhaps some Bayesian formalization, to

compute probabilities. The second uses a program to estimate energy consumption generated
by the execution of each plan. These diverse types of information can be incorporated into the
agent in order to improve its e�ectiveness at problem solving.

5.6 Discussion

This chapter and the previous one have presented a family of languages to program an agent.
The characteristic common to all these languages is that their sentences have an unambiguous
translation into subsets of �rst order logic. In the case of OPENLOG, the translation has a more
restrictive output, yielding normal logic programs. In the case of ACTILOG the translation is
into a form that supports sentences formalizing integrity contraints, that can be used to guide
the process of activation of goals in the agent. PRIOLOG and USELOG translate into logic

11Notice that, for the sake of simplicity, we have omitted the resource argument in demoNonAb. This
argument, however, is essential to guarantee that the mechanism is indeed quick and terminates within some
prede�ned window of time.

12That is, to test whether P implies F (as in table 5.6 and in the example in �gure 5.5 below), the system
will test demoNonAb(KB [P;F; true).

13In the notation in table 5.6, demoNonAb(K0 ;H 0; true) means that H' is implied by K' and
demoNonAb(K0; H 0; false) means that H' is not implied by K'.

129

Table 5.9 USELOG Language: Syntax
USEFUL Set ::= USEFUL Rule (and USEFUL Set)� Utilities Set
USEFUL Rule ::= prefer Plan to Plan

if Body Usefullness Rule
Body ::= Condition (and Body)� Body of an IC

j true
Plan ::= : : : A conjunction of

literals
Fact ::= Funcboolean at Term Facts
Condition ::= Plan implies Fact

j Plan does not imply Fact
j probability of Fact is Term
j probability of Fact

given Plan is Term
j utility of Fact is Term
j Query Tests on \rigid"

information
j not Condition

Funcaction ::= : : : As in OPENLOG
Funcproc ::= : : : As in OPENLOG
Funcfluent ::= : : : As in OPENLOG
Funcboolean ::= : : : As in OPENLOG
Term ::= Ind j Var As in OPENLOG
Ind ::= : : : As in OPENLOG
Var ::= : : : As in OPENLOG

Table 5.9: Syntax of USELOG

130

programs and provide a way to blend domain or problem speci�c knowledge with the general
purpose, reasoning mechanism of the agent.

The predicates use order and urg order support a resource-bounded system of preference
for agents that can be programmed in the languages PRIOLOG and USELOG, and that can be
integrated into the structure of the embedded proof procedure (demo) as shown in chapter 3.

These developments, applied to the architecture in the previous chapter, will support a
�ne tunning of agent performance for speci�c applications. However, there are still several
important remarks to make about general-purpose, reactive planning. These considerations
and the speci�cation of an algorithm for reactive planning are the subjects of the following
chapter 6.

131

Chapter 6

The Agent's Planning

Mechanism

This chapter describes an adaptation of the i� proof procedure (presented in chapter 3), to be
used as the planner of our agent. We will also discuss a prototype of GLORIA that simulates
the elevator controller.

Before the adaptations to i�PP, a brief review of planning literature.

6.1 A brief history of automatic planning

6.1.1 STRIPS (1971)

STRIPS [FN71] was not the �rst planner but it is probably the most widely known. It is based
on a classical state-based representation of a problem (as described in chapter 1) in which actions
are state-transitions. Action types are speci�ed by operators with pre and post-conditions. An
operator establishes which (post) conditions must be added to and which (pre)-conditions must
be deleted from the description of the current state to yield a new state. Goals are speci�ed
by a set of conditions that must hold in the �nal state.

Working on a complete description of the initial state, STRIPS searches for a state in which
all the goals' conditions and actions' preconditions are satis�ed. This search is performed by
simulating the execution of actions.

With its use of add-delete lists of conditions, STRIPS incorporates a form of default reason-
ing. Properties that are not explicitly a�ected by an action (and therefore are not mentioned
in the add-delete lists of its related operator) are left untouched when an state description is
transformed into a new state description. As long as the e�ects of actions do not depend on
their contexts, this form of default reasoning is enough to deal with the frame problem.

Search in STRIPS is guided by means-end analysis, a technique inherited fromGPS[NSS60]:
only those operators that contribute to the achievement of the goal are considered in the search
for a solution. Although means-end analysis can be used to reason forwards (from initial state
to the goal state), STRIPS only reasons backwards (from goals to initial state).

STRIPS has been used in many applications, including the embedded planner of SHAKEY,
the robot at SRI[RN95]. However, the fact that it generates fully instantiated plans, with
completely speci�ed and fully ordered actions, with no context-dependent e�ects and with no
notion of duration, makes this approach too limited for general planning.

132

6.1.2 ABSTRIPS (1974)

ABSTRIPS [Sac74] main contribution was the introduction of hierarchical planning. In AB-
STRIPS, pre-conditions of actions are assigned a value indicating their criticality. The planner
looks �rst at those conditions with the highest criticality. With a careful (ad hoc) setting of
criticalities, the designer can overcome the potential combinatorial explosion that occurs in
systems which perform means-end analysis only.

Hierarchical planning can be applied to action speci�cation. To obtain a plan, for instance,
to build a structure, one can use the de�nition:

build_a_structure if get_parts(P) and ensemble_parts(P).

Thus, given the goal build a structure, a planner would reduce it to get parts(P) and
ensemble parts(P). It could then use the output of get parts(P) (an instantiation for P)
to focus the search performed for ensemble parts(P). This is better than the exhaustive
matching performed by means-end analysis on a grounded equivalent representation.

Apart from the hierarchical organization of goals, ABSTRIPS is equivalent to STRIPS and
therefore it inherits all the aforementioned limitations.

6.1.3 WARPLAN (1974)

WARPLAN [War74] was the �rst planner completely written in PROLOG. It served to show
the capabilities of the language to do high level, very compact programming: WARPLAN
consisted of approximately 100 lines of code.

A version of WARPLAN (WARPLAN-C [War76]) could do \conditional planning": plans
could contain conditional expressions to be tested and decided on at execution time. Also, the
report in which WARPLAN was presented [War74], was the �rst to mention (on page 16) the
idea of partial planning (also known as nonlinear planning) that became the main breakthrough
in planning technology a few years later.

6.1.4 NOAH (1975)

NOAH [Sac75] was designed by the creator of ABSTRIPS and introduced a very inuential
notion: least commitment plan generation. In NOAH, a plan is, initially, a partially ordered
set of actions. By posting ordering constraints 1 only when they are strictly required by the
problem description or by action interferences, the chances of �nding a feasible plan (without
having to backtrack) increase.

NOAH inherits the idea of abstract hierarchies from ABSTRIPS. However, NOAH is not
capable of backtracking (that is, the system does not store decision points so that it can come
back to them when some branch of exploration fails). And because actions are indexed to
consecutive global states, actions must be fully ordered in a complete plan.

6.1.5 NONLIN (1976)

NONLIN ([Tat76],[Tat77]) extended NOAH by incorporating search capabilities (and therefore
backtracking) into the planner. The other important characteristic of NONLIN is that it does
not search on domain states (states with descriptions of properties of the world), but on plan
states (states containing descriptions of actions, ordering contraints and goals). When one
represents an abstract hierarchy of actions, as we did above for build a structure, this is the
type of search space that is generated.

1This is the expression used in the planning jargon to indicate that one is introducing constraints on a plan
description. \Imposing constraints" is a clearer expression, but it is not used.

133

6.1.6 MOLGEN (1981)

MOLGEN [Ste81] applied the principle of least commitment to the choice of objects to be
manipulated by actions. In logical terms, this requires from the system the capability to
reason about objects whose existence is known, but whose identity is not. The abductive
proof procedure described in chapter 3 is capable of this type of reasoning.

Another capability of the i�PP, which is very important in planners since NOAH and is
also used in MOLGEN, is that of posting constraints mentioned above. The process by which
the i�PP abduces certain atoms, inequalities in particular, can be seen as a mechanism for
increasingly re�ning a set of constraints on a plan.

6.1.7 DEVISER (1983)

DEVISER [Ver83] is a partial planner similar to NONLIN. DEVISER allows numeric con-
straints on actions execution times. Each action is associated with a start time window and a
duration. By using numbers (time intervals and points) instead of states as index, DEVISER
supports some limited forms of concurrency. However, an important feature of DEVISER is
that it \allows plans to be generated which take account of scheduled changes [..] occurring
after the start of plan execution time" [Lin93]. Thus, this system contains a basic element for
the interleaving of planning and execution. Our system shares that feature with DEVISER.

6.1.8 Interval Logic Planner (1983)

James Allen pioneered the study of logic-based planners. His \general theory of action and
time"[All84] served as the logical framework for a Planning algorithm described in [AK90]
and [All83] which Pelavin calls the Interval Logic Planner[Pel91]. The main element of that
logical framework is a temporal logic based on intervals. Thirteen relations (before, equal,
meets, overlaps, during, start and finishes) constitute the set of possible relations that can
hold between intervals (Later he and P. Hayes proved that interval relations can be de�ned in
terms of meets only, but that \there are important e�ciency gains from using the larger set of
primitives"[AH87]).

The heart of the Interval Logic Planner is an algorithm that computes the transitive closure
of the primitive relations mentioned above. It does this by \posting" and propagating2 con-
straints through a network that stores all the information about how the intervals are related.
However, veri�cation of (global) consistency in such a network is intractable (as Allen admits
in [All83], pg. 836). Lingard [Lin93] and Pelavin [Pel91] also point out that the Interval Logic
Planner is not able to detect \destructive synergistic interference" between actions in a plan.

6.1.9 TWEAK (1987)

TWEAK [Cha90] is a formally de�ned partial planner which operates by posting (imposing)
constraints on action ordering and object descriptions.

To design TWEAK, Chapman �rst established a modal truth criterion which, just like the
de�nition of holds (the temporal projection predicate described in chapter 4), can be used to
establish whether some proposition is (in his case, necessarily or possibly) true in some situa-
tion. Then, using the truth criterion as a scheme, he devised a \nondeterministic achievement
procedure" to produce an ordering of the actions that achieve some given goals. Chapman
noticed the importance of equality treatment. He stated a relaxed form of equivalence between

2This is essentially the same as computing the transitive closure of the orderings between intervals. The word
\propagating" is also part of the planning jargon.

134

terms that he called \co-designation" (�) and that allows expressions such as (on x y) �
(on v z), to be considered as constraints on the variables involved (x; y; v; z in this case).

The following is a rendering of Chapman's modal truth criterion in a language similar to
those introduced in chapter 4 for easy comparison:

holds(P; S) holds(P; T) ^ T < S
^ :clip(T; P; S)

_ do(A; T) ^ initiate(A;P) ^ T < S
^ :clip(T; P; S) [NHOLDS]

clip(T; P; S) do(C; T 0) ^ terminates(C;P)
^ T � T 0 ^ T 0 < S ^ :declip(T 0; P; S) [NCLIP]

declip(T 0; P; S) do(W;T 00) ^ initiates(W;P)
^ T 0 � T 00 ^ T 00 < S [NDECLIP]

Read do(A; T) as: do step A in situation T ; initiates(A;P) as: step A asserts P ; and
terminates(C;P) as: A possibly asserts a property R that possibly co-designates with the
negation of P .

[NCLIP] is, in Chapman's terminology, the axiom of the clobberers (step C is \clobbering"
proposition P). [NDECLIP] is the axiom of the white knights (W in this case, is the white
knight that re-installs P).

Because of his use of \co-designation", Chapman's speci�cation requires [NDECLIP]. As
can be seen, the axiom is logically redundant and so the description can be made even closer
to those axioms for OAEC in chapter 4.

Recently, Missiaen et al [MBD95] built a similar rendering of Chapman's truth criterion in
the language of the Event Calculus. They use Chapman's truth criterion in the engine of the
planning system CHICA (.ibid). Missiaen et al also use an axiom similar to [NDECLIP], which
they justify for e�ciency reasons.

Chapman proved that TWEAK was correct and complete [Cha90]. To do so, he had to
restrict the representation used by the planner. Notice that initiate and terminate above do
not have a time index as their analogue in OAEC in chapter 4. This means that the action
representation does not allow \the e�ects of actions to depend on the situation in which they
are applied"(.ibid). It does not allow for indirect side-e�ects either. Chapman even shows
an example of synergistic interference that cannot be accounted for by his system. Chapman
carefully studied the limitations of his system and he went on to prove that if one tries to ignore
the restrictions, one would be confronting these two theorems (which he proved):

Theorem 6.1.1 Intractability Theorem (Taken from [Cha90]). The problem of determin-
ing whether a proposition is necessarily true in a nonlinear plan whose action representation is
su�ciently strong to represent conditional actions, dependency of e�ects on input situations,
or derived side-e�ects is NP-hard.

Theorem 6.1.2 Second Undecidability Theorem. (Taken from [Cha90]). Planning is un-
decidable even with a �nite initial situation if the action representation is extended to represent
actions whose e�ects are a function of their situation.

According to Chapman, these theorems suggest that \writing planners for extended action
representations is a quixotic enterprise". And, when trying, one may either: 1)\hope for the
best", and look for some trick to improve e�ciency, 2)\relax the correctness requirement" and

135

produce plans that may not work or 3) \relax the generality requirement" by allowing, for
instance, domain-speci�c criteria to guide the planner.

Following our strategy of avoiding concerns about e�ciency and implementation details, we
have implicitly chosen alternative 3). We count on the possibility of providing domain-speci�c
information (with rules as those shown in chapter 5) about importance, urgency and preferences,
to improve the ability of the planner to reach a solution. In a paper after TWEAK's Chapman
and Agre ([AC90]) acknowledge that "Complexity theory is, unfortunately, not and ideal tool
for proving negative results. [..] heuristic solutions might work well enough in practice".

Chapman's pessimistic results led him and others to explore radically di�erent approaches
to planning. This resulted in the exploration of reactive planning and reactive platforms, some
of which we discuss in the following section.

6.1.10 O-PLAN (1985)

The O-PLAN system[CT91] is a complex planning architecture. It inherits and extends the
capabilities of previous planners (such as NONLIN and DEVISER) by allowing, for instance,
numerical constraints on actions' and goals' durations and on consumable resources.

The designers of O-PLAN seem to have chosen the third alternative of those mentioned
above (i.e. \relax the generality requirement") to confront the intractability problem. One
of the most attractive features of O-PLAN is the use of a blackboard control architecture that
incorporates domain speci�c knowledge to allow the system to \focus" its search for plans.

Thus, automatic planning seems to be headed towards the development of domain speci�c,
highly customized systems that could be quickly adapted to new requirements and use heuristics.
In this context, the possibility of quick prototyping that characterizes logic programming in
particular, can be crucial.

6.2 Reactive Planning (1986-1989-1991)

6.2.1 What is reactive planning

Reactive planning is a mode of planning that requires from the planner a swift decision about
what to do next, considering mainly (and sometimes only) what it perceives about its current
situation. The fundamental idea seems to be to try to establish a direct (programmed or
hard-wired) connection between an agent's perceptors and its e�ectors.

The reactive approach is sometimes called \situated" because it is the current situation of
the agent that determines what it will do next.

The reactive approach is so di�erent from traditional planning that one could wonder if it is
planning at all. The reason that it can still be called planning is that the agent can still be seen
as \deciding" what it will do next, and the decision can be anything from \do nothing" to \do
these actions in parallel". The basic insight is that a careful arrangement of perceptor-e�ector
connections is normally su�cient for the agent to have \meaningful" behaviour, even though it
may not be optimal or even correct.

Notice that we are now talking about an \embodied agent": an agent with a body, with
perceptors and e�ectors and a set of \indexes" to its current situation (i.e. now, here and
self). There does not seem to be any need for a planning module to reason about actions,
separated from the executive or even from the perception unit. All of them are fused in one
whole perception-reaction unit.

Four well-known projects have pioneered this approach to agent construction (more than an
approach to planning itself): Brook's subsumption architectures [Bro86], proposing the

136

rejection of symbolic representation as we explained in the introductory chapter 1, PENGI
[AC90]: Agre and Chapman's attempt to go beyond the limitations of traditional planning
discussed in Chapman's paper [Cha90], Situated Agents [RK95], a rich platform to sys-
tematically generate \reactive agents" and Maes' Agent Network Architectures [Mae91],
another attempt to build exible and reactive entities. All four groups avoid the use of logic as
a representation language. Brooks completely rejects representations, Chapman and Agre are
ambiguous in that respect whereas Rosenschein, Kaelbling and Maes still concede that logic
could be used as an speci�cation language and that their systems could be made sense of in a
logical description. Maes subscribes to the view that \reactive agents can have goals"[Mae91].
Her sets of competence modules to implement an agent, despite having the basic structure of
neural networks, are described in declarative terms.

There have been other important e�orts to integrate a planner with a module for reactive be-
haviour, sometimes under the names of interleaved planning and heuristic planning (See [AC90]
for an overview) and universal planning. George� and Lansky [GL90] proposed PRS (Procedu-
ral Reasoning System), a system that combines a database (for beliefs about the world), a set
of current goals (or desires), a set of procedures (which they call Knowledge Areas), explaining
what to do to achieve the goals, and an interpreter for manipulating all these components.
The system is inspired by the Belief-Desire-Intention paradigm [Bra87] and was used to control
FLAKEY, a robot in a space station scenario. Other systems include IPEM [AIS88], which in-
tegrated partial planning with execution and Poole's logic programs for Robot Control [Poo95].
All these systems rely on some kind of condition! action rules by which inputs are related to
outputs.

6.2.2 Criticism of Reactive Planning

Reactive planning has been analysed by Ginsberg in [Gin89] (who calls it universal planning).
He proves that \even if the compile-time costs of the analysis are ignored, the size of the table
must, in general, grow exponentially with the complexity of the domain". By \the table", he
means the arrangement of input-condition and outputs-actions that the systems must somehow
store to be able to relate every identi�ed situation to an action. If there are n independent,
sensory inputs to be dealt with and a actuators (outputs), then \there are (2a)2

n

distinct
universal plans" (.ibid, proposition 1.2). Thus, it is simply impractical, Ginsberg argues, for
\an agent to precompute its response to every situation in which it might �nd itself" (.ibid).

One must notice that an agent need not be a purely reactive entity. An agent with explicit
goals (or intentions, a closely related concept), can use them, not only to decide what to do
next by computing a plan from an action theory, but also to focus its subsequent sensory and
reasoning processes. Among the triggered actions the agent can have sensory actions that set
particular sensors with particular control parameters.

One must also consider the e�ect on reactivity of a rich but compact knowledge represen-
tation. A theory of action is not just a useful tool for analysis. It can be used to generate
a representation that implicitly captures the same information a \table" of condition-actions
rules would have to make explicit.

Thus, logic is likely to be more critical to the generation of e�cient and e�ective behaviour
than what the defenders of reactivity may have thought, even without considering complex
activities, such as language manipulation, communication and social interaction.

The review above is intented to highlight the critical aspects of automatic planning. In the
following section, we concentrate on the logic programs that de�ned the planning system of
GLORIA-like agents.

137

6.3 The planning programs

The speci�cation of GLORIA's planner is identical to the description of the i�PP given in chap-
ter 3, except for two major modi�cations that are presented in the following subsections. Both
extensions are motivated by practical considerations. However, they bring about fundamental
changes in the way the logic of the whole system must be understood.

6.3.1 A reason to inhibit abduction in OPENLOG programs

In chapter 3 we explained how the i�PP deals with negation. Negative literals in a node are
written as implications with false as a head. Those literals in the body of these implications
are then treated almost as they would if they appeared as positive literals in regular goals. The
only di�erence is that abducibles appearing in the body of the implications are not abduced.
Abduction in the body of an implication should be inhibited. Abducibles in that position
should only be processed by the propagation rule.

We also explained in chapter 3 that this \context dependent inhibition of abduction" is
actually required by the semantics of abductive logic programs for the sake of minimality. In
this section, we take this idea further and propose inhibiting abduction in other contexts than
in the context of negation.

We inhibit abduction \below" (in the proof tree of) the temporal projection predicate holds.
Just like the inhibition \below" a negative literal's proof. This may seem like an ad hoc solution.
It is not. It is true that this extension specializes the proof procedure with respect to a particular
predicate (holds). But this is not a domain speci�c solution. It is to be used in any domain
and in any problem description.

Now, why do we do it? Almost for the same reason that Fung and Kowalski prevent
abduction below negations: to obtain a minimal set of abducibles. Unlike with negations, not
inhibiting below holds may generate correct solutions for the abductive procedure (in the sense
that it may produce a set of actions that achieves a goal.). But it may also generate too many
and too big solutions. Solutions which are incorrect for a planner3 and even worse, totally
unuseful for a reactive planning (where correctness could not be an issue)4.

The fundamental reason to inhibit abduction below holds is that doing so allows us to solve
the problem of over-generation of abducibles (discussed in chapter 4). The gain is that the
system can now distinguish between abduced (hypothetical) information (such as its own plans)
and input information (data that comes from the environment). Notice that the important
feature is that the system distinguishes between the two sources of information but it treats
them identically when it comes to reason about the future with the projection predicate. This
implies, for instance, that the agent equally believes that the wall is white at time t when it
sees its colour before t and does not expect any changes to happen, and when it decides to
paint the wall by itself before t (even though it has not painted it yet i.e. it is just an intention).

The operational details can be clari�ed by the examples in the following section. Before
that, however, let us explain that a very important consequence of inhibiting abduction is that
the behaviour dictated by an OPENLOG program is identical to the behaviour dictated by an
ACTILOG program.

3In general, it could produce actions that cannot be performed because they are out of the agent capabilities.
See the examples in chapter 4 in the discussion about over-generation of abducibles.

4One may be puzzled by solutions that are correct for the proof procedure but not for the planner. The
answer to the puzzle is that, when using the proof. proc. as a planner, one requires a more precise interpretation
for abducibles: \the things that the agent wants to do" as speci�ed by its programs or integrity contraints. In
the general case, they are \the things that may happen" as predicted by the theory of actions. See the discussion
about over-generation of abducibles (chapter 4)

138

6.3.2 Making OPENLOG equivalent to ACTILOG

The examples in this section are a con�rmation of our initial conjecture that procedural knowl-
edge could be added to an agent as OPENLOG procedures or as ACTILOG rules. From now
on, only e�ciency matters will have to be considered when one chooses between the languages.

As explained in [KS97], this also means that one can write logical procedures with embedded
condition-action rules. An if .. then construct in OPENLOG can now be understood as a
production rule. To illustrate this, consider the following examples5:

Example 6.3.1 Consider the abductive logic program:

h(P,T) :-

do(A,T2), T2 lt T, init(A, T2, P), persists(T2, P, T).

init(a1, _, p).

Tq le T2 :- T1 eq T2.

Tq le T2 :- T1 lt T2.

abd(do).

abd(persist).

in which do and persists are declared as abducibles and no predicate has been marked for
inhibition of abduction.

When the logic program above is queried with:

G � do(a1; 1) ^ (do(a2; T) h(p; T))
^ (9T2 (T lt T2 ^ persists(T; P; T2) do(A; T) ^ init(A; T; P)))
^ (false persists(T1; P; T3) ^ do(A; T) ^ term(A; T; P)

^ T1 le T ^ T lt T3))

the answer generated by the prover is (Recall that le and lt are � and <, for the prover and
that variables only in implications are implicitly universally quanti�ed):

Node 1

% Delta[1] = { do(a1, 1), 1 lt G17484, persist(1, p, G17484),

do(a2, G17484), };

% UC[1] = { };

% CN[1] = { ... }

% HF[1] = { [] }

where T2 = G17484 (For simplicity, we omit the content of CN).

Example 6.3.2 Now, consider the program:

h(P,T) :-

do(A,T2), T2 lt T, init(A, T2, P), persists(T2, P, T).

5The notation is as in chapter 3: Delta[i] refers to the set of abducibles in node i, UC[i], to the unconditional
goals still to be processed, CN[i] to the implications in the node, and HF[i] is the history of factoring of the
node.

139

init(a1, _, p).

done(T) :- h(p,T), do(a2,T).

Tq le T2 :- T1 eq T2.

Tq le T2 :- T1 lt T2.

abd(do).

abd(persist).

for_testing_only(h(_,_)).

in which again do and persists are declared as abducibles and the system has been set up (with
for testing only(h(;)) to inhibit abduction below h(P; T), the answer to the query:

G � do(a1; 1)^ done(Ts)
^ (9 T2 (T lt T2 ^ persists(T; P; T2) do(A; T) ^ init(A; T; P)))
^ (false persists(T1; P; T3) ^ do(A; T) ^ term(A; T; P)

^ T1 le T ^ T lt T3)

is:

Node 1

% Delta[1] = { do(a1, 1), 1 lt G8340, persist(1, p, G8340),

do(a2, G8340), };

% UC[1] = { };

% CN[1] = { .. } ;

% HF[1] = { [] }

Node 2

% Delta[2] = { do(a1, 1), 1 lt G8340, persist(1, p, G8340), };

% UC[2] = {

t :: (1 lt G20984, init(a1, 1, p), persist(1, p, G20984),

true), p :: (do(a2, G20984), true), };

% CN[2] = { .. } ;

% HF[2] = { [G20984 eq G8340] }

Node 3

% Delta[3] = { do(a1, 1), 1 lt G8340, persist(1, p, G8340), };

% UC[3] = {

t :: (do(G20988, G20992), G20992 lt G20984,

init(G20988, G20992, p), persist(G20992, p, G20984),

true), p :: (do(a2, G20984), true), };

% CN[3] = { .. } ;

% HF[3] = { [G20988 eq a1,G20992 eq 1] }

140

In examples 6.3.1 and 6.3.2, the proof procedure produces essentially the same answer6 to
di�erent queries. In example 6.3.1, the \dependency" of do(a2; T) on h(p; T) is expressed as an
integrity constraint. In example 6.3.2, the same dependency is made part of the structure of
the predicate done. In both cases (and using the planning interpretation) the execution of the
action a2 at time T is subject to h(p; T).

Notice that the de�nition of done in the abductive logic program above could be obtained
by partially evaluating [Hog90] the following OPENLOG program (using the de�nition of done
in table 4.2, chapter 4):

proc goal begin

if p then a2

end

whereas the integrity contraint would be written in ACTILOG as:

if p at T then a2 at T

6.3.3 Inhibition of abduction and reactivity

In this section we illustrate with an example the relationship between inhibition of abduction
and reactive planning. In this mode of planning, the basic strategy is to check the state of the
environment and to take action as soon as possible. The action should, of course, be within the
capabilities of the agent. To illustrate these ideas, consider the scenario in �gure 6.1:

An agent is presented with the challenge of climbing a mountain of blocks. The agent can
climbing one block at a time provided, of course, that the block is there. The planning problem
is then to decide which blocks to climb onto and in which order. An OPENLOG procedure to
guide this planning could be:

proc climb

begin

if infront(A) and currentlevel(C)

and A is_higher_than C then

begin

step_on(A) ; climb

end

end

So, given the scenario in �gure 6.1 a), the agent will try to generate the alternative plans
do(step on(a); 1) ^ do(step on(c); 2) and do(step on(b); 1) ^ do(step on(c); 2). Whereas in
�gure 6.1 b) the only possible plan is do(step on(b); 1) ^ do(step on(c); 2), because the block
a is not there (or because the agent cannot see it).

Notice that the agent may know about actions that initiate infront(a) (such as, say,
put block in front(a)). It could therefore schedule one of these actions before attempting
the climbing, even if the agent is not physically capable of executing it. This is exactly what
the bf i�PP will do without inhibition of abduction. With the inhibited version, on the other
hand, we can express the fact that at that stage, the agent is just interested in testing whether
infront(A) actually holds. If the programmer decides that the agent must build the mountain
to climb, then she/he will have to write for the "climber-builder" agent a program such as this:

6Up to factoring, the three nodes in example 6.3.2 are equivalent. In nodes 2 and 3 factoring cannot be
applied again on the next abducible (< and do respectively). Neither can one abduce those abducibles because
the context is to \inhibit" abduction (the \t ::" at the head of the conjunction) as explained in the following
section.

141

ba

c

a)

b)

b

c

Figure 6.1: A World Block scenario for reactive planning

142

proc climb

begin

if infront(A) and currentlevel(C)

and A is_higher_than C then

begin

step_on(A) ; climb

end

else

if available(A) and not infront(A) then

put_block_in_front(A) ; climb

end

In this second program, when the agent has not block in front (so that the �rst test fails)
and there is some block available in the neighbourdhood, then the agent will indeed schedule
(abduce) the action put block in front(A) for execution (i.e. assuming that action is a primitive
action).

It is worth noting that, with inhibited abduction, the agent can be seen as interleaving the
\testing" of properties with the \planning" of actions. This testing is program-driven, i.e. the
programs and the goals establish when the system will be testing and when will be planning.
Moreover, notice that the \testing" is not restricted to the current state of the world. Previously
planned actions can be used to establish that some property holds at a certain point in a plan.
So, for instance, the climbing agent above will be able to deduce, if it has time to think about
it, that after do(a; 1), infront(c) will hold.

6.3.4 How is the inhibition of abduction achieved?

Inhibition is achieved by maintaining an explicit identi�er for the context of each unprocessed
literal in the node. Every conjunct in UC and CN has a context label stating whether
abduction is allowed or not. A structure p :: C (where p is for planning) indicates that
abduction is allowed on literals in C or obtained (by the inference rules) from C. A structure
t :: C (where t comes from testing) indicates the abduction is inhibited and therefore the
system must refrain from abducing any literal in C or derived from C by the inference rules
(that is, these literals are just for \testing")7.

Notice that implications in CN also require these context labels. This is because goals
\activated" by the processing of the implications, may eventually generate abducibles.

Although the use of context labels may seem to be just a convenient procedural device, there
is evidence that they are required to capture human-like reasoning capabilities. Gabbay, for
instance, has based a comprehensive logical system (See [Gab93] and the literature in labelled
deductive systems), which can be used to derived many well known logical systems (including
nonmonotonic logics), on the manipulation of labels very similar to the context labels above.

It is worth noting, however, that \contexts" need not be restricted to \labels". Extra-
logical information (as we explained in chapter 5) can improve the planner's e�ectiveness and
can be made available as \contextual" information. The pedigree of the goals8, which McCarthy
suggested [McC95] would be important for an intelligent agent, could be part of the contexts.
In particular, the elevator controller using only ACTILOG rules (as in chapter 5), could use
\context labels" to indicate the overall purpose (implicit goal) of each ACTILOG unit (set of
integrity contraints) and to permit resolution of conicts between activated goals.

7The examples in the previous section only show structure t :: C. This means that abduction is not performed
on literals in C.

8A record that permits to know where each goal comes from.

143

All these possibilities suggest that the use of context labels could be bene�cial for the
implementation of e�ective agents. In this thesis we restrict ourselves to the type of labels
mentioned above. These labels establish a distinction between planning and testing.

We explain below, as part of the description of the algorithm, how the inference rules
preserve contexts within a single derivation, except for the new rule that set them.

6.3.5 The Planning algorithms

Tables 6.1, 6.2 and 6.3 contain the new version of tables 3.2 and 3.5 (in chapter 3) with the
adaptations for planning9.

The �rst extension in both tables is the use of a new data structure for UC and CN , to
accommodate context labels. So, UC and CN are now conjunctions of structures Context :: C.
In UC, C is a conjunction of literals as before. In CN , C is an implication. The :: is, clearly,
the operator that relates contexts to formulae. Among the procedures in those tables, the only
one that changes its structure is demo abd.

The new clauses are:

� [DMAB-TES] sets the context for an atom G whose predicate has been declared as
for testing only. The clause simple creates a new structure (test :: G) (or (t :: G) for
simplicity). Any structure obtained from this will copy its context. Observe that the
planner can switch goals from the planning context to the testing context, but not the
other way around.

� [DMAB-WHT] This clause processes those abducibles that cannot be factored (because
they were factored before) and cannot be abduced either (because their context is \test-
ing"). We are being ambiguous about what to do with nodes containing this combination.
In principle, any such node should be dropped because when factoring fails, this means
that the testing has failed and this node does not contain a feasible plan. However, notice
that factoring fails with those abducibles currently in �. As the content of � is constantly
changing in an open architecture (by assimilation of inputs), this implies that factoring
could succeed in the future and, therefore, the node should be preserved from further
attempts with the factoring rules. On the other hand, keeping these nodes in the frontier
introduces loops (factoring will be tried over and over again). The best one can do is
to schedule those attempts at factoring after other nodes (alternative plans) have been
explored. In GLORIA, this could be achieved by reordering the frontier and putting the
failing node at the back of the frontier. This makes sense in terms of behaviour as well. If
a test fails, one should not try it again immediately afterwards, especially when one has
alternative courses of action.

In all the other rules of inference, the context of a node is simply copied into any node
obtained from it.

The extensions described in this section account for the mechanism to inhibit abduction.
However, as we said above, this is not the only adaptation required by i�PP to become an e�-
cient planner. The following section describes the mechanism to deal with time-point orderings
in such a way that the planner computes orderings just when it is necessary.

6.3.6 Dealing with time and time orderings

As we explained at the end of chapter 3, inequalities (< atoms) are treated specially by the
version of i�PP described in this thesis. This extends the original i� speci�cation which only

9We use identical notation. Recall the use of ^i, where i indicates the level of \nesting" of the ^ operator.

144

DEMO abd0 : The abductive procedure for planning
demo abd(KB; InGoals;OutGoals;R)
 InGoals � FirstNode _AltGoals
^1 FirstNode = (�; (Cont :: (G ^Rest)) ^ RUC;CN;HF;M)
^1 ((G = :G0

^2 NewCN = (Cont :: (false G0); fg) ^CN
^2 NewNode= (�;Rest;NewCN;HF;M)
^2 NextGoals = (NewNode_AltGoals)
^2 demo impl(KB;NextGoals;OutGoals;R� 1) [DMAB�NEG]
_2 (G 6= :G0

^2 ((unfoldable(G)
^3 definition(KB;G;D)
^3 NewNode = (�; (Cont :: (D ^Rest))

^RUC;CN;HF;M)
^3 NextGoals � NewNode_ AltGoals
^3 useful ord(NextGoals;OrdGoals; Ruse)
^3 Ruse < kuse

^3 NextGoals = OrdGoals) [DMAB�UNF]
_3
((equality(G) _4 inequality(G))
^3 �0 = G ^�
^3 NewNode = (�0; (Cont :: Rest) ^RUC;CN;HF;M)
^3 NextGoals = (NewNode_ AltGoals)) [DMAB�EQU]
_3
(for testing only(G) ^3 Cont 6= test

^3 NewNode = (�0; (test :: G)^
(Cont :: Rest) ^RUC; CN;HF;M)

^3 NextGoals = (NewNode_ AltGoals)) [DMAB�TES]
: : :

Table 6.1: The abductive procedure adapted for reactive planning (Part 1)

145

DEMO abd0 : The abductive procedure for planning
: : :

_3
(abducible(G)
^3 factorable(�;G;HF)
^3 factoring(InGoals;NextGoals)) [DMAB� FAC]
_3
(abducible(G)
^3 :factorable(�;G;HF) ^3 Cont = plan

^3 �0 = G ^�
^3 NewNode= (�0; (Cont :: Rest); CN;HF)
^3 NextGoals = (NewNode_AltGoals))) [DMAB�ABD]
_3
(abducible(G)
^3 :factorable(�;G;HF) ^3 Cont = test

^3 NewNode= (�; (Cont :: Rest); CN;HF)
^3 what to do(NewNode;AltGoals;NextGoals))) [DMAB�WHT]

^2 (demo(KB;NextGoals;OutGoals;R� 1))))
_1 (:rule apply to uc(FirstNode)

^2 demo impl(KB; InGoals;OutGoals;R)) [DMAB �NRA]

Table 6.2: The abductive procedure adapted for reactive planning (Part 2)

treats = specially. By, \specially" we mean that, although all these predicates are regarded
as abducibles by the semantic framework, the proof procedure does not give them the same
treatment that it does to other abducibles (such as do, in our representations).

Nevertheless, we still have to put knowledge about < somewhere in the system. The tran-
sitivity axiom (X < Y X < Z ^ Z < Y) and the anti-symmetry axiom (false X <
Y ^ Y < X) are essential for a planner. As < has been declared an abducible, the �rst al-
ternative is to add these axioms as integrity contraints. However, there is another alternative
that allows a careful \�ne-tunning" of what should be deduced about <, given what the agent
knows and is \ assuming" in its plans. The alternative is: to write meta-rules to process partially
instantiated inequalities. Thus, the system will, on the one hand reason about the ordering of
time-points whose value is unknown, and on the other, avoid commitments to orderings that
are not explicitly required by the plans.

The solution is in the spirit of writing PRIORLOG and USELOG rules to focus the work
of the prover. It is also similar to regarding the < predicate as a \built-in" predicate that need
no de�nition (as explored in [Wet97]).

6.3.6.1 Computing: X < Y in �

The key element to resolve partially instantiated inequalities is a procedure to decide whether
it can be proved that X < Y (where X or Y or both are variables), using what the agent already
knows about X and Y . What the agent knows about variables X and Y , appearing in < atoms,
can come only from other assumptions (abducibles) in the node. The program in �gure 6.2
refers to � (the set of abducibles) to decide whether some inequality can be assumed to hold.
This program can be explained as follows:

146

DEMO ONE IMPL : adding context
demo one impl(KB;ExQV ars;�; InImp;OutImps)
 (noimp(InImps) ^1 empty(OutImps)) [DMON�BAS1]
_1 (:rule apply imp(InImp) [DMON�BAS2]
_1 (InImp � (Cont :: (H (G ^Rest);HP))
^1 (((equality(G) _3 inequality(G))
^2 ((process equalities(ExQV ars; InImp;NewImp)
^3 demo one impl(ExQV ars;�; NewImp;OutImps))
_3 (:process equalities(ExQV ars; InImp;NewImp)
^3 OutImps = (NewImp)))) [DMON�EQU]

_2 (G = :G0

^2 H
0 = (H _G0)

^2 NewImp = (Cont :: (H 0 Rest;HP))
^2 demo one impl(ExQV ars;�;NewImp;OutImps)) [DMON�NEG]
_2 (unfoldable(G)
^2 definition(KB;G;D)
^2 OutImps � (Cont :: (H (D ^Rest);HP)) [DMON�UNF]
_2 (abducible(G)
^2 propagation(�; InImp;OutImps))))) [DMON�ABD]

rule apply imp(Imp)
 Imp � (Cont :: (H (G ^Rest);HP))
^1 (equality(G) _2 inequality(G)
_2 unfoldable(G) _2 G = :G0

_2 (abducible(G) ^2 can propagate(�; G;HP)) [NRA� IMP]

Table 6.3: Processing implications with contexts

147

before(X;Y;�) contains V ar(X;�)
^ contains V ar(Y;�)
^ :(X == Y)
^ rbefore(X;Y;�) [BEFORE0]

before(X;Y;�) ground(X) ^ contains V ar(Y;�)
^ (Z lt W) 2 � ^ ground(Z)
^ X < Z
^ (before(W;Y;�) _W == Y) [BEFORE1]

before(X;Y;�) ground(Y) ^ contains V ar(X;�)
^ (Z lt W) 2 � ^ ground(W)
^ W < Y
^ (before(X;Z;�) _X == Z) [BEFORE2]

rbefore(X;Y;�) (strictly in(X lt Y;�)
_ strictly in(do(; X; Y);�)) [RBEF01]

rbefore(X;Y;�) :(strictly in(X lt Y;�)
_ strictly in(do(; X; Y);�))
^ precedes(X;Z;�); rbefore(Z; Y;�) [RBEF02]

precedes(X;Z; (A;)) (A = (X1 lt Z)
_ A = do(;X1; Z))
^ X == X1 ^ :(X == Z) [PRECE01]

precedes(X;Z; (A;Rest)) :(A = (X1 lt Z)
_ A = do(;X1; Z))
^ precedes(X;Z;Rest) [PRECE02]

Figure 6.2: The predicate before.

148

[BEFORE0] : : : [BEFORE2]. These clauses check that the terms involved in the inequality are either
variables about which something is known (i.e. variables in �) or ground terms. X and Y
cannot both be ground terms (that case is dealt with by the rewriting rules in chapter 3).
The condition :X == Y ensures that X and Y are not the same variable, as required by
the anti-symmetry axiom for <. The predicate == is the meta-level equivalent of = and
refers to syntactic equality (Two variables are the same if their identi�er is the same).

[RBEF01] establishes thatX is before (or equal to) Y whenever one of the following expressions is in
�: X lt Y (recall that lt is the encoding of < for the proof procedure) or do(; X; Y). The
relation strictly in ascertains that its �rst argument is contained by its second argument.
Observe that together with the usual understanding of the inequalities one can exploit
the fact that in do(; X; Y), X can only be less than Y .

[RBEF02] implements the transitivity rule for < and � (both at once for simplicity), by appealing
to the predicate precedes.

[PRECE01] : : : [PRECE02]. Declaratively, the predicate de�ned by these clauses has the same
reading as rbefore. One would write rbefore instead of precedes in the speci�cation.
However, we want to emphasize an important implementation detail: strictly in can be
used only to test whether X < Y is in �. In precedes, there is a mechanism to generate
a Z such that X < Z is in � (the same applies to do(; X; Z), of course).

6.3.6.2 Using before(X;Y;�)

The program before is used by the planner to simulate the factoring rule and the propagation
rule with partially instantiated inequalities, as explained below:

� factoring of inequalities is an auxiliary inference rule that should be added to demo abd.
Whenever the system �nds a goal G which is a partially instantiated inequality A < B,
the prover tests whether before(B;A;�) is the case for the node under analysis. If it is
so, the node must be dropped because it contains a contradiction. If it is not so, � is
updated with A < B.

The fragment of program in �g 6.3.6.2 should replace [DMAB-EQU] in demo abd (ta-
ble 6.1).

� propagation of inequalities is another auxiliary procedure which must be attached to
demo one impl. Whenever the system �nds a partially instantiated inequality (ground
atoms are dealt with by the rewrite rules) A < B in the body of an implication I, it tests
whether it is the case that before(A;B;�) for the node that contains the implication. It
also tests whether A < B has not been tried for propagation before. If both conditions
hold, a new implication I0, identical to I but without A < B, will replace I in that nodes'
CN .

All the logic programs described in chapter 3 and in this chapter have been implemented in
PROLOG. We have used this implementation to perform some experiments with the benchmark
example: the elevator controller. Those experiments and the testbed for the elevator controller
are the subjects of the rest of the chapter.

149

: : :
_3
((equality(G) _4 (inequality(G) ^4 ground(G)))
^3 �

0 = G ^�
^3 NewNode = (�0; (Cont :: Rest) ^RUC;CN;HF;M)
^3 NextGoals = (NewNode _AltGoals)) [DMAB�EQ1]
_3
((inequality(G) ^3 :ground(G))
^3 G = (A < B)
^3 :before(B;A;�)
^3 �

0 = G ^�
^3 NewNode = (�0; (Cont :: Rest) ^RUC;CN;HF;M)
^3 NextGoals = (NewNode _AltGoals)) [DMAB� IQ1]
_3
((inequality(G) ^3 :ground(G))
^3 G = (A < B)
^3 before(B;A;�)
^3 NextGoals = AltGoals)) [DMAB� IQ2]

: : :

Figure 6.3: Factoring of inequalities

6.4 GLORIA implemented

6.4.1 The elevator testbed

The elevator testbed is a PROLOG process that interacts with users of a certain interface
program, over a network. The PROLOG process and all the others could run on the same
machine, but in general they are distributed over the Internet.

The elevator itself is simulated by the PROLOG process that runs GLORIA's cycle. The
cycle predicate, in turn, uses the implementation of the proof procedure embodied by demo
and demo impl. These procedures operate on a simpli�ed version of the OPENLOG code and
ACTILOG rules described in chapters 4 and 5. This simpli�ed version of the elevator program
is shown in �gure 6.4.

The program is �gure 6.4 correspond to the OPENLOG program in �gure 4.2 in page 101,
chapter 4. For simplicity we have excluded the actions open and close that form part of the
speci�cation. The action turnoff is enough is illustrate the interaction agent-environment.

This program is activated by means of the integrity constraint:

8N 8T1 9T2 9Tf (T1 < T2 ^ serve(N; T2; T f) on(N; T1) (6.1)

The testbed also includes PRIORLOG rules to guide the selection of goals for further pro-
cessing. A compiled version (not shown) of the PRIORLOG rules in �gure 5.3 (in chapter 5)
was used, to program the elevator to behave according to policy 3, but giving a higher priority
to serving oors whose buttons are found to be \on" when the elevator is passing by those
oors.

For the user interface, we have used the World Wide Web standard platform. Each user
interacts with a Web Browser which displays a WWW input-form, that acts as the elevator's
calling panel. The panel is an array of buttons. By pressing one of these buttons, the user

150

serve(N, T1, T2) :-

currentfloor(N, T1),

do(turnoff(N), T1, T2).

serve(N, T1, T2) :-

currentfloor(M, T1), M lt N, Nx is M + 1, do(up(Nx), T1, Tf),

Tf lt T3,

serve(N, T3, T2).

serve(N, T1, T2) :-

currentfloor(M, T1), N lt M, Nx is M - 1, do(down(Nx), T1, Tf),

Tf lt T3,

serve(N, T3, T2).

currentfloor(M, T) :-

at(M, Te), Te lt T, not move(Te, M, T).

currentfloor(M, T) :-

do(up(M), _, Te), Te lt T, not move(Te, M, T).

currentfloor(M, T) :-

do(down(M), _, Te), Te lt T, not move(Te, M, T).

move(T1, M, T2) :-

do(up(N), _, T), T1 le T, T lt T2, not M eq N.

move(T1, M, T2) :-

do(down(N), _, T), T1 le T, T lt T2, not M eq N.

X le Y :- X lt Y.

X le Y :- X eq Y.

abd(do).

abd(on).

abd(at).

for_testing_only(currentfloor(_,_)).

Figure 6.4: A compiled version of an OPENLOG program

151

orders the elevator to go to the oor indicated by the button. We make no attempt to simulate
the user going or being inside the elevator. The \world" is represented by two �les: which,
containing a list of atoms on(F), one for each oor on which the elevator's button is \on"; the
other �le is where, which contains a record, at(F), of where the elevator currently is. The state
of the world is presented to the user via the browser. On the browser's interface the user can
see a diagram of the building and the current position of the elevator. The world is updated
by the user (by pressing buttons) and by GLORIA, which disconnects the buttons and moves
the elevator.

To guarantee proper access to the world's �les, the PROLOG system and the Web platform
have been extended with a library of semaphores for mutual exclusion. We gratefully acknowl-
edge the use of the PiLLoW library [HC96] to create and manipulate the Web interface with
PROLOG programs.

The elevator achieves its goal of serving some oor when it disconnects the \ON" button at
that oor Then, the elevator switches the button to \o�" (or \Served") as shown in the �gures
below.

The testbed is, we believe, a faithful simpli�cation of an elevator that allows one to focus
on the interaction between a planning agent and a constantly changing environment.

6.4.2 Practical considerations in GLORIA's implementation

\Let the world be its own model"[Bro91b], one of the ideas advanced by the reactive approach,
summarizes some of the simpli�cations of the architecture that we made to implement the
testbed.

GLORIA's speci�cation states that the agent records its inputs at every cycle and time-
stamps them with the \current time". However, to maintain a history of all its past inputs is
unnecessary for the elevator controller. It only serves to overload the planner with unuseful
information. As every button stays \ON" from the moment it is pressed until it is disconnected
(by the elevator itself), the buttons themselves can \store" their state. One only needs to make
sure that every input has a chance to trigger the corresponding conditions of the implications.
Recall that one can specify the amount of resources the system will allocate to reason in each
cycle. The parameter R of demo is used with that purpose. With an appropriate value for R,
one can ensure that the agent will process all the integrity constraints, including those which
allow the observations to activate new serving goals.

Notice that if one stores more than one snapshot of the environment (for instance, a sequence
like on(1; 1); : : :on(1; 4) which records that the signal has been on at oor 1 between time-points
1 and 4, both inclusive), then one has to write a more complex speci�cation of the activating
integrity constraint (expression 6.1 above) to prevent a particular goal from being activated
more than necessary.

Similar considerations apply to the records of failing and successful actions (also prescribed
by the speci�cation). When an action succeeds, one must record the value of the starting and
�nishing time of the action which will possibly instantiate arguments and constraints for sub-
sequent actions in the same plan. This should be done for every plan containing the succeeding
action. It is a sort of \factoring" between the particular instance of the action that succeeds
and the action speci�cation originally in the plan. For instance:

Example 6.4.1 If the plan that the executive receives is: P = do(a1; T)^RemActions and the
agent succeeds with do(a1; 0), then the plan will be changed to do(a1; T)^T = 0^ RemActions.

But when an action fails, the elevator controller drops the node (instead of simply recording
the negation of the action and waiting for the proof procedure to verify that the node is

152

equivalent to false). This is not the logical thing to do, however, as what has failed is a
particular attempt to perform that action (at a particular time) and the node should be kept
in the frontier to allow new attempts for that action-type at other times.

We compensate for (correct) the drop-the-failing-node strategy, by restoring the frontier to
the initial state (one node with the integrity constraint above) whenever it becomes empty
because all the nodes have been dropped (which will eventually happen if the actions keep
failing). This clear-the-house strategy is a sort of replanning strategy that seemed (in our
experiments) to help the system to maintain the size of the frontier of goals at a minimum.
This, however, requires further investigation.

This type of cleaning-procedure is required because the constant addition of input data and
records of successful and failing actions is very ine�cient without a mechanism to \forget" them
or to prevent them from being considered again by the prover. One can keep extending the
histories of propagation and factoring, but these cannot grow forever 10

In the testbed, the system is \cleaned" (the inputs and all the nodes in the frontier are
erased except the �rst) whenever the �rst node in the frontier is empty. A node is considered
empty when there are no actions in � and no more subgoals to process in UC. Notice that this
means that, once a goal is achieved (a full plan is completely executed), the agent forgets the
alternatives plans to achieve the same goal.

This, however, is not enough. The frontier and the nodes' CN may grow too big before
all the goals can be achieved and the �rst node is emptied. This is especially the case with
the elevator, where a continuous ow of users can keep the system permanently activating new
goals. One needs a more frequent garbage collection to delete from CN those implications
(derived by propagation and case analysis) which are not required anymore. However, one
cannot simply restore CN to the initial set of integrity constraints.

Our general (working) criterion is to delete those implications that are not integrity con-
straints and that contain no variable appearing in � or UC. These are the implications that
are not restricting the values of any variable in any plan.

Another more informed criterion that we can envisage is to delete the \clipped" constraints
(those derived from the \clipped" clauses [EC21] and [EC22], for instance.) which cannot be
applied because the time-points involved are already in the past11.

Further research is required to de�ne the logical form of this operation which may well
coincide with rules of inference in other proof procedures.

Another implementation detail is the fact that the agent uses implications (integrity con-
straints) in which there is at least one abducible atom. That is, the implications that really
matter for the agent are those that connect inputs (modelled as abducible atoms) to goals that
must be activated and reduced to plans. If the programmer writes (in ACTILOG) an integrity
constraint that does not have abducibles in its body, the prover will reduce it to an implication
with abducibles. This last implication will be kept and used to activate goals. This is important
because it is the last implication that has to be restored to CN whenever the node is \cleaned".

There is a methodological lesson to be learnt from these details of implementation. When
one programmes an agent like GLORIA, one chooses the integrity contraints that the agent
must satisfy. Then, using the prover (demo), one derives implications such as the one just
described, linking the inputs to the goals. For instance:

Example 6.4.2 One would write:

10This of course is a practical consideration. In logical terms they could be seen as growing forever. But the
agent has a �nite memory. There exist proof procedures (e.g. The connection graph proof procedure [Kow79b],
chapter 8) that instead of adding to the (equivalent of our) histories deleted \links" to the clauses and atoms
as they are used. More research is required to see if those techniques can be used to solve this problem.

11For instance, if the planner has false clipped(0; on(2);3) and the cycle's counter says that current time
(T) is 4.

153

9T2 9Tf T < T2 ^ serve(N; T2 ; Tf) holds(on(N); T) (6.2)

and the system will reduce it to:

9T29Tf T < T2 ^ serve(N; T2 ; Tf)
 do(A; T1) ^ T1 < T
^ initiates(A; T; P) ^ :clipped(T1; P; T) [DO]

9T29Tf T < T2 ^ serve(N; T2 ; Tf)
 obs(P; T1) ^ T1 < T
^ :clipped(T1; P; T) [OBS]

What the example illustrates is a form of \partial evaluation"[Hog90] in which the system
stops compiling when it reaches an abducible. [DO] and [OBS] above are the implications that
the system will maintain permanently to assimilate inputs and activate the serve goals. In
addition, of course, the system must also maintain a permanent set of OPENLOG programs
(such as the one in �gure 6.4) to guide the unfolding of serve(N; T2 ; Tf) into the atomic actions
that constitute the plans.

Thus, an agent like GLORIA is a compromise between partially evaluated and runtime-
interpreted rules of behaviour.

Traces of the execution of the simulated elevator are presented, with comments, in the
appendix A.5, page 172.

6.5 Conclusion

In this chapter we briey reviewed the history of research in automatic planning. The history
shows how the focus has moved from general purpose, disembodied planners, to reactive agents
which achieve their functionality by interacting with their environment.

After the review, we presented the extensions to the logic programs in chapter 3 that trans-
form the i�PP into a planner. This planner is an anytime algorithm that can be embedded in
the reactive architecture and interleaved with the observing and execution mechanisms.

We then discussed the testbed that has been implemented to simulate an agent in a bench-
mark context: the elevator.

While presenting the planner, we also described the mechanism for inhibition of abduction,
which, we showed, when used by the planner, can render OPENLOG programs and ACTILOG
rules equivalent. This basically means that the two ways of programming an agent, with
integrity contraints and with de�nitions, are equivalent in the sense that they generate the
same behaviour in the agent. It also means that implications can be embedded in the de�nition
to yield a more general language for logic programming.

Thus, the agent with a planning mechanism as describe in this pages, can move smoothly
from being a \purely reactive" agent, that simple checks the environment to decide what to do
immediately after, to a more \deliberate" agent, capable of reasoning about its non-immediate
future. We still have to answer important questions such as whether the system will be able
to guide the behaviour of agents engaged in communications and cooperative problem solving.
Also, alternative strategies to store and manipulate goals and inputs should be explored. In
theory, however, the logic programs presented in this and the previous chapters, already provide
a systematic way of relating reactivity with rational behaviour within an intelligent agent.

154

Chapter 7

Conclusions

In this thesis we designed a language to describe agents. The language is essentially a logic
programming language supplemented with semantics abstractions such as processes, events,
uents, goals, plans and beliefs.

In the introductory chapter 1 we analysed the basic concepts in theories of agents and
explained the crucial role that reactivity plays in realistic accounts of agency. We also explained
how a logical language expressive enough to be its own meta-language, could be used to formalize
another critical notion in agency, namely resource-bounded reasoning.

In chapter 2 we showed how a logic program could be used to formalize (and implement) a
process. We also showed how a process so formalized, could model the interleaving of sensing,
(bounded) reasoning and acting, essential for an agent that is both reactive and rational.

In chapter 3 we presented the speci�cation and implementation of the abductive proof
procedure i�PP. The logic program implementing the proof procedure constitutes an any-time
algorithm. The proof procedure can, therefore, be used as the reasoning mechanism of an agent
with bounded resources for computation.

In chapter 4 we presented the logic programming language OPENLOG by which procedural
knowledge can be embedded into an agent. We based the language on a theory of actions that
support the descriptions of dynamic universes with changing uents, event concurrency and
synergistic e�ects.

In chapter 5 we presented three more logic programming languages ACTILOG, PRIORLOG
and USELOG. The �rst can be used to write instructions for \activation of goals" and integrity
constraints for the agent. The second and the third languages allow a programmer to embed
heuristics about the priority and utility of goals and plans. These heuristics could guide the
system to be more e�cient in the reduction of goals to actions to be executed by the agent.
Noticeably, the languages presented in these last two chapters are \syntactic sugar" for subsets
of �rst order logic.

In chapter 6, we adapted the proof procedure described in chapter 3 to use it as the planner
engine of the agent. The adaptation contemplates a set of techniques to support an e�ciency
implementation and to allow the agent to behave as a reactive agent. We also referred to
some experiments with an implementation of the agent to simulate an elevator controller. The
experiments illustrate the openness, reactivity and goal-oriented behaviour that this agent can
achieve.

It is enticing to see developments in areas of AI (such as robotics) coinciding with develop-
ments in logic oriented towards more practical and expressive languages. It seems as if logic
does not have to be synonymous with static, over-simpli�ed or impractical descriptions of the
world.

155

Bibliography

[AC90] P.E. Agre and D. Chapman. What are plans for? In Pattie Maes, editor, Designing
Autonomous agents: theory and practice from biology and engineering and back,
pages 17{34. Elsevier Science Publishers B.V., Amsterdam, Netherlands, �rst mit
press edition, 1990.

[AF94] James Allen and George Ferguson. Actions and events in interval temporal logic. J.
of Logic and Computation, 4(5), 1994.

[AH87] J.F. Allen and P. Hayes. Moments and points in an interval-based temporal logic. Tr
180, Departments of Computer Science and Philosophy. The University of Rochester,
Deparment of AI, 1987.

[AIS88] J. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring.
In AAAI 1988 Proceedings, 1988.

[AK90] James Allen and Johannes Koomen. Planning using a temporal world model. In
James Allen, James Hendler, and Austin Tate, editors, Readings in Planning, pages
559{565.Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990. Originally
in Proceedings of IJCAI-83.

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832{842, 1983.

[All84] James Allen. Towards a general theory of action and time. Arti�cial Intelligence,
23:123{154, 1984.

[All87] Newell Allen. Uni�ed Theories of Cognition. Harvard University Press, 5 edition,
1987.

[All91] James F. Allen. Temporal reasoning and planning. In J. F. Allen, H. Kautz,
R. Pelavin, and J. Tenenberg, editors, Reasoning About Plans. Morgan Kau�mann
Publishers, Inc., San Mateo, California, 1991. ISBN 1-55860-137-6.

[Bak91] Andrew .B. Baker. Nonmonotonic reasoning in the framework of the situation cal-
culus. Arti�cial Intelligence, 49:5{23, 1991.

[BK82] K. Bowen and R.A. Kowalski. Amalgamating language and metalanguage in logic
programming. In K.L. Clark and S-A. Tarnl�und, editors, Logic Programming, pages
153{172. Academic Press, 1982.

[BK96] Anthony Bonner and Michael Kifer. Concurrency and communication in transaction
logic. In Dino Pedreschi and Carlo Zaniolo, editors, International Workshop on Logic
In Databases. Area di Ricerca di Pisa del CNR, S. Miniato, Pisa. Italy, July 1996.

156

[Bra87] Michael Bratman. Intention, Plans and Practical Reasoning. Harvard University
Press, Cambridge, Massachusetts and London, England, 1987.

[Bro85] Lee Brownston. Programming expert systems in OPS5. Addison-Wesley Inc., USA,
1985.

[Bro86] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, pages 14{23, 1986.

[Bro91a] Rodney Brooks. Intelligence without representation. Arti�cial Intelligence, pages
139{159, 1991.

[Bro91b] Rodney A. Brooks. Intelligence without reason. In Proceedings of the 12th Joint
Conference on Arti�cial Intelligence, Sydney, Australia, August 1991. IJCAI Inc.

[CDT91] L. Console, T.. Dupre, and P. Torasso. On the relationship between abduction and
deduction. Journal of Logic and Computation, 2(5):661{690, 1991.

[Cha90] David Chapman. Planning for conjunctive goals. In James Allen, James Hendler,
and Austin Tate, editors, Readings in Planning, pages 537{558. Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1990. (First appeared in 1987).

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minder, editors, Logic and
Databases, pages 293{322. Plenum Press, New York, 1978.

[CM85] E. Charniak and D. McDermott. Introduction to Arti�cial Intelligence. Addison-
Wesley, Menlo Park, CA, 1985.

[CT91] K. Currie and A. Tate. O-plan: The open planning architecture. Arti�cial Intelli-
gence, 52:49{86, 1991.

[Dav67] Donald Davidson. The logical form of action sentences. In Nicolas Rescher, editor,
Logic of Decision and Action. University of Pittsburgh Press, 1967.

[Dav80] Donald. Davidson. Essays on Actions and Events. Clarendon Press, Oxford, Eng-
land, 1980.

[DB88] Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In AAAI
88: The Seventh National Conference on AI, volume 1, Saint Paul, Minnesota, Au-
gust 1988.

[DDS92] M. Denecker and D. De Schreye. Sldnfa: an abductive procedure for normal abduc-
tive programs. Proc. International Conference and Symposium on Logic Program-
ming, pages 686{700, 1992.

[DDS95] M. Denecker and D. De Schreye. Sldnfa: an abductive procedure for abductive logic
programs. 1995.

[Den87] Daniel Denett. The Intentional Stance. The MIT Press, Cambridge, MA, 1987.

[dK86] J. de Kleer. An assumption-based tms. Arti�cial Intelligence, 32, 1986.

[DMB92] Marc Denecker, Lode Missiaen, and Maurice Bruynooghe. Temporal reasoning with
the abductive event calculus. In Proc. European Conference on Arti�cial Intelligence,
1992.

157

[DP87] Rina Dechter and Judea Pearl. The optimality of a�. In L. Kanal and V. Kumar,
editors, Search in Arti�cial Intelligence, pages 167{198. Springer-Verlag, 1987.

[DQ94] Jacinto A. D�avila Quintero. Knowledge assimilation in multi-agents system. Master's
thesis, Imperial College, London, September 1994.

[DQ96] Jacinto A. D�avila Quintero. A logic-based agent. Technical report, Imperial College,
London, February 1996.

[EK88] K. Eshghi and R. Kowalski. Abduction through deduction. Technical report, De-
parment of Computing. Imperial College, London, UK, 1988.

[EK89] K. Eshghi and R. Kowalski. Abduction compare with negation as failure. In G. Levi
and M. Martelli, editors, Proceedings of the International Conference on Logic Pro-
gramming, pages 234{255, Lisbon, Portugal, 1989. MIT Press.

[Esh88a] K. Eshghi. Abductive planning with the event calculus. In R. A. Kowalski and K.A.
Bowen, editors, Proceedings of the Fifth International Conference and Symposium of
Logic Programming, Seattle, USA, 1988.

[Esh88b] Kave Eshghi. Abductive planning with event calculus. In Proceedings 5th Interna-
tional Conference on Logic Programming, 1988. pg. 562.

[Eva89] C.A. Evans. Negation as failure as an approach to the hanks and mcdermott prob-
lem. In F.J. Cantu-Ortiz, editor, Proc. 2nd. International Symposium on Arti�cial
Intelligence, Monterrey, M�exico, 1989. McGraw-Hill.

[Fit85] Melvin R. Fitting. A kripke-kleene semantics for logic programs. The Journal of
Logic Programming, 2:295{312, 1985.

[FK96] T Fung and R Kowalski. The i� proof procedure for abductive logic programming.
July 1996. to appear.

[Flo67] R.W. Floyd. Assigning meanings to programs. In J.T Schwartz, editor,Mathematical
Aspects of Computer Science, Proceedings of Symposia in Applied Mathematics 19,
pages 19{32, Providence, 1967. American Mathematical Society.

[FN71] R.E Fikes and N.J. Nilsson. Strips:a new approach to the application of theorem
proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.

[Fun96] Tze Ho Fung. Abduction by deduction. PhD thesis, Imperial College, London, Jan-
uary 1996.

[Gab93] Dov Gabbay. What's a logical system?. In Dov Gabbay, C.J. Hogger, and J.A
Robinson, editors, Handbook of Logic in Arti�cial Intelligence and Logic Program-
ming, volume 1. Oxford University Press Inc., 1993.

[Gal91] Antony Galton. Rei�ed temporal theories and how to unreify them. 1991.

[Gal95] Antony Galton. Time and change in ai. In Dov Gabbay, C.J. Hogger, and J.A Robin-
son, editors, Handbook of Logic in Arti�cial Intelligence and Logic Programming
(Epistemic and Temporal Reasoning), volume 4, pages 175{240. Oxford University
Press Inc., New York, 1 edition, 1995.

[Gin89] Matthew L. Ginsberg. Universal planning: An (almost) universally bad idea. AI
MAGAZINE, pages 40{44, Winter 1989.

158

[GL90] Michael George� and Amy Lansky. Reactive reasoning and planning. In James
Allen, James Hendler, and Austin Tate, editors, Readings in Planning, pages 729{
734. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[GLR90] M. Gelfond, V. Lifschitz, and A. Rabinov. What are the limitations of the situation
calculus. In Dov Gabbay, editor, Essays for Bledsoe. 1990.

[GN88] Michael R. Genesereth and Nils Nilsson. Logical foundations of Arti�cial Intelligence.
Morgan Kau�man Pub., California. USA, 1988.

[Gor88] Michael J.C. Gordon. Programming Language Theory and its implementation. Pren-
tice Hall, Englewood Cli�s, NJ 07632, 1988.

[Gre69] C. Green. Application of theorem proving to problem solving. In Proc. IJCAI-69,
pages 219{239, Washington D.C., 1969.

[Hay85] P.J. Hayes. The second na��ve manifesto. In J.R. Hobbs and R.C. Moore, editors,
Formal Theories of the Commonsense World, pages 71{107. Ablex, 1985.

[HC96] Manuel Hermenegildo and Daniel Cabeza. Internet and www programming using
computational logic systems. http://www.clip.dia.�.upm.es/, 1996.

[Hew91] Carl Hewitt. Open information systems semantics for distributed arti�cial intelli-
gence. Arti�cial Intelligence, 47:79{106, 1991.

[HM87] S Hanks and D McDermott. Nonmonotonic logics and temporal projection. Arti�cial
Intelligence, 33(3):379{412, November 1987.

[HMP92] Zhisheng Huang, Michael Masuch, and L. P�olos. Alx, an action logic for agents with
bounded rationality. Ccsom report 92-70, University of Amsterdam (PSCW), 1992.

[HNR68] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. IEE Trans. System Science and Cybernatics, SSC-
4(2):100{107, 1968. A Start.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Comm. of the ACM,
12:576{583, October 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hog90] Christopher John Hogger. Essentials of Logic Programming. Claredon Press, Oxford,
1990.

[Isr93] David Israel. The role(s) of logic in arti�cial intelligence. In Dov Gabbay, C.J.
Hogger, and J.A Robinson, editors, Handbook of Logic in Arti�cial Intelligence and
Logic Programming, volume 1, pages 1{30. Oxford University Press Inc., New York,
1993.

[Jon75] Lyn Jones. Systems Modelling: Decision Analysis. The Open University, Walton
Wall, Milton Keynes. UK, �rst edition, 1975.

[Kae87] L. P. Kaelbling. Rex: A symbolic language for the design and parallel implementation
of embedded systems. In Proceedings AIAA Conference on Computers in Aerospace,
Wake�eld, MA, 1987.

159

[Kae90] Leslie Pack Kaelbling. An architecture for intelligent reactive systems. Planning,
1990.

[Kar94] G. Neelakantan Kartha. Two counterexamples related to baker's approach to the
frame problem. Arti�cial Intelligence, 69:379{391, 1994.

[KKT93] A.C. Kakas, R. Kowalski, and F. Toni. Abductive logic programming. Journal of
Logic and Computation, 2(6):719{770, 1993.

[Kle38] S.C. Kleene. On notation for ordinal numbers. Journal of Symbolic Logic, 3:150{155,
1938.

[Kle52] S.C. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, 1952.

[KM90] A.C. Kakas and P Mancarella. Abductive logic programming. In W. Marek,
A. Nerode, D. Pedreschi, and V.S. Subrahmanian, editors, Proc. NACLP Workshop
on Non-monotonic Reasoning and Logic Programming, Austin, Texas, 1990.

[Kow79a] Robert A. Kowalski. Algorithm = logic + control. Comm. of the ACM, 22:424{431,
1979.

[Kow79b] Robert A. Kowalski. Logic for Problem Solving. Elsevier North Holland, New York,
1979.

[Kow84] Robert Kowalski. The relation between logic programming and logic speci�cation.
Phil. Trans. R. Soc. London, A(312):345{361, 1984.

[Kow94] Robert Kowalski. Logic without model theory. In Dov Gabbay, editor, What
is a logical system?, chapter 2, pages 35{71. 1994. (Also at http://www-
lp.doc.ic.ac.uk/ lp/Kowalski/models.ps).

[Kow95] Robert Kowalski. Using metalogic to reconcile reactive with rational agents. In
K. Apt and F. Turini, editors, Meta-Logics and Logic Programming. MIT Press,
1995. (Also at http://www-lp.doc.ic.ac.uk/UserPages/sta�/rak/recon-abst.html).

[KR90] L.P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents.
In Pattie Maes, editor, Designing Autonomous agents: theory and practice from
biology and engineering and back. Elsevier Science Publishers B.V., Amsterdam,
Netherlands, �rst mit press edition, 1990.

[KS86] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation
Computing, 4:67{95, 1986.

[KS94] Robert Kowalski and Fariba Sadri. The situation calculus and event calcu-
lus compared. In M. Bruynooghe, editor, Proc. International Logic Program-
ming Symposium, pages 539{553. MIT Press, 1994. (Also at http://www-
lp.doc.ic.ac.uk/UserPages/sta�/fs/ilps94.html).

[KS97] Robert Kowalski and Fariba Sadri. Towards a uni�ed agent architecture that
combines rationality with reactivity. 1997. To appear. (Also at http://www-
lp.doc.ic.ac.uk/UserPages/sta�/fs/unify.html).

[Kun87] Kenneth Kunen. Negation in logic programming.The Journal of Logic Programming,
4(4):289{308, December 1987.

160

[Lan87] Amy L. Lansky. A representation of parallel activity based on events, structure, and
causality. 1987.

[Lif90a] Vladimir Lifschitz, editor. Papers by John McCarthy, chapter Ascribing Mental
Qualities to Machines, pages 93{118. Ablex Publishing Corp., Norwood, New Jersey,
1990. First printed in Philosophical Perspectives in Arti�cial Intelligence. 1979. M.
Ringle (Ed.) pp. 161-195.

[Lif90b] Vladimir Lifschitz, editor. Papers by John McCarthy, chapter Mathematical Logic
in Arti�cial Intelligence, pages 237{252. Ablex Publishing Corp., Norwood, New
Jersey, 1990. First printed in Daedalus, Winter 1988, pp 297-311.

[Lif91] Vladimir Lifschitz. Toward a metatheory of action. In Proceedings Knowledge Rep-
resentation Conference, pages 376{386, 1991.

[Lin93] Andrew R. Lingard. Towards the E�cient Generation of Plans Containing Overlap-
ping Actions. PhD thesis, Imperial College, London, October 1993.

[LO83] A. Lansky and S. Owicki. Gem: A tool for concurrency, speci�cation and veri�cation.
In Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, pages 198{212, August 1983.

[LRL+95] H. Levesque, R. Reiter, Y. Lesp�erance, L. Fangzhen, and R. B. Scherl. Golog: A
logic programming language for dynamic domains. (forthcomming), 1995. (Also at
http://www.cs.toronto.edu/~ cogrobo/).

[Mae91] P Maes, editor. Designing Autonomous Agents: Theory and Practice from Biology
to Engineering and Back. The MIT Press, Cambridge, MA, 1991.

[MBD95] Lode Missiaen, Maurice Bruynooghe, and Marc Denecker. Chica, an abductive plan-
ning system based on event calculus. Journal of Logic and Computation, 5(5):579{
602, October 1995.

[McC86] J. McCarthy. Applications of circumscription to formalizing common sense knowl-
edge. Arti�cial Intelligence, 26:89{116, 1986.

[McC91] F.G. McCabe. Logic and objects. Prentice Hall, UK, 1991.

[McC95] John. McCarthy. Making robots conscious of their mental states. Machine Intelli-
gence, 15, 1995. Also at: http://www-formal.stanford.edu/jmc/consciousness.html.

[McD82] Drew McDermott. A temporal logic for reasoning about processes and plans. 1982.

[MH69] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
arti�cial intelligence. Machine Intelligence, 4:463{502, 1969.

[Mic95] Sun Microsystems. Hotjava home page. http://webrunner.neato.org/, 1995.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil96] Rob Miller. Notes on deductive and abductive planning in the event calculus.
http://www-lp.doc.ic.ac.uk/UserPages/sta�/rsm/rsm1.html, July 1996.

[MM96] S. Muggleton and D. Michie. Machine intelligibility and the duality principle. British
Telecom Technology Journal, 14(4):15{23, 1996.

161

[Moo95] Moore. Logic and Representation. Center for the Study of Language and Information
(CSLI), 333 Ravenswood Avenue, Menlo Park, CA 94025, 1995.

[Mos81] Christopher D.S. Moss. The Formal Description of Programming Languages using
Predicate Logic. PhD thesis, Imperial College, London, July 1981.

[Mos92] Peter Mosses. Action Semantics. Cambridge University Press, Cambridge, 1992. P.
Mosses is at Aarhus University, Denmark.

[MSae90] K. A. Mohyeldin Said and al et, editors. Modelling the Mind. Clarendon Press,
Oxford, 1990.

[NSS60] A. Newell, J.C. Shaw, and H.A. Simon. Report on a general problem solving program.
In Proceedings International Conference on Information Processing, pages 256{264,
Paris, 1960. UNESCO.

[Ped87] E.P.D Pednault. Formulating multiagent, dynamic-world problems in the classical
planning framework. In M.P. George� and A.L. Lansky, editors, Reasoning about
actions and plans: proceedings of the 1986 workshop, pages 47{82, Los Altos, Cali-
fornia, 1987. Morgan Kaufmann.

[Pei55] C.S. Peirce. Philosophical Writings of Pierce. Dover Publications, New York, 1955.

[Pel91] Richard N. Pelavin. Planning with simultaneous actions and external events. In
J. F. Allen, H. Kautz, R. Pelavin, and J. Tenenberg, editors, Reasoning About Plans.
Morgan Kau�mann Publishers, Inc., San Mateo, California, 1991. ISBN 1-55860-
137-6.

[PIB87] M. Pollack, D. Israel, and M. Bratman. Toward an architecture for resource-bounded
agents. CSLI, pages 1{19, 1987.

[Pin94] Javier Andr�es Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
University of Toronto, Toronto, 1994.

[Pnu86] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of
reactive systems. a survey of current trends. In J.W. deBakker, W. de Roever, and
G. Rozenberg, editors, Current trends in Concurrency, Lecture Notes in Computer
Science, volume 224, pages 510{584. Springer-Verlag, Berlin, 1986.

[Poo89] D. Poole. Explanation and prediction: an architecture for default and abductive
reasoning. Computational Intelligence Journal, 5:97{110, 1989.

[Poo95] David Poole. Logic programming for robot control. In Chris S. Mellish, editor, Proc.
International Joint Conference on Arti�cial Intelligence, pages 150{157, San Mateo,
California, 1995. Morgan Kaufmann Publishers, Inc.

[PW80] F.C.N. Pereira and D.H.D. Warren. De�nite clause grammars for language analysis-
a survey of the formalism and a comparison with augmented transition networks.
Arti�cial Intelligence, 13:231{278, 1980.

[Rai70] Howard Rai�a. Decision Analysis: Introductory Lectures on Choices under Uncer-
tainty. Addison-Wesley, Reading, Massachussetts, July 1970.

162

[Rei96] Raymond Reiter. A formal account of planning with concurrency, continous time
and natural actions. In Ute Sigmund and Michael Thielscher, editors, Reason-
ing About Actions and Planning in Complex Environments, Alexanderstrasse 10,
D-64283 Darmstadt, Germany, 1996. Technische Hochschule Darmstadt. (Also at
http://www.cs.toronto.edu/~ cogrobo/).

[Res66] Nicholas Rescher, editor. The Logic of Decision and Action. University of Pittsburgh
Press, 1966.

[RG95] Anand Rao and Michael George�. Formal models and decision procedures for multi-
agent systems. Technical note 61, Australian Arti�cial Intelligence Institute, June
1995.

[RK95] Stanley J. Rosenschein and Leslie Pack Kaelbling. A situated view of representation
and control. Arti�cial Intelligence, 73:149{173, February 1995.

[RN95] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach.
Prentice Hall, Englewood Cli�s - New Jersey, 1995.

[Rob79] J.A. Robinson. Logic: Form and Function. Edinburgh University Press, Edinburgh,
Scotland, 1979.

[Ros89] Stanley Rosenschein. Synthesizing information-tracking automata from environment
descriptions. In R. Brachman, H Levesque, and R Reiter, editors, Proceedings of
the First International Conference on Principles of Representation and Reasoning.
Morgan Kaufmann Publishers, Inc, 2929 Campus Drive. San Mateo, CA 94403, 1989.

[RW91] Stuart Russell and Eric Wefald. Principles of metareasoning. Arti�cial Intelligence,
49:361{395, 1991.

[Sac74] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial Intelligence,
5:115{135, 1974.

[Sac75] E.D. Sacerdoti. A structure for plans and behaviour. Technical note 09, SRI, Menlo
Park, CA, 1975. (Also in: American Elsevier, New York 1977).

[San93] Erik Sandewall. The range of applicability of nonmonotonic logics for the inertia
problem. In R. Bajcsy, editor, Proc. of the IJCAI, pages 738{743, 1993.

[San94] Erik Sandewall. The range of applicability of some non-monotonic logics for strict
inertia. J. of Logic and Computation, 4(5):581{615, 1994.

[Sch94] Lenhart K. Schubert. Explanation closure, action closure and the sandewall test
suite for reasoning about change. J. of Logic and Computation, 4(5):679{700, 1994.

[Ser83] Marek Sergot. A query-the-user facility for logic programming. In Degandp and
Sandwell, editors, Integrated interactive computer systems, pages 27{41. North Hol-
land Press, 1983.

[Sha89] Murray Shanahan. Prediction is deduction but explanation is abduction. In N.S.
Sridharan, editor, Proc. International Joint Conference on Arti�cial Intelligence,
pages 1055{1060. Morgan Kaufmann, Detroit. Mi, 1989.

[Sha93] Murray Shanahan. Explanation in the situation calculus. In Proc. International
Joint Conference on Arti�cial Intelligence, pages 160{165. Morgan Kaufmann, 1993.

163

[Sha96] Murray Shanahan. Robotics and the common sense informatic situation. Work-
ing Notes of Common Sense 96, The Third Symposium on Logical Formalizations
of Commonsense, pages 186{198, 1996. Also in Proceedings ECAI 96 and at
http://www.dcs.qmw.ac.uk/~ mps/pubs.html.

[Sha97] Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, 1997.

[Sho89] Yoav Shoham. Reasoning About Change. The MIT Press, Cambridge, Massachusetts
- London, England, 1989.

[Sho90] Yoav Shoham. Agent0: A simple agent language and its interpreter. 1990.

[Sho95] Yoav Shoham. Agent oriented programming. Arti�cial Intelligence, 1995.

[Sim55] Herbert A. Simon. A behavioral model of rational choice. Quarterly Journal of
Economics, pages 99{118, 1955.

[SMM96] Kenji Sasaki, Sandor Markon, and Masami Makagawa. Elevator group supervisory
control system using neural networks. ELEVATOR WORLD, XLIV(2):81{90, Febru-
ary 1996. http://www.enews.com/magazines/elevator/archive.

[Sri91] Suryanarayana Murthy Sripada. Temporal Reasoning in Deductive Databases. PhD
thesis, Imperial College, London, January 1991.

[Ste81] M. Ste�k. Planning with constraints (molgen: Part 1). Arti�cial Intelligence, 16:111{
140, 1981.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey approach to Program-
ming Language Theory. The MIT Press, Cambridge, Massachusetts and London,
England, 1977.

[Tan87] Andrew S. Tanenbaum. Operating systems : design and implementation. Prentice-
Hall International, London, 1987.

[Tat76] A. Tate. Project planning using hierarchical nonlinear planner. Research report 25,
Edinburgh University, Deparment of AI, 1976.

[Tat77] A. Tate. Generating project networks. In Proceedings of IJCAI-77, pages 888{893,
Cambridge, MA, 1977.

[Ton95] Francesca Toni. Abductive Logic Programming. PhD thesis, Imperial College, Lon-
don, July 1995.

[Tur50] Alan M. Turing. Computing machinery and intelligence. Mind 59, pages 433{460,
Octuber 1950. also in [?].

[Ver83] S.A. Vere. Planning in time: Windows and durations for activities and goals. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5:246{267, 1983.

[vW63] G.H. von Wright. Norm and Action. Routledge and Kegan Paul,, London, 1963.

[War74] D.H.D.Warren. Warplan: a system for generating plans. Logic memo 76, Deparment
of Computational Logic, University of Edinburgh, Edinburgh, Scotland, 1974.

164

[War76] D.H.D. Warren. Generating conditional plans and programs. In Proceedings of the
AISB Summer Conference, pages 344{354, 1976.

[Wet97] Gerhard Wetzel. Abductive and Constraint Logic Programming. PhD thesis, Imperial
College, London, March 1997.

[Win93] GlynnWinskel. The Formal Semantics of Programming Languages: An Introduction.
The MIT Press, Cambridge, Massachusetts - London, England, 1993. Foundations
of Computing.

[WJ84] Niklaus Wirth and Kathy Jensen. PASCAL:User Manual and Report. Springer-
Verlag, 3rd. edition, 1984.

[WJ95] Michael Wooldridge and Nicholas Jennings. Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 1995.

[WKT95] Gerhard Wetzel, Robert Kowalski, and Franchesca Toni. A theorem-proving ap-
proach to clp. In A. Krall and U. Geske, editors, Workshop Logische Program-
mierung, number 270 in -, pages 63{72. GMD-Studien, September 1995.

165

Appendix A

Appendix

A.1 Proof of proposition about memory required by SC

In SC the chronological order of actions and situations is conditioned by the syntax of the
situational terms. Information about the relative order of two actions must always be explicit
and decisions must be made as early as possible. For instance, if one knows that action a
occurred �rst, and then b and c occurred in some unknown order, this would be represented in
SC as:

do(c; do(b; do(a; so))) _ do(b; do(c; do(a; so)))
not as:

do or(a; b; do(a; so)))
which would be a more \economical" representation, but which would also require the introduc-
tion of the logical functor do or. This type of patching of the representation would eventually
lead to a \rei�ed" version of AEC built into SC.

For the implementors, the explicit representation in SC means that instead of something
like1:

[fb; cg; a]
they would have to have something like:
f[c; b; a]; [b; c; a]g
It also means that the history of actions will always be stored in a \at" or-list of and-lists,

if one wants the agent to have all the possible plans available for comparison.
But more important, it means the the memory space required to store plans (sequences of

actions and their orderings) in SC is a function 1) of the number of bits required to distinguish
among Z action types, 2) of N , the number of action occurrences, and 3) of K, the number
of actions whose absolute ordering is known (for instance, if as above, a; b; c occurred and it is
known that a is before b and a is also before c, one knows the absolute ordering of a because
one knows its position with respect to all the other actions).

For N occurrences there are N ! possible arrangements Pa or permutations, (Pa = N !) when
no order is considered. If one knows the absolute ordering of one action, Pa reduces by 1
(Pa = (N � 1)!. In general, Pa = (N �K)!. So, in the example above, Pa = (3� 1)! = 2.

Considering that to distinguish between Z action-types one needs aprox(log2(Z)) bits2,
then the total space required to store a plan with N actions, K of which have their ordering

1where fg indicates an or-list and [] an and-list.
2aprox(X) is a function that returns the nearest greater integer with respect to X . For instance, if X = 1:3,

aprox(X) = 2.

166

completely de�ned, is given (in bits) by:

SCStorage = (N � (N �K)! + (N �K)! � 1) � aprox(log2(Z + 1))

where Z + 1 is due to the fact that one has to distinguish _" symbols separating the lists (i.e.
the number of actions (N) times the number of possible arrangements (Pa) plus the number of
_" symbols (Pa � 1)).

One can see that with full information K = N and so:

SCStoragefullinfo = N � aprox(log2(Z + 1))

which yield SCStoragefullinfo = 3 � aprox(log2(Z + 1)), as one would expect in the example
above.

On the other hand, with no information about ordering K = 0, the function is:

SCStoragenoinfo = (N �N ! +N !� 1) � aprox(log2(Z + 1))

yielding SCStoragenoinfo = 23�aprox(log2(Z+1)) in the example, which is indeed the minimal
amount required to store the list: a; b; c � a; c; b � b; a; c � b; c; a � c; a; b � c; b; a

2

A.2 Proof of proposition about memory required by EC

Unlike SC, EC does not require explicit representation of all permutations of the actions in
a plan. If N actions/events occur, then one has an store with N records, each of these with
an identi�er of the action type and of the time-point(s) of occurrence. The store must also
contain records of the ordering on times points. So, in the case of full information, EC will
easily consume more space that SC, as this example shows:

Example A.2.1 Three actions, a, b and c, occur in this order. In SC, this is straightfor-
wardly represented as [a; b; c]. In EC, the minimal representation would be something like:
[(a; t1); (b; t2); (c; t3)] plus [t1 < t2; t2 < t3].

As one can see, there are many more \symbols" (and symbol occurrences) involved in the
second case than in the �rst. This situation, however, tends to reverse when information is
scarce. To prove this claim, we will try to device an storage requirement function, ECStorage,
for EC, similar to SCStorage in the previous section.

With EC, however, we have an inconvenience we did not have in SC. The number of bits
required to distinguish among the \symbols" in the representation is, strictly speaking, variable.
It is not aprox(log2(Z + 1)) anymore because we now also have the time-points (the ti's in the
example) to be distinguished. One should notice that the number of time-point identi�ers is 2�
N , twice the number of action occurrences, when one wants to represent every action's start and
�nish time with a di�erent symbol (e.g. in the example above: [(a; t1; t2); (b; t3; t4); (c; t5; t6)]).
But, if one simply wants to match the expressiveness of SC, N would be a su�cient upper
bound3. That is, one time-point per occurrence.

3N is an \upper bound" because one may actually need less than that if the \occurrences" share time-points
like, for instance: [(a; t1); (b; t1); (c; t2)]. But this requires some additional information about actions' orderings.

167

So, in EC one has at least Z action types plus N time-point symbols among which one needs
to distinguish (one does not need _" identi�ers as in the previous section). That is, we need
a data unit4, with, at least, aprox(log2(Z +N)) bits.

Things are more complicated, though. To maintain a data unit with variable length is
di�cult in practice, specially if the data unit is being used to store di�erent types of data, as is
the case with time-points and action types in this discussion. To avoid that sort of complications,
we penalize EC (we discuss the penalisation below) by assuming that we will use di�erent data
units for di�erent type of data. The action-type data unit will require aprox(log2(Z)) bits.
And a time point will be kept in cell of aprox(log2(N)) bits.

Thus, to record N action occurrences, we will use N times the size of the action-types data
unit plus the size of the time-point data unit5. In addition to this, we will need the list with
the pairs indicating the order between time-points. These considerations lead to:

ECStorage = N � (aprox(log2(Z) + aprox(log2(N)))

+M � (aprox(log2(N)))

where M is the number of entries indicating ordering between pairs of time-points. For instance,
with [(a; t1); (b; t2); (c; t3)], we will need a list such as [(t1 < t2); (t1 < t3); (t2 < t3)] which could
obviously be reduced, using the transitive law on < to: [(t1 < t2); (t2 < t3)]. Normally then,

M � N � 1. But if we do not consider the transitivity law6, M � N�(N�1)
2 .

Thus, with full information about the ordering of the actions and without using the transi-

tivity law (so that, M = N�(N�1)
2

), the storage requirements of EC are given by:

ECStoragefullinfo = N � (aprox(log2(Z) + aprox(log2(N)))

+N �
N � 1

2
� (aprox(log2(N)))

And with no information about action ordering (M = 0):

ECStoragenoinfo = N � (aprox(log2(Z) + aprox(log2(N)))

2

A.3 Proof of proposition comparing EC and SC

In the two previous sections, we obtained the basic results to prove this proposition. They are:

SCStorage = ((N + 1) � (N �K)!� 1) � aprox(log2(Z + 1))

and

ECStorage = N � (aprox(log2(Z) + aprox(log2(N)))

+M � (aprox(log2(N)))

4A data unit is a cell to store a unit of information such as a symbol or a number
5Observe that this is a penalisation of EC, because in the useful cases (with Z > 2 and N > 2) log2(Z +

N) < log2(Z) + log2(N). Actually, one can de�ne aprox so that: aprox(log2(Z + N)) � aprox(log2(Z)) +
aprox(log2(N)).

6Recall that
�
N
2

�
= N�(N�1)

2 .

168

In each equation, however, we have a di�erent unit to quantify the lack of information. Recall
that K is the number of action occurrences whose absolute position (chronological position with
respect to all the other occurrences) is known, whereas M is the number of atoms (ti < tj),
of the relation <, that are known at a particular moment. Fortunately, we can express M in
terms of K (and N) by noticing that:

M = K �N �
KX

i=1

i

Thus, ECStorage can now be re-stated as:

ECStorage = N � (aprox(log2(Z) + aprox(log2(N)))

+(K �N �
KX

i=1

i) � (aprox(log2(N)))

To prove the proposition, it su�ces to show that SCStorage > ECStorage for K ! 0,
or equivalently SCStorage � ECStorage > 0 (for K ! 0). The di�erence is given (writing
aprox(log2(X)) as aproxlog(X) for simplicity) by:

SCStorage � ECStorage = (N + 1) � ((N �K)!) � aproxlog(Z + 1)

+(
KX

i=1

i) � aproxlog(N)

�aproxlog(Z + 1)�N � aproxlog(Z)

�(K + 1) � (N)aproxlog(N)

When K = 0 (no information), this expression becomes:

SCStorage � ECStorage = ((N + 1)!) � aproxlog(Z + 1)

�aproxlog(Z + 1)� N � aproxlog(Z)

�(N)aproxlog(N)

where it is evident that the �rst (positive) term in the equation growths considerably faster
that the negative terms.

2

For the sake of fairness, one should also show that when K = N the di�erence is given by:

SCStorage �ECStorage = (N + 1) � aproxlog(Z + 1) + (
NX

i=1

i) � aproxlog(N)

�aproxlog(Z + 1)�N � aproxlog(Z)

�(N + 1) � (N)aproxlog(N)

where the negative terms dominate the result. That is, when there is full information SC's
consumption of space is lower than EC's. Nevertheless, one must indicate that the analysis is

169

these proofs is considerably biased against EC: 1) We penalised it for the sake of practicality (as
explained above), 2) We ignore the transitivity law when storing information about time-points
and 3) we have not considered that time-points could be represented by numerical symbols and
therefore EC is ready to be part of a system were numbers are \built-in" (because they are also
required with some other purposes).

A.4 Proof of proposition [ELEVA]

The style of following proof is taken from [Fun96]. Resolvents are called nodes (Ni is the
i-th node in the derivation frontier) and they can contain implications. A node is divided
into non-conditional goals, implications and residue: Ni = f: : :g + f: : :g + f: : :g. Every item
below represents the state of the frontier of nodes at a particular time. For the sake of brevity,
derivations are not exhaustively described, but how to �ll the gaps must be progressively evident
from the context. The literal selected for the next resolution step is always indicated like this.
Also, long predicates have been abbreviated and ^ is substituted by \;" as in PROLOG.

1.- N1 = fdone(control; t4; t100)g+ fg+ fg
with [DN01]

2.- N1 = f(proc control begin C end); done(C; t4; t100)g+ fg+ fg
\resolving against" ELEVATOR

3.- N1 = fdone(while on(N) do serve a oor ; park; t4; t100)g+ f+fg
with [DN02]

4.- N1 = fdone(while on(N) do serve a oor; t4;T1); T1 � T2; done(park; T2; t100)g +
fg+ fg
with [DN07]

5.- N1 = f:holdsAt(on(N0); t4); T1 = t4; done(park; T1; t100)g+ fg+ fg
N2 = fholdsAt(on(N 0); t4); done(serve a floor; t4; T 01); T

0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); T1 � T2; done(park; T2; t100)g+ fg+ fg
the negated literal is \transformed" into a conditional goal

6.- N1 = fT1 = t4; done(park; T1; t100)g+ ffalse holdsAt(on(N0); t4)g+ fg
N2 as before
#

7.- N1 = ffalseg because of step 8 to 12
N2 = fholdsAt(on(N 0); t4); done(serve a floor; t4; T 01); T

0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); T1 � T2; done(park; T2; t100)g+ fg+ fg
with [DN13] an after dismissing N1 (N2 takes its place)
and also thanks to the de�nition of isfluent(F)

8.- N1 = fholds(on(N0); t4); done(serve a floor; t4; T
0

1); T
0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); T1 � T2; done(park; T2; t100)g+ fg+ fg
with [EC1] (for simplicity, we use AEC not OAEC).

9.- N1 = fdo(Ag;A; T 0; T); init(A;T;on(N0)); T < t4;:clip(T; on(N 0); t4);
done(serve a floor; t4; T 01); T

0

1 < T 02; done(while on(N) do serve a floor; T 02; T1);
T1 � T2; done(park; T2; t100)g+ fg+ fg
with [INI-03]

170

10.- N1 = fdo(Ag; turnon(N
0);T0;T); T < t4;:clip(T; on(N

0); t4);
done(serve a floor; t4; T

0

1); T
0

1 < T 02; done(while on(N) do serve a floor; T 02; T1);
T1 � T2; done(park; T2; t100)g+ fg+ fg
with [DO-02] and [DO-03]

11.- N1 = ft3 < t4;:clip(t3; on(5); t4); : : :g+ fg+ fg
N2 = ft3 < t4;:clip(t3; on(3); t4); : : :g+ fg+ fg
#

12.- N1 = fdone(serve a floor; t4; T
0

1); : : :g+ ffalse clip(t3;on(5); t4)g+ fg
N2 as before
by using [EC2] and [ELE H] the clip is dismissed.

13.- N1 = fdone(serve a oor; t4;T
0

1); T
0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); done(park; T1; t100)g+ fg+ fg
N2 as before
[DN01] again

14.- N1 = f(proc serve a oor begin C end); done(C; t4; T 01); T
0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); done(park; T1; t100)g+ fg+ fg
N2 as before
#

15.- The process continues and after a while one has:
N1 = fdone(if currentoor(C) then if C = 5 then
begin turno� (5) par open ; close end else if C < 5
then begin addone(C;Nx) ; up(Nx) ; serve(N)
serve(5) end else begin subone(C;Nx) ; down(Nx) ; end end; t4;T

0

1); T
0

1 < T 02;
done(while on(N) do serve a floor; T 02; T1); T1 � T2; done(park; T2; t100)g+ fg+ fg
N2 = : : :
N3 = : : :
#

16.- Eventually it reaches an expression like:
N1 = fdone(addone(4;Nx); t4;T

000

1); done(up(Nx); T 0001 ; T 001);
done(serve(5); T 001 ; T

0

1); T
0

1 < T 02; done(while on(N) do serve a floor; T 02; T1);
T1 � T2; done(park; T2; t100)g+ fg+ fg
N2 = : : :
N3 = : : :
N4 = : : :
By abducing and executing addone ([DNEC0])
which takes the agent to time t5

17.- N1 = fdone(up(5); t5;T
00

1);
done(serve(5); T 001 ; T

0

1); T
0

1 < T 02; done(while on(N) do serve a floor; T 02; T1);
T1 � T2; done(park; T2; t100)g+ fg+ fg
N2 = : : :
N3 = : : :
N4 = : : :
with [DNEC0] (base case of done, the de�nition of
primitive and the abductive strategy

171

18.- N1 = fdone(serve(5);T
00

1;T
0

1); : : :
T1 � T2; done(park; T2; t100)g+ fg+ fdo(self; up(5); t5; T

00

1)g
N2 = : : :
N3 = : : :
N4 = : : :

This, of course, is only a selected trace of a proof showing how to \generate" one of the
elements of [ELE PLAN] fdo(self; up(5); t5; T 001)g . The rest of [ELE PLAN], however, can be
similarly generated to complete the proof.

2

A.5 Traces of the simulated elevator

The �gures in this subsection illustrate the behaviour of the elevator controller as simulated by
the testbed described in chapter 6. We describe only two sequences of actions and events. The
intention is to show that the GLORIA-like agent react to inputs from its environment and at
the same time maintains a goal-oriented behaviour.

The program being traced is that described in �gure 6.4, activated by integrity contraint 6.1.
Recall that the elevator is an extended version of policy 3, as explain before in this chapter.

A.5.1 An agent that reacts to opportunities

The �rst sequence shows how the elevator controller takes new inputs into account, while it is
trying to achieve some previously activated goal.

At the beginning, the situation is as shown in �gure A.1. The elevator is at oor 1, having
just served it, and there is no button on. At that time7, the button at oor 5 is pressed
(�g. A.2). Having processed that input (on(5)) and activated the goal of serving the �fth oor,
the elevator starts moving up (�g. A.3). As the elevator is leaving the second oor in its way
up, the button at oor 4 is pressed (�g. A.4). The system continues it upward movement until
it reaches oor 4 (�g. A.5). Then, having attached a higher priority to the goal of serving oor
4, the elevator actually serves it (�g. A.6). Finally, the elevator reaches oor 5 (�gure A.7) and
serves it (�gure A.8).

A.5.2 An agent that is faithful to its policy

The previous sequence does not challenge the speci�cation of policy 3. The elevator is never in
a situation that presents the dilemma of following or not the policy.

The following sequence presents that dilemma and it shows how the elevator controller is
faithful to that speci�cation of policy 3.

Policy 3 basically says that the elevator must visit �rst the next oor in its current direction
of movement (up or down), if there is any. We can program this policy into the elevator
controller by means of integrity contraints and OPENLOG procedures (as shown in chapter 4)
or as PRIORLOG and ACTILOG rules (chapter 5).

Once again, the elevator is initially at oor 1 and it has been called to serve the �fth oor
(�gure A.9 and A.10). The elevator starts moving upwards (�g. A.11) and when it reaches oor
3, it realizes that the button at oor 1 has been pressed (�g. A.12). The elevator seems to
ignore oor 1 (it does not. The goal has been activated but it has been given a lower priority

7The time is given by the \Current time" on the window. There are considerable gaps between the pictures'
\current time". The reason is, of course, that we suspended (froze) the system to \take the picture".

172

Figure A.1: The initial situation: the elevator at oor 1

173

Figure A.2: The elevator has been called to serve the �fth oor

174

Figure A.3: At oor 2, moving towards the �fth oor

175

Figure A.4: The elevator has been called at oor 4

176

Figure A.5: The elevator reaches oor 4

177

Figure A.6: The elevator serves oor 4

178

Figure A.7: The elevator reaches oor 5

179

Figure A.8: The elevator serves oor 5

180

Figure A.9: Once again, the elevator is at the �rst oor

181

Figure A.10: .. and has to serve the �fth oor

182

Figure A.11: It starts moving upwards

183

Figure A.12: The button is pressed at oor 1

184

Figure A.13: .. but the elevator continues it movement towards the �fth oor

185

Figure A.14: Once again, it reaches the �fth oor

186

Figure A.15: And it serves the �fth oor

187

Figure A.16: Only then, it moves down to serve the �rst oor

188

Figure A.17: Just before reaching the �rst, the button is pressed at the fourth

189

Figure A.18: But this agent will serve those on its way �rst

190

because it implies a change of direction) and it continues in the same direction to serve oor 5
(�gures A.13, A.14 and A.15). Having served the �fth oor, the elevator comes down to serve
the �rst oor (�gures A.16, A.17 and A.18).

The sequence of events depicted by �gures A.1 to A.8 and �gures A.9 to A.18 may seem
trivial. Surely, any system must be able to perform in that way. However, not any system can
provide a logical description of this interaction: how inputs are assimilated and contribute to
the activation of goals that determined the subsequent behaviour of the system. These are, we
believe, the foundations of logical descriptions of more complex systems in which interactions
involve communication and social behaviour.

191

